1/* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 We check (with modified_between_p) to avoid combining in such a way
37 as to move a computation to a place where its value would be different.
38
39 Combination is done by mathematically substituting the previous
40 insn(s) values for the regs they set into the expressions in
41 the later insns that refer to these regs. If the result is a valid insn
42 for our target machine, according to the machine description,
43 we install it, delete the earlier insns, and update the data flow
44 information (LOG_LINKS and REG_NOTES) for what we did.
45
46 There are a few exceptions where the dataflow information isn't
47 completely updated (however this is only a local issue since it is
48 regenerated before the next pass that uses it):
49
50 - reg_live_length is not updated
51 - reg_n_refs is not adjusted in the rare case when a register is
52 no longer required in a computation
53 - there are extremely rare cases (see distribute_notes) when a
54 REG_DEAD note is lost
55 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
56 removed because there is no way to know which register it was
57 linking
58
59 To simplify substitution, we combine only when the earlier insn(s)
60 consist of only a single assignment. To simplify updating afterward,
61 we never combine when a subroutine call appears in the middle. */
62
63#include "config.h"
64#include "system.h"
65#include "coretypes.h"
66#include "backend.h"
67#include "target.h"
68#include "rtl.h"
69#include "tree.h"
70#include "cfghooks.h"
71#include "predict.h"
72#include "df.h"
73#include "memmodel.h"
74#include "tm_p.h"
75#include "optabs.h"
76#include "regs.h"
77#include "emit-rtl.h"
78#include "recog.h"
79#include "cgraph.h"
80#include "stor-layout.h"
81#include "cfgrtl.h"
82#include "cfgcleanup.h"
83/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
84#include "explow.h"
85#include "insn-attr.h"
86#include "rtlhooks-def.h"
87#include "expr.h"
88#include "tree-pass.h"
89#include "valtrack.h"
90#include "rtl-iter.h"
91#include "print-rtl.h"
92#include "function-abi.h"
93#include "rtlanal.h"
94
95/* Number of attempts to combine instructions in this function. */
96
97static int combine_attempts;
98
99/* Number of attempts that got as far as substitution in this function. */
100
101static int combine_merges;
102
103/* Number of instructions combined with added SETs in this function. */
104
105static int combine_extras;
106
107/* Number of instructions combined in this function. */
108
109static int combine_successes;
110
111/* combine_instructions may try to replace the right hand side of the
112 second instruction with the value of an associated REG_EQUAL note
113 before throwing it at try_combine. That is problematic when there
114 is a REG_DEAD note for a register used in the old right hand side
115 and can cause distribute_notes to do wrong things. This is the
116 second instruction if it has been so modified, null otherwise. */
117
118static rtx_insn *i2mod;
119
120/* When I2MOD is nonnull, this is a copy of the old right hand side. */
121
122static rtx i2mod_old_rhs;
123
124/* When I2MOD is nonnull, this is a copy of the new right hand side. */
125
126static rtx i2mod_new_rhs;
127
128struct reg_stat_type {
129 /* Record last point of death of (hard or pseudo) register n. */
130 rtx_insn *last_death;
131
132 /* Record last point of modification of (hard or pseudo) register n. */
133 rtx_insn *last_set;
134
135 /* The next group of fields allows the recording of the last value assigned
136 to (hard or pseudo) register n. We use this information to see if an
137 operation being processed is redundant given a prior operation performed
138 on the register. For example, an `and' with a constant is redundant if
139 all the zero bits are already known to be turned off.
140
141 We use an approach similar to that used by cse, but change it in the
142 following ways:
143
144 (1) We do not want to reinitialize at each label.
145 (2) It is useful, but not critical, to know the actual value assigned
146 to a register. Often just its form is helpful.
147
148 Therefore, we maintain the following fields:
149
150 last_set_value the last value assigned
151 last_set_label records the value of label_tick when the
152 register was assigned
153 last_set_table_tick records the value of label_tick when a
154 value using the register is assigned
155 last_set_invalid set to true when it is not valid
156 to use the value of this register in some
157 register's value
158
159 To understand the usage of these tables, it is important to understand
160 the distinction between the value in last_set_value being valid and
161 the register being validly contained in some other expression in the
162 table.
163
164 (The next two parameters are out of date).
165
166 reg_stat[i].last_set_value is valid if it is nonzero, and either
167 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
168
169 Register I may validly appear in any expression returned for the value
170 of another register if reg_n_sets[i] is 1. It may also appear in the
171 value for register J if reg_stat[j].last_set_invalid is zero, or
172 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
173
174 If an expression is found in the table containing a register which may
175 not validly appear in an expression, the register is replaced by
176 something that won't match, (clobber (const_int 0)). */
177
178 /* Record last value assigned to (hard or pseudo) register n. */
179
180 rtx last_set_value;
181
182 /* Record the value of label_tick when an expression involving register n
183 is placed in last_set_value. */
184
185 int last_set_table_tick;
186
187 /* Record the value of label_tick when the value for register n is placed in
188 last_set_value. */
189
190 int last_set_label;
191
192 /* These fields are maintained in parallel with last_set_value and are
193 used to store the mode in which the register was last set, the bits
194 that were known to be zero when it was last set, and the number of
195 sign bits copies it was known to have when it was last set. */
196
197 unsigned HOST_WIDE_INT last_set_nonzero_bits;
198 char last_set_sign_bit_copies;
199 ENUM_BITFIELD(machine_mode) last_set_mode : MACHINE_MODE_BITSIZE;
200
201 /* Set to true if references to register n in expressions should not be
202 used. last_set_invalid is set nonzero when this register is being
203 assigned to and last_set_table_tick == label_tick. */
204
205 bool last_set_invalid;
206
207 /* Some registers that are set more than once and used in more than one
208 basic block are nevertheless always set in similar ways. For example,
209 a QImode register may be loaded from memory in two places on a machine
210 where byte loads zero extend.
211
212 We record in the following fields if a register has some leading bits
213 that are always equal to the sign bit, and what we know about the
214 nonzero bits of a register, specifically which bits are known to be
215 zero.
216
217 If an entry is zero, it means that we don't know anything special. */
218
219 unsigned char sign_bit_copies;
220
221 unsigned HOST_WIDE_INT nonzero_bits;
222
223 /* Record the value of the label_tick when the last truncation
224 happened. The field truncated_to_mode is only valid if
225 truncation_label == label_tick. */
226
227 int truncation_label;
228
229 /* Record the last truncation seen for this register. If truncation
230 is not a nop to this mode we might be able to save an explicit
231 truncation if we know that value already contains a truncated
232 value. */
233
234 ENUM_BITFIELD(machine_mode) truncated_to_mode : MACHINE_MODE_BITSIZE;
235};
236
237
238static vec<reg_stat_type> reg_stat;
239
240/* One plus the highest pseudo for which we track REG_N_SETS.
241 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
242 but during combine_split_insns new pseudos can be created. As we don't have
243 updated DF information in that case, it is hard to initialize the array
244 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
245 so instead of growing the arrays, just assume all newly created pseudos
246 during combine might be set multiple times. */
247
248static unsigned int reg_n_sets_max;
249
250/* Record the luid of the last insn that invalidated memory
251 (anything that writes memory, and subroutine calls, but not pushes). */
252
253static int mem_last_set;
254
255/* Record the luid of the last CALL_INSN
256 so we can tell whether a potential combination crosses any calls. */
257
258static int last_call_luid;
259
260/* When `subst' is called, this is the insn that is being modified
261 (by combining in a previous insn). The PATTERN of this insn
262 is still the old pattern partially modified and it should not be
263 looked at, but this may be used to examine the successors of the insn
264 to judge whether a simplification is valid. */
265
266static rtx_insn *subst_insn;
267
268/* This is the lowest LUID that `subst' is currently dealing with.
269 get_last_value will not return a value if the register was set at or
270 after this LUID. If not for this mechanism, we could get confused if
271 I2 or I1 in try_combine were an insn that used the old value of a register
272 to obtain a new value. In that case, we might erroneously get the
273 new value of the register when we wanted the old one. */
274
275static int subst_low_luid;
276
277/* This contains any hard registers that are used in newpat; reg_dead_at_p
278 must consider all these registers to be always live. */
279
280static HARD_REG_SET newpat_used_regs;
281
282/* This is an insn to which a LOG_LINKS entry has been added. If this
283 insn is the earlier than I2 or I3, combine should rescan starting at
284 that location. */
285
286static rtx_insn *added_links_insn;
287
288/* And similarly, for notes. */
289
290static rtx_insn *added_notes_insn;
291
292/* Basic block in which we are performing combines. */
293static basic_block this_basic_block;
294static bool optimize_this_for_speed_p;
295
296
297/* Length of the currently allocated uid_insn_cost array. */
298
299static int max_uid_known;
300
301/* The following array records the insn_cost for every insn
302 in the instruction stream. */
303
304static int *uid_insn_cost;
305
306/* The following array records the LOG_LINKS for every insn in the
307 instruction stream as struct insn_link pointers. */
308
309struct insn_link {
310 rtx_insn *insn;
311 unsigned int regno;
312 struct insn_link *next;
313};
314
315static struct insn_link **uid_log_links;
316
317static inline int
318insn_uid_check (const_rtx insn)
319{
320 int uid = INSN_UID (insn);
321 gcc_checking_assert (uid <= max_uid_known);
322 return uid;
323}
324
325#define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
326#define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
327
328#define FOR_EACH_LOG_LINK(L, INSN) \
329 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
330
331/* Links for LOG_LINKS are allocated from this obstack. */
332
333static struct obstack insn_link_obstack;
334
335/* Allocate a link. */
336
337static inline struct insn_link *
338alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
339{
340 struct insn_link *l
341 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
342 sizeof (struct insn_link));
343 l->insn = insn;
344 l->regno = regno;
345 l->next = next;
346 return l;
347}
348
349/* Incremented for each basic block. */
350
351static int label_tick;
352
353/* Reset to label_tick for each extended basic block in scanning order. */
354
355static int label_tick_ebb_start;
356
357/* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
358 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
359
360static scalar_int_mode nonzero_bits_mode;
361
362/* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
363 be safely used. It is zero while computing them and after combine has
364 completed. This former test prevents propagating values based on
365 previously set values, which can be incorrect if a variable is modified
366 in a loop. */
367
368static int nonzero_sign_valid;
369
370
371/* Record one modification to rtl structure
372 to be undone by storing old_contents into *where. */
373
374enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
375
376struct undo
377{
378 struct undo *next;
379 enum undo_kind kind;
380 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
381 union { rtx *r; int *i; int regno; struct insn_link **l; } where;
382};
383
384/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
385 num_undo says how many are currently recorded.
386
387 other_insn is nonzero if we have modified some other insn in the process
388 of working on subst_insn. It must be verified too. */
389
390struct undobuf
391{
392 struct undo *undos;
393 struct undo *frees;
394 rtx_insn *other_insn;
395};
396
397static struct undobuf undobuf;
398
399/* Number of times the pseudo being substituted for
400 was found and replaced. */
401
402static int n_occurrences;
403
404static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
405 scalar_int_mode,
406 unsigned HOST_WIDE_INT *);
407static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
408 scalar_int_mode,
409 unsigned int *);
410static void do_SUBST (rtx *, rtx);
411static void do_SUBST_INT (int *, int);
412static void init_reg_last (void);
413static void setup_incoming_promotions (rtx_insn *);
414static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
415static bool cant_combine_insn_p (rtx_insn *);
416static bool can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
417 rtx_insn *, rtx_insn *, rtx *, rtx *);
418static bool combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx,
419 bool, bool, rtx *);
420static bool contains_muldiv (rtx);
421static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
422 bool *, rtx_insn *);
423static void undo_all (void);
424static void undo_commit (void);
425static rtx *find_split_point (rtx *, rtx_insn *, bool);
426static rtx subst (rtx, rtx, rtx, bool, bool, bool);
427static rtx combine_simplify_rtx (rtx, machine_mode, bool, bool);
428static rtx simplify_if_then_else (rtx);
429static rtx simplify_set (rtx);
430static rtx simplify_logical (rtx);
431static rtx expand_compound_operation (rtx);
432static const_rtx expand_field_assignment (const_rtx);
433static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT, rtx,
434 unsigned HOST_WIDE_INT, bool, bool, bool);
435static int get_pos_from_mask (unsigned HOST_WIDE_INT,
436 unsigned HOST_WIDE_INT *);
437static rtx canon_reg_for_combine (rtx, rtx);
438static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
439 scalar_int_mode, unsigned HOST_WIDE_INT, bool);
440static rtx force_to_mode (rtx, machine_mode,
441 unsigned HOST_WIDE_INT, bool);
442static rtx if_then_else_cond (rtx, rtx *, rtx *);
443static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
444static bool rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
445static rtx make_field_assignment (rtx);
446static rtx apply_distributive_law (rtx);
447static rtx distribute_and_simplify_rtx (rtx, int);
448static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
449 unsigned HOST_WIDE_INT);
450static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
451 unsigned HOST_WIDE_INT);
452static bool merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
453 HOST_WIDE_INT, machine_mode, bool *);
454static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
455static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
456 int);
457static int recog_for_combine (rtx *, rtx_insn *, rtx *);
458static rtx gen_lowpart_for_combine (machine_mode, rtx);
459static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
460 rtx *, rtx *);
461static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
462static void update_table_tick (rtx);
463static void record_value_for_reg (rtx, rtx_insn *, rtx);
464static void check_promoted_subreg (rtx_insn *, rtx);
465static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
466static void record_dead_and_set_regs (rtx_insn *);
467static bool get_last_value_validate (rtx *, rtx_insn *, int, bool);
468static rtx get_last_value (const_rtx);
469static void reg_dead_at_p_1 (rtx, const_rtx, void *);
470static bool reg_dead_at_p (rtx, rtx_insn *);
471static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
472static bool reg_bitfield_target_p (rtx, rtx);
473static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *,
474 rtx, rtx, rtx);
475static void distribute_links (struct insn_link *);
476static void mark_used_regs_combine (rtx);
477static void record_promoted_value (rtx_insn *, rtx);
478static bool unmentioned_reg_p (rtx, rtx);
479static void record_truncated_values (rtx *, void *);
480static bool reg_truncated_to_mode (machine_mode, const_rtx);
481static rtx gen_lowpart_or_truncate (machine_mode, rtx);
482
483
484/* It is not safe to use ordinary gen_lowpart in combine.
485 See comments in gen_lowpart_for_combine. */
486#undef RTL_HOOKS_GEN_LOWPART
487#define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
488
489/* Our implementation of gen_lowpart never emits a new pseudo. */
490#undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
491#define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
492
493#undef RTL_HOOKS_REG_NONZERO_REG_BITS
494#define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
495
496#undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
497#define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
498
499#undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
500#define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
501
502static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
503
504
505/* Convenience wrapper for the canonicalize_comparison target hook.
506 Target hooks cannot use enum rtx_code. */
507static inline void
508target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
509 bool op0_preserve_value)
510{
511 int code_int = (int)*code;
512 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
513 *code = (enum rtx_code)code_int;
514}
515
516/* Try to split PATTERN found in INSN. This returns NULL_RTX if
517 PATTERN cannot be split. Otherwise, it returns an insn sequence.
518 This is a wrapper around split_insns which ensures that the
519 reg_stat vector is made larger if the splitter creates a new
520 register. */
521
522static rtx_insn *
523combine_split_insns (rtx pattern, rtx_insn *insn)
524{
525 rtx_insn *ret;
526 unsigned int nregs;
527
528 ret = split_insns (pattern, insn);
529 nregs = max_reg_num ();
530 if (nregs > reg_stat.length ())
531 reg_stat.safe_grow_cleared (len: nregs, exact: true);
532 return ret;
533}
534
535/* This is used by find_single_use to locate an rtx in LOC that
536 contains exactly one use of DEST, which is typically a REG.
537 It returns a pointer to the innermost rtx expression
538 containing DEST. Appearances of DEST that are being used to
539 totally replace it are not counted. */
540
541static rtx *
542find_single_use_1 (rtx dest, rtx *loc)
543{
544 rtx x = *loc;
545 enum rtx_code code = GET_CODE (x);
546 rtx *result = NULL;
547 rtx *this_result;
548 int i;
549 const char *fmt;
550
551 switch (code)
552 {
553 case CONST:
554 case LABEL_REF:
555 case SYMBOL_REF:
556 CASE_CONST_ANY:
557 case CLOBBER:
558 return 0;
559
560 case SET:
561 /* If the destination is anything other than PC, a REG or a SUBREG
562 of a REG that occupies all of the REG, the insn uses DEST if
563 it is mentioned in the destination or the source. Otherwise, we
564 need just check the source. */
565 if (GET_CODE (SET_DEST (x)) != PC
566 && !REG_P (SET_DEST (x))
567 && ! (GET_CODE (SET_DEST (x)) == SUBREG
568 && REG_P (SUBREG_REG (SET_DEST (x)))
569 && !read_modify_subreg_p (SET_DEST (x))))
570 break;
571
572 return find_single_use_1 (dest, loc: &SET_SRC (x));
573
574 case MEM:
575 case SUBREG:
576 return find_single_use_1 (dest, loc: &XEXP (x, 0));
577
578 default:
579 break;
580 }
581
582 /* If it wasn't one of the common cases above, check each expression and
583 vector of this code. Look for a unique usage of DEST. */
584
585 fmt = GET_RTX_FORMAT (code);
586 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
587 {
588 if (fmt[i] == 'e')
589 {
590 if (dest == XEXP (x, i)
591 || (REG_P (dest) && REG_P (XEXP (x, i))
592 && REGNO (dest) == REGNO (XEXP (x, i))))
593 this_result = loc;
594 else
595 this_result = find_single_use_1 (dest, loc: &XEXP (x, i));
596
597 if (result == NULL)
598 result = this_result;
599 else if (this_result)
600 /* Duplicate usage. */
601 return NULL;
602 }
603 else if (fmt[i] == 'E')
604 {
605 int j;
606
607 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
608 {
609 if (XVECEXP (x, i, j) == dest
610 || (REG_P (dest)
611 && REG_P (XVECEXP (x, i, j))
612 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
613 this_result = loc;
614 else
615 this_result = find_single_use_1 (dest, loc: &XVECEXP (x, i, j));
616
617 if (result == NULL)
618 result = this_result;
619 else if (this_result)
620 return NULL;
621 }
622 }
623 }
624
625 return result;
626}
627
628
629/* See if DEST, produced in INSN, is used only a single time in the
630 sequel. If so, return a pointer to the innermost rtx expression in which
631 it is used.
632
633 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
634
635 Otherwise, we find the single use by finding an insn that has a
636 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
637 only referenced once in that insn, we know that it must be the first
638 and last insn referencing DEST. */
639
640static rtx *
641find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
642{
643 basic_block bb;
644 rtx_insn *next;
645 rtx *result;
646 struct insn_link *link;
647
648 if (!REG_P (dest))
649 return 0;
650
651 bb = BLOCK_FOR_INSN (insn);
652 for (next = NEXT_INSN (insn);
653 next && BLOCK_FOR_INSN (insn: next) == bb;
654 next = NEXT_INSN (insn: next))
655 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
656 {
657 FOR_EACH_LOG_LINK (link, next)
658 if (link->insn == insn && link->regno == REGNO (dest))
659 break;
660
661 if (link)
662 {
663 result = find_single_use_1 (dest, loc: &PATTERN (insn: next));
664 if (ploc)
665 *ploc = next;
666 return result;
667 }
668 }
669
670 return 0;
671}
672
673/* Substitute NEWVAL, an rtx expression, into INTO, a place in some
674 insn. The substitution can be undone by undo_all. If INTO is already
675 set to NEWVAL, do not record this change. Because computing NEWVAL might
676 also call SUBST, we have to compute it before we put anything into
677 the undo table. */
678
679static void
680do_SUBST (rtx *into, rtx newval)
681{
682 struct undo *buf;
683 rtx oldval = *into;
684
685 if (oldval == newval)
686 return;
687
688 /* We'd like to catch as many invalid transformations here as
689 possible. Unfortunately, there are way too many mode changes
690 that are perfectly valid, so we'd waste too much effort for
691 little gain doing the checks here. Focus on catching invalid
692 transformations involving integer constants. */
693 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
694 && CONST_INT_P (newval))
695 {
696 /* Sanity check that we're replacing oldval with a CONST_INT
697 that is a valid sign-extension for the original mode. */
698 gcc_assert (INTVAL (newval)
699 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
700
701 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
702 CONST_INT is not valid, because after the replacement, the
703 original mode would be gone. Unfortunately, we can't tell
704 when do_SUBST is called to replace the operand thereof, so we
705 perform this test on oldval instead, checking whether an
706 invalid replacement took place before we got here. */
707 gcc_assert (!(GET_CODE (oldval) == SUBREG
708 && CONST_INT_P (SUBREG_REG (oldval))));
709 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
710 && CONST_INT_P (XEXP (oldval, 0))));
711 }
712
713 if (undobuf.frees)
714 buf = undobuf.frees, undobuf.frees = buf->next;
715 else
716 buf = XNEW (struct undo);
717
718 buf->kind = UNDO_RTX;
719 buf->where.r = into;
720 buf->old_contents.r = oldval;
721 *into = newval;
722
723 buf->next = undobuf.undos, undobuf.undos = buf;
724}
725
726#define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
727
728/* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
729 for the value of a HOST_WIDE_INT value (including CONST_INT) is
730 not safe. */
731
732static void
733do_SUBST_INT (int *into, int newval)
734{
735 struct undo *buf;
736 int oldval = *into;
737
738 if (oldval == newval)
739 return;
740
741 if (undobuf.frees)
742 buf = undobuf.frees, undobuf.frees = buf->next;
743 else
744 buf = XNEW (struct undo);
745
746 buf->kind = UNDO_INT;
747 buf->where.i = into;
748 buf->old_contents.i = oldval;
749 *into = newval;
750
751 buf->next = undobuf.undos, undobuf.undos = buf;
752}
753
754#define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
755
756/* Similar to SUBST, but just substitute the mode. This is used when
757 changing the mode of a pseudo-register, so that any other
758 references to the entry in the regno_reg_rtx array will change as
759 well. */
760
761static void
762subst_mode (int regno, machine_mode newval)
763{
764 struct undo *buf;
765 rtx reg = regno_reg_rtx[regno];
766 machine_mode oldval = GET_MODE (reg);
767
768 if (oldval == newval)
769 return;
770
771 if (undobuf.frees)
772 buf = undobuf.frees, undobuf.frees = buf->next;
773 else
774 buf = XNEW (struct undo);
775
776 buf->kind = UNDO_MODE;
777 buf->where.regno = regno;
778 buf->old_contents.m = oldval;
779 adjust_reg_mode (reg, newval);
780
781 buf->next = undobuf.undos, undobuf.undos = buf;
782}
783
784/* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
785
786static void
787do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
788{
789 struct undo *buf;
790 struct insn_link * oldval = *into;
791
792 if (oldval == newval)
793 return;
794
795 if (undobuf.frees)
796 buf = undobuf.frees, undobuf.frees = buf->next;
797 else
798 buf = XNEW (struct undo);
799
800 buf->kind = UNDO_LINKS;
801 buf->where.l = into;
802 buf->old_contents.l = oldval;
803 *into = newval;
804
805 buf->next = undobuf.undos, undobuf.undos = buf;
806}
807
808#define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
809
810/* Subroutine of try_combine. Determine whether the replacement patterns
811 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
812 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
813 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
814 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
815 of all the instructions can be estimated and the replacements are more
816 expensive than the original sequence. */
817
818static bool
819combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
820 rtx newpat, rtx newi2pat, rtx newotherpat)
821{
822 int i0_cost, i1_cost, i2_cost, i3_cost;
823 int new_i2_cost, new_i3_cost;
824 int old_cost, new_cost;
825
826 /* Lookup the original insn_costs. */
827 i2_cost = INSN_COST (i2);
828 i3_cost = INSN_COST (i3);
829
830 if (i1)
831 {
832 i1_cost = INSN_COST (i1);
833 if (i0)
834 {
835 i0_cost = INSN_COST (i0);
836 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
837 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
838 }
839 else
840 {
841 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
842 ? i1_cost + i2_cost + i3_cost : 0);
843 i0_cost = 0;
844 }
845 }
846 else
847 {
848 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
849 i1_cost = i0_cost = 0;
850 }
851
852 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
853 correct that. */
854 if (old_cost && i1 && INSN_UID (insn: i1) == INSN_UID (insn: i2))
855 old_cost -= i1_cost;
856
857
858 /* Calculate the replacement insn_costs. */
859 rtx tmp = PATTERN (insn: i3);
860 PATTERN (insn: i3) = newpat;
861 int tmpi = INSN_CODE (i3);
862 INSN_CODE (i3) = -1;
863 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
864 PATTERN (insn: i3) = tmp;
865 INSN_CODE (i3) = tmpi;
866 if (newi2pat)
867 {
868 tmp = PATTERN (insn: i2);
869 PATTERN (insn: i2) = newi2pat;
870 tmpi = INSN_CODE (i2);
871 INSN_CODE (i2) = -1;
872 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
873 PATTERN (insn: i2) = tmp;
874 INSN_CODE (i2) = tmpi;
875 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
876 ? new_i2_cost + new_i3_cost : 0;
877 }
878 else
879 {
880 new_cost = new_i3_cost;
881 new_i2_cost = 0;
882 }
883
884 if (undobuf.other_insn)
885 {
886 int old_other_cost, new_other_cost;
887
888 old_other_cost = INSN_COST (undobuf.other_insn);
889 tmp = PATTERN (insn: undobuf.other_insn);
890 PATTERN (insn: undobuf.other_insn) = newotherpat;
891 tmpi = INSN_CODE (undobuf.other_insn);
892 INSN_CODE (undobuf.other_insn) = -1;
893 new_other_cost = insn_cost (undobuf.other_insn,
894 optimize_this_for_speed_p);
895 PATTERN (insn: undobuf.other_insn) = tmp;
896 INSN_CODE (undobuf.other_insn) = tmpi;
897 if (old_other_cost > 0 && new_other_cost > 0)
898 {
899 old_cost += old_other_cost;
900 new_cost += new_other_cost;
901 }
902 else
903 old_cost = 0;
904 }
905
906 /* Disallow this combination if both new_cost and old_cost are greater than
907 zero, and new_cost is greater than old cost. */
908 bool reject = old_cost > 0 && new_cost > old_cost;
909
910 if (dump_file)
911 {
912 fprintf (stream: dump_file, format: "%s combination of insns ",
913 reject ? "rejecting" : "allowing");
914 if (i0)
915 fprintf (stream: dump_file, format: "%d, ", INSN_UID (insn: i0));
916 if (i1 && INSN_UID (insn: i1) != INSN_UID (insn: i2))
917 fprintf (stream: dump_file, format: "%d, ", INSN_UID (insn: i1));
918 fprintf (stream: dump_file, format: "%d and %d\n", INSN_UID (insn: i2), INSN_UID (insn: i3));
919
920 fprintf (stream: dump_file, format: "original costs ");
921 if (i0)
922 fprintf (stream: dump_file, format: "%d + ", i0_cost);
923 if (i1 && INSN_UID (insn: i1) != INSN_UID (insn: i2))
924 fprintf (stream: dump_file, format: "%d + ", i1_cost);
925 fprintf (stream: dump_file, format: "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
926
927 if (newi2pat)
928 fprintf (stream: dump_file, format: "replacement costs %d + %d = %d\n",
929 new_i2_cost, new_i3_cost, new_cost);
930 else
931 fprintf (stream: dump_file, format: "replacement cost %d\n", new_cost);
932 }
933
934 if (reject)
935 return false;
936
937 /* Update the uid_insn_cost array with the replacement costs. */
938 INSN_COST (i2) = new_i2_cost;
939 INSN_COST (i3) = new_i3_cost;
940 if (i1)
941 {
942 INSN_COST (i1) = 0;
943 if (i0)
944 INSN_COST (i0) = 0;
945 }
946
947 return true;
948}
949
950
951/* Delete any insns that copy a register to itself.
952 Return true if the CFG was changed. */
953
954static bool
955delete_noop_moves (void)
956{
957 rtx_insn *insn, *next;
958 basic_block bb;
959
960 bool edges_deleted = false;
961
962 FOR_EACH_BB_FN (bb, cfun)
963 {
964 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
965 {
966 next = NEXT_INSN (insn);
967 if (INSN_P (insn) && noop_move_p (insn))
968 {
969 if (dump_file)
970 fprintf (stream: dump_file, format: "deleting noop move %d\n", INSN_UID (insn));
971
972 edges_deleted |= delete_insn_and_edges (insn);
973 }
974 }
975 }
976
977 return edges_deleted;
978}
979
980
981/* Return false if we do not want to (or cannot) combine DEF. */
982static bool
983can_combine_def_p (df_ref def)
984{
985 /* Do not consider if it is pre/post modification in MEM. */
986 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
987 return false;
988
989 unsigned int regno = DF_REF_REGNO (def);
990
991 /* Do not combine frame pointer adjustments. */
992 if ((regno == FRAME_POINTER_REGNUM
993 && (!reload_completed || frame_pointer_needed))
994 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
995 && regno == HARD_FRAME_POINTER_REGNUM
996 && (!reload_completed || frame_pointer_needed))
997 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
998 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
999 return false;
1000
1001 return true;
1002}
1003
1004/* Return false if we do not want to (or cannot) combine USE. */
1005static bool
1006can_combine_use_p (df_ref use)
1007{
1008 /* Do not consider the usage of the stack pointer by function call. */
1009 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1010 return false;
1011
1012 return true;
1013}
1014
1015/* Fill in log links field for all insns. */
1016
1017static void
1018create_log_links (void)
1019{
1020 basic_block bb;
1021 rtx_insn **next_use;
1022 rtx_insn *insn;
1023 df_ref def, use;
1024
1025 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1026
1027 /* Pass through each block from the end, recording the uses of each
1028 register and establishing log links when def is encountered.
