1// Copyright 2005, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14// * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// The Google C++ Testing and Mocking Framework (Google Test)
31//
32// This header file declares functions and macros used internally by
33// Google Test. They are subject to change without notice.
34
35#ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
36#define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
37
38#include "gtest/internal/gtest-port.h"
39
40#if GTEST_OS_LINUX
41# include <stdlib.h>
42# include <sys/types.h>
43# include <sys/wait.h>
44# include <unistd.h>
45#endif // GTEST_OS_LINUX
46
47#if GTEST_HAS_EXCEPTIONS
48# include <stdexcept>
49#endif
50
51#include <ctype.h>
52#include <float.h>
53#include <string.h>
54#include <cstdint>
55#include <iomanip>
56#include <limits>
57#include <map>
58#include <set>
59#include <string>
60#include <type_traits>
61#include <vector>
62
63#include "gtest/gtest-message.h"
64#include "gtest/internal/gtest-filepath.h"
65#include "gtest/internal/gtest-string.h"
66#include "gtest/internal/gtest-type-util.h"
67
68// Due to C++ preprocessor weirdness, we need double indirection to
69// concatenate two tokens when one of them is __LINE__. Writing
70//
71// foo ## __LINE__
72//
73// will result in the token foo__LINE__, instead of foo followed by
74// the current line number. For more details, see
75// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
76#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
77#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
78
79// Stringifies its argument.
80// Work around a bug in visual studio which doesn't accept code like this:
81//
82// #define GTEST_STRINGIFY_(name) #name
83// #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
84// MACRO(, x, y)
85//
86// Complaining about the argument to GTEST_STRINGIFY_ being empty.
87// This is allowed by the spec.
88#define GTEST_STRINGIFY_HELPER_(name, ...) #name
89#define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
90
91namespace proto2 {
92class MessageLite;
93}
94
95namespace testing {
96
97// Forward declarations.
98
99class AssertionResult; // Result of an assertion.
100class Message; // Represents a failure message.
101class Test; // Represents a test.
102class TestInfo; // Information about a test.
103class TestPartResult; // Result of a test part.
104class UnitTest; // A collection of test suites.
105
106template <typename T>
107::std::string PrintToString(const T& value);
108
109namespace internal {
110
111struct TraceInfo; // Information about a trace point.
112class TestInfoImpl; // Opaque implementation of TestInfo
113class UnitTestImpl; // Opaque implementation of UnitTest
114
115// The text used in failure messages to indicate the start of the
116// stack trace.
117GTEST_API_ extern const char kStackTraceMarker[];
118
119// An IgnoredValue object can be implicitly constructed from ANY value.
120class IgnoredValue {
121 struct Sink {};
122 public:
123 // This constructor template allows any value to be implicitly
124 // converted to IgnoredValue. The object has no data member and
125 // doesn't try to remember anything about the argument. We
126 // deliberately omit the 'explicit' keyword in order to allow the
127 // conversion to be implicit.
128 // Disable the conversion if T already has a magical conversion operator.
129 // Otherwise we get ambiguity.
130 template <typename T,
131 typename std::enable_if<!std::is_convertible<T, Sink>::value,
132 int>::type = 0>
133 IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit)
134};
135
136// Appends the user-supplied message to the Google-Test-generated message.
137GTEST_API_ std::string AppendUserMessage(
138 const std::string& gtest_msg, const Message& user_msg);
139
140#if GTEST_HAS_EXCEPTIONS
141
142GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \
143/* an exported class was derived from a class that was not exported */)
144
145// This exception is thrown by (and only by) a failed Google Test
146// assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
147// are enabled). We derive it from std::runtime_error, which is for
148// errors presumably detectable only at run time. Since
149// std::runtime_error inherits from std::exception, many testing
150// frameworks know how to extract and print the message inside it.
151class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
152 public:
153 explicit GoogleTestFailureException(const TestPartResult& failure);
154};
155
156GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275
157
158#endif // GTEST_HAS_EXCEPTIONS
159
160namespace edit_distance {
161// Returns the optimal edits to go from 'left' to 'right'.
162// All edits cost the same, with replace having lower priority than
163// add/remove.
164// Simple implementation of the Wagner-Fischer algorithm.
165// See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
166enum EditType { kMatch, kAdd, kRemove, kReplace };
167GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
168 const std::vector<size_t>& left, const std::vector<size_t>& right);
169
170// Same as above, but the input is represented as strings.
171GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
172 const std::vector<std::string>& left,
173 const std::vector<std::string>& right);
174
175// Create a diff of the input strings in Unified diff format.
176GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
177 const std::vector<std::string>& right,
178 size_t context = 2);
179
180} // namespace edit_distance
181
182// Calculate the diff between 'left' and 'right' and return it in unified diff
183// format.
184// If not null, stores in 'total_line_count' the total number of lines found
185// in left + right.
186GTEST_API_ std::string DiffStrings(const std::string& left,
187 const std::string& right,
188 size_t* total_line_count);
189
190// Constructs and returns the message for an equality assertion
191// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
192//
193// The first four parameters are the expressions used in the assertion
194// and their values, as strings. For example, for ASSERT_EQ(foo, bar)
195// where foo is 5 and bar is 6, we have:
196//
197// expected_expression: "foo"
198// actual_expression: "bar"
199// expected_value: "5"
200// actual_value: "6"
201//
202// The ignoring_case parameter is true if and only if the assertion is a
203// *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
204// be inserted into the message.
205GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
206 const char* actual_expression,
207 const std::string& expected_value,
208 const std::string& actual_value,
209 bool ignoring_case);
210
211// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
212GTEST_API_ std::string GetBoolAssertionFailureMessage(
213 const AssertionResult& assertion_result,
214 const char* expression_text,
215 const char* actual_predicate_value,
216 const char* expected_predicate_value);
217
218// This template class represents an IEEE floating-point number
219// (either single-precision or double-precision, depending on the
220// template parameters).
221//
222// The purpose of this class is to do more sophisticated number
223// comparison. (Due to round-off error, etc, it's very unlikely that
224// two floating-points will be equal exactly. Hence a naive
225// comparison by the == operation often doesn't work.)
