| 1 | // (C) Copyright John Maddock 2006. |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_SPECIAL_ERF_HPP |
| 7 | #define BOOST_MATH_SPECIAL_ERF_HPP |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #endif |
| 12 | |
| 13 | #include <boost/math/special_functions/math_fwd.hpp> |
| 14 | #include <boost/math/tools/config.hpp> |
| 15 | #include <boost/math/special_functions/gamma.hpp> |
| 16 | #include <boost/math/tools/roots.hpp> |
| 17 | #include <boost/math/policies/error_handling.hpp> |
| 18 | #include <boost/math/tools/big_constant.hpp> |
| 19 | |
| 20 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
| 21 | // |
| 22 | // This is the only way we can avoid |
| 23 | // warning: non-standard suffix on floating constant [-Wpedantic] |
| 24 | // when building with -Wall -pedantic. Neither __extension__ |
| 25 | // nor #pragma diagnostic ignored work :( |
| 26 | // |
| 27 | #pragma GCC system_header |
| 28 | #endif |
| 29 | |
| 30 | namespace boost{ namespace math{ |
| 31 | |
| 32 | namespace detail |
| 33 | { |
| 34 | |
| 35 | // |
| 36 | // Asymptotic series for large z: |
| 37 | // |
| 38 | template <class T> |
| 39 | struct erf_asympt_series_t |
| 40 | { |
| 41 | // LCOV_EXCL_START multiprecision case only, excluded from coverage analysis |
| 42 | erf_asympt_series_t(T z) : xx(2 * -z * z), tk(1) |
| 43 | { |
| 44 | BOOST_MATH_STD_USING |
| 45 | result = -exp(-z * z) / sqrt(boost::math::constants::pi<T>()); |
| 46 | result /= z; |
| 47 | } |
| 48 | |
| 49 | typedef T result_type; |
| 50 | |
| 51 | T operator()() |
| 52 | { |
| 53 | BOOST_MATH_STD_USING |
| 54 | T r = result; |
| 55 | result *= tk / xx; |
| 56 | tk += 2; |
| 57 | if( fabs(r) < fabs(result)) |
| 58 | result = 0; |
| 59 | return r; |
| 60 | } |
| 61 | // LCOV_EXCL_STOP |
| 62 | private: |
| 63 | T result; |
| 64 | T xx; |
| 65 | int tk; |
| 66 | }; |
| 67 | // |
| 68 | // How large z has to be in order to ensure that the series converges: |
| 69 | // |
| 70 | template <class T> |
| 71 | inline float erf_asymptotic_limit_N(const T&) |
| 72 | { |
| 73 | return (std::numeric_limits<float>::max)(); |
| 74 | } |
| 75 | inline float erf_asymptotic_limit_N(const std::integral_constant<int, 24>&) |
| 76 | { |
| 77 | return 2.8F; |
| 78 | } |
| 79 | inline float erf_asymptotic_limit_N(const std::integral_constant<int, 53>&) |
| 80 | { |
| 81 | return 4.3F; |
| 82 | } |
| 83 | inline float erf_asymptotic_limit_N(const std::integral_constant<int, 64>&) |
| 84 | { |
| 85 | return 4.8F; |
| 86 | } |
| 87 | inline float erf_asymptotic_limit_N(const std::integral_constant<int, 106>&) |
| 88 | { |
| 89 | return 6.5F; |
| 90 | } |
| 91 | inline float erf_asymptotic_limit_N(const std::integral_constant<int, 113>&) |
| 92 | { |
| 93 | return 6.8F; |
| 94 | } |
| 95 | |
| 96 | template <class T, class Policy> |
| 97 | inline T erf_asymptotic_limit() |
| 98 | { |
| 99 | typedef typename policies::precision<T, Policy>::type precision_type; |
| 100 | typedef std::integral_constant<int, |
| 101 | precision_type::value <= 0 ? 0 : |
| 102 | precision_type::value <= 24 ? 24 : |
| 103 | precision_type::value <= 53 ? 53 : |
| 104 | precision_type::value <= 64 ? 64 : |
| 105 | precision_type::value <= 113 ? 113 : 0 |
| 106 | > tag_type; |
| 107 | return erf_asymptotic_limit_N(tag_type()); |
| 108 | } |
| 109 | |
| 110 | template <class T> |
| 111 | struct erf_series_near_zero |
| 112 | { |
| 113 | typedef T result_type; |
| 114 | T term; |
| 115 | T zz; |
| 116 | int k; |
| 117 | erf_series_near_zero(const T& z) : term(z), zz(-z * z), k(0) {} |
| 118 | |
| 119 | T operator()() |
| 120 | { |
| 121 | T result = term / (2 * k + 1); |
| 122 | term *= zz / ++k; |
| 123 | return result; |
| 124 | } |
| 125 | }; |
| 126 | |
| 127 | template <class T, class Policy> |
| 128 | T erf_series_near_zero_sum(const T& x, const Policy& pol) |
| 129 | { |
| 130 | // |
| 131 | // We need Kahan summation here, otherwise the errors grow fairly quickly. |
| 132 | // This method is *much* faster than the alternatives even so. |
| 133 | // |
| 134 | erf_series_near_zero<T> sum(x); |
| 135 | std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 136 | T result = constants::two_div_root_pi<T>() * tools::kahan_sum_series(sum, tools::digits<T>(), max_iter); |
| 137 | policies::check_series_iterations<T>("boost::math::erf<%1%>(%1%, %1%)" , max_iter, pol); |
| 138 | return result; |
| 139 | } |
| 140 | |
| 141 | template <class T, class Policy, class Tag> |
| 142 | T erf_imp(T z, bool invert, const Policy& pol, const Tag& t) |
| 143 | { |
| 144 | // LCOV_EXCL_START multiprecision case only, excluded from coverage analysis |
| 145 | BOOST_MATH_STD_USING |
| 146 | |
| 147 | BOOST_MATH_INSTRUMENT_CODE("Generic erf_imp called" ); |
| 148 | |
| 149 | if ((boost::math::isnan)(z)) |
| 150 | return policies::raise_domain_error("boost::math::erf<%1%>(%1%)" , "Expected a finite argument but got %1%" , z, pol); |
| 151 | |
| 152 | if(z < 0) |
| 153 | { |
| 154 | if(!invert) |
| 155 | return -erf_imp(T(-z), invert, pol, t); |
| 156 | else |
| 157 | return 1 + erf_imp(T(-z), false, pol, t); |
| 158 | } |
| 159 | |
| 160 | T result; |
| 161 | |
| 162 | if(!invert && (z > detail::erf_asymptotic_limit<T, Policy>())) |
| 163 | { |
| 164 | detail::erf_asympt_series_t<T> s(z); |
| 165 | std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 166 | result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, 1); |
| 167 | policies::check_series_iterations<T>("boost::math::erf<%1%>(%1%, %1%)" , max_iter, pol); |
| 168 | } |
| 169 | else |
| 170 | { |
| 171 | T x = z * z; |
| 172 | if(z < 1.3f) |
| 173 | { |
| 174 | // Compute P: |
| 175 | // This is actually good for z p to 2 or so, but the cutoff given seems |
| 176 | // to be the best compromise. Performance wise, this is way quicker than anything else... |
| 177 | result = erf_series_near_zero_sum(z, pol); |
| 178 | } |
| 179 | else if(x > 1 / tools::epsilon<T>()) |
| 180 | { |
| 181 | // http://functions.wolfram.com/06.27.06.0006.02 |
| 182 | invert = !invert; |
| 183 | result = exp(-x) / (constants::root_pi<T>() * z); |
| 184 | } |
| 185 | else |
| 186 | { |
| 187 | // Compute Q: |
| 188 | invert = !invert; |
| 189 | result = z * exp(-x); |
| 190 | result /= boost::math::constants::root_pi<T>(); |
| 191 | result *= upper_gamma_fraction(T(0.5f), x, policies::get_epsilon<T, Policy>()); |
| 192 | } |
| 193 | } |
| 194 | if(invert) |
| 195 | result = 1 - result; |
| 196 | return result; |
| 197 | // LCOV_EXCL_STOP |
| 198 | } |
| 199 | |
| 200 | template <class T, class Policy> |
| 201 | T erf_imp(T z, bool invert, const Policy& pol, const std::integral_constant<int, 53>& t) |
| 202 | { |
| 203 | BOOST_MATH_STD_USING |
| 204 | |
| 205 | BOOST_MATH_INSTRUMENT_CODE("53-bit precision erf_imp called" ); |
| 206 | |
| 207 | if ((boost::math::isnan)(z)) |
| 208 | return policies::raise_domain_error("boost::math::erf<%1%>(%1%)" , "Expected a finite argument but got %1%" , z, pol); |
| 209 | |
| 210 | if(z < 0) |
| 211 | { |
| 212 | if(!invert) |
| 213 | return -erf_imp(T(-z), invert, pol, t); |
| 214 | else if(z < T(-0.5)) |
| 215 | return 2 - erf_imp(T(-z), invert, pol, t); |
| 216 | else |
| 217 | return 1 + erf_imp(T(-z), false, pol, t); |
| 218 | } |
| 219 | |
| 220 | T result; |
| 221 | |
| 222 | // |
| 223 | // Big bunch of selection statements now to pick |
| 224 | // which implementation to use, |
| 225 | // try to put most likely options first: |
| 226 | // |
| 227 | if(z < T(0.5)) |
| 228 | { |
| 229 | // |
| 230 | // We're going to calculate erf: |
| 231 | // |
| 232 | if(z < T(1e-10)) |
| 233 | { |
| 234 | if(z == 0) |
| 235 | { |
| 236 | result = T(0); |
| 237 | } |
| 238 | else |
| 239 | { |
| 240 | static const T c = BOOST_MATH_BIG_CONSTANT(T, 53, 0.003379167095512573896158903121545171688); // LCOV_EXCL_LINE |
| 241 | result = static_cast<T>(z * 1.125f + z * c); |
| 242 | } |
| 243 | } |
| 244 | else |
| 245 | { |
| 246 | // Maximum Deviation Found: 1.561e-17 |
| 247 | // Expected Error Term: 1.561e-17 |
