1/* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/* This file contains optimizer of the control flow. The main entry point is
21 cleanup_cfg. Following optimizations are performed:
22
23 - Unreachable blocks removal
24 - Edge forwarding (edge to the forwarder block is forwarded to its
25 successor. Simplification of the branch instruction is performed by
26 underlying infrastructure so branch can be converted to simplejump or
27 eliminated).
28 - Cross jumping (tail merging)
29 - Conditional jump-around-simplejump simplification
30 - Basic block merging. */
31
32#include "config.h"
33#include "system.h"
34#include "coretypes.h"
35#include "backend.h"
36#include "target.h"
37#include "rtl.h"
38#include "tree.h"
39#include "cfghooks.h"
40#include "df.h"
41#include "memmodel.h"
42#include "tm_p.h"
43#include "insn-config.h"
44#include "emit-rtl.h"
45#include "cselib.h"
46#include "tree-pass.h"
47#include "cfgloop.h"
48#include "cfgrtl.h"
49#include "cfganal.h"
50#include "cfgbuild.h"
51#include "cfgcleanup.h"
52#include "dce.h"
53#include "dbgcnt.h"
54#include "rtl-iter.h"
55#include "regs.h"
56#include "function-abi.h"
57
58#define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
59
60/* Set to true when we are running first pass of try_optimize_cfg loop. */
61static bool first_pass;
62
63/* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
64static bool crossjumps_occurred;
65
66/* Set to true if we couldn't run an optimization due to stale liveness
67 information; we should run df_analyze to enable more opportunities. */
68static bool block_was_dirty;
69
70static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
71static bool try_crossjump_bb (int, basic_block);
72static bool outgoing_edges_match (int, basic_block, basic_block);
73static enum replace_direction old_insns_match_p (int, rtx_insn *, rtx_insn *);
74
75static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
76static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
77static bool try_optimize_cfg (int);
78static bool try_simplify_condjump (basic_block);
79static bool try_forward_edges (int, basic_block);
80static edge thread_jump (edge, basic_block);
81static bool mark_effect (rtx, bitmap);
82static void notice_new_block (basic_block);
83static void update_forwarder_flag (basic_block);
84static void merge_memattrs (rtx, rtx);
85
86/* Set flags for newly created block. */
87
88static void
89notice_new_block (basic_block bb)
90{
91 if (!bb)
92 return;
93
94 if (forwarder_block_p (bb))
95 bb->flags |= BB_FORWARDER_BLOCK;
96}
97
98/* Recompute forwarder flag after block has been modified. */
99
100static void
101update_forwarder_flag (basic_block bb)
102{
103 if (forwarder_block_p (bb))
104 bb->flags |= BB_FORWARDER_BLOCK;
105 else
106 bb->flags &= ~BB_FORWARDER_BLOCK;
107}
108
109/* Simplify a conditional jump around an unconditional jump.
110 Return true if something changed. */
111
112static bool
113try_simplify_condjump (basic_block cbranch_block)
114{
115 basic_block jump_block, jump_dest_block, cbranch_dest_block;
116 edge cbranch_jump_edge, cbranch_fallthru_edge;
117 rtx_insn *cbranch_insn;
118
119 /* Verify that there are exactly two successors. */
120 if (EDGE_COUNT (cbranch_block->succs) != 2)
121 return false;
122
123 /* Verify that we've got a normal conditional branch at the end
124 of the block. */
125 cbranch_insn = BB_END (cbranch_block);
126 if (!any_condjump_p (cbranch_insn))
127 return false;
128
129 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
130 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
131
132 /* The next block must not have multiple predecessors, must not
133 be the last block in the function, and must contain just the
134 unconditional jump. */
135 jump_block = cbranch_fallthru_edge->dest;
136 if (!single_pred_p (bb: jump_block)
137 || jump_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
138 || !FORWARDER_BLOCK_P (jump_block))
139 return false;
140 jump_dest_block = single_succ (bb: jump_block);
141
142 /* If we are partitioning hot/cold basic blocks, we don't want to
143 mess up unconditional or indirect jumps that cross between hot
144 and cold sections.
145
146 Basic block partitioning may result in some jumps that appear to
147 be optimizable (or blocks that appear to be mergeable), but which really
148 must be left untouched (they are required to make it safely across
149 partition boundaries). See the comments at the top of
150 bb-reorder.cc:partition_hot_cold_basic_blocks for complete details. */
151
152 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
153 || (cbranch_jump_edge->flags & EDGE_CROSSING))
154 return false;
155
156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block = cbranch_jump_edge->dest;
159
160 if (cbranch_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
161 || jump_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
162 || !can_fallthru (jump_block, cbranch_dest_block))
163 return false;
164
165 /* Invert the conditional branch. */
166 if (!invert_jump (as_a <rtx_jump_insn *> (p: cbranch_insn),
167 block_label (jump_dest_block), 0))
168 return false;
169
170 if (dump_file)
171 fprintf (stream: dump_file, format: "Simplifying condjump %i around jump %i\n",
172 INSN_UID (insn: cbranch_insn), INSN_UID (BB_END (jump_block)));
173
174 /* Success. Update the CFG to match. Note that after this point
175 the edge variable names appear backwards; the redirection is done
176 this way to preserve edge profile data. */
177 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
178 cbranch_dest_block);
179 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
180 jump_dest_block);
181 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
182 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
183 update_br_prob_note (cbranch_block);
184
185 /* Delete the block with the unconditional jump, and clean up the mess. */
186 delete_basic_block (jump_block);
187 tidy_fallthru_edge (cbranch_jump_edge);
188 update_forwarder_flag (bb: cbranch_block);
189
190 return true;
191}
192
193/* Attempt to prove that operation is NOOP using CSElib or mark the effect
194 on register. Used by jump threading. */
195
196static bool
197mark_effect (rtx exp, regset nonequal)
198{
199 rtx dest;
200 switch (GET_CODE (exp))
201 {
202 /* In case we do clobber the register, mark it as equal, as we know the
203 value is dead so it don't have to match. */
204 case CLOBBER:
205 dest = XEXP (exp, 0);
206 if (REG_P (dest))
207 bitmap_clear_range (nonequal, REGNO (dest), REG_NREGS (dest));
208 return false;
209
210 case SET:
211 if (cselib_redundant_set_p (exp))
212 return false;
213 dest = SET_DEST (exp);
214 if (dest == pc_rtx)
215 return false;
216 if (!REG_P (dest))
217 return true;
218 bitmap_set_range (nonequal, REGNO (dest), REG_NREGS (dest));
219 return false;
220
221 default:
222 return false;
223 }
224}
225
226/* Return true if X contains a register in NONEQUAL. */
227static bool
228mentions_nonequal_regs (const_rtx x, regset nonequal)
229{
230 subrtx_iterator::array_type array;
231 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
232 {
233 const_rtx x = *iter;
234 if (REG_P (x))
235 {
236 unsigned int end_regno = END_REGNO (x);
237 for (unsigned int regno = REGNO (x); regno < end_regno; ++regno)
238 if (REGNO_REG_SET_P (nonequal, regno))
239 return true;
240 }
241 }
242 return false;
243}
244
245/* Attempt to prove that the basic block B will have no side effects and
246 always continues in the same edge if reached via E. Return the edge
247 if exist, NULL otherwise. */
248
249static edge
250thread_jump (edge e, basic_block b)
251{
252 rtx set1, set2, cond1, cond2;
253 rtx_insn *insn;
254 enum rtx_code code1, code2, reversed_code2;
255 bool reverse1 = false;
256 unsigned i;
257 regset nonequal;
258 bool failed = false;
259
260 /* Jump threading may cause fixup_partitions to introduce new crossing edges,
261 which is not allowed after reload. */
262 gcc_checking_assert (!reload_completed || !crtl->has_bb_partition);
263
264 if (b->flags & BB_NONTHREADABLE_BLOCK)
265 return NULL;
266
267 /* At the moment, we do handle only conditional jumps, but later we may
268 want to extend this code to tablejumps and others. */
269 if (EDGE_COUNT (e->src->succs) != 2)
270 return NULL;
271 if (EDGE_COUNT (b->succs) != 2)
272 {
273 b->flags |= BB_NONTHREADABLE_BLOCK;
274 return NULL;
275 }
276
277 /* Second branch must end with onlyjump, as we will eliminate the jump. */
278 if (!any_condjump_p (BB_END (e->src)))
279 return NULL;
280
281 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
282 {
283 b->flags |= BB_NONTHREADABLE_BLOCK;
284 return NULL;
285 }
286
287 set1 = pc_set (BB_END (e->src));
288 set2 = pc_set (BB_END (b));
289 if (((e->flags & EDGE_FALLTHRU) != 0)
290 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
291 reverse1 = true;
292
293 cond1 = XEXP (SET_SRC (set1), 0);
294 cond2 = XEXP (SET_SRC (set2), 0);
295 if (reverse1)
296 code1 = reversed_comparison_code (cond1, BB_END (e->src));
297 else
298 code1 = GET_CODE (cond1);
299
300 code2 = GET_CODE (cond2);
301 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
302
303 if (!comparison_dominates_p (code1, code2)
304 && !comparison_dominates_p (code1, reversed_code2))
305 return NULL;
306
307 /* Ensure that the comparison operators are equivalent.
308 ??? This is far too pessimistic. We should allow swapped operands,
309 different CCmodes, or for example comparisons for interval, that
310 dominate even when operands are not equivalent. */
311 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
312 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
313 return NULL;
314
315 /* Punt if BB_END (e->src) is doloop-like conditional jump that modifies
316 the registers used in cond1. */
317 if (modified_in_p (cond1, BB_END (e->src)))
318 return NULL;
319
320 /* Short circuit cases where block B contains some side effects, as we can't
321 safely bypass it. */
322 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
323 insn = NEXT_INSN (insn))
324 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
325 {
326 b->flags |= BB_NONTHREADABLE_BLOCK;
327 return NULL;
328 }
329
330 cselib_init (0);
331
332 /* First process all values computed in the source basic block. */
333 for (insn = NEXT_INSN (BB_HEAD (e->src));
334 insn != NEXT_INSN (BB_END (e->src));
335 insn = NEXT_INSN (insn))
336 if (INSN_P (insn))
337 cselib_process_insn (insn);
338
339 nonequal = BITMAP_ALLOC (NULL);
340 CLEAR_REG_SET (nonequal);
341
342 /* Now assume that we've continued by the edge E to B and continue
343 processing as if it were same basic block.
344 Our goal is to prove that whole block is an NOOP. */
345
346 for (insn = NEXT_INSN (BB_HEAD (b));
347 insn != NEXT_INSN (BB_END (b)) && !failed;
348 insn = NEXT_INSN (insn))
349 {
350 /* cond2 must not mention any register that is not equal to the
351 former block. Check this before processing that instruction,
352 as BB_END (b) could contain also clobbers. */
353 if (insn == BB_END (b)
354 && mentions_nonequal_regs (x: cond2, nonequal))
355 goto failed_exit;
356
357 if (INSN_P (insn))
358 {
359 rtx pat = PATTERN (insn);
360
361 if (GET_CODE (pat) == PARALLEL)
362 {
363 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
364 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
365 }
366 else
367 failed |= mark_effect (exp: pat, nonequal);
368 }
369
370 cselib_process_insn (insn);
371 }
372
373 /* Later we should clear nonequal of dead registers. So far we don't
374 have life information in cfg_cleanup. */
375 if (failed)
376 {
377 b->flags |= BB_NONTHREADABLE_BLOCK;
378 goto failed_exit;
379 }
380
381 if (!REG_SET_EMPTY_P (nonequal))
382 goto failed_exit;
383
384 BITMAP_FREE (nonequal);
385 cselib_finish ();
386 if ((comparison_dominates_p (code1, code2) != 0)
387 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
388 return BRANCH_EDGE (b);
389 else
390 return FALLTHRU_EDGE (b);
391
392failed_exit:
393 BITMAP_FREE (nonequal);
394 cselib_finish ();
395 return NULL;
396}
397
398/* Attempt to forward edges leaving basic block B.
399 Return true if successful. */
400
401static bool
402try_forward_edges (int mode, basic_block b)
403{
404 bool changed = false;
405 edge_iterator ei;
406 edge e, *threaded_edges = NULL;
407
408 for (ei = ei_start (b->succs); (e = ei_safe_edge (i: ei)); )
409 {
410 basic_block target, first;
411 location_t goto_locus;
412 int counter;
413 bool threaded = false;
414 int nthreaded_edges = 0;
415 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
416 bool new_target_threaded = false;
417
418 /* Skip complex edges because we don't know how to update them.
