1/* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "rtl.h"
25#include "tree.h"
26#include "predict.h"
27#include "df.h"
28#include "memmodel.h"
29#include "tm_p.h"
30#include "insn-config.h"
31#include "regs.h"
32#include "emit-rtl.h"
33#include "recog.h"
34#include "reload.h"
35#include "alias.h"
36#include "addresses.h"
37#include "dumpfile.h"
38#include "rtl-iter.h"
39#include "target.h"
40#include "function-abi.h"
41
42#define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
43
44#define regno_save_mode \
45 (this_target_reload->x_regno_save_mode)
46#define cached_reg_save_code \
47 (this_target_reload->x_cached_reg_save_code)
48#define cached_reg_restore_code \
49 (this_target_reload->x_cached_reg_restore_code)
50
51/* For each hard register, a place on the stack where it can be saved,
52 if needed. */
53
54static rtx
55 regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
56
57/* The number of elements in the subsequent array. */
58static int save_slots_num;
59
60/* Allocated slots so far. */
61static rtx save_slots[FIRST_PSEUDO_REGISTER];
62
63/* Set of hard regs currently residing in save area (during insn scan). */
64
65static HARD_REG_SET hard_regs_saved;
66
67/* Number of registers currently in hard_regs_saved. */
68
69static int n_regs_saved;
70
71/* Computed by mark_referenced_regs, all regs referenced in a given
72 insn. */
73static HARD_REG_SET referenced_regs;
74
75
76typedef void refmarker_fn (rtx *loc, machine_mode mode, int hardregno,
77 void *mark_arg);
78
79static int reg_save_code (int, machine_mode);
80static int reg_restore_code (int, machine_mode);
81
82struct saved_hard_reg;
83static void initiate_saved_hard_regs (void);
84static void new_saved_hard_reg (int, int);
85static void finish_saved_hard_regs (void);
86static int saved_hard_reg_compare_func (const void *, const void *);
87
88static void mark_set_regs (rtx, const_rtx, void *);
89static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
90static refmarker_fn mark_reg_as_referenced;
91static refmarker_fn replace_reg_with_saved_mem;
92static int insert_save (class insn_chain *, int, HARD_REG_SET *,
93 machine_mode *);
94static int insert_restore (class insn_chain *, int, int, int,
95 machine_mode *);
96static class insn_chain *insert_one_insn (class insn_chain *, int, int,
97 rtx);
98static void add_stored_regs (rtx, const_rtx, void *);
99
100
101
102static GTY(()) rtx savepat;
103static GTY(()) rtx restpat;
104static GTY(()) rtx test_reg;
105static GTY(()) rtx test_mem;
106static GTY(()) rtx_insn *saveinsn;
107static GTY(()) rtx_insn *restinsn;
108
109/* Return the INSN_CODE used to save register REG in mode MODE. */
110static int
111reg_save_code (int reg, machine_mode mode)
112{
113 bool ok;
114 if (cached_reg_save_code[reg][mode])
115 return cached_reg_save_code[reg][mode];
116 if (!targetm.hard_regno_mode_ok (reg, mode))
117 {
118 /* Depending on how targetm.hard_regno_mode_ok is defined, range
119 propagation might deduce here that reg >= FIRST_PSEUDO_REGISTER.
120 So the assert below silences a warning. */
121 gcc_assert (reg < FIRST_PSEUDO_REGISTER);
122 cached_reg_save_code[reg][mode] = -1;
123 cached_reg_restore_code[reg][mode] = -1;
124 return -1;
125 }
126
127 /* Update the register number and modes of the register
128 and memory operand. */
129 set_mode_and_regno (test_reg, mode, reg);
130 PUT_MODE (x: test_mem, mode);
131
132 /* Force re-recognition of the modified insns. */
133 INSN_CODE (saveinsn) = -1;
134 INSN_CODE (restinsn) = -1;
135
136 cached_reg_save_code[reg][mode] = recog_memoized (insn: saveinsn);
137 cached_reg_restore_code[reg][mode] = recog_memoized (insn: restinsn);
138
139 /* Now extract both insns and see if we can meet their
140 constraints. We don't know here whether the save and restore will
141 be in size- or speed-tuned code, so just use the set of enabled
142 alternatives. */
143 ok = (cached_reg_save_code[reg][mode] != -1
144 && cached_reg_restore_code[reg][mode] != -1);
145 if (ok)
146 {
147 extract_insn (saveinsn);
148 ok = constrain_operands (1, get_enabled_alternatives (saveinsn));
149 extract_insn (restinsn);
150 ok &= constrain_operands (1, get_enabled_alternatives (restinsn));
151 }
152
153 if (! ok)
154 {
155 cached_reg_save_code[reg][mode] = -1;
156 cached_reg_restore_code[reg][mode] = -1;
157 }
158 gcc_assert (cached_reg_save_code[reg][mode]);
159 return cached_reg_save_code[reg][mode];
160}
161
162/* Return the INSN_CODE used to restore register REG in mode MODE. */
163static int
164reg_restore_code (int reg, machine_mode mode)
165{
166 if (cached_reg_restore_code[reg][mode])
167 return cached_reg_restore_code[reg][mode];
168 /* Populate our cache. */
169 reg_save_code (reg, mode);
170 return cached_reg_restore_code[reg][mode];
171}
172
173/* Initialize for caller-save.
174
175 Look at all the hard registers that are used by a call and for which
176 reginfo.cc has not already excluded from being used across a call.
177
178 Ensure that we can find a mode to save the register and that there is a
179 simple insn to save and restore the register. This latter check avoids
180 problems that would occur if we tried to save the MQ register of some
181 machines directly into memory. */
182
183void
184init_caller_save (void)
185{
186 rtx addr_reg;
187 int offset;
188 rtx address;
189 int i, j;
190
191 if (caller_save_initialized_p)
192 return;
193
194 caller_save_initialized_p = true;
195
196 /* First find all the registers that we need to deal with and all
197 the modes that they can have. If we can't find a mode to use,
198 we can't have the register live over calls. */
199
200 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
201 for (j = 1; j <= MOVE_MAX_WORDS; j++)
202 {
203 regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j, VOIDmode);
204 if (regno_save_mode[i][j] == VOIDmode && j == 1)
205 CLEAR_HARD_REG_BIT (savable_regs, bit: i);
206 }
207
208 /* The following code tries to approximate the conditions under which
209 we can easily save and restore a register without scratch registers or
210 other complexities. It will usually work, except under conditions where
211 the validity of an insn operand is dependent on the address offset.