226//
227// Format of IEEE floating-point:
228//
229// The most-significant bit being the leftmost, an IEEE
230// floating-point looks like
231//
232// sign_bit exponent_bits fraction_bits
233//
234// Here, sign_bit is a single bit that designates the sign of the
235// number.
236//
237// For float, there are 8 exponent bits and 23 fraction bits.
238//
239// For double, there are 11 exponent bits and 52 fraction bits.
240//
241// More details can be found at
242// http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
243//
244// Template parameter:
245//
246// RawType: the raw floating-point type (either float or double)
247template <typename RawType>
248class FloatingPoint {
249 public:
250 // Defines the unsigned integer type that has the same size as the
251 // floating point number.
252 typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
253
254 // Constants.
255
256 // # of bits in a number.
257 static const size_t kBitCount = 8*sizeof(RawType);
258
259 // # of fraction bits in a number.
260 static const size_t kFractionBitCount =
261 std::numeric_limits<RawType>::digits - 1;
262
263 // # of exponent bits in a number.
264 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
265
266 // The mask for the sign bit.
267 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
268
269 // The mask for the fraction bits.
270 static const Bits kFractionBitMask =
271 ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
272
273 // The mask for the exponent bits.
274 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
275
276 // How many ULP's (Units in the Last Place) we want to tolerate when
277 // comparing two numbers. The larger the value, the more error we
278 // allow. A 0 value means that two numbers must be exactly the same
279 // to be considered equal.
280 //
281 // The maximum error of a single floating-point operation is 0.5
282 // units in the last place. On Intel CPU's, all floating-point
283 // calculations are done with 80-bit precision, while double has 64
284 // bits. Therefore, 4 should be enough for ordinary use.
285 //
286 // See the following article for more details on ULP:
287 // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
288 static const uint32_t kMaxUlps = 4;
289
290 // Constructs a FloatingPoint from a raw floating-point number.
291 //
292 // On an Intel CPU, passing a non-normalized NAN (Not a Number)
293 // around may change its bits, although the new value is guaranteed
294 // to be also a NAN. Therefore, don't expect this constructor to
295 // preserve the bits in x when x is a NAN.
296 explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
297
298 // Static methods
299
300 // Reinterprets a bit pattern as a floating-point number.
301 //
302 // This function is needed to test the AlmostEquals() method.
303 static RawType ReinterpretBits(const Bits bits) {
304 FloatingPoint fp(0);
305 fp.u_.bits_ = bits;
306 return fp.u_.value_;
307 }
308
309 // Returns the floating-point number that represent positive infinity.
310 static RawType Infinity() {
311 return ReinterpretBits(bits: kExponentBitMask);
312 }
313
314 // Returns the maximum representable finite floating-point number.
315 static RawType Max();
316
317 // Non-static methods
318
319 // Returns the bits that represents this number.
320 const Bits &bits() const { return u_.bits_; }
321
322 // Returns the exponent bits of this number.
323 Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
324
325 // Returns the fraction bits of this number.
326 Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
327
328 // Returns the sign bit of this number.
329 Bits sign_bit() const { return kSignBitMask & u_.bits_; }
330
331 // Returns true if and only if this is NAN (not a number).
332 bool is_nan() const {
333 // It's a NAN if the exponent bits are all ones and the fraction
334 // bits are not entirely zeros.
335 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
336 }
337
338 // Returns true if and only if this number is at most kMaxUlps ULP's away
339 // from rhs. In particular, this function:
340 //
341 // - returns false if either number is (or both are) NAN.
342 // - treats really large numbers as almost equal to infinity.
343 // - thinks +0.0 and -0.0 are 0 DLP's apart.
344 bool AlmostEquals(const FloatingPoint& rhs) const {
345 // The IEEE standard says that any comparison operation involving
346 // a NAN must return false.
347 if (is_nan() || rhs.is_nan()) return false;
348
349 return DistanceBetweenSignAndMagnitudeNumbers(sam1: u_.bits_, sam2: rhs.u_.bits_)
350 <= kMaxUlps;
351 }
352
353 private:
354 // The data type used to store the actual floating-point number.
355 union FloatingPointUnion {
356 RawType value_; // The raw floating-point number.
357 Bits bits_; // The bits that represent the number.
358 };
359
360 // Converts an integer from the sign-and-magnitude representation to
361 // the biased representation. More precisely, let N be 2 to the
362 // power of (kBitCount - 1), an integer x is represented by the
363 // unsigned number x + N.
364 //
365 // For instance,
366 //
367 // -N + 1 (the most negative number representable using
368 // sign-and-magnitude) is represented by 1;
369 // 0 is represented by N; and
370 // N - 1 (the biggest number representable using
371 // sign-and-magnitude) is represented by 2N - 1.
372 //
373 // Read http://en.wikipedia.org/wiki/Signed_number_representations
374 // for more details on signed number representations.
375 static Bits SignAndMagnitudeToBiased(const Bits &sam) {
376 if (kSignBitMask & sam) {
377 // sam represents a negative number.
378 return ~sam + 1;
379 } else {
380 // sam represents a positive number.
381 return kSignBitMask | sam;
382 }
383 }
384
385 // Given two numbers in the sign-and-magnitude representation,
386 // returns the distance between them as an unsigned number.
387 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
388 const Bits &sam2) {
389 const Bits biased1 = SignAndMagnitudeToBiased(sam: sam1);
390 const Bits biased2 = SignAndMagnitudeToBiased(sam: sam2);
391 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
392 }
393
394 FloatingPointUnion u_;
395};
396
397// We cannot use std::numeric_limits<T>::max() as it clashes with the max()
398// macro defined by <windows.h>.
399template <>
400inline float FloatingPoint<float>::Max() { return FLT_MAX; }
401template <>
402inline double FloatingPoint<double>::Max() { return DBL_MAX; }
403
404// Typedefs the instances of the FloatingPoint template class that we
405// care to use.
406typedef FloatingPoint<float> Float;
407typedef FloatingPoint<double> Double;
408
409// In order to catch the mistake of putting tests that use different
410// test fixture classes in the same test suite, we need to assign
411// unique IDs to fixture classes and compare them. The TypeId type is
412// used to hold such IDs. The user should treat TypeId as an opaque
413// type: the only operation allowed on TypeId values is to compare
414// them for equality using the == operator.