419
420 Still handle fallthru edges, as we can succeed to forward fallthru
421 edge to the same place as the branch edge of conditional branch
422 and turn conditional branch to an unconditional branch. */
423 if (e->flags & EDGE_COMPLEX)
424 {
425 ei_next (i: &ei);
426 continue;
427 }
428
429 target = first = e->dest;
430 counter = NUM_FIXED_BLOCKS;
431 goto_locus = e->goto_locus;
432
433 while (counter < n_basic_blocks_for_fn (cfun))
434 {
435 basic_block new_target = NULL;
436 may_thread |= (target->flags & BB_MODIFIED) != 0;
437
438 if (FORWARDER_BLOCK_P (target)
439 && single_succ (bb: target) != EXIT_BLOCK_PTR_FOR_FN (cfun))
440 {
441 /* Bypass trivial infinite loops. */
442 new_target = single_succ (bb: target);
443 if (target == new_target)
444 counter = n_basic_blocks_for_fn (cfun);
445 else if (!optimize)
446 {
447 /* When not optimizing, ensure that edges or forwarder
448 blocks with different locus are not optimized out. */
449 location_t new_locus = single_succ_edge (bb: target)->goto_locus;
450 location_t locus = goto_locus;
451
452 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
453 && LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
454 && new_locus != locus)
455 new_target = NULL;
456 else
457 {
458 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
459 locus = new_locus;
460
461 rtx_insn *last = BB_END (target);
462 if (DEBUG_INSN_P (last))
463 last = prev_nondebug_insn (last);
464 if (last && INSN_P (last))
465 new_locus = INSN_LOCATION (insn: last);
466 else
467 new_locus = UNKNOWN_LOCATION;
468
469 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
470 && LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
471 && new_locus != locus)
472 new_target = NULL;
473 else
474 {
475 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
476 locus = new_locus;
477
478 goto_locus = locus;
479 }
480 }
481 }
482 }
483
484 /* Allow to thread only over one edge at time to simplify updating
485 of probabilities. */
486 else if ((mode & CLEANUP_THREADING) && may_thread)
487 {
488 edge t = thread_jump (e, b: target);
489 if (t)
490 {
491 if (!threaded_edges)
492 threaded_edges = XNEWVEC (edge,
493 n_basic_blocks_for_fn (cfun));
494 else
495 {
496 int i;
497
498 /* Detect an infinite loop across blocks not
499 including the start block. */
500 for (i = 0; i < nthreaded_edges; ++i)
501 if (threaded_edges[i] == t)
502 break;
503 if (i < nthreaded_edges)
504 {
505 counter = n_basic_blocks_for_fn (cfun);
506 break;
507 }
508 }
509
510 /* Detect an infinite loop across the start block. */
511 if (t->dest == b)
512 break;
513
514 gcc_assert (nthreaded_edges
515 < (n_basic_blocks_for_fn (cfun)
516 - NUM_FIXED_BLOCKS));
517 threaded_edges[nthreaded_edges++] = t;
518
519 new_target = t->dest;
520 new_target_threaded = true;
521 }
522 }
523
524 if (!new_target)
525 break;
526
527 counter++;
528 /* Do not turn non-crossing jump to crossing. Depending on target
529 it may require different instruction pattern. */
530 if ((e->flags & EDGE_CROSSING)
531 || BB_PARTITION (first) == BB_PARTITION (new_target))
532 {
533 target = new_target;
534 threaded |= new_target_threaded;
535 }
536 }
537
538 if (counter >= n_basic_blocks_for_fn (cfun))
539 {
540 if (dump_file)
541 fprintf (stream: dump_file, format: "Infinite loop in BB %i.\n",
542 target->index);
543 }
544 else if (target == first)
545 ; /* We didn't do anything. */
546 else
547 {
548 /* Save the values now, as the edge may get removed. */
549 profile_count edge_count = e->count ();
550 int n = 0;
551
552 e->goto_locus = goto_locus;
553
554 /* Don't force if target is exit block. */
555 if (threaded && target != EXIT_BLOCK_PTR_FOR_FN (cfun))
556 {
557 notice_new_block (bb: redirect_edge_and_branch_force (e, target));
558 if (dump_file)
559 fprintf (stream: dump_file, format: "Conditionals threaded.\n");
560 }
561 else if (!redirect_edge_and_branch (e, target))
562 {
563 if (dump_file)
564 fprintf (stream: dump_file,
565 format: "Forwarding edge %i->%i to %i failed.\n",
566 b->index, e->dest->index, target->index);
567 ei_next (i: &ei);
568 continue;
569 }
570
571 /* We successfully forwarded the edge. Now update profile
572 data: for each edge we traversed in the chain, remove
573 the original edge's execution count. */
574 do
575 {
576 edge t;
577
578 if (!single_succ_p (bb: first))
579 {
580 gcc_assert (n < nthreaded_edges);
581 t = threaded_edges [n++];
582 gcc_assert (t->src == first);
583 update_bb_profile_for_threading (first, edge_count, t);
584 update_br_prob_note (first);
585 }
586 else
587 {
588 first->count -= edge_count;
589 /* It is possible that as the result of
590 threading we've removed edge as it is
591 threaded to the fallthru edge. Avoid
592 getting out of sync. */
593 if (n < nthreaded_edges
594 && first == threaded_edges [n]->src)
595 n++;
596 t = single_succ_edge (bb: first);
597 }
598
599 first = t->dest;
600 }
601 while (first != target);
602
603 changed = true;
604 continue;
605 }
606 ei_next (i: &ei);
607 }
608
609 free (ptr: threaded_edges);
610 return changed;
611}
612
613
614/* Blocks A and B are to be merged into a single block. A has no incoming
615 fallthru edge, so it can be moved before B without adding or modifying
616 any jumps (aside from the jump from A to B). */
617
618static void
619merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
620{
621 rtx_insn *barrier;
622
623 /* If we are partitioning hot/cold basic blocks, we don't want to
624 mess up unconditional or indirect jumps that cross between hot
625 and cold sections.
626
627 Basic block partitioning may result in some jumps that appear to
628 be optimizable (or blocks that appear to be mergeable), but which really
629 must be left untouched (they are required to make it safely across
630 partition boundaries). See the comments at the top of
631 bb-reorder.cc:partition_hot_cold_basic_blocks for complete details. */
632
633 if (BB_PARTITION (a) != BB_PARTITION (b))
634 return;
635
636 barrier = next_nonnote_insn (BB_END (a));
637 gcc_assert (BARRIER_P (barrier));
638 delete_insn (barrier);
639
640 /* Scramble the insn chain. */
641 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
642 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
643 df_set_bb_dirty (a);
644
645 if (dump_file)
646 fprintf (stream: dump_file, format: "Moved block %d before %d and merged.\n",
647 a->index, b->index);
648
649 /* Swap the records for the two blocks around. */
650
651 unlink_block (a);
652 link_block (a, b->prev_bb);
653
654 /* Now blocks A and B are contiguous. Merge them. */
655 merge_blocks (a, b);
656}
657
658/* Blocks A and B are to be merged into a single block. B has no outgoing
659 fallthru edge, so it can be moved after A without adding or modifying
660 any jumps (aside from the jump from A to B). */
661
662static void
663merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
664{
665 rtx_insn *barrier, *real_b_end;
666 rtx_insn *label;
667 rtx_jump_table_data *table;
668
669 /* If we are partitioning hot/cold basic blocks, we don't want to
670 mess up unconditional or indirect jumps that cross between hot
671 and cold sections.
672
673 Basic block partitioning may result in some jumps that appear to
674 be optimizable (or blocks that appear to be mergeable), but which really
675 must be left untouched (they are required to make it safely across
676 partition boundaries). See the comments at the top of
677 bb-reorder.cc:partition_hot_cold_basic_blocks for complete details. */
678
679 if (BB_PARTITION (a) != BB_PARTITION (b))
680 return;
681
682 real_b_end = BB_END (b);
683
684 /* If there is a jump table following block B temporarily add the jump table
685 to block B so that it will also be moved to the correct location. */
686 if (tablejump_p (BB_END (b), &label, &table)
687 && prev_active_insn (label) == BB_END (b))
688 {
689 BB_END (b) = table;
690 }
691
692 /* There had better have been a barrier there. Delete it. */
693 barrier = NEXT_INSN (BB_END (b));
694 if (barrier && BARRIER_P (barrier))
695 delete_insn (barrier);
696
697
698 /* Scramble the insn chain. */
699 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
700
701 /* Restore the real end of b. */
702 BB_END (b) = real_b_end;
703
704 if (dump_file)
705 fprintf (stream: dump_file, format: "Moved block %d after %d and merged.\n",
706 b->index, a->index);
707
708 /* Now blocks A and B are contiguous. Merge them. */
709 merge_blocks (a, b);
710}
711
712/* Attempt to merge basic blocks that are potentially non-adjacent.
713 Return NULL iff the attempt failed, otherwise return basic block
714 where cleanup_cfg should continue. Because the merging commonly
715 moves basic block away or introduces another optimization
716 possibility, return basic block just before B so cleanup_cfg don't
717 need to iterate.
718
719 It may be good idea to return basic block before C in the case
720 C has been moved after B and originally appeared earlier in the
721 insn sequence, but we have no information available about the
722 relative ordering of these two. Hopefully it is not too common. */
723
724static basic_block
725merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
726{
727 basic_block next;
728
729 /* If we are partitioning hot/cold basic blocks, we don't want to
730 mess up unconditional or indirect jumps that cross between hot
731 and cold sections.
732
733 Basic block partitioning may result in some jumps that appear to
734 be optimizable (or blocks that appear to be mergeable), but which really
735 must be left untouched (they are required to make it safely across
736 partition boundaries). See the comments at the top of
737 bb-reorder.cc:partition_hot_cold_basic_blocks for complete details. */
738
739 if (BB_PARTITION (b) != BB_PARTITION (c))
740 return NULL;
741
742 /* If B has a fallthru edge to C, no need to move anything. */
743 if (e->flags & EDGE_FALLTHRU)
744 {
745 int b_index = b->index, c_index = c->index;
746
747 /* Protect the loop latches. */
748 if (current_loops && c->loop_father->latch == c)
749 return NULL;
750
751 merge_blocks (b, c);
752 update_forwarder_flag (bb: b);
753
754 if (dump_file)
755 fprintf (stream: dump_file, format: "Merged %d and %d without moving.\n",
756 b_index, c_index);
757
758 return b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? b : b->prev_bb;
759 }
760
761 /* Otherwise we will need to move code around. Do that only if expensive
762 transformations are allowed. */
763 else if (mode & CLEANUP_EXPENSIVE)
764 {
765 edge tmp_edge, b_fallthru_edge;
766 bool c_has_outgoing_fallthru;
767 bool b_has_incoming_fallthru;
768
769 /* Avoid overactive code motion, as the forwarder blocks should be
770 eliminated by edge redirection instead. One exception might have
771 been if B is a forwarder block and C has no fallthru edge, but
772 that should be cleaned up by bb-reorder instead. */
773 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
774 return NULL;
775
776 /* We must make sure to not munge nesting of lexical blocks,
777 and loop notes. This is done by squeezing out all the notes
778 and leaving them there to lie. Not ideal, but functional. */
779
780 tmp_edge = find_fallthru_edge (edges: c->succs);
781 c_has_outgoing_fallthru = (tmp_edge != NULL);
782
783 tmp_edge = find_fallthru_edge (edges: b->preds);
784 b_has_incoming_fallthru = (tmp_edge != NULL);
785 b_fallthru_edge = tmp_edge;
786 next = b->prev_bb;
787 if (next == c)
788 next = next->prev_bb;
789
790 /* Otherwise, we're going to try to move C after B. If C does
791 not have an outgoing fallthru, then it can be moved
792 immediately after B without introducing or modifying jumps. */
793 if (! c_has_outgoing_fallthru)
794 {
795 merge_blocks_move_successor_nojumps (a: b, b: c);
796 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
797 }
798
799 /* If B does not have an incoming fallthru, then it can be moved
800 immediately before C without introducing or modifying jumps.
801 C cannot be the first block, so we do not have to worry about
802 accessing a non-existent block. */
803
804 if (b_has_incoming_fallthru)
805 {
806 basic_block bb;
807
808 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
809 return NULL;
810 bb = force_nonfallthru (b_fallthru_edge);
811 if (bb)
812 notice_new_block (bb);
813 }
814
815 merge_blocks_move_predecessor_nojumps (a: b, b: c);
816 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
817 }
818
819 return NULL;
820}
821
822
823/* Removes the memory attributes of MEM expression
824 if they are not equal. */
825
826static void
827merge_memattrs (rtx x, rtx y)
828{
829 int i;
830 int j;
831 enum rtx_code code;
832 const char *fmt;
833
834 if (x == y)
835 return;
836 if (x == 0 || y == 0)
837 return;
838
839 code = GET_CODE (x);
840
841 if (code != GET_CODE (y))
842 return;
843
844 if (GET_MODE (x) != GET_MODE (y))
845 return;
846
847 if (code == MEM && !mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
848 {
849 if (! MEM_ATTRS (x))
850 MEM_ATTRS (y) = 0;
851 else if (! MEM_ATTRS (y))
852 MEM_ATTRS (x) = 0;
853 else
854 {
855 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
856 {
857 set_mem_alias_set (x, 0);
858 set_mem_alias_set (y, 0);
859 }
860
861 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
862 {
863 set_mem_expr (x, 0);
864 set_mem_expr (y, 0);
865 clear_mem_offset (x);
866 clear_mem_offset (y);
867 }
868 else if (MEM_OFFSET_KNOWN_P (x) != MEM_OFFSET_KNOWN_P (y)
869 || (MEM_OFFSET_KNOWN_P (x)
870 && maybe_ne (MEM_OFFSET (x), MEM_OFFSET (y))))
871 {
872 clear_mem_offset (x);
873 clear_mem_offset (y);
874 }
875
876 if (!MEM_SIZE_KNOWN_P (x))
877 clear_mem_size (y);
878 else if (!MEM_SIZE_KNOWN_P (y))
879 clear_mem_size (x);
880 else if (known_le (MEM_SIZE (x), MEM_SIZE (y)))
881 set_mem_size (x, MEM_SIZE (y));
882 else if (known_le (MEM_SIZE (y), MEM_SIZE (x)))
883 set_mem_size (y, MEM_SIZE (x));
884 else
885 {
886 /* The sizes aren't ordered, so we can't merge them. */
887 clear_mem_size (x);
888 clear_mem_size (y);
889 }
890
891 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
892 set_mem_align (y, MEM_ALIGN (x));
893 }
894 }
895 if (code == MEM)
896 {
897 if (MEM_READONLY_P (x) != MEM_READONLY_P (y))
898 {
899 MEM_READONLY_P (x) = 0;
900 MEM_READONLY_P (y) = 0;
901 }
902 if (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y))
903 {
904 MEM_NOTRAP_P (x) = 0;
905 MEM_NOTRAP_P (y) = 0;
906 }
907 if (MEM_VOLATILE_P (x) != MEM_VOLATILE_P (y))
908 {
909 MEM_VOLATILE_P (x) = 1;
910 MEM_VOLATILE_P (y) = 1;
911 }
912 }
913
914 fmt = GET_RTX_FORMAT (code);
915 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
916 {
917 switch (fmt[i])
918 {
919 case 'E':
920 /* Two vectors must have the same length. */
921 if (XVECLEN (x, i) != XVECLEN (y, i))
922 return;
923
924 for (j = 0; j < XVECLEN (x, i); j++)
925 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
926
927 break;
928
929 case 'e':
930 merge_memattrs (XEXP (x, i), XEXP (y, i));
931 }
932 }
933 return;
934}
935
936
937 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
938 different single sets S1 and S2. */
939
940static bool
941equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
942{
943 int i;
944 rtx e1, e2;
945
946 if (p1 == s1 && p2 == s2)
947 return true;
948
949 if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
950 return false;
951
952 if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
953 return false;
954
955 for (i = 0; i < XVECLEN (p1, 0); i++)
956 {
957 e1 = XVECEXP (p1, 0, i);
958 e2 = XVECEXP (p2, 0, i);
959 if (e1 == s1 && e2 == s2)
960 continue;
961 if (reload_completed
962 ? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
963 continue;
964
965 return false;
966 }
967
968 return true;
969}
970
971
972/* NOTE1 is the REG_EQUAL note, if any, attached to an insn
973 that is a single_set with a SET_SRC of SRC1. Similarly
974 for NOTE2/SRC2.
