| 1 | /*! |
| 2 | @file |
| 3 | Defines `boost::hana::curry`. |
| 4 | |
| 5 | Copyright Louis Dionne 2013-2022 |
| 6 | Distributed under the Boost Software License, Version 1.0. |
| 7 | (See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt) |
| 8 | */ |
| 9 | |
| 10 | #ifndef BOOST_HANA_FUNCTIONAL_CURRY_HPP |
| 11 | #define BOOST_HANA_FUNCTIONAL_CURRY_HPP |
| 12 | |
| 13 | #include <boost/hana/config.hpp> |
| 14 | #include <boost/hana/detail/decay.hpp> |
| 15 | #include <boost/hana/functional/apply.hpp> |
| 16 | #include <boost/hana/functional/partial.hpp> |
| 17 | |
| 18 | #include <cstddef> |
| 19 | #include <type_traits> |
| 20 | #include <utility> |
| 21 | |
| 22 | |
| 23 | namespace boost { namespace hana { |
| 24 | //! @ingroup group-functional |
| 25 | //! Curry a function up to the given number of arguments. |
| 26 | //! |
| 27 | //! [Currying][Wikipedia.currying] is a technique in which we consider a |
| 28 | //! function taking multiple arguments (or, equivalently, a tuple of |
| 29 | //! arguments), and turn it into a function which takes a single argument |
| 30 | //! and returns a function to handle the remaining arguments. To help |
| 31 | //! visualize, let's denote the type of a function `f` which takes |
| 32 | //! arguments of types `X1, ..., Xn` and returns a `R` as |
| 33 | //! @code |
| 34 | //! (X1, ..., Xn) -> R |
| 35 | //! @endcode |
| 36 | //! |
| 37 | //! Then, currying is the process of taking `f` and turning it into an |
| 38 | //! equivalent function (call it `g`) of type |
| 39 | //! @code |
| 40 | //! X1 -> (X2 -> (... -> (Xn -> R))) |
| 41 | //! @endcode |
| 42 | //! |
| 43 | //! This gives us the following equivalence, where `x1`, ..., `xn` are |
| 44 | //! objects of type `X1`, ..., `Xn` respectively: |
| 45 | //! @code |
| 46 | //! f(x1, ..., xn) == g(x1)...(xn) |
| 47 | //! @endcode |
| 48 | //! |
| 49 | //! Currying can be useful in several situations, especially when working |
| 50 | //! with higher-order functions. |
| 51 | //! |
| 52 | //! This `curry` utility is an implementation of currying in C++. |
| 53 | //! Specifically, `curry<n>(f)` is a function such that |
| 54 | //! @code |
| 55 | //! curry<n>(f)(x1)...(xn) == f(x1, ..., xn) |
| 56 | //! @endcode |
| 57 | //! |
| 58 | //! Note that the `n` has to be specified explicitly because the existence |
| 59 | //! of functions with variadic arguments in C++ make it impossible to know |
| 60 | //! when currying should stop. |
| 61 | //! |
| 62 | //! Unlike usual currying, this implementation also allows a curried |
| 63 | //! function to be called with several arguments at a time. Hence, the |
| 64 | //! following always holds |
| 65 | //! @code |
| 66 | //! curry<n>(f)(x1, ..., xk) == curry<n - k>(f)(x1)...(xk) |
| 67 | //! @endcode |
| 68 | //! |
| 69 | //! Of course, this requires `k` to be less than or equal to `n`; failure |
| 70 | //! to satisfy this will trigger a static assertion. This syntax is |
| 71 | //! supported because it makes curried functions usable where normal |
| 72 | //! functions are expected. |
| 73 | //! |
| 74 | //! Another "extension" is that `curry<0>(f)` is supported: `curry<0>(f)` |
| 75 | //! is a nullary function; whereas the classical definition for currying |
