1/* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000-2023 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20/* This file contains the "reorder blocks" pass, which changes the control
21 flow of a function to encounter fewer branches; the "partition blocks"
22 pass, which divides the basic blocks into "hot" and "cold" partitions,
23 which are kept separate; and the "duplicate computed gotos" pass, which
24 duplicates blocks ending in an indirect jump.
25
26 There are two algorithms for "reorder blocks": the "simple" algorithm,
27 which just rearranges blocks, trying to minimize the number of executed
28 unconditional branches; and the "software trace cache" algorithm, which
29 also copies code, and in general tries a lot harder to have long linear
30 pieces of machine code executed. This algorithm is described next. */
31
32/* This (greedy) algorithm constructs traces in several rounds.
33 The construction starts from "seeds". The seed for the first round
34 is the entry point of the function. When there are more than one seed,
35 the one with the lowest key in the heap is selected first (see bb_to_key).
36 Then the algorithm repeatedly adds the most probable successor to the end
37 of a trace. Finally it connects the traces.
38
39 There are two parameters: Branch Threshold and Exec Threshold.
40 If the probability of an edge to a successor of the current basic block is
41 lower than Branch Threshold or its count is lower than Exec Threshold,
42 then the successor will be the seed in one of the next rounds.
43 Each round has these parameters lower than the previous one.
44 The last round has to have these parameters set to zero so that the
45 remaining blocks are picked up.
46
47 The algorithm selects the most probable successor from all unvisited
48 successors and successors that have been added to this trace.
49 The other successors (that has not been "sent" to the next round) will be
50 other seeds for this round and the secondary traces will start from them.
51 If the successor has not been visited in this trace, it is added to the
52 trace (however, there is some heuristic for simple branches).
53 If the successor has been visited in this trace, a loop has been found.
54 If the loop has many iterations, the loop is rotated so that the source
55 block of the most probable edge going out of the loop is the last block
56 of the trace.
57 If the loop has few iterations and there is no edge from the last block of
58 the loop going out of the loop, the loop header is duplicated.
59
60 When connecting traces, the algorithm first checks whether there is an edge
61 from the last block of a trace to the first block of another trace.
62 When there are still some unconnected traces it checks whether there exists
63 a basic block BB such that BB is a successor of the last block of a trace
64 and BB is a predecessor of the first block of another trace. In this case,
65 BB is duplicated, added at the end of the first trace and the traces are
66 connected through it.
67 The rest of traces are simply connected so there will be a jump to the
68 beginning of the rest of traces.
69
70 The above description is for the full algorithm, which is used when the
71 function is optimized for speed. When the function is optimized for size,
72 in order to reduce long jumps and connect more fallthru edges, the
73 algorithm is modified as follows:
74 (1) Break long traces to short ones. A trace is broken at a block that has
75 multiple predecessors/ successors during trace discovery. When connecting
76 traces, only connect Trace n with Trace n + 1. This change reduces most
77 long jumps compared with the above algorithm.
78 (2) Ignore the edge probability and count for fallthru edges.
79 (3) Keep the original order of blocks when there is no chance to fall
80 through. We rely on the results of cfg_cleanup.
81
82 To implement the change for code size optimization, block's index is
83 selected as the key and all traces are found in one round.
84
85 References:
86
87 "Software Trace Cache"
88 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
89 http://citeseer.nj.nec.com/15361.html
90
91*/
92
93#include "config.h"
94#include "system.h"
95#include "coretypes.h"
96#include "backend.h"
97#include "target.h"
98#include "rtl.h"
99#include "tree.h"
100#include "cfghooks.h"
101#include "df.h"
102#include "memmodel.h"
103#include "optabs.h"
104#include "regs.h"
105#include "emit-rtl.h"
106#include "output.h"
107#include "expr.h"
108#include "tree-pass.h"
109#include "cfgrtl.h"
110#include "cfganal.h"
111#include "cfgbuild.h"
112#include "cfgcleanup.h"
113#include "bb-reorder.h"
114#include "except.h"
115#include "alloc-pool.h"
116#include "fibonacci_heap.h"
117#include "stringpool.h"
118#include "attribs.h"
119#include "common/common-target.h"
120
121/* The number of rounds. In most cases there will only be 4 rounds, but
122 when partitioning hot and cold basic blocks into separate sections of
123 the object file there will be an extra round. */
124#define N_ROUNDS 5
125
126struct target_bb_reorder default_target_bb_reorder;
127#if SWITCHABLE_TARGET
128struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
129#endif
130
131#define uncond_jump_length \
132 (this_target_bb_reorder->x_uncond_jump_length)
133
134/* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
135static const int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
136
137/* Exec thresholds in thousandths (per mille) of the count of bb 0. */
138static const int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
139
140/* If edge count is lower than DUPLICATION_THRESHOLD per mille of entry
141 block the edge destination is not duplicated while connecting traces. */
142#define DUPLICATION_THRESHOLD 100
143
144typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
145typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
146
147/* Structure to hold needed information for each basic block. */
148struct bbro_basic_block_data
149{
150 /* Which trace is the bb start of (-1 means it is not a start of any). */
151 int start_of_trace;
152
153 /* Which trace is the bb end of (-1 means it is not an end of any). */
154 int end_of_trace;
155
156 /* Which trace is the bb in? */
157 int in_trace;
158
159 /* Which trace was this bb visited in? */
160 int visited;
161
162 /* Cached maximum frequency of interesting incoming edges.
163 Minus one means not yet computed. */
164 int priority;
165
166 /* Which heap is BB in (if any)? */
167 bb_heap_t *heap;
168
169 /* Which heap node is BB in (if any)? */
170 bb_heap_node_t *node;
171};
172
173/* The current size of the following dynamic array. */
174static int array_size;
175
176/* The array which holds needed information for basic blocks. */
177static bbro_basic_block_data *bbd;
178
179/* To avoid frequent reallocation the size of arrays is greater than needed,
180 the number of elements is (not less than) 1.25 * size_wanted. */
181#define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
182
183/* Free the memory and set the pointer to NULL. */
184#define FREE(P) (gcc_assert (P), free (P), P = 0)
185
186/* Structure for holding information about a trace. */
187struct trace
188{
189 /* First and last basic block of the trace. */
190 basic_block first, last;
191
192 /* The round of the STC creation which this trace was found in. */
193 int round;
194
195 /* The length (i.e. the number of basic blocks) of the trace. */
196 int length;
197};
198
199/* Maximum count of one of the entry blocks. */
200static profile_count max_entry_count;
201
202/* Local function prototypes. */
203static void find_traces_1_round (int, profile_count, struct trace *, int *,
204 int, bb_heap_t **, int);
205static basic_block copy_bb (basic_block, edge, basic_block, int);
206static long bb_to_key (basic_block);
207static bool better_edge_p (const_basic_block, const_edge, profile_probability,
208 profile_count, profile_probability, profile_count,
209 const_edge);
210static bool copy_bb_p (const_basic_block, int);
211
212/* Return the trace number in which BB was visited. */
213
214static int
215bb_visited_trace (const_basic_block bb)
216{
217 gcc_assert (bb->index < array_size);
218 return bbd[bb->index].visited;
219}
220
221/* This function marks BB that it was visited in trace number TRACE. */
222
223static void
224mark_bb_visited (basic_block bb, int trace)
225{
226 bbd[bb->index].visited = trace;
227 if (bbd[bb->index].heap)
228 {
229 bbd[bb->index].heap->delete_node (node: bbd[bb->index].node);
230 bbd[bb->index].heap = NULL;
231 bbd[bb->index].node = NULL;
232 }
233}
234
235/* Check to see if bb should be pushed into the next round of trace
236 collections or not. Reasons for pushing the block forward are 1).
237 If the block is cold, we are doing partitioning, and there will be
238 another round (cold partition blocks are not supposed to be
239 collected into traces until the very last round); or 2). There will
240 be another round, and the basic block is not "hot enough" for the
241 current round of trace collection. */
242
243static bool
244push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
245 profile_count count_th)
246{
247 bool there_exists_another_round;
248 bool block_not_hot_enough;
249
250 there_exists_another_round = round < number_of_rounds - 1;
251
252 block_not_hot_enough = (bb->count < count_th
253 || probably_never_executed_bb_p (cfun, bb));
254
255 if (there_exists_another_round
256 && block_not_hot_enough)
257 return true;
258 else
259 return false;
260}
261
262/* Find the traces for Software Trace Cache. Chain each trace through
263 RBI()->next. Store the number of traces to N_TRACES and description of
264 traces to TRACES. */
265
266static void
267find_traces (int *n_traces, struct trace *traces)
268{
269 int i;
270 int number_of_rounds;
271 edge e;
272 edge_iterator ei;
273 bb_heap_t *heap = new bb_heap_t (LONG_MIN);
274
275 /* Add one extra round of trace collection when partitioning hot/cold
276 basic blocks into separate sections. The last round is for all the
277 cold blocks (and ONLY the cold blocks). */
278
279 number_of_rounds = N_ROUNDS - 1;
280
281 /* Insert entry points of function into heap. */
282 max_entry_count = profile_count::zero ();
283 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
284 {
285 bbd[e->dest->index].heap = heap;
286 bbd[e->dest->index].node = heap->insert (key: bb_to_key (e->dest), data: e->dest);
287 if (e->dest->count > max_entry_count)
288 max_entry_count = e->dest->count;
289 }
290
291 /* Find the traces. */
292 for (i = 0; i < number_of_rounds; i++)
293 {
294 profile_count count_threshold;
295
296 if (dump_file)
297 fprintf (stream: dump_file, format: "STC - round %d\n", i + 1);
298
299 count_threshold = max_entry_count.apply_scale (num: exec_threshold[i], den: 1000);
300
301 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
302 count_threshold, traces, n_traces, i, &heap,
303 number_of_rounds);
304 }
305 delete heap;
306
307 if (dump_file)
308 {
309 for (i = 0; i < *n_traces; i++)
310 {
311 basic_block bb;
312 fprintf (stream: dump_file, format: "Trace %d (round %d): ", i + 1,
313 traces[i].round + 1);
314 for (bb = traces[i].first;
315 bb != traces[i].last;
316 bb = (basic_block) bb->aux)
317 {
318 fprintf (stream: dump_file, format: "%d [", bb->index);
319 bb->count.dump (f: dump_file);
320 fprintf (stream: dump_file, format: "] ");
321 }
322 fprintf (stream: dump_file, format: "%d [", bb->index);
323 bb->count.dump (f: dump_file);
324 fprintf (stream: dump_file, format: "]\n");
325 }
326 fflush (stream: dump_file);
327 }
328}
329
330/* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
331 (with sequential number TRACE_N). */
332
333static basic_block
334rotate_loop (edge back_edge, struct trace *trace, int trace_n)
335{
336 basic_block bb;
337
338 /* Information about the best end (end after rotation) of the loop. */
339 basic_block best_bb = NULL;
340 edge best_edge = NULL;
341 profile_count best_count = profile_count::uninitialized ();
342 /* The best edge is preferred when its destination is not visited yet
343 or is a start block of some trace. */
344 bool is_preferred = false;
345
346 /* Find the most frequent edge that goes out from current trace. */
347 bb = back_edge->dest;
348 do
349 {
350 edge e;
351 edge_iterator ei;
352
353 FOR_EACH_EDGE (e, ei, bb->succs)
354 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
355 && bb_visited_trace (bb: e->dest) != trace_n
356 && (e->flags & EDGE_CAN_FALLTHRU)
357 && !(e->flags & EDGE_COMPLEX))
358 {
359 if (is_preferred)
360 {
361 /* The best edge is preferred. */
362 if (!bb_visited_trace (bb: e->dest)
363 || bbd[e->dest->index].start_of_trace >= 0)
364 {
365 /* The current edge E is also preferred. */
366 if (e->count () > best_count)
367 {
368 best_count = e->count ();
369 best_edge = e;
370 best_bb = bb;
371 }
372 }
373 }
374 else
375 {
376 if (!bb_visited_trace (bb: e->dest)
377 || bbd[e->dest->index].start_of_trace >= 0)
378 {
379 /* The current edge E is preferred. */
380 is_preferred = true;
381 best_count = e->count ();
382 best_edge = e;
383 best_bb = bb;
384 }
385 else
386 {
387 if (!best_edge || e->count () > best_count)
388 {
389 best_count = e->count ();
390 best_edge = e;
391 best_bb = bb;
392 }
393 }
394 }
395 }
396 bb = (basic_block) bb->aux;
397 }
398 while (bb != back_edge->dest);
399
400 if (best_bb)
401 {
402 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
403 the trace. */
404 if (back_edge->dest == trace->first)
405 {
406 trace->first = (basic_block) best_bb->aux;
407 }
408 else
409 {
410 basic_block prev_bb;
411
412 for (prev_bb = trace->first;
413 prev_bb->aux != back_edge->dest;
414 prev_bb = (basic_block) prev_bb->aux)
415 ;
416 prev_bb->aux = best_bb->aux;
417
418 /* Try to get rid of uncond jump to cond jump. */
419 if (single_succ_p (bb: prev_bb))
420 {
421 basic_block header = single_succ (bb: prev_bb);
422
423 /* Duplicate HEADER if it is a small block containing cond jump
424 in the end. */
425 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
426 && !CROSSING_JUMP_P (BB_END (header)))
427 copy_bb (header, single_succ_edge (bb: prev_bb), prev_bb, trace_n);
428 }
429 }
430 }
431 else
432 {
433 /* We have not found suitable loop tail so do no rotation. */
434 best_bb = back_edge->src;
435 }
436 best_bb->aux = NULL;
437 return best_bb;
438}
439
440/* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
441 not include basic blocks whose probability is lower than BRANCH_TH or whose
442 count is lower than EXEC_TH into traces (or whose count is lower than
443 COUNT_TH). Store the new traces into TRACES and modify the number of
444 traces *N_TRACES. Set the round (which the trace belongs to) to ROUND.
