1/* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "rtl.h"
25#include "tree.h"
26#include "gimple.h"
27#include "cfghooks.h"
28#include "cfganal.h"
29#include "cfgloop.h"
30#include "gimple-iterator.h"
31#include "gimplify-me.h"
32#include "tree-ssa-loop-manip.h"
33#include "dumpfile.h"
34#include "sreal.h"
35
36static void copy_loops_to (class loop **, int,
37 class loop *);
38static void loop_redirect_edge (edge, basic_block);
39static void remove_bbs (basic_block *, int);
40static bool rpe_enum_p (const_basic_block, const void *);
41static int find_path (edge, basic_block **);
42static void fix_loop_placements (class loop *, bool *);
43static bool fix_bb_placement (basic_block);
44static void fix_bb_placements (basic_block, bool *, bitmap);
45
46/* Checks whether basic block BB is dominated by DATA. */
47static bool
48rpe_enum_p (const_basic_block bb, const void *data)
49{
50 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
51}
52
53/* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
54
55static void
56remove_bbs (basic_block *bbs, int nbbs)
57{
58 int i;
59
60 for (i = 0; i < nbbs; i++)
61 delete_basic_block (bbs[i]);
62}
63
64/* Find path -- i.e. the basic blocks dominated by edge E and put them
65 into array BBS, that will be allocated large enough to contain them.
66 E->dest must have exactly one predecessor for this to work (it is
67 easy to achieve and we do not put it here because we do not want to
68 alter anything by this function). The number of basic blocks in the
69 path is returned. */
70static int
71find_path (edge e, basic_block **bbs)
72{
73 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
74
75 /* Find bbs in the path. */
76 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
77 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
78 n_basic_blocks_for_fn (cfun), e->dest);
79}
80
81/* Fix placement of basic block BB inside loop hierarchy --
82 Let L be a loop to that BB belongs. Then every successor of BB must either
83 1) belong to some superloop of loop L, or
84 2) be a header of loop K such that K->outer is superloop of L
85 Returns true if we had to move BB into other loop to enforce this condition,
86 false if the placement of BB was already correct (provided that placements
87 of its successors are correct). */
88static bool
89fix_bb_placement (basic_block bb)
90{
91 edge e;
92 edge_iterator ei;
93 class loop *loop = current_loops->tree_root, *act;
94
95 FOR_EACH_EDGE (e, ei, bb->succs)
96 {
97 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
98 continue;
99
100 act = e->dest->loop_father;
101 if (act->header == e->dest)
102 act = loop_outer (loop: act);
103
104 if (flow_loop_nested_p (loop, act))
105 loop = act;
106 }
107
108 if (loop == bb->loop_father)
109 return false;
110
111 remove_bb_from_loops (bb);
112 add_bb_to_loop (bb, loop);
113
114 return true;
115}
116
117/* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
118 of LOOP to that leads at least one exit edge of LOOP, and set it
119 as the immediate superloop of LOOP. Return true if the immediate superloop
120 of LOOP changed.
121
122 IRRED_INVALIDATED is set to true if a change in the loop structures might
123 invalidate the information about irreducible regions. */
124
125static bool
126fix_loop_placement (class loop *loop, bool *irred_invalidated)
127{
128 unsigned i;
129 edge e;
130 auto_vec<edge> exits = get_loop_exit_edges (loop);
131 class loop *father = current_loops->tree_root, *act;
132 bool ret = false;
133
134 FOR_EACH_VEC_ELT (exits, i, e)
135 {
136 act = find_common_loop (loop, e->dest->loop_father);
137 if (flow_loop_nested_p (father, act))
138 father = act;
139 }
140
141 if (father != loop_outer (loop))
142 {
143 for (act = loop_outer (loop); act != father; act = loop_outer (loop: act))
144 act->num_nodes -= loop->num_nodes;
145 flow_loop_tree_node_remove (loop);
146 flow_loop_tree_node_add (father, loop);
147
148 /* The exit edges of LOOP no longer exits its original immediate
149 superloops; remove them from the appropriate exit lists. */
150 FOR_EACH_VEC_ELT (exits, i, e)
151 {
152 /* We may need to recompute irreducible loops. */
153 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
154 *irred_invalidated = true;
155 rescan_loop_exit (e, false, false);
156 }
157
158 ret = true;
159 }
160
161 return ret;
162}
163
164/* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
165 enforce condition stated in description of fix_bb_placement. We
166 start from basic block FROM that had some of its successors removed, so that
167 his placement no longer has to be correct, and iteratively fix placement of
168 its predecessors that may change if placement of FROM changed. Also fix
169 placement of subloops of FROM->loop_father, that might also be altered due
170 to this change; the condition for them is similar, except that instead of
171 successors we consider edges coming out of the loops.
172
173 If the changes may invalidate the information about irreducible regions,
174 IRRED_INVALIDATED is set to true.
175
176 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
177 changed loop_father are collected there. */
178
179static void
180fix_bb_placements (basic_block from,
181 bool *irred_invalidated,
182 bitmap loop_closed_ssa_invalidated)
183{
184 basic_block *queue, *qtop, *qbeg, *qend;
185 class loop *base_loop, *target_loop;
186 edge e;
187
188 /* We pass through blocks back-reachable from FROM, testing whether some
189 of their successors moved to outer loop. It may be necessary to
190 iterate several times, but it is finite, as we stop unless we move
191 the basic block up the loop structure. The whole story is a bit
192 more complicated due to presence of subloops, those are moved using
193 fix_loop_placement. */
194
195 base_loop = from->loop_father;
196 /* If we are already in the outermost loop, the basic blocks cannot be moved
197 outside of it. If FROM is the header of the base loop, it cannot be moved
198 outside of it, either. In both cases, we can end now. */
199 if (base_loop == current_loops->tree_root
200 || from == base_loop->header)
201 return;
202
203 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
204 bitmap_clear (in_queue);
205 bitmap_set_bit (map: in_queue, bitno: from->index);
206 /* Prevent us from going out of the base_loop. */
207 bitmap_set_bit (map: in_queue, bitno: base_loop->header->index);
208
209 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
210 qtop = queue + base_loop->num_nodes + 1;
211 qbeg = queue;
212 qend = queue + 1;
213 *qbeg = from;
214
215 while (qbeg != qend)
216 {
217 edge_iterator ei;
218 from = *qbeg;
219 qbeg++;
220 if (qbeg == qtop)
221 qbeg = queue;
222 bitmap_clear_bit (map: in_queue, bitno: from->index);
223
224 if (from->loop_father->header == from)
225 {
226 /* Subloop header, maybe move the loop upward. */
227 if (!fix_loop_placement (loop: from->loop_father, irred_invalidated))
228 continue;
229 target_loop = loop_outer (loop: from->loop_father);
230 if (loop_closed_ssa_invalidated)
231 {
232 basic_block *bbs = get_loop_body (from->loop_father);
233 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
234 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
235 free (ptr: bbs);
236 }
237 }
238 else
239 {
240 /* Ordinary basic block. */
241 if (!fix_bb_placement (bb: from))
242 continue;
243 target_loop = from->loop_father;
244 if (loop_closed_ssa_invalidated)
245 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
246 }
247
248 FOR_EACH_EDGE (e, ei, from->succs)
249 {
250 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
251 *irred_invalidated = true;
252 }
253
254 /* Something has changed, insert predecessors into queue. */
255 FOR_EACH_EDGE (e, ei, from->preds)
256 {
257 basic_block pred = e->src;
258 class loop *nca;
259
260 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
261 *irred_invalidated = true;
262
263 if (bitmap_bit_p (map: in_queue, bitno: pred->index))
264 continue;
265
266 /* If it is subloop, then it either was not moved, or
267 the path up the loop tree from base_loop do not contain
268 it. */
269 nca = find_common_loop (pred->loop_father, base_loop);
270 if (pred->loop_father != base_loop
271 && (nca == base_loop
272 || nca != pred->loop_father))