212 No such cases are currently known.
213
214 We first find a typical offset from some BASE_REG_CLASS register.
215 This address is chosen by finding the first register in the class
216 and by finding the smallest power of two that is a valid offset from
217 that register in every mode we will use to save registers. */
218
219 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
220 if (TEST_HARD_REG_BIT
221 (reg_class_contents
222 [(int) base_reg_class (regno_save_mode[i][1], ADDR_SPACE_GENERIC,
223 outer_code: PLUS, index_code: CONST_INT)], bit: i))
224 break;
225
226 gcc_assert (i < FIRST_PSEUDO_REGISTER);
227
228 addr_reg = gen_rtx_REG (Pmode, i);
229
230 for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
231 {
232 address = gen_rtx_PLUS (Pmode, addr_reg, gen_int_mode (offset, Pmode));
233
234 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
235 if (regno_save_mode[i][1] != VOIDmode
236 && ! strict_memory_address_p (regno_save_mode[i][1], address))
237 break;
238
239 if (i == FIRST_PSEUDO_REGISTER)
240 break;
241 }
242
243 /* If we didn't find a valid address, we must use register indirect. */
244 if (offset == 0)
245 address = addr_reg;
246
247 /* Next we try to form an insn to save and restore the register. We
248 see if such an insn is recognized and meets its constraints.
249
250 To avoid lots of unnecessary RTL allocation, we construct all the RTL
251 once, then modify the memory and register operands in-place. */
252
253 test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
254 test_mem = gen_rtx_MEM (word_mode, address);
255 savepat = gen_rtx_SET (test_mem, test_reg);
256 restpat = gen_rtx_SET (test_reg, test_mem);
257
258 saveinsn = gen_rtx_INSN (VOIDmode, prev_insn: 0, next_insn: 0, bb: 0, pattern: savepat, location: 0, code: -1, reg_notes: 0);
259 restinsn = gen_rtx_INSN (VOIDmode, prev_insn: 0, next_insn: 0, bb: 0, pattern: restpat, location: 0, code: -1, reg_notes: 0);
260
261 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
262 for (j = 1; j <= MOVE_MAX_WORDS; j++)
263 if (reg_save_code (reg: i,regno_save_mode[i][j]) == -1)
264 {
265 regno_save_mode[i][j] = VOIDmode;
266 if (j == 1)
267 CLEAR_HARD_REG_BIT (savable_regs, bit: i);
268 }
269}
270
271
272
273/* Initialize save areas by showing that we haven't allocated any yet. */
274
275void
276init_save_areas (void)
277{
278 int i, j;
279
280 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
281 for (j = 1; j <= MOVE_MAX_WORDS; j++)
282 regno_save_mem[i][j] = 0;
283 save_slots_num = 0;
284
285}
286
287/* The structure represents a hard register which should be saved
288 through the call. It is used when the integrated register
289 allocator (IRA) is used and sharing save slots is on. */
290struct saved_hard_reg
291{
292 /* Order number starting with 0. */
293 int num;
294 /* The hard regno. */
295 int hard_regno;
296 /* Execution frequency of all calls through which given hard
297 register should be saved. */
298 int call_freq;
299 /* Stack slot reserved to save the hard register through calls. */
300 rtx slot;
301 /* True if it is first hard register in the chain of hard registers
302 sharing the same stack slot. */
303 int first_p;
304 /* Order number of the next hard register structure with the same
305 slot in the chain. -1 represents end of the chain. */
306 int next;
307};
308
309/* Map: hard register number to the corresponding structure. */
310static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
311
312/* The number of all structures representing hard registers should be
313 saved, in order words, the number of used elements in the following
314 array. */
315static int saved_regs_num;
316
317/* Pointers to all the structures. Index is the order number of the
318 corresponding structure. */
319static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
320
321/* First called function for work with saved hard registers. */
322static void
323initiate_saved_hard_regs (void)
324{
325 int i;
326
327 saved_regs_num = 0;
328 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
329 hard_reg_map[i] = NULL;
330}
331
332/* Allocate and return new saved hard register with given REGNO and
333 CALL_FREQ. */
334static void
335new_saved_hard_reg (int regno, int call_freq)
336{
337 struct saved_hard_reg *saved_reg;
338
339 saved_reg
340 = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
341 hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
342 saved_reg->num = saved_regs_num++;
343 saved_reg->hard_regno = regno;
344 saved_reg->call_freq = call_freq;
345 saved_reg->first_p = false;
346 saved_reg->next = -1;
347}
348
349/* Free memory allocated for the saved hard registers. */
350static void
351finish_saved_hard_regs (void)
352{
353 int i;
354
355 for (i = 0; i < saved_regs_num; i++)
356 free (ptr: all_saved_regs[i]);
357}
358
359/* The function is used to sort the saved hard register structures
360 according their frequency. */
361static int
362saved_hard_reg_compare_func (const void *v1p, const void *v2p)
363{
364 const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
365 const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
366
367 if (flag_omit_frame_pointer)
368 {
369 if (p1->call_freq - p2->call_freq != 0)
370 return p1->call_freq - p2->call_freq;
371 }
372 else if (p2->call_freq - p1->call_freq != 0)
373 return p2->call_freq - p1->call_freq;
374
375 return p1->num - p2->num;
376}
377
378/* Allocate save areas for any hard registers that might need saving.
379 We take a conservative approach here and look for call-clobbered hard
380 registers that are assigned to pseudos that cross calls. This may
381 overestimate slightly (especially if some of these registers are later
382 used as spill registers), but it should not be significant.
383
384 For IRA we use priority coloring to decrease stack slots needed for
385 saving hard registers through calls. We build conflicts for them
386 to do coloring.