445 The function expects starting basic blocks to be in *HEAP and will delete
446 *HEAP and store starting points for the next round into new *HEAP. */
447
448static void
449find_traces_1_round (int branch_th, profile_count count_th,
450 struct trace *traces, int *n_traces, int round,
451 bb_heap_t **heap, int number_of_rounds)
452{
453 /* Heap for discarded basic blocks which are possible starting points for
454 the next round. */
455 bb_heap_t *new_heap = new bb_heap_t (LONG_MIN);
456 bool for_size = optimize_function_for_size_p (cfun);
457
458 while (!(*heap)->empty ())
459 {
460 basic_block bb;
461 struct trace *trace;
462 edge best_edge, e;
463 long key;
464 edge_iterator ei;
465
466 bb = (*heap)->extract_min ();
467 bbd[bb->index].heap = NULL;
468 bbd[bb->index].node = NULL;
469
470 if (dump_file)
471 fprintf (stream: dump_file, format: "Getting bb %d\n", bb->index);
472
473 /* If the BB's count is too low, send BB to the next round. When
474 partitioning hot/cold blocks into separate sections, make sure all
475 the cold blocks (and ONLY the cold blocks) go into the (extra) final
476 round. When optimizing for size, do not push to next round. */
477
478 if (!for_size
479 && push_to_next_round_p (bb, round, number_of_rounds,
480 count_th))
481 {
482 int key = bb_to_key (bb);
483 bbd[bb->index].heap = new_heap;
484 bbd[bb->index].node = new_heap->insert (key, data: bb);
485
486 if (dump_file)
487 fprintf (stream: dump_file,
488 format: " Possible start point of next round: %d (key: %d)\n",
489 bb->index, key);
490 continue;
491 }
492
493 trace = traces + *n_traces;
494 trace->first = bb;
495 trace->round = round;
496 trace->length = 0;
497 bbd[bb->index].in_trace = *n_traces;
498 (*n_traces)++;
499
500 do
501 {
502 bool ends_in_call;
503
504 /* The probability and count of the best edge. */
505 profile_probability best_prob = profile_probability::uninitialized ();
506 profile_count best_count = profile_count::uninitialized ();
507
508 best_edge = NULL;
509 mark_bb_visited (bb, trace: *n_traces);
510 trace->length++;
511
512 if (dump_file)
513 fprintf (stream: dump_file, format: "Basic block %d was visited in trace %d\n",
514 bb->index, *n_traces);
515
516 ends_in_call = block_ends_with_call_p (bb);
517
518 /* Select the successor that will be placed after BB. */
519 FOR_EACH_EDGE (e, ei, bb->succs)
520 {
521 gcc_assert (!(e->flags & EDGE_FAKE));
522
523 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
524 continue;
525
526 if (bb_visited_trace (bb: e->dest)
527 && bb_visited_trace (bb: e->dest) != *n_traces)
528 continue;
529
530 /* If partitioning hot/cold basic blocks, don't consider edges
531 that cross section boundaries. */
532 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
533 continue;
534
535 profile_probability prob = e->probability;
536 profile_count count = e->dest->count;
537
538 /* The only sensible preference for a call instruction is the
539 fallthru edge. Don't bother selecting anything else. */
540 if (ends_in_call)
541 {
542 if (e->flags & EDGE_CAN_FALLTHRU)
543 {
544 best_edge = e;
545 best_prob = prob;
546 best_count = count;
547 }
548 continue;
549 }
550
551 /* Edge that cannot be fallthru or improbable or infrequent
552 successor (i.e. it is unsuitable successor). When optimizing
553 for size, ignore the probability and count. */
554 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
555 || !prob.initialized_p ()
556 || ((prob.to_reg_br_prob_base () < branch_th
557 || e->count () < count_th) && (!for_size)))
558 continue;
559
560 if (better_edge_p (bb, e, prob, count, best_prob, best_count,
561 best_edge))
562 {
563 best_edge = e;
564 best_prob = prob;
565 best_count = count;
566 }
567 }
568
569 /* If the best destination has multiple predecessors and can be
570 duplicated cheaper than a jump, don't allow it to be added to
571 a trace; we'll duplicate it when connecting the traces later.
572 However, we need to check that this duplication wouldn't leave
573 the best destination with only crossing predecessors, because
574 this would change its effective partition from hot to cold. */
575 if (best_edge
576 && EDGE_COUNT (best_edge->dest->preds) >= 2
577 && copy_bb_p (best_edge->dest, 0))
578 {
579 bool only_crossing_preds = true;
580 edge e;
581 edge_iterator ei;
582 FOR_EACH_EDGE (e, ei, best_edge->dest->preds)
583 if (e != best_edge && !(e->flags & EDGE_CROSSING))
584 {
585 only_crossing_preds = false;
586 break;
587 }
588 if (!only_crossing_preds)
589 best_edge = NULL;
590 }
591
592 /* If the best destination has multiple successors or predecessors,
593 don't allow it to be added when optimizing for size. This makes
594 sure predecessors with smaller index are handled before the best
595 destination. It breaks long trace and reduces long jumps.
596
597 Take if-then-else as an example.
598 A
599 / \
600 B C
601 \ /
602 D
603 If we do not remove the best edge B->D/C->D, the final order might
604 be A B D ... C. C is at the end of the program. If D's successors
605 and D are complicated, might need long jumps for A->C and C->D.
606 Similar issue for order: A C D ... B.
607
608 After removing the best edge, the final result will be ABCD/ ACBD.
609 It does not add jump compared with the previous order. But it
610 reduces the possibility of long jumps. */
611 if (best_edge && for_size
612 && (EDGE_COUNT (best_edge->dest->succs) > 1
613 || EDGE_COUNT (best_edge->dest->preds) > 1))
614 best_edge = NULL;
615
616 /* Add all non-selected successors to the heaps. */
617 FOR_EACH_EDGE (e, ei, bb->succs)
618 {
619 if (e == best_edge
620 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
621 || bb_visited_trace (bb: e->dest))
622 continue;
623
624 key = bb_to_key (e->dest);
625
626 if (bbd[e->dest->index].heap)
627 {
628 /* E->DEST is already in some heap. */
629 if (key != bbd[e->dest->index].node->get_key ())
630 {
631 if (dump_file)
632 {
633 fprintf (stream: dump_file,
634 format: "Changing key for bb %d from %ld to %ld.\n",
635 e->dest->index,
636 (long) bbd[e->dest->index].node->get_key (),
637 key);
638 }
639 bbd[e->dest->index].heap->replace_key
640 (node: bbd[e->dest->index].node, key);
641 }
642 }
643 else
644 {
645 bb_heap_t *which_heap = *heap;
646
647 profile_probability prob = e->probability;
648
649 if (!(e->flags & EDGE_CAN_FALLTHRU)
650 || (e->flags & EDGE_COMPLEX)
651 || !prob.initialized_p ()
652 || prob.to_reg_br_prob_base () < branch_th
653 || e->count () < count_th)
654 {
655 /* When partitioning hot/cold basic blocks, make sure
656 the cold blocks (and only the cold blocks) all get
657 pushed to the last round of trace collection. When
658 optimizing for size, do not push to next round. */
659
660 if (!for_size && push_to_next_round_p (bb: e->dest, round,
661 number_of_rounds,
662 count_th))
663 which_heap = new_heap;
664 }
665
666 bbd[e->dest->index].heap = which_heap;
667 bbd[e->dest->index].node = which_heap->insert (key, data: e->dest);
668
669 if (dump_file)
670 {
671 fprintf (stream: dump_file,
672 format: " Possible start of %s round: %d (key: %ld)\n",
673 (which_heap == new_heap) ? "next" : "this",
674 e->dest->index, (long) key);
675 }
676
677 }
678 }
679
680 if (best_edge) /* Suitable successor was found. */
681 {
682 if (bb_visited_trace (bb: best_edge->dest) == *n_traces)
683 {
684 /* We do nothing with one basic block loops. */
685 if (best_edge->dest != bb)
686 {
687 if (best_edge->count ()
688 > best_edge->dest->count.apply_scale (num: 4, den: 5))
689 {
690 /* The loop has at least 4 iterations. If the loop
691 header is not the first block of the function
692 we can rotate the loop. */
693
694 if (best_edge->dest
695 != ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
696 {
697 if (dump_file)
698 {
699 fprintf (stream: dump_file,
700 format: "Rotating loop %d - %d\n",
701 best_edge->dest->index, bb->index);
702 }
703 bb->aux = best_edge->dest;
704 bbd[best_edge->dest->index].in_trace =
705 (*n_traces) - 1;
706 bb = rotate_loop (back_edge: best_edge, trace, trace_n: *n_traces);
707 }
708 }
709 else
710 {
711 /* The loop has less than 4 iterations. */
712
713 if (single_succ_p (bb)
714 && copy_bb_p (best_edge->dest,
715 optimize_edge_for_speed_p
716 (best_edge)))
717 {
718 bb = copy_bb (best_edge->dest, best_edge, bb,
719 *n_traces);
720 trace->length++;
721 }
722 }
723 }
724
725 /* Terminate the trace. */
726 break;
727 }
728 else
729 {
730 /* Check for a situation
731
732 A
733 /|
734 B |
735 \|
736 C
737
738 where
739 AB->count () + BC->count () >= AC->count ().
740 (i.e. 2 * B->count >= AC->count )
741 Best ordering is then A B C.
742
743 When optimizing for size, A B C is always the best order.
744
745 This situation is created for example by:
746
747 if (A) B;
748 C;
749
750 */
751
752 FOR_EACH_EDGE (e, ei, bb->succs)
753 if (e != best_edge
754 && (e->flags & EDGE_CAN_FALLTHRU)
755 && !(e->flags & EDGE_COMPLEX)
756 && !bb_visited_trace (bb: e->dest)
757 && single_pred_p (bb: e->dest)
758 && !(e->flags & EDGE_CROSSING)
759 && single_succ_p (bb: e->dest)
760 && (single_succ_edge (bb: e->dest)->flags
761 & EDGE_CAN_FALLTHRU)
762 && !(single_succ_edge (bb: e->dest)->flags & EDGE_COMPLEX)
763 && single_succ (bb: e->dest) == best_edge->dest
764 && (e->dest->count * 2
765 >= best_edge->count () || for_size))
766 {
767 best_edge = e;
768 if (dump_file)
769 fprintf (stream: dump_file, format: "Selecting BB %d\n",
770 best_edge->dest->index);
771 break;
772 }
773
774 bb->aux = best_edge->dest;
775 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
776 bb = best_edge->dest;
777 }
778 }
779 }
780 while (best_edge);
781 trace->last = bb;
782 bbd[trace->first->index].start_of_trace = *n_traces - 1;
783 if (bbd[trace->last->index].end_of_trace != *n_traces - 1)
784 {
785 bbd[trace->last->index].end_of_trace = *n_traces - 1;
786 /* Update the cached maximum frequency for interesting predecessor
787 edges for successors of the new trace end. */
788 FOR_EACH_EDGE (e, ei, trace->last->succs)
789 if (EDGE_FREQUENCY (e) > bbd[e->dest->index].priority)
790 bbd[e->dest->index].priority = EDGE_FREQUENCY (e);
791 }
792
793 /* The trace is terminated so we have to recount the keys in heap
794 (some block can have a lower key because now one of its predecessors
795 is an end of the trace). */
796 FOR_EACH_EDGE (e, ei, bb->succs)
797 {
798 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
799 || bb_visited_trace (bb: e->dest))
800 continue;
801
802 if (bbd[e->dest->index].heap)
803 {
804 key = bb_to_key (e->dest);
805 if (key != bbd[e->dest->index].node->get_key ())
806 {
807 if (dump_file)
808 {
809 fprintf (stream: dump_file,
810 format: "Changing key for bb %d from %ld to %ld.\n",
811 e->dest->index,
812 (long) bbd[e->dest->index].node->get_key (), key);
813 }
814 bbd[e->dest->index].heap->replace_key
815 (node: bbd[e->dest->index].node, key);
816 }
817 }
818 }
819 }
820
821 delete (*heap);
822
823 /* "Return" the new heap. */
824 *heap = new_heap;
825}
826
827/* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
828 it to trace after BB, mark OLD_BB visited and update pass' data structures
829 (TRACE is a number of trace which OLD_BB is duplicated to). */
830
831static basic_block
832copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
833{
834 basic_block new_bb;
835
836 new_bb = duplicate_block (old_bb, e, bb);
837 BB_COPY_PARTITION (new_bb, old_bb);
838
839 gcc_assert (e->dest == new_bb);
840
841 if (dump_file)
842 fprintf (stream: dump_file,
843 format: "Duplicated bb %d (created bb %d)\n",
844 old_bb->index, new_bb->index);
845
846 if (new_bb->index >= array_size
847 || last_basic_block_for_fn (cfun) > array_size)
848 {
849 int i;
850 int new_size;
851
852 new_size = MAX (last_basic_block_for_fn (cfun), new_bb->index + 1);
853 new_size = GET_ARRAY_SIZE (new_size);
854 bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
855 for (i = array_size; i < new_size; i++)
856 {
857 bbd[i].start_of_trace = -1;
858 bbd[i].end_of_trace = -1;
859 bbd[i].in_trace = -1;
860 bbd[i].visited = 0;
861 bbd[i].priority = -1;
862 bbd[i].heap = NULL;
863 bbd[i].node = NULL;
864 }
865 array_size = new_size;
866
867 if (dump_file)
868 {
869 fprintf (stream: dump_file,
870 format: "Growing the dynamic array to %d elements.\n",
871 array_size);
872 }
873 }
874
875 gcc_assert (!bb_visited_trace (e->dest));
876 mark_bb_visited (bb: new_bb, trace);
877 new_bb->aux = bb->aux;
878 bb->aux = new_bb;
879
880 bbd[new_bb->index].in_trace = trace;
881
882 return new_bb;
883}
884
885/* Compute and return the key (for the heap) of the basic block BB. */
886
887static long
888bb_to_key (basic_block bb)
889{
890 edge e;
891 edge_iterator ei;
892
893 /* Use index as key to align with its original order. */
894 if (optimize_function_for_size_p (cfun))
895 return bb->index;
896
897 /* Do not start in probably never executed blocks. */
898
899 if (BB_PARTITION (bb) == BB_COLD_PARTITION
900 || probably_never_executed_bb_p (cfun, bb))
901 return BB_FREQ_MAX;
902
903 /* Prefer blocks whose predecessor is an end of some trace
904 or whose predecessor edge is EDGE_DFS_BACK. */
905 int priority = bbd[bb->index].priority;
906 if (priority == -1)
907 {
908 priority = 0;
909 FOR_EACH_EDGE (e, ei, bb->preds)
910 {
911 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
912 && bbd[e->src->index].end_of_trace >= 0)
913 || (e->flags & EDGE_DFS_BACK))
914 {
915 int edge_freq = EDGE_FREQUENCY (e);
916
917 if (edge_freq > priority)
918 priority = edge_freq;
919 }
920 }
921 bbd[bb->index].priority = priority;
922 }
923
924 if (priority)
925 /* The block with priority should have significantly lower key. */
926 return -(100 * BB_FREQ_MAX + 100 * priority + bb->count.to_frequency (cfun));
927
928 return -bb->count.to_frequency (cfun);
929}
930
931/* Return true when the edge E from basic block BB is better than the temporary