| 248 | // Maximum Relative Change in Control Points: 1.155e-04 |
| 249 | // Max Error found at double precision = 2.961182e-17 |
| 250 | // LCOV_EXCL_START |
| 251 | static const T Y = 1.044948577880859375f; |
| 252 | static const T P[] = { |
| 253 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0834305892146531832907), |
| 254 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.338165134459360935041), |
| 255 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.0509990735146777432841), |
| 256 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.00772758345802133288487), |
| 257 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.000322780120964605683831), |
| 258 | }; |
| 259 | static const T Q[] = { |
| 260 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), |
| 261 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.455004033050794024546), |
| 262 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0875222600142252549554), |
| 263 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00858571925074406212772), |
| 264 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.000370900071787748000569), |
| 265 | }; |
| 266 | // LCOV_EXCL_STOP |
| 267 | T zz = z * z; |
| 268 | result = z * (Y + tools::evaluate_polynomial(P, zz) / tools::evaluate_polynomial(Q, zz)); |
| 269 | } |
| 270 | } |
| 271 | else if(invert ? (z < 28) : (z < 5.93f)) |
| 272 | { |
| 273 | // |
| 274 | // We'll be calculating erfc: |
| 275 | // |
| 276 | invert = !invert; |
| 277 | if(z < 1.5f) |
| 278 | { |
| 279 | // Maximum Deviation Found: 3.702e-17 |
| 280 | // Expected Error Term: 3.702e-17 |
| 281 | // Maximum Relative Change in Control Points: 2.845e-04 |
| 282 | // Max Error found at double precision = 4.841816e-17 |
| 283 | // LCOV_EXCL_START |
| 284 | static const T Y = 0.405935764312744140625f; |
| 285 | static const T P[] = { |
| 286 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.098090592216281240205), |
| 287 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.178114665841120341155), |
| 288 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.191003695796775433986), |
| 289 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0888900368967884466578), |
| 290 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0195049001251218801359), |
| 291 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00180424538297014223957), |
| 292 | }; |
| 293 | static const T Q[] = { |
| 294 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), |
| 295 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.84759070983002217845), |
| 296 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.42628004845511324508), |
| 297 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.578052804889902404909), |
| 298 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.12385097467900864233), |
| 299 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0113385233577001411017), |
| 300 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.337511472483094676155e-5), |
| 301 | }; |
| 302 | // LCOV_EXCL_STOP |
| 303 | BOOST_MATH_INSTRUMENT_VARIABLE(Y); |
| 304 | BOOST_MATH_INSTRUMENT_VARIABLE(P[0]); |
| 305 | BOOST_MATH_INSTRUMENT_VARIABLE(Q[0]); |
| 306 | BOOST_MATH_INSTRUMENT_VARIABLE(z); |
| 307 | result = Y + tools::evaluate_polynomial(P, T(z - T(0.5))) / tools::evaluate_polynomial(Q, T(z - T(0.5))); |
| 308 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 309 | result *= exp(-z * z) / z; |
| 310 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 311 | } |
| 312 | else if(z < 2.5f) |
| 313 | { |
| 314 | // Max Error found at double precision = 6.599585e-18 |
| 315 | // Maximum Deviation Found: 3.909e-18 |
| 316 | // Expected Error Term: 3.909e-18 |
| 317 | // Maximum Relative Change in Control Points: 9.886e-05 |
| 318 | // LCOV_EXCL_START |
| 319 | static const T Y = 0.50672817230224609375f; |
| 320 | static const T P[] = { |
| 321 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.0243500476207698441272), |
| 322 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0386540375035707201728), |
| 323 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.04394818964209516296), |
| 324 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0175679436311802092299), |
| 325 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00323962406290842133584), |
| 326 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.000235839115596880717416), |
| 327 | }; |
| 328 | static const T Q[] = { |
| 329 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), |
| 330 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.53991494948552447182), |
| 331 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.982403709157920235114), |
| 332 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.325732924782444448493), |
| 333 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0563921837420478160373), |
| 334 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00410369723978904575884), |
| 335 | }; |
| 336 | // LCOV_EXCL_STOP |
| 337 | result = Y + tools::evaluate_polynomial(P, T(z - T(1.5))) / tools::evaluate_polynomial(Q, z - T(1.5)); |
| 338 | T hi, lo; |
| 339 | int expon; |
| 340 | hi = floor(ldexp(frexp(z, &expon), 26)); |
| 341 | hi = ldexp(hi, expon - 26); |
| 342 | lo = z - hi; |
| 343 | T sq = z * z; |
| 344 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 345 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 346 | } |
| 347 | else if(z < 4.5f) |
| 348 | { |
| 349 | // Maximum Deviation Found: 1.512e-17 |
| 350 | // Expected Error Term: 1.512e-17 |
| 351 | // Maximum Relative Change in Control Points: 2.222e-04 |
| 352 | // Max Error found at double precision = 2.062515e-17 |
| 353 | // LCOV_EXCL_START |
| 354 | static const T Y = 0.5405750274658203125f; |
| 355 | static const T P[] = { |
| 356 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00295276716530971662634), |
| 357 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0137384425896355332126), |
| 358 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00840807615555585383007), |
| 359 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00212825620914618649141), |
| 360 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.000250269961544794627958), |
| 361 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.113212406648847561139e-4), |
| 362 | }; |
| 363 | static const T Q[] = { |
| 364 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), |
| 365 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.04217814166938418171), |
| 366 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.442597659481563127003), |
| 367 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0958492726301061423444), |
| 368 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0105982906484876531489), |
| 369 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.000479411269521714493907), |
| 370 | }; |
| 371 | // LCOV_EXCL_STOP |
| 372 | result = Y + tools::evaluate_polynomial(P, T(z - T(3.5))) / tools::evaluate_polynomial(Q, z - T(3.5)); |
| 373 | T hi, lo; |
| 374 | int expon; |
| 375 | hi = floor(ldexp(frexp(z, &expon), 26)); |
| 376 | hi = ldexp(hi, expon - 26); |
| 377 | lo = z - hi; |
| 378 | T sq = z * z; |
| 379 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 380 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 381 | } |
| 382 | else |
| 383 | { |
| 384 | // Max Error found at double precision = 2.997958e-17 |
| 385 | // Maximum Deviation Found: 2.860e-17 |
| 386 | // Expected Error Term: 2.859e-17 |
| 387 | // Maximum Relative Change in Control Points: 1.357e-05 |
| 388 | // LCOV_EXCL_START |
| 389 | static const T Y = 0.5579090118408203125f; |
| 390 | static const T P[] = { |
| 391 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.00628057170626964891937), |
| 392 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.0175389834052493308818), |
| 393 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.212652252872804219852), |
| 394 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.687717681153649930619), |
