| 1 | // (C) Copyright John Maddock 2005-2006. |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_TOOLS_FRACTION_INCLUDED |
| 7 | #define BOOST_MATH_TOOLS_FRACTION_INCLUDED |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #endif |
| 12 | |
| 13 | #include <boost/math/tools/precision.hpp> |
| 14 | #include <boost/math/tools/complex.hpp> |
| 15 | #include <type_traits> |
| 16 | #include <cstdint> |
| 17 | #include <cmath> |
| 18 | |
| 19 | namespace boost{ namespace math{ namespace tools{ |
| 20 | |
| 21 | namespace detail |
| 22 | { |
| 23 | |
| 24 | template <typename T> |
| 25 | struct is_pair : public std::false_type{}; |
| 26 | |
| 27 | template <typename T, typename U> |
| 28 | struct is_pair<std::pair<T,U>> : public std::true_type{}; |
| 29 | |
| 30 | template <typename Gen> |
| 31 | struct fraction_traits_simple |
| 32 | { |
| 33 | using result_type = typename Gen::result_type; |
| 34 | using value_type = typename Gen::result_type; |
| 35 | |
| 36 | static result_type a(const value_type&) BOOST_MATH_NOEXCEPT(value_type) |
| 37 | { |
| 38 | return 1; |
| 39 | } |
| 40 | static result_type b(const value_type& v) BOOST_MATH_NOEXCEPT(value_type) |
| 41 | { |
| 42 | return v; |
| 43 | } |
| 44 | }; |
| 45 | |
| 46 | template <typename Gen> |
| 47 | struct fraction_traits_pair |
| 48 | { |
| 49 | using value_type = typename Gen::result_type; |
| 50 | using result_type = typename value_type::first_type; |
| 51 | |
| 52 | static result_type a(const value_type& v) BOOST_MATH_NOEXCEPT(value_type) |
| 53 | { |
| 54 | return v.first; |
| 55 | } |
| 56 | static result_type b(const value_type& v) BOOST_MATH_NOEXCEPT(value_type) |
| 57 | { |
| 58 | return v.second; |
| 59 | } |
| 60 | }; |
| 61 | |
| 62 | template <typename Gen> |
| 63 | struct fraction_traits |
| 64 | : public std::conditional< |
| 65 | is_pair<typename Gen::result_type>::value, |
| 66 | fraction_traits_pair<Gen>, |
| 67 | fraction_traits_simple<Gen>>::type |
| 68 | { |
| 69 | }; |
| 70 | |
| 71 | template <typename T, bool = is_complex_type<T>::value> |
| 72 | struct tiny_value |
| 73 | { |
| 74 | // For float, double, and long double, 1/min_value<T>() is finite. |
| 75 | // But for mpfr_float and cpp_bin_float, 1/min_value<T>() is inf. |
| 76 | // Multiply the min by 16 so that the reciprocal doesn't overflow. |
| 77 | static T get() { |
| 78 | return 16*tools::min_value<T>(); |
| 79 | } |
| 80 | }; |
| 81 | template <typename T> |
| 82 | struct tiny_value<T, true> |
| 83 | { |
| 84 | using value_type = typename T::value_type; |
| 85 | static T get() { |
| 86 | return 16*tools::min_value<value_type>(); |
| 87 | } |
| 88 | }; |
| 89 | |
| 90 | } // namespace detail |
| 91 | |
| 92 | // |
| 93 | // continued_fraction_b |
| 94 | // Evaluates: |
| 95 | // |
| 96 | // b0 + a1 |
| 97 | // --------------- |
| 98 | // b1 + a2 |
| 99 | // ---------- |
| 100 | // b2 + a3 |
| 101 | // ----- |
| 102 | // b3 + ... |
| 103 | // |
| 104 | // Note that the first a0 returned by generator Gen is discarded. |
| 105 | // |
| 106 | template <typename Gen, typename U> |
| 107 | inline typename detail::fraction_traits<Gen>::result_type continued_fraction_b(Gen& g, const U& factor, std::uintmax_t& max_terms) |
| 108 | noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()())) |
| 109 | { |
| 110 | BOOST_MATH_STD_USING // ADL of std names |
| 111 | |