273 pred = pred->loop_father->header;
274 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
275 {
276 /* If PRED is already higher in the loop hierarchy than the
277 TARGET_LOOP to that we moved FROM, the change of the position
278 of FROM does not affect the position of PRED, so there is no
279 point in processing it. */
280 continue;
281 }
282
283 if (bitmap_bit_p (map: in_queue, bitno: pred->index))
284 continue;
285
286 /* Schedule the basic block. */
287 *qend = pred;
288 qend++;
289 if (qend == qtop)
290 qend = queue;
291 bitmap_set_bit (map: in_queue, bitno: pred->index);
292 }
293 }
294 free (ptr: queue);
295}
296
297/* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
298 and update loop structures and dominators. Return true if we were able
299 to remove the path, false otherwise (and nothing is affected then). */
300bool
301remove_path (edge e, bool *irred_invalidated,
302 bitmap loop_closed_ssa_invalidated)
303{
304 edge ae;
305 basic_block *rem_bbs, *bord_bbs, from, bb;
306 vec<basic_block> dom_bbs;
307 int i, nrem, n_bord_bbs;
308 bool local_irred_invalidated = false;
309 edge_iterator ei;
310 class loop *l, *f;
311
312 if (! irred_invalidated)
313 irred_invalidated = &local_irred_invalidated;
314
315 if (!can_remove_branch_p (e))
316 return false;
317
318 /* Keep track of whether we need to update information about irreducible
319 regions. This is the case if the removed area is a part of the
320 irreducible region, or if the set of basic blocks that belong to a loop
321 that is inside an irreducible region is changed, or if such a loop is
322 removed. */
323 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
324 *irred_invalidated = true;
325
326 /* We need to check whether basic blocks are dominated by the edge
327 e, but we only have basic block dominators. This is easy to
328 fix -- when e->dest has exactly one predecessor, this corresponds
329 to blocks dominated by e->dest, if not, split the edge. */
330 if (!single_pred_p (bb: e->dest))
331 e = single_pred_edge (bb: split_edge (e));
332
333 /* It may happen that by removing path we remove one or more loops
334 we belong to. In this case first unloop the loops, then proceed
335 normally. We may assume that e->dest is not a header of any loop,
336 as it now has exactly one predecessor. */
337 for (l = e->src->loop_father; loop_outer (loop: l); l = f)
338 {
339 f = loop_outer (loop: l);
340 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
341 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
342 }
343
344 /* Identify the path. */
345 nrem = find_path (e, bbs: &rem_bbs);
346
347 n_bord_bbs = 0;
348 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
349 auto_sbitmap seen (last_basic_block_for_fn (cfun));
350 bitmap_clear (seen);
351
352 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
353 for (i = 0; i < nrem; i++)
354 bitmap_set_bit (map: seen, bitno: rem_bbs[i]->index);
355 if (!*irred_invalidated)
356 FOR_EACH_EDGE (ae, ei, e->src->succs)
357 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
358 && !bitmap_bit_p (map: seen, bitno: ae->dest->index)
359 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
360 {
361 *irred_invalidated = true;
362 break;
363 }
364
365 for (i = 0; i < nrem; i++)
366 {
367 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
368 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
369 && !bitmap_bit_p (map: seen, bitno: ae->dest->index))
370 {
371 bitmap_set_bit (map: seen, bitno: ae->dest->index);
372 bord_bbs[n_bord_bbs++] = ae->dest;
373
374 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
375 *irred_invalidated = true;
376 }
377 }
378
379 /* Remove the path. */
380 from = e->src;
381 remove_branch (e);
382 dom_bbs.create (nelems: 0);
383
384 /* Cancel loops contained in the path. */
385 for (i = 0; i < nrem; i++)
386 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
387 cancel_loop_tree (rem_bbs[i]->loop_father);
388
389 remove_bbs (bbs: rem_bbs, nbbs: nrem);
390 free (ptr: rem_bbs);
391
392 /* Find blocks whose dominators may be affected. */
393 bitmap_clear (seen);
394 for (i = 0; i < n_bord_bbs; i++)
395 {
396 basic_block ldom;
397
398 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
399 if (bitmap_bit_p (map: seen, bitno: bb->index))
400 continue;
401 bitmap_set_bit (map: seen, bitno: bb->index);
402
403 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
404 ldom;
405 ldom = next_dom_son (CDI_DOMINATORS, ldom))
406 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
407 dom_bbs.safe_push (obj: ldom);
408 }
409
410 /* Recount dominators. */
411 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
412 dom_bbs.release ();
413 free (ptr: bord_bbs);
414
415 /* Fix placements of basic blocks inside loops and the placement of
416 loops in the loop tree. */
417 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
418 fix_loop_placements (from->loop_father, irred_invalidated);
419
420 if (local_irred_invalidated
421 && loops_state_satisfies_p (flags: LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
422 mark_irreducible_loops ();
423
424 return true;
425}
426
427/* Creates place for a new LOOP in loops structure of FN. */
428
429void
430place_new_loop (struct function *fn, class loop *loop)
431{
432 loop->num = number_of_loops (fn);
433 vec_safe_push (v&: loops_for_fn (fn)->larray, obj: loop);
434}
435
436/* Given LOOP structure with filled header and latch, find the body of the
437 corresponding loop and add it to loops tree. Insert the LOOP as a son of
438 outer. */
439
440void
441add_loop (class loop *loop, class loop *outer)
442{
443 basic_block *bbs;
444 int i, n;
445 class loop *subloop;
446 edge e;
447 edge_iterator ei;
448
449 /* Add it to loop structure. */
450 place_new_loop (cfun, loop);
451 flow_loop_tree_node_add (outer, loop);
452
453 /* Find its nodes. */
454 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
455 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
456
457 for (i = 0; i < n; i++)
458 {
459 if (bbs[i]->loop_father == outer)
460 {
461 remove_bb_from_loops (bbs[i]);
462 add_bb_to_loop (bbs[i], loop);
463 continue;
464 }
465
466 loop->num_nodes++;
467
468 /* If we find a direct subloop of OUTER, move it to LOOP. */
469 subloop = bbs[i]->loop_father;
470 if (loop_outer (loop: subloop) == outer
471 && subloop->header == bbs[i])
472 {
473 flow_loop_tree_node_remove (subloop);
474 flow_loop_tree_node_add (loop, subloop);
475 }
476 }
477
478 /* Update the information about loop exit edges. */
479 for (i = 0; i < n; i++)
480 {
481 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
482 {
483 rescan_loop_exit (e, false, false);
484 }
485 }
486
487 free (ptr: bbs);
488}
489
490/* Scale profile of loop by P. */
491
492void
493scale_loop_frequencies (class loop *loop, profile_probability p)
494{
495 basic_block *bbs;
496
497 bbs = get_loop_body (loop);
498 scale_bbs_frequencies (bbs, loop->num_nodes, p);
499 free (ptr: bbs);
500}
501
502/* Scales the frequencies of all basic blocks in LOOP that are strictly
503 dominated by BB by NUM/DEN. */
504
505void
506scale_dominated_blocks_in_loop (class loop *loop, basic_block bb,
507 profile_count num, profile_count den)
508{
509 basic_block son;
510
511 if (!den.nonzero_p () && !(num == profile_count::zero ()))
512 return;
513 auto_vec <basic_block, 8> worklist;
514 worklist.safe_push (obj: bb);
515
516 while (!worklist.is_empty ())
517 for (son = first_dom_son (CDI_DOMINATORS, worklist.pop ());
518 son;
519 son = next_dom_son (CDI_DOMINATORS, son))
520 {
521 if (!flow_bb_inside_loop_p (loop, son))
522 continue;
523 son->count = son->count.apply_scale (num, den);
524 worklist.safe_push (obj: son);
525 }
526}
527
528/* Return exit that suitable for update when loop iterations
529 changed. */
530
531static edge
532loop_exit_for_scaling (class loop *loop)
533{
534 edge exit_edge = single_exit (loop);
535 if (!exit_edge)
536 {
537 auto_vec<edge> exits = get_loop_exit_edges (loop);
538 exit_edge = single_likely_exit (loop, exits);
539 }
540 return exit_edge;
541}
542
543/* Assume that loop's entry count and profile up to a given EXIT_EDGE is
544 consistent. Update exit probability so loop exists with PROFILE_COUNT
545 and rescale profile of basic blocks inside loop dominated by EXIT_EDGE->src.