387
388 Future work:
389
390 In the fallback case we should iterate backwards across all possible
391 modes for the save, choosing the largest available one instead of
392 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
393
394 We do not try to use "move multiple" instructions that exist
395 on some machines (such as the 68k moveml). It could be a win to try
396 and use them when possible. The hard part is doing it in a way that is
397 machine independent since they might be saving non-consecutive
398 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
399
400void
401setup_save_areas (void)
402{
403 int i, j, k, freq;
404 HARD_REG_SET hard_regs_used;
405 struct saved_hard_reg *saved_reg;
406 rtx_insn *insn;
407 class insn_chain *chain, *next;
408 unsigned int regno;
409 HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
410 reg_set_iterator rsi;
411
412 CLEAR_HARD_REG_SET (set&: hard_regs_used);
413
414 /* Find every CALL_INSN and record which hard regs are live across the
415 call into HARD_REG_MAP and HARD_REGS_USED. */
416 initiate_saved_hard_regs ();
417 /* Create hard reg saved regs. */
418 for (chain = reload_insn_chain; chain != 0; chain = next)
419 {
420 rtx cheap;
421
422 insn = chain->insn;
423 next = chain->next;
424 if (!CALL_P (insn)
425 || find_reg_note (insn, REG_NORETURN, NULL))
426 continue;
427 freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
428 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
429 &chain->live_throughout);
430 used_regs = insn_callee_abi (insn).full_reg_clobbers ();
431
432 /* Record all registers set in this call insn. These don't
433 need to be saved. N.B. the call insn might set a subreg
434 of a multi-hard-reg pseudo; then the pseudo is considered
435 live during the call, but the subreg that is set
436 isn't. */
437 CLEAR_HARD_REG_SET (set&: this_insn_sets);
438 note_stores (insn, mark_set_regs, &this_insn_sets);
439 /* Sibcalls are considered to set the return value. */
440 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
441 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
442
443 used_regs &= ~(fixed_reg_set | this_insn_sets);
444 hard_regs_to_save &= used_regs & savable_regs;
445 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
446 if (TEST_HARD_REG_BIT (set: hard_regs_to_save, bit: regno))
447 {
448 if (hard_reg_map[regno] != NULL)
449 hard_reg_map[regno]->call_freq += freq;
450 else
451 new_saved_hard_reg (regno, call_freq: freq);
452 SET_HARD_REG_BIT (set&: hard_regs_used, bit: regno);
453 }
454 cheap = find_reg_note (insn, REG_RETURNED, NULL);
455 if (cheap)
456 cheap = XEXP (cheap, 0);
457 /* Look through all live pseudos, mark their hard registers. */
458 EXECUTE_IF_SET_IN_REG_SET
459 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
460 {
461 int r = reg_renumber[regno];
462 int bound;
463
464 if (r < 0 || regno_reg_rtx[regno] == cheap)
465 continue;
466
467 bound = r + hard_regno_nregs (regno: r, PSEUDO_REGNO_MODE (regno));
468 for (; r < bound; r++)
469 if (TEST_HARD_REG_BIT (set: used_regs, bit: r))
470 {
471 if (hard_reg_map[r] != NULL)
472 hard_reg_map[r]->call_freq += freq;
473 else
474 new_saved_hard_reg (regno: r, call_freq: freq);
475 SET_HARD_REG_BIT (set&: hard_regs_to_save, bit: r);
476 SET_HARD_REG_BIT (set&: hard_regs_used, bit: r);
477 }
478 }
479 }
480
481 /* If requested, figure out which hard regs can share save slots. */
482 if (optimize && flag_ira_share_save_slots)
483 {
484 rtx slot;
485 char *saved_reg_conflicts;
486 int next_k;
487 struct saved_hard_reg *saved_reg2, *saved_reg3;
488 int call_saved_regs_num;
489 struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
490 int best_slot_num;
491 int prev_save_slots_num;
492 rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
493
494 /* Find saved hard register conflicts. */
495 saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
496 memset (s: saved_reg_conflicts, c: 0, n: saved_regs_num * saved_regs_num);
497 for (chain = reload_insn_chain; chain != 0; chain = next)
498 {
499 rtx cheap;
500 call_saved_regs_num = 0;
501 insn = chain->insn;
502 next = chain->next;
503 if (!CALL_P (insn)
504 || find_reg_note (insn, REG_NORETURN, NULL))
505 continue;
506
507 cheap = find_reg_note (insn, REG_RETURNED, NULL);
508 if (cheap)
509 cheap = XEXP (cheap, 0);
510
511 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
512 &chain->live_throughout);
513 used_regs = insn_callee_abi (insn).full_reg_clobbers ();
514
515 /* Record all registers set in this call insn. These don't
516 need to be saved. N.B. the call insn might set a subreg
517 of a multi-hard-reg pseudo; then the pseudo is considered
518 live during the call, but the subreg that is set
519 isn't. */
520 CLEAR_HARD_REG_SET (set&: this_insn_sets);
521 note_stores (insn, mark_set_regs, &this_insn_sets);
522 /* Sibcalls are considered to set the return value,
523 compare df-scan.cc:df_get_call_refs. */
524 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
525 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
526
527 used_regs &= ~(fixed_reg_set | this_insn_sets);
528 hard_regs_to_save &= used_regs & savable_regs;
529 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
530 if (TEST_HARD_REG_BIT (set: hard_regs_to_save, bit: regno))
531 {
532 gcc_assert (hard_reg_map[regno] != NULL);