| 112 | using traits = detail::fraction_traits<Gen>; |
| 113 | using result_type = typename traits::result_type; |
| 114 | using value_type = typename traits::value_type; |
| 115 | using integer_type = typename integer_scalar_type<result_type>::type; |
| 116 | using scalar_type = typename scalar_type<result_type>::type; |
| 117 | |
| 118 | integer_type const zero(0), one(1); |
| 119 | |
| 120 | result_type tiny = detail::tiny_value<result_type>::get(); |
| 121 | scalar_type terminator = abs(factor); |
| 122 | |
| 123 | value_type v = g(); |
| 124 | |
| 125 | result_type f, C, D, delta; |
| 126 | f = traits::b(v); |
| 127 | if(f == zero) |
| 128 | f = tiny; |
| 129 | C = f; |
| 130 | D = 0; |
| 131 | |
| 132 | std::uintmax_t counter(max_terms); |
| 133 | do{ |
| 134 | v = g(); |
| 135 | D = traits::b(v) + traits::a(v) * D; |
| 136 | if(D == result_type(0)) |
| 137 | D = tiny; |
| 138 | C = traits::b(v) + traits::a(v) / C; |
| 139 | if(C == zero) |
| 140 | C = tiny; |
| 141 | D = one/D; |
| 142 | delta = C*D; |
| 143 | f = f * delta; |
| 144 | }while((abs(delta - one) > terminator) && --counter); |
| 145 | |
| 146 | max_terms = max_terms - counter; |
| 147 | |
| 148 | return f; |
| 149 | } |
| 150 | |
| 151 | template <typename Gen, typename U> |
| 152 | inline typename detail::fraction_traits<Gen>::result_type continued_fraction_b(Gen& g, const U& factor) |
| 153 | noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()())) |
| 154 | { |
| 155 | std::uintmax_t max_terms = (std::numeric_limits<std::uintmax_t>::max)(); |
| 156 | return continued_fraction_b(g, factor, max_terms); |
| 157 | } |
| 158 | |
| 159 | template <typename Gen> |
| 160 | inline typename detail::fraction_traits<Gen>::result_type continued_fraction_b(Gen& g, int bits) |
| 161 | noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()())) |
| 162 | { |
| 163 | BOOST_MATH_STD_USING // ADL of std names |
| 164 | |
| 165 | using traits = detail::fraction_traits<Gen>; |
| 166 | using result_type = typename traits::result_type; |
| 167 | |
| 168 | result_type factor = ldexp(1.0f, 1 - bits); // 1 / pow(result_type(2), bits); |
| 169 | std::uintmax_t max_terms = (std::numeric_limits<std::uintmax_t>::max)(); |
| 170 | return continued_fraction_b(g, factor, max_terms); |
| 171 | } |
| 172 | |
| 173 | template <typename Gen> |
| 174 | inline typename detail::fraction_traits<Gen>::result_type continued_fraction_b(Gen& g, int bits, std::uintmax_t& max_terms) |
| 175 | noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()())) |
| 176 | { |
| 177 | BOOST_MATH_STD_USING // ADL of std names |
| 178 | |
| 179 | using traits = detail::fraction_traits<Gen>; |
| 180 | using result_type = typename traits::result_type; |
| 181 | |
| 182 | result_type factor = ldexp(1.0f, 1 - bits); // 1 / pow(result_type(2), bits); |
| 183 | return continued_fraction_b(g, factor, max_terms); |
| 184 | } |
| 185 | |
| 186 | // |
| 187 | // continued_fraction_a |
| 188 | // Evaluates: |
| 189 | // |
| 190 | // a1 |
| 191 | // --------------- |
| 192 | // b1 + a2 |
| 193 | // ---------- |
| 194 | // b2 + a3 |
| 195 | // ----- |
| 196 | // b3 + ... |
| 197 | // |
| 198 | // Note that the first a1 and b1 returned by generator Gen are both used. |
| 199 | // |
| 200 | template <typename Gen, typename U> |
| 201 | inline typename detail::fraction_traits<Gen>::result_type continued_fraction_a(Gen& g, const U& factor, std::uintmax_t& max_terms) |