932 best edge (details are in function). The probability of edge E is PROB. The
933 count of the successor is COUNT. The current best probability is
934 BEST_PROB, the best count is BEST_COUNT.
935 The edge is considered to be equivalent when PROB does not differ much from
936 BEST_PROB; similarly for count. */
937
938static bool
939better_edge_p (const_basic_block bb, const_edge e, profile_probability prob,
940 profile_count count, profile_probability best_prob,
941 profile_count best_count, const_edge cur_best_edge)
942{
943 bool is_better_edge;
944
945 /* The BEST_* values do not have to be best, but can be a bit smaller than
946 maximum values. */
947 profile_probability diff_prob = best_prob / 10;
948
949 /* The smaller one is better to keep the original order. */
950 if (optimize_function_for_size_p (cfun))
951 return !cur_best_edge
952 || cur_best_edge->dest->index > e->dest->index;
953
954 /* Those edges are so expensive that continuing a trace is not useful
955 performance wise. */
956 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
957 return false;
958
959 if (prob > best_prob + diff_prob
960 || (!best_prob.initialized_p ()
961 && prob > profile_probability::guessed_never ()))
962 /* The edge has higher probability than the temporary best edge. */
963 is_better_edge = true;
964 else if (prob < best_prob - diff_prob)
965 /* The edge has lower probability than the temporary best edge. */
966 is_better_edge = false;
967 else
968 {
969 profile_count diff_count = best_count / 10;
970 if (count < best_count - diff_count
971 || (!best_count.initialized_p ()
972 && count.nonzero_p ()))
973 /* The edge and the temporary best edge have almost equivalent
974 probabilities. The higher countuency of a successor now means
975 that there is another edge going into that successor.
976 This successor has lower countuency so it is better. */
977 is_better_edge = true;
978 else if (count > best_count + diff_count)
979 /* This successor has higher countuency so it is worse. */
980 is_better_edge = false;
981 else if (e->dest->prev_bb == bb)
982 /* The edges have equivalent probabilities and the successors
983 have equivalent frequencies. Select the previous successor. */
984 is_better_edge = true;
985 else
986 is_better_edge = false;
987 }
988
989 return is_better_edge;
990}
991
992/* Return true when the edge E is better than the temporary best edge
993 CUR_BEST_EDGE. If SRC_INDEX_P is true, the function compares the src bb of
994 E and CUR_BEST_EDGE; otherwise it will compare the dest bb.
995 BEST_LEN is the trace length of src (or dest) bb in CUR_BEST_EDGE.
996 TRACES record the information about traces.
997 When optimizing for size, the edge with smaller index is better.
998 When optimizing for speed, the edge with bigger probability or longer trace
999 is better. */
1000
1001static bool
1002connect_better_edge_p (const_edge e, bool src_index_p, int best_len,
1003 const_edge cur_best_edge, struct trace *traces)
1004{
1005 int e_index;
1006 int b_index;
1007 bool is_better_edge;
1008
1009 if (!cur_best_edge)
1010 return true;
1011
1012 if (optimize_function_for_size_p (cfun))
1013 {
1014 e_index = src_index_p ? e->src->index : e->dest->index;
1015 b_index = src_index_p ? cur_best_edge->src->index
1016 : cur_best_edge->dest->index;
1017 /* The smaller one is better to keep the original order. */
1018 return b_index > e_index;
1019 }
1020
1021 if (src_index_p)
1022 {
1023 e_index = e->src->index;
1024
1025 /* We are looking for predecessor, so probabilities are not that
1026 informative. We do not want to connect A to B because A has
1027 only one successor (probability is 100%) while there is edge
1028 A' to B where probability is 90% but which is much more frequent. */
1029 if (e->count () > cur_best_edge->count ())
1030 /* The edge has higher probability than the temporary best edge. */
1031 is_better_edge = true;
1032 else if (e->count () < cur_best_edge->count ())
1033 /* The edge has lower probability than the temporary best edge. */
1034 is_better_edge = false;
1035 else if (e->probability > cur_best_edge->probability)
1036 /* The edge has higher probability than the temporary best edge. */
1037 is_better_edge = true;
1038 else if (e->probability < cur_best_edge->probability)
1039 /* The edge has lower probability than the temporary best edge. */
1040 is_better_edge = false;
1041 else if (traces[bbd[e_index].end_of_trace].length > best_len)
1042 /* The edge and the temporary best edge have equivalent probabilities.
1043 The edge with longer trace is better. */
1044 is_better_edge = true;
1045 else
1046 is_better_edge = false;
1047 }
1048 else
1049 {
1050 e_index = e->dest->index;
1051
1052 if (e->probability > cur_best_edge->probability)
1053 /* The edge has higher probability than the temporary best edge. */
1054 is_better_edge = true;
1055 else if (e->probability < cur_best_edge->probability)
1056 /* The edge has lower probability than the temporary best edge. */
1057 is_better_edge = false;
1058 else if (traces[bbd[e_index].start_of_trace].length > best_len)
1059 /* The edge and the temporary best edge have equivalent probabilities.
1060 The edge with longer trace is better. */
1061 is_better_edge = true;
1062 else
1063 is_better_edge = false;
1064 }
1065
1066 return is_better_edge;
1067}
1068
1069/* Connect traces in array TRACES, N_TRACES is the count of traces. */
1070
1071static void
1072connect_traces (int n_traces, struct trace *traces)
1073{
1074 int i;
1075 bool *connected;
1076 bool two_passes;
1077 int last_trace;
1078 int current_pass;
1079 int current_partition;
1080 profile_count count_threshold;
1081 bool for_size = optimize_function_for_size_p (cfun);
1082
1083 count_threshold = max_entry_count.apply_scale (DUPLICATION_THRESHOLD, den: 1000);
1084
1085 connected = XCNEWVEC (bool, n_traces);
1086 last_trace = -1;
1087 current_pass = 1;
1088 current_partition = BB_PARTITION (traces[0].first);
1089 two_passes = false;
1090
1091 if (crtl->has_bb_partition)
1092 for (i = 0; i < n_traces && !two_passes; i++)
1093 if (BB_PARTITION (traces[0].first)
1094 != BB_PARTITION (traces[i].first))
1095 two_passes = true;
1096
1097 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
1098 {
1099 int t = i;
1100 int t2;
1101 edge e, best;
1102 int best_len;
1103
1104 if (i >= n_traces)
1105 {
1106 gcc_assert (two_passes && current_pass == 1);
1107 i = 0;
1108 t = i;
1109 current_pass = 2;
1110 if (current_partition == BB_HOT_PARTITION)
1111 current_partition = BB_COLD_PARTITION;
1112 else
1113 current_partition = BB_HOT_PARTITION;
1114 }
1115
1116 if (connected[t])
1117 continue;
1118
1119 if (two_passes
1120 && BB_PARTITION (traces[t].first) != current_partition)
1121 continue;
1122
1123 connected[t] = true;
1124
1125 /* Find the predecessor traces. */
1126 for (t2 = t; t2 > 0;)
1127 {
1128 edge_iterator ei;
1129 best = NULL;
1130 best_len = 0;
1131 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
1132 {
1133 int si = e->src->index;
1134
1135 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1136 && (e->flags & EDGE_CAN_FALLTHRU)
1137 && !(e->flags & EDGE_COMPLEX)
1138 && bbd[si].end_of_trace >= 0
1139 && !connected[bbd[si].end_of_trace]
1140 && (BB_PARTITION (e->src) == current_partition)
1141 && connect_better_edge_p (e, src_index_p: true, best_len, cur_best_edge: best, traces))
1142 {
1143 best = e;
1144 best_len = traces[bbd[si].end_of_trace].length;
1145 }
1146 }
1147 if (best)
1148 {
1149 best->src->aux = best->dest;
1150 t2 = bbd[best->src->index].end_of_trace;
1151 connected[t2] = true;
1152
1153 if (dump_file)
1154 {
1155 fprintf (stream: dump_file, format: "Connection: %d %d\n",
1156 best->src->index, best->dest->index);
1157 }
1158 }
1159 else
1160 break;
1161 }
1162
1163 if (last_trace >= 0)
1164 traces[last_trace].last->aux = traces[t2].first;
1165 last_trace = t;
1166
1167 /* Find the successor traces. */
1168 while (1)
1169 {
1170 /* Find the continuation of the chain. */
1171 edge_iterator ei;
1172 best = NULL;
1173 best_len = 0;
1174 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1175 {
1176 int di = e->dest->index;
1177
1178 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1179 && (e->flags & EDGE_CAN_FALLTHRU)
1180 && !(e->flags & EDGE_COMPLEX)
1181 && bbd[di].start_of_trace >= 0
1182 && !connected[bbd[di].start_of_trace]
1183 && (BB_PARTITION (e->dest) == current_partition)
1184 && connect_better_edge_p (e, src_index_p: false, best_len, cur_best_edge: best, traces))
1185 {
1186 best = e;
1187 best_len = traces[bbd[di].start_of_trace].length;
1188 }
1189 }
1190
1191 if (for_size)
1192 {
1193 if (!best)
1194 /* Stop finding the successor traces. */
1195 break;
1196
1197 /* It is OK to connect block n with block n + 1 or a block
1198 before n. For others, only connect to the loop header. */
1199 if (best->dest->index > (traces[t].last->index + 1))
1200 {
1201 int count = EDGE_COUNT (best->dest->preds);
1202
1203 FOR_EACH_EDGE (e, ei, best->dest->preds)
1204 if (e->flags & EDGE_DFS_BACK)
1205 count--;
1206
1207 /* If dest has multiple predecessors, skip it. We expect
1208 that one predecessor with smaller index connects with it
1209 later. */
1210 if (count != 1)
1211 break;
1212 }
1213
1214 /* Only connect Trace n with Trace n + 1. It is conservative
1215 to keep the order as close as possible to the original order.