546
547 This is useful after number of iteraitons of loop has changed.
548 If EXIT_EDGE is NULL, the function will try to identify suitable exit.
549 If DESIRED_COUNT is NULL, loop entry count will be used.
550 In consistent profile usually loop exists as many times as it is entred.
551
552 Return updated exit if successfull and NULL otherwise. */
553
554edge
555update_loop_exit_probability_scale_dom_bbs (class loop *loop,
556 edge exit_edge,
557 profile_count desired_count)
558{
559 if (!exit_edge)
560 exit_edge = loop_exit_for_scaling (loop);
561 if (!exit_edge)
562 {
563 if (dump_file && (dump_flags & TDF_DETAILS))
564 {
565 fprintf (stream: dump_file, format: ";; Not updating exit probability of loop %i;"
566 " it has no single exit\n",
567 loop->num);
568 }
569 return NULL;
570 }
571 /* If exit is inside another loop, adjusting its probability will also
572 adjust number of the inner loop iterations. Just do noting for now. */
573 if (!just_once_each_iteration_p (loop, exit_edge->src))
574 {
575 if (dump_file && (dump_flags & TDF_DETAILS))
576 {
577 fprintf (stream: dump_file, format: ";; Not updating exit probability of loop %i;"
578 " exit is inside inner loop\n",
579 loop->num);
580 }
581 return NULL;
582 }
583 /* Normal loops exit as many times as they are entered. */
584 if (!desired_count.initialized_p ())
585 desired_count = loop_count_in (loop);
586 /* See if everything is already perfect. */
587 if (desired_count == exit_edge->count ())
588 return exit_edge;
589 profile_count old_exit_count = exit_edge->count ();
590 /* See if update is possible.
591 Avoid turning probability to 0 or 1 just trying to reach impossible
592 value.
593
594 Natural profile update after some loop will happily scale header count to
595 be less than count of entering the loop. This is bad idea and they should
596 special case maybe_flat_loop_profile.
597
598 It may also happen that the source basic block of the exit edge is
599 inside in-loop condition:
600
601 +-> header
602 | |
603 | B1
604 | / \
605 | | B2--exit_edge-->
606 | \ /
607 | B3
608 +__/
609
610 If B2 count is smaller than desired exit edge count
611 the profile was inconsistent with the newly discovered upper bound.
612 Probablity of edge B1->B2 is too low. We do not attempt to fix
613 that (as it is hard in general). */
614 if (desired_count > exit_edge->src->count
615 && exit_edge->src->count.differs_from_p (other: desired_count))
616 {
617 if (dump_file)
618 {
619 fprintf (stream: dump_file, format: ";; Source bb of loop %i has count ",
620 loop->num);
621 exit_edge->src->count.dump (f: dump_file, cfun);
622 fprintf (stream: dump_file,
623 format: " which is smaller then desired count of exitting loop ");
624 desired_count.dump (f: dump_file, cfun);
625 fprintf (stream: dump_file, format: ". Profile update is impossible.\n");
626 }
627 /* Drop quality of probability since we know it likely
628 bad. */
629 exit_edge->probability = exit_edge->probability.guessed ();
630 return NULL;
631 }
632 if (!exit_edge->src->count.nonzero_p ())
633 {
634 if (dump_file)
635 {
636 fprintf (stream: dump_file, format: ";; Not updating exit edge probability"
637 " in loop %i since profile is zero ",
638 loop->num);
639 }
640 return NULL;
641 }
642 set_edge_probability_and_rescale_others
643 (exit_edge, desired_count.probability_in (overall: exit_edge->src->count));
644 /* Rescale the remaining edge probabilities and see if there is only
645 one. */
646 edge other_edge = NULL;
647 bool found = false;
648 edge e;
649 edge_iterator ei;
650 FOR_EACH_EDGE (e, ei, exit_edge->src->succs)
651 if (!(e->flags & EDGE_FAKE)
652 && !loop_exit_edge_p (loop, e))
653 {
654 if (found)
655 {
656 other_edge = NULL;
657 break;
658 }
659 other_edge = e;
660 found = true;
661 }
662 /* If there is only loop latch after other edge,
663 update its profile. This is tiny bit more precise
664 than scaling. */
665 if (other_edge && other_edge->dest == loop->latch)
666 {
667 if (single_pred_p (bb: loop->latch))
668 loop->latch->count = loop->latch->count
669 + old_exit_count - exit_edge->count ();
670 }
671 else
672 /* If there are multple blocks, just scale. */
673 scale_dominated_blocks_in_loop (loop, bb: exit_edge->src,
674 num: exit_edge->src->count - exit_edge->count (),
675 den: exit_edge->src->count - old_exit_count);
676 return exit_edge;
677}
678
679/* Scale profile in LOOP by P.
680 If ITERATION_BOUND is not -1, scale even further if loop is predicted
681 to iterate too many times.
682 Before caling this function, preheader block profile should be already
683 scaled to final count. This is necessary because loop iterations are
684 determined by comparing header edge count to latch ege count and thus
685 they need to be scaled synchronously. */
686
687void
688scale_loop_profile (class loop *loop, profile_probability p,
689 gcov_type iteration_bound)
690{
691 if (!(p == profile_probability::always ()))
692 {
693 if (dump_file && (dump_flags & TDF_DETAILS))
694 {
695 fprintf (stream: dump_file, format: ";; Scaling loop %i with scale ",
696 loop->num);
697 p.dump (f: dump_file);
698 fprintf (stream: dump_file, format: "\n");
699 }
700
701 /* Scale the probabilities. */
702 scale_loop_frequencies (loop, p);
703 }
704
705 if (iteration_bound == -1)
706 return;
707
708 sreal iterations;
709 if (!expected_loop_iterations_by_profile (loop, ret: &iterations))
710 return;
711
712 if (dump_file && (dump_flags & TDF_DETAILS))
713 {
714 fprintf (stream: dump_file,
715 format: ";; Guessed iterations of loop %i is %f. New upper bound %i.\n",
716 loop->num,
717 iterations.to_double (),
718 (int)iteration_bound);
719 }
720
721 /* See if loop is predicted to iterate too many times. */
722 if (iterations <= (sreal)iteration_bound)
723 return;
724
725 profile_count count_in = loop_count_in (loop);
726
727 /* Now scale the loop body so header count is
728 count_in * (iteration_bound + 1) */
729 profile_probability scale_prob
730 = (count_in * (iteration_bound + 1)).probability_in (overall: loop->header->count);
731 if (dump_file && (dump_flags & TDF_DETAILS))
732 {
733 fprintf (stream: dump_file, format: ";; Scaling loop %i with scale ",
734 loop->num);
735 scale_prob.dump (f: dump_file);
736 fprintf (stream: dump_file, format: " to reach upper bound %i\n",
737 (int)iteration_bound);
738 }
739 /* Finally attempt to fix exit edge probability. */
740 edge exit_edge = loop_exit_for_scaling (loop);
741
742 /* In a consistent profile unadjusted_exit_count should be same as count_in,
743 however to preserve as much of the original info, avoid recomputing
744 it. */
745 profile_count unadjusted_exit_count = profile_count::uninitialized ();
746 if (exit_edge)
747 unadjusted_exit_count = exit_edge->count ();
748 scale_loop_frequencies (loop, p: scale_prob);
749 update_loop_exit_probability_scale_dom_bbs (loop, exit_edge,
750 desired_count: unadjusted_exit_count);
751}
752
753/* Recompute dominance information for basic blocks outside LOOP. */
754
755static void
756update_dominators_in_loop (class loop *loop)
757{
758 vec<basic_block> dom_bbs = vNULL;
759 basic_block *body;
760 unsigned i;
761
762 auto_sbitmap seen (last_basic_block_for_fn (cfun));
763 bitmap_clear (seen);
764 body = get_loop_body (loop);
765
766 for (i = 0; i < loop->num_nodes; i++)
767 bitmap_set_bit (map: seen, bitno: body[i]->index);
768
769 for (i = 0; i < loop->num_nodes; i++)
770 {
771 basic_block ldom;
772
773 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
774 ldom;
775 ldom = next_dom_son (CDI_DOMINATORS, ldom))
776 if (!bitmap_bit_p (map: seen, bitno: ldom->index))
777 {
778 bitmap_set_bit (map: seen, bitno: ldom->index);
779 dom_bbs.safe_push (obj: ldom);
780 }
781 }
782
783 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
784 free (ptr: body);
785 dom_bbs.release ();
786}
787
788/* Creates an if region as shown above. CONDITION is used to create
789 the test for the if.