975
976 So effectively NOTE1/NOTE2 are an alternate form of
977 SRC1/SRC2 respectively.
978
979 Return nonzero if SRC1 or NOTE1 has the same constant
980 integer value as SRC2 or NOTE2. Else return zero. */
981static int
982values_equal_p (rtx note1, rtx note2, rtx src1, rtx src2)
983{
984 if (note1
985 && note2
986 && CONST_INT_P (XEXP (note1, 0))
987 && rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0)))
988 return 1;
989
990 if (!note1
991 && !note2
992 && CONST_INT_P (src1)
993 && CONST_INT_P (src2)
994 && rtx_equal_p (src1, src2))
995 return 1;
996
997 if (note1
998 && CONST_INT_P (src2)
999 && rtx_equal_p (XEXP (note1, 0), src2))
1000 return 1;
1001
1002 if (note2
1003 && CONST_INT_P (src1)
1004 && rtx_equal_p (XEXP (note2, 0), src1))
1005 return 1;
1006
1007 return 0;
1008}
1009
1010/* Examine register notes on I1 and I2 and return:
1011 - dir_forward if I1 can be replaced by I2, or
1012 - dir_backward if I2 can be replaced by I1, or
1013 - dir_both if both are the case. */
1014
1015static enum replace_direction
1016can_replace_by (rtx_insn *i1, rtx_insn *i2)
1017{
1018 rtx s1, s2, d1, d2, src1, src2, note1, note2;
1019 bool c1, c2;
1020
1021 /* Check for 2 sets. */
1022 s1 = single_set (insn: i1);
1023 s2 = single_set (insn: i2);
1024 if (s1 == NULL_RTX || s2 == NULL_RTX)
1025 return dir_none;
1026
1027 /* Check that the 2 sets set the same dest. */
1028 d1 = SET_DEST (s1);
1029 d2 = SET_DEST (s2);
1030 if (!(reload_completed
1031 ? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
1032 return dir_none;
1033
1034 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1035 set dest to the same value. */
1036 note1 = find_reg_equal_equiv_note (i1);
1037 note2 = find_reg_equal_equiv_note (i2);
1038
1039 src1 = SET_SRC (s1);
1040 src2 = SET_SRC (s2);
1041
1042 if (!values_equal_p (note1, note2, src1, src2))
1043 return dir_none;
1044
1045 if (!equal_different_set_p (p1: PATTERN (insn: i1), s1, p2: PATTERN (insn: i2), s2))
1046 return dir_none;
1047
1048 /* Although the 2 sets set dest to the same value, we cannot replace
1049 (set (dest) (const_int))
1050 by
1051 (set (dest) (reg))
1052 because we don't know if the reg is live and has the same value at the
1053 location of replacement. */
1054 c1 = CONST_INT_P (src1);
1055 c2 = CONST_INT_P (src2);
1056 if (c1 && c2)
1057 return dir_both;
1058 else if (c2)
1059 return dir_forward;
1060 else if (c1)
1061 return dir_backward;
1062
1063 return dir_none;
1064}
1065
1066/* Merges directions A and B. */
1067
1068static enum replace_direction
1069merge_dir (enum replace_direction a, enum replace_direction b)
1070{
1071 /* Implements the following table:
1072 |bo fw bw no
1073 ---+-----------
1074 bo |bo fw bw no
1075 fw |-- fw no no
1076 bw |-- -- bw no
1077 no |-- -- -- no. */
1078
1079 if (a == b)
1080 return a;
1081
1082 if (a == dir_both)
1083 return b;
1084 if (b == dir_both)
1085 return a;
1086
1087 return dir_none;
1088}
1089
1090/* Array of flags indexed by reg note kind, true if the given
1091 reg note is CFA related. */
1092static const bool reg_note_cfa_p[] = {
1093#undef REG_CFA_NOTE
1094#define DEF_REG_NOTE(NAME) false,
1095#define REG_CFA_NOTE(NAME) true,
1096#include "reg-notes.def"
1097#undef REG_CFA_NOTE
1098#undef DEF_REG_NOTE
1099 false
1100};
1101
1102/* Return true if I1 and I2 have identical CFA notes (the same order
1103 and equivalent content). */
1104
1105static bool
1106insns_have_identical_cfa_notes (rtx_insn *i1, rtx_insn *i2)
1107{
1108 rtx n1, n2;
1109 for (n1 = REG_NOTES (i1), n2 = REG_NOTES (i2); ;
1110 n1 = XEXP (n1, 1), n2 = XEXP (n2, 1))
1111 {
1112 /* Skip over reg notes not related to CFI information. */
1113 while (n1 && !reg_note_cfa_p[REG_NOTE_KIND (n1)])
1114 n1 = XEXP (n1, 1);
1115 while (n2 && !reg_note_cfa_p[REG_NOTE_KIND (n2)])
1116 n2 = XEXP (n2, 1);
1117 if (n1 == NULL_RTX && n2 == NULL_RTX)
1118 return true;
1119 if (n1 == NULL_RTX || n2 == NULL_RTX)
1120 return false;
1121 if (XEXP (n1, 0) == XEXP (n2, 0))
1122 ;
1123 else if (XEXP (n1, 0) == NULL_RTX || XEXP (n2, 0) == NULL_RTX)
1124 return false;
1125 else if (!(reload_completed
1126 ? rtx_renumbered_equal_p (XEXP (n1, 0), XEXP (n2, 0))
1127 : rtx_equal_p (XEXP (n1, 0), XEXP (n2, 0))))
1128 return false;
1129 }
1130}
1131
1132/* Examine I1 and I2 and return:
1133 - dir_forward if I1 can be replaced by I2, or
1134 - dir_backward if I2 can be replaced by I1, or
1135 - dir_both if both are the case. */
1136
1137static enum replace_direction
1138old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx_insn *i1, rtx_insn *i2)
1139{
1140 rtx p1, p2;
1141
1142 /* Verify that I1 and I2 are equivalent. */
1143 if (GET_CODE (i1) != GET_CODE (i2))
1144 return dir_none;
1145
1146 /* __builtin_unreachable() may lead to empty blocks (ending with
1147 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1148 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
1149 return dir_both;
1150
1151 /* ??? Do not allow cross-jumping between different stack levels. */
1152 p1 = find_reg_note (i1, REG_ARGS_SIZE, NULL);
1153 p2 = find_reg_note (i2, REG_ARGS_SIZE, NULL);
1154 if (p1 && p2)
1155 {
1156 p1 = XEXP (p1, 0);
1157 p2 = XEXP (p2, 0);
1158 if (!rtx_equal_p (p1, p2))
1159 return dir_none;
1160
1161 /* ??? Worse, this adjustment had better be constant lest we
1162 have differing incoming stack levels. */
1163 if (!frame_pointer_needed
1164 && known_eq (find_args_size_adjust (i1), HOST_WIDE_INT_MIN))
1165 return dir_none;
1166 }
1167 else if (p1 || p2)
1168 return dir_none;
1169
1170 /* Do not allow cross-jumping between frame related insns and other
1171 insns. */
1172 if (RTX_FRAME_RELATED_P (i1) != RTX_FRAME_RELATED_P (i2))
1173 return dir_none;
1174
1175 p1 = PATTERN (insn: i1);
1176 p2 = PATTERN (insn: i2);
1177
1178 if (GET_CODE (p1) != GET_CODE (p2))
1179 return dir_none;
1180
1181 /* If this is a CALL_INSN, compare register usage information.
1182 If we don't check this on stack register machines, the two
1183 CALL_INSNs might be merged leaving reg-stack.cc with mismatching
1184 numbers of stack registers in the same basic block.
1185 If we don't check this on machines with delay slots, a delay slot may
1186 be filled that clobbers a parameter expected by the subroutine.
1187
1188 ??? We take the simple route for now and assume that if they're
1189 equal, they were constructed identically.
1190
1191 Also check for identical exception regions. */
1192
1193 if (CALL_P (i1))
1194 {
1195 /* Ensure the same EH region. */
1196 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
1197 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
1198
1199 if (!n1 && n2)
1200 return dir_none;
1201
1202 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1203 return dir_none;
1204
1205 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1206 CALL_INSN_FUNCTION_USAGE (i2))
1207 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
1208 return dir_none;
1209
1210 /* For address sanitizer, never crossjump __asan_report_* builtins,
1211 otherwise errors might be reported on incorrect lines. */
1212 if (flag_sanitize & SANITIZE_ADDRESS)
1213 {
1214 rtx call = get_call_rtx_from (i1);
1215 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
1216 {
1217 rtx symbol = XEXP (XEXP (call, 0), 0);
1218 if (SYMBOL_REF_DECL (symbol)
1219 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
1220 {
1221 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
1222 == BUILT_IN_NORMAL)
1223 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
1224 >= BUILT_IN_ASAN_REPORT_LOAD1
1225 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
1226 <= BUILT_IN_ASAN_STOREN)
1227 return dir_none;
1228 }
1229 }
1230 }
1231
1232 if (insn_callee_abi (i1) != insn_callee_abi (i2))
1233 return dir_none;
1234 }
1235
1236 /* If both i1 and i2 are frame related, verify all the CFA notes
1237 in the same order and with the same content. */
1238 if (RTX_FRAME_RELATED_P (i1) && !insns_have_identical_cfa_notes (i1, i2))
1239 return dir_none;
1240
1241#ifdef STACK_REGS
1242 /* If cross_jump_death_matters is not 0, the insn's mode
1243 indicates whether or not the insn contains any stack-like
1244 regs. */
1245
1246 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (insn: i1))
1247 {
1248 /* If register stack conversion has already been done, then
1249 death notes must also be compared before it is certain that
1250 the two instruction streams match. */
1251
1252 rtx note;
1253 HARD_REG_SET i1_regset, i2_regset;
1254
1255 CLEAR_HARD_REG_SET (set&: i1_regset);
1256 CLEAR_HARD_REG_SET (set&: i2_regset);
1257
1258 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1259 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1260 SET_HARD_REG_BIT (set&: i1_regset, REGNO (XEXP (note, 0)));
1261
1262 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1263 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1264 SET_HARD_REG_BIT (set&: i2_regset, REGNO (XEXP (note, 0)));
1265
1266 if (i1_regset != i2_regset)
1267 return dir_none;
1268 }
1269#endif
1270
1271 if (reload_completed
1272 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1273 return dir_both;
1274
1275 return can_replace_by (i1, i2);
1276}
1277
1278/* When comparing insns I1 and I2 in flow_find_cross_jump or
1279 flow_find_head_matching_sequence, ensure the notes match. */
1280
1281static void
1282merge_notes (rtx_insn *i1, rtx_insn *i2)
1283{
1284 /* If the merged insns have different REG_EQUAL notes, then
1285 remove them. */
1286 rtx equiv1 = find_reg_equal_equiv_note (i1);
1287 rtx equiv2 = find_reg_equal_equiv_note (i2);
1288
1289 if (equiv1 && !equiv2)
1290 remove_note (i1, equiv1);
1291 else if (!equiv1 && equiv2)
1292 remove_note (i2, equiv2);
1293 else if (equiv1 && equiv2
1294 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1295 {
1296 remove_note (i1, equiv1);
1297 remove_note (i2, equiv2);
1298 }
1299}
1300
1301 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1302 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1303 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1304 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1305 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1306
1307static void
1308walk_to_nondebug_insn (rtx_insn **i1, basic_block *bb1, bool follow_fallthru,
1309 bool *did_fallthru)
1310{
1311 edge fallthru;
1312
1313 *did_fallthru = false;
1314
1315 /* Ignore notes. */
1316 while (!NONDEBUG_INSN_P (*i1))
1317 {
1318 if (*i1 != BB_HEAD (*bb1))
1319 {
1320 *i1 = PREV_INSN (insn: *i1);
1321 continue;
1322 }
1323
1324 if (!follow_fallthru)
1325 return;
1326
1327 fallthru = find_fallthru_edge (edges: (*bb1)->preds);
1328 if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1329 || !single_succ_p (bb: fallthru->src))
1330 return;
1331
1332 *bb1 = fallthru->src;
1333 *i1 = BB_END (*bb1);
1334 *did_fallthru = true;
1335 }
1336}
1337
1338/* Look through the insns at the end of BB1 and BB2 and find the longest
1339 sequence that are either equivalent, or allow forward or backward
1340 replacement. Store the first insns for that sequence in *F1 and *F2 and
1341 return the sequence length.
1342
1343 DIR_P indicates the allowed replacement direction on function entry, and
1344 the actual replacement direction on function exit. If NULL, only equivalent
1345 sequences are allowed.