1029 Note that we do not clear next_use array in order to save time,
1030 so we have to test whether the use is in the same basic block as def.
1031
1032 There are a few cases below when we do not consider the definition or
1033 usage -- these are taken from original flow.c did. Don't ask me why it is
1034 done this way; I don't know and if it works, I don't want to know. */
1035
1036 FOR_EACH_BB_FN (bb, cfun)
1037 {
1038 FOR_BB_INSNS_REVERSE (bb, insn)
1039 {
1040 if (!NONDEBUG_INSN_P (insn))
1041 continue;
1042
1043 /* Log links are created only once. */
1044 gcc_assert (!LOG_LINKS (insn));
1045
1046 FOR_EACH_INSN_DEF (def, insn)
1047 {
1048 unsigned int regno = DF_REF_REGNO (def);
1049 rtx_insn *use_insn;
1050
1051 if (!next_use[regno])
1052 continue;
1053
1054 if (!can_combine_def_p (def))
1055 continue;
1056
1057 use_insn = next_use[regno];
1058 next_use[regno] = NULL;
1059
1060 if (BLOCK_FOR_INSN (insn: use_insn) != bb)
1061 continue;
1062
1063 /* flow.c claimed:
1064
1065 We don't build a LOG_LINK for hard registers contained
1066 in ASM_OPERANDs. If these registers get replaced,
1067 we might wind up changing the semantics of the insn,
1068 even if reload can make what appear to be valid
1069 assignments later. */
1070 if (regno < FIRST_PSEUDO_REGISTER
1071 && asm_noperands (PATTERN (insn: use_insn)) >= 0)
1072 continue;
1073
1074 /* Don't add duplicate links between instructions. */
1075 struct insn_link *links;
1076 FOR_EACH_LOG_LINK (links, use_insn)
1077 if (insn == links->insn && regno == links->regno)
1078 break;
1079
1080 if (!links)
1081 LOG_LINKS (use_insn)
1082 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1083 }
1084
1085 FOR_EACH_INSN_USE (use, insn)
1086 if (can_combine_use_p (use))
1087 next_use[DF_REF_REGNO (use)] = insn;
1088 }
1089 }
1090
1091 free (ptr: next_use);
1092}
1093
1094/* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1095 true if we found a LOG_LINK that proves that A feeds B. This only works
1096 if there are no instructions between A and B which could have a link
1097 depending on A, since in that case we would not record a link for B. */
1098
1099static bool
1100insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1101{
1102 struct insn_link *links;
1103 FOR_EACH_LOG_LINK (links, b)
1104 if (links->insn == a)
1105 return true;
1106 return false;
1107}
1108
1109/* Main entry point for combiner. F is the first insn of the function.
1110 NREGS is the first unused pseudo-reg number.
1111
1112 Return nonzero if the CFG was changed (e.g. if the combiner has
1113 turned an indirect jump instruction into a direct jump). */
1114static bool
1115combine_instructions (rtx_insn *f, unsigned int nregs)
1116{
1117 rtx_insn *insn, *next;
1118 struct insn_link *links, *nextlinks;
1119 rtx_insn *first;
1120 basic_block last_bb;
1121
1122 bool new_direct_jump_p = false;
1123
1124 for (first = f; first && !NONDEBUG_INSN_P (first); )
1125 first = NEXT_INSN (insn: first);
1126 if (!first)
1127 return false;
1128
1129 combine_attempts = 0;
1130 combine_merges = 0;
1131 combine_extras = 0;
1132 combine_successes = 0;
1133
1134 rtl_hooks = combine_rtl_hooks;
1135
1136 reg_stat.safe_grow_cleared (len: nregs, exact: true);
1137
1138 init_recog_no_volatile ();
1139
1140 /* Allocate array for insn info. */
1141 max_uid_known = get_max_uid ();
1142 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1143 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1144 gcc_obstack_init (&insn_link_obstack);
1145
1146 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, limit: 0).require ();
1147
1148 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1149 problems when, for example, we have j <<= 1 in a loop. */
1150
1151 nonzero_sign_valid = 0;
1152 label_tick = label_tick_ebb_start = 1;
1153
1154 /* Scan all SETs and see if we can deduce anything about what
1155 bits are known to be zero for some registers and how many copies
1156 of the sign bit are known to exist for those registers.
1157
1158 Also set any known values so that we can use it while searching
1159 for what bits are known to be set. */
1160
1161 setup_incoming_promotions (first);
1162 /* Allow the entry block and the first block to fall into the same EBB.
1163 Conceptually the incoming promotions are assigned to the entry block. */
1164 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1165
1166 create_log_links ();
1167 FOR_EACH_BB_FN (this_basic_block, cfun)
1168 {
1169 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1170 last_call_luid = 0;
1171 mem_last_set = -1;
1172
1173 label_tick++;
1174 if (!single_pred_p (bb: this_basic_block)
1175 || single_pred (bb: this_basic_block) != last_bb)
1176 label_tick_ebb_start = label_tick;
1177 last_bb = this_basic_block;
1178
1179 FOR_BB_INSNS (this_basic_block, insn)
1180 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1181 {
1182 rtx links;
1183
1184 subst_low_luid = DF_INSN_LUID (insn);
1185 subst_insn = insn;
1186
1187 note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
1188 record_dead_and_set_regs (insn);
1189
1190 if (AUTO_INC_DEC)
1191 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1192 if (REG_NOTE_KIND (links) == REG_INC)
1193 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1194 insn);
1195
1196 /* Record the current insn_cost of this instruction. */
1197 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1198 if (dump_file)
1199 {
1200 fprintf (stream: dump_file, format: "insn_cost %d for ", INSN_COST (insn));
1201 dump_insn_slim (dump_file, insn);
1202 }
1203 }
1204 }
1205
1206 nonzero_sign_valid = 1;
1207
1208 /* Now scan all the insns in forward order. */
1209 label_tick = label_tick_ebb_start = 1;
1210 init_reg_last ();
1211 setup_incoming_promotions (first);
1212 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1213 int max_combine = param_max_combine_insns;
1214
1215 FOR_EACH_BB_FN (this_basic_block, cfun)
1216 {
1217 rtx_insn *last_combined_insn = NULL;
1218
1219 /* Ignore instruction combination in basic blocks that are going to
1220 be removed as unreachable anyway. See PR82386. */
1221 if (EDGE_COUNT (this_basic_block->preds) == 0)
1222 continue;
1223
1224 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1225 last_call_luid = 0;
1226 mem_last_set = -1;
1227
1228 label_tick++;
1229 if (!single_pred_p (bb: this_basic_block)
1230 || single_pred (bb: this_basic_block) != last_bb)
1231 label_tick_ebb_start = label_tick;
1232 last_bb = this_basic_block;
1233
1234 rtl_profile_for_bb (this_basic_block);
1235 for (insn = BB_HEAD (this_basic_block);
1236 insn != NEXT_INSN (BB_END (this_basic_block));
1237 insn = next ? next : NEXT_INSN (insn))
1238 {
1239 next = 0;
1240 if (!NONDEBUG_INSN_P (insn))
1241 continue;
1242
1243 while (last_combined_insn
1244 && (!NONDEBUG_INSN_P (last_combined_insn)
1245 || last_combined_insn->deleted ()))
1246 last_combined_insn = PREV_INSN (insn: last_combined_insn);
1247 if (last_combined_insn == NULL_RTX
1248 || BLOCK_FOR_INSN (insn: last_combined_insn) != this_basic_block
1249 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1250 last_combined_insn = insn;
1251
1252 /* See if we know about function return values before this
1253 insn based upon SUBREG flags. */
1254 check_promoted_subreg (insn, PATTERN (insn));
1255
1256 /* See if we can find hardregs and subreg of pseudos in
1257 narrower modes. This could help turning TRUNCATEs
1258 into SUBREGs. */
1259 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1260
1261 /* Try this insn with each insn it links back to. */
1262
1263 FOR_EACH_LOG_LINK (links, insn)
1264 if ((next = try_combine (insn, links->insn, NULL,
1265 NULL, &new_direct_jump_p,
1266 last_combined_insn)) != 0)
1267 {
1268 statistics_counter_event (cfun, "two-insn combine", 1);
1269 goto retry;
1270 }
1271
1272 /* Try each sequence of three linked insns ending with this one. */
1273
1274 if (max_combine >= 3)
1275 FOR_EACH_LOG_LINK (links, insn)
1276 {
1277 rtx_insn *link = links->insn;
1278
1279 /* If the linked insn has been replaced by a note, then there
1280 is no point in pursuing this chain any further. */
1281 if (NOTE_P (link))
1282 continue;
1283
1284 FOR_EACH_LOG_LINK (nextlinks, link)
1285 if ((next = try_combine (insn, link, nextlinks->insn,
1286 NULL, &new_direct_jump_p,
1287 last_combined_insn)) != 0)
1288 {
1289 statistics_counter_event (cfun, "three-insn combine", 1);
1290 goto retry;
1291 }
1292 }
1293
1294 /* Try combining an insn with two different insns whose results it
1295 uses. */
1296 if (max_combine >= 3)
1297 FOR_EACH_LOG_LINK (links, insn)
1298 for (nextlinks = links->next; nextlinks;
1299 nextlinks = nextlinks->next)
1300 if ((next = try_combine (insn, links->insn,
1301 nextlinks->insn, NULL,
1302 &new_direct_jump_p,
1303 last_combined_insn)) != 0)
1304
1305 {
1306 statistics_counter_event (cfun, "three-insn combine", 1);
1307 goto retry;
1308 }
1309
1310 /* Try four-instruction combinations. */
1311 if (max_combine >= 4)
1312 FOR_EACH_LOG_LINK (links, insn)
1313 {
1314 struct insn_link *next1;
1315 rtx_insn *link = links->insn;
1316
1317 /* If the linked insn has been replaced by a note, then there
1318 is no point in pursuing this chain any further. */
1319 if (NOTE_P (link))
1320 continue;
1321
1322 FOR_EACH_LOG_LINK (next1, link)
1323 {
1324 rtx_insn *link1 = next1->insn;
1325 if (NOTE_P (link1))
1326 continue;
1327 /* I0 -> I1 -> I2 -> I3. */
1328 FOR_EACH_LOG_LINK (nextlinks, link1)
1329 if ((next = try_combine (insn, link, link1,
1330 nextlinks->insn,
1331 &new_direct_jump_p,
1332 last_combined_insn)) != 0)
1333 {
1334 statistics_counter_event (cfun, "four-insn combine", 1);
1335 goto retry;
1336 }
1337 /* I0, I1 -> I2, I2 -> I3. */
1338 for (nextlinks = next1->next; nextlinks;
1339 nextlinks = nextlinks->next)
1340 if ((next = try_combine (insn, link, link1,
1341 nextlinks->insn,
1342 &new_direct_jump_p,
1343 last_combined_insn)) != 0)
1344 {
1345 statistics_counter_event (cfun, "four-insn combine", 1);
1346 goto retry;
1347 }
1348 }
1349
1350 for (next1 = links->next; next1; next1 = next1->next)
1351 {
1352 rtx_insn *link1 = next1->insn;
1353 if (NOTE_P (link1))
1354 continue;
1355 /* I0 -> I2; I1, I2 -> I3. */
1356 FOR_EACH_LOG_LINK (nextlinks, link)
1357 if ((next = try_combine (insn, link, link1,
1358 nextlinks->insn,
1359 &new_direct_jump_p,
1360 last_combined_insn)) != 0)
1361 {
1362 statistics_counter_event (cfun, "four-insn combine", 1);
1363 goto retry;
1364 }
1365 /* I0 -> I1; I1, I2 -> I3. */
1366 FOR_EACH_LOG_LINK (nextlinks, link1)
1367 if ((next = try_combine (insn, link, link1,
1368 nextlinks->insn,
1369 &new_direct_jump_p,
1370 last_combined_insn)) != 0)
1371 {
1372 statistics_counter_event (cfun, "four-insn combine", 1);
1373 goto retry;
1374 }
1375 }
1376 }
1377
1378 /* Try this insn with each REG_EQUAL note it links back to. */
1379 FOR_EACH_LOG_LINK (links, insn)
1380 {
1381 rtx set, note;
1382 rtx_insn *temp = links->insn;
1383 if ((set = single_set (insn: temp)) != 0
1384 && (note = find_reg_equal_equiv_note (temp)) != 0
1385 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1386 && ! side_effects_p (SET_SRC (set))
1387 /* Avoid using a register that may already been marked
1388 dead by an earlier instruction. */
1389 && ! unmentioned_reg_p (note, SET_SRC (set))
1390 && (GET_MODE (note) == VOIDmode
1391 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1392 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1393 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1394 || (GET_MODE (XEXP (SET_DEST (set), 0))
1395 == GET_MODE (note))))))
1396 {
1397 /* Temporarily replace the set's source with the
1398 contents of the REG_EQUAL note. The insn will
1399 be deleted or recognized by try_combine. */
1400 rtx orig_src = SET_SRC (set);
1401 rtx orig_dest = SET_DEST (set);
1402 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1403 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1404 SET_SRC (set) = note;
1405 i2mod = temp;
1406 i2mod_old_rhs = copy_rtx (orig_src);
1407 i2mod_new_rhs = copy_rtx (note);
1408 next = try_combine (insn, i2mod, NULL, NULL,
1409 &new_direct_jump_p,
1410 last_combined_insn);
1411 i2mod = NULL;
1412 if (next)
1413 {
1414 statistics_counter_event (cfun, "insn-with-note combine", 1);
1415 goto retry;
1416 }
1417 INSN_CODE (temp) = -1;
1418 SET_SRC (set) = orig_src;
1419 SET_DEST (set) = orig_dest;
1420 }
1421 }
1422
1423 if (!NOTE_P (insn))
1424 record_dead_and_set_regs (insn);
1425
1426retry:
1427 ;
1428 }
1429 }
1430
1431 default_rtl_profile ();
1432 clear_bb_flags ();
1433
1434 if (purge_all_dead_edges ())
1435 new_direct_jump_p = true;
1436 if (delete_noop_moves ())
1437 new_direct_jump_p = true;
1438
1439 /* Clean up. */
1440 obstack_free (&insn_link_obstack, NULL);
1441 free (ptr: uid_log_links);
1442 free (ptr: uid_insn_cost);
1443 reg_stat.release ();
1444
1445 {
1446 struct undo *undo, *next;
1447 for (undo = undobuf.frees; undo; undo = next)
1448 {
1449 next = undo->next;
1450 free (ptr: undo);
1451 }
1452 undobuf.frees = 0;
1453 }
1454
1455 statistics_counter_event (cfun, "attempts", combine_attempts);
1456 statistics_counter_event (cfun, "merges", combine_merges);
1457 statistics_counter_event (cfun, "extras", combine_extras);
1458 statistics_counter_event (cfun, "successes", combine_successes);
1459
1460 nonzero_sign_valid = 0;
1461 rtl_hooks = general_rtl_hooks;
1462
1463 /* Make recognizer allow volatile MEMs again. */
1464 init_recog ();
1465
1466 return new_direct_jump_p;
1467}
1468
1469/* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1470
1471static void
1472init_reg_last (void)
1473{
1474 unsigned int i;
1475 reg_stat_type *p;
1476
1477 FOR_EACH_VEC_ELT (reg_stat, i, p)
1478 memset (s: p, c: 0, offsetof (reg_stat_type, sign_bit_copies));
1479}
1480
1481/* Set up any promoted values for incoming argument registers. */
1482
1483static void
1484setup_incoming_promotions (rtx_insn *first)
1485{
1486 tree arg;
1487 bool strictly_local = false;
1488
1489 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1490 arg = DECL_CHAIN (arg))
1491 {
1492 rtx x, reg = DECL_INCOMING_RTL (arg);
1493 int uns1, uns3;
1494 machine_mode mode1, mode2, mode3, mode4;
1495
1496 /* Only continue if the incoming argument is in a register. */
1497 if (!REG_P (reg))
1498 continue;
1499
1500 /* Determine, if possible, whether all call sites of the current
1501 function lie within the current compilation unit. (This does
1502 take into account the exporting of a function via taking its
1503 address, and so forth.) */
1504 strictly_local
1505 = cgraph_node::local_info_node (decl: current_function_decl)->local;
1506
1507 /* The mode and signedness of the argument before any promotions happen
1508 (equal to the mode of the pseudo holding it at that stage). */
1509 mode1 = TYPE_MODE (TREE_TYPE (arg));
1510 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1511
1512 /* The mode and signedness of the argument after any source language and
1513 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1514 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1515 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1516
1517 /* The mode and signedness of the argument as it is actually passed,
1518 see assign_parm_setup_reg in function.cc. */
1519 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1520 TREE_TYPE (cfun->decl), 0);
1521
1522 /* The mode of the register in which the argument is being passed. */
1523 mode4 = GET_MODE (reg);
1524
1525 /* Eliminate sign extensions in the callee when:
1526 (a) A mode promotion has occurred; */
1527 if (mode1 == mode3)
1528 continue;
1529 /* (b) The mode of the register is the same as the mode of
1530 the argument as it is passed; */
1531 if (mode3 != mode4)
1532 continue;
1533 /* (c) There's no language level extension; */
1534 if (mode1 == mode2)
1535 ;
1536 /* (c.1) All callers are from the current compilation unit. If that's
1537 the case we don't have to rely on an ABI, we only have to know
1538 what we're generating right now, and we know that we will do the
1539 mode1 to mode2 promotion with the given sign. */
1540 else if (!strictly_local)
1541 continue;
1542 /* (c.2) The combination of the two promotions is useful. This is
1543 true when the signs match, or if the first promotion is unsigned.
1544 In the later case, (sign_extend (zero_extend x)) is the same as
1545 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1546 else if (uns1)
1547 uns3 = true;
1548 else if (uns3)
1549 continue;
1550
1551 /* Record that the value was promoted from mode1 to mode3,
1552 so that any sign extension at the head of the current
1553 function may be eliminated. */
1554 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1555 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1556 record_value_for_reg (reg, first, x);
1557 }
1558}
1559
1560/* If MODE has a precision lower than PREC and SRC is a non-negative constant
1561 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1562 because some machines (maybe most) will actually do the sign-extension and
1563 this is the conservative approach.
1564
1565 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1566 kludge. */
1567
1568static rtx
1569sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1570{
1571 scalar_int_mode int_mode;
1572 if (CONST_INT_P (src)
1573 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
1574 && GET_MODE_PRECISION (mode: int_mode) < prec
1575 && INTVAL (src) > 0
1576 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1577 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1578
1579 return src;
1580}
1581
1582/* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1583 and SET. */
1584
1585static void
1586update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1587 rtx x)
1588{
1589 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1590 unsigned HOST_WIDE_INT bits = 0;
1591 rtx reg_equal = NULL, src = SET_SRC (set);
1592 unsigned int num = 0;
1593
1594 if (reg_equal_note)
1595 reg_equal = XEXP (reg_equal_note, 0);
1596
1597 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1598 {
1599 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1600 if (reg_equal)
1601 reg_equal = sign_extend_short_imm (src: reg_equal, GET_MODE (x), BITS_PER_WORD);
1602 }
1603
1604 /* Don't call nonzero_bits if it cannot change anything. */
1605 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1606 {
1607 machine_mode mode = GET_MODE (x);
1608 if (GET_MODE_CLASS (mode) == MODE_INT
1609 && HWI_COMPUTABLE_MODE_P (mode))
1610 mode = nonzero_bits_mode;
1611 bits = nonzero_bits (src, mode);
1612 if (reg_equal && bits)
1613 bits &= nonzero_bits (reg_equal, mode);
1614 rsp->nonzero_bits |= bits;
1615 }
1616
1617 /* Don't call num_sign_bit_copies if it cannot change anything. */
1618 if (rsp->sign_bit_copies != 1)
1619 {
1620 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1621 if (reg_equal && maybe_ne (a: num, b: GET_MODE_PRECISION (GET_MODE (x))))
1622 {
1623 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1624 if (num == 0 || numeq > num)
1625 num = numeq;
1626 }
1627 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1628 rsp->sign_bit_copies = num;
1629 }
1630}
1631
1632/* Called via note_stores. If X is a pseudo that is narrower than
1633 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1634
1635 If we are setting only a portion of X and we can't figure out what
1636 portion, assume all bits will be used since we don't know what will
1637 be happening.
1638
1639 Similarly, set how many bits of X are known to be copies of the sign bit
1640 at all locations in the function. This is the smallest number implied
1641 by any set of X. */
1642
1643static void
1644set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1645{
1646 rtx_insn *insn = (rtx_insn *) data;
1647 scalar_int_mode mode;
1648
1649 if (REG_P (x)
1650 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1651 /* If this register is undefined at the start of the file, we can't
1652 say what its contents were. */
1653 && ! REGNO_REG_SET_P
1654 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1655 && is_a <scalar_int_mode> (GET_MODE (x), result: &mode)
1656 && HWI_COMPUTABLE_MODE_P (mode))
1657 {
1658 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1659
1660 if (set == 0 || GET_CODE (set) == CLOBBER)
1661 {
1662 rsp->nonzero_bits = GET_MODE_MASK (mode);
1663 rsp->sign_bit_copies = 1;
1664 return;
1665 }
1666
1667 /* If this register is being initialized using itself, and the
1668 register is uninitialized in this basic block, and there are
1669 no LOG_LINKS which set the register, then part of the
1670 register is uninitialized. In that case we can't assume
1671 anything about the number of nonzero bits.
1672
1673 ??? We could do better if we checked this in
1674 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1675 could avoid making assumptions about the insn which initially
1676 sets the register, while still using the information in other
1677 insns. We would have to be careful to check every insn
1678 involved in the combination. */
1679
1680 if (insn
1681 && reg_referenced_p (x, PATTERN (insn))
1682 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1683 REGNO (x)))
1684 {
1685 struct insn_link *link;
1686
1687 FOR_EACH_LOG_LINK (link, insn)
1688 if (dead_or_set_p (link->insn, x))
1689 break;
1690 if (!link)
1691 {
1692 rsp->nonzero_bits = GET_MODE_MASK (mode);
1693 rsp->sign_bit_copies = 1;
1694 return;
1695 }
1696 }
1697
1698 /* If this is a complex assignment, see if we can convert it into a
1699 simple assignment. */
1700 set = expand_field_assignment (set);
1701
1702 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1703 set what we know about X. */
1704
1705 if (SET_DEST (set) == x
1706 || (paradoxical_subreg_p (SET_DEST (set))
1707 && SUBREG_REG (SET_DEST (set)) == x))
1708 update_rsp_from_reg_equal (rsp, insn, set, x);
1709 else
1710 {
1711 rsp->nonzero_bits = GET_MODE_MASK (mode);
1712 rsp->sign_bit_copies = 1;
1713 }
1714 }
1715}
1716
1717/* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1718 optionally insns that were previously combined into I3 or that will be
1719 combined into the merger of INSN and I3. The order is PRED, PRED2,
1720 INSN, SUCC, SUCC2, I3.
1721
1722 Return false if the combination is not allowed for any reason.
1723
1724 If the combination is allowed, *PDEST will be set to the single
1725 destination of INSN and *PSRC to the single source, and this function
1726 will return true. */
1727
1728static bool
1729can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1730 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1731 rtx *pdest, rtx *psrc)
1732{
1733 int i;
1734 const_rtx set = 0;
1735 rtx src, dest;
1736 rtx_insn *p;
1737 rtx link;
1738 bool all_adjacent = true;
1739 bool (*is_volatile_p) (const_rtx);
1740
1741 if (succ)
1742 {
1743 if (succ2)
1744 {
1745 if (next_active_insn (succ2) != i3)
1746 all_adjacent = false;
1747 if (next_active_insn (succ) != succ2)
1748 all_adjacent = false;
1749 }
1750 else if (next_active_insn (succ) != i3)
1751 all_adjacent = false;
1752 if (next_active_insn (insn) != succ)
1753 all_adjacent = false;
1754 }
1755 else if (next_active_insn (insn) != i3)
1756 all_adjacent = false;
1757
1758 /* Can combine only if previous insn is a SET of a REG or a SUBREG,
1759 or a PARALLEL consisting of such a SET and CLOBBERs.
1760
1761 If INSN has CLOBBER parallel parts, ignore them for our processing.
1762 By definition, these happen during the execution of the insn. When it
1763 is merged with another insn, all bets are off. If they are, in fact,
1764 needed and aren't also supplied in I3, they may be added by
1765 recog_for_combine. Otherwise, it won't match.
1766
1767 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1768 note.
1769
1770 Get the source and destination of INSN. If more than one, can't
1771 combine. */
1772
1773 if (GET_CODE (PATTERN (insn)) == SET)
1774 set = PATTERN (insn);
1775 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1776 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1777 {
1778 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1779 {
1780 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1781
1782 switch (GET_CODE (elt))
1783 {
1784 /* This is important to combine floating point insns
1785 for the SH4 port. */
1786 case USE:
1787 /* Combining an isolated USE doesn't make sense.
1788 We depend here on combinable_i3pat to reject them. */
1789 /* The code below this loop only verifies that the inputs of
1790 the SET in INSN do not change. We call reg_set_between_p
1791 to verify that the REG in the USE does not change between
1792 I3 and INSN.
1793 If the USE in INSN was for a pseudo register, the matching
1794 insn pattern will likely match any register; combining this
1795 with any other USE would only be safe if we knew that the
1796 used registers have identical values, or if there was
1797 something to tell them apart, e.g. different modes. For
1798 now, we forgo such complicated tests and simply disallow
1799 combining of USES of pseudo registers with any other USE. */
1800 if (REG_P (XEXP (elt, 0))
1801 && GET_CODE (PATTERN (i3)) == PARALLEL)
1802 {
1803 rtx i3pat = PATTERN (insn: i3);
1804 int i = XVECLEN (i3pat, 0) - 1;
1805 unsigned int regno = REGNO (XEXP (elt, 0));
1806
1807 do
1808 {
1809 rtx i3elt = XVECEXP (i3pat, 0, i);
1810
1811 if (GET_CODE (i3elt) == USE
1812 && REG_P (XEXP (i3elt, 0))
1813 && (REGNO (XEXP (i3elt, 0)) == regno
1814 ? reg_set_between_p (XEXP (elt, 0),
1815 PREV_INSN (insn), i3)
1816 : regno >= FIRST_PSEUDO_REGISTER))
1817 return false;
1818 }
1819 while (--i >= 0);
1820 }
1821 break;
1822
1823 /* We can ignore CLOBBERs. */
1824 case CLOBBER:
1825 break;
1826
1827 case SET:
1828 /* Ignore SETs whose result isn't used but not those that
1829 have side-effects. */
1830 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1831 && insn_nothrow_p (insn)
1832 && !side_effects_p (elt))
1833 break;
1834
1835 /* If we have already found a SET, this is a second one and
1836 so we cannot combine with this insn. */
1837 if (set)
1838 return false;
1839
1840 set = elt;
1841 break;
1842
1843 default:
1844 /* Anything else means we can't combine. */
1845 return false;
1846 }
1847 }
1848
1849 if (set == 0
1850 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1851 so don't do anything with it. */
1852 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1853 return false;
1854 }
1855 else
1856 return false;
1857
1858 if (set == 0)
1859 return false;
1860
1861 /* The simplification in expand_field_assignment may call back to
1862 get_last_value, so set safe guard here. */
1863 subst_low_luid = DF_INSN_LUID (insn);
1864
1865 set = expand_field_assignment (set);
1866 src = SET_SRC (set), dest = SET_DEST (set);
1867
1868 /* Do not eliminate user-specified register if it is in an
1869 asm input because we may break the register asm usage defined
1870 in GCC manual if allow to do so.
1871 Be aware that this may cover more cases than we expect but this
1872 should be harmless. */
1873 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1874 && extract_asm_operands (PATTERN (insn: i3)))
1875 return false;
1876
1877 /* Don't eliminate a store in the stack pointer. */
1878 if (dest == stack_pointer_rtx
1879 /* Don't combine with an insn that sets a register to itself if it has
1880 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1881 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1882 /* Can't merge an ASM_OPERANDS. */
1883 || GET_CODE (src) == ASM_OPERANDS
1884 /* Can't merge a function call. */
1885 || GET_CODE (src) == CALL
1886 /* Don't eliminate a function call argument. */
1887 || (CALL_P (i3)
1888 && (find_reg_fusage (i3, USE, dest)
1889 || (REG_P (dest)
1890 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1891 && global_regs[REGNO (dest)])))
1892 /* Don't substitute into an incremented register. */
1893 || FIND_REG_INC_NOTE (i3, dest)
1894 || (succ && FIND_REG_INC_NOTE (succ, dest))
1895 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1896 /* Don't substitute into a non-local goto, this confuses CFG. */
1897 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1898 /* Make sure that DEST is not used after INSN but before SUCC, or
1899 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1900 || (!all_adjacent
1901 && ((succ2
1902 && (reg_used_between_p (dest, succ2, i3)
1903 || reg_used_between_p (dest, succ, succ2)))
1904 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1905 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
1906 || (succ
1907 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1908 that case SUCC is not in the insn stream, so use SUCC2
1909 instead for this test. */
1910 && reg_used_between_p (dest, insn,
1911 succ2
1912 && INSN_UID (insn: succ) == INSN_UID (insn: succ2)
1913 ? succ2 : succ))))
1914 /* Make sure that the value that is to be substituted for the register
1915 does not use any registers whose values alter in between. However,
1916 If the insns are adjacent, a use can't cross a set even though we
1917 think it might (this can happen for a sequence of insns each setting
1918 the same destination; last_set of that register might point to
1919 a NOTE). If INSN has a REG_EQUIV note, the register is always
1920 equivalent to the memory so the substitution is valid even if there
1921 are intervening stores. Also, don't move a volatile asm or
1922 UNSPEC_VOLATILE across any other insns. */
1923 || (! all_adjacent
1924 && (((!MEM_P (src)
1925 || ! find_reg_note (insn, REG_EQUIV, src))
1926 && modified_between_p (src, insn, i3))
1927 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1928 || GET_CODE (src) == UNSPEC_VOLATILE))
1929 /* Don't combine across a CALL_INSN, because that would possibly
1930 change whether the life span of some REGs crosses calls or not,
1931 and it is a pain to update that information.