533 call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
534 }
535 /* Look through all live pseudos, mark their hard registers. */
536 EXECUTE_IF_SET_IN_REG_SET
537 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
538 {
539 int r = reg_renumber[regno];
540 int bound;
541
542 if (r < 0 || regno_reg_rtx[regno] == cheap)
543 continue;
544
545 bound = r + hard_regno_nregs (regno: r, PSEUDO_REGNO_MODE (regno));
546 for (; r < bound; r++)
547 if (TEST_HARD_REG_BIT (set: used_regs, bit: r))
548 call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
549 }
550 for (i = 0; i < call_saved_regs_num; i++)
551 {
552 saved_reg = call_saved_regs[i];
553 for (j = 0; j < call_saved_regs_num; j++)
554 if (i != j)
555 {
556 saved_reg2 = call_saved_regs[j];
557 saved_reg_conflicts[saved_reg->num * saved_regs_num
558 + saved_reg2->num]
559 = saved_reg_conflicts[saved_reg2->num * saved_regs_num
560 + saved_reg->num]
561 = true;
562 }
563 }
564 }
565 /* Sort saved hard regs. */
566 qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
567 saved_hard_reg_compare_func);
568 /* Initiate slots available from the previous reload
569 iteration. */
570 prev_save_slots_num = save_slots_num;
571 memcpy (dest: prev_save_slots, src: save_slots, n: save_slots_num * sizeof (rtx));
572 save_slots_num = 0;
573 /* Allocate stack slots for the saved hard registers. */
574 for (i = 0; i < saved_regs_num; i++)
575 {
576 saved_reg = all_saved_regs[i];
577 regno = saved_reg->hard_regno;
578 for (j = 0; j < i; j++)
579 {
580 saved_reg2 = all_saved_regs[j];
581 if (! saved_reg2->first_p)
582 continue;
583 slot = saved_reg2->slot;
584 for (k = j; k >= 0; k = next_k)
585 {
586 saved_reg3 = all_saved_regs[k];
587 next_k = saved_reg3->next;
588 if (saved_reg_conflicts[saved_reg->num * saved_regs_num
589 + saved_reg3->num])
590 break;
591 }
592 if (k < 0
593 && known_le (GET_MODE_SIZE (regno_save_mode[regno][1]),
594 GET_MODE_SIZE (regno_save_mode
595 [saved_reg2->hard_regno][1])))
596 {
597 saved_reg->slot
598 = adjust_address_nv
599 (slot, regno_save_mode[saved_reg->hard_regno][1], 0);
600 regno_save_mem[regno][1] = saved_reg->slot;
601 saved_reg->next = saved_reg2->next;
602 saved_reg2->next = i;
603 if (dump_file != NULL)
604 fprintf (stream: dump_file, format: "%d uses slot of %d\n",
605 regno, saved_reg2->hard_regno);
606 break;
607 }
608 }
609 if (j == i)
610 {
611 saved_reg->first_p = true;
612 for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
613 {
614 slot = prev_save_slots[j];
615 if (slot == NULL_RTX)
616 continue;
617 if (known_le (GET_MODE_SIZE (regno_save_mode[regno][1]),
618 GET_MODE_SIZE (GET_MODE (slot)))
619 && best_slot_num < 0)
620 best_slot_num = j;
621 if (GET_MODE (slot) == regno_save_mode[regno][1])
622 break;
623 }
624 if (best_slot_num >= 0)
625 {
626 saved_reg->slot = prev_save_slots[best_slot_num];
627 saved_reg->slot
628 = adjust_address_nv
629 (saved_reg->slot,
630 regno_save_mode[saved_reg->hard_regno][1], 0);
631 if (dump_file != NULL)
632 fprintf (stream: dump_file,
633 format: "%d uses a slot from prev iteration\n", regno);
634 prev_save_slots[best_slot_num] = NULL_RTX;
635 if (best_slot_num + 1 == prev_save_slots_num)
636 prev_save_slots_num--;
637 }
638 else
639 {
640 saved_reg->slot
641 = assign_stack_local_1
642 (regno_save_mode[regno][1],
643 GET_MODE_SIZE (regno_save_mode[regno][1]), 0,
644 ASLK_REDUCE_ALIGN);
645 if (dump_file != NULL)
646 fprintf (stream: dump_file, format: "%d uses a new slot\n", regno);
647 }
648 regno_save_mem[regno][1] = saved_reg->slot;
649 save_slots[save_slots_num++] = saved_reg->slot;
650 }
651 }
652 free (ptr: saved_reg_conflicts);
653 finish_saved_hard_regs ();
654 }
655 else
656 {
657 /* We are not sharing slots.
658
659 Run through all the call-used hard-registers and allocate
660 space for each in the caller-save area. Try to allocate space
661 in a manner which allows multi-register saves/restores to be done. */
662
663 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
664 for (j = MOVE_MAX_WORDS; j > 0; j--)
665 {
666 int do_save = 1;
667
668 /* If no mode exists for this size, try another. Also break out
669 if we have already saved this hard register. */
670 if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
671 continue;
672
673 /* See if any register in this group has been saved. */
674 for (k = 0; k < j; k++)
675 if (regno_save_mem[i + k][1])
676 {
677 do_save = 0;
678 break;
679 }
680 if (! do_save)
681 continue;
682
683 for (k = 0; k < j; k++)
684 if (! TEST_HARD_REG_BIT (set: hard_regs_used, bit: i + k))
685 {
686 do_save = 0;
687 break;
688 }
689 if (! do_save)
690 continue;
691
692 /* We have found an acceptable mode to store in. Since
693 hard register is always saved in the widest mode
694 available, the mode may be wider than necessary, it is
695 OK to reduce the alignment of spill space. We will
696 verify that it is equal to or greater than required
697 when we restore and save the hard register in
698 insert_restore and insert_save. */
699 regno_save_mem[i][j]
700 = assign_stack_local_1 (regno_save_mode[i][j],
701 GET_MODE_SIZE (regno_save_mode[i][j]),
702 0, ASLK_REDUCE_ALIGN);
703
704 /* Setup single word save area just in case... */
705 for (k = 0; k < j; k++)
706 /* This should not depend on WORDS_BIG_ENDIAN.