415typedef const void* TypeId;
416
417template <typename T>
418class TypeIdHelper {
419 public:
420 // dummy_ must not have a const type. Otherwise an overly eager
421 // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
422 // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
423 static bool dummy_;
424};
425
426template <typename T>
427bool TypeIdHelper<T>::dummy_ = false;
428
429// GetTypeId<T>() returns the ID of type T. Different values will be
430// returned for different types. Calling the function twice with the
431// same type argument is guaranteed to return the same ID.
432template <typename T>
433TypeId GetTypeId() {
434 // The compiler is required to allocate a different
435 // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
436 // the template. Therefore, the address of dummy_ is guaranteed to
437 // be unique.
438 return &(TypeIdHelper<T>::dummy_);
439}
440
441// Returns the type ID of ::testing::Test. Always call this instead
442// of GetTypeId< ::testing::Test>() to get the type ID of
443// ::testing::Test, as the latter may give the wrong result due to a
444// suspected linker bug when compiling Google Test as a Mac OS X
445// framework.
446GTEST_API_ TypeId GetTestTypeId();
447
448// Defines the abstract factory interface that creates instances
449// of a Test object.
450class TestFactoryBase {
451 public:
452 virtual ~TestFactoryBase() {}
453
454 // Creates a test instance to run. The instance is both created and destroyed
455 // within TestInfoImpl::Run()
456 virtual Test* CreateTest() = 0;
457
458 protected:
459 TestFactoryBase() {}
460
461 private:
462 GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
463};
464
465// This class provides implementation of TeastFactoryBase interface.
466// It is used in TEST and TEST_F macros.
467template <class TestClass>
468class TestFactoryImpl : public TestFactoryBase {
469 public:
470 Test* CreateTest() override { return new TestClass; }
471};
472
473#if GTEST_OS_WINDOWS
474
475// Predicate-formatters for implementing the HRESULT checking macros
476// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
477// We pass a long instead of HRESULT to avoid causing an
478// include dependency for the HRESULT type.
479GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
480 long hr); // NOLINT
481GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
482 long hr); // NOLINT
483
484#endif // GTEST_OS_WINDOWS
485
486// Types of SetUpTestSuite() and TearDownTestSuite() functions.
487using SetUpTestSuiteFunc = void (*)();
488using TearDownTestSuiteFunc = void (*)();
489
490struct CodeLocation {
491 CodeLocation(const std::string& a_file, int a_line)
492 : file(a_file), line(a_line) {}
493
494 std::string file;
495 int line;
496};
497
498// Helper to identify which setup function for TestCase / TestSuite to call.
499// Only one function is allowed, either TestCase or TestSute but not both.
500
501// Utility functions to help SuiteApiResolver
502using SetUpTearDownSuiteFuncType = void (*)();
503
504inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
505 SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
506 return a == def ? nullptr : a;
507}
508
509template <typename T>
510// Note that SuiteApiResolver inherits from T because
511// SetUpTestSuite()/TearDownTestSuite() could be protected. This way
512// SuiteApiResolver can access them.
513struct SuiteApiResolver : T {
514 // testing::Test is only forward declared at this point. So we make it a
515 // dependent class for the compiler to be OK with it.
516 using Test =
517 typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
518
519 static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
520 int line_num) {
521#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
522 SetUpTearDownSuiteFuncType test_case_fp =
523 GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
524 SetUpTearDownSuiteFuncType test_suite_fp =
525 GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
526
527 GTEST_CHECK_(!test_case_fp || !test_suite_fp)
528 << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
529 "make sure there is only one present at "
530 << filename << ":" << line_num;
531
532 return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
533#else
534 (void)(filename);
535 (void)(line_num);
536 return &T::SetUpTestSuite;
537#endif
538 }
539
540 static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
541 int line_num) {
542#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
543 SetUpTearDownSuiteFuncType test_case_fp =
544 GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
545 SetUpTearDownSuiteFuncType test_suite_fp =
546 GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
547
548 GTEST_CHECK_(!test_case_fp || !test_suite_fp)
549 << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
550 " please make sure there is only one present at"
551 << filename << ":" << line_num;
552
553 return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
554#else
555 (void)(filename);
556 (void)(line_num);
557 return &T::TearDownTestSuite;
558#endif
559 }
560};
561
562// Creates a new TestInfo object and registers it with Google Test;
563// returns the created object.
564//
565// Arguments:
566//
567// test_suite_name: name of the test suite
568// name: name of the test
569// type_param: the name of the test's type parameter, or NULL if
570// this is not a typed or a type-parameterized test.
571// value_param: text representation of the test's value parameter,
572// or NULL if this is not a type-parameterized test.
573// code_location: code location where the test is defined
574// fixture_class_id: ID of the test fixture class
575// set_up_tc: pointer to the function that sets up the test suite
576// tear_down_tc: pointer to the function that tears down the test suite
577// factory: pointer to the factory that creates a test object.
578// The newly created TestInfo instance will assume
579// ownership of the factory object.
580GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
581 const char* test_suite_name, const char* name, const char* type_param,
582 const char* value_param, CodeLocation code_location,
583 TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
584 TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
585
586// If *pstr starts with the given prefix, modifies *pstr to be right
587// past the prefix and returns true; otherwise leaves *pstr unchanged
588// and returns false. None of pstr, *pstr, and prefix can be NULL.
589GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
590
591GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
592/* class A needs to have dll-interface to be used by clients of class B */)
593
594// State of the definition of a type-parameterized test suite.
595class GTEST_API_ TypedTestSuitePState {
596 public:
597 TypedTestSuitePState() : registered_(false) {}
598
599 // Adds the given test name to defined_test_names_ and return true
600 // if the test suite hasn't been registered; otherwise aborts the
601 // program.
