1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkScalar_DEFINED |
9 | #define SkScalar_DEFINED |
10 | |
11 | #include "include/private/base/SkAssert.h" |
12 | #include "include/private/base/SkFloatingPoint.h" |
13 | |
14 | typedef float SkScalar; |
15 | |
16 | #define SK_Scalar1 1.0f |
17 | #define SK_ScalarHalf 0.5f |
18 | #define SK_ScalarSqrt2 SK_FloatSqrt2 |
19 | #define SK_ScalarPI SK_FloatPI |
20 | #define SK_ScalarTanPIOver8 0.414213562f |
21 | #define SK_ScalarRoot2Over2 0.707106781f |
22 | #define SK_ScalarMax 3.402823466e+38f |
23 | #define SK_ScalarMin (-SK_ScalarMax) |
24 | #define SK_ScalarInfinity SK_FloatInfinity |
25 | #define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity |
26 | #define SK_ScalarNaN SK_FloatNaN |
27 | |
28 | #define SkScalarFloorToScalar(x) sk_float_floor(x) |
29 | #define SkScalarCeilToScalar(x) sk_float_ceil(x) |
30 | #define SkScalarRoundToScalar(x) sk_float_round(x) |
31 | #define SkScalarTruncToScalar(x) sk_float_trunc(x) |
32 | |
33 | #define SkScalarFloorToInt(x) sk_float_floor2int(x) |
34 | #define SkScalarCeilToInt(x) sk_float_ceil2int(x) |
35 | #define SkScalarRoundToInt(x) sk_float_round2int(x) |
36 | |
37 | #define SkScalarAbs(x) sk_float_abs(x) |
38 | #define SkScalarCopySign(x, y) sk_float_copysign(x, y) |
39 | #define SkScalarMod(x, y) sk_float_mod(x,y) |
40 | #define SkScalarSqrt(x) sk_float_sqrt(x) |
41 | #define SkScalarPow(b, e) sk_float_pow(b, e) |
42 | |
43 | #define SkScalarSin(radians) (float)sk_float_sin(radians) |
44 | #define SkScalarCos(radians) (float)sk_float_cos(radians) |
45 | #define SkScalarTan(radians) (float)sk_float_tan(radians) |
46 | #define SkScalarASin(val) (float)sk_float_asin(val) |
47 | #define SkScalarACos(val) (float)sk_float_acos(val) |
48 | #define SkScalarATan2(y, x) (float)sk_float_atan2(y,x) |
49 | #define SkScalarExp(x) (float)sk_float_exp(x) |
50 | #define SkScalarLog(x) (float)sk_float_log(x) |
51 | #define SkScalarLog2(x) (float)sk_float_log2(x) |
52 | |
53 | ////////////////////////////////////////////////////////////////////////////////////////////////// |
54 | |
55 | #define SkIntToScalar(x) static_cast<SkScalar>(x) |
56 | #define SkIntToFloat(x) static_cast<float>(x) |
57 | #define SkScalarTruncToInt(x) sk_float_saturate2int(x) |
58 | |
59 | #define SkScalarToFloat(x) static_cast<float>(x) |
60 | #define SkFloatToScalar(x) static_cast<SkScalar>(x) |
61 | #define SkScalarToDouble(x) static_cast<double>(x) |
62 | #define SkDoubleToScalar(x) sk_double_to_float(x) |
63 | |
64 | static inline bool SkScalarIsNaN(SkScalar x) { return x != x; } |
65 | |
66 | /** Returns true if x is not NaN and not infinite |
67 | */ |
68 | static inline bool SkScalarIsFinite(SkScalar x) { return sk_float_isfinite(x); } |
69 | |
70 | static inline bool SkScalarsAreFinite(SkScalar a, SkScalar b) { |
71 | return sk_floats_are_finite(a, b); |
72 | } |
73 | |
74 | static inline bool SkScalarsAreFinite(const SkScalar array[], int count) { |
75 | return sk_floats_are_finite(array, count); |
76 | } |
77 | |
78 | /** Returns the fractional part of the scalar. */ |
79 | static inline SkScalar SkScalarFraction(SkScalar x) { |
80 | return x - SkScalarTruncToScalar(x); |
81 | } |
82 | |
83 | static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; } |