790
791 |
792 | ------------- -------------
793 | | pred_bb | | pred_bb |
794 | ------------- -------------
795 | | |
796 | | | ENTRY_EDGE
797 | | ENTRY_EDGE V
798 | | ====> -------------
799 | | | cond_bb |
800 | | | CONDITION |
801 | | -------------
802 | V / \
803 | ------------- e_false / \ e_true
804 | | succ_bb | V V
805 | ------------- ----------- -----------
806 | | false_bb | | true_bb |
807 | ----------- -----------
808 | \ /
809 | \ /
810 | V V
811 | -------------
812 | | join_bb |
813 | -------------
814 | | exit_edge (result)
815 | V
816 | -----------
817 | | succ_bb |
818 | -----------
819 |
820 */
821
822edge
823create_empty_if_region_on_edge (edge entry_edge, tree condition)
824{
825
826 basic_block cond_bb, true_bb, false_bb, join_bb;
827 edge e_true, e_false, exit_edge;
828 gcond *cond_stmt;
829 tree simple_cond;
830 gimple_stmt_iterator gsi;
831
832 cond_bb = split_edge (entry_edge);
833
834 /* Insert condition in cond_bb. */
835 gsi = gsi_last_bb (bb: cond_bb);
836 simple_cond =
837 force_gimple_operand_gsi (&gsi, condition, true, NULL,
838 false, GSI_NEW_STMT);
839 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
840 gsi = gsi_last_bb (bb: cond_bb);
841 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
842
843 join_bb = split_edge (single_succ_edge (bb: cond_bb));
844
845 e_true = single_succ_edge (bb: cond_bb);
846 true_bb = split_edge (e_true);
847
848 e_false = make_edge (cond_bb, join_bb, 0);
849 false_bb = split_edge (e_false);
850
851 e_true->flags &= ~EDGE_FALLTHRU;
852 e_true->flags |= EDGE_TRUE_VALUE;
853 e_false->flags &= ~EDGE_FALLTHRU;
854 e_false->flags |= EDGE_FALSE_VALUE;
855
856 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
857 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
858 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
859 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
860
861 exit_edge = single_succ_edge (bb: join_bb);
862
863 if (single_pred_p (bb: exit_edge->dest))
864 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
865
866 return exit_edge;
867}
868
869/* create_empty_loop_on_edge
870 |
871 | - pred_bb - ------ pred_bb ------
872 | | | | iv0 = initial_value |
873 | -----|----- ---------|-----------
874 | | ______ | entry_edge
875 | | entry_edge / | |
876 | | ====> | -V---V- loop_header -------------
877 | V | | iv_before = phi (iv0, iv_after) |
878 | - succ_bb - | ---|-----------------------------
879 | | | | |
880 | ----------- | ---V--- loop_body ---------------
881 | | | iv_after = iv_before + stride |
882 | | | if (iv_before < upper_bound) |
883 | | ---|--------------\--------------
884 | | | \ exit_e
885 | | V \
886 | | - loop_latch - V- succ_bb -
887 | | | | | |
888 | | /------------- -----------
889 | \ ___ /
890
891 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
892 that is used before the increment of IV. IV_BEFORE should be used for
893 adding code to the body that uses the IV. OUTER is the outer loop in
894 which the new loop should be inserted.
895
896 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
897 inserted on the loop entry edge. This implies that this function
898 should be used only when the UPPER_BOUND expression is a loop
899 invariant. */
900
901class loop *
902create_empty_loop_on_edge (edge entry_edge,
903 tree initial_value,
904 tree stride, tree upper_bound,
905 tree iv,
906 tree *iv_before,
907 tree *iv_after,
908 class loop *outer)
909{
910 basic_block loop_header, loop_latch, succ_bb, pred_bb;
911 class loop *loop;
912 gimple_stmt_iterator gsi;
913 gimple_seq stmts;
914 gcond *cond_expr;
915 tree exit_test;
916 edge exit_e;
917
918 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
919
920 /* Create header, latch and wire up the loop. */
921 pred_bb = entry_edge->src;
922 loop_header = split_edge (entry_edge);
923 loop_latch = split_edge (single_succ_edge (bb: loop_header));
924 succ_bb = single_succ (bb: loop_latch);
925 make_edge (loop_header, succ_bb, 0);
926 redirect_edge_succ_nodup (single_succ_edge (bb: loop_latch), loop_header);
927
928 /* Set immediate dominator information. */
929 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
930 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
931 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
932
933 /* Initialize a loop structure and put it in a loop hierarchy. */
934 loop = alloc_loop ();
935 loop->header = loop_header;
936 loop->latch = loop_latch;
937 add_loop (loop, outer);
938
939 /* TODO: Fix counts. */
940 scale_loop_frequencies (loop, p: profile_probability::even ());
941
942 /* Update dominators. */
943 update_dominators_in_loop (loop);
944
945 /* Modify edge flags. */
946 exit_e = single_exit (loop);
947 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
948 single_pred_edge (bb: loop_latch)->flags = EDGE_TRUE_VALUE;
949
950 /* Construct IV code in loop. */
951 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
952 if (stmts)
953 {
954 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
955 gsi_commit_edge_inserts ();
956 }
957
958 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
959 if (stmts)
960 {
961 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
962 gsi_commit_edge_inserts ();
963 }
964
965 gsi = gsi_last_bb (bb: loop_header);
966 create_iv (initial_value, PLUS_EXPR, stride, iv, loop, &gsi, false,
967 iv_before, iv_after);
968
969 /* Insert loop exit condition. */
970 cond_expr = gimple_build_cond
971 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
972
973 exit_test = gimple_cond_lhs (gs: cond_expr);
974 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
975 false, GSI_NEW_STMT);
976 gimple_cond_set_lhs (gs: cond_expr, lhs: exit_test);
977 gsi = gsi_last_bb (bb: exit_e->src);
978 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
979
980 split_block_after_labels (loop_header);
981
982 return loop;
983}
984
985/* Remove the latch edge of a LOOP and update loops to indicate that
986 the LOOP was removed. After this function, original loop latch will
987 have no successor, which caller is expected to fix somehow.