707 The order of words in regs is the same as in memory. */
708 regno_save_mem[i + k][1]
709 = adjust_address_nv (regno_save_mem[i][j],
710 regno_save_mode[i + k][1],
711 k * UNITS_PER_WORD);
712 }
713 }
714
715 /* Now loop again and set the alias set of any save areas we made to
716 the alias set used to represent frame objects. */
717 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
718 for (j = MOVE_MAX_WORDS; j > 0; j--)
719 if (regno_save_mem[i][j] != 0)
720 set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
721}
722
723
724
725/* Find the places where hard regs are live across calls and save them. */
726
727void
728save_call_clobbered_regs (void)
729{
730 class insn_chain *chain, *next, *last = NULL;
731 machine_mode save_mode [FIRST_PSEUDO_REGISTER];
732
733 /* Computed in mark_set_regs, holds all registers set by the current
734 instruction. */
735 HARD_REG_SET this_insn_sets;
736
737 CLEAR_HARD_REG_SET (set&: hard_regs_saved);
738 n_regs_saved = 0;
739
740 for (chain = reload_insn_chain; chain != 0; chain = next)
741 {
742 rtx_insn *insn = chain->insn;
743 enum rtx_code code = GET_CODE (insn);
744
745 next = chain->next;
746
747 gcc_assert (!chain->is_caller_save_insn);
748
749 if (NONDEBUG_INSN_P (insn))
750 {
751 /* If some registers have been saved, see if INSN references
752 any of them. We must restore them before the insn if so. */
753
754 if (n_regs_saved)
755 {
756 int regno;
757 HARD_REG_SET this_insn_sets;
758
759 if (code == JUMP_INSN)
760 /* Restore all registers if this is a JUMP_INSN. */
761 referenced_regs = hard_regs_saved;
762 else
763 {
764 CLEAR_HARD_REG_SET (set&: referenced_regs);
765 mark_referenced_regs (&PATTERN (insn),
766 mark: mark_reg_as_referenced, NULL);
767 referenced_regs &= hard_regs_saved;
768 }
769
770 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
771 if (TEST_HARD_REG_BIT (set: referenced_regs, bit: regno))
772 regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS,
773 save_mode);
774 /* If a saved register is set after the call, this means we no
775 longer should restore it. This can happen when parts of a
776 multi-word pseudo do not conflict with other pseudos, so
777 IRA may allocate the same hard register for both. One may
778 be live across the call, while the other is set
779 afterwards. */
780 CLEAR_HARD_REG_SET (set&: this_insn_sets);
781 note_stores (insn, mark_set_regs, &this_insn_sets);
782 hard_regs_saved &= ~this_insn_sets;
783 }
784
785 if (code == CALL_INSN
786 && ! SIBLING_CALL_P (insn)
787 && ! find_reg_note (insn, REG_NORETURN, NULL))
788 {
789 unsigned regno;
790 HARD_REG_SET hard_regs_to_save;
791 reg_set_iterator rsi;
792 rtx cheap;
793
794 cheap = find_reg_note (insn, REG_RETURNED, NULL);
795 if (cheap)
796 cheap = XEXP (cheap, 0);
797
798 /* Use the register life information in CHAIN to compute which
799 regs are live during the call. */
800 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
801 &chain->live_throughout);
802 /* Save hard registers always in the widest mode available. */
803 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
804 if (TEST_HARD_REG_BIT (set: hard_regs_to_save, bit: regno))
805 save_mode [regno] = regno_save_mode [regno][1];
806 else
807 save_mode [regno] = VOIDmode;
808
809 /* Look through all live pseudos, mark their hard registers
810 and choose proper mode for saving. */
811 EXECUTE_IF_SET_IN_REG_SET
812 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
813 {
814 int r = reg_renumber[regno];
815 int nregs;
816 machine_mode mode;
817
818 if (r < 0 || regno_reg_rtx[regno] == cheap)
819 continue;
820 nregs = hard_regno_nregs (regno: r, PSEUDO_REGNO_MODE (regno));
821 mode = HARD_REGNO_CALLER_SAVE_MODE
822 (r, nregs, PSEUDO_REGNO_MODE (regno));
823 if (partial_subreg_p (outermode: save_mode[r], innermode: mode))
824 save_mode[r] = mode;
825 while (nregs-- > 0)
826 SET_HARD_REG_BIT (set&: hard_regs_to_save, bit: r + nregs);
827 }
828
829 /* Record all registers set in this call insn. These don't need
830 to be saved. N.B. the call insn might set a subreg of a
831 multi-hard-reg pseudo; then the pseudo is considered live
832 during the call, but the subreg that is set isn't. */
833 CLEAR_HARD_REG_SET (set&: this_insn_sets);
834 note_stores (insn, mark_set_regs, &this_insn_sets);
835
836 /* Compute which hard regs must be saved before this call. */
837 function_abi callee_abi = insn_callee_abi (insn);
838 hard_regs_to_save &= ~(fixed_reg_set
839 | this_insn_sets
840 | hard_regs_saved);
841 hard_regs_to_save &= savable_regs;
842 hard_regs_to_save &= callee_abi.full_reg_clobbers ();
843
844 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
845 if (TEST_HARD_REG_BIT (set: hard_regs_to_save, bit: regno))
846 regno += insert_save (chain, regno,
847 &hard_regs_to_save, save_mode);
848
849 /* Must recompute n_regs_saved. */
850 n_regs_saved = 0;
851 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
852 if (TEST_HARD_REG_BIT (set: hard_regs_saved, bit: regno))
853 n_regs_saved++;
854
855 if (cheap
856 && HARD_REGISTER_P (cheap)
857 && callee_abi.clobbers_reg_p (GET_MODE (cheap),
858 REGNO (cheap)))
859 {
860 rtx dest, newpat;
861 rtx pat = PATTERN (insn);
862 if (GET_CODE (pat) == PARALLEL)
863 pat = XVECEXP (pat, 0, 0);
864 dest = SET_DEST (pat);
865 /* For multiple return values dest is PARALLEL.