1932 Exception: if source is a constant, moving it later can't hurt.
1933 Accept that as a special case. */
1934 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1935 return false;
1936
1937 /* DEST must be a REG. */
1938 if (REG_P (dest))
1939 {
1940 /* If register alignment is being enforced for multi-word items in all
1941 cases except for parameters, it is possible to have a register copy
1942 insn referencing a hard register that is not allowed to contain the
1943 mode being copied and which would not be valid as an operand of most
1944 insns. Eliminate this problem by not combining with such an insn.
1945
1946 Also, on some machines we don't want to extend the life of a hard
1947 register. */
1948
1949 if (REG_P (src)
1950 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1951 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
1952 /* Don't extend the life of a hard register unless it is
1953 user variable (if we have few registers) or it can't
1954 fit into the desired register (meaning something special
1955 is going on).
1956 Also avoid substituting a return register into I3, because
1957 reload can't handle a conflict with constraints of other
1958 inputs. */
1959 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1960 && !targetm.hard_regno_mode_ok (REGNO (src),
1961 GET_MODE (src)))))
1962 return false;
1963 }
1964 else
1965 return false;
1966
1967
1968 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1969 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1970 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1971 {
1972 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1973
1974 /* If the clobber represents an earlyclobber operand, we must not
1975 substitute an expression containing the clobbered register.
1976 As we do not analyze the constraint strings here, we have to
1977 make the conservative assumption. However, if the register is
1978 a fixed hard reg, the clobber cannot represent any operand;
1979 we leave it up to the machine description to either accept or
1980 reject use-and-clobber patterns. */
1981 if (!REG_P (reg)
1982 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1983 || !fixed_regs[REGNO (reg)])
1984 if (reg_overlap_mentioned_p (reg, src))
1985 return false;
1986 }
1987
1988 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1989 or not), reject, unless nothing volatile comes between it and I3 */
1990
1991 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1992 {
1993 /* Make sure neither succ nor succ2 contains a volatile reference. */
1994 if (succ2 != 0 && volatile_refs_p (PATTERN (insn: succ2)))
1995 return false;
1996 if (succ != 0 && volatile_refs_p (PATTERN (insn: succ)))
1997 return false;
1998 /* We'll check insns between INSN and I3 below. */
1999 }
2000
2001 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2002 to be an explicit register variable, and was chosen for a reason. */
2003
2004 if (GET_CODE (src) == ASM_OPERANDS
2005 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2006 return false;
2007
2008 /* If INSN contains volatile references (specifically volatile MEMs),
2009 we cannot combine across any other volatile references.
2010 Even if INSN doesn't contain volatile references, any intervening
2011 volatile insn might affect machine state. */
2012
2013 is_volatile_p = volatile_refs_p (PATTERN (insn))
2014 ? volatile_refs_p
2015 : volatile_insn_p;
2016
2017 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (insn: p))
2018 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (insn: p)))
2019 return false;
2020
2021 /* If INSN contains an autoincrement or autodecrement, make sure that
2022 register is not used between there and I3, and not already used in
2023 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2024 Also insist that I3 not be a jump if using LRA; if it were one
2025 and the incremented register were spilled, we would lose.
2026 Reload handles this correctly. */
2027
2028 if (AUTO_INC_DEC)
2029 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2030 if (REG_NOTE_KIND (link) == REG_INC
2031 && ((JUMP_P (i3) && targetm.lra_p ())
2032 || reg_used_between_p (XEXP (link, 0), insn, i3)
2033 || (pred != NULL_RTX
2034 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (insn: pred)))
2035 || (pred2 != NULL_RTX
2036 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (insn: pred2)))
2037 || (succ != NULL_RTX
2038 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (insn: succ)))
2039 || (succ2 != NULL_RTX
2040 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (insn: succ2)))
2041 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (insn: i3))))
2042 return false;
2043
2044 /* If we get here, we have passed all the tests and the combination is
2045 to be allowed. */
2046
2047 *pdest = dest;
2048 *psrc = src;
2049
2050 return true;
2051}
2052
2053/* LOC is the location within I3 that contains its pattern or the component
2054 of a PARALLEL of the pattern. We validate that it is valid for combining.
2055
2056 One problem is if I3 modifies its output, as opposed to replacing it
2057 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2058 doing so would produce an insn that is not equivalent to the original insns.
2059
2060 Consider:
2061
2062 (set (reg:DI 101) (reg:DI 100))
2063 (set (subreg:SI (reg:DI 101) 0) <foo>)
2064
2065 This is NOT equivalent to:
2066
2067 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2068 (set (reg:DI 101) (reg:DI 100))])
2069
2070 Not only does this modify 100 (in which case it might still be valid
2071 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2072
2073 We can also run into a problem if I2 sets a register that I1
2074 uses and I1 gets directly substituted into I3 (not via I2). In that
2075 case, we would be getting the wrong value of I2DEST into I3, so we
2076 must reject the combination. This case occurs when I2 and I1 both
2077 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2078 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2079 of a SET must prevent combination from occurring. The same situation
2080 can occur for I0, in which case I0_NOT_IN_SRC is set.
2081
2082 Before doing the above check, we first try to expand a field assignment
2083 into a set of logical operations.
2084
2085 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2086 we place a register that is both set and used within I3. If more than one
2087 such register is detected, we fail.
2088
2089 Return true if the combination is valid, false otherwise. */
2090
2091static bool
2092combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2093 bool i1_not_in_src, bool i0_not_in_src, rtx *pi3dest_killed)
2094{
2095 rtx x = *loc;
2096
2097 if (GET_CODE (x) == SET)
2098 {
2099 rtx set = x ;
2100 rtx dest = SET_DEST (set);
2101 rtx src = SET_SRC (set);
2102 rtx inner_dest = dest;
2103 rtx subdest;
2104
2105 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2106 || GET_CODE (inner_dest) == SUBREG
2107 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2108 inner_dest = XEXP (inner_dest, 0);
2109
2110 /* Check for the case where I3 modifies its output, as discussed
2111 above. We don't want to prevent pseudos from being combined
2112 into the address of a MEM, so only prevent the combination if
2113 i1 or i2 set the same MEM. */
2114 if ((inner_dest != dest &&
2115 (!MEM_P (inner_dest)
2116 || rtx_equal_p (i2dest, inner_dest)
2117 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2118 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2119 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2120 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2121 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2122
2123 /* This is the same test done in can_combine_p except we can't test
2124 all_adjacent; we don't have to, since this instruction will stay
2125 in place, thus we are not considering increasing the lifetime of
2126 INNER_DEST.
2127
2128 Also, if this insn sets a function argument, combining it with
2129 something that might need a spill could clobber a previous
2130 function argument; the all_adjacent test in can_combine_p also
2131 checks this; here, we do a more specific test for this case. */
2132
2133 || (REG_P (inner_dest)
2134 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2135 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2136 GET_MODE (inner_dest)))
2137 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2138 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2139 return false;
2140
2141 /* If DEST is used in I3, it is being killed in this insn, so
2142 record that for later. We have to consider paradoxical
2143 subregs here, since they kill the whole register, but we
2144 ignore partial subregs, STRICT_LOW_PART, etc.
2145 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2146 STACK_POINTER_REGNUM, since these are always considered to be
2147 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2148 subdest = dest;
2149 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (x: subdest))
2150 subdest = SUBREG_REG (subdest);
2151 if (pi3dest_killed
2152 && REG_P (subdest)
2153 && reg_referenced_p (subdest, PATTERN (insn: i3))
2154 && REGNO (subdest) != FRAME_POINTER_REGNUM
2155 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2156 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2157 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2158 || (REGNO (subdest) != ARG_POINTER_REGNUM
2159 || ! fixed_regs [REGNO (subdest)]))
2160 && REGNO (subdest) != STACK_POINTER_REGNUM)
2161 {
2162 if (*pi3dest_killed)
2163 return false;
2164
2165 *pi3dest_killed = subdest;
2166 }
2167 }
2168
2169 else if (GET_CODE (x) == PARALLEL)
2170 {
2171 int i;
2172
2173 for (i = 0; i < XVECLEN (x, 0); i++)
2174 if (! combinable_i3pat (i3, loc: &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2175 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2176 return false;
2177 }
2178
2179 return true;
2180}
2181
2182/* Return true if X is an arithmetic expression that contains a multiplication
2183 and division. We don't count multiplications by powers of two here. */
2184
2185static bool
2186contains_muldiv (rtx x)
2187{
2188 switch (GET_CODE (x))
2189 {
2190 case MOD: case DIV: case UMOD: case UDIV:
2191 return true;
2192
2193 case MULT:
2194 return ! (CONST_INT_P (XEXP (x, 1))
2195 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2196 default:
2197 if (BINARY_P (x))
2198 return contains_muldiv (XEXP (x, 0))
2199 || contains_muldiv (XEXP (x, 1));
2200
2201 if (UNARY_P (x))
2202 return contains_muldiv (XEXP (x, 0));
2203
2204 return false;
2205 }
2206}
2207
2208/* Determine whether INSN can be used in a combination. Return true if
2209 not. This is used in try_combine to detect early some cases where we
2210 can't perform combinations. */
2211
2212static bool
2213cant_combine_insn_p (rtx_insn *insn)
2214{
2215 rtx set;
2216 rtx src, dest;
2217
2218 /* If this isn't really an insn, we can't do anything.
2219 This can occur when flow deletes an insn that it has merged into an
2220 auto-increment address. */
2221 if (!NONDEBUG_INSN_P (insn))
2222 return true;
2223
2224 /* Never combine loads and stores involving hard regs that are likely
2225 to be spilled. The register allocator can usually handle such
2226 reg-reg moves by tying. If we allow the combiner to make
2227 substitutions of likely-spilled regs, reload might die.
2228 As an exception, we allow combinations involving fixed regs; these are
2229 not available to the register allocator so there's no risk involved. */
2230
2231 set = single_set (insn);
2232 if (! set)
2233 return false;
2234 src = SET_SRC (set);
2235 dest = SET_DEST (set);
2236 if (GET_CODE (src) == SUBREG)
2237 src = SUBREG_REG (src);
2238 if (GET_CODE (dest) == SUBREG)
2239 dest = SUBREG_REG (dest);
2240 if (REG_P (src) && REG_P (dest)
2241 && ((HARD_REGISTER_P (src)
2242 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2243#ifdef LEAF_REGISTERS
2244 && ! LEAF_REGISTERS [REGNO (src)])
2245#else
2246 )
2247#endif
2248 || (HARD_REGISTER_P (dest)
2249 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2250 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2251 return true;
2252
2253 return false;
2254}
2255
2256struct likely_spilled_retval_info
2257{
2258 unsigned regno, nregs;
2259 unsigned mask;
2260};
2261
2262/* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2263 hard registers that are known to be written to / clobbered in full. */
2264static void
2265likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2266{
2267 struct likely_spilled_retval_info *const info =
2268 (struct likely_spilled_retval_info *) data;
2269 unsigned regno, nregs;
2270 unsigned new_mask;
2271
2272 if (!REG_P (XEXP (set, 0)))
2273 return;
2274 regno = REGNO (x);
2275 if (regno >= info->regno + info->nregs)
2276 return;
2277 nregs = REG_NREGS (x);
2278 if (regno + nregs <= info->regno)
2279 return;
2280 new_mask = (2U << (nregs - 1)) - 1;
2281 if (regno < info->regno)
2282 new_mask >>= info->regno - regno;
2283 else
2284 new_mask <<= regno - info->regno;
2285 info->mask &= ~new_mask;
2286}
2287
2288/* Return true iff part of the return value is live during INSN, and
2289 it is likely spilled. This can happen when more than one insn is needed
2290 to copy the return value, e.g. when we consider to combine into the
2291 second copy insn for a complex value. */
2292
2293static bool
2294likely_spilled_retval_p (rtx_insn *insn)
2295{
2296 rtx_insn *use = BB_END (this_basic_block);
2297 rtx reg;
2298 rtx_insn *p;
2299 unsigned regno, nregs;
2300 /* We assume here that no machine mode needs more than
2301 32 hard registers when the value overlaps with a register
2302 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2303 unsigned mask;
2304 struct likely_spilled_retval_info info;
2305
2306 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2307 return false;
2308 reg = XEXP (PATTERN (use), 0);
2309 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2310 return false;
2311 regno = REGNO (reg);
2312 nregs = REG_NREGS (reg);
2313 if (nregs == 1)
2314 return false;
2315 mask = (2U << (nregs - 1)) - 1;
2316
2317 /* Disregard parts of the return value that are set later. */
2318 info.regno = regno;
2319 info.nregs = nregs;
2320 info.mask = mask;
2321 for (p = PREV_INSN (insn: use); info.mask && p != insn; p = PREV_INSN (insn: p))
2322 if (INSN_P (p))
2323 note_stores (p, likely_spilled_retval_1, &info);
2324 mask = info.mask;
2325
2326 /* Check if any of the (probably) live return value registers is
2327 likely spilled. */
2328 nregs --;
2329 do
2330 {
2331 if ((mask & 1 << nregs)
2332 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2333 return true;
2334 } while (nregs--);
2335 return false;
2336}
2337
2338/* Adjust INSN after we made a change to its destination.
2339
2340 Changing the destination can invalidate notes that say something about
2341 the results of the insn and a LOG_LINK pointing to the insn. */
2342
2343static void
2344adjust_for_new_dest (rtx_insn *insn)
2345{
2346 /* For notes, be conservative and simply remove them. */
2347 remove_reg_equal_equiv_notes (insn, true);
2348
2349 /* The new insn will have a destination that was previously the destination
2350 of an insn just above it. Call distribute_links to make a LOG_LINK from
2351 the next use of that destination. */
2352
2353 rtx set = single_set (insn);
2354 gcc_assert (set);
2355
2356 rtx reg = SET_DEST (set);
2357
2358 while (GET_CODE (reg) == ZERO_EXTRACT
2359 || GET_CODE (reg) == STRICT_LOW_PART
2360 || GET_CODE (reg) == SUBREG)
2361 reg = XEXP (reg, 0);
2362 gcc_assert (REG_P (reg));
2363
2364 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2365
2366 df_insn_rescan (insn);
2367}
2368
2369/* Return TRUE if combine can reuse reg X in mode MODE.
2370 ADDED_SETS is trueif the original set is still required. */
2371static bool
2372can_change_dest_mode (rtx x, bool added_sets, machine_mode mode)
2373{
2374 unsigned int regno;
2375
2376 if (!REG_P (x))
2377 return false;
2378
2379 /* Don't change between modes with different underlying register sizes,
2380 since this could lead to invalid subregs. */
2381 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2382 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2383 return false;
2384
2385 regno = REGNO (x);
2386 /* Allow hard registers if the new mode is legal, and occupies no more
2387 registers than the old mode. */
2388 if (regno < FIRST_PSEUDO_REGISTER)
2389 return (targetm.hard_regno_mode_ok (regno, mode)
2390 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2391
2392 /* Or a pseudo that is only used once. */
2393 return (regno < reg_n_sets_max
2394 && REG_N_SETS (regno) == 1
2395 && !added_sets
2396 && !REG_USERVAR_P (x));
2397}
2398
2399
2400/* Check whether X, the destination of a set, refers to part of
2401 the register specified by REG. */
2402
2403static bool
2404reg_subword_p (rtx x, rtx reg)
2405{
2406 /* Check that reg is an integer mode register. */
2407 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2408 return false;
2409
2410 if (GET_CODE (x) == STRICT_LOW_PART
2411 || GET_CODE (x) == ZERO_EXTRACT)
2412 x = XEXP (x, 0);
2413
2414 return GET_CODE (x) == SUBREG
2415 && !paradoxical_subreg_p (x)
2416 && SUBREG_REG (x) == reg
2417 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2418}
2419
2420/* Return whether PAT is a PARALLEL of exactly N register SETs followed
2421 by an arbitrary number of CLOBBERs. */
2422static bool
2423is_parallel_of_n_reg_sets (rtx pat, int n)
2424{
2425 if (GET_CODE (pat) != PARALLEL)
2426 return false;
2427
2428 int len = XVECLEN (pat, 0);
2429 if (len < n)
2430 return false;
2431
2432 int i;
2433 for (i = 0; i < n; i++)
2434 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2435 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2436 return false;
2437 for ( ; i < len; i++)
2438 switch (GET_CODE (XVECEXP (pat, 0, i)))
2439 {
2440 case CLOBBER:
2441 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2442 return false;
2443 break;
2444 default:
2445 return false;
2446 }
2447 return true;
2448}
2449
2450/* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2451 CLOBBERs), can be split into individual SETs in that order, without
2452 changing semantics. */
2453static bool
2454can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2455{
2456 if (!insn_nothrow_p (insn))
2457 return false;
2458
2459 rtx pat = PATTERN (insn);
2460
2461 int i, j;
2462 for (i = 0; i < n; i++)
2463 {
2464 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2465 return false;
2466
2467 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2468
2469 for (j = i + 1; j < n; j++)
2470 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2471 return false;
2472 }
2473
2474 return true;
2475}
2476
2477/* Return whether X is just a single_set, with the source
2478 a general_operand. */
2479static bool
2480is_just_move (rtx_insn *x)
2481{
2482 rtx set = single_set (insn: x);
2483 if (!set)
2484 return false;
2485
2486 return general_operand (SET_SRC (set), VOIDmode);
2487}
2488
2489/* Callback function to count autoincs. */
2490
2491static int
2492count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2493{
2494 (*((int *) arg))++;
2495
2496 return 0;
2497}
2498
2499/* Try to combine the insns I0, I1 and I2 into I3.
2500 Here I0, I1 and I2 appear earlier than I3.
2501 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2502 I3.
2503
2504 If we are combining more than two insns and the resulting insn is not
2505 recognized, try splitting it into two insns. If that happens, I2 and I3
2506 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2507 Otherwise, I0, I1 and I2 are pseudo-deleted.
2508
2509 Return 0 if the combination does not work. Then nothing is changed.
2510 If we did the combination, return the insn at which combine should
2511 resume scanning.
2512
2513 Set NEW_DIRECT_JUMP_P to true if try_combine creates a
2514 new direct jump instruction.
2515
2516 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2517 been I3 passed to an earlier try_combine within the same basic
2518 block. */
2519
2520static rtx_insn *
2521try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2522 bool *new_direct_jump_p, rtx_insn *last_combined_insn)
2523{
2524 /* New patterns for I3 and I2, respectively. */
2525 rtx newpat, newi2pat = 0;
2526 rtvec newpat_vec_with_clobbers = 0;
2527 bool substed_i2 = false, substed_i1 = false, substed_i0 = false;
2528 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2529 dead. */
2530 bool added_sets_0, added_sets_1, added_sets_2;
2531 /* Total number of SETs to put into I3. */
2532 int total_sets;
2533 /* Nonzero if I2's or I1's body now appears in I3. */
2534 int i2_is_used = 0, i1_is_used = 0;
2535 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2536 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2537 /* Contains I3 if the destination of I3 is used in its source, which means
2538 that the old life of I3 is being killed. If that usage is placed into
2539 I2 and not in I3, a REG_DEAD note must be made. */
2540 rtx i3dest_killed = 0;
2541 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2542 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2543 /* Copy of SET_SRC of I1 and I0, if needed. */
2544 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2545 /* Set if I2DEST was reused as a scratch register. */
2546 bool i2scratch = false;
2547 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2548 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2549 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2550 bool i2dest_in_i2src = false, i1dest_in_i1src = false;
2551 bool i2dest_in_i1src = false, i0dest_in_i0src = false;
2552 bool i1dest_in_i0src = false, i2dest_in_i0src = false;;
2553 bool i2dest_killed = false, i1dest_killed = false, i0dest_killed = false;
2554 bool i1_feeds_i2_n = false, i0_feeds_i2_n = false, i0_feeds_i1_n = false;
2555 /* Notes that must be added to REG_NOTES in I3 and I2. */
2556 rtx new_i3_notes, new_i2_notes;
2557 /* Notes that we substituted I3 into I2 instead of the normal case. */
2558 bool i3_subst_into_i2 = false;
2559 /* Notes that I1, I2 or I3 is a MULT operation. */
2560 bool have_mult = false;
2561 bool swap_i2i3 = false;
2562 bool split_i2i3 = false;
2563 bool changed_i3_dest = false;
2564 bool i2_was_move = false, i3_was_move = false;
2565 int n_auto_inc = 0;
2566
2567 int maxreg;
2568 rtx_insn *temp_insn;
2569 rtx temp_expr;
2570 struct insn_link *link;
2571 rtx other_pat = 0;
2572 rtx new_other_notes;
2573 int i;
2574 scalar_int_mode dest_mode, temp_mode;
2575 bool has_non_call_exception = false;
2576
2577 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2578 never be). */
2579 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2580 return 0;
2581
2582 /* Only try four-insn combinations when there's high likelihood of
2583 success. Look for simple insns, such as loads of constants or
2584 binary operations involving a constant. */
2585 if (i0)
2586 {
2587 int i;
2588 int ngood = 0;
2589 int nshift = 0;
2590 rtx set0, set3;
2591
2592 if (!flag_expensive_optimizations)
2593 return 0;
2594
2595 for (i = 0; i < 4; i++)
2596 {
2597 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2598 rtx set = single_set (insn);
2599 rtx src;
2600 if (!set)
2601 continue;
2602 src = SET_SRC (set);
2603 if (CONSTANT_P (src))
2604 {
2605 ngood += 2;
2606 break;
2607 }
2608 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2609 ngood++;
2610 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2611 || GET_CODE (src) == LSHIFTRT)
2612 nshift++;
2613 }
2614
2615 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2616 are likely manipulating its value. Ideally we'll be able to combine
2617 all four insns into a bitfield insertion of some kind.
2618
2619 Note the source in I0 might be inside a sign/zero extension and the
2620 memory modes in I0 and I3 might be different. So extract the address
2621 from the destination of I3 and search for it in the source of I0.
2622
2623 In the event that there's a match but the source/dest do not actually
2624 refer to the same memory, the worst that happens is we try some
2625 combinations that we wouldn't have otherwise. */
2626 if ((set0 = single_set (insn: i0))
2627 /* Ensure the source of SET0 is a MEM, possibly buried inside
2628 an extension. */
2629 && (GET_CODE (SET_SRC (set0)) == MEM
2630 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2631 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2632 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2633 && (set3 = single_set (insn: i3))
2634 /* Ensure the destination of SET3 is a MEM. */
2635 && GET_CODE (SET_DEST (set3)) == MEM
2636 /* Would it be better to extract the base address for the MEM
2637 in SET3 and look for that? I don't have cases where it matters
2638 but I could envision such cases. */
2639 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2640 ngood += 2;
2641
2642 if (ngood < 2 && nshift < 2)
2643 return 0;
2644 }
2645
2646 /* Exit early if one of the insns involved can't be used for
2647 combinations. */
2648 if (CALL_P (i2)
2649 || (i1 && CALL_P (i1))
2650 || (i0 && CALL_P (i0))
2651 || cant_combine_insn_p (insn: i3)
2652 || cant_combine_insn_p (insn: i2)
2653 || (i1 && cant_combine_insn_p (insn: i1))
2654 || (i0 && cant_combine_insn_p (insn: i0))
2655 || likely_spilled_retval_p (insn: i3))
2656 return 0;
2657
2658 combine_attempts++;
2659 undobuf.other_insn = 0;
2660
2661 /* Reset the hard register usage information. */
2662 CLEAR_HARD_REG_SET (set&: newpat_used_regs);
2663
2664 if (dump_file && (dump_flags & TDF_DETAILS))
2665 {
2666 if (i0)
2667 fprintf (stream: dump_file, format: "\nTrying %d, %d, %d -> %d:\n",
2668 INSN_UID (insn: i0), INSN_UID (insn: i1), INSN_UID (insn: i2), INSN_UID (insn: i3));
2669 else if (i1)
2670 fprintf (stream: dump_file, format: "\nTrying %d, %d -> %d:\n",
2671 INSN_UID (insn: i1), INSN_UID (insn: i2), INSN_UID (insn: i3));
2672 else
2673 fprintf (stream: dump_file, format: "\nTrying %d -> %d:\n",
2674 INSN_UID (insn: i2), INSN_UID (insn: i3));
2675
2676 if (i0)
2677 dump_insn_slim (dump_file, i0);
2678 if (i1)
2679 dump_insn_slim (dump_file, i1);
2680 dump_insn_slim (dump_file, i2);
2681 dump_insn_slim (dump_file, i3);
2682 }
2683
2684 /* If multiple insns feed into one of I2 or I3, they can be in any
2685 order. To simplify the code below, reorder them in sequence. */
2686 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2687 std::swap (a&: i0, b&: i2);
2688 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2689 std::swap (a&: i0, b&: i1);
2690 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2691 std::swap (a&: i1, b&: i2);
2692
2693 added_links_insn = 0;
2694 added_notes_insn = 0;
2695
2696 /* First check for one important special case that the code below will
2697 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2698 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2699 we may be able to replace that destination with the destination of I3.
2700 This occurs in the common code where we compute both a quotient and
2701 remainder into a structure, in which case we want to do the computation
2702 directly into the structure to avoid register-register copies.
2703
2704 Note that this case handles both multiple sets in I2 and also cases
2705 where I2 has a number of CLOBBERs inside the PARALLEL.
2706
2707 We make very conservative checks below and only try to handle the
2708 most common cases of this. For example, we only handle the case
2709 where I2 and I3 are adjacent to avoid making difficult register
2710 usage tests. */
2711
2712 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2713 && REG_P (SET_SRC (PATTERN (i3)))
2714 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2715 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2716 && GET_CODE (PATTERN (i2)) == PARALLEL
2717 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2718 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2719 below would need to check what is inside (and reg_overlap_mentioned_p
2720 doesn't support those codes anyway). Don't allow those destinations;
2721 the resulting insn isn't likely to be recognized anyway. */
2722 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2723 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2724 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2725 SET_DEST (PATTERN (i3)))
2726 && next_active_insn (i2) == i3)
2727 {
2728 rtx p2 = PATTERN (insn: i2);
2729
2730 /* Make sure that the destination of I3,
2731 which we are going to substitute into one output of I2,
2732 is not used within another output of I2. We must avoid making this:
2733 (parallel [(set (mem (reg 69)) ...)
2734 (set (reg 69) ...)])
2735 which is not well-defined as to order of actions.
2736 (Besides, reload can't handle output reloads for this.)
2737
2738 The problem can also happen if the dest of I3 is a memory ref,
2739 if another dest in I2 is an indirect memory ref.
2740
2741 Neither can this PARALLEL be an asm. We do not allow combining
2742 that usually (see can_combine_p), so do not here either. */
2743 bool ok = true;
2744 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2745 {
2746 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2747 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2748 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2749 SET_DEST (XVECEXP (p2, 0, i))))
2750 ok = false;
2751 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2752 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2753 ok = false;
2754 }
2755
2756 if (ok)
2757 for (i = 0; i < XVECLEN (p2, 0); i++)
2758 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2759 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2760 {
2761 combine_merges++;
2762
2763 subst_insn = i3;
2764 subst_low_luid = DF_INSN_LUID (i2);
2765
2766 added_sets_2 = added_sets_1 = added_sets_0 = false;
2767 i2src = SET_SRC (XVECEXP (p2, 0, i));
2768 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2769 i2dest_killed = dead_or_set_p (i2, i2dest);
2770
2771 /* Replace the dest in I2 with our dest and make the resulting
2772 insn the new pattern for I3. Then skip to where we validate
2773 the pattern. Everything was set up above. */
2774 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2775 newpat = p2;
2776 i3_subst_into_i2 = true;
2777 goto validate_replacement;
2778 }
2779 }
2780
2781 /* If I2 is setting a pseudo to a constant and I3 is setting some
2782 sub-part of it to another constant, merge them by making a new
2783 constant. */
2784 if (i1 == 0
2785 && (temp_expr = single_set (insn: i2)) != 0
2786 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), result: &temp_mode)
2787 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2788 && GET_CODE (PATTERN (i3)) == SET
2789 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2790 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2791 {
2792 rtx dest = SET_DEST (PATTERN (i3));
2793 rtx temp_dest = SET_DEST (temp_expr);
2794 int offset = -1;
2795 int width = 0;
2796
2797 if (GET_CODE (dest) == ZERO_EXTRACT)
2798 {
2799 if (CONST_INT_P (XEXP (dest, 1))
2800 && CONST_INT_P (XEXP (dest, 2))
2801 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2802 result: &dest_mode))
2803 {
2804 width = INTVAL (XEXP (dest, 1));
2805 offset = INTVAL (XEXP (dest, 2));
2806 dest = XEXP (dest, 0);
2807 if (BITS_BIG_ENDIAN)
2808 offset = GET_MODE_PRECISION (mode: dest_mode) - width - offset;
2809 }
2810 }
2811 else
2812 {
2813 if (GET_CODE (dest) == STRICT_LOW_PART)
2814 dest = XEXP (dest, 0);
2815 if (is_a <scalar_int_mode> (GET_MODE (dest), result: &dest_mode))
2816 {
2817 width = GET_MODE_PRECISION (mode: dest_mode);
2818 offset = 0;
2819 }
2820 }
2821
2822 if (offset >= 0)
2823 {
2824 /* If this is the low part, we're done. */
2825 if (subreg_lowpart_p (dest))
2826 ;
2827 /* Handle the case where inner is twice the size of outer. */
2828 else if (GET_MODE_PRECISION (mode: temp_mode)
2829 == 2 * GET_MODE_PRECISION (mode: dest_mode))
2830 offset += GET_MODE_PRECISION (mode: dest_mode);
2831 /* Otherwise give up for now. */
2832 else
2833 offset = -1;
2834 }
2835
2836 if (offset >= 0)
2837 {
2838 rtx inner = SET_SRC (PATTERN (i3));
2839 rtx outer = SET_SRC (temp_expr);
2840
2841 wide_int o = wi::insert (x: rtx_mode_t (outer, temp_mode),
2842 y: rtx_mode_t (inner, dest_mode),
2843 offset, width);
2844
2845 combine_merges++;
2846 subst_insn = i3;
2847 subst_low_luid = DF_INSN_LUID (i2);
2848 added_sets_2 = added_sets_1 = added_sets_0 = false;
2849 i2dest = temp_dest;
2850 i2dest_killed = dead_or_set_p (i2, i2dest);
2851
2852 /* Replace the source in I2 with the new constant and make the
2853 resulting insn the new pattern for I3. Then skip to where we
2854 validate the pattern. Everything was set up above. */
2855 SUBST (SET_SRC (temp_expr),
2856 immed_wide_int_const (o, temp_mode));
2857
2858 newpat = PATTERN (insn: i2);
2859
2860 /* The dest of I3 has been replaced with the dest of I2. */
2861 changed_i3_dest = true;
2862 goto validate_replacement;
2863 }
2864 }
2865
2866 /* If we have no I1 and I2 looks like:
2867 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2868 (set Y OP)])
2869 make up a dummy I1 that is
2870 (set Y OP)
2871 and change I2 to be
2872 (set (reg:CC X) (compare:CC Y (const_int 0)))
2873
2874 (We can ignore any trailing CLOBBERs.)