988
989 If this may cause the information about irreducible regions to become
990 invalid, IRRED_INVALIDATED is set to true.
991
992 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
993 basic blocks that had non-trivial update on their loop_father.*/
994
995void
996unloop (class loop *loop, bool *irred_invalidated,
997 bitmap loop_closed_ssa_invalidated)
998{
999 basic_block *body;
1000 class loop *ploop;
1001 unsigned i, n;
1002 basic_block latch = loop->latch;
1003 bool dummy = false;
1004
1005 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
1006 *irred_invalidated = true;
1007
1008 /* This is relatively straightforward. The dominators are unchanged, as
1009 loop header dominates loop latch, so the only thing we have to care of
1010 is the placement of loops and basic blocks inside the loop tree. We
1011 move them all to the loop->outer, and then let fix_bb_placements do
1012 its work. */
1013
1014 body = get_loop_body (loop);
1015 n = loop->num_nodes;
1016 for (i = 0; i < n; i++)
1017 if (body[i]->loop_father == loop)
1018 {
1019 remove_bb_from_loops (body[i]);
1020 add_bb_to_loop (body[i], loop_outer (loop));
1021 }
1022 free (ptr: body);
1023
1024 while (loop->inner)
1025 {
1026 ploop = loop->inner;
1027 flow_loop_tree_node_remove (ploop);
1028 flow_loop_tree_node_add (loop_outer (loop), ploop);
1029 }
1030
1031 /* Remove the loop and free its data. */
1032 delete_loop (loop);
1033
1034 remove_edge (single_succ_edge (bb: latch));
1035
1036 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
1037 there is an irreducible region inside the cancelled loop, the flags will
1038 be still correct. */
1039 fix_bb_placements (from: latch, irred_invalidated: &dummy, loop_closed_ssa_invalidated);
1040}
1041
1042/* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
1043 condition stated in description of fix_loop_placement holds for them.
1044 It is used in case when we removed some edges coming out of LOOP, which
1045 may cause the right placement of LOOP inside loop tree to change.
1046
1047 IRRED_INVALIDATED is set to true if a change in the loop structures might
1048 invalidate the information about irreducible regions. */
1049
1050static void
1051fix_loop_placements (class loop *loop, bool *irred_invalidated)
1052{
1053 class loop *outer;
1054
1055 while (loop_outer (loop))
1056 {
1057 outer = loop_outer (loop);
1058 if (!fix_loop_placement (loop, irred_invalidated))
1059 break;
1060
1061 /* Changing the placement of a loop in the loop tree may alter the
1062 validity of condition 2) of the description of fix_bb_placement
1063 for its preheader, because the successor is the header and belongs
1064 to the loop. So call fix_bb_placements to fix up the placement
1065 of the preheader and (possibly) of its predecessors. */
1066 fix_bb_placements (from: loop_preheader_edge (loop)->src,
1067 irred_invalidated, NULL);
1068 loop = outer;
1069 }
1070}
1071
1072/* Duplicate loop bounds and other information we store about
1073 the loop into its duplicate. */
1074
1075void
1076copy_loop_info (class loop *loop, class loop *target)
1077{
1078 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1079 target->any_upper_bound = loop->any_upper_bound;
1080 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1081 target->any_likely_upper_bound = loop->any_likely_upper_bound;
1082 target->nb_iterations_likely_upper_bound
1083 = loop->nb_iterations_likely_upper_bound;
1084 target->any_estimate = loop->any_estimate;
1085 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1086 target->estimate_state = loop->estimate_state;
1087 target->safelen = loop->safelen;
1088 target->simdlen = loop->simdlen;
1089 target->constraints = loop->constraints;
1090 target->can_be_parallel = loop->can_be_parallel;
1091 target->warned_aggressive_loop_optimizations
1092 |= loop->warned_aggressive_loop_optimizations;
1093 target->dont_vectorize = loop->dont_vectorize;
1094 target->force_vectorize = loop->force_vectorize;
1095 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
1096 target->finite_p = loop->finite_p;
1097 target->unroll = loop->unroll;
1098 target->owned_clique = loop->owned_clique;
1099}
1100
1101/* Copies copy of LOOP as subloop of TARGET loop, placing newly
1102 created loop into loops structure. If AFTER is non-null
1103 the new loop is added at AFTER->next, otherwise in front of TARGETs
1104 sibling list. */
1105class loop *
1106duplicate_loop (class loop *loop, class loop *target, class loop *after)
1107{
1108 class loop *cloop;
1109 cloop = alloc_loop ();
1110 place_new_loop (cfun, loop: cloop);
1111
1112 copy_loop_info (loop, target: cloop);
1113
1114 /* Mark the new loop as copy of LOOP. */
1115 set_loop_copy (loop, cloop);
1116
1117 /* Add it to target. */
1118 flow_loop_tree_node_add (target, cloop, after);
1119
1120 return cloop;
1121}
1122
1123/* Copies structure of subloops of LOOP into TARGET loop, placing
1124 newly created loops into loop tree at the end of TARGETs sibling
1125 list in the original order. */
1126void
1127duplicate_subloops (class loop *loop, class loop *target)
1128{
1129 class loop *aloop, *cloop, *tail;
1130
1131 for (tail = target->inner; tail && tail->next; tail = tail->next)
1132 ;
1133 for (aloop = loop->inner; aloop; aloop = aloop->next)
1134 {
1135 cloop = duplicate_loop (loop: aloop, target, after: tail);
1136 tail = cloop;
1137 gcc_assert(!tail->next);
1138 duplicate_subloops (loop: aloop, target: cloop);
1139 }
1140}
1141
1142/* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1143 into TARGET loop, placing newly created loops into loop tree adding
1144 them to TARGETs sibling list at the end in order. */
1145static void
1146copy_loops_to (class loop **copied_loops, int n, class loop *target)
1147{
1148 class loop *aloop, *tail;
1149 int i;
1150
1151 for (tail = target->inner; tail && tail->next; tail = tail->next)
1152 ;
1153 for (i = 0; i < n; i++)
1154 {
1155 aloop = duplicate_loop (loop: copied_loops[i], target, after: tail);
1156 tail = aloop;
1157 gcc_assert(!tail->next);
1158 duplicate_subloops (loop: copied_loops[i], target: aloop);
1159 }
1160}
1161
1162/* Redirects edge E to basic block DEST. */
1163static void
1164loop_redirect_edge (edge e, basic_block dest)
1165{
1166 if (e->dest == dest)
1167 return;
1168
1169 redirect_edge_and_branch_force (e, dest);
1170}
1171
1172/* Check whether LOOP's body can be duplicated. */
1173bool
1174can_duplicate_loop_p (const class loop *loop)
1175{
1176 int ret;
1177 basic_block *bbs = get_loop_body (loop);
1178
1179 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1180 free (ptr: bbs);
1181
1182 return ret;
1183}
1184
1185/* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1186 loop structure and dominators (order of inner subloops is retained).
