| 1 | //---------------------------------------------------------------------------// |
| 2 | // Copyright (c) 2014 Benoit Dequidt <benoit.dequidt@gmail.com> |
| 3 | // |
| 4 | // Distributed under the Boost Software License, Version 1.0 |
| 5 | // See accompanying file LICENSE_1_0.txt or copy at |
| 6 | // http://www.boost.org/LICENSE_1_0.txt |
| 7 | // |
| 8 | // See http://boostorg.github.com/compute for more information. |
| 9 | //---------------------------------------------------------------------------// |
| 10 | |
| 11 | #include <iostream> |
| 12 | #include <cstdlib> |
| 13 | |
| 14 | #include <boost/program_options.hpp> |
| 15 | |
| 16 | #include <boost/compute/core.hpp> |
| 17 | #include <boost/compute/algorithm/copy.hpp> |
| 18 | #include <boost/compute/container/vector.hpp> |
| 19 | #include <boost/compute/type_traits/type_name.hpp> |
| 20 | #include <boost/compute/utility/source.hpp> |
| 21 | |
| 22 | namespace compute = boost::compute; |
| 23 | namespace po = boost::program_options; |
| 24 | |
| 25 | using compute::uint_; |
| 26 | |
| 27 | const uint_ TILE_DIM = 32; |
| 28 | const uint_ BLOCK_ROWS = 8; |
| 29 | |
| 30 | // generate a copy kernel program |
| 31 | compute::kernel make_copy_kernel(const compute::context& context) |
| 32 | { |
| 33 | // source for the copy_kernel program |
| 34 | const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE( |
| 35 | __kernel void copy_kernel(__global const float *src, __global float *dst) |
| 36 | { |
| 37 | uint x = get_group_id(0) * TILE_DIM + get_local_id(0); |
| 38 | uint y = get_group_id(1) * TILE_DIM + get_local_id(1); |
| 39 | |
| 40 | uint width = get_num_groups(0) * TILE_DIM; |
| 41 | |
| 42 | for(uint i = 0 ; i < TILE_DIM ; i+= BLOCK_ROWS){ |
| 43 | dst[(y+i)*width +x] = src[(y+i)*width + x]; |
| 44 | } |
| 45 | } |
| 46 | ); |
| 47 | |
| 48 | // setup compilation flags for the copy program |
| 49 | std::stringstream options; |
| 50 | options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS; |
| 51 | |
| 52 | // create and build the copy program |
| 53 | compute::program program = |
| 54 | compute::program::build_with_source(source, context, options.str()); |
| 55 | |
| 56 | // create and return the copy kernel |
| 57 | return program.create_kernel(name: "copy_kernel" ); |
| 58 | } |
| 59 | |
| 60 | // generate a naive transpose kernel |
| 61 | compute::kernel make_naive_transpose_kernel(const compute::context& context) |
| 62 | { |
| 63 | // source for the naive_transpose kernel |
| 64 | const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE( |
| 65 | __kernel void naive_transpose(__global const float *src, __global float *dst) |
| 66 | { |
| 67 | uint x = get_group_id(0) * TILE_DIM + get_local_id(0); |
| 68 | uint y = get_group_id(1) * TILE_DIM + get_local_id(1); |
| 69 | |
| 70 | uint width = get_num_groups(0) * TILE_DIM; |
| 71 | |
| 72 | for(uint i = 0 ; i < TILE_DIM; i+= BLOCK_ROWS){ |
| 73 | dst[x*width + y+i] = src[(y+i)*width + x]; |
| 74 | } |
| 75 | } |
| 76 | ); |
| 77 | |
| 78 | // setup compilation flags for the naive_transpose program |
| 79 | std::stringstream options; |
| 80 | options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS; |
| 81 | |
| 82 | // create and build the naive_transpose program |
| 83 | compute::program program = |
| 84 | compute::program::build_with_source(source, context, options.str()); |
| 85 | |
| 86 | // create and return the naive_transpose kernel |
| 87 | return program.create_kernel(name: "naive_transpose" ); |
| 88 | } |
| 89 | |
| 90 | // generates a coalesced transpose kernel |
| 91 | compute::kernel make_coalesced_transpose_kernel(const compute::context& context) |
| 92 | { |
| 93 | // source for the coalesced_transpose kernel |
| 94 | const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE( |