2875
2876 This undoes a previous combination and allows us to match a branch-and-
2877 decrement insn. */
2878
2879 if (i1 == 0
2880 && is_parallel_of_n_reg_sets (pat: PATTERN (insn: i2), n: 2)
2881 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2882 == MODE_CC)
2883 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2884 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2885 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2886 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2887 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2888 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2889 {
2890 /* We make I1 with the same INSN_UID as I2. This gives it
2891 the same DF_INSN_LUID for value tracking. Our fake I1 will
2892 never appear in the insn stream so giving it the same INSN_UID
2893 as I2 will not cause a problem. */
2894
2895 i1 = gen_rtx_INSN (VOIDmode, NULL, next_insn: i2, bb: BLOCK_FOR_INSN (insn: i2),
2896 XVECEXP (PATTERN (i2), 0, 1), location: INSN_LOCATION (insn: i2),
2897 code: -1, NULL_RTX);
2898 INSN_UID (insn: i1) = INSN_UID (insn: i2);
2899
2900 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2901 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2902 SET_DEST (PATTERN (i1)));
2903 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2904 SUBST_LINK (LOG_LINKS (i2),
2905 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2906 }
2907
2908 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2909 make those two SETs separate I1 and I2 insns, and make an I0 that is
2910 the original I1. */
2911 if (i0 == 0
2912 && is_parallel_of_n_reg_sets (pat: PATTERN (insn: i2), n: 2)
2913 && can_split_parallel_of_n_reg_sets (insn: i2, n: 2)
2914 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2915 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
2916 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2917 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2918 {
2919 /* If there is no I1, there is no I0 either. */
2920 i0 = i1;
2921
2922 /* We make I1 with the same INSN_UID as I2. This gives it
2923 the same DF_INSN_LUID for value tracking. Our fake I1 will
2924 never appear in the insn stream so giving it the same INSN_UID
2925 as I2 will not cause a problem. */
2926
2927 i1 = gen_rtx_INSN (VOIDmode, NULL, next_insn: i2, bb: BLOCK_FOR_INSN (insn: i2),
2928 XVECEXP (PATTERN (i2), 0, 0), location: INSN_LOCATION (insn: i2),
2929 code: -1, NULL_RTX);
2930 INSN_UID (insn: i1) = INSN_UID (insn: i2);
2931
2932 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2933 }
2934
2935 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
2936 if (!can_combine_p (insn: i2, i3, pred: i0, pred2: i1, NULL, NULL, pdest: &i2dest, psrc: &i2src))
2937 {
2938 if (dump_file && (dump_flags & TDF_DETAILS))
2939 fprintf (stream: dump_file, format: "Can't combine i2 into i3\n");
2940 undo_all ();
2941 return 0;
2942 }
2943 if (i1 && !can_combine_p (insn: i1, i3, pred: i0, NULL, succ: i2, NULL, pdest: &i1dest, psrc: &i1src))
2944 {
2945 if (dump_file && (dump_flags & TDF_DETAILS))
2946 fprintf (stream: dump_file, format: "Can't combine i1 into i3\n");
2947 undo_all ();
2948 return 0;
2949 }
2950 if (i0 && !can_combine_p (insn: i0, i3, NULL, NULL, succ: i1, succ2: i2, pdest: &i0dest, psrc: &i0src))
2951 {
2952 if (dump_file && (dump_flags & TDF_DETAILS))
2953 fprintf (stream: dump_file, format: "Can't combine i0 into i3\n");
2954 undo_all ();
2955 return 0;
2956 }
2957
2958 /* With non-call exceptions we can end up trying to combine multiple
2959 insns with possible EH side effects. Make sure we can combine
2960 that to a single insn which means there must be at most one insn
2961 in the combination with an EH side effect. */
2962 if (cfun->can_throw_non_call_exceptions)
2963 {
2964 if (find_reg_note (i3, REG_EH_REGION, NULL_RTX)
2965 || find_reg_note (i2, REG_EH_REGION, NULL_RTX)
2966 || (i1 && find_reg_note (i1, REG_EH_REGION, NULL_RTX))
2967 || (i0 && find_reg_note (i0, REG_EH_REGION, NULL_RTX)))
2968 {
2969 has_non_call_exception = true;
2970 if (insn_could_throw_p (i3)
2971 + insn_could_throw_p (i2)
2972 + (i1 ? insn_could_throw_p (i1) : 0)
2973 + (i0 ? insn_could_throw_p (i0) : 0) > 1)
2974 {
2975 if (dump_file && (dump_flags & TDF_DETAILS))
2976 fprintf (stream: dump_file, format: "Can't combine multiple insns with EH "
2977 "side-effects\n");
2978 undo_all ();
2979 return 0;
2980 }
2981 }
2982 }
2983
2984 /* Record whether i2 and i3 are trivial moves. */
2985 i2_was_move = is_just_move (x: i2);
2986 i3_was_move = is_just_move (x: i3);
2987
2988 /* Record whether I2DEST is used in I2SRC and similarly for the other
2989 cases. Knowing this will help in register status updating below. */
2990 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2991 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2992 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2993 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2994 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2995 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2996 i2dest_killed = dead_or_set_p (i2, i2dest);
2997 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2998 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2999
3000 /* For the earlier insns, determine which of the subsequent ones they
3001 feed. */
3002 i1_feeds_i2_n = i1 && insn_a_feeds_b (a: i1, b: i2);
3003 i0_feeds_i1_n = i0 && insn_a_feeds_b (a: i0, b: i1);
3004 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (a: i0, b: i2)
3005 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3006 && reg_overlap_mentioned_p (i0dest, i2src))));
3007
3008 /* Ensure that I3's pattern can be the destination of combines. */
3009 if (! combinable_i3pat (i3, loc: &PATTERN (insn: i3), i2dest, i1dest, i0dest,
3010 i1_not_in_src: i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3011 i0_not_in_src: i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3012 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3013 pi3dest_killed: &i3dest_killed))
3014 {
3015 undo_all ();
3016 return 0;
3017 }
3018
3019 /* See if any of the insns is a MULT operation. Unless one is, we will
3020 reject a combination that is, since it must be slower. Be conservative
3021 here. */
3022 if (GET_CODE (i2src) == MULT
3023 || (i1 != 0 && GET_CODE (i1src) == MULT)
3024 || (i0 != 0 && GET_CODE (i0src) == MULT)
3025 || (GET_CODE (PATTERN (i3)) == SET
3026 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3027 have_mult = true;
3028
3029 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3030 We used to do this EXCEPT in one case: I3 has a post-inc in an
3031 output operand. However, that exception can give rise to insns like
3032 mov r3,(r3)+
3033 which is a famous insn on the PDP-11 where the value of r3 used as the
3034 source was model-dependent. Avoid this sort of thing. */
3035
3036#if 0
3037 if (!(GET_CODE (PATTERN (i3)) == SET
3038 && REG_P (SET_SRC (PATTERN (i3)))
3039 && MEM_P (SET_DEST (PATTERN (i3)))
3040 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3041 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3042 /* It's not the exception. */
3043#endif
3044 if (AUTO_INC_DEC)
3045 {
3046 rtx link;
3047 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3048 if (REG_NOTE_KIND (link) == REG_INC
3049 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (insn: i2))
3050 || (i1 != 0
3051 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (insn: i1)))))
3052 {
3053 undo_all ();
3054 return 0;
3055 }
3056 }
3057
3058 /* See if the SETs in I1 or I2 need to be kept around in the merged
3059 instruction: whenever the value set there is still needed past I3.
3060 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3061
3062 For the SET in I1, we have two cases: if I1 and I2 independently feed
3063 into I3, the set in I1 needs to be kept around unless I1DEST dies
3064 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3065 in I1 needs to be kept around unless I1DEST dies or is set in either
3066 I2 or I3. The same considerations apply to I0. */
3067
3068 added_sets_2 = !dead_or_set_p (i3, i2dest);
3069
3070 if (i1)
3071 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3072 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3073 else
3074 added_sets_1 = false;
3075
3076 if (i0)
3077 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3078 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3079 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3080 && dead_or_set_p (i2, i0dest)));
3081 else
3082 added_sets_0 = false;
3083
3084 /* We are about to copy insns for the case where they need to be kept
3085 around. Check that they can be copied in the merged instruction. */
3086
3087 if (targetm.cannot_copy_insn_p
3088 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3089 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3090 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3091 {
3092 undo_all ();
3093 return 0;
3094 }
3095
3096 /* We cannot safely duplicate volatile references in any case. */
3097
3098 if ((added_sets_2 && volatile_refs_p (PATTERN (insn: i2)))
3099 || (added_sets_1 && volatile_refs_p (PATTERN (insn: i1)))
3100 || (added_sets_0 && volatile_refs_p (PATTERN (insn: i0))))
3101 {
3102 undo_all ();
3103 return 0;
3104 }
3105
3106 /* Count how many auto_inc expressions there were in the original insns;
3107 we need to have the same number in the resulting patterns. */
3108
3109 if (i0)
3110 for_each_inc_dec (PATTERN (insn: i0), count_auto_inc, arg: &n_auto_inc);
3111 if (i1)
3112 for_each_inc_dec (PATTERN (insn: i1), count_auto_inc, arg: &n_auto_inc);
3113 for_each_inc_dec (PATTERN (insn: i2), count_auto_inc, arg: &n_auto_inc);
3114 for_each_inc_dec (PATTERN (insn: i3), count_auto_inc, arg: &n_auto_inc);
3115
3116 /* If the set in I2 needs to be kept around, we must make a copy of
3117 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3118 PATTERN (I2), we are only substituting for the original I1DEST, not into
3119 an already-substituted copy. This also prevents making self-referential
3120 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3121 I2DEST. */
3122
3123 if (added_sets_2)
3124 {
3125 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3126 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3127 else
3128 i2pat = copy_rtx (PATTERN (insn: i2));
3129 }
3130
3131 if (added_sets_1)
3132 {
3133 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3134 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3135 else
3136 i1pat = copy_rtx (PATTERN (insn: i1));
3137 }
3138
3139 if (added_sets_0)
3140 {
3141 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3142 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3143 else
3144 i0pat = copy_rtx (PATTERN (insn: i0));
3145 }
3146
3147 combine_merges++;
3148
3149 /* Substitute in the latest insn for the regs set by the earlier ones. */
3150
3151 maxreg = max_reg_num ();
3152
3153 subst_insn = i3;
3154
3155 /* Many machines have insns that can both perform an
3156 arithmetic operation and set the condition code. These operations will
3157 be represented as a PARALLEL with the first element of the vector
3158 being a COMPARE of an arithmetic operation with the constant zero.
3159 The second element of the vector will set some pseudo to the result
3160 of the same arithmetic operation. If we simplify the COMPARE, we won't
3161 match such a pattern and so will generate an extra insn. Here we test
3162 for this case, where both the comparison and the operation result are
3163 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3164 I2SRC. Later we will make the PARALLEL that contains I2. */
3165
3166 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3167 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3168 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3169 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3170 {
3171 rtx newpat_dest;
3172 rtx *cc_use_loc = NULL;
3173 rtx_insn *cc_use_insn = NULL;
3174 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3175 machine_mode compare_mode, orig_compare_mode;
3176 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3177 scalar_int_mode mode;
3178
3179 newpat = PATTERN (insn: i3);
3180 newpat_dest = SET_DEST (newpat);
3181 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3182
3183 if (undobuf.other_insn == 0
3184 && (cc_use_loc = find_single_use (SET_DEST (newpat), insn: i3,
3185 ploc: &cc_use_insn)))
3186 {
3187 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3188 if (is_a <scalar_int_mode> (GET_MODE (i2dest), result: &mode))
3189 compare_code = simplify_compare_const (compare_code, mode,
3190 &op0, &op1);
3191 target_canonicalize_comparison (code: &compare_code, op0: &op0, op1: &op1, op0_preserve_value: 1);
3192 }
3193
3194 /* Do the rest only if op1 is const0_rtx, which may be the
3195 result of simplification. */
3196 if (op1 == const0_rtx)
3197 {
3198 /* If a single use of the CC is found, prepare to modify it
3199 when SELECT_CC_MODE returns a new CC-class mode, or when
3200 the above simplify_compare_const() returned a new comparison
3201 operator. undobuf.other_insn is assigned the CC use insn
3202 when modifying it. */
3203 if (cc_use_loc)
3204 {
3205#ifdef SELECT_CC_MODE
3206 machine_mode new_mode
3207 = SELECT_CC_MODE (compare_code, op0, op1);
3208 if (new_mode != orig_compare_mode
3209 && can_change_dest_mode (SET_DEST (newpat),
3210 added_sets: added_sets_2, mode: new_mode))
3211 {
3212 unsigned int regno = REGNO (newpat_dest);
3213 compare_mode = new_mode;
3214 if (regno < FIRST_PSEUDO_REGISTER)
3215 newpat_dest = gen_rtx_REG (compare_mode, regno);
3216 else
3217 {
3218 subst_mode (regno, newval: compare_mode);
3219 newpat_dest = regno_reg_rtx[regno];
3220 }
3221 }
3222#endif
3223 /* Cases for modifying the CC-using comparison. */
3224 if (compare_code != orig_compare_code
3225 /* ??? Do we need to verify the zero rtx? */
3226 && XEXP (*cc_use_loc, 1) == const0_rtx)
3227 {
3228 /* Replace cc_use_loc with entire new RTX. */
3229 SUBST (*cc_use_loc,
3230 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3231 newpat_dest, const0_rtx));
3232 undobuf.other_insn = cc_use_insn;
3233 }
3234 else if (compare_mode != orig_compare_mode)
3235 {
3236 /* Just replace the CC reg with a new mode. */
3237 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3238 undobuf.other_insn = cc_use_insn;
3239 }
3240 }
3241
3242 /* Now we modify the current newpat:
3243 First, SET_DEST(newpat) is updated if the CC mode has been
3244 altered. For targets without SELECT_CC_MODE, this should be
3245 optimized away. */
3246 if (compare_mode != orig_compare_mode)
3247 SUBST (SET_DEST (newpat), newpat_dest);
3248 /* This is always done to propagate i2src into newpat. */
3249 SUBST (SET_SRC (newpat),
3250 gen_rtx_COMPARE (compare_mode, op0, op1));
3251 /* Create new version of i2pat if needed; the below PARALLEL
3252 creation needs this to work correctly. */
3253 if (! rtx_equal_p (i2src, op0))
3254 i2pat = gen_rtx_SET (i2dest, op0);
3255 i2_is_used = 1;
3256 }
3257 }
3258
3259 if (i2_is_used == 0)
3260 {
3261 /* It is possible that the source of I2 or I1 may be performing
3262 an unneeded operation, such as a ZERO_EXTEND of something
3263 that is known to have the high part zero. Handle that case
3264 by letting subst look at the inner insns.
3265
3266 Another way to do this would be to have a function that tries
3267 to simplify a single insn instead of merging two or more
3268 insns. We don't do this because of the potential of infinite
3269 loops and because of the potential extra memory required.
3270 However, doing it the way we are is a bit of a kludge and
3271 doesn't catch all cases.
3272
3273 But only do this if -fexpensive-optimizations since it slows
3274 things down and doesn't usually win.
3275
3276 This is not done in the COMPARE case above because the
3277 unmodified I2PAT is used in the PARALLEL and so a pattern
3278 with a modified I2SRC would not match. */
3279
3280 if (flag_expensive_optimizations)
3281 {
3282 /* Pass pc_rtx so no substitutions are done, just
3283 simplifications. */
3284 if (i1)
3285 {
3286 subst_low_luid = DF_INSN_LUID (i1);
3287 i1src = subst (i1src, pc_rtx, pc_rtx, false, false, false);
3288 }
3289
3290 subst_low_luid = DF_INSN_LUID (i2);
3291 i2src = subst (i2src, pc_rtx, pc_rtx, false, false, false);
3292 }
3293
3294 n_occurrences = 0; /* `subst' counts here */
3295 subst_low_luid = DF_INSN_LUID (i2);
3296
3297 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3298 copy of I2SRC each time we substitute it, in order to avoid creating
3299 self-referential RTL when we will be substituting I1SRC for I1DEST
3300 later. Likewise if I0 feeds into I2, either directly or indirectly
3301 through I1, and I0DEST is in I0SRC. */
3302 newpat = subst (PATTERN (insn: i3), i2dest, i2src, false, false,
3303 (i1_feeds_i2_n && i1dest_in_i1src)
3304 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3305 && i0dest_in_i0src));
3306 substed_i2 = true;
3307
3308 /* Record whether I2's body now appears within I3's body. */
3309 i2_is_used = n_occurrences;
3310 }
3311
3312 /* If we already got a failure, don't try to do more. Otherwise, try to
3313 substitute I1 if we have it. */
3314
3315 if (i1 && GET_CODE (newpat) != CLOBBER)
3316 {
3317 /* Before we can do this substitution, we must redo the test done
3318 above (see detailed comments there) that ensures I1DEST isn't
3319 mentioned in any SETs in NEWPAT that are field assignments. */
3320 if (!combinable_i3pat (NULL, loc: &newpat, i2dest: i1dest, NULL_RTX, NULL_RTX,
3321 i1_not_in_src: false, i0_not_in_src: false, pi3dest_killed: 0))
3322 {
3323 undo_all ();
3324 return 0;
3325 }
3326
3327 n_occurrences = 0;
3328 subst_low_luid = DF_INSN_LUID (i1);
3329
3330 /* If the following substitution will modify I1SRC, make a copy of it
3331 for the case where it is substituted for I1DEST in I2PAT later. */
3332 if (added_sets_2 && i1_feeds_i2_n)
3333 i1src_copy = copy_rtx (i1src);
3334
3335 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3336 copy of I1SRC each time we substitute it, in order to avoid creating
3337 self-referential RTL when we will be substituting I0SRC for I0DEST
3338 later. */
3339 newpat = subst (newpat, i1dest, i1src, false, false,
3340 i0_feeds_i1_n && i0dest_in_i0src);
3341 substed_i1 = true;
3342
3343 /* Record whether I1's body now appears within I3's body. */
3344 i1_is_used = n_occurrences;
3345 }
3346
3347 /* Likewise for I0 if we have it. */
3348
3349 if (i0 && GET_CODE (newpat) != CLOBBER)
3350 {
3351 if (!combinable_i3pat (NULL, loc: &newpat, i2dest: i0dest, NULL_RTX, NULL_RTX,
3352 i1_not_in_src: false, i0_not_in_src: false, pi3dest_killed: 0))
3353 {
3354 undo_all ();
3355 return 0;
3356 }
3357
3358 /* If the following substitution will modify I0SRC, make a copy of it
3359 for the case where it is substituted for I0DEST in I1PAT later. */
3360 if (added_sets_1 && i0_feeds_i1_n)
3361 i0src_copy = copy_rtx (i0src);
3362 /* And a copy for I0DEST in I2PAT substitution. */
3363 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3364 || (i0_feeds_i2_n)))
3365 i0src_copy2 = copy_rtx (i0src);
3366
3367 n_occurrences = 0;
3368 subst_low_luid = DF_INSN_LUID (i0);
3369 newpat = subst (newpat, i0dest, i0src, false, false, false);
3370 substed_i0 = true;
3371 }
3372
3373 if (n_auto_inc)
3374 {
3375 int new_n_auto_inc = 0;
3376 for_each_inc_dec (newpat, count_auto_inc, arg: &new_n_auto_inc);
3377
3378 if (n_auto_inc != new_n_auto_inc)
3379 {
3380 if (dump_file && (dump_flags & TDF_DETAILS))
3381 fprintf (stream: dump_file, format: "Number of auto_inc expressions changed\n");
3382 undo_all ();
3383 return 0;
3384 }
3385 }
3386
3387 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3388 to count all the ways that I2SRC and I1SRC can be used. */
3389 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3390 && i2_is_used + added_sets_2 > 1)
3391 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3392 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n) > 1))
3393 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3394 && (n_occurrences + added_sets_0
3395 + (added_sets_1 && i0_feeds_i1_n)
3396 + (added_sets_2 && i0_feeds_i2_n) > 1))
3397 /* Fail if we tried to make a new register. */
3398 || max_reg_num () != maxreg
3399 /* Fail if we couldn't do something and have a CLOBBER. */
3400 || GET_CODE (newpat) == CLOBBER
3401 /* Fail if this new pattern is a MULT and we didn't have one before
3402 at the outer level. */
3403 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3404 && ! have_mult))
3405 {
3406 undo_all ();
3407 return 0;
3408 }
3409
3410 /* If the actions of the earlier insns must be kept
3411 in addition to substituting them into the latest one,
3412 we must make a new PARALLEL for the latest insn
3413 to hold additional the SETs. */
3414
3415 if (added_sets_0 || added_sets_1 || added_sets_2)
3416 {
3417 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3418 combine_extras++;
3419
3420 if (GET_CODE (newpat) == PARALLEL)
3421 {
3422 rtvec old = XVEC (newpat, 0);
3423 total_sets = XVECLEN (newpat, 0) + extra_sets;
3424 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3425 memcpy (XVEC (newpat, 0)->elem, src: &old->elem[0],
3426 n: sizeof (old->elem[0]) * old->num_elem);
3427 }
3428 else
3429 {
3430 rtx old = newpat;
3431 total_sets = 1 + extra_sets;
3432 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3433 XVECEXP (newpat, 0, 0) = old;
3434 }
3435
3436 if (added_sets_0)
3437 XVECEXP (newpat, 0, --total_sets) = i0pat;
3438
3439 if (added_sets_1)
3440 {
3441 rtx t = i1pat;
3442 if (i0_feeds_i1_n)
3443 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src,
3444 false, false, false);
3445
3446 XVECEXP (newpat, 0, --total_sets) = t;
3447 }
3448 if (added_sets_2)
3449 {
3450 rtx t = i2pat;
3451 if (i1_feeds_i2_n)
3452 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, false, false,
3453 i0_feeds_i1_n && i0dest_in_i0src);
3454 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3455 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src,
3456 false, false, false);
3457
3458 XVECEXP (newpat, 0, --total_sets) = t;
3459 }
3460 }
3461
3462 validate_replacement:
3463
3464 /* Note which hard regs this insn has as inputs. */
3465 mark_used_regs_combine (newpat);
3466
3467 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3468 consider splitting this pattern, we might need these clobbers. */
3469 if (i1 && GET_CODE (newpat) == PARALLEL
3470 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3471 {
3472 int len = XVECLEN (newpat, 0);
3473
3474 newpat_vec_with_clobbers = rtvec_alloc (len);
3475 for (i = 0; i < len; i++)
3476 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3477 }
3478
3479 /* We have recognized nothing yet. */
3480 insn_code_number = -1;
3481
3482 /* See if this is a PARALLEL of two SETs where one SET's destination is
3483 a register that is unused and this isn't marked as an instruction that
3484 might trap in an EH region. In that case, we just need the other SET.
3485 We prefer this over the PARALLEL.
3486
3487 This can occur when simplifying a divmod insn. We *must* test for this
3488 case here because the code below that splits two independent SETs doesn't
3489 handle this case correctly when it updates the register status.
3490
3491 It's pointless doing this if we originally had two sets, one from
3492 i3, and one from i2. Combining then splitting the parallel results
3493 in the original i2 again plus an invalid insn (which we delete).
3494 The net effect is only to move instructions around, which makes
3495 debug info less accurate.
3496
3497 If the remaining SET came from I2 its destination should not be used
3498 between I2 and I3. See PR82024. */
3499
3500 if (!(added_sets_2 && i1 == 0)
3501 && is_parallel_of_n_reg_sets (pat: newpat, n: 2)
3502 && asm_noperands (newpat) < 0)
3503 {
3504 rtx set0 = XVECEXP (newpat, 0, 0);
3505 rtx set1 = XVECEXP (newpat, 0, 1);
3506 rtx oldpat = newpat;
3507
3508 if (((REG_P (SET_DEST (set1))
3509 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3510 || (GET_CODE (SET_DEST (set1)) == SUBREG
3511 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3512 && insn_nothrow_p (i3)
3513 && !side_effects_p (SET_SRC (set1)))
3514 {
3515 newpat = set0;
3516 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3517 }
3518
3519 else if (((REG_P (SET_DEST (set0))
3520 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3521 || (GET_CODE (SET_DEST (set0)) == SUBREG
3522 && find_reg_note (i3, REG_UNUSED,
3523 SUBREG_REG (SET_DEST (set0)))))
3524 && insn_nothrow_p (i3)
3525 && !side_effects_p (SET_SRC (set0)))
3526 {
3527 rtx dest = SET_DEST (set1);
3528 if (GET_CODE (dest) == SUBREG)
3529 dest = SUBREG_REG (dest);
3530 if (!reg_used_between_p (dest, i2, i3))
3531 {
3532 newpat = set1;
3533 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3534
3535 if (insn_code_number >= 0)
3536 changed_i3_dest = true;
3537 }
3538 }
3539
3540 if (insn_code_number < 0)
3541 newpat = oldpat;
3542 }
3543
3544 /* Is the result of combination a valid instruction? */
3545 if (insn_code_number < 0)
3546 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3547
3548 /* If we were combining three insns and the result is a simple SET
3549 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3550 insns. There are two ways to do this. It can be split using a
3551 machine-specific method (like when you have an addition of a large
3552 constant) or by combine in the function find_split_point. */
3553
3554 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3555 && asm_noperands (newpat) < 0)
3556 {
3557 rtx parallel, *split;
3558 rtx_insn *m_split_insn;
3559
3560 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3561 use I2DEST as a scratch register will help. In the latter case,
3562 convert I2DEST to the mode of the source of NEWPAT if we can. */
3563
3564 m_split_insn = combine_split_insns (pattern: newpat, insn: i3);
3565
3566 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3567 inputs of NEWPAT. */
3568
3569 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3570 possible to try that as a scratch reg. This would require adding
3571 more code to make it work though. */
3572
3573 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3574 {
3575 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3576
3577 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3578 (temporarily, until we are committed to this instruction
3579 combination) does not work: for example, any call to nonzero_bits
3580 on the register (from a splitter in the MD file, for example)
3581 will get the old information, which is invalid.
3582
3583 Since nowadays we can create registers during combine just fine,
3584 we should just create a new one here, not reuse i2dest. */
3585
3586 /* First try to split using the original register as a
3587 scratch register. */
3588 parallel = gen_rtx_PARALLEL (VOIDmode,
3589 gen_rtvec (2, newpat,
3590 gen_rtx_CLOBBER (VOIDmode,
3591 i2dest)));
3592 m_split_insn = combine_split_insns (pattern: parallel, insn: i3);
3593
3594 /* If that didn't work, try changing the mode of I2DEST if
3595 we can. */
3596 if (m_split_insn == 0
3597 && new_mode != GET_MODE (i2dest)
3598 && new_mode != VOIDmode
3599 && can_change_dest_mode (x: i2dest, added_sets: added_sets_2, mode: new_mode))
3600 {
3601 machine_mode old_mode = GET_MODE (i2dest);
3602 rtx ni2dest;
3603
3604 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3605 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3606 else
3607 {
3608 subst_mode (REGNO (i2dest), newval: new_mode);
3609 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3610 }
3611
3612 parallel = (gen_rtx_PARALLEL
3613 (VOIDmode,
3614 gen_rtvec (2, newpat,
3615 gen_rtx_CLOBBER (VOIDmode,
3616 ni2dest))));
3617 m_split_insn = combine_split_insns (pattern: parallel, insn: i3);
3618
3619 if (m_split_insn == 0
3620 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3621 {
3622 struct undo *buf;
3623
3624 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3625 buf = undobuf.undos;
3626 undobuf.undos = buf->next;
3627 buf->next = undobuf.frees;
3628 undobuf.frees = buf;
3629 }
3630 }
3631
3632 i2scratch = m_split_insn != 0;
3633 }
3634
3635 /* If recog_for_combine has discarded clobbers, try to use them
3636 again for the split. */
3637 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3638 {
3639 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3640 m_split_insn = combine_split_insns (pattern: parallel, insn: i3);
3641 }
3642
3643 if (m_split_insn && NEXT_INSN (insn: m_split_insn) == NULL_RTX)
3644 {
3645 rtx m_split_pat = PATTERN (insn: m_split_insn);
3646 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3647 if (insn_code_number >= 0)
3648 newpat = m_split_pat;
3649 }
3650 else if (m_split_insn && NEXT_INSN (insn: NEXT_INSN (insn: m_split_insn)) == NULL_RTX
3651 && (next_nonnote_nondebug_insn (i2) == i3
3652 || !modified_between_p (PATTERN (insn: m_split_insn), i2, i3)))
3653 {
3654 rtx i2set, i3set;
3655 rtx newi3pat = PATTERN (insn: NEXT_INSN (insn: m_split_insn));
3656 newi2pat = PATTERN (insn: m_split_insn);
3657
3658 i3set = single_set (insn: NEXT_INSN (insn: m_split_insn));
3659 i2set = single_set (insn: m_split_insn);
3660
3661 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3662
3663 /* If I2 or I3 has multiple SETs, we won't know how to track
3664 register status, so don't use these insns. If I2's destination
3665 is used between I2 and I3, we also can't use these insns. */
3666
3667 if (i2_code_number >= 0 && i2set && i3set
3668 && (next_nonnote_nondebug_insn (i2) == i3
3669 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3670 insn_code_number = recog_for_combine (&newi3pat, i3,
3671 &new_i3_notes);
3672 if (insn_code_number >= 0)
3673 newpat = newi3pat;
3674
3675 /* It is possible that both insns now set the destination of I3.