| 395 | BOOST_MATH_BIG_CONSTANT(T, 53, -2.5518551727311523996), |
| 396 | BOOST_MATH_BIG_CONSTANT(T, 53, -3.22729451764143718517), |
| 397 | BOOST_MATH_BIG_CONSTANT(T, 53, -2.8175401114513378771), |
| 398 | }; |
| 399 | static const T Q[] = { |
| 400 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), |
| 401 | BOOST_MATH_BIG_CONSTANT(T, 53, 2.79257750980575282228), |
| 402 | BOOST_MATH_BIG_CONSTANT(T, 53, 11.0567237927800161565), |
| 403 | BOOST_MATH_BIG_CONSTANT(T, 53, 15.930646027911794143), |
| 404 | BOOST_MATH_BIG_CONSTANT(T, 53, 22.9367376522880577224), |
| 405 | BOOST_MATH_BIG_CONSTANT(T, 53, 13.5064170191802889145), |
| 406 | BOOST_MATH_BIG_CONSTANT(T, 53, 5.48409182238641741584), |
| 407 | }; |
| 408 | // LCOV_EXCL_STOP |
| 409 | result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z)); |
| 410 | T hi, lo; |
| 411 | int expon; |
| 412 | hi = floor(ldexp(frexp(z, &expon), 26)); |
| 413 | hi = ldexp(hi, expon - 26); |
| 414 | lo = z - hi; |
| 415 | T sq = z * z; |
| 416 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 417 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 418 | } |
| 419 | } |
| 420 | else |
| 421 | { |
| 422 | // |
| 423 | // Any value of z larger than 28 will underflow to zero: |
| 424 | // |
| 425 | result = 0; |
| 426 | invert = !invert; |
| 427 | } |
| 428 | |
| 429 | if(invert) |
| 430 | { |
| 431 | result = 1 - result; |
| 432 | } |
| 433 | |
| 434 | return result; |
| 435 | } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const std::integral_constant<int, 53>& t) |
| 436 | |
| 437 | |
| 438 | template <class T, class Policy> |
| 439 | T erf_imp(T z, bool invert, const Policy& pol, const std::integral_constant<int, 64>& t) |
| 440 | { |
| 441 | BOOST_MATH_STD_USING |
| 442 | |
| 443 | BOOST_MATH_INSTRUMENT_CODE("64-bit precision erf_imp called" ); |
| 444 | |
| 445 | if ((boost::math::isnan)(z)) |
| 446 | return policies::raise_domain_error("boost::math::erf<%1%>(%1%)" , "Expected a finite argument but got %1%" , z, pol); |
| 447 | |
| 448 | if(z < 0) |
| 449 | { |
| 450 | if(!invert) |
| 451 | return -erf_imp(T(-z), invert, pol, t); |
| 452 | else if(z < -0.5) |
| 453 | return 2 - erf_imp(T(-z), invert, pol, t); |
| 454 | else |
| 455 | return 1 + erf_imp(T(-z), false, pol, t); |
| 456 | } |
| 457 | |
| 458 | T result; |
| 459 | |
| 460 | // |
| 461 | // Big bunch of selection statements now to pick which |
| 462 | // implementation to use, try to put most likely options |
| 463 | // first: |
| 464 | // |
| 465 | if(z < 0.5) |
| 466 | { |
| 467 | // |
| 468 | // We're going to calculate erf: |
| 469 | // |
| 470 | if(z == 0) |
| 471 | { |
| 472 | result = 0; |
| 473 | } |
| 474 | else if(z < 1e-10) |
| 475 | { |
| 476 | static const T c = BOOST_MATH_BIG_CONSTANT(T, 64, 0.003379167095512573896158903121545171688); // LCOV_EXCL_LINE |
| 477 | result = z * 1.125 + z * c; |
| 478 | } |
| 479 | else |
| 480 | { |
| 481 | // Max Error found at long double precision = 1.623299e-20 |
| 482 | // Maximum Deviation Found: 4.326e-22 |
| 483 | // Expected Error Term: -4.326e-22 |
| 484 | // Maximum Relative Change in Control Points: 1.474e-04 |
| 485 | // LCOV_EXCL_START |
| 486 | static const T Y = 1.044948577880859375f; |
| 487 | static const T P[] = { |
| 488 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0834305892146531988966), |
| 489 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.338097283075565413695), |
| 490 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.0509602734406067204596), |
| 491 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.00904906346158537794396), |
| 492 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000489468651464798669181), |
| 493 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.200305626366151877759e-4), |
| 494 | }; |
| 495 | static const T Q[] = { |
| 496 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
| 497 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.455817300515875172439), |
| 498 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0916537354356241792007), |
| 499 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0102722652675910031202), |
| 500 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000650511752687851548735), |
| 501 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.189532519105655496778e-4), |
| 502 | }; |
| 503 | // LCOV_EXCL_STOP |
| 504 | result = z * (Y + tools::evaluate_polynomial(P, T(z * z)) / tools::evaluate_polynomial(Q, T(z * z))); |
| 505 | } |
| 506 | } |
| 507 | else if(invert ? (z < 110) : (z < 6.6f)) |
| 508 | { |
| 509 | // |
| 510 | // We'll be calculating erfc: |
| 511 | // |
| 512 | invert = !invert; |
| 513 | if(z < 1.5) |
| 514 | { |
| 515 | // Max Error found at long double precision = 3.239590e-20 |
| 516 | // Maximum Deviation Found: 2.241e-20 |
| 517 | // Expected Error Term: -2.241e-20 |
| 518 | // Maximum Relative Change in Control Points: 5.110e-03 |
| 519 | // LCOV_EXCL_START |
| 520 | static const T Y = 0.405935764312744140625f; |
| 521 | static const T P[] = { |
| 522 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.0980905922162812031672), |
| 523 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.159989089922969141329), |
| 524 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.222359821619935712378), |
| 525 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.127303921703577362312), |
| 526 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0384057530342762400273), |
| 527 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00628431160851156719325), |
| 528 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000441266654514391746428), |
| 529 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.266689068336295642561e-7), |
| 530 | }; |
| 531 | static const T Q[] = { |
| 532 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
| 533 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.03237474985469469291), |
| 534 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.78355454954969405222), |
| 535 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.867940326293760578231), |
| 536 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.248025606990021698392), |
| 537 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0396649631833002269861), |
| 538 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00279220237309449026796), |
| 539 | }; |
| 540 | // LCOV_EXCL_STOP |
| 541 | result = Y + tools::evaluate_polynomial(P, T(z - 0.5f)) / tools::evaluate_polynomial(Q, T(z - 0.5f)); |
| 542 | T hi, lo; |
| 543 | int expon; |
| 544 | hi = floor(ldexp(frexp(z, &expon), 32)); |
| 545 | hi = ldexp(hi, expon - 32); |
| 546 | lo = z - hi; |
| 547 | T sq = z * z; |
| 548 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 549 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 550 | } |
| 551 | else if(z < 2.5) |
| 552 | { |
| 553 | // Max Error found at long double precision = 3.686211e-21 |
| 554 | // Maximum Deviation Found: 1.495e-21 |
| 555 | // Expected Error Term: -1.494e-21 |
| 556 | // Maximum Relative Change in Control Points: 1.793e-04 |
| 557 | // LCOV_EXCL_START |
| 558 | static const T Y = 0.50672817230224609375f; |
| 559 | static const T P[] = { |
| 560 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.024350047620769840217), |
| 561 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0343522687935671451309), |
| 562 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0505420824305544949541), |
| 563 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0257479325917757388209), |
| 564 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00669349844190354356118), |
| 565 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00090807914416099524444), |
| 566 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.515917266698050027934e-4), |
| 567 | }; |
| 568 | static const T Q[] = { |
| 569 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
| 570 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.71657861671930336344), |
| 571 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.26409634824280366218), |