| 95 | __kernel void coalesced_transpose(__global const float *src, __global float *dst) |
| 96 | { |
| 97 | __local float tile[TILE_DIM][TILE_DIM]; |
| 98 | |
| 99 | // compute indexes |
| 100 | uint x = get_group_id(0) * TILE_DIM + get_local_id(0); |
| 101 | uint y = get_group_id(1) * TILE_DIM + get_local_id(1); |
| 102 | |
| 103 | uint width = get_num_groups(0) * TILE_DIM; |
| 104 | |
| 105 | // load inside local memory |
| 106 | for(uint i = 0 ; i < TILE_DIM; i+= BLOCK_ROWS){ |
| 107 | tile[get_local_id(1)+i][get_local_id(0)] = src[(y+i)*width + x]; |
| 108 | } |
| 109 | |
| 110 | barrier(CLK_LOCAL_MEM_FENCE); |
| 111 | |
| 112 | // transpose indexes |
| 113 | x = get_group_id(1) * TILE_DIM + get_local_id(0); |
| 114 | y = get_group_id(0) * TILE_DIM + get_local_id(1); |
| 115 | |
| 116 | // write output from local memory |
| 117 | for(uint i = 0 ; i < TILE_DIM ; i+=BLOCK_ROWS){ |
| 118 | dst[(y+i)*width + x] = tile[get_local_id(0)][get_local_id(1)+i]; |
| 119 | } |
| 120 | } |
| 121 | ); |
| 122 | |
| 123 | // setup compilation flags for the coalesced_transpose program |
| 124 | std::stringstream options; |
| 125 | options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS; |
| 126 | |
| 127 | // create and build the coalesced_transpose program |
| 128 | compute::program program = |
| 129 | compute::program::build_with_source(source, context, options.str()); |
| 130 | |
| 131 | // create and return coalesced_transpose kernel |
| 132 | return program.create_kernel(name: "coalesced_transpose" ); |
| 133 | } |
| 134 | |
| 135 | // generate a coalesced withtout bank conflicts kernel |
| 136 | compute::kernel make_coalesced_no_bank_conflicts_kernel(const compute::context& context) |
| 137 | { |
| 138 | const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE( |
| 139 | __kernel void coalesced_no_bank_conflicts(__global const float *src, __global float *dst) |
| 140 | { |
| 141 | // TILE_DIM+1 is here to avoid bank conflicts in local memory |
| 142 | __local float tile[TILE_DIM][TILE_DIM+1]; |
| 143 | |
| 144 | // compute indexes |
| 145 | uint x = get_group_id(0) * TILE_DIM + get_local_id(0); |
| 146 | uint y = get_group_id(1) * TILE_DIM + get_local_id(1); |
| 147 | |
| 148 | uint width = get_num_groups(0) * TILE_DIM; |
| 149 | |
| 150 | // load inside local memory |
| 151 | for(uint i = 0 ; i < TILE_DIM; i+= BLOCK_ROWS){ |
| 152 | tile[get_local_id(1)+i][get_local_id(0)] = src[(y+i)*width + x]; |
| 153 | } |
| 154 | |
| 155 | barrier(CLK_LOCAL_MEM_FENCE); |
| 156 | |
| 157 | // transpose indexes |
| 158 | x = get_group_id(1) * TILE_DIM + get_local_id(0); |
| 159 | y = get_group_id(0) * TILE_DIM + get_local_id(1); |
| 160 | |
| 161 | // write output from local memory |
| 162 | for(uint i = 0 ; i < TILE_DIM ; i+=BLOCK_ROWS){ |
| 163 | dst[(y+i)*width + x] = tile[get_local_id(0)][get_local_id(1)+i]; |
| 164 | } |
| 165 | } |
| 166 | ); |
| 167 | |
| 168 | // setup compilation flags for the coalesced_no_bank_conflicts program |
| 169 | std::stringstream options; |
| 170 | options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS; |
| 171 | |
| 172 | // create and build the coalesced_no_bank_conflicts program |
| 173 | compute::program program = |
| 174 | compute::program::build_with_source(source, context, options.str()); |
| 175 | |
| 176 | // create and return the coalesced_no_bank_conflicts kernel |
| 177 | return program.create_kernel(name: "coalesced_no_bank_conflicts" ); |
| 178 | } |
| 179 | |
| 180 | // compare 'expectedResult' to 'transposedMatrix'. prints an error message if not equal. |
| 181 | bool check_transposition(const std::vector<float>& expectedResult, |
| 182 | uint_ size, |
| 183 | const std::vector<float>& transposedMatrix) |
| 184 | { |
| 185 | for(uint_ i = 0 ; i < size ; ++i){ |