| 76 | //! seems to leave this case undefined, as nullary functions don't make |
| 77 | //! much sense in purely functional languages. |
| 78 | //! |
| 79 | //! |
| 80 | //! Example |
| 81 | //! ------- |
| 82 | //! @include example/functional/curry.cpp |
| 83 | //! |
| 84 | //! |
| 85 | //! [Wikipedia.currying]: http://en.wikipedia.org/wiki/Currying |
| 86 | #ifdef BOOST_HANA_DOXYGEN_INVOKED |
| 87 | template <std::size_t n> |
| 88 | constexpr auto curry = [](auto&& f) { |
| 89 | return [perfect-capture](auto&& x1) { |
| 90 | return [perfect-capture](auto&& x2) { |
| 91 | ... |
| 92 | return [perfect-capture](auto&& xn) -> decltype(auto) { |
| 93 | return forwarded(f)( |
| 94 | forwarded(x1), forwarded(x2), ..., forwarded(xn) |
| 95 | ); |
| 96 | }; |
| 97 | }; |
| 98 | }; |
| 99 | }; |
| 100 | #else |
| 101 | template <std::size_t n, typename F> |
| 102 | struct curry_t; |
| 103 | |
| 104 | template <std::size_t n> |
| 105 | struct make_curry_t { |
| 106 | template <typename F> |
| 107 | constexpr curry_t<n, typename detail::decay<F>::type> |
| 108 | operator()(F&& f) const { return {static_cast<F&&>(f)}; } |
| 109 | }; |
| 110 | |
| 111 | template <std::size_t n> |
| 112 | BOOST_HANA_INLINE_VARIABLE constexpr make_curry_t<n> curry{}; |
| 113 | |
| 114 | namespace curry_detail { namespace { |
| 115 | template <std::size_t n> |
| 116 | constexpr make_curry_t<n> curry_or_call{}; |
| 117 | |
| 118 | template <> |
| 119 | constexpr auto curry_or_call<0> = apply; |
| 120 | }} |
| 121 | |
| 122 | template <std::size_t n, typename F> |
| 123 | struct curry_t { |
| 124 | F f; |
| 125 | |
| 126 | template <typename ...X> |
| 127 | constexpr decltype(auto) operator()(X&& ...x) const& { |
| 128 | static_assert(sizeof...(x) <= n, |
| 129 | "too many arguments provided to boost::hana::curry" ); |
| 130 | return curry_detail::curry_or_call<n - sizeof...(x)>( |
| 131 | partial(f, static_cast<X&&>(x)...) |
| 132 | ); |
| 133 | } |
| 134 | |
| 135 | template <typename ...X> |
| 136 | constexpr decltype(auto) operator()(X&& ...x) & { |
| 137 | static_assert(sizeof...(x) <= n, |
| 138 | "too many arguments provided to boost::hana::curry" ); |
| 139 | return curry_detail::curry_or_call<n - sizeof...(x)>( |
| 140 | partial(f, static_cast<X&&>(x)...) |
| 141 | ); |
| 142 | } |
| 143 | |
| 144 | template <typename ...X> |
| 145 | constexpr decltype(auto) operator()(X&& ...x) && { |
| 146 | static_assert(sizeof...(x) <= n, |
| 147 | "too many arguments provided to boost::hana::curry" ); |
| 148 | return curry_detail::curry_or_call<n - sizeof...(x)>( |
| 149 | partial(std::move(f), static_cast<X&&>(x)...) |
| 150 | ); |
| 151 | } |
| 152 | }; |
| 153 | |
| 154 | template <typename F> |
| 155 | struct curry_t<0, F> { |
| 156 | F f; |
| 157 | |
| 158 | constexpr decltype(auto) operator()() const& |
| 159 | { return f(); } |
| 160 | |
| 161 | constexpr decltype(auto) operator()() & |
| 162 | { return f(); } |
| 163 | |
| 164 | constexpr decltype(auto) operator()() && |
| 165 | { return std::move(f)(); } |
| 166 | }; |
| 167 | #endif |
| 168 | }} // end namespace boost::hana |
| 169 | |
| 170 | #endif // !BOOST_HANA_FUNCTIONAL_CURRY_HPP |
| 171 | |