| 572 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.512371437838969015941), |
| 573 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.120902623051120950935), |
| 574 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0158027197831887485261), |
| 575 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000897871370778031611439), |
| 576 | }; |
| 577 | // LCOV_EXCL_STOP |
| 578 | result = Y + tools::evaluate_polynomial(P, T(z - 1.5f)) / tools::evaluate_polynomial(Q, T(z - 1.5f)); |
| 579 | T hi, lo; |
| 580 | int expon; |
| 581 | hi = floor(ldexp(frexp(z, &expon), 32)); |
| 582 | hi = ldexp(hi, expon - 32); |
| 583 | lo = z - hi; |
| 584 | T sq = z * z; |
| 585 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 586 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 587 | } |
| 588 | else if(z < 4.5) |
| 589 | { |
| 590 | // Maximum Deviation Found: 1.107e-20 |
| 591 | // Expected Error Term: -1.106e-20 |
| 592 | // Maximum Relative Change in Control Points: 1.709e-04 |
| 593 | // Max Error found at long double precision = 1.446908e-20 |
| 594 | // LCOV_EXCL_START |
| 595 | static const T Y = 0.5405750274658203125f; |
| 596 | static const T P[] = { |
| 597 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0029527671653097284033), |
| 598 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0141853245895495604051), |
| 599 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0104959584626432293901), |
| 600 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00343963795976100077626), |
| 601 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00059065441194877637899), |
| 602 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.523435380636174008685e-4), |
| 603 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.189896043050331257262e-5), |
| 604 | }; |
| 605 | static const T Q[] = { |
| 606 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
| 607 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.19352160185285642574), |
| 608 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.603256964363454392857), |
| 609 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.165411142458540585835), |
| 610 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0259729870946203166468), |
| 611 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00221657568292893699158), |
| 612 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.804149464190309799804e-4), |
| 613 | }; |
| 614 | // LCOV_EXCL_STOP |
| 615 | result = Y + tools::evaluate_polynomial(P, T(z - 3.5f)) / tools::evaluate_polynomial(Q, T(z - 3.5f)); |
| 616 | T hi, lo; |
| 617 | int expon; |
| 618 | hi = floor(ldexp(frexp(z, &expon), 32)); |
| 619 | hi = ldexp(hi, expon - 32); |
| 620 | lo = z - hi; |
| 621 | T sq = z * z; |
| 622 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 623 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 624 | } |
| 625 | else |
| 626 | { |
| 627 | // Max Error found at long double precision = 7.961166e-21 |
| 628 | // Maximum Deviation Found: 6.677e-21 |
| 629 | // Expected Error Term: 6.676e-21 |
| 630 | // Maximum Relative Change in Control Points: 2.319e-05 |
| 631 | // LCOV_EXCL_START |
| 632 | static const T Y = 0.55825519561767578125f; |
| 633 | static const T P[] = { |
| 634 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00593438793008050214106), |
| 635 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0280666231009089713937), |
| 636 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.141597835204583050043), |
| 637 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.978088201154300548842), |
| 638 | BOOST_MATH_BIG_CONSTANT(T, 64, -5.47351527796012049443), |
| 639 | BOOST_MATH_BIG_CONSTANT(T, 64, -13.8677304660245326627), |
| 640 | BOOST_MATH_BIG_CONSTANT(T, 64, -27.1274948720539821722), |
| 641 | BOOST_MATH_BIG_CONSTANT(T, 64, -29.2545152747009461519), |
| 642 | BOOST_MATH_BIG_CONSTANT(T, 64, -16.8865774499799676937), |
| 643 | }; |
| 644 | static const T Q[] = { |
| 645 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
| 646 | BOOST_MATH_BIG_CONSTANT(T, 64, 4.72948911186645394541), |
| 647 | BOOST_MATH_BIG_CONSTANT(T, 64, 23.6750543147695749212), |
| 648 | BOOST_MATH_BIG_CONSTANT(T, 64, 60.0021517335693186785), |
| 649 | BOOST_MATH_BIG_CONSTANT(T, 64, 131.766251645149522868), |
| 650 | BOOST_MATH_BIG_CONSTANT(T, 64, 178.167924971283482513), |
| 651 | BOOST_MATH_BIG_CONSTANT(T, 64, 182.499390505915222699), |
| 652 | BOOST_MATH_BIG_CONSTANT(T, 64, 104.365251479578577989), |
| 653 | BOOST_MATH_BIG_CONSTANT(T, 64, 30.8365511891224291717), |
| 654 | }; |
| 655 | // LCOV_EXCL_STOP |
| 656 | result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z)); |
| 657 | T hi, lo; |
| 658 | int expon; |
| 659 | hi = floor(ldexp(frexp(z, &expon), 32)); |
| 660 | hi = ldexp(hi, expon - 32); |
| 661 | lo = z - hi; |
| 662 | T sq = z * z; |
| 663 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 664 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 665 | } |
| 666 | } |
| 667 | else |
| 668 | { |
| 669 | // |
| 670 | // Any value of z larger than 110 will underflow to zero: |
| 671 | // |
| 672 | result = 0; |
| 673 | invert = !invert; |
| 674 | } |
| 675 | |
| 676 | if(invert) |
| 677 | { |
| 678 | result = 1 - result; |
| 679 | } |
| 680 | |
| 681 | return result; |
| 682 | } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const std::integral_constant<int, 64>& t) |
| 683 | |
| 684 | |
| 685 | template <class T, class Policy> |
| 686 | T erf_imp(T z, bool invert, const Policy& pol, const std::integral_constant<int, 113>& t) |
| 687 | { |
| 688 | BOOST_MATH_STD_USING |
| 689 | |
| 690 | BOOST_MATH_INSTRUMENT_CODE("113-bit precision erf_imp called" ); |
| 691 | |
| 692 | if ((boost::math::isnan)(z)) |
| 693 | return policies::raise_domain_error("boost::math::erf<%1%>(%1%)" , "Expected a finite argument but got %1%" , z, pol); |
| 694 | |
| 695 | if(z < 0) |
| 696 | { |
| 697 | if (!invert) |
| 698 | return -erf_imp(T(-z), invert, pol, t); // LCOV_EXCL_LINE confirmed as covered, not sure why lcov does see it. |
| 699 | else if(z < -0.5) |
| 700 | return 2 - erf_imp(T(-z), invert, pol, t); |
| 701 | else |
| 702 | return 1 + erf_imp(T(-z), false, pol, t); |
| 703 | } |
| 704 | |
| 705 | T result; |
| 706 | |
| 707 | // |
| 708 | // Big bunch of selection statements now to pick which |
| 709 | // implementation to use, try to put most likely options |
| 710 | // first: |
| 711 | // |
| 712 | if(z < 0.5) |
| 713 | { |
| 714 | // |
| 715 | // We're going to calculate erf: |
| 716 | // |
| 717 | if(z == 0) |
| 718 | { |
| 719 | result = 0; |
| 720 | } |
| 721 | else if(z < 1e-20) |
| 722 | { |
| 723 | static const T c = BOOST_MATH_BIG_CONSTANT(T, 113, 0.003379167095512573896158903121545171688); // LCOV_EXCL_LINE |
| 724 | result = z * 1.125 + z * c; // LCOV_EXCL_LINE confirmed as covered, not sure why lcov doesn't see this. |
| 725 | } |
| 726 | else |
| 727 | { |
| 728 | // Max Error found at long double precision = 2.342380e-35 |
| 729 | // Maximum Deviation Found: 6.124e-36 |
| 730 | // Expected Error Term: -6.124e-36 |
| 731 | // Maximum Relative Change in Control Points: 3.492e-10 |
| 732 | // LCOV_EXCL_START |
| 733 | static const T Y = 1.0841522216796875f; |
| 734 | static const T P[] = { |
| 735 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0442269454158250738961589031215451778), |
| 736 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.35549265736002144875335323556961233), |
| 737 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0582179564566667896225454670863270393), |
| 738 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0112694696904802304229950538453123925), |
| 739 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000805730648981801146251825329609079099), |
| 740 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.566304966591936566229702842075966273e-4), |
| 741 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.169655010425186987820201021510002265e-5), |