602 bool AddTestName(const char* file, int line, const char* case_name,
603 const char* test_name) {
604 if (registered_) {
605 fprintf(stderr,
606 format: "%s Test %s must be defined before "
607 "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
608 FormatFileLocation(file, line).c_str(), test_name, case_name);
609 fflush(stderr);
610 posix::Abort();
611 }
612 registered_tests_.insert(
613 p: ::std::make_pair(t1&: test_name, t2: CodeLocation(file, line)));
614 return true;
615 }
616
617 bool TestExists(const std::string& test_name) const {
618 return registered_tests_.count(k: test_name) > 0;
619 }
620
621 const CodeLocation& GetCodeLocation(const std::string& test_name) const {
622 RegisteredTestsMap::const_iterator it = registered_tests_.find(k: test_name);
623 GTEST_CHECK_(it != registered_tests_.end());
624 return it->second;
625 }
626
627 // Verifies that registered_tests match the test names in
628 // defined_test_names_; returns registered_tests if successful, or
629 // aborts the program otherwise.
630 const char* VerifyRegisteredTestNames(const char* test_suite_name,
631 const char* file, int line,
632 const char* registered_tests);
633
634 private:
635 typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
636
637 bool registered_;
638 RegisteredTestsMap registered_tests_;
639};
640
641// Legacy API is deprecated but still available
642#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
643using TypedTestCasePState = TypedTestSuitePState;
644#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
645
646GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
647
648// Skips to the first non-space char after the first comma in 'str';
649// returns NULL if no comma is found in 'str'.
650inline const char* SkipComma(const char* str) {
651 const char* comma = strchr(s: str, c: ',');
652 if (comma == nullptr) {
653 return nullptr;
654 }
655 while (IsSpace(ch: *(++comma))) {}
656 return comma;
657}
658
659// Returns the prefix of 'str' before the first comma in it; returns
660// the entire string if it contains no comma.
661inline std::string GetPrefixUntilComma(const char* str) {
662 const char* comma = strchr(s: str, c: ',');
663 return comma == nullptr ? str : std::string(str, comma);
664}
665
666// Splits a given string on a given delimiter, populating a given
667// vector with the fields.
668void SplitString(const ::std::string& str, char delimiter,
669 ::std::vector< ::std::string>* dest);
670
671// The default argument to the template below for the case when the user does
672// not provide a name generator.
673struct DefaultNameGenerator {
674 template <typename T>
675 static std::string GetName(int i) {
676 return StreamableToString(streamable: i);
677 }
678};
679
680template <typename Provided = DefaultNameGenerator>
681struct NameGeneratorSelector {
682 typedef Provided type;
683};
684
685template <typename NameGenerator>
686void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
687
688template <typename NameGenerator, typename Types>
689void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
690 result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
691 GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
692 i + 1);
693}
694
695template <typename NameGenerator, typename Types>
696std::vector<std::string> GenerateNames() {
697 std::vector<std::string> result;
698 GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
699 return result;
700}
701
702// TypeParameterizedTest<Fixture, TestSel, Types>::Register()
703// registers a list of type-parameterized tests with Google Test. The
704// return value is insignificant - we just need to return something
705// such that we can call this function in a namespace scope.
706//
707// Implementation note: The GTEST_TEMPLATE_ macro declares a template
708// template parameter. It's defined in gtest-type-util.h.
709template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
710class TypeParameterizedTest {
711 public:
712 // 'index' is the index of the test in the type list 'Types'
713 // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
714 // Types). Valid values for 'index' are [0, N - 1] where N is the
715 // length of Types.
716 static bool Register(const char* prefix, const CodeLocation& code_location,
717 const char* case_name, const char* test_names, int index,
718 const std::vector<std::string>& type_names =
719 GenerateNames<DefaultNameGenerator, Types>()) {
720 typedef typename Types::Head Type;
721 typedef Fixture<Type> FixtureClass;
722 typedef typename GTEST_BIND_(TestSel, Type) TestClass;
723
724 // First, registers the first type-parameterized test in the type
725 // list.
726 MakeAndRegisterTestInfo(
727 (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
728 "/" + type_names[static_cast<size_t>(index)])
729 .c_str(),
730 StripTrailingSpaces(str: GetPrefixUntilComma(str: test_names)).c_str(),
731 GetTypeName<Type>().c_str(),
732 nullptr, // No value parameter.
733 code_location, GetTypeId<FixtureClass>(),
734 SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
735 code_location.file.c_str(), code_location.line),
736 SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
737 code_location.file.c_str(), code_location.line),
738 new TestFactoryImpl<TestClass>);
739
740 // Next, recurses (at compile time) with the tail of the type list.
741 return TypeParameterizedTest<Fixture, TestSel,
742 typename Types::Tail>::Register(prefix,
743 code_location,
744 case_name,
745 test_names,
746 index + 1,
747 type_names);
748 }
749};
750
751// The base case for the compile time recursion.
752template <GTEST_TEMPLATE_ Fixture, class TestSel>
753class TypeParameterizedTest<Fixture, TestSel, internal::None> {
754 public:
755 static bool Register(const char* /*prefix*/, const CodeLocation&,
756 const char* /*case_name*/, const char* /*test_names*/,
757 int /*index*/,
758 const std::vector<std::string>& =
759 std::vector<std::string>() /*type_names*/) {
760 return true;
761 }
762};
763
764GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
765 CodeLocation code_location);
766GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
767 const char* case_name);
768
769// TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
770// registers *all combinations* of 'Tests' and 'Types' with Google
771// Test. The return value is insignificant - we just need to return
772// something such that we can call this function in a namespace scope.
773template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
774class TypeParameterizedTestSuite {
775 public:
776 static bool Register(const char* prefix, CodeLocation code_location,
777 const TypedTestSuitePState* state, const char* case_name,
778 const char* test_names,
779 const std::vector<std::string>& type_names =
780 GenerateNames<DefaultNameGenerator, Types>()) {
781 RegisterTypeParameterizedTestSuiteInstantiation(case_name);
782 std::string test_name = StripTrailingSpaces(
783 str: GetPrefixUntilComma(str: test_names));
784 if (!state->TestExists(test_name)) {
785 fprintf(stderr, format: "Failed to get code location for test %s.%s at %s.",
786 case_name, test_name.c_str(),
787 FormatFileLocation(file: code_location.file.c_str(),
788 line: code_location.line).c_str());
789 fflush(stderr);
790 posix::Abort();
791 }
792 const CodeLocation& test_location = state->GetCodeLocation(test_name);
793
794 typedef typename Tests::Head Head;
795
796 // First, register the first test in 'Test' for each type in 'Types'.