1346
1347 To simplify callers of this function, if the blocks match exactly,
1348 store the head of the blocks in *F1 and *F2. */
1349
1350int
1351flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx_insn **f1,
1352 rtx_insn **f2, enum replace_direction *dir_p)
1353{
1354 rtx_insn *i1, *i2, *last1, *last2, *afterlast1, *afterlast2;
1355 int ninsns = 0;
1356 enum replace_direction dir, last_dir, afterlast_dir;
1357 bool follow_fallthru, did_fallthru;
1358
1359 if (dir_p)
1360 dir = *dir_p;
1361 else
1362 dir = dir_both;
1363 afterlast_dir = dir;
1364 last_dir = afterlast_dir;
1365
1366 /* Skip simple jumps at the end of the blocks. Complex jumps still
1367 need to be compared for equivalence, which we'll do below. */
1368
1369 i1 = BB_END (bb1);
1370 last1 = afterlast1 = last2 = afterlast2 = NULL;
1371 if (onlyjump_p (i1)
1372 || (returnjump_p (i1) && !side_effects_p (PATTERN (insn: i1))))
1373 {
1374 last1 = i1;
1375 i1 = PREV_INSN (insn: i1);
1376 }
1377
1378 i2 = BB_END (bb2);
1379 if (onlyjump_p (i2)
1380 || (returnjump_p (i2) && !side_effects_p (PATTERN (insn: i2))))
1381 {
1382 last2 = i2;
1383 /* Count everything except for unconditional jump as insn.
1384 Don't count any jumps if dir_p is NULL. */
1385 if (!simplejump_p (i2) && !returnjump_p (i2) && last1 && dir_p)
1386 ninsns++;
1387 i2 = PREV_INSN (insn: i2);
1388 }
1389
1390 while (true)
1391 {
1392 /* In the following example, we can replace all jumps to C by jumps to A.
1393
1394 This removes 4 duplicate insns.
1395 [bb A] insn1 [bb C] insn1
1396 insn2 insn2
1397 [bb B] insn3 insn3
1398 insn4 insn4
1399 jump_insn jump_insn
1400
1401 We could also replace all jumps to A by jumps to C, but that leaves B
1402 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1403 step, all jumps to B would be replaced with jumps to the middle of C,
1404 achieving the same result with more effort.
1405 So we allow only the first possibility, which means that we don't allow
1406 fallthru in the block that's being replaced. */
1407
1408 follow_fallthru = dir_p && dir != dir_forward;
1409 walk_to_nondebug_insn (i1: &i1, bb1: &bb1, follow_fallthru, did_fallthru: &did_fallthru);
1410 if (did_fallthru)
1411 dir = dir_backward;
1412
1413 follow_fallthru = dir_p && dir != dir_backward;
1414 walk_to_nondebug_insn (i1: &i2, bb1: &bb2, follow_fallthru, did_fallthru: &did_fallthru);
1415 if (did_fallthru)
1416 dir = dir_forward;
1417
1418 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1419 break;
1420
1421 /* Do not turn corssing edge to non-crossing or vice versa after
1422 reload. */
1423 if (BB_PARTITION (BLOCK_FOR_INSN (i1))
1424 != BB_PARTITION (BLOCK_FOR_INSN (i2))
1425 && reload_completed)
1426 break;
1427
1428 dir = merge_dir (a: dir, b: old_insns_match_p (mode: 0, i1, i2));
1429 if (dir == dir_none || (!dir_p && dir != dir_both))
1430 break;
1431
1432 merge_memattrs (x: i1, y: i2);
1433
1434 /* Don't begin a cross-jump with a NOTE insn. */
1435 if (INSN_P (i1))
1436 {
1437 merge_notes (i1, i2);
1438
1439 afterlast1 = last1, afterlast2 = last2;
1440 last1 = i1, last2 = i2;
1441 afterlast_dir = last_dir;
1442 last_dir = dir;
1443 if (active_insn_p (i1))
1444 ninsns++;
1445 }
1446
1447 i1 = PREV_INSN (insn: i1);
1448 i2 = PREV_INSN (insn: i2);
1449 }
1450
1451 /* Include preceding notes and labels in the cross-jump. One,
1452 this may bring us to the head of the blocks as requested above.
1453 Two, it keeps line number notes as matched as may be. */
1454 if (ninsns)
1455 {
1456 bb1 = BLOCK_FOR_INSN (insn: last1);
1457 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
1458 last1 = PREV_INSN (insn: last1);
1459
1460 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1461 last1 = PREV_INSN (insn: last1);
1462
1463 bb2 = BLOCK_FOR_INSN (insn: last2);
1464 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
1465 last2 = PREV_INSN (insn: last2);
1466
1467 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1468 last2 = PREV_INSN (insn: last2);
1469
1470 *f1 = last1;
1471 *f2 = last2;
1472 }
1473
1474 if (dir_p)
1475 *dir_p = last_dir;
1476 return ninsns;
1477}
1478
1479/* Like flow_find_cross_jump, except start looking for a matching sequence from
1480 the head of the two blocks. Do not include jumps at the end.
1481 If STOP_AFTER is nonzero, stop after finding that many matching
1482 instructions. If STOP_AFTER is zero, count all INSN_P insns, if it is
1483 non-zero, only count active insns. */
1484
1485int
1486flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx_insn **f1,
1487 rtx_insn **f2, int stop_after)
1488{
1489 rtx_insn *i1, *i2, *last1, *last2, *beforelast1, *beforelast2;
1490 int ninsns = 0;
1491 edge e;
1492 edge_iterator ei;
1493 int nehedges1 = 0, nehedges2 = 0;
1494
1495 FOR_EACH_EDGE (e, ei, bb1->succs)
1496 if (e->flags & EDGE_EH)
1497 nehedges1++;
1498 FOR_EACH_EDGE (e, ei, bb2->succs)
1499 if (e->flags & EDGE_EH)
1500 nehedges2++;
1501
1502 i1 = BB_HEAD (bb1);
1503 i2 = BB_HEAD (bb2);
1504 last1 = beforelast1 = last2 = beforelast2 = NULL;
1505
1506 while (true)
1507 {
1508 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1509 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
1510 {
1511 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1512 break;
1513 i1 = NEXT_INSN (insn: i1);
1514 }
1515
1516 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
1517 {
1518 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1519 break;
1520 i2 = NEXT_INSN (insn: i2);
1521 }
1522
1523 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1524 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1525 break;
1526
1527 if (NOTE_P (i1) || NOTE_P (i2)
1528 || JUMP_P (i1) || JUMP_P (i2))
1529 break;
1530
1531 /* A sanity check to make sure we're not merging insns with different
1532 effects on EH. If only one of them ends a basic block, it shouldn't
1533 have an EH edge; if both end a basic block, there should be the same
1534 number of EH edges. */
1535 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1536 && nehedges1 > 0)
1537 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1538 && nehedges2 > 0)
1539 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1540 && nehedges1 != nehedges2))
1541 break;
1542
1543 if (old_insns_match_p (mode: 0, i1, i2) != dir_both)
1544 break;
1545
1546 merge_memattrs (x: i1, y: i2);
1547
1548 /* Don't begin a cross-jump with a NOTE insn. */
1549 if (INSN_P (i1))
1550 {
1551 merge_notes (i1, i2);
1552
1553 beforelast1 = last1, beforelast2 = last2;
1554 last1 = i1, last2 = i2;
1555 if (!stop_after || active_insn_p (i1))
1556 ninsns++;
1557 }
1558
1559 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1560 || (stop_after > 0 && ninsns == stop_after))
1561 break;
1562
1563 i1 = NEXT_INSN (insn: i1);
1564 i2 = NEXT_INSN (insn: i2);
1565 }
1566
1567 if (ninsns)
1568 {
1569 *f1 = last1;
1570 *f2 = last2;
1571 }
1572
1573 return ninsns;
1574}
1575
1576/* Return true iff outgoing edges of BB1 and BB2 match, together with
1577 the branch instruction. This means that if we commonize the control
1578 flow before end of the basic block, the semantic remains unchanged.
1579
1580 We may assume that there exists one edge with a common destination. */
1581
1582static bool
1583outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1584{
1585 int nehedges1 = 0, nehedges2 = 0;
1586 edge fallthru1 = 0, fallthru2 = 0;
1587 edge e1, e2;
1588 edge_iterator ei;
1589
1590 /* If we performed shrink-wrapping, edges to the exit block can
1591 only be distinguished for JUMP_INSNs. The two paths may differ in
1592 whether they went through the prologue. Sibcalls are fine, we know
1593 that we either didn't need or inserted an epilogue before them. */
1594 if (crtl->shrink_wrapped
1595 && single_succ_p (bb: bb1)
1596 && single_succ (bb: bb1) == EXIT_BLOCK_PTR_FOR_FN (cfun)
1597 && (!JUMP_P (BB_END (bb1))
1598 /* Punt if the only successor is a fake edge to exit, the jump
1599 must be some weird one. */
1600 || (single_succ_edge (bb: bb1)->flags & EDGE_FAKE) != 0)
1601 && !(CALL_P (BB_END (bb1)) && SIBLING_CALL_P (BB_END (bb1))))
1602 return false;
1603
1604 /* If BB1 has only one successor, we may be looking at either an
1605 unconditional jump, or a fake edge to exit. */
1606 if (single_succ_p (bb: bb1)
1607 && (single_succ_edge (bb: bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1608 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1609 return (single_succ_p (bb: bb2)
1610 && (single_succ_edge (bb: bb2)->flags
1611 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1612 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1613
1614 /* Match conditional jumps - this may get tricky when fallthru and branch
1615 edges are crossed. */
1616 if (EDGE_COUNT (bb1->succs) == 2
1617 && any_condjump_p (BB_END (bb1))
1618 && onlyjump_p (BB_END (bb1)))
1619 {
1620 edge b1, f1, b2, f2;
1621 bool reverse, match;
1622 rtx set1, set2, cond1, cond2;
1623 enum rtx_code code1, code2;
1624
1625 if (EDGE_COUNT (bb2->succs) != 2
1626 || !any_condjump_p (BB_END (bb2))
1627 || !onlyjump_p (BB_END (bb2)))
1628 return false;
1629
1630 b1 = BRANCH_EDGE (bb1);
1631 b2 = BRANCH_EDGE (bb2);
1632 f1 = FALLTHRU_EDGE (bb1);
1633 f2 = FALLTHRU_EDGE (bb2);
1634
1635 /* Get around possible forwarders on fallthru edges. Other cases
1636 should be optimized out already. */
1637 if (FORWARDER_BLOCK_P (f1->dest))
1638 f1 = single_succ_edge (bb: f1->dest);
1639
1640 if (FORWARDER_BLOCK_P (f2->dest))
1641 f2 = single_succ_edge (bb: f2->dest);
1642
1643 /* To simplify use of this function, return false if there are
1644 unneeded forwarder blocks. These will get eliminated later
1645 during cleanup_cfg. */
1646 if (FORWARDER_BLOCK_P (f1->dest)
1647 || FORWARDER_BLOCK_P (f2->dest)
1648 || FORWARDER_BLOCK_P (b1->dest)
1649 || FORWARDER_BLOCK_P (b2->dest))
1650 return false;
1651
1652 if (f1->dest == f2->dest && b1->dest == b2->dest)
1653 reverse = false;
1654 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1655 reverse = true;
1656 else
1657 return false;
1658
1659 set1 = pc_set (BB_END (bb1));
1660 set2 = pc_set (BB_END (bb2));
1661 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1662 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1663 reverse = !reverse;
1664
1665 cond1 = XEXP (SET_SRC (set1), 0);
1666 cond2 = XEXP (SET_SRC (set2), 0);
1667 code1 = GET_CODE (cond1);
1668 if (reverse)
1669 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1670 else
1671 code2 = GET_CODE (cond2);
1672
1673 if (code2 == UNKNOWN)
1674 return false;
1675
1676 /* Verify codes and operands match. */
1677 match = ((code1 == code2
1678 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1679 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1680 || (code1 == swap_condition (code2)
1681 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1682 XEXP (cond2, 0))
1683 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1684 XEXP (cond2, 1))));
1685
1686 /* If we return true, we will join the blocks. Which means that
1687 we will only have one branch prediction bit to work with. Thus
1688 we require the existing branches to have probabilities that are
1689 roughly similar. */
1690 if (match
1691 && optimize_bb_for_speed_p (bb1)
1692 && optimize_bb_for_speed_p (bb2))
1693 {
1694 profile_probability prob2;
1695
1696 if (b1->dest == b2->dest)
1697 prob2 = b2->probability;
1698 else
1699 /* Do not use f2 probability as f2 may be forwarded. */
1700 prob2 = b2->probability.invert ();
1701
1702 /* Fail if the difference in probabilities is greater than 50%.
1703 This rules out two well-predicted branches with opposite
1704 outcomes. */
1705 if (b1->probability.differs_lot_from_p (other: prob2))
1706 {
1707 if (dump_file)
1708 {
1709 fprintf (stream: dump_file,
1710 format: "Outcomes of branch in bb %i and %i differ too"
1711 " much (", bb1->index, bb2->index);
1712 b1->probability.dump (f: dump_file);
1713 prob2.dump (f: dump_file);
1714 fprintf (stream: dump_file, format: ")\n");
1715 }
1716 return false;
1717 }
1718 }
1719
1720 if (dump_file && match)
1721 fprintf (stream: dump_file, format: "Conditionals in bb %i and %i match.\n",
1722 bb1->index, bb2->index);
1723
1724 return match;
1725 }
1726
1727 /* Generic case - we are seeing a computed jump, table jump or trapping
1728 instruction. */
1729
1730 /* Check whether there are tablejumps in the end of BB1 and BB2.