| 742 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.344448249920445916714548295433198544e-7), |
| 743 | }; |
| 744 | static const T Q[] = { |
| 745 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 746 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.466542092785657604666906909196052522), |
| 747 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.100005087012526447295176964142107611), |
| 748 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0128341535890117646540050072234142603), |
| 749 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00107150448466867929159660677016658186), |
| 750 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.586168368028999183607733369248338474e-4), |
| 751 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.196230608502104324965623171516808796e-5), |
| 752 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.313388521582925207734229967907890146e-7), |
| 753 | }; |
| 754 | // LCOV_EXCL_STOP |
| 755 | result = z * (Y + tools::evaluate_polynomial(P, T(z * z)) / tools::evaluate_polynomial(Q, T(z * z))); |
| 756 | } |
| 757 | } |
| 758 | else if(invert ? (z < 110) : (z < 8.65f)) |
| 759 | { |
| 760 | // |
| 761 | // We'll be calculating erfc: |
| 762 | // |
| 763 | invert = !invert; |
| 764 | if(z < 1) |
| 765 | { |
| 766 | // Max Error found at long double precision = 3.246278e-35 |
| 767 | // Maximum Deviation Found: 1.388e-35 |
| 768 | // Expected Error Term: 1.387e-35 |
| 769 | // Maximum Relative Change in Control Points: 6.127e-05 |
| 770 | // LCOV_EXCL_START |
| 771 | static const T Y = 0.371877193450927734375f; |
| 772 | static const T P[] = { |
| 773 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0640320213544647969396032886581290455), |
| 774 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.200769874440155895637857443946706731), |
| 775 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.378447199873537170666487408805779826), |
| 776 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.30521399466465939450398642044975127), |
| 777 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.146890026406815277906781824723458196), |
| 778 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0464837937749539978247589252732769567), |
| 779 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00987895759019540115099100165904822903), |
| 780 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00137507575429025512038051025154301132), |
| 781 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0001144764551085935580772512359680516), |
| 782 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.436544865032836914773944382339900079e-5), |
| 783 | }; |
| 784 | static const T Q[] = { |
| 785 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 786 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.47651182872457465043733800302427977), |
| 787 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.78706486002517996428836400245547955), |
| 788 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.87295924621659627926365005293130693), |
| 789 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.829375825174365625428280908787261065), |
| 790 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.251334771307848291593780143950311514), |
| 791 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0522110268876176186719436765734722473), |
| 792 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00718332151250963182233267040106902368), |
| 793 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000595279058621482041084986219276392459), |
| 794 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.226988669466501655990637599399326874e-4), |
| 795 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.270666232259029102353426738909226413e-10), |
| 796 | }; |
| 797 | // LCOV_EXCL_STOP |
| 798 | result = Y + tools::evaluate_polynomial(P, T(z - 0.5f)) / tools::evaluate_polynomial(Q, T(z - 0.5f)); |
| 799 | T hi, lo; // LCOV_EXCL_LINE |
| 800 | int expon; |
| 801 | hi = floor(ldexp(frexp(z, &expon), 56)); |
| 802 | hi = ldexp(hi, expon - 56); |
| 803 | lo = z - hi; |
| 804 | T sq = z * z; // LCOV_EXCL_LINE strangely not seen by lcov. |
| 805 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 806 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 807 | } |
| 808 | else if(z < 1.5) |
| 809 | { |
| 810 | // Max Error found at long double precision = 2.215785e-35 |
| 811 | // Maximum Deviation Found: 1.539e-35 |
| 812 | // Expected Error Term: 1.538e-35 |
| 813 | // Maximum Relative Change in Control Points: 6.104e-05 |
| 814 | // LCOV_EXCL_START |
| 815 | static const T Y = 0.45658016204833984375f; |
| 816 | static const T P[] = { |
| 817 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0289965858925328393392496555094848345), |
| 818 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0868181194868601184627743162571779226), |
| 819 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.169373435121178901746317404936356745), |
| 820 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.13350446515949251201104889028133486), |
| 821 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0617447837290183627136837688446313313), |
| 822 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0185618495228251406703152962489700468), |
| 823 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00371949406491883508764162050169531013), |
| 824 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000485121708792921297742105775823900772), |
| 825 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.376494706741453489892108068231400061e-4), |
| 826 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.133166058052466262415271732172490045e-5), |
| 827 | }; |
| 828 | static const T Q[] = { |
| 829 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 830 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.32970330146503867261275580968135126), |
| 831 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.46325715420422771961250513514928746), |
| 832 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.55307882560757679068505047390857842), |
| 833 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.644274289865972449441174485441409076), |
| 834 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.182609091063258208068606847453955649), |
| 835 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0354171651271241474946129665801606795), |
| 836 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00454060370165285246451879969534083997), |
| 837 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000349871943711566546821198612518656486), |
| 838 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.123749319840299552925421880481085392e-4), |
| 839 | }; |
| 840 | // LCOV_EXCL_STOP |
| 841 | result = Y + tools::evaluate_polynomial(P, T(z - 1.0f)) / tools::evaluate_polynomial(Q, T(z - 1.0f)); |
| 842 | T hi, lo; // LCOV_EXCL_LINE |
| 843 | int expon; |
| 844 | hi = floor(ldexp(frexp(z, &expon), 56)); |
| 845 | hi = ldexp(hi, expon - 56); |
| 846 | lo = z - hi; |
| 847 | T sq = z * z; // LCOV_EXCL_LINE strangley not seen by lcov |
| 848 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 849 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 850 | } |
| 851 | else if(z < 2.25) |
| 852 | { |
| 853 | // Maximum Deviation Found: 1.418e-35 |
| 854 | // Expected Error Term: 1.418e-35 |
| 855 | // Maximum Relative Change in Control Points: 1.316e-04 |
| 856 | // Max Error found at long double precision = 1.998462e-35 |
| 857 | // LCOV_EXCL_START |
| 858 | static const T Y = 0.50250148773193359375f; |
| 859 | static const T P[] = { |
| 860 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0201233630504573402185161184151016606), |
| 861 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0331864357574860196516686996302305002), |
| 862 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0716562720864787193337475444413405461), |
| 863 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0545835322082103985114927569724880658), |
| 864 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0236692635189696678976549720784989593), |