797 TypeParameterizedTest<Fixture, Head, Types>::Register(
798 prefix, test_location, case_name, test_names, 0, type_names);
799
800 // Next, recurses (at compile time) with the tail of the test list.
801 return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
802 Types>::Register(prefix, code_location,
803 state, case_name,
804 SkipComma(str: test_names),
805 type_names);
806 }
807};
808
809// The base case for the compile time recursion.
810template <GTEST_TEMPLATE_ Fixture, typename Types>
811class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
812 public:
813 static bool Register(const char* /*prefix*/, const CodeLocation&,
814 const TypedTestSuitePState* /*state*/,
815 const char* /*case_name*/, const char* /*test_names*/,
816 const std::vector<std::string>& =
817 std::vector<std::string>() /*type_names*/) {
818 return true;
819 }
820};
821
822// Returns the current OS stack trace as an std::string.
823//
824// The maximum number of stack frames to be included is specified by
825// the gtest_stack_trace_depth flag. The skip_count parameter
826// specifies the number of top frames to be skipped, which doesn't
827// count against the number of frames to be included.
828//
829// For example, if Foo() calls Bar(), which in turn calls
830// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
831// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
832GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
833 UnitTest* unit_test, int skip_count);
834
835// Helpers for suppressing warnings on unreachable code or constant
836// condition.
837
838// Always returns true.
839GTEST_API_ bool AlwaysTrue();
840
841// Always returns false.
842inline bool AlwaysFalse() { return !AlwaysTrue(); }
843
844// Helper for suppressing false warning from Clang on a const char*
845// variable declared in a conditional expression always being NULL in
846// the else branch.
847struct GTEST_API_ ConstCharPtr {
848 ConstCharPtr(const char* str) : value(str) {}
849 operator bool() const { return true; }
850 const char* value;
851};
852
853// Helper for declaring std::string within 'if' statement
854// in pre C++17 build environment.
855struct TrueWithString {
856 TrueWithString() = default;
857 explicit TrueWithString(const char* str) : value(str) {}
858 explicit TrueWithString(const std::string& str) : value(str) {}
859 explicit operator bool() const { return true; }
860 std::string value;
861};
862
863// A simple Linear Congruential Generator for generating random
864// numbers with a uniform distribution. Unlike rand() and srand(), it
865// doesn't use global state (and therefore can't interfere with user
866// code). Unlike rand_r(), it's portable. An LCG isn't very random,
867// but it's good enough for our purposes.
868class GTEST_API_ Random {
869 public:
870 static const uint32_t kMaxRange = 1u << 31;
871
872 explicit Random(uint32_t seed) : state_(seed) {}
873
874 void Reseed(uint32_t seed) { state_ = seed; }
875
876 // Generates a random number from [0, range). Crashes if 'range' is
877 // 0 or greater than kMaxRange.
878 uint32_t Generate(uint32_t range);
879
880 private:
881 uint32_t state_;
882 GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
883};
884
885// Turns const U&, U&, const U, and U all into U.
886#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
887 typename std::remove_const<typename std::remove_reference<T>::type>::type
888
889// HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
890// that's true if and only if T has methods DebugString() and ShortDebugString()
891// that return std::string.
892template <typename T>
893class HasDebugStringAndShortDebugString {
894 private:
895 template <typename C>
896 static auto CheckDebugString(C*) -> typename std::is_same<
897 std::string, decltype(std::declval<const C>().DebugString())>::type;
898 template <typename>
899 static std::false_type CheckDebugString(...);
900
901 template <typename C>
902 static auto CheckShortDebugString(C*) -> typename std::is_same<
903 std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
904 template <typename>
905 static std::false_type CheckShortDebugString(...);
906
907 using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
908 using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
909
910 public:
911 static constexpr bool value =
912 HasDebugStringType::value && HasShortDebugStringType::value;
913};
914
915template <typename T>
916constexpr bool HasDebugStringAndShortDebugString<T>::value;
917
918// When the compiler sees expression IsContainerTest<C>(0), if C is an
919// STL-style container class, the first overload of IsContainerTest
920// will be viable (since both C::iterator* and C::const_iterator* are
921// valid types and NULL can be implicitly converted to them). It will
922// be picked over the second overload as 'int' is a perfect match for
923// the type of argument 0. If C::iterator or C::const_iterator is not
924// a valid type, the first overload is not viable, and the second
925// overload will be picked. Therefore, we can determine whether C is
926// a container class by checking the type of IsContainerTest<C>(0).
927// The value of the expression is insignificant.
928//
929// In C++11 mode we check the existence of a const_iterator and that an
930// iterator is properly implemented for the container.
931//
932// For pre-C++11 that we look for both C::iterator and C::const_iterator.
933// The reason is that C++ injects the name of a class as a member of the
934// class itself (e.g. you can refer to class iterator as either
935// 'iterator' or 'iterator::iterator'). If we look for C::iterator
936// only, for example, we would mistakenly think that a class named
937// iterator is an STL container.
938//
939// Also note that the simpler approach of overloading
940// IsContainerTest(typename C::const_iterator*) and
941// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
942typedef int IsContainer;
943template <class C,
944 class Iterator = decltype(::std::declval<const C&>().begin()),
945 class = decltype(::std::declval<const C&>().end()),
946 class = decltype(++::std::declval<Iterator&>()),
947 class = decltype(*::std::declval<Iterator>()),
948 class = typename C::const_iterator>
949IsContainer IsContainerTest(int /* dummy */) {
950 return 0;
951}
952
953typedef char IsNotContainer;
954template <class C>
955IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
956
957// Trait to detect whether a type T is a hash table.
958// The heuristic used is that the type contains an inner type `hasher` and does
959// not contain an inner type `reverse_iterator`.
960// If the container is iterable in reverse, then order might actually matter.