1216 It also helps to reduce long jumps. */
1217 if (last_trace != bbd[best->dest->index].start_of_trace - 1)
1218 break;
1219
1220 if (dump_file)
1221 fprintf (stream: dump_file, format: "Connection: %d %d\n",
1222 best->src->index, best->dest->index);
1223
1224 t = bbd[best->dest->index].start_of_trace;
1225 traces[last_trace].last->aux = traces[t].first;
1226 connected[t] = true;
1227 last_trace = t;
1228 }
1229 else if (best)
1230 {
1231 if (dump_file)
1232 {
1233 fprintf (stream: dump_file, format: "Connection: %d %d\n",
1234 best->src->index, best->dest->index);
1235 }
1236 t = bbd[best->dest->index].start_of_trace;
1237 traces[last_trace].last->aux = traces[t].first;
1238 connected[t] = true;
1239 last_trace = t;
1240 }
1241 else
1242 {
1243 /* Try to connect the traces by duplication of 1 block. */
1244 edge e2;
1245 basic_block next_bb = NULL;
1246 bool try_copy = false;
1247
1248 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1249 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1250 && (e->flags & EDGE_CAN_FALLTHRU)
1251 && !(e->flags & EDGE_COMPLEX)
1252 && (!best || e->probability > best->probability))
1253 {
1254 edge_iterator ei;
1255 edge best2 = NULL;
1256 int best2_len = 0;
1257
1258 /* If the destination is a start of a trace which is only
1259 one block long, then no need to search the successor
1260 blocks of the trace. Accept it. */
1261 if (bbd[e->dest->index].start_of_trace >= 0
1262 && traces[bbd[e->dest->index].start_of_trace].length
1263 == 1)
1264 {
1265 best = e;
1266 try_copy = true;
1267 continue;
1268 }
1269
1270 FOR_EACH_EDGE (e2, ei, e->dest->succs)
1271 {
1272 int di = e2->dest->index;
1273
1274 if (e2->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
1275 || ((e2->flags & EDGE_CAN_FALLTHRU)
1276 && !(e2->flags & EDGE_COMPLEX)
1277 && bbd[di].start_of_trace >= 0
1278 && !connected[bbd[di].start_of_trace]
1279 && BB_PARTITION (e2->dest) == current_partition
1280 && e2->count () >= count_threshold
1281 && (!best2
1282 || e2->probability > best2->probability
1283 || (e2->probability == best2->probability
1284 && traces[bbd[di].start_of_trace].length
1285 > best2_len))))
1286 {
1287 best = e;
1288 best2 = e2;
1289 if (e2->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1290 best2_len = traces[bbd[di].start_of_trace].length;
1291 else
1292 best2_len = INT_MAX;
1293 next_bb = e2->dest;
1294 try_copy = true;
1295 }
1296 }
1297 }
1298
1299 /* Copy tiny blocks always; copy larger blocks only when the
1300 edge is traversed frequently enough. */
1301 if (try_copy
1302 && BB_PARTITION (best->src) == BB_PARTITION (best->dest)
1303 && copy_bb_p (best->dest,
1304 optimize_edge_for_speed_p (best)
1305 && (!best->count ().initialized_p ()
1306 || best->count () >= count_threshold)))
1307 {
1308 basic_block new_bb;
1309
1310 if (dump_file)
1311 {
1312 fprintf (stream: dump_file, format: "Connection: %d %d ",
1313 traces[t].last->index, best->dest->index);
1314 if (!next_bb)
1315 fputc (c: '\n', stream: dump_file);
1316 else if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1317 fprintf (stream: dump_file, format: "exit\n");
1318 else
1319 fprintf (stream: dump_file, format: "%d\n", next_bb->index);
1320 }
1321
1322 new_bb = copy_bb (old_bb: best->dest, e: best, bb: traces[t].last, trace: t);
1323 traces[t].last = new_bb;
1324 if (next_bb && next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
1325 {
1326 t = bbd[next_bb->index].start_of_trace;
1327 traces[last_trace].last->aux = traces[t].first;
1328 connected[t] = true;
1329 last_trace = t;
1330 }
1331 else
1332 break; /* Stop finding the successor traces. */
1333 }
1334 else
1335 break; /* Stop finding the successor traces. */
1336 }
1337 }
1338 }
1339
1340 if (dump_file)
1341 {
1342 basic_block bb;
1343
1344 fprintf (stream: dump_file, format: "Final order:\n");
1345 for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1346 fprintf (stream: dump_file, format: "%d ", bb->index);
1347 fprintf (stream: dump_file, format: "\n");
1348 fflush (stream: dump_file);
1349 }
1350
1351 FREE (connected);
1352}
1353
1354/* Return true when BB can and should be copied. CODE_MAY_GROW is true
1355 when code size is allowed to grow by duplication. */
1356
1357static bool
1358copy_bb_p (const_basic_block bb, int code_may_grow)
1359{
1360 unsigned int size = 0;
1361 unsigned int max_size = uncond_jump_length;
1362 rtx_insn *insn;
1363
1364 if (EDGE_COUNT (bb->preds) < 2)
1365 return false;
1366 if (!can_duplicate_block_p (bb))
1367 return false;
1368
1369 /* Avoid duplicating blocks which have many successors (PR/13430). */
1370 if (EDGE_COUNT (bb->succs) > 8)
1371 return false;
1372
1373 if (code_may_grow && optimize_bb_for_speed_p (bb))
1374 max_size *= param_max_grow_copy_bb_insns;
1375
1376 FOR_BB_INSNS (bb, insn)
1377 {
1378 if (INSN_P (insn))
1379 {
1380 size += get_attr_min_length (insn);
1381 if (size > max_size)
1382 break;
1383 }
1384 }
1385
1386 if (size <= max_size)
1387 return true;
1388
1389 if (dump_file)
1390 {
1391 fprintf (stream: dump_file,
1392 format: "Block %d can't be copied because its size = %u.\n",
1393 bb->index, size);
1394 }
1395
1396 return false;
1397}
1398
1399/* Return the length of unconditional jump instruction. */
1400
1401int
1402get_uncond_jump_length (void)
1403{
1404 unsigned int length;
1405
1406 start_sequence ();
1407 rtx_code_label *label = emit_label (gen_label_rtx ());
1408 rtx_insn *jump = emit_jump_insn (targetm.gen_jump (label));
1409 length = get_attr_min_length (jump);
1410 end_sequence ();
1411
1412 gcc_assert (length < INT_MAX);
1413 return length;
1414}
1415
1416/* Create a forwarder block to OLD_BB starting with NEW_LABEL and in the
1417 other partition wrt OLD_BB. */
1418
1419static basic_block
1420create_eh_forwarder_block (rtx_code_label *new_label, basic_block old_bb)
1421{
1422 /* Split OLD_BB, so that EH pads have always only incoming EH edges,
1423 bb_has_eh_pred bbs are treated specially by DF infrastructure. */
1424 old_bb = split_block_after_labels (old_bb)->dest;
1425
1426 /* Put the new label and a jump in the new basic block. */
1427 rtx_insn *label = emit_label (new_label);
1428 rtx_code_label *old_label = block_label (old_bb);
1429 rtx_insn *jump = emit_jump_insn (targetm.gen_jump (old_label));
1430 JUMP_LABEL (jump) = old_label;
1431
1432 /* Create the new basic block and put it in last position. */
1433 basic_block last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
1434 basic_block new_bb = create_basic_block (label, jump, last_bb);
1435 new_bb->aux = last_bb->aux;
1436 new_bb->count = old_bb->count;
1437 last_bb->aux = new_bb;
1438
1439 emit_barrier_after_bb (bb: new_bb);
1440
1441 make_single_succ_edge (new_bb, old_bb, 0);
1442
1443 /* Make sure the new basic block is in the other partition. */
1444 unsigned new_partition = BB_PARTITION (old_bb);
1445 new_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1446 BB_SET_PARTITION (new_bb, new_partition);
1447
1448 return new_bb;
1449}
1450
1451/* The common landing pad in block OLD_BB has edges from both partitions.
1452 Add a new landing pad that will just jump to the old one and split the
1453 edges so that no EH edge crosses partitions. */
1454
1455static void
1456sjlj_fix_up_crossing_landing_pad (basic_block old_bb)
1457{
1458 const unsigned lp_len = cfun->eh->lp_array->length ();
1459 edge_iterator ei;
1460 edge e;
1461
1462 /* Generate the new common landing-pad label. */
1463 rtx_code_label *new_label = gen_label_rtx ();
1464 LABEL_PRESERVE_P (new_label) = 1;
1465
1466 /* Create the forwarder block. */
1467 basic_block new_bb = create_eh_forwarder_block (new_label, old_bb);
1468
1469 /* Create the map from old to new lp index and initialize it. */
1470 unsigned *index_map = (unsigned *) alloca (lp_len * sizeof (unsigned));
1471 memset (s: index_map, c: 0, n: lp_len * sizeof (unsigned));
1472
1473 /* Fix up the edges. */
1474 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (i: ei)) != NULL; )
1475 if (e->src != new_bb && BB_PARTITION (e->src) == BB_PARTITION (new_bb))
1476 {
1477 rtx_insn *insn = BB_END (e->src);
1478 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1479
1480 gcc_assert (note != NULL);
1481 const unsigned old_index = INTVAL (XEXP (note, 0));
1482
1483 /* Generate the new landing-pad structure. */
1484 if (index_map[old_index] == 0)
1485 {
1486 eh_landing_pad old_lp = (*cfun->eh->lp_array)[old_index];
1487 eh_landing_pad new_lp = gen_eh_landing_pad (old_lp->region);
1488 new_lp->post_landing_pad = old_lp->post_landing_pad;
1489 new_lp->landing_pad = new_label;
1490 index_map[old_index] = new_lp->index;
1491 }
1492 XEXP (note, 0) = GEN_INT (index_map[old_index]);
1493
1494 /* Adjust the edge to the new destination. */
1495 redirect_edge_succ (e, new_bb);
1496 }
1497 else
1498 ei_next (i: &ei);
1499}
1500
1501/* The landing pad OLD_LP, in block OLD_BB, has edges from both partitions.
1502 Add a new landing pad that will just jump to the old one and split the
1503 edges so that no EH edge crosses partitions. */
1504
1505static void
1506dw2_fix_up_crossing_landing_pad (eh_landing_pad old_lp, basic_block old_bb)
1507{
1508 eh_landing_pad new_lp;
1509 edge_iterator ei;
1510 edge e;
1511
1512 /* Generate the new landing-pad structure. */
1513 new_lp = gen_eh_landing_pad (old_lp->region);
1514 new_lp->post_landing_pad = old_lp->post_landing_pad;
1515 new_lp->landing_pad = gen_label_rtx ();
1516 LABEL_PRESERVE_P (new_lp->landing_pad) = 1;
1517
1518 /* Create the forwarder block. */
1519 basic_block new_bb = create_eh_forwarder_block (new_label: new_lp->landing_pad, old_bb);
1520
1521 /* Fix up the edges. */
1522 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (i: ei)) != NULL; )
1523 if (e->src != new_bb && BB_PARTITION (e->src) == BB_PARTITION (new_bb))
1524 {
1525 rtx_insn *insn = BB_END (e->src);
1526 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1527
1528 gcc_assert (note != NULL);
1529 gcc_checking_assert (INTVAL (XEXP (note, 0)) == old_lp->index);
1530 XEXP (note, 0) = GEN_INT (new_lp->index);
1531
1532 /* Adjust the edge to the new destination. */
1533 redirect_edge_succ (e, new_bb);
1534 }
1535 else
1536 ei_next (i: &ei);
1537}
1538
1539
1540/* Ensure that all hot bbs are included in a hot path through the
1541 procedure. This is done by calling this function twice, once
1542 with WALK_UP true (to look for paths from the entry to hot bbs) and
1543 once with WALK_UP false (to look for paths from hot bbs to the exit).
1544 Returns the updated value of COLD_BB_COUNT and adds newly-hot bbs
1545 to BBS_IN_HOT_PARTITION. */
1546
1547static unsigned int
1548sanitize_hot_paths (bool walk_up, unsigned int cold_bb_count,
1549 vec<basic_block> *bbs_in_hot_partition)
1550{
1551 /* Callers check this. */
1552 gcc_checking_assert (cold_bb_count);
1553
1554 /* Keep examining hot bbs while we still have some left to check
1555 and there are remaining cold bbs. */
1556 vec<basic_block> hot_bbs_to_check = bbs_in_hot_partition->copy ();
1557 while (! hot_bbs_to_check.is_empty ()
1558 && cold_bb_count)
1559 {
1560 basic_block bb = hot_bbs_to_check.pop ();
1561 vec<edge, va_gc> *edges = walk_up ? bb->preds : bb->succs;
1562 edge e;
1563 edge_iterator ei;
1564 profile_probability highest_probability
1565 = profile_probability::uninitialized ();
1566 profile_count highest_count = profile_count::uninitialized ();
1567 bool found = false;
1568
1569 /* Walk the preds/succs and check if there is at least one already
1570 marked hot. Keep track of the most frequent pred/succ so that we
1571 can mark it hot if we don't find one. */
1572 FOR_EACH_EDGE (e, ei, edges)
1573 {
1574 basic_block reach_bb = walk_up ? e->src : e->dest;
1575
1576 if (e->flags & EDGE_DFS_BACK)
1577 continue;
1578
1579 /* Do not expect profile insanities when profile was not adjusted. */
1580 if (e->probability == profile_probability::never ()
1581 || e->count () == profile_count::zero ())
1582 continue;
1583
1584 if (BB_PARTITION (reach_bb) != BB_COLD_PARTITION)
1585 {
1586 found = true;
1587 break;
1588 }
1589 /* The following loop will look for the hottest edge via
1590 the edge count, if it is non-zero, then fallback to
1591 the edge probability. */
1592 if (!(e->count () > highest_count))
1593 highest_count = e->count ();
1594 if (!highest_probability.initialized_p ()
1595 || e->probability > highest_probability)
1596 highest_probability = e->probability;
1597 }
1598
1599 /* If bb is reached by (or reaches, in the case of !WALK_UP) another hot
1600 block (or unpartitioned, e.g. the entry block) then it is ok. If not,
1601 then the most frequent pred (or succ) needs to be adjusted. In the
1602 case where multiple preds/succs have the same frequency (e.g. a
1603 50-50 branch), then both will be adjusted. */
1604 if (found)
1605 continue;
1606
1607 FOR_EACH_EDGE (e, ei, edges)
1608 {
1609 if (e->flags & EDGE_DFS_BACK)
1610 continue;
1611 /* Do not expect profile insanities when profile was not adjusted. */
1612 if (e->probability == profile_probability::never ()
1613 || e->count () == profile_count::zero ())
1614 continue;
1615 /* Select the hottest edge using the edge count, if it is non-zero,
1616 then fallback to the edge probability. */
1617 if (highest_count.initialized_p ())
1618 {
1619 if (!(e->count () >= highest_count))
1620 continue;
1621 }
1622 else if (!(e->probability >= highest_probability))
1623 continue;
1624
1625 basic_block reach_bb = walk_up ? e->src : e->dest;
1626
1627 /* We have a hot bb with an immediate dominator that is cold.