866 Currently we handle only single return value case. */
867 if (REG_P (dest))
868 {
869 newpat = gen_rtx_SET (cheap, copy_rtx (dest));
870 chain = insert_one_insn (chain, 0, -1, newpat);
871 }
872 }
873 }
874 last = chain;
875 }
876 else if (DEBUG_INSN_P (insn) && n_regs_saved)
877 mark_referenced_regs (&PATTERN (insn),
878 mark: replace_reg_with_saved_mem,
879 mark_arg: save_mode);
880
881 if (chain->next == 0 || chain->next->block != chain->block)
882 {
883 int regno;
884 /* At the end of the basic block, we must restore any registers that
885 remain saved. If the last insn in the block is a JUMP_INSN, put
886 the restore before the insn, otherwise, put it after the insn. */
887
888 if (n_regs_saved
889 && DEBUG_INSN_P (insn)
890 && last
891 && last->block == chain->block)
892 {
893 rtx_insn *ins, *prev;
894 basic_block bb = BLOCK_FOR_INSN (insn);
895
896 /* When adding hard reg restores after a DEBUG_INSN, move
897 all notes between last real insn and this DEBUG_INSN after
898 the DEBUG_INSN, otherwise we could get code
899 -g/-g0 differences. */
900 for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
901 {
902 prev = PREV_INSN (insn: ins);
903 if (NOTE_P (ins))
904 {
905 SET_NEXT_INSN (prev) = NEXT_INSN (insn: ins);
906 SET_PREV_INSN (NEXT_INSN (insn: ins)) = prev;
907 SET_PREV_INSN (ins) = insn;
908 SET_NEXT_INSN (ins) = NEXT_INSN (insn);
909 SET_NEXT_INSN (insn) = ins;
910 if (NEXT_INSN (insn: ins))
911 SET_PREV_INSN (NEXT_INSN (insn: ins)) = ins;
912 if (BB_END (bb) == insn)
913 BB_END (bb) = ins;
914 }
915 else
916 gcc_assert (DEBUG_INSN_P (ins));
917 }
918 }
919 last = NULL;
920
921 if (n_regs_saved)
922 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
923 if (TEST_HARD_REG_BIT (set: hard_regs_saved, bit: regno))
924 regno += insert_restore (chain, JUMP_P (insn),
925 regno, MOVE_MAX_WORDS, save_mode);
926 }
927 }
928}
929
930/* Here from note_stores, or directly from save_call_clobbered_regs, when
931 an insn stores a value in a register.
932 Set the proper bit or bits in this_insn_sets. All pseudos that have
933 been assigned hard regs have had their register number changed already,
934 so we can ignore pseudos. */
935static void
936mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
937{
938 int regno, endregno, i;
939 HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
940
941 if (GET_CODE (reg) == SUBREG)
942 {
943 rtx inner = SUBREG_REG (reg);
944 if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
945 return;
946 regno = subreg_regno (reg);
947 endregno = regno + subreg_nregs (reg);
948 }
949 else if (REG_P (reg)
950 && REGNO (reg) < FIRST_PSEUDO_REGISTER)
951 {
952 regno = REGNO (reg);
953 endregno = END_REGNO (x: reg);
954 }
955 else
956 return;
957
958 for (i = regno; i < endregno; i++)
959 SET_HARD_REG_BIT (set&: *this_insn_sets, bit: i);
960}
961
962/* Here from note_stores when an insn stores a value in a register.
963 Set the proper bit or bits in the passed regset. All pseudos that have
964 been assigned hard regs have had their register number changed already,
965 so we can ignore pseudos. */
966static void
967add_stored_regs (rtx reg, const_rtx setter, void *data)
968{
969 int regno, endregno, i;
970 machine_mode mode = GET_MODE (reg);
971 int offset = 0;
972
973 if (GET_CODE (setter) == CLOBBER)
974 return;
975
976 if (GET_CODE (reg) == SUBREG
977 && REG_P (SUBREG_REG (reg))
978 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
979 {
980 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
981 GET_MODE (SUBREG_REG (reg)),
982 SUBREG_BYTE (reg),
983 GET_MODE (reg));
984 regno = REGNO (SUBREG_REG (reg)) + offset;
985 endregno = regno + subreg_nregs (reg);
986 }
987 else
988 {
989 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
990 return;
991
992 regno = REGNO (reg) + offset;
993 endregno = end_hard_regno (mode, regno);
994 }
995
996 for (i = regno; i < endregno; i++)
997 SET_REGNO_REG_SET ((regset) data, i);
998}
999
1000/* Walk X and record all referenced registers in REFERENCED_REGS. */
1001static void
1002mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
1003{
1004 enum rtx_code code = GET_CODE (*loc);
1005 const char *fmt;
1006 int i, j;
1007
1008 if (code == SET)
1009 mark_referenced_regs (loc: &SET_SRC (*loc), mark, arg);
1010 if (code == SET || code == CLOBBER)
1011 {
1012 loc = &SET_DEST (*loc);
1013 code = GET_CODE (*loc);
1014 if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
1015 || code == PC
1016 || (code == SUBREG && REG_P (SUBREG_REG (*loc))
1017 && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
1018 /* If we're setting only part of a multi-word register,
1019 we shall mark it as referenced, because the words
1020 that are not being set should be restored. */
1021 && !read_modify_subreg_p (*loc)))
1022 return;
1023 }
1024 if (code == MEM || code == SUBREG)
1025 {
1026 loc = &XEXP (*loc, 0);
1027 code = GET_CODE (*loc);
1028 }
1029
1030 if (code == REG)
1031 {
1032 int regno = REGNO (*loc);
1033 int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
1034 : reg_renumber[regno]);
1035
1036 if (hardregno >= 0)
1037 mark (loc, GET_MODE (*loc), hardregno, arg);
1038 else if (arg)
1039 /* ??? Will we ever end up with an equiv expression in a debug
1040 insn, that would have required restoring a reg, or will
1041 reload take care of it for us? */
1042 return;
1043 /* If this is a pseudo that did not get a hard register, scan its
1044 memory location, since it might involve the use of another
1045 register, which might be saved. */
1046 else if (reg_equiv_mem (regno) != 0)
1047 mark_referenced_regs (loc: &XEXP (reg_equiv_mem (regno), 0), mark, arg);
1048 else if (reg_equiv_address (regno) != 0)
1049 mark_referenced_regs (loc: &reg_equiv_address (regno), mark, arg);
1050 return;
1051 }
1052
1053 fmt = GET_RTX_FORMAT (code);
1054 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1055 {
1056 if (fmt[i] == 'e')
1057 mark_referenced_regs (loc: &XEXP (*loc, i), mark, arg);
1058 else if (fmt[i] == 'E')
1059 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
1060 mark_referenced_regs (loc: &XVECEXP (*loc, i, j), mark, arg);
1061 }
1062}
1063
1064/* Parameter function for mark_referenced_regs() that adds registers
1065 present in the insn and in equivalent mems and addresses to
1066 referenced_regs. */
1067
1068static void