1731 Return true if they are identical. */
1732 {
1733 rtx_insn *label1, *label2;
1734 rtx_jump_table_data *table1, *table2;
1735
1736 if (tablejump_p (BB_END (bb1), &label1, &table1)
1737 && tablejump_p (BB_END (bb2), &label2, &table2)
1738 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1739 {
1740 /* The labels should never be the same rtx. If they really are same
1741 the jump tables are same too. So disable crossjumping of blocks BB1
1742 and BB2 because when deleting the common insns in the end of BB1
1743 by delete_basic_block () the jump table would be deleted too. */
1744 /* If LABEL2 is referenced in BB1->END do not do anything
1745 because we would loose information when replacing
1746 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1747 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1748 {
1749 /* Set IDENTICAL to true when the tables are identical. */
1750 bool identical = false;
1751 rtx p1, p2;
1752
1753 p1 = PATTERN (insn: table1);
1754 p2 = PATTERN (insn: table2);
1755 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1756 {
1757 identical = true;
1758 }
1759 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1760 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1761 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1762 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1763 {
1764 int i;
1765
1766 identical = true;
1767 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1768 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1769 identical = false;
1770 }
1771
1772 if (identical)
1773 {
1774 bool match;
1775
1776 /* Temporarily replace references to LABEL1 with LABEL2
1777 in BB1->END so that we could compare the instructions. */
1778 replace_label_in_insn (BB_END (bb1), label1, label2, false);
1779
1780 match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
1781 == dir_both);
1782 if (dump_file && match)
1783 fprintf (stream: dump_file,
1784 format: "Tablejumps in bb %i and %i match.\n",
1785 bb1->index, bb2->index);
1786
1787 /* Set the original label in BB1->END because when deleting
1788 a block whose end is a tablejump, the tablejump referenced
1789 from the instruction is deleted too. */
1790 replace_label_in_insn (BB_END (bb1), label2, label1, false);
1791
1792 return match;
1793 }
1794 }
1795 return false;
1796 }
1797 }
1798
1799 /* Find the last non-debug non-note instruction in each bb, except
1800 stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
1801 handles that case specially. old_insns_match_p does not handle
1802 other types of instruction notes. */
1803 rtx_insn *last1 = BB_END (bb1);
1804 rtx_insn *last2 = BB_END (bb2);
1805 while (!NOTE_INSN_BASIC_BLOCK_P (last1) &&
1806 (DEBUG_INSN_P (last1) || NOTE_P (last1)))
1807 last1 = PREV_INSN (insn: last1);
1808 while (!NOTE_INSN_BASIC_BLOCK_P (last2) &&
1809 (DEBUG_INSN_P (last2) || NOTE_P (last2)))
1810 last2 = PREV_INSN (insn: last2);
1811 gcc_assert (last1 && last2);
1812
1813 /* First ensure that the instructions match. There may be many outgoing
1814 edges so this test is generally cheaper. */
1815 if (old_insns_match_p (mode, i1: last1, i2: last2) != dir_both)
1816 return false;
1817
1818 /* Search the outgoing edges, ensure that the counts do match, find possible
1819 fallthru and exception handling edges since these needs more
1820 validation. */
1821 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1822 return false;
1823
1824 bool nonfakeedges = false;
1825 FOR_EACH_EDGE (e1, ei, bb1->succs)
1826 {
1827 e2 = EDGE_SUCC (bb2, ei.index);
1828
1829 if ((e1->flags & EDGE_FAKE) == 0)
1830 nonfakeedges = true;
1831
1832 if (e1->flags & EDGE_EH)
1833 nehedges1++;
1834
1835 if (e2->flags & EDGE_EH)
1836 nehedges2++;
1837
1838 if (e1->flags & EDGE_FALLTHRU)
1839 fallthru1 = e1;
1840 if (e2->flags & EDGE_FALLTHRU)
1841 fallthru2 = e2;
1842 }
1843
1844 /* If number of edges of various types does not match, fail. */
1845 if (nehedges1 != nehedges2
1846 || (fallthru1 != 0) != (fallthru2 != 0))
1847 return false;
1848
1849 /* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
1850 and the last real insn doesn't have REG_ARGS_SIZE note, don't
1851 attempt to optimize, as the two basic blocks might have different
1852 REG_ARGS_SIZE depths. For noreturn calls and unconditional
1853 traps there should be REG_ARG_SIZE notes, they could be missing
1854 for __builtin_unreachable () uses though. */
1855 if (!nonfakeedges
1856 && !ACCUMULATE_OUTGOING_ARGS
1857 && (!INSN_P (last1)
1858 || !find_reg_note (last1, REG_ARGS_SIZE, NULL)))
1859 return false;
1860
1861 /* fallthru edges must be forwarded to the same destination. */
1862 if (fallthru1)
1863 {
1864 basic_block d1 = (FORWARDER_BLOCK_P (fallthru1->dest)
1865 ? single_succ (bb: fallthru1->dest): fallthru1->dest);
1866 basic_block d2 = (FORWARDER_BLOCK_P (fallthru2->dest)
1867 ? single_succ (bb: fallthru2->dest): fallthru2->dest);
1868
1869 if (d1 != d2)
1870 return false;
1871 }
1872
1873 /* Ensure the same EH region. */
1874 {
1875 rtx n1 = find_reg_note (last1, REG_EH_REGION, 0);
1876 rtx n2 = find_reg_note (last2, REG_EH_REGION, 0);
1877
1878 if (!n1 && n2)
1879 return false;
1880
1881 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1882 return false;
1883 }
1884
1885 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1886 version of sequence abstraction. */
1887 FOR_EACH_EDGE (e1, ei, bb2->succs)
1888 {
1889 edge e2;
1890 edge_iterator ei;
1891 basic_block d1 = e1->dest;
1892
1893 if (FORWARDER_BLOCK_P (d1))
1894 d1 = EDGE_SUCC (d1, 0)->dest;
1895
1896 FOR_EACH_EDGE (e2, ei, bb1->succs)
1897 {
1898 basic_block d2 = e2->dest;
1899 if (FORWARDER_BLOCK_P (d2))
1900 d2 = EDGE_SUCC (d2, 0)->dest;
1901 if (d1 == d2)
1902 break;
1903 }
1904
1905 if (!e2)
1906 return false;
1907 }
1908
1909 return true;
1910}
1911
1912/* Returns true if BB basic block has a preserve label. */
1913
1914static bool
1915block_has_preserve_label (basic_block bb)
1916{
1917 return (bb
1918 && block_label (bb)
1919 && LABEL_PRESERVE_P (block_label (bb)));
1920}
1921
1922/* E1 and E2 are edges with the same destination block. Search their
1923 predecessors for common code. If found, redirect control flow from
1924 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1925 or the other way around (dir_backward). DIR specifies the allowed
1926 replacement direction. */
1927
1928static bool
1929try_crossjump_to_edge (int mode, edge e1, edge e2,
1930 enum replace_direction dir)
1931{
1932 int nmatch;
1933 basic_block src1 = e1->src, src2 = e2->src;
1934 basic_block redirect_to, redirect_from, to_remove;
1935 basic_block osrc1, osrc2, redirect_edges_to, tmp;
1936 rtx_insn *newpos1, *newpos2;
1937 edge s;
1938 edge_iterator ei;
1939
1940 newpos1 = newpos2 = NULL;
1941
1942 /* Search backward through forwarder blocks. We don't need to worry
1943 about multiple entry or chained forwarders, as they will be optimized
1944 away. We do this to look past the unconditional jump following a
1945 conditional jump that is required due to the current CFG shape. */
1946 if (single_pred_p (bb: src1)
1947 && FORWARDER_BLOCK_P (src1))
1948 e1 = single_pred_edge (bb: src1), src1 = e1->src;
1949
1950 if (single_pred_p (bb: src2)
1951 && FORWARDER_BLOCK_P (src2))
1952 e2 = single_pred_edge (bb: src2), src2 = e2->src;
1953
1954 /* Nothing to do if we reach ENTRY, or a common source block. */
1955 if (src1 == ENTRY_BLOCK_PTR_FOR_FN (cfun) || src2
1956 == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1957 return false;
1958 if (src1 == src2)
1959 return false;
1960
1961 /* Seeing more than 1 forwarder blocks would confuse us later... */
1962 if (FORWARDER_BLOCK_P (e1->dest)
1963 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1964 return false;
1965
1966 if (FORWARDER_BLOCK_P (e2->dest)
1967 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1968 return false;
1969
1970 /* Likewise with dead code (possibly newly created by the other optimizations
1971 of cfg_cleanup). */
1972 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1973 return false;
1974
1975 /* Do not turn corssing edge to non-crossing or vice versa after reload. */
1976 if (BB_PARTITION (src1) != BB_PARTITION (src2)
1977 && reload_completed)
1978 return false;
1979
1980 /* Look for the common insn sequence, part the first ... */
1981 if (!outgoing_edges_match (mode, bb1: src1, bb2: src2))
1982 return false;
1983
1984 /* ... and part the second. */
1985 nmatch = flow_find_cross_jump (bb1: src1, bb2: src2, f1: &newpos1, f2: &newpos2, dir_p: &dir);
1986
1987 osrc1 = src1;
1988 osrc2 = src2;
1989 if (newpos1 != NULL_RTX)
1990 src1 = BLOCK_FOR_INSN (insn: newpos1);
1991 if (newpos2 != NULL_RTX)
1992 src2 = BLOCK_FOR_INSN (insn: newpos2);
1993
1994 /* Check that SRC1 and SRC2 have preds again. They may have changed
1995 above due to the call to flow_find_cross_jump. */
1996 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1997 return false;
1998
1999 if (dir == dir_backward)
2000 {
2001 std::swap (a&: osrc1, b&: osrc2);
2002 std::swap (a&: src1, b&: src2);
2003 std::swap (a&: e1, b&: e2);
2004 std::swap (a&: newpos1, b&: newpos2);
2005 }
2006
2007 /* Don't proceed with the crossjump unless we found a sufficient number
2008 of matching instructions or the 'from' block was totally matched
2009 (such that its predecessors will hopefully be redirected and the
2010 block removed). */
2011 if ((nmatch < param_min_crossjump_insns)
2012 && (newpos1 != BB_HEAD (src1)))
2013 return false;
2014
2015 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
2016 if (block_has_preserve_label (bb: e1->dest)
2017 && (e1->flags & EDGE_ABNORMAL))
2018 return false;
2019
2020 /* Here we know that the insns in the end of SRC1 which are common with SRC2
2021 will be deleted.
2022 If we have tablejumps in the end of SRC1 and SRC2
2023 they have been already compared for equivalence in outgoing_edges_match ()
2024 so replace the references to TABLE1 by references to TABLE2. */
2025 {
2026 rtx_insn *label1, *label2;
2027 rtx_jump_table_data *table1, *table2;
2028
2029 if (tablejump_p (BB_END (osrc1), &label1, &table1)
2030 && tablejump_p (BB_END (osrc2), &label2, &table2)
2031 && label1 != label2)
2032 {
2033 rtx_insn *insn;
2034
2035 /* Replace references to LABEL1 with LABEL2. */
2036 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2037 {
2038 /* Do not replace the label in SRC1->END because when deleting
2039 a block whose end is a tablejump, the tablejump referenced
2040 from the instruction is deleted too. */
2041 if (insn != BB_END (osrc1))
2042 replace_label_in_insn (insn, label1, label2, true);
2043 }
2044 }
2045 }
2046
2047 /* Avoid splitting if possible. We must always split when SRC2 has
2048 EH predecessor edges, or we may end up with basic blocks with both
2049 normal and EH predecessor edges. */
2050 if (newpos2 == BB_HEAD (src2)
2051 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
2052 redirect_to = src2;
2053 else
2054 {
2055 if (newpos2 == BB_HEAD (src2))
2056 {
2057 /* Skip possible basic block header. */
2058 if (LABEL_P (newpos2))
2059 newpos2 = NEXT_INSN (insn: newpos2);
2060 while (DEBUG_INSN_P (newpos2))
2061 newpos2 = NEXT_INSN (insn: newpos2);
2062 if (NOTE_P (newpos2))
2063 newpos2 = NEXT_INSN (insn: newpos2);
2064 while (DEBUG_INSN_P (newpos2))
2065 newpos2 = NEXT_INSN (insn: newpos2);
2066 }
2067
2068 if (dump_file)
2069 fprintf (stream: dump_file, format: "Splitting bb %i before %i insns\n",
2070 src2->index, nmatch);
2071 redirect_to = split_block (src2, PREV_INSN (insn: newpos2))->dest;
2072 }
2073
2074 if (dump_file)
2075 fprintf (stream: dump_file,
2076 format: "Cross jumping from bb %i to bb %i; %i common insns\n",
2077 src1->index, src2->index, nmatch);
2078
2079 /* We may have some registers visible through the block. */
2080 df_set_bb_dirty (redirect_to);
2081
2082 if (osrc2 == src2)
2083 redirect_edges_to = redirect_to;
2084 else
2085 redirect_edges_to = osrc2;
2086
2087 /* Recompute the counts of destinations of outgoing edges. */
2088 FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
2089 {
2090 edge s2;
2091 edge_iterator ei;
2092 basic_block d = s->dest;
2093
2094 if (FORWARDER_BLOCK_P (d))
2095 d = single_succ (bb: d);
2096
2097 FOR_EACH_EDGE (s2, ei, src1->succs)
2098 {
2099 basic_block d2 = s2->dest;
2100 if (FORWARDER_BLOCK_P (d2))
2101 d2 = single_succ (bb: d2);
2102 if (d == d2)
2103 break;
2104 }
2105
2106 /* Take care to update possible forwarder blocks. We verified
2107 that there is no more than one in the chain, so we can't run
2108 into infinite loop. */
2109 if (FORWARDER_BLOCK_P (s->dest))
2110 s->dest->count += s->count ();
2111
2112 if (FORWARDER_BLOCK_P (s2->dest))
2113 s2->dest->count -= s->count ();
2114
2115 s->probability = s->probability.combine_with_count
2116 (count1: redirect_edges_to->count,
2117 other: s2->probability, count2: src1->count);
2118 }
2119
2120 /* Adjust count for the block. An earlier jump
2121 threading pass may have left the profile in an inconsistent
2122 state (see update_bb_profile_for_threading) so we must be
2123 prepared for overflows. */
2124 tmp = redirect_to;
2125 do
2126 {
2127 tmp->count += src1->count;
2128 if (tmp == redirect_edges_to)
2129 break;
2130 tmp = find_fallthru_edge (edges: tmp->succs)->dest;
2131 }
2132 while (true);
2133 update_br_prob_note (redirect_edges_to);
2134
2135 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2136
2137 /* Skip possible basic block header. */
2138 if (LABEL_P (newpos1))
2139 newpos1 = NEXT_INSN (insn: newpos1);
2140
2141 while (DEBUG_INSN_P (newpos1))
2142 newpos1 = NEXT_INSN (insn: newpos1);
2143
2144 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
2145 newpos1 = NEXT_INSN (insn: newpos1);
2146
2147 /* Skip also prologue and function markers. */
2148 while (DEBUG_INSN_P (newpos1)
2149 || (NOTE_P (newpos1)
2150 && (NOTE_KIND (newpos1) == NOTE_INSN_PROLOGUE_END
2151 || NOTE_KIND (newpos1) == NOTE_INSN_FUNCTION_BEG)))
2152 newpos1 = NEXT_INSN (insn: newpos1);
2153
2154 redirect_from = split_block (src1, PREV_INSN (insn: newpos1))->src;
2155 to_remove = single_succ (bb: redirect_from);
2156
2157 redirect_edge_and_branch_force (single_succ_edge (bb: redirect_from), redirect_to);
2158 delete_basic_block (to_remove);
2159
2160 update_forwarder_flag (bb: redirect_from);
2161 if (redirect_to != src2)
2162 update_forwarder_flag (bb: src2);
2163
2164 return true;
2165}
2166
2167/* Search the predecessors of BB for common insn sequences. When found,
2168 share code between them by redirecting control flow. Return true if
2169 any changes made. */
2170
2171static bool
2172try_crossjump_bb (int mode, basic_block bb)
2173{
2174 edge e, e2, fallthru;
2175 bool changed;
2176 unsigned max, ix, ix2;
2177
2178 /* Nothing to do if there is not at least two incoming edges. */
2179 if (EDGE_COUNT (bb->preds) < 2)
2180 return false;
2181
2182 /* Don't crossjump if this block ends in a computed jump,
2183 unless we are optimizing for size. */
2184 if (optimize_bb_for_size_p (bb)
2185 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
2186 && computed_jump_p (BB_END (bb)))
2187 return false;
2188
2189 /* If we are partitioning hot/cold basic blocks, we don't want to
2190 mess up unconditional or indirect jumps that cross between hot
2191 and cold sections.