961template <typename T>
962struct IsHashTable {
963 private:
964 template <typename U>
965 static char test(typename U::hasher*, typename U::reverse_iterator*);
966 template <typename U>
967 static int test(typename U::hasher*, ...);
968 template <typename U>
969 static char test(...);
970
971 public:
972 static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
973};
974
975template <typename T>
976const bool IsHashTable<T>::value;
977
978template <typename C,
979 bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
980struct IsRecursiveContainerImpl;
981
982template <typename C>
983struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
984
985// Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
986// obey the same inconsistencies as the IsContainerTest, namely check if
987// something is a container is relying on only const_iterator in C++11 and
988// is relying on both const_iterator and iterator otherwise
989template <typename C>
990struct IsRecursiveContainerImpl<C, true> {
991 using value_type = decltype(*std::declval<typename C::const_iterator>());
992 using type =
993 std::is_same<typename std::remove_const<
994 typename std::remove_reference<value_type>::type>::type,
995 C>;
996};
997
998// IsRecursiveContainer<Type> is a unary compile-time predicate that
999// evaluates whether C is a recursive container type. A recursive container
1000// type is a container type whose value_type is equal to the container type
1001// itself. An example for a recursive container type is
1002// boost::filesystem::path, whose iterator has a value_type that is equal to
1003// boost::filesystem::path.
1004template <typename C>
1005struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
1006
1007// Utilities for native arrays.
1008
1009// ArrayEq() compares two k-dimensional native arrays using the
1010// elements' operator==, where k can be any integer >= 0. When k is
1011// 0, ArrayEq() degenerates into comparing a single pair of values.
1012
1013template <typename T, typename U>
1014bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1015
1016// This generic version is used when k is 0.
1017template <typename T, typename U>
1018inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
1019
1020// This overload is used when k >= 1.
1021template <typename T, typename U, size_t N>
1022inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
1023 return internal::ArrayEq(lhs, N, rhs);
1024}
1025
1026// This helper reduces code bloat. If we instead put its logic inside
1027// the previous ArrayEq() function, arrays with different sizes would
1028// lead to different copies of the template code.
1029template <typename T, typename U>
1030bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1031 for (size_t i = 0; i != size; i++) {
1032 if (!internal::ArrayEq(lhs[i], rhs[i]))
1033 return false;
1034 }
1035 return true;
1036}
1037
1038// Finds the first element in the iterator range [begin, end) that
1039// equals elem. Element may be a native array type itself.
1040template <typename Iter, typename Element>
1041Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1042 for (Iter it = begin; it != end; ++it) {
1043 if (internal::ArrayEq(*it, elem))
1044 return it;
1045 }
1046 return end;
1047}
1048
1049// CopyArray() copies a k-dimensional native array using the elements'
1050// operator=, where k can be any integer >= 0. When k is 0,
1051// CopyArray() degenerates into copying a single value.
1052
1053template <typename T, typename U>
1054void CopyArray(const T* from, size_t size, U* to);
1055
1056// This generic version is used when k is 0.
1057template <typename T, typename U>
1058inline void CopyArray(const T& from, U* to) { *to = from; }
1059
1060// This overload is used when k >= 1.
1061template <typename T, typename U, size_t N>
1062inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1063 internal::CopyArray(from, N, *to);
1064}
1065
1066// This helper reduces code bloat. If we instead put its logic inside
1067// the previous CopyArray() function, arrays with different sizes
1068// would lead to different copies of the template code.
1069template <typename T, typename U>
1070void CopyArray(const T* from, size_t size, U* to) {
1071 for (size_t i = 0; i != size; i++) {
1072 internal::CopyArray(from[i], to + i);
1073 }
1074}
1075
1076// The relation between an NativeArray object (see below) and the
1077// native array it represents.
1078// We use 2 different structs to allow non-copyable types to be used, as long
1079// as RelationToSourceReference() is passed.
1080struct RelationToSourceReference {};
1081struct RelationToSourceCopy {};
1082
1083// Adapts a native array to a read-only STL-style container. Instead
1084// of the complete STL container concept, this adaptor only implements
1085// members useful for Google Mock's container matchers. New members
1086// should be added as needed. To simplify the implementation, we only
1087// support Element being a raw type (i.e. having no top-level const or
1088// reference modifier). It's the client's responsibility to satisfy
1089// this requirement. Element can be an array type itself (hence
1090// multi-dimensional arrays are supported).
1091template <typename Element>
1092class NativeArray {
1093 public:
1094 // STL-style container typedefs.
1095 typedef Element value_type;
1096 typedef Element* iterator;
1097 typedef const Element* const_iterator;
1098
1099 // Constructs from a native array. References the source.
1100 NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1101 InitRef(array, a_size: count);
1102 }
1103
1104 // Constructs from a native array. Copies the source.
1105 NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1106 InitCopy(array, a_size: count);
1107 }
1108
1109 // Copy constructor.
1110 NativeArray(const NativeArray& rhs) {
1111 (this->*rhs.clone_)(rhs.array_, rhs.size_);
1112 }
1113
1114 ~NativeArray() {
1115 if (clone_ != &NativeArray::InitRef)
1116 delete[] array_;
1117 }
1118
1119 // STL-style container methods.
1120 size_t size() const { return size_; }
1121 const_iterator begin() const { return array_; }
1122 const_iterator end() const { return array_ + size_; }
1123 bool operator==(const NativeArray& rhs) const {
1124 return size() == rhs.size() &&
1125 ArrayEq(begin(), size(), rhs.begin());
1126 }
1127
1128 private:
1129 static_assert(!std::is_const<Element>::value, "Type must not be const");
1130 static_assert(!std::is_reference<Element>::value,
1131 "Type must not be a reference");
1132
1133 // Initializes this object with a copy of the input.
1134 void InitCopy(const Element* array, size_t a_size) {
1135 Element* const copy = new Element[a_size];
1136 CopyArray(array, a_size, copy);
1137 array_ = copy;
1138 size_ = a_size;
1139 clone_ = &NativeArray::InitCopy;
1140 }
1141
1142 // Initializes this object with a reference of the input.
1143 void InitRef(const Element* array, size_t a_size) {
1144 array_ = array;
1145 size_ = a_size;
1146 clone_ = &NativeArray::InitRef;
1147 }
1148
1149 const Element* array_;
1150 size_t size_;
1151 void (NativeArray::*clone_)(const Element*, size_t);
1152};
1153
1154// Backport of std::index_sequence.
1155template <size_t... Is>
1156struct IndexSequence {
1157 using type = IndexSequence;
1158};
1159
1160// Double the IndexSequence, and one if plus_one is true.