1187 E's destination must be LOOP header for this to work, i.e. it must be entry
1188 or latch edge of this loop; these are unique, as the loops must have
1189 preheaders for this function to work correctly (in case E is latch, the
1190 function unrolls the loop, if E is entry edge, it peels the loop). Store
1191 edges created by copying ORIG edge from copies corresponding to set bits in
1192 WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1193 are numbered in order given by control flow through them) into TO_REMOVE
1194 array. Returns false if duplication is
1195 impossible. */
1196
1197bool
1198duplicate_loop_body_to_header_edge (class loop *loop, edge e,
1199 unsigned int ndupl, sbitmap wont_exit,
1200 edge orig, vec<edge> *to_remove, int flags)
1201{
1202 class loop *target, *aloop;
1203 class loop **orig_loops;
1204 unsigned n_orig_loops;
1205 basic_block header = loop->header, latch = loop->latch;
1206 basic_block *new_bbs, *bbs, *first_active;
1207 basic_block new_bb, bb, first_active_latch = NULL;
1208 edge ae, latch_edge;
1209 edge spec_edges[2], new_spec_edges[2];
1210 const int SE_LATCH = 0;
1211 const int SE_ORIG = 1;
1212 unsigned i, j, n;
1213 int is_latch = (latch == e->src);
1214 profile_probability *scale_step = NULL;
1215 profile_probability scale_main = profile_probability::always ();
1216 profile_probability scale_act = profile_probability::always ();
1217 profile_count after_exit_num = profile_count::zero (),
1218 after_exit_den = profile_count::zero ();
1219 bool scale_after_exit = false;
1220 int add_irreducible_flag;
1221 basic_block place_after;
1222 bitmap bbs_to_scale = NULL;
1223 bitmap_iterator bi;
1224
1225 gcc_assert (e->dest == loop->header);
1226 gcc_assert (ndupl > 0);
1227
1228 if (orig)
1229 {
1230 /* Orig must be edge out of the loop. */
1231 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1232 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1233 }
1234
1235 n = loop->num_nodes;
1236 bbs = get_loop_body_in_dom_order (loop);
1237 gcc_assert (bbs[0] == loop->header);
1238 gcc_assert (bbs[n - 1] == loop->latch);
1239
1240 /* Check whether duplication is possible. */
1241 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1242 {
1243 free (ptr: bbs);
1244 return false;
1245 }
1246 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1247
1248 /* In case we are doing loop peeling and the loop is in the middle of
1249 irreducible region, the peeled copies will be inside it too. */
1250 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1251 gcc_assert (!is_latch || !add_irreducible_flag);
1252
1253 /* Find edge from latch. */
1254 latch_edge = loop_latch_edge (loop);
1255
1256 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1257 {
1258 /* Calculate coefficients by that we have to scale counts
1259 of duplicated loop bodies. */
1260 profile_count count_in = header->count;
1261 profile_count count_le = latch_edge->count ();
1262 profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1263 profile_probability prob_pass_thru = count_le.probability_in (overall: count_in);
1264 profile_count new_count_le = count_le + count_out_orig;
1265
1266 if (orig && orig->probability.initialized_p ()
1267 && !(orig->probability == profile_probability::always ()))
1268 {
1269 /* The blocks that are dominated by a removed exit edge ORIG have
1270 frequencies scaled by this. */
1271 if (orig->count ().initialized_p ())
1272 {
1273 after_exit_num = orig->src->count;
1274 after_exit_den = after_exit_num - orig->count ();
1275 scale_after_exit = true;
1276 }
1277 bbs_to_scale = BITMAP_ALLOC (NULL);
1278 for (i = 0; i < n; i++)
1279 {
1280 if (bbs[i] != orig->src
1281 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1282 bitmap_set_bit (bbs_to_scale, i);
1283 }
1284 /* Since we will scale up all basic blocks dominated by orig, exits
1285 will become more likely; compensate for that. */
1286 if (after_exit_den.nonzero_p ())
1287 {
1288 auto_vec<edge> exits = get_loop_exit_edges (loop);
1289 for (edge ex : exits)
1290 if (ex != orig
1291 && dominated_by_p (CDI_DOMINATORS, ex->src, orig->src))
1292 new_count_le -= ex->count ().apply_scale (num: after_exit_num
1293 - after_exit_den,
1294 den: after_exit_den);
1295 }
1296 }
1297 profile_probability prob_pass_wont_exit =
1298 new_count_le.probability_in (overall: count_in);
1299 /* If profile count is 0, the probability will be uninitialized.
1300 We can set probability to any initialized value to avoid
1301 precision loss. If profile is sane, all counts will be 0 anyway. */
1302 if (!count_in.nonzero_p ())
1303 {
1304 prob_pass_thru
1305 = profile_probability::always ().apply_scale (num: 1, den: 2);
1306 prob_pass_wont_exit
1307 = profile_probability::always ().apply_scale (num: 1, den: 2);
1308 }
1309
1310 scale_step = XNEWVEC (profile_probability, ndupl);
1311
1312 for (i = 1; i <= ndupl; i++)
1313 scale_step[i - 1] = bitmap_bit_p (map: wont_exit, bitno: i)
1314 ? prob_pass_wont_exit
1315 : prob_pass_thru;
1316
1317 /* Complete peeling is special as the probability of exit in last
1318 copy becomes 1. */
1319 if (!count_in.nonzero_p ())
1320 ;
1321 else if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1322 {
1323 profile_count wanted_count = e->count ();
1324
1325 gcc_assert (!is_latch);
1326 /* First copy has count of incoming edge. Each subsequent
1327 count should be reduced by prob_pass_wont_exit. Caller
1328 should've managed the flags so all except for original loop
1329 has won't exist set. */
1330 scale_act = wanted_count.probability_in (overall: count_in);
1331
1332 /* Now simulate the duplication adjustments and compute header
1333 frequency of the last copy. */
1334 for (i = 0; i < ndupl; i++)
1335 wanted_count = wanted_count.apply_probability (prob: scale_step [i]);
1336 scale_main = wanted_count.probability_in (overall: count_in);
1337 }
1338 /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1339 First iteration will be original loop followed by duplicated bodies.