2192
2193 Basic block partitioning may result in some jumps that appear to
2194 be optimizable (or blocks that appear to be mergeable), but which really
2195 must be left untouched (they are required to make it safely across
2196 partition boundaries). See the comments at the top of
2197 bb-reorder.cc:partition_hot_cold_basic_blocks for complete details. */
2198
2199 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
2200 BB_PARTITION (EDGE_PRED (bb, 1)->src)
2201 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
2202 return false;
2203
2204 /* It is always cheapest to redirect a block that ends in a branch to
2205 a block that falls through into BB, as that adds no branches to the
2206 program. We'll try that combination first. */
2207 fallthru = NULL;
2208 max = param_max_crossjump_edges;
2209
2210 if (EDGE_COUNT (bb->preds) > max)
2211 return false;
2212
2213 fallthru = find_fallthru_edge (edges: bb->preds);
2214
2215 changed = false;
2216 for (ix = 0; ix < EDGE_COUNT (bb->preds);)
2217 {
2218 e = EDGE_PRED (bb, ix);
2219 ix++;
2220
2221 /* As noted above, first try with the fallthru predecessor (or, a
2222 fallthru predecessor if we are in cfglayout mode). */
2223 if (fallthru)
2224 {
2225 /* Don't combine the fallthru edge into anything else.
2226 If there is a match, we'll do it the other way around. */
2227 if (e == fallthru)
2228 continue;
2229 /* If nothing changed since the last attempt, there is nothing
2230 we can do. */
2231 if (!first_pass
2232 && !((e->src->flags & BB_MODIFIED)
2233 || (fallthru->src->flags & BB_MODIFIED)))
2234 continue;
2235
2236 if (try_crossjump_to_edge (mode, e1: e, e2: fallthru, dir: dir_forward))
2237 {
2238 changed = true;
2239 ix = 0;
2240 continue;
2241 }
2242 }
2243
2244 /* Non-obvious work limiting check: Recognize that we're going
2245 to call try_crossjump_bb on every basic block. So if we have
2246 two blocks with lots of outgoing edges (a switch) and they
2247 share lots of common destinations, then we would do the
2248 cross-jump check once for each common destination.
2249
2250 Now, if the blocks actually are cross-jump candidates, then
2251 all of their destinations will be shared. Which means that
2252 we only need check them for cross-jump candidacy once. We
2253 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2254 choosing to do the check from the block for which the edge
2255 in question is the first successor of A. */
2256 if (EDGE_SUCC (e->src, 0) != e)
2257 continue;
2258
2259 for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
2260 {
2261 e2 = EDGE_PRED (bb, ix2);
2262
2263 if (e2 == e)
2264 continue;
2265
2266 /* We've already checked the fallthru edge above. */
2267 if (e2 == fallthru)
2268 continue;
2269
2270 /* The "first successor" check above only prevents multiple
2271 checks of crossjump(A,B). In order to prevent redundant
2272 checks of crossjump(B,A), require that A be the block
2273 with the lowest index. */
2274 if (e->src->index > e2->src->index)
2275 continue;
2276
2277 /* If nothing changed since the last attempt, there is nothing
2278 we can do. */
2279 if (!first_pass
2280 && !((e->src->flags & BB_MODIFIED)
2281 || (e2->src->flags & BB_MODIFIED)))
2282 continue;
2283
2284 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2285 direction. */
2286 if (try_crossjump_to_edge (mode, e1: e, e2, dir: dir_both))
2287 {
2288 changed = true;
2289 ix = 0;
2290 break;
2291 }
2292 }
2293 }
2294
2295 if (changed)
2296 crossjumps_occurred = true;
2297
2298 return changed;
2299}
2300
2301/* Search the successors of BB for common insn sequences. When found,
2302 share code between them by moving it across the basic block
2303 boundary. Return true if any changes made. */
2304
2305static bool
2306try_head_merge_bb (basic_block bb)
2307{
2308 basic_block final_dest_bb = NULL;
2309 int max_match = INT_MAX;
2310 edge e0;
2311 rtx_insn **headptr, **currptr, **nextptr;
2312 bool changed, moveall;
2313 unsigned ix;
2314 rtx_insn *e0_last_head;
2315 rtx cond;
2316 rtx_insn *move_before;
2317 unsigned nedges = EDGE_COUNT (bb->succs);
2318 rtx_insn *jump = BB_END (bb);
2319 regset live, live_union;
2320
2321 /* Nothing to do if there is not at least two outgoing edges. */
2322 if (nedges < 2)
2323 return false;
2324
2325 /* Don't crossjump if this block ends in a computed jump,
2326 unless we are optimizing for size. */
2327 if (optimize_bb_for_size_p (bb)
2328 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
2329 && computed_jump_p (BB_END (bb)))
2330 return false;
2331
2332 cond = get_condition (jump, &move_before, true, false);
2333 if (cond == NULL_RTX)
2334 move_before = jump;
2335
2336 for (ix = 0; ix < nedges; ix++)
2337 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
2338 return false;
2339
2340 for (ix = 0; ix < nedges; ix++)
2341 {
2342 edge e = EDGE_SUCC (bb, ix);
2343 basic_block other_bb = e->dest;
2344
2345 if (df_get_bb_dirty (other_bb))
2346 {
2347 block_was_dirty = true;
2348 return false;
2349 }
2350
2351 if (e->flags & EDGE_ABNORMAL)
2352 return false;
2353
2354 /* Normally, all destination blocks must only be reachable from this
2355 block, i.e. they must have one incoming edge.
2356
2357 There is one special case we can handle, that of multiple consecutive
2358 jumps where the first jumps to one of the targets of the second jump.
2359 This happens frequently in switch statements for default labels.
2360 The structure is as follows:
2361 FINAL_DEST_BB
2362 ....
2363 if (cond) jump A;
2364 fall through
2365 BB
2366 jump with targets A, B, C, D...
2367 A
2368 has two incoming edges, from FINAL_DEST_BB and BB
2369
2370 In this case, we can try to move the insns through BB and into
2371 FINAL_DEST_BB. */
2372 if (EDGE_COUNT (other_bb->preds) != 1)
2373 {
2374 edge incoming_edge, incoming_bb_other_edge;
2375 edge_iterator ei;
2376
2377 if (final_dest_bb != NULL
2378 || EDGE_COUNT (other_bb->preds) != 2)
2379 return false;
2380
2381 /* We must be able to move the insns across the whole block. */
2382 move_before = BB_HEAD (bb);
2383 while (!NONDEBUG_INSN_P (move_before))
2384 move_before = NEXT_INSN (insn: move_before);
2385
2386 if (EDGE_COUNT (bb->preds) != 1)
2387 return false;
2388 incoming_edge = EDGE_PRED (bb, 0);
2389 final_dest_bb = incoming_edge->src;
2390 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2391 return false;
2392 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2393 if (incoming_bb_other_edge != incoming_edge)
2394 break;
2395 if (incoming_bb_other_edge->dest != other_bb)
2396 return false;
2397 }
2398 }
2399
2400 e0 = EDGE_SUCC (bb, 0);
2401 e0_last_head = NULL;
2402 changed = false;
2403
2404 for (ix = 1; ix < nedges; ix++)
2405 {
2406 edge e = EDGE_SUCC (bb, ix);
2407 rtx_insn *e0_last, *e_last;
2408 int nmatch;
2409
2410 nmatch = flow_find_head_matching_sequence (bb1: e0->dest, bb2: e->dest,
2411 f1: &e0_last, f2: &e_last, stop_after: 0);
2412 if (nmatch == 0)
2413 return false;
2414
2415 if (nmatch < max_match)
2416 {
2417 max_match = nmatch;
2418 e0_last_head = e0_last;
2419 }
2420 }
2421
2422 /* If we matched an entire block, we probably have to avoid moving the
2423 last insn. */
2424 if (max_match > 0
2425 && e0_last_head == BB_END (e0->dest)
2426 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2427 || control_flow_insn_p (e0_last_head)))
2428 {
2429 max_match--;
2430 if (max_match == 0)
2431 return false;
2432 e0_last_head = prev_real_nondebug_insn (e0_last_head);
2433 }
2434
2435 if (max_match == 0)
2436 return false;
2437
2438 /* We must find a union of the live registers at each of the end points. */
2439 live = BITMAP_ALLOC (NULL);
2440 live_union = BITMAP_ALLOC (NULL);
2441
2442 currptr = XNEWVEC (rtx_insn *, nedges);
2443 headptr = XNEWVEC (rtx_insn *, nedges);
2444 nextptr = XNEWVEC (rtx_insn *, nedges);
2445
2446 for (ix = 0; ix < nedges; ix++)
2447 {
2448 int j;
2449 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
2450 rtx_insn *head = BB_HEAD (merge_bb);
2451
2452 while (!NONDEBUG_INSN_P (head))
2453 head = NEXT_INSN (insn: head);
2454 headptr[ix] = head;
2455 currptr[ix] = head;
2456
2457 /* Compute the end point and live information */
2458 for (j = 1; j < max_match; j++)
2459 do
2460 head = NEXT_INSN (insn: head);
2461 while (!NONDEBUG_INSN_P (head));
2462 simulate_backwards_to_point (merge_bb, live, head);
2463 IOR_REG_SET (live_union, live);
2464 }
2465
2466 /* If we're moving across two blocks, verify the validity of the
2467 first move, then adjust the target and let the loop below deal
2468 with the final move. */
2469 if (final_dest_bb != NULL)
2470 {
2471 rtx_insn *move_upto;
2472
2473 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2474 jump, e0->dest, live_union,
2475 NULL, &move_upto);
2476 if (!moveall)
2477 {
2478 if (move_upto == NULL_RTX)
2479 goto out;
2480
2481 while (e0_last_head != move_upto)
2482 {
2483 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2484 live_union);
2485 e0_last_head = PREV_INSN (insn: e0_last_head);
2486 }
2487 }
2488 if (e0_last_head == NULL_RTX)
2489 goto out;
2490
2491 jump = BB_END (final_dest_bb);
2492 cond = get_condition (jump, &move_before, true, false);
2493 if (cond == NULL_RTX)
2494 move_before = jump;
2495 }
2496
2497 do
2498 {
2499 rtx_insn *move_upto;
2500 moveall = can_move_insns_across (currptr[0], e0_last_head,
2501 move_before, jump, e0->dest, live_union,
2502 NULL, &move_upto);
2503 if (!moveall && move_upto == NULL_RTX)
2504 {
2505 if (jump == move_before)
2506 break;
2507
2508 /* Try again, using a different insertion point. */
2509 move_before = jump;
2510
2511 continue;
2512 }
2513
2514 if (final_dest_bb && !moveall)
2515 /* We haven't checked whether a partial move would be OK for the first
2516 move, so we have to fail this case. */
2517 break;
2518
2519 changed = true;
2520 for (;;)
2521 {
2522 if (currptr[0] == move_upto)
2523 break;
2524 for (ix = 0; ix < nedges; ix++)
2525 {
2526 rtx_insn *curr = currptr[ix];
2527 do
2528 curr = NEXT_INSN (insn: curr);
2529 while (!NONDEBUG_INSN_P (curr));
2530 currptr[ix] = curr;
2531 }
2532 }
2533
2534 /* If we can't currently move all of the identical insns, remember
2535 each insn after the range that we'll merge. */
2536 if (!moveall)
2537 for (ix = 0; ix < nedges; ix++)
2538 {
2539 rtx_insn *curr = currptr[ix];
2540 do
2541 curr = NEXT_INSN (insn: curr);
2542 while (!NONDEBUG_INSN_P (curr));
2543 nextptr[ix] = curr;
2544 }
2545
2546 reorder_insns (headptr[0], currptr[0], PREV_INSN (insn: move_before));
2547 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2548 if (final_dest_bb != NULL)
2549 df_set_bb_dirty (final_dest_bb);
2550 df_set_bb_dirty (bb);
2551 for (ix = 1; ix < nedges; ix++)
2552 {
2553 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2554 delete_insn_chain (headptr[ix], currptr[ix], false);
2555 }
2556 if (!moveall)
2557 {
2558 if (jump == move_before)
2559 break;
2560
2561 /* For the unmerged insns, try a different insertion point. */
2562 move_before = jump;
2563
2564 for (ix = 0; ix < nedges; ix++)
2565 currptr[ix] = headptr[ix] = nextptr[ix];
2566 }
2567 }
2568 while (!moveall);
2569
2570 out:
2571 free (ptr: currptr);
2572 free (ptr: headptr);
2573 free (ptr: nextptr);
2574
2575 crossjumps_occurred |= changed;
2576
2577 return changed;
2578}
2579
2580/* Return true if BB contains just bb note, or bb note followed
2581 by only DEBUG_INSNs. */
2582
2583static bool