1161template <bool plus_one, typename T, size_t sizeofT>
1162struct DoubleSequence;
1163template <size_t... I, size_t sizeofT>
1164struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
1165 using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
1166};
1167template <size_t... I, size_t sizeofT>
1168struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
1169 using type = IndexSequence<I..., (sizeofT + I)...>;
1170};
1171
1172// Backport of std::make_index_sequence.
1173// It uses O(ln(N)) instantiation depth.
1174template <size_t N>
1175struct MakeIndexSequenceImpl
1176 : DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type,
1177 N / 2>::type {};
1178
1179template <>
1180struct MakeIndexSequenceImpl<0> : IndexSequence<> {};
1181
1182template <size_t N>
1183using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type;
1184
1185template <typename... T>
1186using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type;
1187
1188template <size_t>
1189struct Ignore {
1190 Ignore(...); // NOLINT
1191};
1192
1193template <typename>
1194struct ElemFromListImpl;
1195template <size_t... I>
1196struct ElemFromListImpl<IndexSequence<I...>> {
1197 // We make Ignore a template to solve a problem with MSVC.
1198 // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
1199 // MSVC doesn't understand how to deal with that pack expansion.
1200 // Use `0 * I` to have a single instantiation of Ignore.
1201 template <typename R>
1202 static R Apply(Ignore<0 * I>..., R (*)(), ...);
1203};
1204
1205template <size_t N, typename... T>
1206struct ElemFromList {
1207 using type =
1208 decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
1209 static_cast<T (*)()>(nullptr)...));
1210};
1211
1212struct FlatTupleConstructTag {};
1213
1214template <typename... T>
1215class FlatTuple;
1216
1217template <typename Derived, size_t I>
1218struct FlatTupleElemBase;
1219
1220template <typename... T, size_t I>
1221struct FlatTupleElemBase<FlatTuple<T...>, I> {
1222 using value_type = typename ElemFromList<I, T...>::type;
1223 FlatTupleElemBase() = default;
1224 template <typename Arg>
1225 explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
1226 : value(std::forward<Arg>(t)) {}
1227 value_type value;
1228};
1229
1230template <typename Derived, typename Idx>
1231struct FlatTupleBase;
1232
1233template <size_t... Idx, typename... T>
1234struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
1235 : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1236 using Indices = IndexSequence<Idx...>;
1237 FlatTupleBase() = default;
1238 template <typename... Args>
1239 explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
1240 : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
1241 std::forward<Args>(args))... {}
1242
1243 template <size_t I>
1244 const typename ElemFromList<I, T...>::type& Get() const {
1245 return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1246 }
1247
1248 template <size_t I>
1249 typename ElemFromList<I, T...>::type& Get() {
1250 return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1251 }
1252
1253 template <typename F>
1254 auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1255 return std::forward<F>(f)(Get<Idx>()...);
1256 }
1257
1258 template <typename F>
1259 auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1260 return std::forward<F>(f)(Get<Idx>()...);
1261 }
1262};
1263
1264// Analog to std::tuple but with different tradeoffs.
1265// This class minimizes the template instantiation depth, thus allowing more
1266// elements than std::tuple would. std::tuple has been seen to require an
1267// instantiation depth of more than 10x the number of elements in some
1268// implementations.
1269// FlatTuple and ElemFromList are not recursive and have a fixed depth
1270// regardless of T...
1271// MakeIndexSequence, on the other hand, it is recursive but with an
1272// instantiation depth of O(ln(N)).
1273template <typename... T>
1274class FlatTuple
1275 : private FlatTupleBase<FlatTuple<T...>,
1276 typename MakeIndexSequence<sizeof...(T)>::type> {
1277 using Indices = typename FlatTupleBase<
1278 FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
1279
1280 public:
1281 FlatTuple() = default;
1282 template <typename... Args>
1283 explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
1284 : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
1285
1286 using FlatTuple::FlatTupleBase::Apply;
1287 using FlatTuple::FlatTupleBase::Get;
1288};
1289
1290// Utility functions to be called with static_assert to induce deprecation
1291// warnings.
1292GTEST_INTERNAL_DEPRECATED(
1293 "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1294 "INSTANTIATE_TEST_SUITE_P")
1295constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1296
1297GTEST_INTERNAL_DEPRECATED(
1298 "TYPED_TEST_CASE_P is deprecated, please use "
1299 "TYPED_TEST_SUITE_P")
1300constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1301
1302GTEST_INTERNAL_DEPRECATED(
1303 "TYPED_TEST_CASE is deprecated, please use "
1304 "TYPED_TEST_SUITE")
1305constexpr bool TypedTestCaseIsDeprecated() { return true; }
1306
1307GTEST_INTERNAL_DEPRECATED(
1308 "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1309 "REGISTER_TYPED_TEST_SUITE_P")
1310constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1311
1312GTEST_INTERNAL_DEPRECATED(
1313 "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1314 "INSTANTIATE_TYPED_TEST_SUITE_P")
1315constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1316
1317} // namespace internal
1318} // namespace testing
1319
1320namespace std {
1321// Some standard library implementations use `struct tuple_size` and some use
1322// `class tuple_size`. Clang warns about the mismatch.
1323// https://reviews.llvm.org/D55466
1324#ifdef __clang__
1325#pragma clang diagnostic push
1326#pragma clang diagnostic ignored "-Wmismatched-tags"
1327#endif
1328template <typename... Ts>
1329struct tuple_size<testing::internal::FlatTuple<Ts...>>
1330 : std::integral_constant<size_t, sizeof...(Ts)> {};
1331#ifdef __clang__
1332#pragma clang diagnostic pop
1333#endif
1334} // namespace std
1335
1336#define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1337 ::testing::internal::AssertHelper(result_type, file, line, message) \
1338 = ::testing::Message()
1339
1340#define GTEST_MESSAGE_(message, result_type) \
1341 GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1342
1343#define GTEST_FATAL_FAILURE_(message) \
1344 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1345
1346#define GTEST_NONFATAL_FAILURE_(message) \
1347 GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1348
1349#define GTEST_SUCCESS_(message) \
1350 GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1351
1352#define GTEST_SKIP_(message) \
1353 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1354
1355// Suppress MSVC warning 4072 (unreachable code) for the code following
1356// statement if it returns or throws (or doesn't return or throw in some
1357// situations).