3676 If so, we must show an extra use of it. */
3677
3678 if (insn_code_number >= 0)
3679 {
3680 rtx new_i3_dest = SET_DEST (i3set);
3681 rtx new_i2_dest = SET_DEST (i2set);
3682
3683 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3684 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3685 || GET_CODE (new_i3_dest) == SUBREG)
3686 new_i3_dest = XEXP (new_i3_dest, 0);
3687
3688 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3689 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3690 || GET_CODE (new_i2_dest) == SUBREG)
3691 new_i2_dest = XEXP (new_i2_dest, 0);
3692
3693 if (REG_P (new_i3_dest)
3694 && REG_P (new_i2_dest)
3695 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3696 && REGNO (new_i2_dest) < reg_n_sets_max)
3697 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3698 }
3699 }
3700
3701 /* If we can split it and use I2DEST, go ahead and see if that
3702 helps things be recognized. Verify that none of the registers
3703 are set between I2 and I3. */
3704 if (insn_code_number < 0
3705 && (split = find_split_point (&newpat, i3, false)) != 0
3706 /* We need I2DEST in the proper mode. If it is a hard register
3707 or the only use of a pseudo, we can change its mode.
3708 Make sure we don't change a hard register to have a mode that
3709 isn't valid for it, or change the number of registers. */
3710 && (GET_MODE (*split) == GET_MODE (i2dest)
3711 || GET_MODE (*split) == VOIDmode
3712 || can_change_dest_mode (x: i2dest, added_sets: added_sets_2,
3713 GET_MODE (*split)))
3714 && (next_nonnote_nondebug_insn (i2) == i3
3715 || !modified_between_p (*split, i2, i3))
3716 /* We can't overwrite I2DEST if its value is still used by
3717 NEWPAT. */
3718 && ! reg_referenced_p (i2dest, newpat)
3719 /* We should not split a possibly trapping part when we
3720 care about non-call EH and have REG_EH_REGION notes
3721 to distribute. */
3722 && ! (cfun->can_throw_non_call_exceptions
3723 && has_non_call_exception
3724 && may_trap_p (*split)))
3725 {
3726 rtx newdest = i2dest;
3727 enum rtx_code split_code = GET_CODE (*split);
3728 machine_mode split_mode = GET_MODE (*split);
3729 bool subst_done = false;
3730 newi2pat = NULL_RTX;
3731
3732 i2scratch = true;
3733
3734 /* *SPLIT may be part of I2SRC, so make sure we have the
3735 original expression around for later debug processing.
3736 We should not need I2SRC any more in other cases. */
3737 if (MAY_HAVE_DEBUG_BIND_INSNS)
3738 i2src = copy_rtx (i2src);
3739 else
3740 i2src = NULL;
3741
3742 /* Get NEWDEST as a register in the proper mode. We have already
3743 validated that we can do this. */
3744 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3745 {
3746 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3747 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3748 else
3749 {
3750 subst_mode (REGNO (i2dest), newval: split_mode);
3751 newdest = regno_reg_rtx[REGNO (i2dest)];
3752 }
3753 }
3754
3755 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3756 an ASHIFT. This can occur if it was inside a PLUS and hence
3757 appeared to be a memory address. This is a kludge. */
3758 if (split_code == MULT
3759 && CONST_INT_P (XEXP (*split, 1))
3760 && INTVAL (XEXP (*split, 1)) > 0
3761 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3762 {
3763 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3764 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3765 XEXP (*split, 0), i_rtx));
3766 /* Update split_code because we may not have a multiply
3767 anymore. */
3768 split_code = GET_CODE (*split);
3769 }
3770
3771 /* Similarly for (plus (mult FOO (const_int pow2))). */
3772 if (split_code == PLUS
3773 && GET_CODE (XEXP (*split, 0)) == MULT
3774 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3775 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3776 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3777 {
3778 rtx nsplit = XEXP (*split, 0);
3779 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3780 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3781 XEXP (nsplit, 0),
3782 i_rtx));
3783 /* Update split_code because we may not have a multiply
3784 anymore. */
3785 split_code = GET_CODE (*split);
3786 }
3787
3788#ifdef INSN_SCHEDULING
3789 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3790 be written as a ZERO_EXTEND. */
3791 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3792 {
3793 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3794 what it really is. */
3795 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3796 == SIGN_EXTEND)
3797 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3798 SUBREG_REG (*split)));
3799 else
3800 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3801 SUBREG_REG (*split)));
3802 }
3803#endif
3804
3805 /* Attempt to split binary operators using arithmetic identities. */
3806 if (BINARY_P (SET_SRC (newpat))
3807 && split_mode == GET_MODE (SET_SRC (newpat))
3808 && ! side_effects_p (SET_SRC (newpat)))
3809 {
3810 rtx setsrc = SET_SRC (newpat);
3811 machine_mode mode = GET_MODE (setsrc);
3812 enum rtx_code code = GET_CODE (setsrc);
3813 rtx src_op0 = XEXP (setsrc, 0);
3814 rtx src_op1 = XEXP (setsrc, 1);
3815
3816 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3817 if (rtx_equal_p (src_op0, src_op1))
3818 {
3819 newi2pat = gen_rtx_SET (newdest, src_op0);
3820 SUBST (XEXP (setsrc, 0), newdest);
3821 SUBST (XEXP (setsrc, 1), newdest);
3822 subst_done = true;
3823 }
3824 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3825 else if ((code == PLUS || code == MULT)
3826 && GET_CODE (src_op0) == code
3827 && GET_CODE (XEXP (src_op0, 0)) == code
3828 && (INTEGRAL_MODE_P (mode)
3829 || (FLOAT_MODE_P (mode)
3830 && flag_unsafe_math_optimizations)))
3831 {
3832 rtx p = XEXP (XEXP (src_op0, 0), 0);
3833 rtx q = XEXP (XEXP (src_op0, 0), 1);
3834 rtx r = XEXP (src_op0, 1);
3835 rtx s = src_op1;
3836
3837 /* Split both "((X op Y) op X) op Y" and
3838 "((X op Y) op Y) op X" as "T op T" where T is
3839 "X op Y". */
3840 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3841 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3842 {
3843 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3844 SUBST (XEXP (setsrc, 0), newdest);
3845 SUBST (XEXP (setsrc, 1), newdest);
3846 subst_done = true;
3847 }
3848 /* Split "((X op X) op Y) op Y)" as "T op T" where
3849 T is "X op Y". */
3850 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3851 {
3852 rtx tmp = simplify_gen_binary (code, mode, op0: p, op1: r);
3853 newi2pat = gen_rtx_SET (newdest, tmp);
3854 SUBST (XEXP (setsrc, 0), newdest);
3855 SUBST (XEXP (setsrc, 1), newdest);
3856 subst_done = true;
3857 }
3858 }
3859 }
3860
3861 if (!subst_done)
3862 {
3863 newi2pat = gen_rtx_SET (newdest, *split);
3864 SUBST (*split, newdest);
3865 }
3866
3867 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3868
3869 /* recog_for_combine might have added CLOBBERs to newi2pat.
3870 Make sure NEWPAT does not depend on the clobbered regs. */
3871 if (GET_CODE (newi2pat) == PARALLEL)
3872 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3873 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3874 {
3875 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3876 if (reg_overlap_mentioned_p (reg, newpat))
3877 {
3878 undo_all ();
3879 return 0;
3880 }
3881 }
3882
3883 /* If the split point was a MULT and we didn't have one before,
3884 don't use one now. */
3885 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3886 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3887 }
3888 }
3889
3890 /* Check for a case where we loaded from memory in a narrow mode and
3891 then sign extended it, but we need both registers. In that case,
3892 we have a PARALLEL with both loads from the same memory location.
3893 We can split this into a load from memory followed by a register-register
3894 copy. This saves at least one insn, more if register allocation can
3895 eliminate the copy.
3896
3897 We cannot do this if the destination of the first assignment is a
3898 condition code register. We eliminate this case by making sure
3899 the SET_DEST and SET_SRC have the same mode.
3900
3901 We cannot do this if the destination of the second assignment is
3902 a register that we have already assumed is zero-extended. Similarly
3903 for a SUBREG of such a register. */
3904
3905 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3906 && GET_CODE (newpat) == PARALLEL
3907 && XVECLEN (newpat, 0) == 2
3908 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3909 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3910 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3911 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3912 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3913 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3914 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3915 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3916 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3917 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3918 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3919 (REG_P (temp_expr)
3920 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3921 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3922 BITS_PER_WORD)
3923 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3924 HOST_BITS_PER_INT)
3925 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3926 != GET_MODE_MASK (word_mode))))
3927 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3928 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3929 (REG_P (temp_expr)
3930 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3931 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3932 BITS_PER_WORD)
3933 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3934 HOST_BITS_PER_INT)
3935 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3936 != GET_MODE_MASK (word_mode)))))
3937 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3938 SET_SRC (XVECEXP (newpat, 0, 1)))
3939 && ! find_reg_note (i3, REG_UNUSED,
3940 SET_DEST (XVECEXP (newpat, 0, 0))))
3941 {
3942 rtx ni2dest;
3943
3944 newi2pat = XVECEXP (newpat, 0, 0);
3945 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3946 newpat = XVECEXP (newpat, 0, 1);
3947 SUBST (SET_SRC (newpat),
3948 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3949 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3950
3951 if (i2_code_number >= 0)
3952 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3953
3954 if (insn_code_number >= 0)
3955 swap_i2i3 = 1;
3956 }
3957
3958 /* Similarly, check for a case where we have a PARALLEL of two independent
3959 SETs but we started with three insns. In this case, we can do the sets
3960 as two separate insns. This case occurs when some SET allows two
3961 other insns to combine, but the destination of that SET is still live.
3962
3963 Also do this if we started with two insns and (at least) one of the
3964 resulting sets is a noop; this noop will be deleted later.
3965
3966 Also do this if we started with two insns neither of which was a simple
3967 move. */
3968
3969 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3970 && GET_CODE (newpat) == PARALLEL
3971 && XVECLEN (newpat, 0) == 2
3972 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3973 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3974 && (i1
3975 || set_noop_p (XVECEXP (newpat, 0, 0))
3976 || set_noop_p (XVECEXP (newpat, 0, 1))
3977 || (!i2_was_move && !i3_was_move))
3978 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3979 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3980 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3981 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3982 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3983 XVECEXP (newpat, 0, 0))
3984 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3985 XVECEXP (newpat, 0, 1))
3986 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3987 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3988 {
3989 rtx set0 = XVECEXP (newpat, 0, 0);
3990 rtx set1 = XVECEXP (newpat, 0, 1);
3991
3992 /* Normally, it doesn't matter which of the two is done first, but
3993 one which uses any regs/memory set in between i2 and i3 can't
3994 be first. The PARALLEL might also have been pre-existing in i3,
3995 so we need to make sure that we won't wrongly hoist a SET to i2
3996 that would conflict with a death note present in there, or would
3997 have its dest modified between i2 and i3. */
3998 if (!modified_between_p (SET_SRC (set1), i2, i3)
3999 && !(REG_P (SET_DEST (set1))
4000 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4001 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4002 && find_reg_note (i2, REG_DEAD,
4003 SUBREG_REG (SET_DEST (set1))))
4004 && !modified_between_p (SET_DEST (set1), i2, i3)
4005 /* If I3 is a jump, ensure that set0 is a jump so that
4006 we do not create invalid RTL. */
4007 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4008 )
4009 {
4010 newi2pat = set1;
4011 newpat = set0;
4012 }
4013 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4014 && !(REG_P (SET_DEST (set0))
4015 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4016 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4017 && find_reg_note (i2, REG_DEAD,
4018 SUBREG_REG (SET_DEST (set0))))
4019 && !modified_between_p (SET_DEST (set0), i2, i3)
4020 /* If I3 is a jump, ensure that set1 is a jump so that
4021 we do not create invalid RTL. */
4022 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4023 )
4024 {
4025 newi2pat = set0;
4026 newpat = set1;
4027 }
4028 else
4029 {
4030 undo_all ();
4031 return 0;
4032 }
4033
4034 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4035
4036 if (i2_code_number >= 0)
4037 {
4038 /* recog_for_combine might have added CLOBBERs to newi2pat.
4039 Make sure NEWPAT does not depend on the clobbered regs. */
4040 if (GET_CODE (newi2pat) == PARALLEL)
4041 {
4042 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4043 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4044 {
4045 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4046 if (reg_overlap_mentioned_p (reg, newpat))
4047 {
4048 undo_all ();
4049 return 0;
4050 }
4051 }
4052 }
4053
4054 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4055
4056 /* Likewise, recog_for_combine might have added clobbers to NEWPAT.
4057 Checking that the SET0's SET_DEST and SET1's SET_DEST aren't
4058 mentioned/clobbered, ensures NEWI2PAT's SET_DEST is live. */
4059 if (insn_code_number >= 0 && GET_CODE (newpat) == PARALLEL)
4060 {
4061 for (i = XVECLEN (newpat, 0) - 1; i >= 0; i--)
4062 if (GET_CODE (XVECEXP (newpat, 0, i)) == CLOBBER)
4063 {
4064 rtx reg = XEXP (XVECEXP (newpat, 0, i), 0);
4065 if (reg_overlap_mentioned_p (reg, SET_DEST (set0))
4066 || reg_overlap_mentioned_p (reg, SET_DEST (set1)))
4067 {
4068 undo_all ();
4069 return 0;
4070 }
4071 }
4072 }
4073
4074 if (insn_code_number >= 0)
4075 split_i2i3 = true;
4076 }
4077 }
4078
4079 /* If it still isn't recognized, fail and change things back the way they
4080 were. */
4081 if ((insn_code_number < 0
4082 /* Is the result a reasonable ASM_OPERANDS? */
4083 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4084 {
4085 undo_all ();
4086 return 0;
4087 }
4088
4089 /* If we had to change another insn, make sure it is valid also. */
4090 if (undobuf.other_insn)
4091 {
4092 CLEAR_HARD_REG_SET (set&: newpat_used_regs);
4093
4094 other_pat = PATTERN (insn: undobuf.other_insn);
4095 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4096 &new_other_notes);
4097
4098 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4099 {
4100 undo_all ();
4101 return 0;
4102 }
4103 }
4104
4105 /* Only allow this combination if insn_cost reports that the
4106 replacement instructions are cheaper than the originals. */
4107 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, newotherpat: other_pat))
4108 {
4109 undo_all ();
4110 return 0;
4111 }
4112
4113 if (MAY_HAVE_DEBUG_BIND_INSNS)
4114 {
4115 struct undo *undo;
4116
4117 for (undo = undobuf.undos; undo; undo = undo->next)
4118 if (undo->kind == UNDO_MODE)
4119 {
4120 rtx reg = regno_reg_rtx[undo->where.regno];
4121 machine_mode new_mode = GET_MODE (reg);
4122 machine_mode old_mode = undo->old_contents.m;
4123
4124 /* Temporarily revert mode back. */
4125 adjust_reg_mode (reg, old_mode);
4126
4127 if (reg == i2dest && i2scratch)
4128 {
4129 /* If we used i2dest as a scratch register with a
4130 different mode, substitute it for the original
4131 i2src while its original mode is temporarily
4132 restored, and then clear i2scratch so that we don't
4133 do it again later. */
4134 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4135 this_basic_block);
4136 i2scratch = false;
4137 /* Put back the new mode. */
4138 adjust_reg_mode (reg, new_mode);
4139 }
4140 else
4141 {
4142 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4143 rtx_insn *first, *last;
4144
4145 if (reg == i2dest)
4146 {
4147 first = i2;
4148 last = last_combined_insn;
4149 }
4150 else
4151 {
4152 first = i3;
4153 last = undobuf.other_insn;
4154 gcc_assert (last);
4155 if (DF_INSN_LUID (last)
4156 < DF_INSN_LUID (last_combined_insn))
4157 last = last_combined_insn;
4158 }
4159
4160 /* We're dealing with a reg that changed mode but not
4161 meaning, so we want to turn it into a subreg for
4162 the new mode. However, because of REG sharing and
4163 because its mode had already changed, we have to do
4164 it in two steps. First, replace any debug uses of
4165 reg, with its original mode temporarily restored,
4166 with this copy we have created; then, replace the
4167 copy with the SUBREG of the original shared reg,
4168 once again changed to the new mode. */
4169 propagate_for_debug (first, last, reg, tempreg,
4170 this_basic_block);
4171 adjust_reg_mode (reg, new_mode);
4172 propagate_for_debug (first, last, tempreg,
4173 lowpart_subreg (outermode: old_mode, op: reg, innermode: new_mode),
4174 this_basic_block);
4175 }
4176 }
4177 }
4178
4179 /* If we will be able to accept this, we have made a
4180 change to the destination of I3. This requires us to
4181 do a few adjustments. */
4182
4183 if (changed_i3_dest)
4184 {
4185 PATTERN (insn: i3) = newpat;
4186 adjust_for_new_dest (insn: i3);
4187 }
4188
4189 /* We now know that we can do this combination. Merge the insns and
4190 update the status of registers and LOG_LINKS. */
4191
4192 if (undobuf.other_insn)
4193 {
4194 rtx note, next;
4195
4196 PATTERN (insn: undobuf.other_insn) = other_pat;
4197
4198 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4199 ensure that they are still valid. Then add any non-duplicate
4200 notes added by recog_for_combine. */
4201 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4202 {
4203 next = XEXP (note, 1);
4204
4205 if ((REG_NOTE_KIND (note) == REG_DEAD
4206 && !reg_referenced_p (XEXP (note, 0),
4207 PATTERN (insn: undobuf.other_insn)))
4208 ||(REG_NOTE_KIND (note) == REG_UNUSED
4209 && !reg_set_p (XEXP (note, 0),
4210 PATTERN (insn: undobuf.other_insn)))
4211 /* Simply drop equal note since it may be no longer valid
4212 for other_insn. It may be possible to record that CC
4213 register is changed and only discard those notes, but
4214 in practice it's unnecessary complication and doesn't
4215 give any meaningful improvement.
4216
4217 See PR78559. */
4218 || REG_NOTE_KIND (note) == REG_EQUAL
4219 || REG_NOTE_KIND (note) == REG_EQUIV)
4220 remove_note (undobuf.other_insn, note);
4221 }
4222
4223 distribute_notes (new_other_notes, undobuf.other_insn,
4224 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4225 NULL_RTX);
4226 }
4227
4228 if (swap_i2i3)
4229 {
4230 /* I3 now uses what used to be its destination and which is now
4231 I2's destination. This requires us to do a few adjustments. */
4232 PATTERN (insn: i3) = newpat;
4233 adjust_for_new_dest (insn: i3);
4234 }
4235
4236 if (swap_i2i3 || split_i2i3)
4237 {
4238 /* We might need a LOG_LINK from I3 to I2. But then we used to
4239 have one, so we still will.
4240
4241 However, some later insn might be using I2's dest and have
4242 a LOG_LINK pointing at I3. We should change it to point at
4243 I2 instead. */
4244
4245 /* newi2pat is usually a SET here; however, recog_for_combine might
4246 have added some clobbers. */
4247 rtx x = newi2pat;
4248 if (GET_CODE (x) == PARALLEL)
4249 x = XVECEXP (newi2pat, 0, 0);
4250
4251 if (REG_P (SET_DEST (x))
4252 || (GET_CODE (SET_DEST (x)) == SUBREG
4253 && REG_P (SUBREG_REG (SET_DEST (x)))))
4254 {
4255 unsigned int regno = reg_or_subregno (SET_DEST (x));
4256
4257 bool done = false;
4258 for (rtx_insn *insn = NEXT_INSN (insn: i3);
4259 !done
4260 && insn
4261 && INSN_P (insn)
4262 && BLOCK_FOR_INSN (insn) == this_basic_block;
4263 insn = NEXT_INSN (insn))
4264 {
4265 if (DEBUG_INSN_P (insn))
4266 continue;
4267 struct insn_link *link;
4268 FOR_EACH_LOG_LINK (link, insn)
4269 if (link->insn == i3 && link->regno == regno)
4270 {
4271 link->insn = i2;
4272 done = true;
4273 break;
4274 }
4275 }
4276 }
4277 }
4278
4279 {
4280 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4281 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4282 rtx midnotes = 0;
4283 int from_luid;
4284 /* Compute which registers we expect to eliminate. newi2pat may be setting
4285 either i3dest or i2dest, so we must check it. */
4286 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4287 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4288 || !i2dest_killed
4289 ? 0 : i2dest);
4290 /* For i1, we need to compute both local elimination and global
4291 elimination information with respect to newi2pat because i1dest
4292 may be the same as i3dest, in which case newi2pat may be setting
4293 i1dest. Global information is used when distributing REG_DEAD
4294 note for i2 and i3, in which case it does matter if newi2pat sets
4295 i1dest or not.
4296
4297 Local information is used when distributing REG_DEAD note for i1,
4298 in which case it doesn't matter if newi2pat sets i1dest or not.
4299 See PR62151, if we have four insns combination:
4300 i0: r0 <- i0src
4301 i1: r1 <- i1src (using r0)
4302 REG_DEAD (r0)
4303 i2: r0 <- i2src (using r1)
4304 i3: r3 <- i3src (using r0)
4305 ix: using r0
4306 From i1's point of view, r0 is eliminated, no matter if it is set
4307 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4308 should be discarded.
4309
4310 Note local information only affects cases in forms like "I1->I2->I3",
4311 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4312 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4313 i0dest anyway. */
4314 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4315 || !i1dest_killed
4316 ? 0 : i1dest);
4317 rtx elim_i1 = (local_elim_i1 == 0
4318 || (newi2pat && reg_set_p (i1dest, newi2pat))
4319 ? 0 : i1dest);
4320 /* Same case as i1. */
4321 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4322 ? 0 : i0dest);
4323 rtx elim_i0 = (local_elim_i0 == 0
4324 || (newi2pat && reg_set_p (i0dest, newi2pat))
4325 ? 0 : i0dest);
4326
4327 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4328 clear them. */
4329 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4330 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4331 if (i1)
4332 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4333 if (i0)
4334 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4335
4336 /* Ensure that we do not have something that should not be shared but
4337 occurs multiple times in the new insns. Check this by first
4338 resetting all the `used' flags and then copying anything is shared. */
4339
4340 reset_used_flags (i3notes);
4341 reset_used_flags (i2notes);
4342 reset_used_flags (i1notes);
4343 reset_used_flags (i0notes);
4344 reset_used_flags (newpat);
4345 reset_used_flags (newi2pat);
4346 if (undobuf.other_insn)
4347 reset_used_flags (PATTERN (insn: undobuf.other_insn));
4348
4349 i3notes = copy_rtx_if_shared (i3notes);
4350 i2notes = copy_rtx_if_shared (i2notes);
4351 i1notes = copy_rtx_if_shared (i1notes);
4352 i0notes = copy_rtx_if_shared (i0notes);
4353 newpat = copy_rtx_if_shared (newpat);
4354 newi2pat = copy_rtx_if_shared (newi2pat);
4355 if (undobuf.other_insn)
4356 reset_used_flags (PATTERN (insn: undobuf.other_insn));
4357
4358 INSN_CODE (i3) = insn_code_number;
4359 PATTERN (insn: i3) = newpat;
4360
4361 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4362 {
4363 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4364 link = XEXP (link, 1))
4365 {
4366 if (substed_i2)
4367 {
4368 /* I2SRC must still be meaningful at this point. Some
4369 splitting operations can invalidate I2SRC, but those
4370 operations do not apply to calls. */
4371 gcc_assert (i2src);
4372 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4373 i2dest, i2src);
4374 }
4375 if (substed_i1)
4376 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4377 i1dest, i1src);
4378 if (substed_i0)
4379 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4380 i0dest, i0src);
4381 }
4382 }
4383
4384 if (undobuf.other_insn)
4385 INSN_CODE (undobuf.other_insn) = other_code_number;
4386
4387 /* We had one special case above where I2 had more than one set and
4388 we replaced a destination of one of those sets with the destination
4389 of I3. In that case, we have to update LOG_LINKS of insns later
4390 in this basic block. Note that this (expensive) case is rare.
4391
4392 Also, in this case, we must pretend that all REG_NOTEs for I2
4393 actually came from I3, so that REG_UNUSED notes from I2 will be
4394 properly handled. */
4395
4396 if (i3_subst_into_i2)
4397 {
4398 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4399 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4400 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4401 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4402 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4403 && ! find_reg_note (i2, REG_UNUSED,
4404 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4405 for (temp_insn = NEXT_INSN (insn: i2);
4406 temp_insn
4407 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4408 || BB_HEAD (this_basic_block) != temp_insn);
4409 temp_insn = NEXT_INSN (insn: temp_insn))
4410 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4411 FOR_EACH_LOG_LINK (link, temp_insn)
4412 if (link->insn == i2)
4413 link->insn = i3;
4414
4415 if (i3notes)
4416 {
4417 rtx link = i3notes;
4418 while (XEXP (link, 1))
4419 link = XEXP (link, 1);
4420 XEXP (link, 1) = i2notes;
4421 }
4422 else
4423 i3notes = i2notes;
4424 i2notes = 0;
4425 }
4426
4427 LOG_LINKS (i3) = NULL;
4428 REG_NOTES (i3) = 0;
4429 LOG_LINKS (i2) = NULL;
4430 REG_NOTES (i2) = 0;
4431
4432 if (newi2pat)
4433 {
4434 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4435 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4436 this_basic_block);
4437 INSN_CODE (i2) = i2_code_number;
4438 PATTERN (insn: i2) = newi2pat;
4439 }
4440 else
4441 {
4442 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4443 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4444 this_basic_block);
4445 SET_INSN_DELETED (i2);
4446 }
4447
4448 if (i1)
4449 {
4450 LOG_LINKS (i1) = NULL;
4451 REG_NOTES (i1) = 0;
4452 if (MAY_HAVE_DEBUG_BIND_INSNS)
4453 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4454 this_basic_block);
4455 SET_INSN_DELETED (i1);
4456 }
4457
4458 if (i0)
4459 {
4460 LOG_LINKS (i0) = NULL;
4461 REG_NOTES (i0) = 0;
4462 if (MAY_HAVE_DEBUG_BIND_INSNS)
4463 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4464 this_basic_block);
4465 SET_INSN_DELETED (i0);
4466 }
4467
4468 /* Get death notes for everything that is now used in either I3 or
4469 I2 and used to die in a previous insn. If we built two new
4470 patterns, move from I1 to I2 then I2 to I3 so that we get the
4471 proper movement on registers that I2 modifies. */
4472
4473 if (i0)
4474 from_luid = DF_INSN_LUID (i0);
4475 else if (i1)
4476 from_luid = DF_INSN_LUID (i1);
4477 else
4478 from_luid = DF_INSN_LUID (i2);
4479 if (newi2pat)
4480 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4481 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4482
4483 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4484 if (i3notes)
4485 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4486 elim_i2, elim_i1, elim_i0);
4487 if (i2notes)
4488 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4489 elim_i2, elim_i1, elim_i0);
4490 if (i1notes)
4491 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4492 elim_i2, local_elim_i1, local_elim_i0);
4493 if (i0notes)
4494 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4495 elim_i2, elim_i1, local_elim_i0);
4496 if (midnotes)
4497 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4498 elim_i2, elim_i1, elim_i0);
4499
4500 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4501 know these are REG_UNUSED and want them to go to the desired insn,
4502 so we always pass it as i3. */
4503
4504 if (newi2pat && new_i2_notes)
4505 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4506 NULL_RTX);
4507
4508 if (new_i3_notes)
4509 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4510 NULL_RTX);
4511
4512 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4513 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4514 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4515 in that case, it might delete I2. Similarly for I2 and I1.