1628 The dominator needs to be re-marked hot. */
1629 BB_SET_PARTITION (reach_bb, BB_HOT_PARTITION);
1630 if (dump_file)
1631 fprintf (stream: dump_file, format: "Promoting bb %i to hot partition to sanitize "
1632 "profile of bb %i in %s walk\n", reach_bb->index,
1633 bb->index, walk_up ? "backward" : "forward");
1634 cold_bb_count--;
1635
1636 /* Now we need to examine newly-hot reach_bb to see if it is also
1637 dominated by a cold bb. */
1638 bbs_in_hot_partition->safe_push (obj: reach_bb);
1639 hot_bbs_to_check.safe_push (obj: reach_bb);
1640 }
1641 }
1642 hot_bbs_to_check.release ();
1643
1644 return cold_bb_count;
1645}
1646
1647
1648/* Find the basic blocks that are rarely executed and need to be moved to
1649 a separate section of the .o file (to cut down on paging and improve
1650 cache locality). Return a vector of all edges that cross. */
1651
1652static vec<edge>
1653find_rarely_executed_basic_blocks_and_crossing_edges (void)
1654{
1655 vec<edge> crossing_edges = vNULL;
1656 basic_block bb;
1657 edge e;
1658 edge_iterator ei;
1659 unsigned int cold_bb_count = 0;
1660 auto_vec<basic_block> bbs_in_hot_partition;
1661
1662 propagate_unlikely_bbs_forward ();
1663
1664 /* Mark which partition (hot/cold) each basic block belongs in. */
1665 FOR_EACH_BB_FN (bb, cfun)
1666 {
1667 bool cold_bb = false;
1668
1669 if (probably_never_executed_bb_p (cfun, bb))
1670 {
1671 cold_bb = true;
1672
1673 /* Handle profile insanities created by upstream optimizations
1674 by also checking the incoming edge weights. If there is a non-cold
1675 incoming edge, conservatively prevent this block from being split
1676 into the cold section. */
1677 if (!bb->count.precise_p ())
1678 FOR_EACH_EDGE (e, ei, bb->preds)
1679 if (!probably_never_executed_edge_p (cfun, e))
1680 {
1681 cold_bb = false;
1682 break;
1683 }
1684 }
1685 if (cold_bb)
1686 {
1687 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1688 cold_bb_count++;
1689 }
1690 else
1691 {
1692 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1693 bbs_in_hot_partition.safe_push (obj: bb);
1694 }
1695 }
1696
1697 /* Ensure that hot bbs are included along a hot path from the entry to exit.
1698 Several different possibilities may include cold bbs along all paths
1699 to/from a hot bb. One is that there are edge weight insanities
1700 due to optimization phases that do not properly update basic block profile
1701 counts. The second is that the entry of the function may not be hot, because
1702 it is entered fewer times than the number of profile training runs, but there
1703 is a loop inside the function that causes blocks within the function to be
1704 above the threshold for hotness. This is fixed by walking up from hot bbs
1705 to the entry block, and then down from hot bbs to the exit, performing
1706 partitioning fixups as necessary. */
1707 if (cold_bb_count)
1708 {
1709 mark_dfs_back_edges ();
1710 cold_bb_count = sanitize_hot_paths (walk_up: true, cold_bb_count,
1711 bbs_in_hot_partition: &bbs_in_hot_partition);
1712 if (cold_bb_count)
1713 sanitize_hot_paths (walk_up: false, cold_bb_count, bbs_in_hot_partition: &bbs_in_hot_partition);
1714
1715 hash_set <basic_block> set;
1716 find_bbs_reachable_by_hot_paths (&set);
1717 FOR_EACH_BB_FN (bb, cfun)
1718 if (!set.contains (k: bb))
1719 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1720 }
1721
1722 /* The format of .gcc_except_table does not allow landing pads to
1723 be in a different partition as the throw. Fix this by either
1724 moving the landing pads or inserting forwarder landing pads. */
1725 if (cfun->eh->lp_array)
1726 {
1727 const bool sjlj
1728 = (targetm_common.except_unwind_info (&global_options) == UI_SJLJ);
1729 unsigned i;
1730 eh_landing_pad lp;
1731
1732 FOR_EACH_VEC_ELT (*cfun->eh->lp_array, i, lp)
1733 {
1734 bool all_same, all_diff;
1735
1736 if (lp == NULL
1737 || lp->landing_pad == NULL_RTX
1738 || !LABEL_P (lp->landing_pad))
1739 continue;
1740
1741 all_same = all_diff = true;
1742 bb = BLOCK_FOR_INSN (insn: lp->landing_pad);
1743 FOR_EACH_EDGE (e, ei, bb->preds)
1744 {
1745 gcc_assert (e->flags & EDGE_EH);
1746 if (BB_PARTITION (bb) == BB_PARTITION (e->src))
1747 all_diff = false;
1748 else
1749 all_same = false;
1750 }
1751
1752 if (all_same)
1753 ;
1754 else if (all_diff)
1755 {
1756 int which = BB_PARTITION (bb);
1757 which ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1758 BB_SET_PARTITION (bb, which);
1759 }
1760 else if (sjlj)
1761 sjlj_fix_up_crossing_landing_pad (old_bb: bb);
1762 else
1763 dw2_fix_up_crossing_landing_pad (old_lp: lp, old_bb: bb);
1764
1765 /* There is a single, common landing pad in SJLJ mode. */
1766 if (sjlj)
1767 break;
1768 }
1769 }
1770
1771 /* Mark every edge that crosses between sections. */
1772 FOR_EACH_BB_FN (bb, cfun)
1773 FOR_EACH_EDGE (e, ei, bb->succs)
1774 {
1775 unsigned int flags = e->flags;
1776
1777 /* We should never have EDGE_CROSSING set yet. */
1778 gcc_checking_assert ((flags & EDGE_CROSSING) == 0);
1779
1780 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1781 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1782 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1783 {
1784 crossing_edges.safe_push (obj: e);
1785 flags |= EDGE_CROSSING;
1786 }
1787
1788 /* Now that we've split eh edges as appropriate, allow landing pads
1789 to be merged with the post-landing pads. */
1790 flags &= ~EDGE_PRESERVE;
1791
1792 e->flags = flags;
1793 }
1794
1795 return crossing_edges;
1796}
1797
1798/* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
1799
1800static void
1801set_edge_can_fallthru_flag (void)
1802{
1803 basic_block bb;
1804
1805 FOR_EACH_BB_FN (bb, cfun)
1806 {
1807 edge e;
1808 edge_iterator ei;
1809
1810 FOR_EACH_EDGE (e, ei, bb->succs)
1811 {
1812 e->flags &= ~EDGE_CAN_FALLTHRU;
1813
1814 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
1815 if (e->flags & EDGE_FALLTHRU)
1816 e->flags |= EDGE_CAN_FALLTHRU;
1817 }
1818
1819 /* If the BB ends with an invertible condjump all (2) edges are
1820 CAN_FALLTHRU edges. */
1821 if (EDGE_COUNT (bb->succs) != 2)
1822 continue;
1823 if (!any_condjump_p (BB_END (bb)))
1824 continue;
1825
1826 rtx_jump_insn *bb_end_jump = as_a <rtx_jump_insn *> (BB_END (bb));
1827 if (!invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0))
1828 continue;
1829 invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0);
1830 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
1831 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
1832 }
1833}
1834
1835/* If any destination of a crossing edge does not have a label, add label;
1836 Convert any easy fall-through crossing edges to unconditional jumps. */
1837
1838static void
1839add_labels_and_missing_jumps (vec<edge> crossing_edges)
1840{
1841 size_t i;
1842 edge e;
1843
1844 FOR_EACH_VEC_ELT (crossing_edges, i, e)
1845 {
1846 basic_block src = e->src;
1847 basic_block dest = e->dest;
1848 rtx_jump_insn *new_jump;
1849
1850 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1851 continue;
1852
1853 /* Make sure dest has a label. */
1854 rtx_code_label *label = block_label (dest);
1855
1856 /* Nothing to do for non-fallthru edges. */
1857 if (src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1858 continue;
1859 if ((e->flags & EDGE_FALLTHRU) == 0)
1860 continue;
1861
1862 /* If the block does not end with a control flow insn, then we
1863 can trivially add a jump to the end to fixup the crossing.
1864 Otherwise the jump will have to go in a new bb, which will
1865 be handled by fix_up_fall_thru_edges function. */
1866 if (control_flow_insn_p (BB_END (src)))
1867 continue;
1868
1869 /* Make sure there's only one successor. */
1870 gcc_assert (single_succ_p (src));
1871
1872 new_jump = emit_jump_insn_after (targetm.gen_jump (label), BB_END (src));
1873 BB_END (src) = new_jump;
1874 JUMP_LABEL (new_jump) = label;
1875 LABEL_NUSES (label) += 1;
1876
1877 emit_barrier_after_bb (bb: src);
1878
1879 /* Mark edge as non-fallthru. */
1880 e->flags &= ~EDGE_FALLTHRU;
1881 }
1882}
1883
1884/* Find any bb's where the fall-through edge is a crossing edge (note that
1885 these bb's must also contain a conditional jump or end with a call
1886 instruction; we've already dealt with fall-through edges for blocks
1887 that didn't have a conditional jump or didn't end with call instruction
1888 in the call to add_labels_and_missing_jumps). Convert the fall-through
1889 edge to non-crossing edge by inserting a new bb to fall-through into.
1890 The new bb will contain an unconditional jump (crossing edge) to the
1891 original fall through destination. */
1892
1893static void
1894fix_up_fall_thru_edges (void)
1895{
1896 basic_block cur_bb;
1897
1898 FOR_EACH_BB_FN (cur_bb, cfun)
1899 {
1900 edge succ1;
1901 edge succ2;
1902 edge fall_thru = NULL;
1903 edge cond_jump = NULL;
1904
1905 fall_thru = NULL;
1906 if (EDGE_COUNT (cur_bb->succs) > 0)
1907 succ1 = EDGE_SUCC (cur_bb, 0);
1908 else
1909 succ1 = NULL;
1910
1911 if (EDGE_COUNT (cur_bb->succs) > 1)
1912 succ2 = EDGE_SUCC (cur_bb, 1);
1913 else
1914 succ2 = NULL;
1915
1916 /* Find the fall-through edge. */
1917
1918 if (succ1
1919 && (succ1->flags & EDGE_FALLTHRU))
1920 {
1921 fall_thru = succ1;
1922 cond_jump = succ2;
1923 }
1924 else if (succ2
1925 && (succ2->flags & EDGE_FALLTHRU))
1926 {
1927 fall_thru = succ2;
1928 cond_jump = succ1;
1929 }
1930 else if (succ2 && EDGE_COUNT (cur_bb->succs) > 2)
1931 fall_thru = find_fallthru_edge (edges: cur_bb->succs);
1932
1933 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
1934 {
1935 /* Check to see if the fall-thru edge is a crossing edge. */
1936
1937 if (fall_thru->flags & EDGE_CROSSING)
1938 {
1939 /* The fall_thru edge crosses; now check the cond jump edge, if
1940 it exists. */
1941
1942 bool cond_jump_crosses = true;
1943 int invert_worked = 0;
1944 rtx_insn *old_jump = BB_END (cur_bb);
1945
1946 /* Find the jump instruction, if there is one. */
1947
1948 if (cond_jump)
1949 {
1950 if (!(cond_jump->flags & EDGE_CROSSING))
1951 cond_jump_crosses = false;
1952
1953 /* We know the fall-thru edge crosses; if the cond
1954 jump edge does NOT cross, and its destination is the
1955 next block in the bb order, invert the jump
1956 (i.e. fix it so the fall through does not cross and
1957 the cond jump does). */
1958
1959 if (!cond_jump_crosses)
1960 {
1961 /* Find label in fall_thru block. We've already added
1962 any missing labels, so there must be one. */
1963
1964 rtx_code_label *fall_thru_label
1965 = block_label (fall_thru->dest);
1966
1967 if (old_jump && fall_thru_label)
1968 {
1969 rtx_jump_insn *old_jump_insn
1970 = dyn_cast <rtx_jump_insn *> (p: old_jump);
1971 if (old_jump_insn)
1972 invert_worked = invert_jump (old_jump_insn,
1973 fall_thru_label, 0);
1974 }
1975
1976 if (invert_worked)
1977 {
1978 fall_thru->flags &= ~EDGE_FALLTHRU;
1979 cond_jump->flags |= EDGE_FALLTHRU;
1980 update_br_prob_note (cur_bb);
1981 std::swap (a&: fall_thru, b&: cond_jump);
1982 cond_jump->flags |= EDGE_CROSSING;
1983 fall_thru->flags &= ~EDGE_CROSSING;
1984 }
1985 }
1986 }
1987
1988 if (cond_jump_crosses || !invert_worked)
1989 {
1990 /* This is the case where both edges out of the basic
1991 block are crossing edges. Here we will fix up the
1992 fall through edge. The jump edge will be taken care
1993 of later. The EDGE_CROSSING flag of fall_thru edge
1994 is unset before the call to force_nonfallthru
1995 function because if a new basic-block is created
1996 this edge remains in the current section boundary
1997 while the edge between new_bb and the fall_thru->dest
1998 becomes EDGE_CROSSING. */
1999
2000 fall_thru->flags &= ~EDGE_CROSSING;
2001 unsigned old_count = EDGE_COUNT (cur_bb->succs);
2002 basic_block new_bb = force_nonfallthru (fall_thru);
2003
2004 if (new_bb)
2005 {
2006 new_bb->aux = cur_bb->aux;
2007 cur_bb->aux = new_bb;
2008
2009 /* This is done by force_nonfallthru_and_redirect. */
2010 gcc_assert (BB_PARTITION (new_bb)
2011 == BB_PARTITION (cur_bb));
2012
2013 edge e = single_succ_edge (bb: new_bb);
2014 e->flags |= EDGE_CROSSING;
2015 if (EDGE_COUNT (cur_bb->succs) > old_count)
2016 {
2017 /* If asm goto has a crossing fallthrough edge
2018 and at least one of the labels to the same bb,
2019 force_nonfallthru can result in the fallthrough
2020 edge being redirected and a new edge added for the
2021 label or more labels to e->dest. As we've
2022 temporarily cleared EDGE_CROSSING flag on the
2023 fallthrough edge, we need to restore it again.