1340 It is necessary to scale down the original so we get right overall
1341 number of iterations. */
1342 else if (is_latch)
1343 {
1344 profile_probability prob_pass_main = bitmap_bit_p (map: wont_exit, bitno: 0)
1345 ? prob_pass_wont_exit
1346 : prob_pass_thru;
1347 if (!(flags & DLTHE_FLAG_FLAT_PROFILE))
1348 {
1349 profile_probability p = prob_pass_main;
1350 profile_count scale_main_den = count_in;
1351 for (i = 0; i < ndupl; i++)
1352 {
1353 scale_main_den += count_in.apply_probability (prob: p);
1354 p = p * scale_step[i];
1355 }
1356 /* If original loop is executed COUNT_IN times, the unrolled
1357 loop will account SCALE_MAIN_DEN times. */
1358 scale_main = count_in.probability_in (overall: scale_main_den);
1359 }
1360 else
1361 scale_main = profile_probability::always ();
1362 scale_act = scale_main * prob_pass_main;
1363 }
1364 else
1365 {
1366 profile_count preheader_count = e->count ();
1367 for (i = 0; i < ndupl; i++)
1368 scale_main = scale_main * scale_step[i];
1369 scale_act = preheader_count.probability_in (overall: count_in);
1370 }
1371 }
1372
1373 /* Loop the new bbs will belong to. */
1374 target = e->src->loop_father;
1375
1376 /* Original loops. */
1377 n_orig_loops = 0;
1378 for (aloop = loop->inner; aloop; aloop = aloop->next)
1379 n_orig_loops++;
1380 orig_loops = XNEWVEC (class loop *, n_orig_loops);
1381 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1382 orig_loops[i] = aloop;
1383
1384 set_loop_copy (loop, target);
1385
1386 first_active = XNEWVEC (basic_block, n);
1387 if (is_latch)
1388 {
1389 memcpy (dest: first_active, src: bbs, n: n * sizeof (basic_block));
1390 first_active_latch = latch;
1391 }
1392
1393 spec_edges[SE_ORIG] = orig;
1394 spec_edges[SE_LATCH] = latch_edge;
1395
1396 place_after = e->src;
1397 for (j = 0; j < ndupl; j++)
1398 {
1399 /* Copy loops. */
1400 copy_loops_to (copied_loops: orig_loops, n: n_orig_loops, target);
1401
1402 /* Copy bbs. */
1403 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1404 place_after, true);
1405 place_after = new_spec_edges[SE_LATCH]->src;
1406
1407 if (flags & DLTHE_RECORD_COPY_NUMBER)
1408 for (i = 0; i < n; i++)
1409 {
1410 gcc_assert (!new_bbs[i]->aux);
1411 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1412 }
1413
1414 /* Note whether the blocks and edges belong to an irreducible loop. */
1415 if (add_irreducible_flag)
1416 {
1417 for (i = 0; i < n; i++)
1418 new_bbs[i]->flags |= BB_DUPLICATED;
1419 for (i = 0; i < n; i++)
1420 {
1421 edge_iterator ei;
1422 new_bb = new_bbs[i];
1423 if (new_bb->loop_father == target)
1424 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1425
1426 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1427 if ((ae->dest->flags & BB_DUPLICATED)
1428 && (ae->src->loop_father == target
1429 || ae->dest->loop_father == target))
1430 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1431 }
1432 for (i = 0; i < n; i++)
1433 new_bbs[i]->flags &= ~BB_DUPLICATED;
1434 }
1435
1436 /* Redirect the special edges. */
1437 if (is_latch)
1438 {
1439 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1440 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1441 loop->header);
1442 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1443 latch = loop->latch = new_bbs[n - 1];
1444 e = latch_edge = new_spec_edges[SE_LATCH];
1445 }
1446 else
1447 {
1448 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1449 loop->header);
1450 redirect_edge_and_branch_force (e, new_bbs[0]);
1451 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1452 e = new_spec_edges[SE_LATCH];
1453 }
1454
1455 /* Record exit edge in this copy. */
1456 if (orig && bitmap_bit_p (map: wont_exit, bitno: j + 1))
1457 {
1458 if (to_remove)
1459 to_remove->safe_push (obj: new_spec_edges[SE_ORIG]);
1460 force_edge_cold (new_spec_edges[SE_ORIG], true);
1461
1462 /* Scale the frequencies of the blocks dominated by the exit. */
1463 if (bbs_to_scale && scale_after_exit)
1464 {
1465 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1466 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1467 after_exit_den);
1468 }
1469 }
1470
1471 /* Record the first copy in the control flow order if it is not
1472 the original loop (i.e. in case of peeling). */
1473 if (!first_active_latch)
1474 {
1475 memcpy (dest: first_active, src: new_bbs, n: n * sizeof (basic_block));
1476 first_active_latch = new_bbs[n - 1];
1477 }
1478
1479 /* Set counts and frequencies. */
1480 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1481 {
1482 scale_bbs_frequencies (new_bbs, n, scale_act);
1483 scale_act = scale_act * scale_step[j];
1484 }
1485 }
1486 free (ptr: new_bbs);
1487 free (ptr: orig_loops);
1488
1489 /* Record the exit edge in the original loop body, and update the frequencies. */
1490 if (orig && bitmap_bit_p (map: wont_exit, bitno: 0))
1491 {
1492 if (to_remove)
1493 to_remove->safe_push (obj: orig);
1494 force_edge_cold (orig, true);
1495
1496 /* Scale the frequencies of the blocks dominated by the exit. */
1497 if (bbs_to_scale && scale_after_exit)
1498 {
1499 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1500 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1501 after_exit_den);
1502 }
1503 }
1504
1505 /* Update the original loop. */
1506 if (!is_latch)
1507 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1508 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1509 {
1510 scale_bbs_frequencies (bbs, n, scale_main);
1511 free (ptr: scale_step);
1512 }
1513
1514 /* Update dominators of outer blocks if affected. */
1515 for (i = 0; i < n; i++)
1516 {
1517 basic_block dominated, dom_bb;
1518 unsigned j;
1519
1520 bb = bbs[i];
1521
1522 auto_vec<basic_block> dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1523 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1524 {
1525 if (flow_bb_inside_loop_p (loop, dominated))
1526 continue;
1527 dom_bb = nearest_common_dominator (
1528 CDI_DOMINATORS, first_active[i], first_active_latch);
1529 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1530 }
1531 }
1532 free (ptr: first_active);
1533
1534 free (ptr: bbs);
1535 BITMAP_FREE (bbs_to_scale);
1536
1537 return true;
1538}
1539
1540/* A callback for make_forwarder block, to redirect all edges except for
1541 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1542 whether to redirect it. */
1543
1544edge mfb_kj_edge;
1545bool
1546mfb_keep_just (edge e)
1547{
1548 return e != mfb_kj_edge;
1549}
1550
1551/* True when a candidate preheader BLOCK has predecessors from LOOP. */
1552
1553static bool
1554has_preds_from_loop (basic_block block, class loop *loop)
1555{
1556 edge e;
1557 edge_iterator ei;
1558
1559 FOR_EACH_EDGE (e, ei, block->preds)
1560 if (e->src->loop_father == loop)
1561 return true;
1562 return false;
1563}
1564
1565/* Creates a pre-header for a LOOP. Returns newly created block. Unless
1566 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1567 entry; otherwise we also force preheader block to have only one successor.
1568 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1569 to be a fallthru predecessor to the loop header and to have only
1570 predecessors from outside of the loop.
1571 The function also updates dominators. */
1572
1573basic_block
1574create_preheader (class loop *loop, int flags)
1575{
1576 edge e;
1577 basic_block dummy;
1578 int nentry = 0;
1579 bool irred = false;
1580 bool latch_edge_was_fallthru;
1581 edge one_succ_pred = NULL, single_entry = NULL;
1582 edge_iterator ei;
1583
1584 FOR_EACH_EDGE (e, ei, loop->header->preds)
1585 {
1586 if (e->src == loop->latch)
1587 continue;
1588 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1589 nentry++;
1590 single_entry = e;
1591 if (single_succ_p (bb: e->src))
1592 one_succ_pred = e;
1593 }
1594 gcc_assert (nentry);
1595 if (nentry == 1)
1596 {
1597 bool need_forwarder_block = false;
1598
1599 /* We do not allow entry block to be the loop preheader, since we
1600 cannot emit code there. */
1601 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1602 need_forwarder_block = true;
1603 else
1604 {
1605 /* If we want simple preheaders, also force the preheader to have
1606 just a single successor and a normal edge. */
1607 if ((flags & CP_SIMPLE_PREHEADERS)
1608 && ((single_entry->flags & EDGE_COMPLEX)
1609 || !single_succ_p (bb: single_entry->src)))
1610 need_forwarder_block = true;
1611 /* If we want fallthru preheaders, also create forwarder block when
1612 preheader ends with a jump or has predecessors from loop. */
1613 else if ((flags & CP_FALLTHRU_PREHEADERS)
1614 && (JUMP_P (BB_END (single_entry->src))
1615 || has_preds_from_loop (block: single_entry->src, loop)))
1616 need_forwarder_block = true;
1617 }
1618 if (! need_forwarder_block)
1619 return NULL;
1620 }
1621
1622 mfb_kj_edge = loop_latch_edge (loop);
1623 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1624 if (nentry == 1
1625 && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1626 || (single_entry->flags & EDGE_CROSSING) == 0))
1627 dummy = split_edge (single_entry);
1628 else
1629 {
1630 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1631 dummy = fallthru->src;
1632 loop->header = fallthru->dest;
1633 }
1634
1635 /* Try to be clever in placing the newly created preheader. The idea is to
1636 avoid breaking any "fallthruness" relationship between blocks.
1637
1638 The preheader was created just before the header and all incoming edges
1639 to the header were redirected to the preheader, except the latch edge.