4516 Show an additional death due to the REG_DEAD note we make here. If
4517 we discard it in distribute_notes, we will decrement it again. */
4518
4519 if (i3dest_killed)
4520 {
4521 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4522 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4523 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4524 elim_i1, elim_i0);
4525 else
4526 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4527 elim_i2, elim_i1, elim_i0);
4528 }
4529
4530 if (i2dest_in_i2src)
4531 {
4532 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4533 if (newi2pat && reg_set_p (i2dest, newi2pat))
4534 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4535 NULL_RTX, NULL_RTX);
4536 else
4537 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4538 NULL_RTX, NULL_RTX, NULL_RTX);
4539 }
4540
4541 if (i1dest_in_i1src)
4542 {
4543 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4544 if (newi2pat && reg_set_p (i1dest, newi2pat))
4545 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4546 NULL_RTX, NULL_RTX);
4547 else
4548 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4549 NULL_RTX, NULL_RTX, NULL_RTX);
4550 }
4551
4552 if (i0dest_in_i0src)
4553 {
4554 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4555 if (newi2pat && reg_set_p (i0dest, newi2pat))
4556 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4557 NULL_RTX, NULL_RTX);
4558 else
4559 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4560 NULL_RTX, NULL_RTX, NULL_RTX);
4561 }
4562
4563 distribute_links (i3links);
4564 distribute_links (i2links);
4565 distribute_links (i1links);
4566 distribute_links (i0links);
4567
4568 if (REG_P (i2dest))
4569 {
4570 struct insn_link *link;
4571 rtx_insn *i2_insn = 0;
4572 rtx i2_val = 0, set;
4573
4574 /* The insn that used to set this register doesn't exist, and
4575 this life of the register may not exist either. See if one of
4576 I3's links points to an insn that sets I2DEST. If it does,
4577 that is now the last known value for I2DEST. If we don't update
4578 this and I2 set the register to a value that depended on its old
4579 contents, we will get confused. If this insn is used, thing
4580 will be set correctly in combine_instructions. */
4581 FOR_EACH_LOG_LINK (link, i3)
4582 if ((set = single_set (insn: link->insn)) != 0
4583 && rtx_equal_p (i2dest, SET_DEST (set)))
4584 i2_insn = link->insn, i2_val = SET_SRC (set);
4585
4586 record_value_for_reg (i2dest, i2_insn, i2_val);
4587
4588 /* If the reg formerly set in I2 died only once and that was in I3,
4589 zero its use count so it won't make `reload' do any work. */
4590 if (! added_sets_2
4591 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4592 && ! i2dest_in_i2src
4593 && REGNO (i2dest) < reg_n_sets_max)
4594 INC_REG_N_SETS (REGNO (i2dest), -1);
4595 }
4596
4597 if (i1 && REG_P (i1dest))
4598 {
4599 struct insn_link *link;
4600 rtx_insn *i1_insn = 0;
4601 rtx i1_val = 0, set;
4602
4603 FOR_EACH_LOG_LINK (link, i3)
4604 if ((set = single_set (insn: link->insn)) != 0
4605 && rtx_equal_p (i1dest, SET_DEST (set)))
4606 i1_insn = link->insn, i1_val = SET_SRC (set);
4607
4608 record_value_for_reg (i1dest, i1_insn, i1_val);
4609
4610 if (! added_sets_1
4611 && ! i1dest_in_i1src
4612 && REGNO (i1dest) < reg_n_sets_max)
4613 INC_REG_N_SETS (REGNO (i1dest), -1);
4614 }
4615
4616 if (i0 && REG_P (i0dest))
4617 {
4618 struct insn_link *link;
4619 rtx_insn *i0_insn = 0;
4620 rtx i0_val = 0, set;
4621
4622 FOR_EACH_LOG_LINK (link, i3)
4623 if ((set = single_set (insn: link->insn)) != 0
4624 && rtx_equal_p (i0dest, SET_DEST (set)))
4625 i0_insn = link->insn, i0_val = SET_SRC (set);
4626
4627 record_value_for_reg (i0dest, i0_insn, i0_val);
4628
4629 if (! added_sets_0
4630 && ! i0dest_in_i0src
4631 && REGNO (i0dest) < reg_n_sets_max)
4632 INC_REG_N_SETS (REGNO (i0dest), -1);
4633 }
4634
4635 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4636 been made to this insn. The order is important, because newi2pat
4637 can affect nonzero_bits of newpat. */
4638 if (newi2pat)
4639 note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4640 note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4641 }
4642
4643 if (undobuf.other_insn != NULL_RTX)
4644 {
4645 if (dump_file)
4646 {
4647 fprintf (stream: dump_file, format: "modifying other_insn ");
4648 dump_insn_slim (dump_file, undobuf.other_insn);
4649 }
4650 df_insn_rescan (undobuf.other_insn);
4651 }
4652
4653 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4654 {
4655 if (dump_file)
4656 {
4657 fprintf (stream: dump_file, format: "modifying insn i0 ");
4658 dump_insn_slim (dump_file, i0);
4659 }
4660 df_insn_rescan (i0);
4661 }
4662
4663 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4664 {
4665 if (dump_file)
4666 {
4667 fprintf (stream: dump_file, format: "modifying insn i1 ");
4668 dump_insn_slim (dump_file, i1);
4669 }
4670 df_insn_rescan (i1);
4671 }
4672
4673 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4674 {
4675 if (dump_file)
4676 {
4677 fprintf (stream: dump_file, format: "modifying insn i2 ");
4678 dump_insn_slim (dump_file, i2);
4679 }
4680 df_insn_rescan (i2);
4681 }
4682
4683 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4684 {
4685 if (dump_file)
4686 {
4687 fprintf (stream: dump_file, format: "modifying insn i3 ");
4688 dump_insn_slim (dump_file, i3);
4689 }
4690 df_insn_rescan (i3);
4691 }
4692
4693 /* Set new_direct_jump_p if a new return or simple jump instruction
4694 has been created. Adjust the CFG accordingly. */
4695 if (returnjump_p (i3) || any_uncondjump_p (i3))
4696 {
4697 *new_direct_jump_p = 1;
4698 mark_jump_label (PATTERN (insn: i3), i3, 0);
4699 update_cfg_for_uncondjump (i3);
4700 }
4701
4702 if (undobuf.other_insn != NULL_RTX
4703 && (returnjump_p (undobuf.other_insn)
4704 || any_uncondjump_p (undobuf.other_insn)))
4705 {
4706 *new_direct_jump_p = 1;
4707 update_cfg_for_uncondjump (undobuf.other_insn);
4708 }
4709
4710 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4711 && XEXP (PATTERN (i3), 0) == const1_rtx)
4712 {
4713 basic_block bb = BLOCK_FOR_INSN (insn: i3);
4714 gcc_assert (bb);
4715 remove_edge (split_block (bb, i3));
4716 emit_barrier_after_bb (bb);
4717 *new_direct_jump_p = 1;
4718 }
4719
4720 if (undobuf.other_insn
4721 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4722 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4723 {
4724 basic_block bb = BLOCK_FOR_INSN (insn: undobuf.other_insn);
4725 gcc_assert (bb);
4726 remove_edge (split_block (bb, undobuf.other_insn));
4727 emit_barrier_after_bb (bb);
4728 *new_direct_jump_p = 1;
4729 }
4730
4731 /* A noop might also need cleaning up of CFG, if it comes from the
4732 simplification of a jump. */
4733 if (JUMP_P (i3)
4734 && GET_CODE (newpat) == SET
4735 && SET_SRC (newpat) == pc_rtx
4736 && SET_DEST (newpat) == pc_rtx)
4737 {
4738 *new_direct_jump_p = 1;
4739 update_cfg_for_uncondjump (i3);
4740 }
4741
4742 if (undobuf.other_insn != NULL_RTX
4743 && JUMP_P (undobuf.other_insn)
4744 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4745 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4746 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4747 {
4748 *new_direct_jump_p = 1;
4749 update_cfg_for_uncondjump (undobuf.other_insn);
4750 }
4751
4752 combine_successes++;
4753 undo_commit ();
4754
4755 rtx_insn *ret = newi2pat ? i2 : i3;
4756 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4757 ret = added_links_insn;
4758 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4759 ret = added_notes_insn;
4760
4761 return ret;
4762}
4763
4764/* Get a marker for undoing to the current state. */
4765
4766static void *
4767get_undo_marker (void)
4768{
4769 return undobuf.undos;
4770}
4771
4772/* Undo the modifications up to the marker. */
4773
4774static void
4775undo_to_marker (void *marker)
4776{
4777 struct undo *undo, *next;
4778
4779 for (undo = undobuf.undos; undo != marker; undo = next)
4780 {
4781 gcc_assert (undo);
4782
4783 next = undo->next;
4784 switch (undo->kind)
4785 {
4786 case UNDO_RTX:
4787 *undo->where.r = undo->old_contents.r;
4788 break;
4789 case UNDO_INT:
4790 *undo->where.i = undo->old_contents.i;
4791 break;
4792 case UNDO_MODE:
4793 adjust_reg_mode (regno_reg_rtx[undo->where.regno],
4794 undo->old_contents.m);
4795 break;
4796 case UNDO_LINKS:
4797 *undo->where.l = undo->old_contents.l;
4798 break;
4799 default:
4800 gcc_unreachable ();
4801 }
4802
4803 undo->next = undobuf.frees;
4804 undobuf.frees = undo;
4805 }
4806
4807 undobuf.undos = (struct undo *) marker;
4808}
4809
4810/* Undo all the modifications recorded in undobuf. */
4811
4812static void
4813undo_all (void)
4814{
4815 undo_to_marker (marker: 0);
4816}
4817
4818/* We've committed to accepting the changes we made. Move all
4819 of the undos to the free list. */
4820
4821static void
4822undo_commit (void)
4823{
4824 struct undo *undo, *next;
4825
4826 for (undo = undobuf.undos; undo; undo = next)
4827 {
4828 next = undo->next;
4829 undo->next = undobuf.frees;
4830 undobuf.frees = undo;
4831 }
4832 undobuf.undos = 0;
4833}
4834
4835/* Find the innermost point within the rtx at LOC, possibly LOC itself,
4836 where we have an arithmetic expression and return that point. LOC will
4837 be inside INSN.
4838
4839 try_combine will call this function to see if an insn can be split into
4840 two insns. */
4841
4842static rtx *
4843find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4844{
4845 rtx x = *loc;
4846 enum rtx_code code = GET_CODE (x);
4847 rtx *split;
4848 unsigned HOST_WIDE_INT len = 0;
4849 HOST_WIDE_INT pos = 0;
4850 bool unsignedp = false;
4851 rtx inner = NULL_RTX;
4852 scalar_int_mode mode, inner_mode;
4853
4854 /* First special-case some codes. */
4855 switch (code)
4856 {
4857 case SUBREG:
4858#ifdef INSN_SCHEDULING
4859 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4860 point. */
4861 if (MEM_P (SUBREG_REG (x)))
4862 return loc;
4863#endif
4864 return find_split_point (loc: &SUBREG_REG (x), insn, set_src: false);
4865
4866 case MEM:
4867 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4868 using LO_SUM and HIGH. */
4869 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4870 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4871 {
4872 machine_mode address_mode = get_address_mode (mem: x);
4873
4874 SUBST (XEXP (x, 0),
4875 gen_rtx_LO_SUM (address_mode,
4876 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4877 XEXP (x, 0)));
4878 return &XEXP (XEXP (x, 0), 0);
4879 }
4880
4881 /* If we have a PLUS whose second operand is a constant and the
4882 address is not valid, perhaps we can split it up using
4883 the machine-specific way to split large constants. We use
4884 the first pseudo-reg (one of the virtual regs) as a placeholder;
4885 it will not remain in the result. */
4886 if (GET_CODE (XEXP (x, 0)) == PLUS
4887 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4888 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4889 MEM_ADDR_SPACE (x)))
4890 {
4891 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4892 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4893 insn: subst_insn);
4894
4895 /* This should have produced two insns, each of which sets our
4896 placeholder. If the source of the second is a valid address,
4897 we can put both sources together and make a split point
4898 in the middle. */
4899
4900 if (seq
4901 && NEXT_INSN (insn: seq) != NULL_RTX
4902 && NEXT_INSN (insn: NEXT_INSN (insn: seq)) == NULL_RTX
4903 && NONJUMP_INSN_P (seq)
4904 && GET_CODE (PATTERN (seq)) == SET
4905 && SET_DEST (PATTERN (seq)) == reg
4906 && ! reg_mentioned_p (reg,
4907 SET_SRC (PATTERN (seq)))
4908 && NONJUMP_INSN_P (NEXT_INSN (seq))
4909 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4910 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4911 && memory_address_addr_space_p
4912 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4913 MEM_ADDR_SPACE (x)))
4914 {
4915 rtx src1 = SET_SRC (PATTERN (seq));
4916 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4917
4918 /* Replace the placeholder in SRC2 with SRC1. If we can
4919 find where in SRC2 it was placed, that can become our
4920 split point and we can replace this address with SRC2.
4921 Just try two obvious places. */
4922
4923 src2 = replace_rtx (src2, reg, src1);
4924 split = 0;
4925 if (XEXP (src2, 0) == src1)
4926 split = &XEXP (src2, 0);
4927 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4928 && XEXP (XEXP (src2, 0), 0) == src1)
4929 split = &XEXP (XEXP (src2, 0), 0);
4930
4931 if (split)
4932 {
4933 SUBST (XEXP (x, 0), src2);
4934 return split;
4935 }
4936 }
4937
4938 /* If that didn't work and we have a nested plus, like:
4939 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
4940 is valid address, try to split (REG1 * CONST1). */
4941 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
4942 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
4943 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4944 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
4945 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
4946 0), 0)))))
4947 {
4948 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
4949 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
4950 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4951 MEM_ADDR_SPACE (x)))
4952 {
4953 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
4954 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
4955 }
4956 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
4957 }
4958 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
4959 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
4960 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4961 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
4962 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
4963 0), 1)))))
4964 {
4965 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
4966 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
4967 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4968 MEM_ADDR_SPACE (x)))
4969 {
4970 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
4971 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
4972 }
4973 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
4974 }
4975
4976 /* If that didn't work, perhaps the first operand is complex and
4977 needs to be computed separately, so make a split point there.
4978 This will occur on machines that just support REG + CONST
4979 and have a constant moved through some previous computation. */
4980 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4981 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4982 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4983 return &XEXP (XEXP (x, 0), 0);
4984 }
4985
4986 /* If we have a PLUS whose first operand is complex, try computing it
4987 separately by making a split there. */
4988 if (GET_CODE (XEXP (x, 0)) == PLUS
4989 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4990 MEM_ADDR_SPACE (x))
4991 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4992 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4993 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4994 return &XEXP (XEXP (x, 0), 0);
4995 break;
4996
4997 case SET:
4998 /* See if we can split SET_SRC as it stands. */
4999 split = find_split_point (loc: &SET_SRC (x), insn, set_src: true);
5000 if (split && split != &SET_SRC (x))
5001 return split;
5002
5003 /* See if we can split SET_DEST as it stands. */
5004 split = find_split_point (loc: &SET_DEST (x), insn, set_src: false);
5005 if (split && split != &SET_DEST (x))
5006 return split;
5007
5008 /* See if this is a bitfield assignment with everything constant. If
5009 so, this is an IOR of an AND, so split it into that. */
5010 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5011 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5012 result: &inner_mode)
5013 && HWI_COMPUTABLE_MODE_P (mode: inner_mode)
5014 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5015 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5016 && CONST_INT_P (SET_SRC (x))
5017 && ((INTVAL (XEXP (SET_DEST (x), 1))
5018 + INTVAL (XEXP (SET_DEST (x), 2)))
5019 <= GET_MODE_PRECISION (mode: inner_mode))
5020 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5021 {
5022 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5023 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5024 rtx dest = XEXP (SET_DEST (x), 0);
5025 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1;
5026 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask;
5027 rtx or_mask;
5028
5029 if (BITS_BIG_ENDIAN)
5030 pos = GET_MODE_PRECISION (mode: inner_mode) - len - pos;
5031
5032 or_mask = gen_int_mode (src << pos, inner_mode);
5033 if (src == mask)
5034 SUBST (SET_SRC (x),
5035 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5036 else
5037 {
5038 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5039 SUBST (SET_SRC (x),
5040 simplify_gen_binary (IOR, inner_mode,
5041 simplify_gen_binary (AND, inner_mode,
5042 dest, negmask),
5043 or_mask));
5044 }
5045
5046 SUBST (SET_DEST (x), dest);
5047
5048 split = find_split_point (loc: &SET_SRC (x), insn, set_src: true);
5049 if (split && split != &SET_SRC (x))
5050 return split;
5051 }
5052
5053 /* Otherwise, see if this is an operation that we can split into two.
5054 If so, try to split that. */
5055 code = GET_CODE (SET_SRC (x));
5056
5057 switch (code)
5058 {
5059 case AND:
5060 /* If we are AND'ing with a large constant that is only a single
5061 bit and the result is only being used in a context where we
5062 need to know if it is zero or nonzero, replace it with a bit
5063 extraction. This will avoid the large constant, which might
5064 have taken more than one insn to make. If the constant were
5065 not a valid argument to the AND but took only one insn to make,
5066 this is no worse, but if it took more than one insn, it will
5067 be better. */
5068
5069 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5070 && REG_P (XEXP (SET_SRC (x), 0))
5071 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5072 && REG_P (SET_DEST (x))
5073 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5074 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5075 && XEXP (*split, 0) == SET_DEST (x)
5076 && XEXP (*split, 1) == const0_rtx)
5077 {
5078 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5079 XEXP (SET_SRC (x), 0),
5080 pos, NULL_RTX, 1,
5081 true, false, false);
5082 if (extraction != 0)
5083 {
5084 SUBST (SET_SRC (x), extraction);
5085 return find_split_point (loc, insn, set_src: false);
5086 }
5087 }
5088 break;
5089
5090 case NE:
5091 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5092 is known to be on, this can be converted into a NEG of a shift. */
5093 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5094 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5095 && ((pos = exact_log2 (x: nonzero_bits (XEXP (SET_SRC (x), 0),
5096 GET_MODE (XEXP (SET_SRC (x),
5097 0))))) >= 1))
5098 {
5099 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5100 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5101 SUBST (SET_SRC (x),
5102 gen_rtx_NEG (mode,
5103 gen_rtx_LSHIFTRT (mode,
5104 XEXP (SET_SRC (x), 0),
5105 pos_rtx)));
5106
5107 split = find_split_point (loc: &SET_SRC (x), insn, set_src: true);
5108 if (split && split != &SET_SRC (x))
5109 return split;
5110 }
5111 break;
5112
5113 case SIGN_EXTEND:
5114 inner = XEXP (SET_SRC (x), 0);
5115
5116 /* We can't optimize if either mode is a partial integer
5117 mode as we don't know how many bits are significant
5118 in those modes. */
5119 if (!is_int_mode (GET_MODE (inner), int_mode: &inner_mode)
5120 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5121 break;
5122
5123 pos = 0;
5124 len = GET_MODE_PRECISION (mode: inner_mode);
5125 unsignedp = false;
5126 break;
5127
5128 case SIGN_EXTRACT:
5129 case ZERO_EXTRACT:
5130 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5131 result: &inner_mode)
5132 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5133 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5134 {
5135 inner = XEXP (SET_SRC (x), 0);
5136 len = INTVAL (XEXP (SET_SRC (x), 1));
5137 pos = INTVAL (XEXP (SET_SRC (x), 2));
5138
5139 if (BITS_BIG_ENDIAN)
5140 pos = GET_MODE_PRECISION (mode: inner_mode) - len - pos;
5141 unsignedp = (code == ZERO_EXTRACT);
5142 }
5143 break;
5144
5145 default:
5146 break;
5147 }
5148
5149 if (len
5150 && known_subrange_p (pos1: pos, size1: len,
5151 pos2: 0, size2: GET_MODE_PRECISION (GET_MODE (inner)))
5152 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), result: &mode))
5153 {
5154 /* For unsigned, we have a choice of a shift followed by an
5155 AND or two shifts. Use two shifts for field sizes where the
5156 constant might be too large. We assume here that we can
5157 always at least get 8-bit constants in an AND insn, which is
5158 true for every current RISC. */
5159
5160 if (unsignedp && len <= 8)
5161 {
5162 unsigned HOST_WIDE_INT mask
5163 = (HOST_WIDE_INT_1U << len) - 1;
5164 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5165 SUBST (SET_SRC (x),
5166 gen_rtx_AND (mode,
5167 gen_rtx_LSHIFTRT
5168 (mode, gen_lowpart (mode, inner), pos_rtx),
5169 gen_int_mode (mask, mode)));
5170
5171 split = find_split_point (loc: &SET_SRC (x), insn, set_src: true);
5172 if (split && split != &SET_SRC (x))
5173 return split;
5174 }
5175 else
5176 {
5177 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5178 int right_bits = GET_MODE_PRECISION (mode) - len;
5179 SUBST (SET_SRC (x),
5180 gen_rtx_fmt_ee
5181 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5182 gen_rtx_ASHIFT (mode,
5183 gen_lowpart (mode, inner),
5184 gen_int_shift_amount (mode, left_bits)),
5185 gen_int_shift_amount (mode, right_bits)));
5186
5187 split = find_split_point (loc: &SET_SRC (x), insn, set_src: true);
5188 if (split && split != &SET_SRC (x))
5189 return split;
5190 }
5191 }
5192
5193 /* See if this is a simple operation with a constant as the second
5194 operand. It might be that this constant is out of range and hence
5195 could be used as a split point. */
5196 if (BINARY_P (SET_SRC (x))
5197 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5198 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5199 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5200 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5201 return &XEXP (SET_SRC (x), 1);
5202
5203 /* Finally, see if this is a simple operation with its first operand
5204 not in a register. The operation might require this operand in a
5205 register, so return it as a split point. We can always do this
5206 because if the first operand were another operation, we would have
5207 already found it as a split point. */
5208 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5209 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5210 return &XEXP (SET_SRC (x), 0);
5211
5212 return 0;
5213
5214 case AND:
5215 case IOR:
5216 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5217 it is better to write this as (not (ior A B)) so we can split it.
5218 Similarly for IOR. */
5219 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5220 {
5221 SUBST (*loc,
5222 gen_rtx_NOT (GET_MODE (x),
5223 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5224 GET_MODE (x),
5225 XEXP (XEXP (x, 0), 0),
5226 XEXP (XEXP (x, 1), 0))));
5227 return find_split_point (loc, insn, set_src);
5228 }
5229
5230 /* Many RISC machines have a large set of logical insns. If the
5231 second operand is a NOT, put it first so we will try to split the
5232 other operand first. */
5233 if (GET_CODE (XEXP (x, 1)) == NOT)
5234 {
5235 rtx tem = XEXP (x, 0);
5236 SUBST (XEXP (x, 0), XEXP (x, 1));
5237 SUBST (XEXP (x, 1), tem);
5238 }
5239 break;
5240
5241 case PLUS:
5242 case MINUS:
5243 /* Canonicalization can produce (minus A (mult B C)), where C is a
5244 constant. It may be better to try splitting (plus (mult B -C) A)
5245 instead if this isn't a multiply by a power of two. */
5246 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5247 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5248 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5249 {
5250 machine_mode mode = GET_MODE (x);
5251 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5252 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5253 SUBST (*loc, gen_rtx_PLUS (mode,
5254 gen_rtx_MULT (mode,
5255 XEXP (XEXP (x, 1), 0),
5256 gen_int_mode (other_int,
5257 mode)),
5258 XEXP (x, 0)));
5259 return find_split_point (loc, insn, set_src);
5260 }
5261
5262 /* Split at a multiply-accumulate instruction. However if this is
5263 the SET_SRC, we likely do not have such an instruction and it's
5264 worthless to try this split. */
5265 if (!set_src
5266 && (GET_CODE (XEXP (x, 0)) == MULT
5267 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5268 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5269 return loc;
5270
5271 default:
5272 break;
5273 }
5274
5275 /* Otherwise, select our actions depending on our rtx class. */
5276 switch (GET_RTX_CLASS (code))
5277 {
5278 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5279 case RTX_TERNARY:
5280 split = find_split_point (loc: &XEXP (x, 2), insn, set_src: false);
5281 if (split)
5282 return split;
5283 /* fall through */
5284 case RTX_BIN_ARITH:
5285 case RTX_COMM_ARITH:
5286 case RTX_COMPARE:
5287 case RTX_COMM_COMPARE:
5288 split = find_split_point (loc: &XEXP (x, 1), insn, set_src: false);
5289 if (split)
5290 return split;
5291 /* fall through */
5292 case RTX_UNARY:
5293 /* Some machines have (and (shift ...) ...) insns. If X is not
5294 an AND, but XEXP (X, 0) is, use it as our split point. */
5295 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5296 return &XEXP (x, 0);
5297
5298 split = find_split_point (loc: &XEXP (x, 0), insn, set_src: false);
5299 if (split)
5300 return split;
5301 return loc;
5302
5303 default:
5304 /* Otherwise, we don't have a split point. */
5305 return 0;
5306 }
5307}
5308
5309/* Throughout X, replace FROM with TO, and return the result.
5310 The result is TO if X is FROM;
5311 otherwise the result is X, but its contents may have been modified.
5312 If they were modified, a record was made in undobuf so that
5313 undo_all will (among other things) return X to its original state.
5314
5315 If the number of changes necessary is too much to record to undo,
5316 the excess changes are not made, so the result is invalid.
5317 The changes already made can still be undone.
5318 undobuf.num_undo is incremented for such changes, so by testing that
5319 the caller can tell whether the result is valid.
5320
5321 `n_occurrences' is incremented each time FROM is replaced.
5322
5323 IN_DEST is true if we are processing the SET_DEST of a SET.
5324
5325 IN_COND is true if we are at the top level of a condition.
5326
5327 UNIQUE_COPY is true if each substitution must be unique. We do this
5328 by copying if `n_occurrences' is nonzero. */
5329
5330static rtx
5331subst (rtx x, rtx from, rtx to, bool in_dest, bool in_cond, bool unique_copy)
5332{
5333 enum rtx_code code = GET_CODE (x);
5334 machine_mode op0_mode = VOIDmode;
5335 const char *fmt;
5336 int len, i;
5337 rtx new_rtx;
5338
5339/* Two expressions are equal if they are identical copies of a shared
5340 RTX or if they are both registers with the same register number
5341 and mode. */
5342
5343#define COMBINE_RTX_EQUAL_P(X,Y) \
5344 ((X) == (Y) \
5345 || (REG_P (X) && REG_P (Y) \
5346 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5347
5348 /* Do not substitute into clobbers of regs -- this will never result in
5349 valid RTL. */
5350 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5351 return x;
5352
5353 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5354 {
5355 n_occurrences++;
5356 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5357 }
5358
5359 /* If X and FROM are the same register but different modes, they
5360 will not have been seen as equal above. However, the log links code
5361 will make a LOG_LINKS entry for that case. If we do nothing, we
5362 will try to rerecognize our original insn and, when it succeeds,
5363 we will delete the feeding insn, which is incorrect.
5364
5365 So force this insn not to match in this (rare) case. */
5366 if (! in_dest && code == REG && REG_P (from)
5367 && reg_overlap_mentioned_p (x, from))
5368 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5369
5370 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5371 of which may contain things that can be combined. */
5372 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5373 return x;
5374
5375 /* It is possible to have a subexpression appear twice in the insn.
5376 Suppose that FROM is a register that appears within TO.
5377 Then, after that subexpression has been scanned once by `subst',
5378 the second time it is scanned, TO may be found. If we were
5379 to scan TO here, we would find FROM within it and create a
5380 self-referent rtl structure which is completely wrong. */
5381 if (COMBINE_RTX_EQUAL_P (x, to))
5382 return to;
5383
5384 /* Parallel asm_operands need special attention because all of the
5385 inputs are shared across the arms. Furthermore, unsharing the
5386 rtl results in recognition failures. Failure to handle this case
5387 specially can result in circular rtl.
5388
5389 Solve this by doing a normal pass across the first entry of the
5390 parallel, and only processing the SET_DESTs of the subsequent
5391 entries. Ug. */
5392
5393 if (code == PARALLEL
5394 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5395 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5396 {
5397 new_rtx = subst (XVECEXP (x, 0, 0), from, to, in_dest: false, in_cond: false, unique_copy);
5398
5399 /* If this substitution failed, this whole thing fails. */
5400 if (GET_CODE (new_rtx) == CLOBBER
5401 && XEXP (new_rtx, 0) == const0_rtx)
5402 return new_rtx;
5403
5404 SUBST (XVECEXP (x, 0, 0), new_rtx);
5405
5406 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5407 {
5408 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5409
5410 if (!REG_P (dest) && GET_CODE (dest) != PC)
5411 {
5412 new_rtx = subst (x: dest, from, to, in_dest: false, in_cond: false, unique_copy);
5413
5414 /* If this substitution failed, this whole thing fails. */
5415 if (GET_CODE (new_rtx) == CLOBBER
5416 && XEXP (new_rtx, 0) == const0_rtx)
5417 return new_rtx;
5418
5419 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5420 }
5421 }
5422 }
5423 else
5424 {
5425 len = GET_RTX_LENGTH (code);
5426 fmt = GET_RTX_FORMAT (code);
5427
5428 /* We don't need to process a SET_DEST that is a register or PC, so
5429 set up to skip this common case. All other cases where we want
5430 to suppress replacing something inside a SET_SRC are handled via
5431 the IN_DEST operand. */
5432 if (code == SET
5433 && (REG_P (SET_DEST (x))
5434 || GET_CODE (SET_DEST (x)) == PC))
5435 fmt = "ie";
5436
5437 /* Trying to simplify the operands of a widening MULT is not likely
5438 to create RTL matching a machine insn. */
5439 if (code == MULT
5440 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5441 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5442 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5443 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5444 && REG_P (XEXP (XEXP (x, 0), 0))
5445 && REG_P (XEXP (XEXP (x, 1), 0))
5446 && from == to)
5447 return x;
5448
5449
5450 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5451 constant. */
5452 if (fmt[0] == 'e')
5453 op0_mode = GET_MODE (XEXP (x, 0));
5454
5455 for (i = 0; i < len; i++)
5456 {
5457 if (fmt[i] == 'E')
5458 {
5459 int j;
5460 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5461 {
5462 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5463 {
5464 new_rtx = (unique_copy && n_occurrences
5465 ? copy_rtx (to) : to);
5466 n_occurrences++;
5467 }
5468 else
5469 {
5470 new_rtx = subst (XVECEXP (x, i, j), from, to,
5471 in_dest: false, in_cond: false, unique_copy);
5472
5473 /* If this substitution failed, this whole thing
5474 fails. */
5475 if (GET_CODE (new_rtx) == CLOBBER
5476 && XEXP (new_rtx, 0) == const0_rtx)
5477 return new_rtx;
5478 }
5479
5480 SUBST (XVECEXP (x, i, j), new_rtx);
5481 }
5482 }
5483 else if (fmt[i] == 'e')
5484 {
5485 /* If this is a register being set, ignore it. */
5486 new_rtx = XEXP (x, i);
5487 if (in_dest
5488 && i == 0
5489 && (((code == SUBREG || code == ZERO_EXTRACT)
5490 && REG_P (new_rtx))
5491 || code == STRICT_LOW_PART))
5492 ;
5493
5494 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5495 {
5496 /* In general, don't install a subreg involving two
5497 modes not tieable. It can worsen register
5498 allocation, and can even make invalid reload
5499 insns, since the reg inside may need to be copied
5500 from in the outside mode, and that may be invalid
5501 if it is an fp reg copied in integer mode.