2024 See PR108596. */
2025 rtx_insn *j = BB_END (cur_bb);
2026 gcc_checking_assert (JUMP_P (j)
2027 && asm_noperands (PATTERN (j)));
2028 edge e2 = find_edge (cur_bb, e->dest);
2029 if (e2)
2030 e2->flags |= EDGE_CROSSING;
2031 }
2032 }
2033 else
2034 {
2035 /* If a new basic-block was not created; restore
2036 the EDGE_CROSSING flag. */
2037 fall_thru->flags |= EDGE_CROSSING;
2038 }
2039
2040 /* Add barrier after new jump */
2041 emit_barrier_after_bb (bb: new_bb ? new_bb : cur_bb);
2042 }
2043 }
2044 }
2045 }
2046}
2047
2048/* This function checks the destination block of a "crossing jump" to
2049 see if it has any crossing predecessors that begin with a code label
2050 and end with an unconditional jump. If so, it returns that predecessor
2051 block. (This is to avoid creating lots of new basic blocks that all
2052 contain unconditional jumps to the same destination). */
2053
2054static basic_block
2055find_jump_block (basic_block jump_dest)
2056{
2057 basic_block source_bb = NULL;
2058 edge e;
2059 rtx_insn *insn;
2060 edge_iterator ei;
2061
2062 FOR_EACH_EDGE (e, ei, jump_dest->preds)
2063 if (e->flags & EDGE_CROSSING)
2064 {
2065 basic_block src = e->src;
2066
2067 /* Check each predecessor to see if it has a label, and contains
2068 only one executable instruction, which is an unconditional jump.
2069 If so, we can use it. */
2070
2071 if (LABEL_P (BB_HEAD (src)))
2072 for (insn = BB_HEAD (src);
2073 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
2074 insn = NEXT_INSN (insn))
2075 {
2076 if (INSN_P (insn)
2077 && insn == BB_END (src)
2078 && JUMP_P (insn)
2079 && !any_condjump_p (insn))
2080 {
2081 source_bb = src;
2082 break;
2083 }
2084 }
2085
2086 if (source_bb)
2087 break;
2088 }
2089
2090 return source_bb;
2091}
2092
2093/* Find all BB's with conditional jumps that are crossing edges;
2094 insert a new bb and make the conditional jump branch to the new
2095 bb instead (make the new bb same color so conditional branch won't
2096 be a 'crossing' edge). Insert an unconditional jump from the
2097 new bb to the original destination of the conditional jump. */
2098
2099static void
2100fix_crossing_conditional_branches (void)
2101{
2102 basic_block cur_bb;
2103 basic_block new_bb;
2104 basic_block dest;
2105 edge succ1;
2106 edge succ2;
2107 edge crossing_edge;
2108 edge new_edge;
2109 rtx set_src;
2110 rtx old_label = NULL_RTX;
2111 rtx_code_label *new_label;
2112
2113 FOR_EACH_BB_FN (cur_bb, cfun)
2114 {
2115 crossing_edge = NULL;
2116 if (EDGE_COUNT (cur_bb->succs) > 0)
2117 succ1 = EDGE_SUCC (cur_bb, 0);
2118 else
2119 succ1 = NULL;
2120
2121 if (EDGE_COUNT (cur_bb->succs) > 1)
2122 succ2 = EDGE_SUCC (cur_bb, 1);
2123 else
2124 succ2 = NULL;
2125
2126 /* We already took care of fall-through edges, so only one successor
2127 can be a crossing edge. */
2128
2129 if (succ1 && (succ1->flags & EDGE_CROSSING))
2130 crossing_edge = succ1;
2131 else if (succ2 && (succ2->flags & EDGE_CROSSING))
2132 crossing_edge = succ2;
2133
2134 if (crossing_edge)
2135 {
2136 rtx_insn *old_jump = BB_END (cur_bb);
2137
2138 /* Check to make sure the jump instruction is a
2139 conditional jump. */
2140
2141 set_src = NULL_RTX;
2142
2143 if (any_condjump_p (old_jump))
2144 {
2145 if (GET_CODE (PATTERN (old_jump)) == SET)
2146 set_src = SET_SRC (PATTERN (old_jump));
2147 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
2148 {
2149 set_src = XVECEXP (PATTERN (old_jump), 0,0);
2150 if (GET_CODE (set_src) == SET)
2151 set_src = SET_SRC (set_src);
2152 else
2153 set_src = NULL_RTX;
2154 }
2155 }
2156
2157 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
2158 {
2159 rtx_jump_insn *old_jump_insn =
2160 as_a <rtx_jump_insn *> (p: old_jump);
2161
2162 if (GET_CODE (XEXP (set_src, 1)) == PC)
2163 old_label = XEXP (set_src, 2);
2164 else if (GET_CODE (XEXP (set_src, 2)) == PC)
2165 old_label = XEXP (set_src, 1);
2166
2167 /* Check to see if new bb for jumping to that dest has
2168 already been created; if so, use it; if not, create
2169 a new one. */
2170
2171 new_bb = find_jump_block (jump_dest: crossing_edge->dest);
2172
2173 if (new_bb)
2174 new_label = block_label (new_bb);
2175 else
2176 {
2177 basic_block last_bb;
2178 rtx_code_label *old_jump_target;
2179 rtx_jump_insn *new_jump;
2180
2181 /* Create new basic block to be dest for
2182 conditional jump. */
2183
2184 /* Put appropriate instructions in new bb. */
2185
2186 new_label = gen_label_rtx ();
2187 emit_label (new_label);
2188
2189 gcc_assert (GET_CODE (old_label) == LABEL_REF);
2190 old_jump_target = old_jump_insn->jump_target ();
2191 new_jump = as_a <rtx_jump_insn *>
2192 (p: emit_jump_insn (targetm.gen_jump (old_jump_target)));
2193 new_jump->set_jump_target (old_jump_target);
2194
2195 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2196 new_bb = create_basic_block (new_label, new_jump, last_bb);
2197 new_bb->aux = last_bb->aux;
2198 last_bb->aux = new_bb;
2199
2200 emit_barrier_after_bb (bb: new_bb);
2201
2202 /* Make sure new bb is in same partition as source
2203 of conditional branch. */
2204 BB_COPY_PARTITION (new_bb, cur_bb);
2205 }
2206
2207 /* Make old jump branch to new bb. */
2208
2209 redirect_jump (old_jump_insn, new_label, 0);
2210
2211 /* Remove crossing_edge as predecessor of 'dest'. */
2212
2213 dest = crossing_edge->dest;
2214
2215 redirect_edge_succ (crossing_edge, new_bb);
2216
2217 /* Make a new edge from new_bb to old dest; new edge
2218 will be a successor for new_bb and a predecessor
2219 for 'dest'. */
2220
2221 if (EDGE_COUNT (new_bb->succs) == 0)
2222 new_edge = make_single_succ_edge (new_bb, dest, 0);
2223 else
2224 new_edge = EDGE_SUCC (new_bb, 0);
2225
2226 crossing_edge->flags &= ~EDGE_CROSSING;
2227 new_edge->flags |= EDGE_CROSSING;
2228 }
2229 }
2230 }
2231}
2232
2233/* Find any unconditional branches that cross between hot and cold
2234 sections. Convert them into indirect jumps instead. */
2235
2236static void
2237fix_crossing_unconditional_branches (void)
2238{
2239 basic_block cur_bb;
2240 rtx_insn *last_insn;
2241 rtx label;
2242 rtx label_addr;
2243 rtx_insn *indirect_jump_sequence;
2244 rtx_insn *jump_insn = NULL;
2245 rtx new_reg;
2246 rtx_insn *cur_insn;
2247 edge succ;
2248
2249 FOR_EACH_BB_FN (cur_bb, cfun)
2250 {
2251 last_insn = BB_END (cur_bb);
2252
2253 if (EDGE_COUNT (cur_bb->succs) < 1)
2254 continue;
2255
2256 succ = EDGE_SUCC (cur_bb, 0);
2257
2258 /* Check to see if bb ends in a crossing (unconditional) jump. At
2259 this point, no crossing jumps should be conditional. */
2260
2261 if (JUMP_P (last_insn)
2262 && (succ->flags & EDGE_CROSSING))
2263 {
2264 gcc_assert (!any_condjump_p (last_insn));
2265
2266 /* Make sure the jump is not already an indirect or table jump. */
2267
2268 if (!computed_jump_p (last_insn)
2269 && !tablejump_p (last_insn, NULL, NULL))
2270 {
2271 /* We have found a "crossing" unconditional branch. Now
2272 we must convert it to an indirect jump. First create
2273 reference of label, as target for jump. */
2274
2275 label = JUMP_LABEL (last_insn);
2276 label_addr = gen_rtx_LABEL_REF (Pmode, label);
2277 LABEL_NUSES (label) += 1;
2278
2279 /* Get a register to use for the indirect jump. */
2280
2281 new_reg = gen_reg_rtx (Pmode);
2282
2283 /* Generate indirect the jump sequence. */
2284
2285 start_sequence ();
2286 emit_move_insn (new_reg, label_addr);
2287 emit_indirect_jump (new_reg);
2288 indirect_jump_sequence = get_insns ();
2289 end_sequence ();
2290
2291 /* Make sure every instruction in the new jump sequence has
2292 its basic block set to be cur_bb. */
2293
2294 for (cur_insn = indirect_jump_sequence; cur_insn;
2295 cur_insn = NEXT_INSN (insn: cur_insn))
2296 {
2297 if (!BARRIER_P (cur_insn))
2298 BLOCK_FOR_INSN (insn: cur_insn) = cur_bb;
2299 if (JUMP_P (cur_insn))
2300 jump_insn = cur_insn;
2301 }
2302
2303 /* Insert the new (indirect) jump sequence immediately before
2304 the unconditional jump, then delete the unconditional jump. */
2305
2306 emit_insn_before (indirect_jump_sequence, last_insn);
2307 delete_insn (last_insn);
2308
2309 JUMP_LABEL (jump_insn) = label;
2310 LABEL_NUSES (label)++;
2311
2312 /* Make BB_END for cur_bb be the jump instruction (NOT the
2313 barrier instruction at the end of the sequence...). */
2314
2315 BB_END (cur_bb) = jump_insn;
2316 }
2317 }
2318 }
2319}
2320
2321/* Update CROSSING_JUMP_P flags on all jump insns. */
2322
2323static void
2324update_crossing_jump_flags (void)
2325{
2326 basic_block bb;
2327 edge e;
2328 edge_iterator ei;
2329
2330 FOR_EACH_BB_FN (bb, cfun)
2331 FOR_EACH_EDGE (e, ei, bb->succs)
2332 if (e->flags & EDGE_CROSSING)
2333 {
2334 if (JUMP_P (BB_END (bb)))
2335 CROSSING_JUMP_P (BB_END (bb)) = 1;
2336 break;
2337 }
2338}
2339
2340/* Reorder basic blocks using the software trace cache (STC) algorithm. */
2341
2342static void
2343reorder_basic_blocks_software_trace_cache (void)
2344{
2345 if (dump_file)
2346 fprintf (stream: dump_file, format: "\nReordering with the STC algorithm.\n\n");
2347
2348 int n_traces;
2349 int i;
2350 struct trace *traces;
2351
2352 /* We are estimating the length of uncond jump insn only once since the code
2353 for getting the insn length always returns the minimal length now. */
2354 if (uncond_jump_length == 0)
2355 uncond_jump_length = get_uncond_jump_length ();
2356
2357 /* We need to know some information for each basic block. */
2358 array_size = GET_ARRAY_SIZE (last_basic_block_for_fn (cfun));
2359 bbd = XNEWVEC (bbro_basic_block_data, array_size);
2360 for (i = 0; i < array_size; i++)
2361 {
2362 bbd[i].start_of_trace = -1;
2363 bbd[i].end_of_trace = -1;
2364 bbd[i].in_trace = -1;
2365 bbd[i].visited = 0;
2366 bbd[i].priority = -1;
2367 bbd[i].heap = NULL;
2368 bbd[i].node = NULL;
2369 }
2370
2371 traces = XNEWVEC (struct trace, n_basic_blocks_for_fn (cfun));
2372 n_traces = 0;
2373 find_traces (n_traces: &n_traces, traces);
2374 connect_traces (n_traces, traces);
2375 FREE (traces);
2376 FREE (bbd);
2377}
2378
2379/* Order edges by execution frequency, higher first. */
2380
2381static int
2382edge_order (const void *ve1, const void *ve2)
2383{
2384 edge e1 = *(const edge *) ve1;
2385 edge e2 = *(const edge *) ve2;
2386 profile_count c1 = e1->count ();
2387 profile_count c2 = e2->count ();
2388 /* Since profile_count::operator< does not establish a strict weak order
2389 in presence of uninitialized counts, use 'max': this makes them appear
2390 as if having execution frequency less than any initialized count. */
2391 profile_count m = c1.max (other: c2);
2392 return (m == c2) - (m == c1);
2393}
2394
2395/* Reorder basic blocks using the "simple" algorithm. This tries to
2396 maximize the dynamic number of branches that are fallthrough, without
2397 copying instructions. The algorithm is greedy, looking at the most
2398 frequently executed branch first. */
2399
2400static void
2401reorder_basic_blocks_simple (void)
2402{
2403 if (dump_file)
2404 fprintf (stream: dump_file, format: "\nReordering with the \"simple\" algorithm.\n\n");
2405
2406 edge *edges = new edge[2 * n_basic_blocks_for_fn (cfun)];
2407
2408 /* First, collect all edges that can be optimized by reordering blocks:
2409 simple jumps and conditional jumps, as well as the function entry edge. */
2410
2411 int n = 0;
2412 edges[n++] = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0);
2413
2414 basic_block bb;
2415 FOR_EACH_BB_FN (bb, cfun)
2416 {
2417 rtx_insn *end = BB_END (bb);
2418
2419 if (computed_jump_p (end) || tablejump_p (end, NULL, NULL))
2420 continue;
2421
2422 /* We cannot optimize asm goto. */
2423 if (JUMP_P (end) && extract_asm_operands (end))
2424 continue;
2425
2426 if (single_succ_p (bb))
2427 edges[n++] = EDGE_SUCC (bb, 0);
2428 else if (any_condjump_p (end))
2429 {
2430 edge e0 = EDGE_SUCC (bb, 0);
2431 edge e1 = EDGE_SUCC (bb, 1);
2432 /* When optimizing for size it is best to keep the original
2433 fallthrough edges. */
2434 if (e1->flags & EDGE_FALLTHRU)
2435 std::swap (a&: e0, b&: e1);
2436 edges[n++] = e0;
2437 edges[n++] = e1;
2438 }
2439 }
2440
2441 /* Sort the edges, the most desirable first. When optimizing for size
2442 all edges are equally desirable. */
2443
2444 if (optimize_function_for_speed_p (cfun))
2445 gcc_stablesort (edges, n, sizeof *edges, edge_order);
2446
2447 /* Now decide which of those edges to make fallthrough edges. We set
2448 BB_VISITED if a block already has a fallthrough successor assigned
2449 to it. We make ->AUX of an endpoint point to the opposite endpoint
2450 of a sequence of blocks that fall through, and ->AUX will be NULL
2451 for a block that is in such a sequence but not an endpoint anymore.