2584trivially_empty_bb_p (basic_block bb)
2585{
2586 rtx_insn *insn = BB_END (bb);
2587
2588 while (1)
2589 {
2590 if (insn == BB_HEAD (bb))
2591 return true;
2592 if (!DEBUG_INSN_P (insn))
2593 return false;
2594 insn = PREV_INSN (insn);
2595 }
2596}
2597
2598/* Return true if BB contains just a return and possibly a USE of the
2599 return value. Fill in *RET and *USE with the return and use insns
2600 if any found, otherwise NULL. All CLOBBERs are ignored. */
2601
2602bool
2603bb_is_just_return (basic_block bb, rtx_insn **ret, rtx_insn **use)
2604{
2605 *ret = *use = NULL;
2606 rtx_insn *insn;
2607
2608 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2609 return false;
2610
2611 FOR_BB_INSNS_REVERSE (bb, insn)
2612 if (NONDEBUG_INSN_P (insn))
2613 {
2614 rtx pat = PATTERN (insn);
2615
2616 if (!*ret && ANY_RETURN_P (pat))
2617 *ret = insn;
2618 else if (*ret && !*use && GET_CODE (pat) == USE
2619 && REG_P (XEXP (pat, 0))
2620 && REG_FUNCTION_VALUE_P (XEXP (pat, 0)))
2621 *use = insn;
2622 else if (GET_CODE (pat) != CLOBBER)
2623 return false;
2624 }
2625
2626 return !!*ret;
2627}
2628
2629/* Do simple CFG optimizations - basic block merging, simplifying of jump
2630 instructions etc. Return nonzero if changes were made. */
2631
2632static bool
2633try_optimize_cfg (int mode)
2634{
2635 bool changed_overall = false;
2636 bool changed;
2637 int iterations = 0;
2638 basic_block bb, b, next;
2639
2640 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
2641 clear_bb_flags ();
2642
2643 crossjumps_occurred = false;
2644
2645 FOR_EACH_BB_FN (bb, cfun)
2646 update_forwarder_flag (bb);
2647
2648 if (! targetm.cannot_modify_jumps_p ())
2649 {
2650 first_pass = true;
2651 /* Attempt to merge blocks as made possible by edge removal. If
2652 a block has only one successor, and the successor has only
2653 one predecessor, they may be combined. */
2654 do
2655 {
2656 block_was_dirty = false;
2657 changed = false;
2658 iterations++;
2659
2660 if (dump_file)
2661 fprintf (stream: dump_file,
2662 format: "\n\ntry_optimize_cfg iteration %i\n\n",
2663 iterations);
2664
2665 for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
2666 != EXIT_BLOCK_PTR_FOR_FN (cfun);)
2667 {
2668 basic_block c;
2669 edge s;
2670 bool changed_here = false;
2671
2672 /* Delete trivially dead basic blocks. This is either
2673 blocks with no predecessors, or empty blocks with no
2674 successors. However if the empty block with no
2675 successors is the successor of the ENTRY_BLOCK, it is
2676 kept. This ensures that the ENTRY_BLOCK will have a
2677 successor which is a precondition for many RTL
2678 passes. Empty blocks may result from expanding
2679 __builtin_unreachable (). */
2680 if (EDGE_COUNT (b->preds) == 0
2681 || (EDGE_COUNT (b->succs) == 0
2682 && trivially_empty_bb_p (bb: b)
2683 && single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->dest
2684 != b))
2685 {
2686 c = b->prev_bb;
2687 if (EDGE_COUNT (b->preds) > 0)
2688 {
2689 edge e;
2690 edge_iterator ei;
2691
2692 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2693 {
2694 rtx_insn *insn;
2695 for (insn = BB_FOOTER (b);
2696 insn; insn = NEXT_INSN (insn))
2697 if (BARRIER_P (insn))
2698 break;
2699 if (insn)
2700 FOR_EACH_EDGE (e, ei, b->preds)
2701 if ((e->flags & EDGE_FALLTHRU))
2702 {
2703 if (BB_FOOTER (b)
2704 && BB_FOOTER (e->src) == NULL)
2705 {
2706 BB_FOOTER (e->src) = BB_FOOTER (b);
2707 BB_FOOTER (b) = NULL;
2708 }
2709 else
2710 emit_barrier_after_bb (bb: e->src);
2711 }
2712 }
2713 else
2714 {
2715 rtx_insn *last = get_last_bb_insn (b);
2716 if (last && BARRIER_P (last))
2717 FOR_EACH_EDGE (e, ei, b->preds)
2718 if ((e->flags & EDGE_FALLTHRU))
2719 emit_barrier_after (BB_END (e->src));
2720 }
2721 }
2722 delete_basic_block (b);
2723 changed = true;
2724 /* Avoid trying to remove the exit block. */
2725 b = (c == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? c->next_bb : c);
2726 continue;
2727 }
2728
2729 /* Remove code labels no longer used. */
2730 if (single_pred_p (bb: b)
2731 && (single_pred_edge (bb: b)->flags & EDGE_FALLTHRU)
2732 && !(single_pred_edge (bb: b)->flags & EDGE_COMPLEX)
2733 && LABEL_P (BB_HEAD (b))
2734 && !LABEL_PRESERVE_P (BB_HEAD (b))
2735 /* If the previous block ends with a branch to this
2736 block, we can't delete the label. Normally this
2737 is a condjump that is yet to be simplified, but
2738 if CASE_DROPS_THRU, this can be a tablejump with
2739 some element going to the same place as the
2740 default (fallthru). */
2741 && (single_pred (bb: b) == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2742 || !JUMP_P (BB_END (single_pred (b)))
2743 || ! label_is_jump_target_p (BB_HEAD (b),
2744 BB_END (single_pred (b)))))
2745 {
2746 delete_insn (BB_HEAD (b));
2747 if (dump_file)
2748 fprintf (stream: dump_file, format: "Deleted label in block %i.\n",
2749 b->index);
2750 }
2751
2752 /* If we fall through an empty block, we can remove it. */
2753 if (!(mode & (CLEANUP_CFGLAYOUT | CLEANUP_NO_INSN_DEL))
2754 && single_pred_p (bb: b)
2755 && (single_pred_edge (bb: b)->flags & EDGE_FALLTHRU)
2756 && !LABEL_P (BB_HEAD (b))
2757 && FORWARDER_BLOCK_P (b)
2758 /* Note that forwarder_block_p true ensures that
2759 there is a successor for this block. */
2760 && (single_succ_edge (bb: b)->flags & EDGE_FALLTHRU)
2761 && n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS + 1)
2762 {
2763 if (dump_file)
2764 fprintf (stream: dump_file,
2765 format: "Deleting fallthru block %i.\n",
2766 b->index);
2767
2768 c = ((b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2769 ? b->next_bb : b->prev_bb);
2770 redirect_edge_succ_nodup (single_pred_edge (bb: b),
2771 single_succ (bb: b));
2772 delete_basic_block (b);
2773 changed = true;
2774 b = c;
2775 continue;
2776 }
2777
2778 /* Merge B with its single successor, if any. */
2779 if (single_succ_p (bb: b)
2780 && (s = single_succ_edge (bb: b))
2781 && !(s->flags & EDGE_COMPLEX)
2782 && (c = s->dest) != EXIT_BLOCK_PTR_FOR_FN (cfun)
2783 && single_pred_p (bb: c)
2784 && b != c)
2785 {
2786 /* When not in cfg_layout mode use code aware of reordering
2787 INSN. This code possibly creates new basic blocks so it
2788 does not fit merge_blocks interface and is kept here in
2789 hope that it will become useless once more of compiler
2790 is transformed to use cfg_layout mode. */
2791
2792 if ((mode & CLEANUP_CFGLAYOUT)
2793 && can_merge_blocks_p (b, c))
2794 {
2795 merge_blocks (b, c);
2796 update_forwarder_flag (bb: b);
2797 changed_here = true;
2798 }
2799 else if (!(mode & CLEANUP_CFGLAYOUT)
2800 /* If the jump insn has side effects,
2801 we can't kill the edge. */
2802 && (!JUMP_P (BB_END (b))
2803 || (reload_completed
2804 ? simplejump_p (BB_END (b))
2805 : (onlyjump_p (BB_END (b))
2806 && !tablejump_p (BB_END (b),
2807 NULL, NULL))))
2808 && (next = merge_blocks_move (e: s, b, c, mode)))
2809 {
2810 b = next;
2811 changed_here = true;
2812 }
2813 }
2814
2815 /* Try to change a branch to a return to just that return. */
2816 rtx_insn *ret, *use;
2817 if (single_succ_p (bb: b)
2818 && onlyjump_p (BB_END (b))
2819 && bb_is_just_return (bb: single_succ (bb: b), ret: &ret, use: &use))
2820 {
2821 if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2822 PATTERN (insn: ret), 0))
2823 {
2824 if (use)
2825 emit_insn_before (copy_insn (PATTERN (insn: use)),
2826 BB_END (b));
2827 if (dump_file)
2828 fprintf (stream: dump_file, format: "Changed jump %d->%d to return.\n",
2829 b->index, single_succ (bb: b)->index);
2830 redirect_edge_succ (single_succ_edge (bb: b),
2831 EXIT_BLOCK_PTR_FOR_FN (cfun));
2832 single_succ_edge (bb: b)->flags &= ~EDGE_CROSSING;
2833 changed_here = true;
2834 }
2835 }
2836
2837 /* Try to change a conditional branch to a return to the
2838 respective conditional return. */
2839 if (EDGE_COUNT (b->succs) == 2
2840 && any_condjump_p (BB_END (b))
2841 && bb_is_just_return (BRANCH_EDGE (b)->dest, ret: &ret, use: &use))
2842 {
2843 if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2844 PATTERN (insn: ret), 0))
2845 {
2846 if (use)
2847 emit_insn_before (copy_insn (PATTERN (insn: use)),
2848 BB_END (b));
2849 if (dump_file)
2850 fprintf (stream: dump_file, format: "Changed conditional jump %d->%d "
2851 "to conditional return.\n",
2852 b->index, BRANCH_EDGE (b)->dest->index);
2853 redirect_edge_succ (BRANCH_EDGE (b),
2854 EXIT_BLOCK_PTR_FOR_FN (cfun));
2855 BRANCH_EDGE (b)->flags &= ~EDGE_CROSSING;
2856 changed_here = true;
2857 }
2858 }
2859
2860 /* Try to flip a conditional branch that falls through to
2861 a return so that it becomes a conditional return and a
2862 new jump to the original branch target. */
2863 if (EDGE_COUNT (b->succs) == 2
2864 && BRANCH_EDGE (b)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2865 && any_condjump_p (BB_END (b))
2866 && bb_is_just_return (FALLTHRU_EDGE (b)->dest, ret: &ret, use: &use))
2867 {
2868 if (invert_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2869 JUMP_LABEL (BB_END (b)), 0))
2870 {
2871 basic_block new_ft = BRANCH_EDGE (b)->dest;
2872 if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2873 PATTERN (insn: ret), 0))
2874 {
2875 if (use)
2876 emit_insn_before (copy_insn (PATTERN (insn: use)),
2877 BB_END (b));
2878 if (dump_file)
2879 fprintf (stream: dump_file, format: "Changed conditional jump "
2880 "%d->%d to conditional return, adding "
2881 "fall-through jump.\n",
2882 b->index, BRANCH_EDGE (b)->dest->index);
2883 redirect_edge_succ (BRANCH_EDGE (b),
2884 EXIT_BLOCK_PTR_FOR_FN (cfun));
2885 BRANCH_EDGE (b)->flags &= ~EDGE_CROSSING;
2886 std::swap (BRANCH_EDGE (b)->probability,
2887 FALLTHRU_EDGE (b)->probability);
2888 update_br_prob_note (b);
2889 basic_block jb = force_nonfallthru (FALLTHRU_EDGE (b));
2890 notice_new_block (bb: jb);
2891 if (!redirect_jump (as_a <rtx_jump_insn *> (BB_END (jb)),
2892 block_label (new_ft), 0))
2893 gcc_unreachable ();
2894 redirect_edge_succ (single_succ_edge (bb: jb), new_ft);
2895 changed_here = true;
2896 }
2897 else
2898 {
2899 /* Invert the jump back to what it was. This should
2900 never fail. */
2901 if (!invert_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2902 JUMP_LABEL (BB_END (b)), 0))
2903 gcc_unreachable ();
2904 }
2905 }
2906 }
2907
2908 /* Simplify branch over branch. */
2909 if ((mode & CLEANUP_EXPENSIVE)
2910 && !(mode & CLEANUP_CFGLAYOUT)
2911 && try_simplify_condjump (cbranch_block: b))
2912 changed_here = true;
2913
2914 /* If B has a single outgoing edge, but uses a
2915 non-trivial jump instruction without side-effects, we
2916 can either delete the jump entirely, or replace it
2917 with a simple unconditional jump. */
2918 if (single_succ_p (bb: b)
2919 && single_succ (bb: b) != EXIT_BLOCK_PTR_FOR_FN (cfun)
2920 && onlyjump_p (BB_END (b))
2921 && !CROSSING_JUMP_P (BB_END (b))
2922 && try_redirect_by_replacing_jump (single_succ_edge (bb: b),
2923 single_succ (bb: b),
2924 (mode & CLEANUP_CFGLAYOUT) != 0))
2925 {
2926 update_forwarder_flag (bb: b);
2927 changed_here = true;
2928 }
2929
2930 /* Simplify branch to branch. */
2931 if (try_forward_edges (mode, b))
2932 {
2933 update_forwarder_flag (bb: b);
2934 changed_here = true;
2935 }
2936
2937 /* Look for shared code between blocks. */
2938 if ((mode & CLEANUP_CROSSJUMP)
2939 && try_crossjump_bb (mode, bb: b))
2940 changed_here = true;
2941
2942 if ((mode & CLEANUP_CROSSJUMP)
2943 /* This can lengthen register lifetimes. Do it only after
2944 reload. */