5502
5503 We allow an exception to this: It is valid if
5504 it is inside another SUBREG and the mode of that
5505 SUBREG and the mode of the inside of TO is
5506 tieable. */
5507
5508 if (GET_CODE (to) == SUBREG
5509 && !targetm.modes_tieable_p (GET_MODE (to),
5510 GET_MODE (SUBREG_REG (to)))
5511 && ! (code == SUBREG
5512 && (targetm.modes_tieable_p
5513 (GET_MODE (x), GET_MODE (SUBREG_REG (to))))))
5514 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5515
5516 if (code == SUBREG
5517 && REG_P (to)
5518 && REGNO (to) < FIRST_PSEUDO_REGISTER
5519 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5520 SUBREG_BYTE (x),
5521 GET_MODE (x)) < 0)
5522 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5523
5524 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5525 n_occurrences++;
5526 }
5527 else
5528 /* If we are in a SET_DEST, suppress most cases unless we
5529 have gone inside a MEM, in which case we want to
5530 simplify the address. We assume here that things that
5531 are actually part of the destination have their inner
5532 parts in the first expression. This is true for SUBREG,
5533 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5534 things aside from REG and MEM that should appear in a
5535 SET_DEST. */
5536 new_rtx = subst (XEXP (x, i), from, to,
5537 in_dest: (((in_dest
5538 && (code == SUBREG || code == STRICT_LOW_PART
5539 || code == ZERO_EXTRACT))
5540 || code == SET)
5541 && i == 0),
5542 in_cond: code == IF_THEN_ELSE && i == 0,
5543 unique_copy);
5544
5545 /* If we found that we will have to reject this combination,
5546 indicate that by returning the CLOBBER ourselves, rather than
5547 an expression containing it. This will speed things up as
5548 well as prevent accidents where two CLOBBERs are considered
5549 to be equal, thus producing an incorrect simplification. */
5550
5551 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5552 return new_rtx;
5553
5554 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5555 {
5556 machine_mode mode = GET_MODE (x);
5557
5558 x = simplify_subreg (GET_MODE (x), op: new_rtx,
5559 GET_MODE (SUBREG_REG (x)),
5560 SUBREG_BYTE (x));
5561 if (! x)
5562 x = gen_rtx_CLOBBER (mode, const0_rtx);
5563 }
5564 else if (CONST_SCALAR_INT_P (new_rtx)
5565 && (GET_CODE (x) == ZERO_EXTEND
5566 || GET_CODE (x) == SIGN_EXTEND
5567 || GET_CODE (x) == FLOAT
5568 || GET_CODE (x) == UNSIGNED_FLOAT))
5569 {
5570 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5571 op: new_rtx,
5572 GET_MODE (XEXP (x, 0)));
5573 if (!x)
5574 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5575 }
5576 /* CONST_INTs shouldn't be substituted into PRE_DEC, PRE_MODIFY
5577 etc. arguments, otherwise we can ICE before trying to recog
5578 it. See PR104446. */
5579 else if (CONST_SCALAR_INT_P (new_rtx)
5580 && GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
5581 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5582 else
5583 SUBST (XEXP (x, i), new_rtx);
5584 }
5585 }
5586 }
5587
5588 /* Check if we are loading something from the constant pool via float
5589 extension; in this case we would undo compress_float_constant
5590 optimization and degenerate constant load to an immediate value. */
5591 if (GET_CODE (x) == FLOAT_EXTEND
5592 && MEM_P (XEXP (x, 0))
5593 && MEM_READONLY_P (XEXP (x, 0)))
5594 {
5595 rtx tmp = avoid_constant_pool_reference (x);
5596 if (x != tmp)
5597 return x;
5598 }
5599
5600 /* Try to simplify X. If the simplification changed the code, it is likely
5601 that further simplification will help, so loop, but limit the number
5602 of repetitions that will be performed. */
5603
5604 for (i = 0; i < 4; i++)
5605 {
5606 /* If X is sufficiently simple, don't bother trying to do anything
5607 with it. */
5608 if (code != CONST_INT && code != REG && code != CLOBBER)
5609 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5610
5611 if (GET_CODE (x) == code)
5612 break;
5613
5614 code = GET_CODE (x);
5615
5616 /* We no longer know the original mode of operand 0 since we
5617 have changed the form of X) */
5618 op0_mode = VOIDmode;
5619 }
5620
5621 return x;
5622}
5623
5624/* If X is a commutative operation whose operands are not in the canonical
5625 order, use substitutions to swap them. */
5626
5627static void
5628maybe_swap_commutative_operands (rtx x)
5629{
5630 if (COMMUTATIVE_ARITH_P (x)
5631 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5632 {
5633 rtx temp = XEXP (x, 0);
5634 SUBST (XEXP (x, 0), XEXP (x, 1));
5635 SUBST (XEXP (x, 1), temp);
5636 }
5637
5638 unsigned n_elts = 0;
5639 if (GET_CODE (x) == VEC_MERGE
5640 && CONST_INT_P (XEXP (x, 2))
5641 && GET_MODE_NUNITS (GET_MODE (x)).is_constant (const_value: &n_elts)
5642 && (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1))
5643 /* Two operands have same precedence, then
5644 first bit of mask select first operand. */
5645 || (!swap_commutative_operands_p (XEXP (x, 1), XEXP (x, 0))
5646 && !(UINTVAL (XEXP (x, 2)) & 1))))
5647 {
5648 rtx temp = XEXP (x, 0);
5649 unsigned HOST_WIDE_INT sel = UINTVAL (XEXP (x, 2));
5650 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_1U;
5651 if (n_elts == HOST_BITS_PER_WIDE_INT)
5652 mask = -1;
5653 else
5654 mask = (HOST_WIDE_INT_1U << n_elts) - 1;
5655 SUBST (XEXP (x, 0), XEXP (x, 1));
5656 SUBST (XEXP (x, 1), temp);
5657 SUBST (XEXP (x, 2), GEN_INT (~sel & mask));
5658 }
5659}
5660
5661/* Simplify X, a piece of RTL. We just operate on the expression at the
5662 outer level; call `subst' to simplify recursively. Return the new
5663 expression.
5664
5665 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is true
5666 if we are inside a SET_DEST. IN_COND is true if we are at the top level
5667 of a condition. */
5668
5669static rtx
5670combine_simplify_rtx (rtx x, machine_mode op0_mode, bool in_dest, bool in_cond)
5671{
5672 enum rtx_code code = GET_CODE (x);
5673 machine_mode mode = GET_MODE (x);
5674 scalar_int_mode int_mode;
5675 rtx temp;
5676 int i;
5677
5678 /* If this is a commutative operation, put a constant last and a complex
5679 expression first. We don't need to do this for comparisons here. */
5680 maybe_swap_commutative_operands (x);
5681
5682 /* Try to fold this expression in case we have constants that weren't
5683 present before. */
5684 temp = 0;
5685 switch (GET_RTX_CLASS (code))
5686 {
5687 case RTX_UNARY:
5688 if (op0_mode == VOIDmode)
5689 op0_mode = GET_MODE (XEXP (x, 0));
5690 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op_mode: op0_mode);
5691 break;
5692 case RTX_COMPARE:
5693 case RTX_COMM_COMPARE:
5694 {
5695 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5696 if (cmp_mode == VOIDmode)
5697 {
5698 cmp_mode = GET_MODE (XEXP (x, 1));
5699 if (cmp_mode == VOIDmode)
5700 cmp_mode = op0_mode;
5701 }
5702 temp = simplify_relational_operation (code, mode, op_mode: cmp_mode,
5703 XEXP (x, 0), XEXP (x, 1));
5704 }
5705 break;
5706 case RTX_COMM_ARITH:
5707 case RTX_BIN_ARITH:
5708 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5709 break;
5710 case RTX_BITFIELD_OPS:
5711 case RTX_TERNARY:
5712 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5713 XEXP (x, 1), XEXP (x, 2));
5714 break;
5715 default:
5716 break;
5717 }
5718
5719 if (temp)
5720 {
5721 x = temp;
5722 code = GET_CODE (temp);
5723 op0_mode = VOIDmode;
5724 mode = GET_MODE (temp);
5725 }
5726
5727 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5728 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5729 things. Check for cases where both arms are testing the same
5730 condition.
5731
5732 Don't do anything if all operands are very simple. */
5733
5734 if ((BINARY_P (x)
5735 && ((!OBJECT_P (XEXP (x, 0))
5736 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5737 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5738 || (!OBJECT_P (XEXP (x, 1))
5739 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5740 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5741 || (UNARY_P (x)
5742 && (!OBJECT_P (XEXP (x, 0))
5743 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5744 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5745 {
5746 rtx cond, true_rtx, false_rtx;
5747
5748 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5749 if (cond != 0
5750 /* If everything is a comparison, what we have is highly unlikely
5751 to be simpler, so don't use it. */
5752 && ! (COMPARISON_P (x)
5753 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5754 /* Similarly, if we end up with one of the expressions the same
5755 as the original, it is certainly not simpler. */
5756 && ! rtx_equal_p (x, true_rtx)
5757 && ! rtx_equal_p (x, false_rtx))
5758 {
5759 rtx cop1 = const0_rtx;
5760 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5761
5762 if (cond_code == NE && COMPARISON_P (cond))
5763 return x;
5764
5765 /* Simplify the alternative arms; this may collapse the true and
5766 false arms to store-flag values. Be careful to use copy_rtx
5767 here since true_rtx or false_rtx might share RTL with x as a
5768 result of the if_then_else_cond call above. */
5769 true_rtx = subst (x: copy_rtx (true_rtx), from: pc_rtx, to: pc_rtx,
5770 in_dest: false, in_cond: false, unique_copy: false);
5771 false_rtx = subst (x: copy_rtx (false_rtx), from: pc_rtx, to: pc_rtx,
5772 in_dest: false, in_cond: false, unique_copy: false);
5773
5774 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5775 is unlikely to be simpler. */
5776 if (general_operand (true_rtx, VOIDmode)
5777 && general_operand (false_rtx, VOIDmode))
5778 {
5779 enum rtx_code reversed;
5780
5781 /* Restarting if we generate a store-flag expression will cause
5782 us to loop. Just drop through in this case. */
5783
5784 /* If the result values are STORE_FLAG_VALUE and zero, we can
5785 just make the comparison operation. */
5786 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5787 x = simplify_gen_relational (code: cond_code, mode, VOIDmode,
5788 op0: cond, op1: cop1);
5789 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5790 && ((reversed = reversed_comparison_code_parts
5791 (cond_code, cond, cop1, NULL))
5792 != UNKNOWN))
5793 x = simplify_gen_relational (code: reversed, mode, VOIDmode,
5794 op0: cond, op1: cop1);
5795
5796 /* Likewise, we can make the negate of a comparison operation
5797 if the result values are - STORE_FLAG_VALUE and zero. */
5798 else if (CONST_INT_P (true_rtx)
5799 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5800 && false_rtx == const0_rtx)
5801 x = simplify_gen_unary (code: NEG, mode,
5802 op: simplify_gen_relational (code: cond_code,
5803 mode, VOIDmode,
5804 op0: cond, op1: cop1),
5805 op_mode: mode);
5806 else if (CONST_INT_P (false_rtx)
5807 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5808 && true_rtx == const0_rtx
5809 && ((reversed = reversed_comparison_code_parts
5810 (cond_code, cond, cop1, NULL))
5811 != UNKNOWN))
5812 x = simplify_gen_unary (code: NEG, mode,
5813 op: simplify_gen_relational (code: reversed,
5814 mode, VOIDmode,
5815 op0: cond, op1: cop1),
5816 op_mode: mode);
5817
5818 code = GET_CODE (x);
5819 op0_mode = VOIDmode;
5820 }
5821 }
5822 }
5823
5824 /* First see if we can apply the inverse distributive law. */
5825 if (code == PLUS || code == MINUS
5826 || code == AND || code == IOR || code == XOR)
5827 {
5828 x = apply_distributive_law (x);
5829 code = GET_CODE (x);
5830 op0_mode = VOIDmode;
5831 }
5832
5833 /* If CODE is an associative operation not otherwise handled, see if we
5834 can associate some operands. This can win if they are constants or
5835 if they are logically related (i.e. (a & b) & a). */
5836 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5837 || code == AND || code == IOR || code == XOR
5838 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5839 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5840 || (flag_associative_math && FLOAT_MODE_P (mode))))
5841 {
5842 if (GET_CODE (XEXP (x, 0)) == code)
5843 {
5844 rtx other = XEXP (XEXP (x, 0), 0);
5845 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5846 rtx inner_op1 = XEXP (x, 1);
5847 rtx inner;
5848
5849 /* Make sure we pass the constant operand if any as the second
5850 one if this is a commutative operation. */
5851 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5852 std::swap (a&: inner_op0, b&: inner_op1);
5853 inner = simplify_binary_operation (code: code == MINUS ? PLUS
5854 : code == DIV ? MULT
5855 : code,
5856 mode, op0: inner_op0, op1: inner_op1);
5857
5858 /* For commutative operations, try the other pair if that one
5859 didn't simplify. */
5860 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5861 {
5862 other = XEXP (XEXP (x, 0), 1);
5863 inner = simplify_binary_operation (code, mode,
5864 XEXP (XEXP (x, 0), 0),
5865 XEXP (x, 1));
5866 }
5867
5868 if (inner)
5869 return simplify_gen_binary (code, mode, op0: other, op1: inner);
5870 }
5871 }
5872
5873 /* A little bit of algebraic simplification here. */
5874 switch (code)
5875 {
5876 case MEM:
5877 /* Ensure that our address has any ASHIFTs converted to MULT in case
5878 address-recognizing predicates are called later. */
5879 temp = make_compound_operation (XEXP (x, 0), MEM);
5880 SUBST (XEXP (x, 0), temp);
5881 break;
5882
5883 case SUBREG:
5884 if (op0_mode == VOIDmode)
5885 op0_mode = GET_MODE (SUBREG_REG (x));
5886
5887 /* See if this can be moved to simplify_subreg. */
5888 if (CONSTANT_P (SUBREG_REG (x))
5889 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5890 /* Don't call gen_lowpart if the inner mode
5891 is VOIDmode and we cannot simplify it, as SUBREG without
5892 inner mode is invalid. */
5893 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5894 || gen_lowpart_common (mode, SUBREG_REG (x))))
5895 return gen_lowpart (mode, SUBREG_REG (x));
5896
5897 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5898 break;
5899 {
5900 rtx temp;
5901 temp = simplify_subreg (outermode: mode, SUBREG_REG (x), innermode: op0_mode,
5902 SUBREG_BYTE (x));
5903 if (temp)
5904 return temp;
5905
5906 /* If op is known to have all lower bits zero, the result is zero. */
5907 scalar_int_mode int_mode, int_op0_mode;
5908 if (!in_dest
5909 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
5910 && is_a <scalar_int_mode> (m: op0_mode, result: &int_op0_mode)
5911 && (GET_MODE_PRECISION (mode: int_mode)
5912 < GET_MODE_PRECISION (mode: int_op0_mode))
5913 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5914 SUBREG_BYTE (x))
5915 && HWI_COMPUTABLE_MODE_P (mode: int_op0_mode)
5916 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
5917 & GET_MODE_MASK (int_mode)) == 0)
5918 && !side_effects_p (SUBREG_REG (x)))
5919 return CONST0_RTX (int_mode);
5920 }
5921
5922 /* Don't change the mode of the MEM if that would change the meaning
5923 of the address. */
5924 if (MEM_P (SUBREG_REG (x))
5925 && (MEM_VOLATILE_P (SUBREG_REG (x))
5926 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5927 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5928 return gen_rtx_CLOBBER (mode, const0_rtx);
5929
5930 /* Note that we cannot do any narrowing for non-constants since
5931 we might have been counting on using the fact that some bits were
5932 zero. We now do this in the SET. */
5933
5934 break;
5935
5936 case NEG:
5937 temp = expand_compound_operation (XEXP (x, 0));
5938
5939 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5940 replaced by (lshiftrt X C). This will convert
5941 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5942
5943 if (GET_CODE (temp) == ASHIFTRT
5944 && CONST_INT_P (XEXP (temp, 1))
5945 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5946 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5947 INTVAL (XEXP (temp, 1)));
5948
5949 /* If X has only a single bit that might be nonzero, say, bit I, convert
5950 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5951 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5952 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5953 or a SUBREG of one since we'd be making the expression more
5954 complex if it was just a register. */
5955
5956 if (!REG_P (temp)
5957 && ! (GET_CODE (temp) == SUBREG
5958 && REG_P (SUBREG_REG (temp)))
5959 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
5960 && (i = exact_log2 (x: nonzero_bits (temp, int_mode))) >= 0)
5961 {
5962 rtx temp1 = simplify_shift_const
5963 (NULL_RTX, ASHIFTRT, int_mode,
5964 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5965 GET_MODE_PRECISION (mode: int_mode) - 1 - i),
5966 GET_MODE_PRECISION (mode: int_mode) - 1 - i);
5967
5968 /* If all we did was surround TEMP with the two shifts, we
5969 haven't improved anything, so don't use it. Otherwise,
5970 we are better off with TEMP1. */
5971 if (GET_CODE (temp1) != ASHIFTRT
5972 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5973 || XEXP (XEXP (temp1, 0), 0) != temp)
5974 return temp1;
5975 }
5976 break;
5977
5978 case TRUNCATE:
5979 /* We can't handle truncation to a partial integer mode here
5980 because we don't know the real bitsize of the partial
5981 integer mode. */
5982 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5983 break;
5984
5985 if (HWI_COMPUTABLE_MODE_P (mode))
5986 SUBST (XEXP (x, 0),
5987 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5988 GET_MODE_MASK (mode), false));
5989
5990 /* We can truncate a constant value and return it. */
5991 {
5992 poly_int64 c;
5993 if (poly_int_rtx_p (XEXP (x, 0), res: &c))
5994 return gen_int_mode (c, mode);
5995 }
5996
5997 /* Similarly to what we do in simplify-rtx.cc, a truncate of a register
5998 whose value is a comparison can be replaced with a subreg if
5999 STORE_FLAG_VALUE permits. */
6000 if (HWI_COMPUTABLE_MODE_P (mode)
6001 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6002 && (temp = get_last_value (XEXP (x, 0)))
6003 && COMPARISON_P (temp)
6004 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (XEXP (x, 0))))
6005 return gen_lowpart (mode, XEXP (x, 0));
6006 break;
6007
6008 case CONST:
6009 /* (const (const X)) can become (const X). Do it this way rather than
6010 returning the inner CONST since CONST can be shared with a
6011 REG_EQUAL note. */
6012 if (GET_CODE (XEXP (x, 0)) == CONST)
6013 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6014 break;
6015
6016 case LO_SUM:
6017 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6018 can add in an offset. find_split_point will split this address up
6019 again if it doesn't match. */
6020 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6021 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6022 return XEXP (x, 1);
6023 break;
6024
6025 case PLUS:
6026 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6027 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6028 bit-field and can be replaced by either a sign_extend or a
6029 sign_extract. The `and' may be a zero_extend and the two
6030 <c>, -<c> constants may be reversed. */
6031 if (GET_CODE (XEXP (x, 0)) == XOR
6032 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
6033 && CONST_INT_P (XEXP (x, 1))
6034 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6035 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6036 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6037 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6038 && HWI_COMPUTABLE_MODE_P (mode: int_mode)
6039 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6040 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6041 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6042 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6043 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6044 && known_eq ((GET_MODE_PRECISION
6045 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6046 (unsigned int) i + 1))))
6047 return simplify_shift_const
6048 (NULL_RTX, ASHIFTRT, int_mode,
6049 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6050 XEXP (XEXP (XEXP (x, 0), 0), 0),
6051 GET_MODE_PRECISION (mode: int_mode) - (i + 1)),
6052 GET_MODE_PRECISION (mode: int_mode) - (i + 1));
6053
6054 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6055 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6056 the bitsize of the mode - 1. This allows simplification of
6057 "a = (b & 8) == 0;" */
6058 if (XEXP (x, 1) == constm1_rtx
6059 && !REG_P (XEXP (x, 0))
6060 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6061 && REG_P (SUBREG_REG (XEXP (x, 0))))
6062 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
6063 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6064 return simplify_shift_const
6065 (NULL_RTX, ASHIFTRT, int_mode,
6066 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6067 gen_rtx_XOR (int_mode, XEXP (x, 0),
6068 const1_rtx),
6069 GET_MODE_PRECISION (mode: int_mode) - 1),
6070 GET_MODE_PRECISION (mode: int_mode) - 1);
6071
6072 /* If we are adding two things that have no bits in common, convert
6073 the addition into an IOR. This will often be further simplified,
6074 for example in cases like ((a & 1) + (a & 2)), which can
6075 become a & 3. */
6076
6077 if (HWI_COMPUTABLE_MODE_P (mode)
6078 && (nonzero_bits (XEXP (x, 0), mode)
6079 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6080 {
6081 /* Try to simplify the expression further. */
6082 rtx tor = simplify_gen_binary (code: IOR, mode, XEXP (x, 0), XEXP (x, 1));
6083 temp = combine_simplify_rtx (x: tor, VOIDmode, in_dest, in_cond: false);
6084
6085 /* If we could, great. If not, do not go ahead with the IOR
6086 replacement, since PLUS appears in many special purpose
6087 address arithmetic instructions. */
6088 if (GET_CODE (temp) != CLOBBER
6089 && (GET_CODE (temp) != IOR
6090 || ((XEXP (temp, 0) != XEXP (x, 0)
6091 || XEXP (temp, 1) != XEXP (x, 1))
6092 && (XEXP (temp, 0) != XEXP (x, 1)
6093 || XEXP (temp, 1) != XEXP (x, 0)))))
6094 return temp;
6095 }
6096
6097 /* Canonicalize x + x into x << 1. */
6098 if (GET_MODE_CLASS (mode) == MODE_INT
6099 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6100 && !side_effects_p (XEXP (x, 0)))
6101 return simplify_gen_binary (code: ASHIFT, mode, XEXP (x, 0), const1_rtx);
6102
6103 break;
6104
6105 case MINUS:
6106 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6107 (and <foo> (const_int pow2-1)) */
6108 if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
6109 && GET_CODE (XEXP (x, 1)) == AND
6110 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6111 && pow2p_hwi (x: -UINTVAL (XEXP (XEXP (x, 1), 1)))
6112 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6113 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6114 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6115 break;
6116
6117 case MULT:
6118 /* If we have (mult (plus A B) C), apply the distributive law and then
6119 the inverse distributive law to see if things simplify. This
6120 occurs mostly in addresses, often when unrolling loops. */
6121
6122 if (GET_CODE (XEXP (x, 0)) == PLUS)
6123 {
6124 rtx result = distribute_and_simplify_rtx (x, 0);
6125 if (result)
6126 return result;
6127 }
6128
6129 /* Try simplify a*(b/c) as (a*b)/c. */
6130 if (FLOAT_MODE_P (mode) && flag_associative_math
6131 && GET_CODE (XEXP (x, 0)) == DIV)
6132 {
6133 rtx tem = simplify_binary_operation (code: MULT, mode,
6134 XEXP (XEXP (x, 0), 0),
6135 XEXP (x, 1));
6136 if (tem)
6137 return simplify_gen_binary (code: DIV, mode, op0: tem, XEXP (XEXP (x, 0), 1));
6138 }
6139 break;
6140
6141 case UDIV:
6142 /* If this is a divide by a power of two, treat it as a shift if
6143 its first operand is a shift. */
6144 if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
6145 && CONST_INT_P (XEXP (x, 1))
6146 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6147 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6148 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6149 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6150 || GET_CODE (XEXP (x, 0)) == ROTATE
6151 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6152 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6153 XEXP (x, 0), i);
6154 break;
6155
6156 case EQ: case NE:
6157 case GT: case GTU: case GE: case GEU:
6158 case LT: case LTU: case LE: case LEU:
6159 case UNEQ: case LTGT:
6160 case UNGT: case UNGE:
6161 case UNLT: case UNLE:
6162 case UNORDERED: case ORDERED:
6163 /* If the first operand is a condition code, we can't do anything
6164 with it. */
6165 if (GET_CODE (XEXP (x, 0)) == COMPARE
6166 || GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC)
6167 {
6168 rtx op0 = XEXP (x, 0);
6169 rtx op1 = XEXP (x, 1);
6170 enum rtx_code new_code;
6171
6172 if (GET_CODE (op0) == COMPARE)
6173 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6174
6175 /* Simplify our comparison, if possible. */
6176 new_code = simplify_comparison (code, &op0, &op1);
6177
6178 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6179 if only the low-order bit is possibly nonzero in X (such as when
6180 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6181 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6182 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6183 (plus X 1).
6184
6185 Remove any ZERO_EXTRACT we made when thinking this was a
6186 comparison. It may now be simpler to use, e.g., an AND. If a
6187 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6188 the call to make_compound_operation in the SET case.
6189
6190 Don't apply these optimizations if the caller would
6191 prefer a comparison rather than a value.
6192 E.g., for the condition in an IF_THEN_ELSE most targets need
6193 an explicit comparison. */
6194
6195 if (in_cond)
6196 ;
6197
6198 else if (STORE_FLAG_VALUE == 1
6199 && new_code == NE
6200 && is_int_mode (mode, int_mode: &int_mode)
6201 && op1 == const0_rtx
6202 && int_mode == GET_MODE (op0)
6203 && nonzero_bits (op0, int_mode) == 1)
6204 return gen_lowpart (int_mode,
6205 expand_compound_operation (op0));
6206
6207 else if (STORE_FLAG_VALUE == 1
6208 && new_code == NE
6209 && is_int_mode (mode, int_mode: &int_mode)
6210 && op1 == const0_rtx
6211 && int_mode == GET_MODE (op0)
6212 && (num_sign_bit_copies (op0, int_mode)
6213 == GET_MODE_PRECISION (mode: int_mode)))
6214 {
6215 op0 = expand_compound_operation (op0);
6216 return simplify_gen_unary (code: NEG, mode: int_mode,
6217 gen_lowpart (int_mode, op0),
6218 op_mode: int_mode);
6219 }
6220
6221 else if (STORE_FLAG_VALUE == 1
6222 && new_code == EQ
6223 && is_int_mode (mode, int_mode: &int_mode)
6224 && op1 == const0_rtx
6225 && int_mode == GET_MODE (op0)
6226 && nonzero_bits (op0, int_mode) == 1)
6227 {
6228 op0 = expand_compound_operation (op0);
6229 return simplify_gen_binary (code: XOR, mode: int_mode,
6230 gen_lowpart (int_mode, op0),
6231 const1_rtx);
6232 }
6233
6234 else if (STORE_FLAG_VALUE == 1
6235 && new_code == EQ
6236 && is_int_mode (mode, int_mode: &int_mode)
6237 && op1 == const0_rtx
6238 && int_mode == GET_MODE (op0)
6239 && (num_sign_bit_copies (op0, int_mode)
6240 == GET_MODE_PRECISION (mode: int_mode)))
6241 {
6242 op0 = expand_compound_operation (op0);
6243 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6244 }
6245
6246 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6247 those above. */
6248 if (in_cond)
6249 ;
6250
6251 else if (STORE_FLAG_VALUE == -1
6252 && new_code == NE
6253 && is_int_mode (mode, int_mode: &int_mode)
6254 && op1 == const0_rtx
6255 && int_mode == GET_MODE (op0)
6256 && (num_sign_bit_copies (op0, int_mode)
6257 == GET_MODE_PRECISION (mode: int_mode)))
6258 return gen_lowpart (int_mode, expand_compound_operation (op0));
6259
6260 else if (STORE_FLAG_VALUE == -1
6261 && new_code == NE
6262 && is_int_mode (mode, int_mode: &int_mode)
6263 && op1 == const0_rtx
6264 && int_mode == GET_MODE (op0)
6265 && nonzero_bits (op0, int_mode) == 1)
6266 {
6267 op0 = expand_compound_operation (op0);
6268 return simplify_gen_unary (code: NEG, mode: int_mode,
6269 gen_lowpart (int_mode, op0),
6270 op_mode: int_mode);
6271 }
6272
6273 else if (STORE_FLAG_VALUE == -1
6274 && new_code == EQ
6275 && is_int_mode (mode, int_mode: &int_mode)
6276 && op1 == const0_rtx
6277 && int_mode == GET_MODE (op0)
6278 && (num_sign_bit_copies (op0, int_mode)
6279 == GET_MODE_PRECISION (mode: int_mode)))
6280 {
6281 op0 = expand_compound_operation (op0);
6282 return simplify_gen_unary (code: NOT, mode: int_mode,
6283 gen_lowpart (int_mode, op0),
6284 op_mode: int_mode);
6285 }
6286
6287 /* If X is 0/1, (eq X 0) is X-1. */
6288 else if (STORE_FLAG_VALUE == -1
6289 && new_code == EQ
6290 && is_int_mode (mode, int_mode: &int_mode)
6291 && op1 == const0_rtx
6292 && int_mode == GET_MODE (op0)
6293 && nonzero_bits (op0, int_mode) == 1)
6294 {
6295 op0 = expand_compound_operation (op0);
6296 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6297 }
6298
6299 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6300 one bit that might be nonzero, we can convert (ne x 0) to
6301 (ashift x c) where C puts the bit in the sign bit. Remove any
6302 AND with STORE_FLAG_VALUE when we are done, since we are only
6303 going to test the sign bit. */
6304 if (new_code == NE
6305 && is_int_mode (mode, int_mode: &int_mode)
6306 && HWI_COMPUTABLE_MODE_P (mode: int_mode)
6307 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6308 && op1 == const0_rtx
6309 && int_mode == GET_MODE (op0)
6310 && (i = exact_log2 (x: nonzero_bits (op0, int_mode))) >= 0)
6311 {
6312 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6313 expand_compound_operation (op0),
6314 GET_MODE_PRECISION (mode: int_mode) - 1 - i);
6315 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6316 return XEXP (x, 0);
6317 else
6318 return x;
6319 }
6320
6321 /* If the code changed, return a whole new comparison.