2452
2453 To start with, everything points to itself, nothing is assigned yet. */
2454
2455 FOR_ALL_BB_FN (bb, cfun)
2456 {
2457 bb->aux = bb;
2458 bb->flags &= ~BB_VISITED;
2459 }
2460
2461 EXIT_BLOCK_PTR_FOR_FN (cfun)->aux = 0;
2462
2463 /* Now for all edges, the most desirable first, see if that edge can
2464 connect two sequences. If it can, update AUX and BB_VISITED; if it
2465 cannot, zero out the edge in the table. */
2466
2467 for (int j = 0; j < n; j++)
2468 {
2469 edge e = edges[j];
2470
2471 basic_block tail_a = e->src;
2472 basic_block head_b = e->dest;
2473 basic_block head_a = (basic_block) tail_a->aux;
2474 basic_block tail_b = (basic_block) head_b->aux;
2475
2476 /* An edge cannot connect two sequences if:
2477 - it crosses partitions;
2478 - its src is not a current endpoint;
2479 - its dest is not a current endpoint;
2480 - or, it would create a loop. */
2481
2482 if (e->flags & EDGE_CROSSING
2483 || tail_a->flags & BB_VISITED
2484 || !tail_b
2485 || (!(head_b->flags & BB_VISITED) && head_b != tail_b)
2486 || tail_a == tail_b)
2487 {
2488 edges[j] = 0;
2489 continue;
2490 }
2491
2492 tail_a->aux = 0;
2493 head_b->aux = 0;
2494 head_a->aux = tail_b;
2495 tail_b->aux = head_a;
2496 tail_a->flags |= BB_VISITED;
2497 }
2498
2499 /* Put the pieces together, in the same order that the start blocks of
2500 the sequences already had. The hot/cold partitioning gives a little
2501 complication: as a first pass only do this for blocks in the same
2502 partition as the start block, and (if there is anything left to do)
2503 in a second pass handle the other partition. */
2504
2505 basic_block last_tail = (basic_block) ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux;
2506
2507 int current_partition
2508 = BB_PARTITION (last_tail == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2509 ? EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
2510 : last_tail);
2511 bool need_another_pass = true;
2512
2513 for (int pass = 0; pass < 2 && need_another_pass; pass++)
2514 {
2515 need_another_pass = false;
2516
2517 FOR_EACH_BB_FN (bb, cfun)
2518 if ((bb->flags & BB_VISITED && bb->aux) || bb->aux == bb)
2519 {
2520 if (BB_PARTITION (bb) != current_partition)
2521 {
2522 need_another_pass = true;
2523 continue;
2524 }
2525
2526 last_tail->aux = bb;
2527 last_tail = (basic_block) bb->aux;
2528 }
2529
2530 current_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
2531 }
2532
2533 last_tail->aux = 0;
2534
2535 /* Finally, link all the chosen fallthrough edges. */
2536
2537 for (int j = 0; j < n; j++)
2538 if (edges[j])
2539 edges[j]->src->aux = edges[j]->dest;
2540
2541 delete[] edges;
2542
2543 /* If the entry edge no longer falls through we have to make a new
2544 block so it can do so again. */
2545
2546 edge e = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0);
2547 if (e->dest != ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux)
2548 {
2549 force_nonfallthru (e);
2550 e->src->aux = ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux;
2551 }
2552}
2553
2554/* Reorder basic blocks. The main entry point to this file. */
2555
2556static void
2557reorder_basic_blocks (void)
2558{
2559 gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
2560
2561 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2562 return;
2563
2564 set_edge_can_fallthru_flag ();
2565 mark_dfs_back_edges ();
2566
2567 switch (flag_reorder_blocks_algorithm)
2568 {
2569 case REORDER_BLOCKS_ALGORITHM_SIMPLE:
2570 reorder_basic_blocks_simple ();
2571 break;
2572
2573 case REORDER_BLOCKS_ALGORITHM_STC:
2574 reorder_basic_blocks_software_trace_cache ();
2575 break;
2576
2577 default:
2578 gcc_unreachable ();
2579 }
2580
2581 relink_block_chain (/*stay_in_cfglayout_mode=*/true);
2582
2583 if (dump_file)
2584 {
2585 if (dump_flags & TDF_DETAILS)
2586 dump_reg_info (dump_file);
2587 dump_flow_info (dump_file, dump_flags);
2588 }
2589
2590 /* Signal that rtl_verify_flow_info_1 can now verify that there
2591 is at most one switch between hot/cold sections. */
2592 crtl->bb_reorder_complete = true;
2593}
2594
2595/* Determine which partition the first basic block in the function
2596 belongs to, then find the first basic block in the current function
2597 that belongs to a different section, and insert a
2598 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
2599 instruction stream. When writing out the assembly code,
2600 encountering this note will make the compiler switch between the
2601 hot and cold text sections. */
2602
2603void
2604insert_section_boundary_note (void)
2605{
2606 basic_block bb;
2607 bool switched_sections = false;
2608 int current_partition = 0;
2609
2610 if (!crtl->has_bb_partition)
2611 return;
2612
2613 FOR_EACH_BB_FN (bb, cfun)
2614 {
2615 if (!current_partition)
2616 current_partition = BB_PARTITION (bb);
2617 if (BB_PARTITION (bb) != current_partition)
2618 {
2619 gcc_assert (!switched_sections);
2620 switched_sections = true;
2621 emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS, BB_HEAD (bb));
2622 current_partition = BB_PARTITION (bb);
2623 }
2624 }
2625
2626 /* Make sure crtl->has_bb_partition matches reality even if bbpart finds
2627 some hot and some cold basic blocks, but later one of those kinds is
2628 optimized away. */
2629 crtl->has_bb_partition = switched_sections;
2630}
2631
2632namespace {
2633
2634const pass_data pass_data_reorder_blocks =
2635{
2636 .type: RTL_PASS, /* type */
2637 .name: "bbro", /* name */
2638 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
2639 .tv_id: TV_REORDER_BLOCKS, /* tv_id */
2640 .properties_required: 0, /* properties_required */
2641 .properties_provided: 0, /* properties_provided */
2642 .properties_destroyed: 0, /* properties_destroyed */
2643 .todo_flags_start: 0, /* todo_flags_start */
2644 .todo_flags_finish: 0, /* todo_flags_finish */
2645};
2646
2647class pass_reorder_blocks : public rtl_opt_pass
2648{
2649public:
2650 pass_reorder_blocks (gcc::context *ctxt)
2651 : rtl_opt_pass (pass_data_reorder_blocks, ctxt)
2652 {}
2653
2654 /* opt_pass methods: */
2655 bool gate (function *) final override
2656 {
2657 if (targetm.cannot_modify_jumps_p ())
2658 return false;
2659 return (optimize > 0
2660 && (flag_reorder_blocks || flag_reorder_blocks_and_partition));
2661 }
2662
2663 unsigned int execute (function *) final override;
2664
2665}; // class pass_reorder_blocks
2666
2667unsigned int
2668pass_reorder_blocks::execute (function *fun)
2669{
2670 basic_block bb;
2671
2672 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2673 splitting possibly introduced more crossjumping opportunities. */
2674 cfg_layout_initialize (CLEANUP_EXPENSIVE);
2675
2676 reorder_basic_blocks ();
2677 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_NO_PARTITIONING);
2678
2679 FOR_EACH_BB_FN (bb, fun)
2680 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
2681 bb->aux = bb->next_bb;
2682 cfg_layout_finalize ();
2683
2684 FOR_EACH_BB_FN (bb, fun)
2685 df_recompute_luids (bb);
2686 return 0;
2687}
2688
2689} // anon namespace
2690
2691rtl_opt_pass *
2692make_pass_reorder_blocks (gcc::context *ctxt)
2693{
2694 return new pass_reorder_blocks (ctxt);
2695}
2696
2697/* Duplicate a block (that we already know ends in a computed jump) into its
2698 predecessors, where possible. Return whether anything is changed. */
2699static bool
2700maybe_duplicate_computed_goto (basic_block bb, int max_size)
2701{
2702 /* Make sure that the block is small enough. */
2703 rtx_insn *insn;
2704 FOR_BB_INSNS (bb, insn)
2705 if (INSN_P (insn))
2706 {
2707 max_size -= get_attr_min_length (insn);
2708 if (max_size < 0)
2709 return false;
2710 }
2711
2712 bool changed = false;
2713 edge e;
2714 edge_iterator ei;
2715 for (ei = ei_start (bb->preds); (e = ei_safe_edge (i: ei)); )
2716 {
2717 basic_block pred = e->src;
2718
2719 /* Do not duplicate BB into PRED if we cannot merge a copy of BB
2720 with PRED. */
2721 if (!single_succ_p (bb: pred)
2722 || e->flags & EDGE_COMPLEX
2723 || pred->index < NUM_FIXED_BLOCKS
2724 || (JUMP_P (BB_END (pred)) && !simplejump_p (BB_END (pred)))
2725 || (JUMP_P (BB_END (pred)) && CROSSING_JUMP_P (BB_END (pred))))
2726 {
2727 ei_next (i: &ei);
2728 continue;
2729 }
2730
2731 if (dump_file)
2732 fprintf (stream: dump_file, format: "Duplicating computed goto bb %d into bb %d\n",
2733 bb->index, e->src->index);
2734
2735 /* Remember if PRED can be duplicated; if so, the copy of BB merged
2736 with PRED can be duplicated as well. */
2737 bool can_dup_more = can_duplicate_block_p (pred);
2738
2739 /* Make a copy of BB, merge it into PRED. */
2740 basic_block copy = duplicate_block (bb, e, NULL);
2741 emit_barrier_after_bb (bb: copy);
2742 reorder_insns_nobb (BB_HEAD (copy), BB_END (copy), BB_END (pred));
2743 merge_blocks (pred, copy);
2744
2745 changed = true;
2746
2747 /* Try to merge the resulting merged PRED into further predecessors. */
2748 if (can_dup_more)
2749 maybe_duplicate_computed_goto (bb: pred, max_size);
2750 }
2751
2752 return changed;
2753}
2754
2755/* Duplicate the blocks containing computed gotos. This basically unfactors
2756 computed gotos that were factored early on in the compilation process to
2757 speed up edge based data flow. We used to not unfactor them again, which
2758 can seriously pessimize code with many computed jumps in the source code,
2759 such as interpreters. See e.g. PR15242. */
2760static void
2761duplicate_computed_gotos (function *fun)
2762{
2763 /* We are estimating the length of uncond jump insn only once
2764 since the code for getting the insn length always returns
2765 the minimal length now. */
2766 if (uncond_jump_length == 0)
2767 uncond_jump_length = get_uncond_jump_length ();
2768
2769 /* Never copy a block larger than this. */
2770 int max_size
2771 = uncond_jump_length * param_max_goto_duplication_insns;
2772
2773 bool changed = false;
2774
2775 /* Try to duplicate all blocks that end in a computed jump and that
2776 can be duplicated at all. */
2777 basic_block bb;
2778 FOR_EACH_BB_FN (bb, fun)
2779 if (computed_jump_p (BB_END (bb)) && can_duplicate_block_p (bb))
2780 changed |= maybe_duplicate_computed_goto (bb, max_size);
2781
2782 /* Some blocks may have become unreachable. */
2783 if (changed)
2784 cleanup_cfg (0);
2785
2786 /* Duplicating blocks will redirect edges and may cause hot blocks
2787 previously reached by both hot and cold blocks to become dominated
2788 only by cold blocks. */
2789 if (changed)
2790 fixup_partitions ();
2791}
2792
2793namespace {
2794
2795const pass_data pass_data_duplicate_computed_gotos =
2796{
2797 .type: RTL_PASS, /* type */
2798 .name: "compgotos", /* name */
2799 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
2800 .tv_id: TV_REORDER_BLOCKS, /* tv_id */
2801 .properties_required: 0, /* properties_required */
2802 .properties_provided: 0, /* properties_provided */
2803 .properties_destroyed: 0, /* properties_destroyed */
2804 .todo_flags_start: 0, /* todo_flags_start */
2805 .todo_flags_finish: 0, /* todo_flags_finish */
2806};
2807
2808class pass_duplicate_computed_gotos : public rtl_opt_pass
2809{
2810public:
2811 pass_duplicate_computed_gotos (gcc::context *ctxt)
2812 : rtl_opt_pass (pass_data_duplicate_computed_gotos, ctxt)
2813 {}
2814
2815 /* opt_pass methods: */
2816 bool gate (function *) final override;
2817 unsigned int execute (function *) final override;
2818
2819}; // class pass_duplicate_computed_gotos
2820
2821bool
2822pass_duplicate_computed_gotos::gate (function *fun)
2823{
2824 if (targetm.cannot_modify_jumps_p ())
2825 return false;
2826 return (optimize > 0
2827 && flag_expensive_optimizations
2828 && ! optimize_function_for_size_p (fun));
2829}
2830
2831unsigned int
2832pass_duplicate_computed_gotos::execute (function *fun)
2833{
2834 duplicate_computed_gotos (fun);
2835
2836 return 0;
2837}
2838
2839} // anon namespace
2840
2841rtl_opt_pass *
2842make_pass_duplicate_computed_gotos (gcc::context *ctxt)
2843{
2844 return new pass_duplicate_computed_gotos (ctxt);
2845}
2846
2847/* This function is the main 'entrance' for the optimization that
2848 partitions hot and cold basic blocks into separate sections of the
2849 .o file (to improve performance and cache locality). Ideally it
2850 would be called after all optimizations that rearrange the CFG have
2851 been called. However part of this optimization may introduce new
2852 register usage, so it must be called before register allocation has
2853 occurred. This means that this optimization is actually called
2854 well before the optimization that reorders basic blocks (see
2855 function above).