| 865 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00656970902163248872837262539337601845), |
| 866 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00120282643299089441390490459256235021), |
| 867 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000142123229065182650020762792081622986), |
| 868 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.991531438367015135346716277792989347e-5), |
| 869 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.312857043762117596999398067153076051e-6), |
| 870 | }; |
| 871 | static const T Q[] = { |
| 872 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 873 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.13506082409097783827103424943508554), |
| 874 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.06399257267556230937723190496806215), |
| 875 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.18678481279932541314830499880691109), |
| 876 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.447733186643051752513538142316799562), |
| 877 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.11505680005657879437196953047542148), |
| 878 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.020163993632192726170219663831914034), |
| 879 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00232708971840141388847728782209730585), |
| 880 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000160733201627963528519726484608224112), |
| 881 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.507158721790721802724402992033269266e-5), |
| 882 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.18647774409821470950544212696270639e-12), |
| 883 | }; |
| 884 | // LCOV_EXCL_STOP |
| 885 | result = Y + tools::evaluate_polynomial(P, T(z - 1.5f)) / tools::evaluate_polynomial(Q, T(z - 1.5f)); |
| 886 | T hi, lo; // LCOV_EXCL_LINE |
| 887 | int expon; |
| 888 | hi = floor(ldexp(frexp(z, &expon), 56)); |
| 889 | hi = ldexp(hi, expon - 56); |
| 890 | lo = z - hi; |
| 891 | T sq = z * z; // LCOV_EXCL_LINE strangely not seen by lcov. |
| 892 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 893 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 894 | } |
| 895 | else if (z < 3) |
| 896 | { |
| 897 | // Maximum Deviation Found: 3.575e-36 |
| 898 | // Expected Error Term: 3.575e-36 |
| 899 | // Maximum Relative Change in Control Points: 7.103e-05 |
| 900 | // Max Error found at long double precision = 5.794737e-36 |
| 901 | // LCOV_EXCL_START |
| 902 | static const T Y = 0.52896785736083984375f; |
| 903 | static const T P[] = { |
| 904 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.00902152521745813634562524098263360074), |
| 905 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0145207142776691539346923710537580927), |
| 906 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0301681239582193983824211995978678571), |
| 907 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0215548540823305814379020678660434461), |
| 908 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00864683476267958365678294164340749949), |
| 909 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00219693096885585491739823283511049902), |
| 910 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000364961639163319762492184502159894371), |
| 911 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.388174251026723752769264051548703059e-4), |
| 912 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.241918026931789436000532513553594321e-5), |
| 913 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.676586625472423508158937481943649258e-7), |
| 914 | }; |
| 915 | static const T Q[] = { |
| 916 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 917 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.93669171363907292305550231764920001), |
| 918 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.69468476144051356810672506101377494), |
| 919 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.880023580986436640372794392579985511), |
| 920 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.299099106711315090710836273697708402), |
| 921 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0690593962363545715997445583603382337), |
| 922 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0108427016361318921960863149875360222), |
| 923 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00111747247208044534520499324234317695), |
| 924 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.686843205749767250666787987163701209e-4), |
| 925 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.192093541425429248675532015101904262e-5), |
| 926 | }; |
| 927 | // LCOV_EXCL_STOP |
| 928 | result = Y + tools::evaluate_polynomial(P, T(z - 2.25f)) / tools::evaluate_polynomial(Q, T(z - 2.25f)); |
| 929 | T hi, lo; // LCOV_EXCL_LINE |
| 930 | int expon; |
| 931 | hi = floor(ldexp(frexp(z, &expon), 56)); |
| 932 | hi = ldexp(hi, expon - 56); |
| 933 | lo = z - hi; |
| 934 | T sq = z * z; // LCOV_EXCL_LINE strangely not seen by lcov. |
| 935 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 936 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 937 | } |
| 938 | else if(z < 3.5) |
| 939 | { |
| 940 | // Maximum Deviation Found: 8.126e-37 |
| 941 | // Expected Error Term: -8.126e-37 |
| 942 | // Maximum Relative Change in Control Points: 1.363e-04 |
| 943 | // Max Error found at long double precision = 1.747062e-36 |
| 944 | // LCOV_EXCL_START |
| 945 | static const T Y = 0.54037380218505859375f; |
| 946 | static const T P[] = { |
| 947 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0033703486408887424921155540591370375), |
| 948 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0104948043110005245215286678898115811), |
| 949 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0148530118504000311502310457390417795), |
| 950 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00816693029245443090102738825536188916), |
| 951 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00249716579989140882491939681805594585), |
| 952 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0004655591010047353023978045800916647), |
| 953 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.531129557920045295895085236636025323e-4), |
| 954 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.343526765122727069515775194111741049e-5), |
| 955 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.971120407556888763695313774578711839e-7), |
| 956 | }; |
| 957 | static const T Q[] = { |
| 958 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 959 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.59911256167540354915906501335919317), |
| 960 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.136006830764025173864831382946934), |
| 961 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.468565867990030871678574840738423023), |
| 962 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.122821824954470343413956476900662236), |
| 963 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0209670914950115943338996513330141633), |
| 964 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00227845718243186165620199012883547257), |
| 965 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000144243326443913171313947613547085553), |
| 966 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.407763415954267700941230249989140046e-5), |
| 967 | }; |
| 968 | // LCOV_EXCL_STOP |
| 969 | result = Y + tools::evaluate_polynomial(P, T(z - 3.0f)) / tools::evaluate_polynomial(Q, T(z - 3.0f)); |
| 970 | T hi, lo; // LCOV_EXCL_LINE |
| 971 | int expon; |
| 972 | hi = floor(ldexp(frexp(z, &expon), 56)); |
| 973 | hi = ldexp(hi, expon - 56); |
| 974 | lo = z - hi; |
| 975 | T sq = z * z; // LCOV_EXCL_LINE strangely not seen by lcov. |
| 976 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 977 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 978 | } |
| 979 | else if(z < 5.5) |
| 980 | { |
| 981 | // Maximum Deviation Found: 5.804e-36 |
| 982 | // Expected Error Term: -5.803e-36 |