1640 So the only problematic case is when this latch edge was a fallthru
1641 edge: it is not anymore after the preheader creation so we have broken
1642 the fallthruness. We're therefore going to look for a better place. */
1643 if (latch_edge_was_fallthru)
1644 {
1645 if (one_succ_pred)
1646 e = one_succ_pred;
1647 else
1648 e = EDGE_PRED (dummy, 0);
1649
1650 move_block_after (dummy, e->src);
1651 }
1652
1653 if (irred)
1654 {
1655 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1656 single_succ_edge (bb: dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1657 }
1658
1659 if (dump_file)
1660 fprintf (stream: dump_file, format: "Created preheader block for loop %i\n",
1661 loop->num);
1662
1663 if (flags & CP_FALLTHRU_PREHEADERS)
1664 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1665 && !JUMP_P (BB_END (dummy)));
1666
1667 return dummy;
1668}
1669
1670/* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1671
1672void
1673create_preheaders (int flags)
1674{
1675 if (!current_loops)
1676 return;
1677
1678 for (auto loop : loops_list (cfun, 0))
1679 create_preheader (loop, flags);
1680 loops_state_set (flags: LOOPS_HAVE_PREHEADERS);
1681}
1682
1683/* Forces all loop latches to have only single successor. */
1684
1685void
1686force_single_succ_latches (void)
1687{
1688 edge e;
1689
1690 for (auto loop : loops_list (cfun, 0))
1691 {
1692 if (loop->latch != loop->header && single_succ_p (bb: loop->latch))
1693 continue;
1694
1695 e = find_edge (loop->latch, loop->header);
1696 gcc_checking_assert (e != NULL);
1697
1698 split_edge (e);
1699 }
1700 loops_state_set (flags: LOOPS_HAVE_SIMPLE_LATCHES);
1701}
1702
1703/* This function is called from loop_version. It splits the entry edge
1704 of the loop we want to version, adds the versioning condition, and
1705 adjust the edges to the two versions of the loop appropriately.
1706 e is an incoming edge. Returns the basic block containing the
1707 condition.
1708
1709 --- edge e ---- > [second_head]
1710
1711 Split it and insert new conditional expression and adjust edges.
1712
1713 --- edge e ---> [cond expr] ---> [first_head]
1714 |
1715 +---------> [second_head]
1716
1717 THEN_PROB is the probability of then branch of the condition.
1718 ELSE_PROB is the probability of else branch. Note that they may be both
1719 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1720 IFN_LOOP_DIST_ALIAS. */
1721
1722static basic_block
1723lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1724 edge e, void *cond_expr,
1725 profile_probability then_prob,
1726 profile_probability else_prob)
1727{
1728 basic_block new_head = NULL;
1729 edge e1;
1730
1731 gcc_assert (e->dest == second_head);
1732
1733 /* Split edge 'e'. This will create a new basic block, where we can
1734 insert conditional expr. */
1735 new_head = split_edge (e);
1736
1737 lv_add_condition_to_bb (first_head, second_head, new_head,
1738 cond_expr);
1739
1740 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1741 e = single_succ_edge (bb: new_head);
1742 e1 = make_edge (new_head, first_head,
1743 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1744 e1->probability = then_prob;
1745 e->probability = else_prob;
1746
1747 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1748 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1749
1750 /* Adjust loop header phi nodes. */
1751 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1752
1753 return new_head;
1754}
1755
1756/* Main entry point for Loop Versioning transformation.
1757
1758 This transformation given a condition and a loop, creates
1759 -if (condition) { loop_copy1 } else { loop_copy2 },
1760 where loop_copy1 is the loop transformed in one way, and loop_copy2
1761 is the loop transformed in another way (or unchanged). COND_EXPR
1762 may be a run time test for things that were not resolved by static
1763 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1764
1765 If non-NULL, CONDITION_BB is set to the basic block containing the
1766 condition.
1767
1768 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1769 is the ratio by that the frequencies in the original loop should
1770 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1771 new loop should be scaled.
1772
1773 If PLACE_AFTER is true, we place the new loop after LOOP in the
1774 instruction stream, otherwise it is placed before LOOP. */
1775
1776class loop *
1777loop_version (class loop *loop,
1778 void *cond_expr, basic_block *condition_bb,
1779 profile_probability then_prob, profile_probability else_prob,
1780 profile_probability then_scale, profile_probability else_scale,
1781 bool place_after)
1782{
1783 basic_block first_head, second_head;
1784 edge entry, latch_edge;
1785 int irred_flag;
1786 class loop *nloop;
1787 basic_block cond_bb;
1788
1789 /* Record entry and latch edges for the loop */
1790 entry = loop_preheader_edge (loop);
1791 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1792 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1793
1794 /* Note down head of loop as first_head. */
1795 first_head = entry->dest;
1796
1797 /* 1) Duplicate loop on the entry edge. */
1798 if (!cfg_hook_duplicate_loop_body_to_header_edge (loop, entry, ndupl: 1, NULL, NULL,
1799 NULL, flags: 0))
1800 {
1801 entry->flags |= irred_flag;
1802 return NULL;
1803 }
1804
1805 /* 2) loopify the duplicated new loop. */
1806 latch_edge = single_succ_edge (bb: get_bb_copy (loop->latch));
1807 nloop = alloc_loop ();
1808 class loop *outer = loop_outer (loop: latch_edge->dest->loop_father);
1809 edge new_header_edge = single_pred_edge (bb: get_bb_copy (loop->header));
1810 nloop->header = new_header_edge->dest;
1811 nloop->latch = latch_edge->src;
1812 loop_redirect_edge (e: latch_edge, dest: nloop->header);
1813
1814 /* Compute new loop. */
1815 add_loop (loop: nloop, outer);
1816 copy_loop_info (loop, target: nloop);
1817 set_loop_copy (loop, nloop);
1818
1819 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1820 lv_flush_pending_stmts (latch_edge);
1821
1822 /* After duplication entry edge now points to new loop head block.
1823 Note down new head as second_head. */
1824 second_head = entry->dest;
1825
1826 /* 3) Split loop entry edge and insert new block with cond expr. */
1827 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1828 e: entry, cond_expr, then_prob, else_prob);
1829 if (condition_bb)
1830 *condition_bb = cond_bb;
1831
1832 if (!cond_bb)
1833 {
1834 entry->flags |= irred_flag;
1835 return NULL;
1836 }
1837
1838 /* Add cond_bb to appropriate loop. */
1839 if (cond_bb->loop_father)
1840 remove_bb_from_loops (cond_bb);
1841 add_bb_to_loop (cond_bb, outer);
1842
1843 /* 4) Scale the original loop and new loop frequency. */
1844 scale_loop_frequencies (loop, p: then_scale);
1845 scale_loop_frequencies (loop: nloop, p: else_scale);
1846 update_dominators_in_loop (loop);
1847 update_dominators_in_loop (loop: nloop);
1848
1849 /* Adjust irreducible flag. */
1850 if (irred_flag)
1851 {
1852 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1853 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1854 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1855 single_pred_edge (bb: cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1856 }
1857
1858 if (place_after)
1859 {
1860 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1861 unsigned i;
1862
1863 after = loop->latch;
1864
1865 for (i = 0; i < nloop->num_nodes; i++)
1866 {
1867 move_block_after (bbs[i], after);
1868 after = bbs[i];
1869 }
1870 free (ptr: bbs);
1871 }
1872
1873 /* At this point condition_bb is loop preheader with two successors,
1874 first_head and second_head. Make sure that loop preheader has only
1875 one successor. */
1876 split_edge (loop_preheader_edge (loop));
1877 split_edge (loop_preheader_edge (nloop));
1878
1879 return nloop;
1880}
1881

source code of gcc/cfgloopmanip.cc