1069mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
1070 machine_mode mode,
1071 int hardregno,
1072 void *arg ATTRIBUTE_UNUSED)
1073{
1074 add_to_hard_reg_set (regs: &referenced_regs, mode, regno: hardregno);
1075}
1076
1077/* Parameter function for mark_referenced_regs() that replaces
1078 registers referenced in a debug_insn that would have been restored,
1079 should it be a non-debug_insn, with their save locations. */
1080
1081static void
1082replace_reg_with_saved_mem (rtx *loc,
1083 machine_mode mode,
1084 int regno,
1085 void *arg)
1086{
1087 unsigned int i, nregs = hard_regno_nregs (regno, mode);
1088 rtx mem;
1089 machine_mode *save_mode = (machine_mode *)arg;
1090
1091 for (i = 0; i < nregs; i++)
1092 if (TEST_HARD_REG_BIT (set: hard_regs_saved, bit: regno + i))
1093 break;
1094
1095 /* If none of the registers in the range would need restoring, we're
1096 all set. */
1097 if (i == nregs)
1098 return;
1099
1100 while (++i < nregs)
1101 if (!TEST_HARD_REG_BIT (set: hard_regs_saved, bit: regno + i))
1102 break;
1103
1104 if (i == nregs
1105 && regno_save_mem[regno][nregs])
1106 {
1107 mem = copy_rtx (regno_save_mem[regno][nregs]);
1108
1109 if (nregs == hard_regno_nregs (regno, mode: save_mode[regno]))
1110 mem = adjust_address_nv (mem, save_mode[regno], 0);
1111
1112 if (GET_MODE (mem) != mode)
1113 {
1114 /* This is gen_lowpart_if_possible(), but without validating
1115 the newly-formed address. */
1116 poly_int64 offset = byte_lowpart_offset (mode, GET_MODE (mem));
1117 mem = adjust_address_nv (mem, mode, offset);
1118 }
1119 }
1120 else
1121 {
1122 mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
1123 for (i = 0; i < nregs; i++)
1124 if (TEST_HARD_REG_BIT (set: hard_regs_saved, bit: regno + i))
1125 {
1126 gcc_assert (regno_save_mem[regno + i][1]);
1127 XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
1128 }
1129 else
1130 {
1131 machine_mode smode = save_mode[regno];
1132 gcc_assert (smode != VOIDmode);
1133 if (hard_regno_nregs (regno, mode: smode) > 1)
1134 smode = mode_for_size (exact_div (a: GET_MODE_BITSIZE (mode),
1135 b: nregs),
1136 GET_MODE_CLASS (mode), 0).require ();
1137 XVECEXP (mem, 0, i) = gen_rtx_REG (smode, regno + i);
1138 }
1139 }
1140
1141 gcc_assert (GET_MODE (mem) == mode);
1142 *loc = mem;
1143}
1144
1145
1146/* Insert a sequence of insns to restore. Place these insns in front of
1147 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
1148 the maximum number of registers which should be restored during this call.
1149 It should never be less than 1 since we only work with entire registers.
1150
1151 Note that we have verified in init_caller_save that we can do this
1152 with a simple SET, so use it. Set INSN_CODE to what we save there
1153 since the address might not be valid so the insn might not be recognized.
1154 These insns will be reloaded and have register elimination done by
1155 find_reload, so we need not worry about that here.
1156
1157 Return the extra number of registers saved. */
1158
1159static int
1160insert_restore (class insn_chain *chain, int before_p, int regno,
1161 int maxrestore, machine_mode *save_mode)
1162{
1163 int i, k;
1164 rtx pat = NULL_RTX;
1165 int code;
1166 unsigned int numregs = 0;
1167 class insn_chain *new_chain;
1168 rtx mem;
1169
1170 /* A common failure mode if register status is not correct in the
1171 RTL is for this routine to be called with a REGNO we didn't
1172 expect to save. That will cause us to write an insn with a (nil)
1173 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1174 later, check for this common case here instead. This will remove
1175 one step in debugging such problems. */
1176 gcc_assert (regno_save_mem[regno][1]);
1177
1178 /* Get the pattern to emit and update our status.
1179
1180 See if we can restore `maxrestore' registers at once. Work
1181 backwards to the single register case. */
1182 for (i = maxrestore; i > 0; i--)
1183 {
1184 int j;
1185 int ok = 1;
1186
1187 if (regno_save_mem[regno][i] == 0)
1188 continue;
1189
1190 for (j = 0; j < i; j++)
1191 if (! TEST_HARD_REG_BIT (set: hard_regs_saved, bit: regno + j))
1192 {
1193 ok = 0;
1194 break;
1195 }
1196 /* Must do this one restore at a time. */
1197 if (! ok)
1198 continue;
1199
1200 numregs = i;
1201 break;
1202 }
1203
1204 mem = regno_save_mem [regno][numregs];
1205 if (save_mode [regno] != VOIDmode
1206 && save_mode [regno] != GET_MODE (mem)
1207 && numregs == hard_regno_nregs (regno, mode: save_mode [regno])
1208 /* Check that insn to restore REGNO in save_mode[regno] is
1209 correct. */
1210 && reg_save_code (reg: regno, mode: save_mode[regno]) >= 0)
1211 mem = adjust_address_nv (mem, save_mode[regno], 0);
1212 else
1213 mem = copy_rtx (mem);
1214
1215 /* Verify that the alignment of spill space is equal to or greater
1216 than required. */
1217 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1218 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1219
1220 pat = gen_rtx_SET (gen_rtx_REG (GET_MODE (mem), regno), mem);
1221 code = reg_restore_code (reg: regno, GET_MODE (mem));
1222 new_chain = insert_one_insn (chain, before_p, code, pat);
1223
1224 /* Clear status for all registers we restored. */
1225 for (k = 0; k < i; k++)
1226 {
1227 CLEAR_HARD_REG_BIT (set&: hard_regs_saved, bit: regno + k);
1228 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1229 n_regs_saved--;
1230 }
1231
1232 /* Tell our callers how many extra registers we saved/restored. */
1233 return numregs - 1;
1234}
1235
1236/* Like insert_restore above, but save registers instead. */
1237
1238static int
1239insert_save (class insn_chain *chain, int regno,
1240 HARD_REG_SET *to_save, machine_mode *save_mode)
1241{
1242 int i;
1243 unsigned int k;
1244 rtx pat = NULL_RTX;
1245 int code;
1246 unsigned int numregs = 0;
1247 class insn_chain *new_chain;
1248 rtx mem;
1249
1250 /* A common failure mode if register status is not correct in the
1251 RTL is for this routine to be called with a REGNO we didn't
1252 expect to save. That will cause us to write an insn with a (nil)
1253 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1254 later, check for this common case here. This will remove one
1255 step in debugging such problems. */
1256 gcc_assert (regno_save_mem[regno][1]);
1257
1258 /* Get the pattern to emit and update our status.