| 186 | if(expectedResult[i] != transposedMatrix[i]){ |
| 187 | std::cout << "idx = " << i << " , expected " << expectedResult[i] |
| 188 | << " , got " << transposedMatrix[i] << std::endl; |
| 189 | std::cout << "FAILED" << std::endl; |
| 190 | return false; |
| 191 | } |
| 192 | } |
| 193 | return true; |
| 194 | } |
| 195 | |
| 196 | // generate a matrix inside 'in' and do the tranposition inside 'out' |
| 197 | void generate_matrix(std::vector<float>& in, std::vector<float>& out, uint_ rows, uint_ cols) |
| 198 | { |
| 199 | // generate a matrix |
| 200 | for(uint_ i = 0 ; i < rows ; ++i){ |
| 201 | for(uint_ j = 0 ; j < cols ; ++j){ |
| 202 | in[i*cols + j] = i*cols + j; |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | // store transposed result |
| 207 | for(uint_ j = 0; j < cols ; ++j){ |
| 208 | for(uint_ i = 0 ; i < rows ; ++i){ |
| 209 | out[j*rows + i] = in[i*cols + j]; |
| 210 | } |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | // neccessary for 64-bit integer on win32 |
| 215 | #ifdef _WIN32 |
| 216 | #define uint64_t unsigned __int64 |
| 217 | #endif |
| 218 | |
| 219 | int main(int argc, char *argv[]) |
| 220 | { |
| 221 | // setup command line arguments |
| 222 | po::options_description options("options" ); |
| 223 | options.add_options() |
| 224 | ("help" , "show usage instructions" ) |
| 225 | ("rows" , po::value<uint_>()->default_value(v: 4096), "number of matrix rows" ) |
| 226 | ("cols" , po::value<uint_>()->default_value(v: 4096), "number of matrix columns" ) |
| 227 | ; |
| 228 | |
| 229 | // parse command line |
| 230 | po::variables_map vm; |
| 231 | po::store(options: po::parse_command_line(argc, argv, desc: options), m&: vm); |
| 232 | po::notify(m&: vm); |
| 233 | |
| 234 | // check command line arguments |
| 235 | if(vm.count(x: "help" )){ |
| 236 | std::cout << options << std::endl; |
| 237 | return 0; |
| 238 | } |
| 239 | |
| 240 | // get number rows and columns for the matrix |
| 241 | const uint_ rows = vm["rows" ].as<uint_>(); |
| 242 | const uint_ cols = vm["cols" ].as<uint_>(); |
| 243 | |
| 244 | // get the default device |
| 245 | compute::device device = compute::system::default_device(); |
| 246 | |
| 247 | // print out device name and matrix information |
| 248 | std::cout << "Device: " << device.name() << std::endl; |
| 249 | std::cout << "Matrix Size: " << rows << "x" << cols << std::endl; |
| 250 | std::cout << "Grid Size: " << rows/TILE_DIM << "x" << cols/TILE_DIM << " blocks" << std::endl; |
| 251 | std::cout << "Local Size: " << TILE_DIM << "x" << BLOCK_ROWS << " threads" << std::endl; |
| 252 | std::cout << std::endl; |
| 253 | |
| 254 | // On OSX this example does not work on CPU devices |
| 255 | #if defined(__APPLE__) |
| 256 | if(device.type() & compute::device::cpu) { |
| 257 | std::cout << "On OSX this example does not work on CPU devices" << std::endl; |
| 258 | return 0; |
| 259 | } |
| 260 | #endif |
| 261 | |
| 262 | const size_t global_work_size[2] = {rows, cols*BLOCK_ROWS/TILE_DIM}; |
| 263 | const size_t local_work_size[2] = {TILE_DIM, BLOCK_ROWS}; |
| 264 | |
| 265 | // setup input data on the host |
| 266 | const uint_ size = rows * cols; |
| 267 | std::vector<float> h_input(size); |
| 268 | std::vector<float> h_output(size); |
| 269 | std::vector<float> expectedResult(size); |
| 270 | generate_matrix(in&: h_input, out&: expectedResult, rows, cols); |
| 271 | |
| 272 | // create a context for the device |
| 273 | compute::context context(device); |
| 274 | |
| 275 | // device vectors |
| 276 | compute::vector<float> d_input(size, context); |
| 277 | compute::vector<float> d_output(size, context); |
| 278 | |
| 279 | // command_queue with profiling |
| 280 | compute::command_queue queue(context, device, compute::command_queue::enable_profiling); |
| 281 | |