84 | |
85 | #define SkScalarInvert(x) (SK_Scalar1 / (x)) |
86 | #define SkScalarAve(a, b) (((a) + (b)) * SK_ScalarHalf) |
87 | #define SkScalarHalf(a) ((a) * SK_ScalarHalf) |
88 | |
89 | #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180)) |
90 | #define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI)) |
91 | |
92 | static inline bool SkScalarIsInt(SkScalar x) { |
93 | return x == SkScalarFloorToScalar(x); |
94 | } |
95 | |
96 | /** |
97 | * Returns -1 || 0 || 1 depending on the sign of value: |
98 | * -1 if x < 0 |
99 | * 0 if x == 0 |
100 | * 1 if x > 0 |
101 | */ |
102 | static inline int SkScalarSignAsInt(SkScalar x) { |
103 | return x < 0 ? -1 : (x > 0); |
104 | } |
105 | |
106 | // Scalar result version of above |
107 | static inline SkScalar SkScalarSignAsScalar(SkScalar x) { |
108 | return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0); |
109 | } |
110 | |
111 | #define SK_ScalarNearlyZero (SK_Scalar1 / (1 << 12)) |
112 | |
113 | static inline bool SkScalarNearlyZero(SkScalar x, |
114 | SkScalar tolerance = SK_ScalarNearlyZero) { |
115 | SkASSERT(tolerance >= 0); |
116 | return SkScalarAbs(x) <= tolerance; |
117 | } |
118 | |
119 | static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y, |
120 | SkScalar tolerance = SK_ScalarNearlyZero) { |
121 | SkASSERT(tolerance >= 0); |
122 | return SkScalarAbs(x-y) <= tolerance; |
123 | } |
124 | |
125 | #define SK_ScalarSinCosNearlyZero (SK_Scalar1 / (1 << 16)) |
126 | |
127 | static inline float SkScalarSinSnapToZero(SkScalar radians) { |
128 | float v = SkScalarSin(radians); |
129 | return SkScalarNearlyZero(x: v, SK_ScalarSinCosNearlyZero) ? 0.0f : v; |
130 | } |
131 | |
132 | static inline float SkScalarCosSnapToZero(SkScalar radians) { |
133 | float v = SkScalarCos(radians); |
134 | return SkScalarNearlyZero(x: v, SK_ScalarSinCosNearlyZero) ? 0.0f : v; |
135 | } |
136 | |
137 | /** Linearly interpolate between A and B, based on t. |
138 | If t is 0, return A |
139 | If t is 1, return B |
140 | else interpolate. |
141 | t must be [0..SK_Scalar1] |
142 | */ |
143 | static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) { |
144 | SkASSERT(t >= 0 && t <= SK_Scalar1); |
145 | return A + (B - A) * t; |
146 | } |
147 | |
148 | /** Interpolate along the function described by (keys[length], values[length]) |
149 | for the passed searchKey. SearchKeys outside the range keys[0]-keys[Length] |
150 | clamp to the min or max value. This function assumes the number of pairs |
151 | (length) will be small and a linear search is used. |
152 | |
153 | Repeated keys are allowed for discontinuous functions (so long as keys is |
154 | monotonically increasing). If key is the value of a repeated scalar in |
155 | keys the first one will be used. |
156 | */ |
157 | SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[], |
158 | const SkScalar values[], int length); |
159 | |
160 | /* |
161 | * Helper to compare an array of scalars. |
162 | */ |
163 | static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) { |
164 | SkASSERT(n >= 0); |
165 | for (int i = 0; i < n; ++i) { |
166 | if (a[i] != b[i]) { |
167 | return false; |
168 | } |
169 | } |
170 | return true; |
171 | } |
172 | |
173 | #endif |
174 | |