2856
2857 This optimization checks the feedback information to determine
2858 which basic blocks are hot/cold, updates flags on the basic blocks
2859 to indicate which section they belong in. This information is
2860 later used for writing out sections in the .o file. Because hot
2861 and cold sections can be arbitrarily large (within the bounds of
2862 memory), far beyond the size of a single function, it is necessary
2863 to fix up all edges that cross section boundaries, to make sure the
2864 instructions used can actually span the required distance. The
2865 fixes are described below.
2866
2867 Fall-through edges must be changed into jumps; it is not safe or
2868 legal to fall through across a section boundary. Whenever a
2869 fall-through edge crossing a section boundary is encountered, a new
2870 basic block is inserted (in the same section as the fall-through
2871 source), and the fall through edge is redirected to the new basic
2872 block. The new basic block contains an unconditional jump to the
2873 original fall-through target. (If the unconditional jump is
2874 insufficient to cross section boundaries, that is dealt with a
2875 little later, see below).
2876
2877 In order to deal with architectures that have short conditional
2878 branches (which cannot span all of memory) we take any conditional
2879 jump that attempts to cross a section boundary and add a level of
2880 indirection: it becomes a conditional jump to a new basic block, in
2881 the same section. The new basic block contains an unconditional
2882 jump to the original target, in the other section.
2883
2884 For those architectures whose unconditional branch is also
2885 incapable of reaching all of memory, those unconditional jumps are
2886 converted into indirect jumps, through a register.
2887
2888 IMPORTANT NOTE: This optimization causes some messy interactions
2889 with the cfg cleanup optimizations; those optimizations want to
2890 merge blocks wherever possible, and to collapse indirect jump
2891 sequences (change "A jumps to B jumps to C" directly into "A jumps
2892 to C"). Those optimizations can undo the jump fixes that
2893 partitioning is required to make (see above), in order to ensure
2894 that jumps attempting to cross section boundaries are really able
2895 to cover whatever distance the jump requires (on many architectures
2896 conditional or unconditional jumps are not able to reach all of
2897 memory). Therefore tests have to be inserted into each such
2898 optimization to make sure that it does not undo stuff necessary to
2899 cross partition boundaries. This would be much less of a problem
2900 if we could perform this optimization later in the compilation, but
2901 unfortunately the fact that we may need to create indirect jumps
2902 (through registers) requires that this optimization be performed
2903 before register allocation.
2904
2905 Hot and cold basic blocks are partitioned and put in separate
2906 sections of the .o file, to reduce paging and improve cache
2907 performance (hopefully). This can result in bits of code from the
2908 same function being widely separated in the .o file. However this
2909 is not obvious to the current bb structure. Therefore we must take
2910 care to ensure that: 1). There are no fall_thru edges that cross
2911 between sections; 2). For those architectures which have "short"
2912 conditional branches, all conditional branches that attempt to
2913 cross between sections are converted to unconditional branches;
2914 and, 3). For those architectures which have "short" unconditional
2915 branches, all unconditional branches that attempt to cross between
2916 sections are converted to indirect jumps.
2917
2918 The code for fixing up fall_thru edges that cross between hot and
2919 cold basic blocks does so by creating new basic blocks containing
2920 unconditional branches to the appropriate label in the "other"
2921 section. The new basic block is then put in the same (hot or cold)
2922 section as the original conditional branch, and the fall_thru edge
2923 is modified to fall into the new basic block instead. By adding
2924 this level of indirection we end up with only unconditional branches
2925 crossing between hot and cold sections.
2926
2927 Conditional branches are dealt with by adding a level of indirection.
2928 A new basic block is added in the same (hot/cold) section as the
2929 conditional branch, and the conditional branch is retargeted to the
2930 new basic block. The new basic block contains an unconditional branch
2931 to the original target of the conditional branch (in the other section).
2932
2933 Unconditional branches are dealt with by converting them into
2934 indirect jumps. */
2935
2936namespace {
2937
2938const pass_data pass_data_partition_blocks =
2939{
2940 .type: RTL_PASS, /* type */
2941 .name: "bbpart", /* name */
2942 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
2943 .tv_id: TV_REORDER_BLOCKS, /* tv_id */
2944 PROP_cfglayout, /* properties_required */
2945 .properties_provided: 0, /* properties_provided */
2946 .properties_destroyed: 0, /* properties_destroyed */
2947 .todo_flags_start: 0, /* todo_flags_start */
2948 .todo_flags_finish: 0, /* todo_flags_finish */
2949};
2950
2951class pass_partition_blocks : public rtl_opt_pass
2952{
2953public:
2954 pass_partition_blocks (gcc::context *ctxt)
2955 : rtl_opt_pass (pass_data_partition_blocks, ctxt)
2956 {}
2957
2958 /* opt_pass methods: */
2959 bool gate (function *) final override;
2960 unsigned int execute (function *) final override;
2961
2962}; // class pass_partition_blocks
2963
2964bool
2965pass_partition_blocks::gate (function *fun)
2966{
2967 /* The optimization to partition hot/cold basic blocks into separate
2968 sections of the .o file does not work well with linkonce or with
2969 user defined section attributes or with naked attribute. Don't call
2970 it if either case arises. */
2971 return (flag_reorder_blocks_and_partition
2972 && optimize
2973 /* See pass_reorder_blocks::gate. We should not partition if
2974 we are going to omit the reordering. */
2975 && optimize_function_for_speed_p (fun)
2976 && !DECL_COMDAT_GROUP (current_function_decl)
2977 && !lookup_attribute (attr_name: "section", DECL_ATTRIBUTES (fun->decl))
2978 && !lookup_attribute (attr_name: "naked", DECL_ATTRIBUTES (fun->decl))
2979 /* Workaround a bug in GDB where read_partial_die doesn't cope
2980 with DIEs with DW_AT_ranges, see PR81115. */
2981 && !(in_lto_p && MAIN_NAME_P (DECL_NAME (fun->decl))));
2982}
2983
2984unsigned
2985pass_partition_blocks::execute (function *fun)
2986{
2987 vec<edge> crossing_edges;
2988
2989 if (n_basic_blocks_for_fn (fun) <= NUM_FIXED_BLOCKS + 1)
2990 return 0;
2991
2992 df_set_flags (DF_DEFER_INSN_RESCAN);
2993
2994 crossing_edges = find_rarely_executed_basic_blocks_and_crossing_edges ();
2995 if (!crossing_edges.exists ())
2996 /* Make sure to process deferred rescans and clear changeable df flags. */
2997 return TODO_df_finish;
2998
2999 crtl->has_bb_partition = true;
3000
3001 /* Make sure the source of any crossing edge ends in a jump and the
3002 destination of any crossing edge has a label. */
3003 add_labels_and_missing_jumps (crossing_edges);
3004
3005 /* Convert all crossing fall_thru edges to non-crossing fall
3006 thrus to unconditional jumps (that jump to the original fall
3007 through dest). */
3008 fix_up_fall_thru_edges ();
3009
3010 /* If the architecture does not have conditional branches that can
3011 span all of memory, convert crossing conditional branches into
3012 crossing unconditional branches. */
3013 if (!HAS_LONG_COND_BRANCH)
3014 fix_crossing_conditional_branches ();
3015
3016 /* If the architecture does not have unconditional branches that
3017 can span all of memory, convert crossing unconditional branches
3018 into indirect jumps. Since adding an indirect jump also adds
3019 a new register usage, update the register usage information as
3020 well. */
3021 if (!HAS_LONG_UNCOND_BRANCH)
3022 fix_crossing_unconditional_branches ();
3023
3024 update_crossing_jump_flags ();
3025
3026 /* Clear bb->aux fields that the above routines were using. */
3027 clear_aux_for_blocks ();
3028
3029 crossing_edges.release ();
3030
3031 /* ??? FIXME: DF generates the bb info for a block immediately.
3032 And by immediately, I mean *during* creation of the block.
3033
3034 #0 df_bb_refs_collect
3035 #1 in df_bb_refs_record
3036 #2 in create_basic_block_structure
3037
3038 Which means that the bb_has_eh_pred test in df_bb_refs_collect
3039 will *always* fail, because no edges can have been added to the
3040 block yet. Which of course means we don't add the right
3041 artificial refs, which means we fail df_verify (much) later.
3042
3043 Cleanest solution would seem to make DF_DEFER_INSN_RESCAN imply
3044 that we also shouldn't grab data from the new blocks those new
3045 insns are in either. In this way one can create the block, link
3046 it up properly, and have everything Just Work later, when deferred
3047 insns are processed.
3048
3049 In the meantime, we have no other option but to throw away all
3050 of the DF data and recompute it all. */
3051 if (fun->eh->lp_array)
3052 {
3053 df_finish_pass (true);
3054 df_scan_alloc (NULL);
3055 df_scan_blocks ();
3056 /* Not all post-landing pads use all of the EH_RETURN_DATA_REGNO
3057 data. We blindly generated all of them when creating the new
3058 landing pad. Delete those assignments we don't use. */
3059 df_set_flags (DF_LR_RUN_DCE);
3060 df_analyze ();
3061 }
3062
3063 /* Make sure to process deferred rescans and clear changeable df flags. */
3064 return TODO_df_finish;
3065}
3066
3067} // anon namespace
3068
3069rtl_opt_pass *
3070make_pass_partition_blocks (gcc::context *ctxt)
3071{
3072 return new pass_partition_blocks (ctxt);
3073}
3074

source code of gcc/bb-reorder.cc