1259
1260 See if we can save several registers with a single instruction.
1261 Work backwards to the single register case. */
1262 for (i = MOVE_MAX_WORDS; i > 0; i--)
1263 {
1264 int j;
1265 int ok = 1;
1266 if (regno_save_mem[regno][i] == 0)
1267 continue;
1268
1269 for (j = 0; j < i; j++)
1270 if (! TEST_HARD_REG_BIT (set: *to_save, bit: regno + j))
1271 {
1272 ok = 0;
1273 break;
1274 }
1275 /* Must do this one save at a time. */
1276 if (! ok)
1277 continue;
1278
1279 numregs = i;
1280 break;
1281 }
1282
1283 mem = regno_save_mem [regno][numregs];
1284 if (save_mode [regno] != VOIDmode
1285 && save_mode [regno] != GET_MODE (mem)
1286 && numregs == hard_regno_nregs (regno, mode: save_mode [regno])
1287 /* Check that insn to save REGNO in save_mode[regno] is
1288 correct. */
1289 && reg_save_code (reg: regno, mode: save_mode[regno]) >= 0)
1290 mem = adjust_address_nv (mem, save_mode[regno], 0);
1291 else
1292 mem = copy_rtx (mem);
1293
1294 /* Verify that the alignment of spill space is equal to or greater
1295 than required. */
1296 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1297 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1298
1299 pat = gen_rtx_SET (mem, gen_rtx_REG (GET_MODE (mem), regno));
1300 code = reg_save_code (reg: regno, GET_MODE (mem));
1301 new_chain = insert_one_insn (chain, 1, code, pat);
1302
1303 /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
1304 for (k = 0; k < numregs; k++)
1305 {
1306 SET_HARD_REG_BIT (set&: hard_regs_saved, bit: regno + k);
1307 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1308 n_regs_saved++;
1309 }
1310
1311 /* Tell our callers how many extra registers we saved/restored. */
1312 return numregs - 1;
1313}
1314
1315/* A note_uses callback used by insert_one_insn. Add the hard-register
1316 equivalent of each REG to regset DATA. */
1317
1318static void
1319add_used_regs (rtx *loc, void *data)
1320{
1321 subrtx_iterator::array_type array;
1322 FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
1323 {
1324 const_rtx x = *iter;
1325 if (REG_P (x))
1326 {
1327 unsigned int regno = REGNO (x);
1328 if (HARD_REGISTER_NUM_P (regno))
1329 bitmap_set_range ((regset) data, regno, REG_NREGS (x));
1330 else
1331 gcc_checking_assert (reg_renumber[regno] < 0);
1332 }
1333 }
1334}
1335
1336/* Emit a new caller-save insn and set the code. */
1337static class insn_chain *
1338insert_one_insn (class insn_chain *chain, int before_p, int code, rtx pat)
1339{
1340 rtx_insn *insn = chain->insn;
1341 class insn_chain *new_chain;
1342
1343 new_chain = new_insn_chain ();
1344 if (before_p)
1345 {
1346 rtx link;
1347
1348 new_chain->prev = chain->prev;
1349 if (new_chain->prev != 0)
1350 new_chain->prev->next = new_chain;
1351 else
1352 reload_insn_chain = new_chain;
1353
1354 chain->prev = new_chain;
1355 new_chain->next = chain;
1356 new_chain->insn = emit_insn_before (pat, insn);
1357 /* ??? It would be nice if we could exclude the already / still saved
1358 registers from the live sets. */
1359 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1360 note_uses (&PATTERN (insn: chain->insn), add_used_regs,
1361 &new_chain->live_throughout);
1362 /* If CHAIN->INSN is a call, then the registers which contain
1363 the arguments to the function are live in the new insn. */
1364 if (CALL_P (chain->insn))
1365 for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
1366 link != NULL_RTX;
1367 link = XEXP (link, 1))
1368 note_uses (&XEXP (link, 0), add_used_regs,
1369 &new_chain->live_throughout);
1370
1371 CLEAR_REG_SET (&new_chain->dead_or_set);
1372 if (chain->insn == BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
1373 BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
1374 }
1375 else
1376 {
1377 new_chain->next = chain->next;
1378 if (new_chain->next != 0)
1379 new_chain->next->prev = new_chain;
1380 chain->next = new_chain;
1381 new_chain->prev = chain;
1382 new_chain->insn = emit_insn_after (pat, insn);
1383 /* ??? It would be nice if we could exclude the already / still saved
1384 registers from the live sets, and observe REG_UNUSED notes. */
1385 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1386 /* Registers that are set in CHAIN->INSN live in the new insn.
1387 (Unless there is a REG_UNUSED note for them, but we don't
1388 look for them here.) */
1389 note_stores (chain->insn, add_stored_regs, &new_chain->live_throughout);
1390 CLEAR_REG_SET (&new_chain->dead_or_set);
1391 if (chain->insn == BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
1392 BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
1393 }
1394 new_chain->block = chain->block;
1395 new_chain->is_caller_save_insn = 1;
1396
1397 INSN_CODE (new_chain->insn) = code;
1398 return new_chain;
1399}
1400#include "gt-caller-save.h"
1401

source code of gcc/caller-save.cc