| 202 | noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()())) |
| 203 | { |
| 204 | BOOST_MATH_STD_USING // ADL of std names |
| 205 | |
| 206 | using traits = detail::fraction_traits<Gen>; |
| 207 | using result_type = typename traits::result_type; |
| 208 | using value_type = typename traits::value_type; |
| 209 | using integer_type = typename integer_scalar_type<result_type>::type; |
| 210 | using scalar_type = typename scalar_type<result_type>::type; |
| 211 | |
| 212 | integer_type const zero(0), one(1); |
| 213 | |
| 214 | result_type tiny = detail::tiny_value<result_type>::get(); |
| 215 | scalar_type terminator = abs(factor); |
| 216 | |
| 217 | value_type v = g(); |
| 218 | |
| 219 | result_type f, C, D, delta, a0; |
| 220 | f = traits::b(v); |
| 221 | a0 = traits::a(v); |
| 222 | if(f == zero) |
| 223 | f = tiny; |
| 224 | C = f; |
| 225 | D = 0; |
| 226 | |
| 227 | std::uintmax_t counter(max_terms); |
| 228 | |
| 229 | do{ |
| 230 | v = g(); |
| 231 | D = traits::b(v) + traits::a(v) * D; |
| 232 | if(D == zero) |
| 233 | D = tiny; |
| 234 | C = traits::b(v) + traits::a(v) / C; |
| 235 | if(C == zero) |
| 236 | C = tiny; |
| 237 | D = one/D; |
| 238 | delta = C*D; |
| 239 | f = f * delta; |
| 240 | }while((abs(delta - one) > terminator) && --counter); |
| 241 | |
| 242 | max_terms = max_terms - counter; |
| 243 | |
| 244 | return a0/f; |
| 245 | } |
| 246 | |
| 247 | template <typename Gen, typename U> |
| 248 | inline typename detail::fraction_traits<Gen>::result_type continued_fraction_a(Gen& g, const U& factor) |
| 249 | noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()())) |
| 250 | { |
| 251 | std::uintmax_t max_iter = (std::numeric_limits<std::uintmax_t>::max)(); |
| 252 | return continued_fraction_a(g, factor, max_iter); |
| 253 | } |
| 254 | |
| 255 | template <typename Gen> |
| 256 | inline typename detail::fraction_traits<Gen>::result_type continued_fraction_a(Gen& g, int bits) |
| 257 | noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()())) |
| 258 | { |
| 259 | BOOST_MATH_STD_USING // ADL of std names |
| 260 | |
| 261 | typedef detail::fraction_traits<Gen> traits; |
| 262 | typedef typename traits::result_type result_type; |
| 263 | |
| 264 | result_type factor = ldexp(1.0f, 1-bits); // 1 / pow(result_type(2), bits); |
| 265 | std::uintmax_t max_iter = (std::numeric_limits<std::uintmax_t>::max)(); |
| 266 | |
| 267 | return continued_fraction_a(g, factor, max_iter); |
| 268 | } |
| 269 | |
| 270 | template <typename Gen> |
| 271 | inline typename detail::fraction_traits<Gen>::result_type continued_fraction_a(Gen& g, int bits, std::uintmax_t& max_terms) |
| 272 | noexcept(BOOST_MATH_IS_FLOAT(typename detail::fraction_traits<Gen>::result_type) && noexcept(std::declval<Gen>()())) |
| 273 | { |
| 274 | BOOST_MATH_STD_USING // ADL of std names |
| 275 | |
| 276 | using traits = detail::fraction_traits<Gen>; |
| 277 | using result_type = typename traits::result_type; |
| 278 | |
| 279 | result_type factor = ldexp(1.0f, 1-bits); // 1 / pow(result_type(2), bits); |
| 280 | return continued_fraction_a(g, factor, max_terms); |
| 281 | } |
| 282 | |
| 283 | } // namespace tools |
| 284 | } // namespace math |
| 285 | } // namespace boost |
| 286 | |
| 287 | #endif // BOOST_MATH_TOOLS_FRACTION_INCLUDED |
| 288 | |