| 1 | // Copyright 2022 Christian Mazakas. |
| 2 | // Distributed under the Boost Software License, Version 1.0. (See accompanying |
| 3 | // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 4 | |
| 5 | #include <boost/unordered/detail/prime_fmod.hpp> |
| 6 | |
| 7 | #include <boost/core/detail/splitmix64.hpp> |
| 8 | #include <boost/core/lightweight_test.hpp> |
| 9 | |
| 10 | #include <limits> |
| 11 | |
| 12 | #if defined(BOOST_MSVC) |
| 13 | // conditional expression is constant |
| 14 | #pragma warning(disable : 4127) |
| 15 | #endif |
| 16 | |
| 17 | void macros_test() |
| 18 | { |
| 19 | if (std::numeric_limits<std::size_t>::digits >= 64) { |
| 20 | #if !defined(BOOST_UNORDERED_FCA_HAS_64B_SIZE_T) |
| 21 | BOOST_ERROR("std::numeric_limits<size_t>::digits >= 64, but " |
| 22 | "BOOST_UNORDERED_FCA_HAS_64B_SIZE_T is not defined" ); |
| 23 | #endif |
| 24 | } else { |
| 25 | #if defined(BOOST_UNORDERED_FCA_HAS_64B_SIZE_T) |
| 26 | BOOST_ERROR("std::numeric_limits<size_t>::digits < 64, but " |
| 27 | "BOOST_UNORDERED_FCA_HAS_64B_SIZE_T is defined" ); |
| 28 | #endif |
| 29 | } |
| 30 | } |
| 31 | |
| 32 | // Pretty inefficient, but the test is fast enough. |
| 33 | // Might be too slow if we had larger primes? |
| 34 | bool is_prime(std::size_t x) |
| 35 | { |
| 36 | if (x == 2) { |
| 37 | return true; |
| 38 | } |
| 39 | |
| 40 | if (x == 1 || x % 2 == 0) { |
| 41 | return false; |
| 42 | } |
| 43 | |
| 44 | // y*y <= x is susceptible to overflow, so instead make sure to use y <= (x/y) |
| 45 | for (std::size_t y = 3; y <= (x / y); y += 2) { |
| 46 | if (x % y == 0) { |
| 47 | return false; |
| 48 | } |
| 49 | } |
| 50 | |
| 51 | return true; |
| 52 | } |
| 53 | |
| 54 | void prime_sizes_test() |
| 55 | { |
| 56 | // just some basic sanity checks |
| 57 | // |
| 58 | BOOST_TEST(!is_prime(0)); |
| 59 | BOOST_TEST(!is_prime(1)); |
| 60 | BOOST_TEST(is_prime(2)); |
| 61 | BOOST_TEST(is_prime(3)); |
| 62 | BOOST_TEST(is_prime(13)); |
| 63 | BOOST_TEST(!is_prime(4)); |
| 64 | BOOST_TEST(!is_prime(100)); |
| 65 | BOOST_TEST(!is_prime(49)); |
| 66 | |
| 67 | std::size_t const* sizes = boost::unordered::detail::prime_fmod_size<>::sizes; |
| 68 | std::size_t sizes_len = |
| 69 | boost::unordered::detail::prime_fmod_size<>::sizes_len; |
| 70 | |
| 71 | // prove every number in our sizes array is prime |
| 72 | // |
| 73 | BOOST_TEST_GT(sizes_len, 0u); |
| 74 | |
| 75 | for (std::size_t i = 0; i < sizes_len; ++i) { |
| 76 | BOOST_TEST(is_prime(sizes[i])); |
| 77 | } |
| 78 | |
| 79 | // prove that every subsequent number in the sequence is larger than the |
| 80 | // previous |
| 81 | // |
| 82 | for (std::size_t i = 1; i < sizes_len; ++i) { |
| 83 | BOOST_TEST_GT(sizes[i], sizes[i - 1]); |
| 84 | } |
| 85 | |
| 86 | #if defined(BOOST_UNORDERED_FCA_HAS_64B_SIZE_T) |
| 87 | // now we wish to prove that if we do have the reciprocals stored, we have the |
| 88 | // correct amount of them, i.e. one for every entry in sizes[] that fits in 32 |
| 89 | // bits |
| 90 | // |
| 91 | boost::uint64_t const* inv_sizes32 = |
| 92 | boost::unordered::detail::prime_fmod_size<>::inv_sizes32; |
| 93 | |
| 94 | std::size_t inv_sizes32_len = |
| 95 | boost::unordered::detail::prime_fmod_size<>::inv_sizes32_len; |
| 96 | |
| 97 | std::size_t count = 0; |
| 98 | for (std::size_t i = 0; i < sizes_len; ++i) { |
| 99 | if (sizes[i] <= UINT32_MAX) { |
| 100 | ++count; |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | BOOST_TEST_GT(inv_sizes32_len, 0u); |
| 105 | BOOST_TEST_EQ(inv_sizes32_len, count); |
| 106 | |
| 107 | // these values should also be monotonically decreasing |