2945 && reload_completed
2946 && try_head_merge_bb (bb: b))
2947 changed_here = true;
2948
2949 /* Don't get confused by the index shift caused by
2950 deleting blocks. */
2951 if (!changed_here)
2952 b = b->next_bb;
2953 else
2954 changed = true;
2955 }
2956
2957 if ((mode & CLEANUP_CROSSJUMP)
2958 && try_crossjump_bb (mode, EXIT_BLOCK_PTR_FOR_FN (cfun)))
2959 changed = true;
2960
2961 if (block_was_dirty)
2962 {
2963 /* This should only be set by head-merging. */
2964 gcc_assert (mode & CLEANUP_CROSSJUMP);
2965 df_analyze ();
2966 }
2967
2968 if (changed)
2969 {
2970 /* Edge forwarding in particular can cause hot blocks previously
2971 reached by both hot and cold blocks to become dominated only
2972 by cold blocks. This will cause the verification below to fail,
2973 and lead to now cold code in the hot section. This is not easy
2974 to detect and fix during edge forwarding, and in some cases
2975 is only visible after newly unreachable blocks are deleted,
2976 which will be done in fixup_partitions. */
2977 if ((mode & CLEANUP_NO_PARTITIONING) == 0)
2978 {
2979 fixup_partitions ();
2980 checking_verify_flow_info ();
2981 }
2982 }
2983
2984 changed_overall |= changed;
2985 first_pass = false;
2986 }
2987 while (changed);
2988 }
2989
2990 FOR_ALL_BB_FN (b, cfun)
2991 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2992
2993 return changed_overall;
2994}
2995
2996/* Delete all unreachable basic blocks. */
2997
2998bool
2999delete_unreachable_blocks (void)
3000{
3001 bool changed = false;
3002 basic_block b, prev_bb;
3003
3004 find_unreachable_blocks ();
3005
3006 /* When we're in GIMPLE mode and there may be debug bind insns, we
3007 should delete blocks in reverse dominator order, so as to get a
3008 chance to substitute all released DEFs into debug bind stmts. If
3009 we don't have dominators information, walking blocks backward
3010 gets us a better chance of retaining most debug information than
3011 otherwise. */
3012 if (MAY_HAVE_DEBUG_BIND_INSNS && current_ir_type () == IR_GIMPLE
3013 && dom_info_available_p (CDI_DOMINATORS))
3014 {
3015 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
3016 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
3017 {
3018 prev_bb = b->prev_bb;
3019
3020 if (!(b->flags & BB_REACHABLE))
3021 {
3022 /* Speed up the removal of blocks that don't dominate
3023 others. Walking backwards, this should be the common
3024 case. */
3025 if (!first_dom_son (CDI_DOMINATORS, b))
3026 delete_basic_block (b);
3027 else
3028 {
3029 auto_vec<basic_block> h
3030 = get_all_dominated_blocks (CDI_DOMINATORS, b);
3031
3032 while (h.length ())
3033 {
3034 b = h.pop ();
3035
3036 prev_bb = b->prev_bb;
3037
3038 gcc_assert (!(b->flags & BB_REACHABLE));
3039
3040 delete_basic_block (b);
3041 }
3042 }
3043
3044 changed = true;
3045 }
3046 }
3047 }
3048 else
3049 {
3050 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
3051 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
3052 {
3053 prev_bb = b->prev_bb;
3054
3055 if (!(b->flags & BB_REACHABLE))
3056 {
3057 delete_basic_block (b);
3058 changed = true;
3059 }
3060 }
3061 }
3062
3063 if (changed)
3064 tidy_fallthru_edges ();
3065 return changed;
3066}
3067
3068/* Delete any jump tables never referenced. We can't delete them at the
3069 time of removing tablejump insn as they are referenced by the preceding
3070 insns computing the destination, so we delay deleting and garbagecollect
3071 them once life information is computed. */
3072void
3073delete_dead_jumptables (void)
3074{
3075 basic_block bb;
3076
3077 /* A dead jump table does not belong to any basic block. Scan insns
3078 between two adjacent basic blocks. */
3079 FOR_EACH_BB_FN (bb, cfun)
3080 {
3081 rtx_insn *insn, *next;
3082
3083 for (insn = NEXT_INSN (BB_END (bb));
3084 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
3085 insn = next)
3086 {
3087 next = NEXT_INSN (insn);
3088 if (LABEL_P (insn)
3089 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
3090 && JUMP_TABLE_DATA_P (next))
3091 {
3092 rtx_insn *label = insn, *jump = next;
3093
3094 if (dump_file)
3095 fprintf (stream: dump_file, format: "Dead jumptable %i removed\n",
3096 INSN_UID (insn));
3097
3098 next = NEXT_INSN (insn: next);
3099 delete_insn (jump);
3100 delete_insn (label);
3101 }
3102 }
3103 }
3104}
3105
3106
3107/* Tidy the CFG by deleting unreachable code and whatnot. */
3108
3109bool
3110cleanup_cfg (int mode)
3111{
3112 bool changed = false;
3113
3114 /* Set the cfglayout mode flag here. We could update all the callers
3115 but that is just inconvenient, especially given that we eventually
3116 want to have cfglayout mode as the default. */
3117 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3118 mode |= CLEANUP_CFGLAYOUT;
3119
3120 timevar_push (tv: TV_CLEANUP_CFG);
3121 if (delete_unreachable_blocks ())
3122 {
3123 changed = true;
3124 /* We've possibly created trivially dead code. Cleanup it right
3125 now to introduce more opportunities for try_optimize_cfg. */
3126 if (!(mode & (CLEANUP_NO_INSN_DEL))
3127 && !reload_completed)
3128 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3129 }
3130
3131 compact_blocks ();
3132
3133 /* To tail-merge blocks ending in the same noreturn function (e.g.
3134 a call to abort) we have to insert fake edges to exit. Do this
3135 here once. The fake edges do not interfere with any other CFG
3136 cleanups. */
3137 if (mode & CLEANUP_CROSSJUMP)
3138 add_noreturn_fake_exit_edges ();
3139
3140 if (!dbg_cnt (index: cfg_cleanup))
3141 return changed;
3142
3143 while (try_optimize_cfg (mode))
3144 {
3145 delete_unreachable_blocks (), changed = true;
3146 if (!(mode & CLEANUP_NO_INSN_DEL))
3147 {
3148 /* Try to remove some trivially dead insns when doing an expensive
3149 cleanup. But delete_trivially_dead_insns doesn't work after
3150 reload (it only handles pseudos) and run_fast_dce is too costly
3151 to run in every iteration.
3152
3153 For effective cross jumping, we really want to run a fast DCE to
3154 clean up any dead conditions, or they get in the way of performing
3155 useful tail merges.
3156
3157 Other transformations in cleanup_cfg are not so sensitive to dead
3158 code, so delete_trivially_dead_insns or even doing nothing at all
3159 is good enough. */
3160 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
3161 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3162 break;
3163 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occurred)
3164 {
3165 run_fast_dce ();
3166 mode &= ~CLEANUP_FORCE_FAST_DCE;
3167 }
3168 }
3169 else
3170 break;
3171 }
3172
3173 if (mode & CLEANUP_CROSSJUMP)
3174 remove_fake_exit_edges ();
3175
3176 if (mode & CLEANUP_FORCE_FAST_DCE)
3177 run_fast_dce ();
3178
3179 /* Don't call delete_dead_jumptables in cfglayout mode, because
3180 that function assumes that jump tables are in the insns stream.
3181 But we also don't _have_ to delete dead jumptables in cfglayout
3182 mode because we shouldn't even be looking at things that are
3183 not in a basic block. Dead jumptables are cleaned up when
3184 going out of cfglayout mode. */
3185 if (!(mode & CLEANUP_CFGLAYOUT))
3186 delete_dead_jumptables ();
3187
3188 /* ??? We probably do this way too often. */
3189 if (current_loops
3190 && (changed
3191 || (mode & CLEANUP_CFG_CHANGED)))
3192 {
3193 timevar_push (tv: TV_REPAIR_LOOPS);
3194 /* The above doesn't preserve dominance info if available. */
3195 gcc_assert (!dom_info_available_p (CDI_DOMINATORS));
3196 calculate_dominance_info (CDI_DOMINATORS);
3197 fix_loop_structure (NULL);
3198 free_dominance_info (CDI_DOMINATORS);
3199 timevar_pop (tv: TV_REPAIR_LOOPS);
3200 }
3201
3202 timevar_pop (tv: TV_CLEANUP_CFG);
3203
3204 return changed;
3205}
3206
3207namespace {
3208
3209const pass_data pass_data_jump =
3210{
3211 .type: RTL_PASS, /* type */
3212 .name: "jump", /* name */
3213 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3214 .tv_id: TV_JUMP, /* tv_id */
3215 .properties_required: 0, /* properties_required */
3216 .properties_provided: 0, /* properties_provided */
3217 .properties_destroyed: 0, /* properties_destroyed */
3218 .todo_flags_start: 0, /* todo_flags_start */
3219 .todo_flags_finish: 0, /* todo_flags_finish */
3220};
3221
3222class pass_jump : public rtl_opt_pass
3223{
3224public:
3225 pass_jump (gcc::context *ctxt)
3226 : rtl_opt_pass (pass_data_jump, ctxt)
3227 {}
3228
3229 /* opt_pass methods: */
3230 unsigned int execute (function *) final override;
3231
3232}; // class pass_jump
3233
3234unsigned int
3235pass_jump::execute (function *)
3236{
3237 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3238 if (dump_file)
3239 dump_flow_info (dump_file, dump_flags);
3240 cleanup_cfg (mode: (optimize ? CLEANUP_EXPENSIVE : 0)
3241 | (flag_thread_jumps && flag_expensive_optimizations
3242 ? CLEANUP_THREADING : 0));
3243 return 0;
3244}
3245
3246} // anon namespace
3247
3248rtl_opt_pass *
3249make_pass_jump (gcc::context *ctxt)
3250{
3251 return new pass_jump (ctxt);
3252}
3253
3254namespace {
3255
3256const pass_data pass_data_jump_after_combine =
3257{
3258 .type: RTL_PASS, /* type */
3259 .name: "jump_after_combine", /* name */
3260 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3261 .tv_id: TV_JUMP, /* tv_id */
3262 .properties_required: 0, /* properties_required */
3263 .properties_provided: 0, /* properties_provided */
3264 .properties_destroyed: 0, /* properties_destroyed */
3265 .todo_flags_start: 0, /* todo_flags_start */
3266 .todo_flags_finish: 0, /* todo_flags_finish */
3267};
3268
3269class pass_jump_after_combine : public rtl_opt_pass
3270{
3271public:
3272 pass_jump_after_combine (gcc::context *ctxt)
3273 : rtl_opt_pass (pass_data_jump_after_combine, ctxt)
3274 {}
3275
3276 /* opt_pass methods: */
3277 bool gate (function *) final override
3278 {
3279 return flag_thread_jumps && flag_expensive_optimizations;
3280 }
3281 unsigned int execute (function *) final override;
3282
3283}; // class pass_jump_after_combine
3284
3285unsigned int
3286pass_jump_after_combine::execute (function *)
3287{
3288 /* Jump threading does not keep dominators up-to-date. */
3289 free_dominance_info (CDI_DOMINATORS);
3290 cleanup_cfg (CLEANUP_THREADING);
3291 return 0;
3292}
3293
3294} // anon namespace
3295
3296rtl_opt_pass *
3297make_pass_jump_after_combine (gcc::context *ctxt)
3298{
3299 return new pass_jump_after_combine (ctxt);
3300}
3301
3302namespace {
3303
3304const pass_data pass_data_jump2 =
3305{
3306 .type: RTL_PASS, /* type */
3307 .name: "jump2", /* name */
3308 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3309 .tv_id: TV_JUMP, /* tv_id */
3310 .properties_required: 0, /* properties_required */
3311 .properties_provided: 0, /* properties_provided */
3312 .properties_destroyed: 0, /* properties_destroyed */
3313 .todo_flags_start: 0, /* todo_flags_start */
3314 .todo_flags_finish: 0, /* todo_flags_finish */
3315};
3316
3317class pass_jump2 : public rtl_opt_pass
3318{
3319public:
3320 pass_jump2 (gcc::context *ctxt)
3321 : rtl_opt_pass (pass_data_jump2, ctxt)
3322 {}
3323
3324 /* opt_pass methods: */
3325 unsigned int execute (function *) final override
3326 {
3327 cleanup_cfg (flag_crossjumping ? CLEANUP_CROSSJUMP : 0);
3328 return 0;
3329 }
3330
3331}; // class pass_jump2
3332
3333} // anon namespace
3334
3335rtl_opt_pass *
3336make_pass_jump2 (gcc::context *ctxt)
3337{
3338 return new pass_jump2 (ctxt);
3339}
3340

source code of gcc/cfgcleanup.cc