| 983 | // Maximum Relative Change in Control Points: 2.475e-05 |
| 984 | // Max Error found at long double precision = 1.349545e-35 |
| 985 | // LCOV_EXCL_START |
| 986 | static const T Y = 0.55000019073486328125f; |
| 987 | static const T P[] = { |
| 988 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00118142849742309772151454518093813615), |
| 989 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0072201822885703318172366893469382745), |
| 990 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0078782276276860110721875733778481505), |
| 991 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00418229166204362376187593976656261146), |
| 992 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00134198400587769200074194304298642705), |
| 993 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000283210387078004063264777611497435572), |
| 994 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.405687064094911866569295610914844928e-4), |
| 995 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.39348283801568113807887364414008292e-5), |
| 996 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.248798540917787001526976889284624449e-6), |
| 997 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.929502490223452372919607105387474751e-8), |
| 998 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.156161469668275442569286723236274457e-9), |
| 999 | }; |
| 1000 | static const T Q[] = { |
| 1001 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 1002 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.52955245103668419479878456656709381), |
| 1003 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.06263944820093830054635017117417064), |
| 1004 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.441684612681607364321013134378316463), |
| 1005 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.121665258426166960049773715928906382), |
| 1006 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0232134512374747691424978642874321434), |
| 1007 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00310778180686296328582860464875562636), |
| 1008 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000288361770756174705123674838640161693), |
| 1009 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.177529187194133944622193191942300132e-4), |
| 1010 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.655068544833064069223029299070876623e-6), |
| 1011 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.11005507545746069573608988651927452e-7), |
| 1012 | }; |
| 1013 | // LCOV_EXCL_STOP |
| 1014 | result = Y + tools::evaluate_polynomial(P, T(z - 4.5f)) / tools::evaluate_polynomial(Q, T(z - 4.5f)); |
| 1015 | T hi, lo; // LCOV_EXCL_LINE |
| 1016 | int expon; |
| 1017 | hi = floor(ldexp(frexp(z, &expon), 56)); |
| 1018 | hi = ldexp(hi, expon - 56); |
| 1019 | lo = z - hi; |
| 1020 | T sq = z * z; // LCOV_EXCL_LINE strangely not seen by lcov. |
| 1021 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 1022 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 1023 | } |
| 1024 | else if(z < 7.5) |
| 1025 | { |
| 1026 | // Maximum Deviation Found: 1.007e-36 |
| 1027 | // Expected Error Term: 1.007e-36 |
| 1028 | // Maximum Relative Change in Control Points: 1.027e-03 |
| 1029 | // Max Error found at long double precision = 2.646420e-36 |
| 1030 | // LCOV_EXCL_START |
| 1031 | static const T Y = 0.5574436187744140625f; |
| 1032 | static const T P[] = { |
| 1033 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000293236907400849056269309713064107674), |
| 1034 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00225110719535060642692275221961480162), |
| 1035 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00190984458121502831421717207849429799), |
| 1036 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000747757733460111743833929141001680706), |
| 1037 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000170663175280949889583158597373928096), |
| 1038 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.246441188958013822253071608197514058e-4), |
| 1039 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.229818000860544644974205957895688106e-5), |
| 1040 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.134886977703388748488480980637704864e-6), |
| 1041 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.454764611880548962757125070106650958e-8), |
| 1042 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.673002744115866600294723141176820155e-10), |
| 1043 | }; |
| 1044 | static const T Q[] = { |
| 1045 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 1046 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.12843690320861239631195353379313367), |
| 1047 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.569900657061622955362493442186537259), |
| 1048 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.169094404206844928112348730277514273), |
| 1049 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0324887449084220415058158657252147063), |
| 1050 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00419252877436825753042680842608219552), |
| 1051 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00036344133176118603523976748563178578), |
| 1052 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.204123895931375107397698245752850347e-4), |
| 1053 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.674128352521481412232785122943508729e-6), |
| 1054 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.997637501418963696542159244436245077e-8), |
| 1055 | }; |
| 1056 | // LCOV_EXCL_STOP |
| 1057 | result = Y + tools::evaluate_polynomial(P, T(z - 6.5f)) / tools::evaluate_polynomial(Q, T(z - 6.5f)); |
| 1058 | T hi, lo; |
| 1059 | int expon; |
| 1060 | hi = floor(ldexp(frexp(z, &expon), 56)); |
| 1061 | hi = ldexp(hi, expon - 56); |
| 1062 | lo = z - hi; |
| 1063 | T sq = z * z; |
| 1064 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 1065 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 1066 | } |
| 1067 | else if(z < 11.5) |
| 1068 | { |
| 1069 | // Maximum Deviation Found: 8.380e-36 |
| 1070 | // Expected Error Term: 8.380e-36 |
| 1071 | // Maximum Relative Change in Control Points: 2.632e-06 |
| 1072 | // Max Error found at long double precision = 9.849522e-36 |
| 1073 | // LCOV_EXCL_START |
| 1074 | static const T Y = 0.56083202362060546875f; |
| 1075 | static const T P[] = { |
| 1076 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000282420728751494363613829834891390121), |
| 1077 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00175387065018002823433704079355125161), |
| 1078 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0021344978564889819420775336322920375), |
| 1079 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00124151356560137532655039683963075661), |
| 1080 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000423600733566948018555157026862139644), |
| 1081 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.914030340865175237133613697319509698e-4), |
| 1082 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.126999927156823363353809747017945494e-4), |
| 1083 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.110610959842869849776179749369376402e-5), |
| 1084 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.55075079477173482096725348704634529e-7), |
| 1085 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.119735694018906705225870691331543806e-8), |
| 1086 | }; |
| 1087 | static const T Q[] = { |
| 1088 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 1089 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.69889613396167354566098060039549882), |
| 1090 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.28824647372749624464956031163282674), |
| 1091 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.572297795434934493541628008224078717), |
| 1092 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.164157697425571712377043857240773164), |
| 1093 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0315311145224594430281219516531649562), |