1358// NOTE: The "else" is important to keep this expansion to prevent a top-level
1359// "else" from attaching to our "if".
1360#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1361 if (::testing::internal::AlwaysTrue()) { \
1362 statement; \
1363 } else /* NOLINT */ \
1364 static_assert(true, "") // User must have a semicolon after expansion.
1365
1366#if GTEST_HAS_EXCEPTIONS
1367
1368namespace testing {
1369namespace internal {
1370
1371class NeverThrown {
1372 public:
1373 const char* what() const noexcept {
1374 return "this exception should never be thrown";
1375 }
1376};
1377
1378} // namespace internal
1379} // namespace testing
1380
1381#if GTEST_HAS_RTTI
1382
1383#define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
1384
1385#else // GTEST_HAS_RTTI
1386
1387#define GTEST_EXCEPTION_TYPE_(e) \
1388 std::string { "an std::exception-derived error" }
1389
1390#endif // GTEST_HAS_RTTI
1391
1392#define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \
1393 catch (typename std::conditional< \
1394 std::is_same<typename std::remove_cv<typename std::remove_reference< \
1395 expected_exception>::type>::type, \
1396 std::exception>::value, \
1397 const ::testing::internal::NeverThrown&, const std::exception&>::type \
1398 e) { \
1399 gtest_msg.value = "Expected: " #statement \
1400 " throws an exception of type " #expected_exception \
1401 ".\n Actual: it throws "; \
1402 gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \
1403 gtest_msg.value += " with description \""; \
1404 gtest_msg.value += e.what(); \
1405 gtest_msg.value += "\"."; \
1406 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1407 }
1408
1409#else // GTEST_HAS_EXCEPTIONS
1410
1411#define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
1412
1413#endif // GTEST_HAS_EXCEPTIONS
1414
1415#define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1416 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1417 if (::testing::internal::TrueWithString gtest_msg{}) { \
1418 bool gtest_caught_expected = false; \
1419 try { \
1420 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1421 } catch (expected_exception const&) { \
1422 gtest_caught_expected = true; \
1423 } \
1424 GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \
1425 catch (...) { \
1426 gtest_msg.value = "Expected: " #statement \
1427 " throws an exception of type " #expected_exception \
1428 ".\n Actual: it throws a different type."; \
1429 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1430 } \
1431 if (!gtest_caught_expected) { \
1432 gtest_msg.value = "Expected: " #statement \
1433 " throws an exception of type " #expected_exception \
1434 ".\n Actual: it throws nothing."; \
1435 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1436 } \
1437 } else /*NOLINT*/ \
1438 GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__) \
1439 : fail(gtest_msg.value.c_str())
1440
1441#if GTEST_HAS_EXCEPTIONS
1442
1443#define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
1444 catch (std::exception const& e) { \
1445 gtest_msg.value = "it throws "; \
1446 gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \
1447 gtest_msg.value += " with description \""; \
1448 gtest_msg.value += e.what(); \
1449 gtest_msg.value += "\"."; \
1450 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1451 }
1452
1453#else // GTEST_HAS_EXCEPTIONS
1454
1455#define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
1456
1457#endif // GTEST_HAS_EXCEPTIONS
1458
1459#define GTEST_TEST_NO_THROW_(statement, fail) \
1460 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1461 if (::testing::internal::TrueWithString gtest_msg{}) { \
1462 try { \
1463 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1464 } \
1465 GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
1466 catch (...) { \
1467 gtest_msg.value = "it throws."; \
1468 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1469 } \
1470 } else \
1471 GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1472 fail(("Expected: " #statement " doesn't throw an exception.\n" \
1473 " Actual: " + gtest_msg.value).c_str())
1474
1475#define GTEST_TEST_ANY_THROW_(statement, fail) \
1476 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1477 if (::testing::internal::AlwaysTrue()) { \
1478 bool gtest_caught_any = false; \
1479 try { \
1480 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1481 } \
1482 catch (...) { \
1483 gtest_caught_any = true; \
1484 } \
1485 if (!gtest_caught_any) { \
1486 goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1487 } \
1488 } else \
1489 GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1490 fail("Expected: " #statement " throws an exception.\n" \
1491 " Actual: it doesn't.")
1492
1493
1494// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1495// either a boolean expression or an AssertionResult. text is a textual
1496// representation of expression as it was passed into the EXPECT_TRUE.
1497#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1498 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1499 if (const ::testing::AssertionResult gtest_ar_ = \
1500 ::testing::AssertionResult(expression)) \
1501 ; \
1502 else \
1503 fail(::testing::internal::GetBoolAssertionFailureMessage(\
1504 gtest_ar_, text, #actual, #expected).c_str())
1505
1506#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1507 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1508 if (::testing::internal::AlwaysTrue()) { \
1509 ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1510 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1511 if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1512 goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1513 } \
1514 } else \
1515 GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1516 fail("Expected: " #statement " doesn't generate new fatal " \
1517 "failures in the current thread.\n" \
1518 " Actual: it does.")
1519
1520// Expands to the name of the class that implements the given test.
1521#define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1522 test_suite_name##_##test_name##_Test
1523
1524// Helper macro for defining tests.
1525#define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \
1526 static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1, \
1527 "test_suite_name must not be empty"); \
1528 static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1, \
1529 "test_name must not be empty"); \
1530 class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1531 : public parent_class { \
1532 public: \
1533 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default; \
1534 ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \
1535 GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name, \
1536 test_name)); \
1537 GTEST_DISALLOW_MOVE_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name, \
1538 test_name)); \
1539 \
1540 private: \
1541 void TestBody() override; \
1542 static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \
1543 }; \
1544 \
1545 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \
1546 test_name)::test_info_ = \
1547 ::testing::internal::MakeAndRegisterTestInfo( \
1548 #test_suite_name, #test_name, nullptr, nullptr, \
1549 ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
1550 ::testing::internal::SuiteApiResolver< \
1551 parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \
1552 ::testing::internal::SuiteApiResolver< \
1553 parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \
1554 new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \
1555 test_suite_name, test_name)>); \
1556 void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1557
1558#endif // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1559

source code of flutter_engine/third_party/googletest/googletest/include/gtest/internal/gtest-internal.h