| 282 | // copy input data |
| 283 | compute::copy(h_input.begin(), h_input.end(), d_input.begin(), queue); |
| 284 | |
| 285 | // simple copy kernel |
| 286 | std::cout << "Testing copy_kernel:" << std::endl; |
| 287 | compute::kernel kernel = make_copy_kernel(context); |
| 288 | kernel.set_arg(0, d_input); |
| 289 | kernel.set_arg(index: 1, value: d_output); |
| 290 | |
| 291 | compute::event start; |
| 292 | start = queue.enqueue_nd_range_kernel(kernel, work_dim: 2, global_work_offset: 0, global_work_size, local_work_size); |
| 293 | queue.finish(); |
| 294 | uint64_t elapsed = start.duration<boost::chrono::nanoseconds>().count(); |
| 295 | |
| 296 | std::cout << " Elapsed: " << elapsed << " ns" << std::endl; |
| 297 | std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl; |
| 298 | compute::copy(first: d_output.begin(), last: d_output.end(), result: h_output.begin(), queue); |
| 299 | |
| 300 | check_transposition(expectedResult: h_input, size: rows*cols, transposedMatrix: h_output); |
| 301 | std::cout << std::endl; |
| 302 | |
| 303 | // naive_transpose kernel |
| 304 | std::cout << "Testing naive_transpose:" << std::endl; |
| 305 | kernel = make_naive_transpose_kernel(context); |
| 306 | kernel.set_arg(0, d_input); |
| 307 | kernel.set_arg(index: 1, value: d_output); |
| 308 | |
| 309 | start = queue.enqueue_nd_range_kernel(kernel, work_dim: 2, global_work_offset: 0, global_work_size, local_work_size); |
| 310 | queue.finish(); |
| 311 | elapsed = start.duration<boost::chrono::nanoseconds>().count(); |
| 312 | std::cout << " Elapsed: " << elapsed << " ns" << std::endl; |
| 313 | std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl; |
| 314 | compute::copy(first: d_output.begin(), last: d_output.end(), result: h_output.begin(), queue); |
| 315 | |
| 316 | check_transposition(expectedResult, size: rows*cols, transposedMatrix: h_output); |
| 317 | std::cout << std::endl; |
| 318 | |
| 319 | // coalesced_transpose kernel |
| 320 | std::cout << "Testing coalesced_transpose:" << std::endl; |
| 321 | kernel = make_coalesced_transpose_kernel(context); |
| 322 | kernel.set_arg(0, d_input); |
| 323 | kernel.set_arg(index: 1, value: d_output); |
| 324 | |
| 325 | start = queue.enqueue_nd_range_kernel(kernel, work_dim: 2, global_work_offset: 0, global_work_size, local_work_size); |
| 326 | queue.finish(); |
| 327 | elapsed = start.duration<boost::chrono::nanoseconds>().count(); |
| 328 | std::cout << " Elapsed: " << elapsed << " ns" << std::endl; |
| 329 | std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl; |
| 330 | |
| 331 | compute::copy(first: d_output.begin(), last: d_output.end(), result: h_output.begin(), queue); |
| 332 | |
| 333 | check_transposition(expectedResult, size: rows*cols, transposedMatrix: h_output); |
| 334 | std::cout << std::endl; |
| 335 | |
| 336 | // coalesced_no_bank_conflicts kernel |
| 337 | std::cout << "Testing coalesced_no_bank_conflicts:" << std::endl; |
| 338 | |
| 339 | kernel = make_coalesced_no_bank_conflicts_kernel(context); |
| 340 | kernel.set_arg(0, d_input); |
| 341 | kernel.set_arg(index: 1, value: d_output); |
| 342 | |
| 343 | start = queue.enqueue_nd_range_kernel(kernel, work_dim: 2, global_work_offset: 0, global_work_size, local_work_size); |
| 344 | queue.finish(); |
| 345 | elapsed = start.duration<boost::chrono::nanoseconds>().count(); |
| 346 | std::cout << " Elapsed: " << elapsed << " ns" << std::endl; |
| 347 | std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl; |
| 348 | |
| 349 | compute::copy(first: d_output.begin(), last: d_output.end(), result: h_output.begin(), queue); |
| 350 | |
| 351 | check_transposition(expectedResult, size: rows*cols, transposedMatrix: h_output); |
| 352 | std::cout << std::endl; |
| 353 | |
| 354 | return 0; |
| 355 | } |
| 356 | |