| 1094 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00405588922155632380812945849777127458), |
| 1095 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000336929033691445666232029762868642417), |
| 1096 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.164033049810404773469413526427932109e-4), |
| 1097 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.356615210500531410114914617294694857e-6), |
| 1098 | }; |
| 1099 | // LCOV_EXCL_STOP |
| 1100 | result = Y + tools::evaluate_polynomial(P, T(z / 2 - 4.75f)) / tools::evaluate_polynomial(Q, T(z / 2 - 4.75f)); |
| 1101 | T hi, lo; // LCOV_EXCL_LINE |
| 1102 | int expon; |
| 1103 | hi = floor(ldexp(frexp(z, &expon), 56)); |
| 1104 | hi = ldexp(hi, expon - 56); |
| 1105 | lo = z - hi; |
| 1106 | T sq = z * z; // LCOV_EXCL_LINE strangely not seen by lcov. |
| 1107 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 1108 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 1109 | } |
| 1110 | else |
| 1111 | { |
| 1112 | // Maximum Deviation Found: 1.132e-35 |
| 1113 | // Expected Error Term: -1.132e-35 |
| 1114 | // Maximum Relative Change in Control Points: 4.674e-04 |
| 1115 | // Max Error found at long double precision = 1.162590e-35 |
| 1116 | // LCOV_EXCL_START |
| 1117 | static const T Y = 0.5632686614990234375f; |
| 1118 | static const T P[] = { |
| 1119 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000920922048732849448079451574171836943), |
| 1120 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00321439044532288750501700028748922439), |
| 1121 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.250455263029390118657884864261823431), |
| 1122 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.906807635364090342031792404764598142), |
| 1123 | BOOST_MATH_BIG_CONSTANT(T, 113, -8.92233572835991735876688745989985565), |
| 1124 | BOOST_MATH_BIG_CONSTANT(T, 113, -21.7797433494422564811782116907878495), |
| 1125 | BOOST_MATH_BIG_CONSTANT(T, 113, -91.1451915251976354349734589601171659), |
| 1126 | BOOST_MATH_BIG_CONSTANT(T, 113, -144.1279109655993927069052125017673), |
| 1127 | BOOST_MATH_BIG_CONSTANT(T, 113, -313.845076581796338665519022313775589), |
| 1128 | BOOST_MATH_BIG_CONSTANT(T, 113, -273.11378811923343424081101235736475), |
| 1129 | BOOST_MATH_BIG_CONSTANT(T, 113, -271.651566205951067025696102600443452), |
| 1130 | BOOST_MATH_BIG_CONSTANT(T, 113, -60.0530577077238079968843307523245547), |
| 1131 | }; |
| 1132 | static const T Q[] = { |
| 1133 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 1134 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.49040448075464744191022350947892036), |
| 1135 | BOOST_MATH_BIG_CONSTANT(T, 113, 34.3563592467165971295915749548313227), |
| 1136 | BOOST_MATH_BIG_CONSTANT(T, 113, 84.4993232033879023178285731843850461), |
| 1137 | BOOST_MATH_BIG_CONSTANT(T, 113, 376.005865281206894120659401340373818), |
| 1138 | BOOST_MATH_BIG_CONSTANT(T, 113, 629.95369438888946233003926191755125), |
| 1139 | BOOST_MATH_BIG_CONSTANT(T, 113, 1568.35771983533158591604513304269098), |
| 1140 | BOOST_MATH_BIG_CONSTANT(T, 113, 1646.02452040831961063640827116581021), |
| 1141 | BOOST_MATH_BIG_CONSTANT(T, 113, 2299.96860633240298708910425594484895), |
| 1142 | BOOST_MATH_BIG_CONSTANT(T, 113, 1222.73204392037452750381340219906374), |
| 1143 | BOOST_MATH_BIG_CONSTANT(T, 113, 799.359797306084372350264298361110448), |
| 1144 | BOOST_MATH_BIG_CONSTANT(T, 113, 72.7415265778588087243442792401576737), |
| 1145 | }; |
| 1146 | // LCOV_EXCL_STOP |
| 1147 | result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z)); |
| 1148 | T hi, lo; |
| 1149 | int expon; |
| 1150 | hi = floor(ldexp(frexp(z, &expon), 56)); |
| 1151 | hi = ldexp(hi, expon - 56); |
| 1152 | lo = z - hi; |
| 1153 | T sq = z * z; |
| 1154 | T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo; |
| 1155 | result *= exp(-sq) * exp(-err_sqr) / z; |
| 1156 | } |
| 1157 | } |
| 1158 | else |
| 1159 | { |
| 1160 | // |
| 1161 | // Any value of z larger than 110 will underflow to zero: |
| 1162 | // |
| 1163 | result = 0; |
| 1164 | invert = !invert; |
| 1165 | } |
| 1166 | |
| 1167 | if(invert) |
| 1168 | { |
| 1169 | result = 1 - result; |
| 1170 | } |
| 1171 | |
| 1172 | return result; |
| 1173 | } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const std::integral_constant<int, 113>& t) |
| 1174 | |
| 1175 | } // namespace detail |
| 1176 | |
| 1177 | template <class T, class Policy> |
| 1178 | inline typename tools::promote_args<T>::type erf(T z, const Policy& /* pol */) |
| 1179 | { |
| 1180 | typedef typename tools::promote_args<T>::type result_type; |
| 1181 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 1182 | typedef typename policies::precision<result_type, Policy>::type precision_type; |
| 1183 | typedef typename policies::normalise< |
| 1184 | Policy, |
| 1185 | policies::promote_float<false>, |
| 1186 | policies::promote_double<false>, |
| 1187 | policies::discrete_quantile<>, |
| 1188 | policies::assert_undefined<> >::type forwarding_policy; |
| 1189 | |
| 1190 | BOOST_MATH_INSTRUMENT_CODE("result_type = " << typeid(result_type).name()); |
| 1191 | BOOST_MATH_INSTRUMENT_CODE("value_type = " << typeid(value_type).name()); |
| 1192 | BOOST_MATH_INSTRUMENT_CODE("precision_type = " << typeid(precision_type).name()); |
| 1193 | |
| 1194 | typedef std::integral_constant<int, |
| 1195 | precision_type::value <= 0 ? 0 : |
| 1196 | precision_type::value <= 53 ? 53 : |
| 1197 | precision_type::value <= 64 ? 64 : |
| 1198 | precision_type::value <= 113 ? 113 : 0 |
| 1199 | > tag_type; |
| 1200 | |
| 1201 | BOOST_MATH_INSTRUMENT_CODE("tag_type = " << typeid(tag_type).name()); |
| 1202 | |
| 1203 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::erf_imp( |
| 1204 | static_cast<value_type>(z), |
| 1205 | false, |
| 1206 | forwarding_policy(), |
| 1207 | tag_type()), "boost::math::erf<%1%>(%1%, %1%)" ); |
| 1208 | } |
| 1209 | |
| 1210 | template <class T, class Policy> |
| 1211 | inline typename tools::promote_args<T>::type erfc(T z, const Policy& /* pol */) |
| 1212 | { |
| 1213 | typedef typename tools::promote_args<T>::type result_type; |
| 1214 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 1215 | typedef typename policies::precision<result_type, Policy>::type precision_type; |
| 1216 | typedef typename policies::normalise< |
| 1217 | Policy, |
| 1218 | policies::promote_float<false>, |
| 1219 | policies::promote_double<false>, |
| 1220 | policies::discrete_quantile<>, |
| 1221 | policies::assert_undefined<> >::type forwarding_policy; |
| 1222 | |
| 1223 | BOOST_MATH_INSTRUMENT_CODE("result_type = " << typeid(result_type).name()); |
| 1224 | BOOST_MATH_INSTRUMENT_CODE("value_type = " << typeid(value_type).name()); |
| 1225 | BOOST_MATH_INSTRUMENT_CODE("precision_type = " << typeid(precision_type).name()); |
| 1226 | |
| 1227 | typedef std::integral_constant<int, |
| 1228 | precision_type::value <= 0 ? 0 : |
| 1229 | precision_type::value <= 53 ? 53 : |
| 1230 | precision_type::value <= 64 ? 64 : |
| 1231 | precision_type::value <= 113 ? 113 : 0 |
| 1232 | > tag_type; |
| 1233 | |
| 1234 | BOOST_MATH_INSTRUMENT_CODE("tag_type = " << typeid(tag_type).name()); |
| 1235 | |
| 1236 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::erf_imp( |
| 1237 | static_cast<value_type>(z), |
| 1238 | true, |
| 1239 | forwarding_policy(), |
| 1240 | tag_type()), "boost::math::erfc<%1%>(%1%, %1%)" ); |
| 1241 | } |
| 1242 | |
| 1243 | template <class T> |
| 1244 | inline typename tools::promote_args<T>::type erf(T z) |
| 1245 | { |
| 1246 | return boost::math::erf(z, policies::policy<>()); |
| 1247 | } |
| 1248 | |
| 1249 | template <class T> |
| 1250 | inline typename tools::promote_args<T>::type erfc(T z) |
| 1251 | { |
| 1252 | return boost::math::erfc(z, policies::policy<>()); |
| 1253 | } |
| 1254 | |
| 1255 | } // namespace math |
| 1256 | } // namespace boost |
| 1257 | |
| 1258 | #include <boost/math/special_functions/detail/erf_inv.hpp> |
| 1259 | |
| 1260 | #endif // BOOST_MATH_SPECIAL_ERF_HPP |
| 1261 | |