| 108 | // |
| 109 | for (std::size_t i = 1; i < inv_sizes32_len; ++i) { |
| 110 | BOOST_TEST_LT(inv_sizes32[i], inv_sizes32[i - 1]); |
| 111 | } |
| 112 | |
| 113 | // now make sure the values in inv_sizes32 are what they should be as derived |
| 114 | // from the paper |
| 115 | // |
| 116 | for (std::size_t i = 0; i < inv_sizes32_len; ++i) { |
| 117 | std::size_t const size = sizes[i]; |
| 118 | BOOST_TEST_LE(size, UINT_MAX); |
| 119 | |
| 120 | boost::uint32_t d = static_cast<boost::uint32_t>(sizes[i]); |
| 121 | boost::uint64_t M = ((boost::ulong_long_type(0xffffffff) << 32) + |
| 122 | boost::ulong_long_type(0xffffffff)) / |
| 123 | d + |
| 124 | 1; |
| 125 | |
| 126 | BOOST_TEST_EQ(inv_sizes32[i], M); |
| 127 | } |
| 128 | #endif |
| 129 | } |
| 130 | |
| 131 | void get_remainder_test() |
| 132 | { |
| 133 | #if defined(BOOST_UNORDERED_FCA_HAS_64B_SIZE_T) |
| 134 | struct |
| 135 | { |
| 136 | // boost::unordered::detail::prime_fmod_size<>::get_remainder |
| 137 | // uses several internal implementations depending on the availability of |
| 138 | // certain intrinsics or 128 bit integer support, defaulting to a slow, |
| 139 | // portable routine. The following is a transcription of the portable |
| 140 | // routine used here for verification purposes. |
| 141 | // |
| 142 | boost::uint64_t operator()(boost::uint64_t f, boost::uint32_t d) |
| 143 | { |
| 144 | boost::uint64_t r1 = (f & UINT32_MAX) * d; |
| 145 | boost::uint64_t r2 = (f >> 32) * d; |
| 146 | |
| 147 | r2 += r1 >> 32; |
| 148 | |
| 149 | return r2 >> 32; |
| 150 | } |
| 151 | } get_remainder; |
| 152 | |
| 153 | boost::detail::splitmix64 rng; |
| 154 | |
| 155 | for (std::size_t i = 0; i < 1000000u; ++i) { |
| 156 | boost::uint64_t f = rng(); |
| 157 | boost::uint32_t d = rng() & 0xffffffffu; |
| 158 | |
| 159 | boost::uint64_t r1 = |
| 160 | boost::unordered::detail::prime_fmod_size<>::get_remainder(fractional: f, d); |
| 161 | |
| 162 | boost::uint64_t r2 = get_remainder(f, d); |
| 163 | |
| 164 | if (!BOOST_TEST_EQ(r1, r2)) { |
| 165 | std::cerr << "f: " << f << ", d: " << d << std::endl; |
| 166 | return; |
| 167 | } |
| 168 | } |
| 169 | #endif |
| 170 | } |
| 171 | |
| 172 | void modulo_test() |
| 173 | { |
| 174 | std::size_t const* sizes = boost::unordered::detail::prime_fmod_size<>::sizes; |
| 175 | |
| 176 | std::size_t const sizes_len = |
| 177 | boost::unordered::detail::prime_fmod_size<>::sizes_len; |
| 178 | |
| 179 | boost::detail::splitmix64 rng; |
| 180 | |
| 181 | for (std::size_t i = 0; i < 1000000u; ++i) { |
| 182 | std::size_t hash = static_cast<std::size_t>(-1) & rng(); |
| 183 | |
| 184 | for (std::size_t j = 0; j < sizes_len; ++j) { |
| 185 | std::size_t h = hash; |
| 186 | |
| 187 | #if defined(BOOST_UNORDERED_FCA_HAS_64B_SIZE_T) |
| 188 | if (sizes[j] <= UINT_MAX) { |
| 189 | h = boost::uint32_t(h & 0xffffffffu) + boost::uint32_t(h >> 32); |
| 190 | } |
| 191 | #endif |
| 192 | std::size_t p1 = |
| 193 | boost::unordered::detail::prime_fmod_size<>::position(hash, size_index: j); |
| 194 | |
| 195 | std::size_t p2 = h % sizes[j]; |
| 196 | |
| 197 | if (!BOOST_TEST_EQ(p1, p2)) { |
| 198 | std::cerr << "hash: " << hash << ", j: " << j << ", h: " << h |
| 199 | << ", sizes[" << j << "]: " << sizes[j] << std::endl; |
| 200 | return; |
| 201 | } |
| 202 | } |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | int main() |
| 207 | { |
| 208 | macros_test(); |
| 209 | prime_sizes_test(); |
| 210 | get_remainder_test(); |
| 211 | modulo_test(); |
| 212 | |
| 213 | return boost::report_errors(); |
| 214 | } |
| 215 | |