6322 We also need to avoid using SUBST in cases where
6323 simplify_comparison has widened a comparison with a CONST_INT,
6324 since in that case the wider CONST_INT may fail the sanity
6325 checks in do_SUBST. */
6326 if (new_code != code
6327 || (CONST_INT_P (op1)
6328 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6329 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6330 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6331
6332 /* Otherwise, keep this operation, but maybe change its operands.
6333 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6334 SUBST (XEXP (x, 0), op0);
6335 SUBST (XEXP (x, 1), op1);
6336 }
6337 break;
6338
6339 case IF_THEN_ELSE:
6340 return simplify_if_then_else (x);
6341
6342 case ZERO_EXTRACT:
6343 case SIGN_EXTRACT:
6344 case ZERO_EXTEND:
6345 case SIGN_EXTEND:
6346 /* If we are processing SET_DEST, we are done. */
6347 if (in_dest)
6348 return x;
6349
6350 return expand_compound_operation (x);
6351
6352 case SET:
6353 return simplify_set (x);
6354
6355 case AND:
6356 case IOR:
6357 return simplify_logical (x);
6358
6359 case ASHIFT:
6360 case LSHIFTRT:
6361 case ASHIFTRT:
6362 case ROTATE:
6363 case ROTATERT:
6364 /* If this is a shift by a constant amount, simplify it. */
6365 if (CONST_INT_P (XEXP (x, 1)))
6366 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6367 INTVAL (XEXP (x, 1)));
6368
6369 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6370 SUBST (XEXP (x, 1),
6371 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6372 (HOST_WIDE_INT_1U
6373 << exact_log2 (GET_MODE_UNIT_BITSIZE
6374 (GET_MODE (x)))) - 1, false));
6375 break;
6376 case VEC_SELECT:
6377 {
6378 rtx trueop0 = XEXP (x, 0);
6379 mode = GET_MODE (trueop0);
6380 rtx trueop1 = XEXP (x, 1);
6381 /* If we select a low-part subreg, return that. */
6382 if (vec_series_lowpart_p (GET_MODE (x), op_mode: mode, sel: trueop1))
6383 {
6384 rtx new_rtx = lowpart_subreg (GET_MODE (x), op: trueop0, innermode: mode);
6385 if (new_rtx != NULL_RTX)
6386 return new_rtx;
6387 }
6388 }
6389
6390 default:
6391 break;
6392 }
6393
6394 return x;
6395}
6396
6397/* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6398
6399static rtx
6400simplify_if_then_else (rtx x)
6401{
6402 machine_mode mode = GET_MODE (x);
6403 rtx cond = XEXP (x, 0);
6404 rtx true_rtx = XEXP (x, 1);
6405 rtx false_rtx = XEXP (x, 2);
6406 enum rtx_code true_code = GET_CODE (cond);
6407 bool comparison_p = COMPARISON_P (cond);
6408 rtx temp;
6409 int i;
6410 enum rtx_code false_code;
6411 rtx reversed;
6412 scalar_int_mode int_mode, inner_mode;
6413
6414 /* Simplify storing of the truth value. */
6415 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6416 return simplify_gen_relational (code: true_code, mode, VOIDmode,
6417 XEXP (cond, 0), XEXP (cond, 1));
6418
6419 /* Also when the truth value has to be reversed. */
6420 if (comparison_p
6421 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6422 && (reversed = reversed_comparison (cond, mode)))
6423 return reversed;
6424
6425 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6426 in it is being compared against certain values. Get the true and false
6427 comparisons and see if that says anything about the value of each arm. */
6428
6429 if (comparison_p
6430 && ((false_code = reversed_comparison_code (cond, NULL))
6431 != UNKNOWN)
6432 && REG_P (XEXP (cond, 0)))
6433 {
6434 HOST_WIDE_INT nzb;
6435 rtx from = XEXP (cond, 0);
6436 rtx true_val = XEXP (cond, 1);
6437 rtx false_val = true_val;
6438 bool swapped = false;
6439
6440 /* If FALSE_CODE is EQ, swap the codes and arms. */
6441
6442 if (false_code == EQ)
6443 {
6444 swapped = true, true_code = EQ, false_code = NE;
6445 std::swap (a&: true_rtx, b&: false_rtx);
6446 }
6447
6448 scalar_int_mode from_mode;
6449 if (is_a <scalar_int_mode> (GET_MODE (from), result: &from_mode))
6450 {
6451 /* If we are comparing against zero and the expression being
6452 tested has only a single bit that might be nonzero, that is
6453 its value when it is not equal to zero. Similarly if it is
6454 known to be -1 or 0. */
6455 if (true_code == EQ
6456 && true_val == const0_rtx
6457 && pow2p_hwi (x: nzb = nonzero_bits (from, from_mode)))
6458 {
6459 false_code = EQ;
6460 false_val = gen_int_mode (nzb, from_mode);
6461 }
6462 else if (true_code == EQ
6463 && true_val == const0_rtx
6464 && (num_sign_bit_copies (from, from_mode)
6465 == GET_MODE_PRECISION (mode: from_mode)))
6466 {
6467 false_code = EQ;
6468 false_val = constm1_rtx;
6469 }
6470 }
6471
6472 /* Now simplify an arm if we know the value of the register in the
6473 branch and it is used in the arm. Be careful due to the potential
6474 of locally-shared RTL. */
6475
6476 if (reg_mentioned_p (from, true_rtx))
6477 true_rtx = subst (x: known_cond (copy_rtx (true_rtx), true_code,
6478 from, true_val),
6479 from: pc_rtx, to: pc_rtx, in_dest: false, in_cond: false, unique_copy: false);
6480 if (reg_mentioned_p (from, false_rtx))
6481 false_rtx = subst (x: known_cond (copy_rtx (false_rtx), false_code,
6482 from, false_val),
6483 from: pc_rtx, to: pc_rtx, in_dest: false, in_cond: false, unique_copy: false);
6484
6485 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6486 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6487
6488 true_rtx = XEXP (x, 1);
6489 false_rtx = XEXP (x, 2);
6490 true_code = GET_CODE (cond);
6491 }
6492
6493 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6494 reversed, do so to avoid needing two sets of patterns for
6495 subtract-and-branch insns. Similarly if we have a constant in the true
6496 arm, the false arm is the same as the first operand of the comparison, or
6497 the false arm is more complicated than the true arm. */
6498
6499 if (comparison_p
6500 && reversed_comparison_code (cond, NULL) != UNKNOWN
6501 && (true_rtx == pc_rtx
6502 || (CONSTANT_P (true_rtx)
6503 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6504 || true_rtx == const0_rtx
6505 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6506 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6507 && !OBJECT_P (false_rtx))
6508 || reg_mentioned_p (true_rtx, false_rtx)
6509 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6510 {
6511 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6512 SUBST (XEXP (x, 1), false_rtx);
6513 SUBST (XEXP (x, 2), true_rtx);
6514
6515 std::swap (a&: true_rtx, b&: false_rtx);
6516 cond = XEXP (x, 0);
6517
6518 /* It is possible that the conditional has been simplified out. */
6519 true_code = GET_CODE (cond);
6520 comparison_p = COMPARISON_P (cond);
6521 }
6522
6523 /* If the two arms are identical, we don't need the comparison. */
6524
6525 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6526 return true_rtx;
6527
6528 /* Convert a == b ? b : a to "a". */
6529 if (true_code == EQ && ! side_effects_p (cond)
6530 && !HONOR_NANS (mode)
6531 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6532 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6533 return false_rtx;
6534 else if (true_code == NE && ! side_effects_p (cond)
6535 && !HONOR_NANS (mode)
6536 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6537 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6538 return true_rtx;
6539
6540 /* Look for cases where we have (abs x) or (neg (abs X)). */
6541
6542 if (GET_MODE_CLASS (mode) == MODE_INT
6543 && comparison_p
6544 && XEXP (cond, 1) == const0_rtx
6545 && GET_CODE (false_rtx) == NEG
6546 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6547 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6548 && ! side_effects_p (true_rtx))
6549 switch (true_code)
6550 {
6551 case GT:
6552 case GE:
6553 return simplify_gen_unary (code: ABS, mode, op: true_rtx, op_mode: mode);
6554 case LT:
6555 case LE:
6556 return
6557 simplify_gen_unary (code: NEG, mode,
6558 op: simplify_gen_unary (code: ABS, mode, op: true_rtx, op_mode: mode),
6559 op_mode: mode);
6560 default:
6561 break;
6562 }
6563
6564 /* Look for MIN or MAX. */
6565
6566 if ((! FLOAT_MODE_P (mode)
6567 || (flag_unsafe_math_optimizations
6568 && !HONOR_NANS (mode)
6569 && !HONOR_SIGNED_ZEROS (mode)))
6570 && comparison_p
6571 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6572 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6573 && ! side_effects_p (cond))
6574 switch (true_code)
6575 {
6576 case GE:
6577 case GT:
6578 return simplify_gen_binary (code: SMAX, mode, op0: true_rtx, op1: false_rtx);
6579 case LE:
6580 case LT:
6581 return simplify_gen_binary (code: SMIN, mode, op0: true_rtx, op1: false_rtx);
6582 case GEU:
6583 case GTU:
6584 return simplify_gen_binary (code: UMAX, mode, op0: true_rtx, op1: false_rtx);
6585 case LEU:
6586 case LTU:
6587 return simplify_gen_binary (code: UMIN, mode, op0: true_rtx, op1: false_rtx);
6588 default:
6589 break;
6590 }
6591
6592 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6593 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6594 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6595 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6596 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6597 neither 1 or -1, but it isn't worth checking for. */
6598
6599 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6600 && comparison_p
6601 && is_int_mode (mode, int_mode: &int_mode)
6602 && ! side_effects_p (x))
6603 {
6604 rtx t = make_compound_operation (true_rtx, SET);
6605 rtx f = make_compound_operation (false_rtx, SET);
6606 rtx cond_op0 = XEXP (cond, 0);
6607 rtx cond_op1 = XEXP (cond, 1);
6608 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6609 scalar_int_mode m = int_mode;
6610 rtx z = 0, c1 = NULL_RTX;
6611
6612 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6613 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6614 || GET_CODE (t) == ASHIFT
6615 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6616 && rtx_equal_p (XEXP (t, 0), f))
6617 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6618
6619 /* If an identity-zero op is commutative, check whether there
6620 would be a match if we swapped the operands. */
6621 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6622 || GET_CODE (t) == XOR)
6623 && rtx_equal_p (XEXP (t, 1), f))
6624 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6625 else if (GET_CODE (t) == SIGN_EXTEND
6626 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), result: &inner_mode)
6627 && (GET_CODE (XEXP (t, 0)) == PLUS
6628 || GET_CODE (XEXP (t, 0)) == MINUS
6629 || GET_CODE (XEXP (t, 0)) == IOR
6630 || GET_CODE (XEXP (t, 0)) == XOR
6631 || GET_CODE (XEXP (t, 0)) == ASHIFT
6632 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6633 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6634 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6635 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6636 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6637 && (num_sign_bit_copies (f, GET_MODE (f))
6638 > (unsigned int)
6639 (GET_MODE_PRECISION (mode: int_mode)
6640 - GET_MODE_PRECISION (mode: inner_mode))))
6641 {
6642 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6643 extend_op = SIGN_EXTEND;
6644 m = inner_mode;
6645 }
6646 else if (GET_CODE (t) == SIGN_EXTEND
6647 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), result: &inner_mode)
6648 && (GET_CODE (XEXP (t, 0)) == PLUS
6649 || GET_CODE (XEXP (t, 0)) == IOR
6650 || GET_CODE (XEXP (t, 0)) == XOR)
6651 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6652 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6653 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6654 && (num_sign_bit_copies (f, GET_MODE (f))
6655 > (unsigned int)
6656 (GET_MODE_PRECISION (mode: int_mode)
6657 - GET_MODE_PRECISION (mode: inner_mode))))
6658 {
6659 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6660 extend_op = SIGN_EXTEND;
6661 m = inner_mode;
6662 }
6663 else if (GET_CODE (t) == ZERO_EXTEND
6664 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), result: &inner_mode)
6665 && (GET_CODE (XEXP (t, 0)) == PLUS
6666 || GET_CODE (XEXP (t, 0)) == MINUS
6667 || GET_CODE (XEXP (t, 0)) == IOR
6668 || GET_CODE (XEXP (t, 0)) == XOR
6669 || GET_CODE (XEXP (t, 0)) == ASHIFT
6670 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6671 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6672 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6673 && HWI_COMPUTABLE_MODE_P (mode: int_mode)
6674 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6675 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6676 && ((nonzero_bits (f, GET_MODE (f))
6677 & ~GET_MODE_MASK (inner_mode))
6678 == 0))
6679 {
6680 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6681 extend_op = ZERO_EXTEND;
6682 m = inner_mode;
6683 }
6684 else if (GET_CODE (t) == ZERO_EXTEND
6685 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), result: &inner_mode)
6686 && (GET_CODE (XEXP (t, 0)) == PLUS
6687 || GET_CODE (XEXP (t, 0)) == IOR
6688 || GET_CODE (XEXP (t, 0)) == XOR)
6689 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6690 && HWI_COMPUTABLE_MODE_P (mode: int_mode)
6691 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6692 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6693 && ((nonzero_bits (f, GET_MODE (f))
6694 & ~GET_MODE_MASK (inner_mode))
6695 == 0))
6696 {
6697 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6698 extend_op = ZERO_EXTEND;
6699 m = inner_mode;
6700 }
6701
6702 if (z)
6703 {
6704 machine_mode cm = m;
6705 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6706 && GET_MODE (c1) != VOIDmode)
6707 cm = GET_MODE (c1);
6708 temp = subst (x: simplify_gen_relational (code: true_code, mode: cm, VOIDmode,
6709 op0: cond_op0, op1: cond_op1),
6710 from: pc_rtx, to: pc_rtx, in_dest: false, in_cond: false, unique_copy: false);
6711 temp = simplify_gen_binary (code: MULT, mode: cm, op0: temp,
6712 op1: simplify_gen_binary (code: MULT, mode: cm, op0: c1,
6713 op1: const_true_rtx));
6714 temp = subst (x: temp, from: pc_rtx, to: pc_rtx, in_dest: false, in_cond: false, unique_copy: false);
6715 temp = simplify_gen_binary (code: op, mode: m, gen_lowpart (m, z), op1: temp);
6716
6717 if (extend_op != UNKNOWN)
6718 temp = simplify_gen_unary (code: extend_op, mode: int_mode, op: temp, op_mode: m);
6719
6720 return temp;
6721 }
6722 }
6723
6724 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6725 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6726 negation of a single bit, we can convert this operation to a shift. We
6727 can actually do this more generally, but it doesn't seem worth it. */
6728
6729 if (true_code == NE
6730 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
6731 && XEXP (cond, 1) == const0_rtx
6732 && false_rtx == const0_rtx
6733 && CONST_INT_P (true_rtx)
6734 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6735 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6736 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6737 == GET_MODE_PRECISION (mode: int_mode))
6738 && (i = exact_log2 (x: -UINTVAL (true_rtx))) >= 0)))
6739 return
6740 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6741 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6742
6743 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6744 non-zero bit in A is C1. */
6745 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6746 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6747 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
6748 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), result: &inner_mode)
6749 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6750 == nonzero_bits (XEXP (cond, 0), inner_mode)
6751 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6752 {
6753 rtx val = XEXP (cond, 0);
6754 if (inner_mode == int_mode)
6755 return val;
6756 else if (GET_MODE_PRECISION (mode: inner_mode) < GET_MODE_PRECISION (mode: int_mode))
6757 return simplify_gen_unary (code: ZERO_EXTEND, mode: int_mode, op: val, op_mode: inner_mode);
6758 }
6759
6760 return x;
6761}
6762
6763/* Simplify X, a SET expression. Return the new expression. */
6764
6765static rtx
6766simplify_set (rtx x)
6767{
6768 rtx src = SET_SRC (x);
6769 rtx dest = SET_DEST (x);
6770 machine_mode mode
6771 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6772 rtx_insn *other_insn;
6773 rtx *cc_use;
6774 scalar_int_mode int_mode;
6775
6776 /* (set (pc) (return)) gets written as (return). */
6777 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6778 return src;
6779
6780 /* Now that we know for sure which bits of SRC we are using, see if we can
6781 simplify the expression for the object knowing that we only need the
6782 low-order bits. */
6783
6784 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6785 {
6786 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, false);
6787 SUBST (SET_SRC (x), src);
6788 }
6789
6790 /* If the source is a COMPARE, look for the use of the comparison result
6791 and try to simplify it unless we already have used undobuf.other_insn. */
6792 if ((GET_MODE_CLASS (mode) == MODE_CC || GET_CODE (src) == COMPARE)
6793 && (cc_use = find_single_use (dest, insn: subst_insn, ploc: &other_insn)) != 0
6794 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6795 && COMPARISON_P (*cc_use)
6796 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6797 {
6798 enum rtx_code old_code = GET_CODE (*cc_use);
6799 enum rtx_code new_code;
6800 rtx op0, op1, tmp;
6801 bool other_changed = false;
6802 rtx inner_compare = NULL_RTX;
6803 machine_mode compare_mode = GET_MODE (dest);
6804
6805 if (GET_CODE (src) == COMPARE)
6806 {
6807 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6808 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6809 {
6810 inner_compare = op0;
6811 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6812 }
6813 }
6814 else
6815 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6816
6817 tmp = simplify_relational_operation (code: old_code, mode: compare_mode, VOIDmode,
6818 op0, op1);
6819 if (!tmp)
6820 new_code = old_code;
6821 else if (!CONSTANT_P (tmp))
6822 {
6823 new_code = GET_CODE (tmp);
6824 op0 = XEXP (tmp, 0);
6825 op1 = XEXP (tmp, 1);
6826 }
6827 else
6828 {
6829 rtx pat = PATTERN (insn: other_insn);
6830 undobuf.other_insn = other_insn;
6831 SUBST (*cc_use, tmp);
6832
6833 /* Attempt to simplify CC user. */
6834 if (GET_CODE (pat) == SET)
6835 {
6836 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6837 if (new_rtx != NULL_RTX)
6838 SUBST (SET_SRC (pat), new_rtx);
6839 }
6840
6841 /* Convert X into a no-op move. */
6842 SUBST (SET_DEST (x), pc_rtx);
6843 SUBST (SET_SRC (x), pc_rtx);
6844 return x;
6845 }
6846
6847 /* Simplify our comparison, if possible. */
6848 new_code = simplify_comparison (new_code, &op0, &op1);
6849
6850#ifdef SELECT_CC_MODE
6851 /* If this machine has CC modes other than CCmode, check to see if we
6852 need to use a different CC mode here. */
6853 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6854 compare_mode = GET_MODE (op0);
6855 else if (inner_compare
6856 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6857 && new_code == old_code
6858 && op0 == XEXP (inner_compare, 0)
6859 && op1 == XEXP (inner_compare, 1))
6860 compare_mode = GET_MODE (inner_compare);
6861 else
6862 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6863
6864 /* If the mode changed, we have to change SET_DEST, the mode in the
6865 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6866 a hard register, just build new versions with the proper mode. If it
6867 is a pseudo, we lose unless it is only time we set the pseudo, in
6868 which case we can safely change its mode. */
6869 if (compare_mode != GET_MODE (dest))
6870 {
6871 if (can_change_dest_mode (x: dest, added_sets: 0, mode: compare_mode))
6872 {
6873 unsigned int regno = REGNO (dest);
6874 rtx new_dest;
6875
6876 if (regno < FIRST_PSEUDO_REGISTER)
6877 new_dest = gen_rtx_REG (compare_mode, regno);
6878 else
6879 {
6880 subst_mode (regno, newval: compare_mode);
6881 new_dest = regno_reg_rtx[regno];
6882 }
6883
6884 SUBST (SET_DEST (x), new_dest);
6885 SUBST (XEXP (*cc_use, 0), new_dest);
6886 other_changed = true;
6887
6888 dest = new_dest;
6889 }
6890 }
6891#endif /* SELECT_CC_MODE */
6892
6893 /* If the code changed, we have to build a new comparison in
6894 undobuf.other_insn. */
6895 if (new_code != old_code)
6896 {
6897 bool other_changed_previously = other_changed;
6898 unsigned HOST_WIDE_INT mask;
6899 rtx old_cc_use = *cc_use;
6900
6901 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6902 dest, const0_rtx));
6903 other_changed = true;
6904
6905 /* If the only change we made was to change an EQ into an NE or
6906 vice versa, OP0 has only one bit that might be nonzero, and OP1
6907 is zero, check if changing the user of the condition code will
6908 produce a valid insn. If it won't, we can keep the original code
6909 in that insn by surrounding our operation with an XOR. */
6910
6911 if (((old_code == NE && new_code == EQ)
6912 || (old_code == EQ && new_code == NE))
6913 && ! other_changed_previously && op1 == const0_rtx
6914 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6915 && pow2p_hwi (x: mask = nonzero_bits (op0, GET_MODE (op0))))
6916 {
6917 rtx pat = PATTERN (insn: other_insn), note = 0;
6918
6919 if ((recog_for_combine (&pat, other_insn, &note) < 0
6920 && ! check_asm_operands (pat)))
6921 {
6922 *cc_use = old_cc_use;
6923 other_changed = false;
6924
6925 op0 = simplify_gen_binary (code: XOR, GET_MODE (op0), op0,
6926 op1: gen_int_mode (mask,
6927 GET_MODE (op0)));
6928 }
6929 }
6930 }
6931
6932 if (other_changed)
6933 undobuf.other_insn = other_insn;
6934
6935 /* Don't generate a compare of a CC with 0, just use that CC. */
6936 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6937 {
6938 SUBST (SET_SRC (x), op0);
6939 src = SET_SRC (x);
6940 }
6941 /* Otherwise, if we didn't previously have the same COMPARE we
6942 want, create it from scratch. */
6943 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6944 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6945 {
6946 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6947 src = SET_SRC (x);
6948 }
6949 }
6950 else
6951 {
6952 /* Get SET_SRC in a form where we have placed back any
6953 compound expressions. Then do the checks below. */
6954 src = make_compound_operation (src, SET);
6955 SUBST (SET_SRC (x), src);
6956 }
6957
6958 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6959 and X being a REG or (subreg (reg)), we may be able to convert this to
6960 (set (subreg:m2 x) (op)).
6961
6962 We can always do this if M1 is narrower than M2 because that means that
6963 we only care about the low bits of the result.
6964
6965 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6966 perform a narrower operation than requested since the high-order bits will
6967 be undefined. On machine where it is defined, this transformation is safe
6968 as long as M1 and M2 have the same number of words. */
6969
6970 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6971 && !OBJECT_P (SUBREG_REG (src))
6972 && (known_equal_after_align_up
6973 (a: GET_MODE_SIZE (GET_MODE (src)),
6974 b: GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
6975 UNITS_PER_WORD))
6976 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (x: src))
6977 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6978 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6979 GET_MODE (SUBREG_REG (src)),
6980 GET_MODE (src)))
6981 && (REG_P (dest)
6982 || (GET_CODE (dest) == SUBREG
6983 && REG_P (SUBREG_REG (dest)))))
6984 {
6985 SUBST (SET_DEST (x),
6986 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6987 dest));
6988 SUBST (SET_SRC (x), SUBREG_REG (src));
6989
6990 src = SET_SRC (x), dest = SET_DEST (x);
6991 }
6992
6993 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6994 would require a paradoxical subreg. Replace the subreg with a
6995 zero_extend to avoid the reload that would otherwise be required.
6996 Don't do this unless we have a scalar integer mode, otherwise the
6997 transformation is incorrect. */
6998
6999 enum rtx_code extend_op;
7000 if (paradoxical_subreg_p (x: src)
7001 && MEM_P (SUBREG_REG (src))
7002 && SCALAR_INT_MODE_P (GET_MODE (src))
7003 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7004 {
7005 SUBST (SET_SRC (x),
7006 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7007
7008 src = SET_SRC (x);
7009 }
7010
7011 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7012 are comparing an item known to be 0 or -1 against 0, use a logical
7013 operation instead. Check for one of the arms being an IOR of the other
7014 arm with some value. We compute three terms to be IOR'ed together. In
7015 practice, at most two will be nonzero. Then we do the IOR's. */
7016
7017 if (GET_CODE (dest) != PC
7018 && GET_CODE (src) == IF_THEN_ELSE
7019 && is_int_mode (GET_MODE (src), int_mode: &int_mode)
7020 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7021 && XEXP (XEXP (src, 0), 1) == const0_rtx
7022 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7023 && (!HAVE_conditional_move
7024 || ! can_conditionally_move_p (mode: int_mode))
7025 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7026 == GET_MODE_PRECISION (mode: int_mode))
7027 && ! side_effects_p (src))
7028 {
7029 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7030 ? XEXP (src, 1) : XEXP (src, 2));
7031 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7032 ? XEXP (src, 2) : XEXP (src, 1));
7033 rtx term1 = const0_rtx, term2, term3;
7034
7035 if (GET_CODE (true_rtx) == IOR
7036 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7037 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7038 else if (GET_CODE (true_rtx) == IOR
7039 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7040 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7041 else if (GET_CODE (false_rtx) == IOR
7042 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7043 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7044 else if (GET_CODE (false_rtx) == IOR
7045 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7046 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7047
7048 term2 = simplify_gen_binary (code: AND, mode: int_mode,
7049 XEXP (XEXP (src, 0), 0), op1: true_rtx);
7050 term3 = simplify_gen_binary (code: AND, mode: int_mode,
7051 op0: simplify_gen_unary (code: NOT, mode: int_mode,
7052 XEXP (XEXP (src, 0), 0),
7053 op_mode: int_mode),
7054 op1: false_rtx);
7055
7056 SUBST (SET_SRC (x),
7057 simplify_gen_binary (IOR, int_mode,
7058 simplify_gen_binary (IOR, int_mode,
7059 term1, term2),
7060 term3));
7061
7062 src = SET_SRC (x);
7063 }
7064
7065 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7066 whole thing fail. */
7067 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7068 return src;
7069 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7070 return dest;
7071 else
7072 /* Convert this into a field assignment operation, if possible. */
7073 return make_field_assignment (x);
7074}
7075
7076/* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7077 result. */
7078
7079static rtx
7080simplify_logical (rtx x)
7081{
7082 rtx op0 = XEXP (x, 0);
7083 rtx op1 = XEXP (x, 1);
7084 scalar_int_mode mode;
7085
7086 switch (GET_CODE (x))
7087 {
7088 case AND:
7089 /* We can call simplify_and_const_int only if we don't lose
7090 any (sign) bits when converting INTVAL (op1) to
7091 "unsigned HOST_WIDE_INT". */
7092 if (is_a <scalar_int_mode> (GET_MODE (x), result: &mode)
7093 && CONST_INT_P (op1)
7094 && (HWI_COMPUTABLE_MODE_P (mode)
7095 || INTVAL (op1) > 0))
7096 {
7097 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7098 if (GET_CODE (x) != AND)
7099 return x;
7100
7101 op0 = XEXP (x, 0);
7102 op1 = XEXP (x, 1);
7103 }
7104
7105 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7106 apply the distributive law and then the inverse distributive
7107 law to see if things simplify. */
7108 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7109 {
7110 rtx result = distribute_and_simplify_rtx (x, 0);
7111 if (result)
7112 return result;
7113 }
7114 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7115 {
7116 rtx result = distribute_and_simplify_rtx (x, 1);
7117 if (result)
7118 return result;
7119 }
7120 break;
7121
7122 case IOR:
7123 /* If we have (ior (and A B) C), apply the distributive law and then
7124 the inverse distributive law to see if things simplify. */
7125
7126 if (GET_CODE (op0) == AND)
7127 {
7128 rtx result = distribute_and_simplify_rtx (x, 0);
7129 if (result)
7130 return result;
7131 }
7132
7133 if (GET_CODE (op1) == AND)
7134 {
7135 rtx result = distribute_and_simplify_rtx (x, 1);
7136 if (result)
7137 return result;
7138 }
7139 break;
7140
7141 default:
7142 gcc_unreachable ();
7143 }
7144
7145 return x;
7146}
7147
7148/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7149 operations" because they can be replaced with two more basic operations.
7150 ZERO_EXTEND is also considered "compound" because it can be replaced with
7151 an AND operation, which is simpler, though only one operation.
7152
7153 The function expand_compound_operation is called with an rtx expression
7154 and will convert it to the appropriate shifts and AND operations,
7155 simplifying at each stage.
7156
7157 The function make_compound_operation is called to convert an expression
7158 consisting of shifts and ANDs into the equivalent compound expression.
7159 It is the inverse of this function, loosely speaking. */
7160
7161static rtx
7162expand_compound_operation (rtx x)
7163{
7164 unsigned HOST_WIDE_INT pos = 0, len;
7165 bool unsignedp = false;
7166 unsigned int modewidth;
7167 rtx tem;
7168 scalar_int_mode inner_mode;
7169
7170 switch (GET_CODE (x))
7171 {
7172 case ZERO_EXTEND:
7173 unsignedp = true;
7174 /* FALLTHRU */
7175 case SIGN_EXTEND:
7176 /* We can't necessarily use a const_int for a multiword mode;
7177 it depends on implicitly extending the value.
7178 Since we don't know the right way to extend it,
7179 we can't tell whether the implicit way is right.
7180
7181 Even for a mode that is no wider than a const_int,
7182 we can't win, because we need to sign extend one of its bits through
7183 the rest of it, and we don't know which bit. */
7184 if (CONST_INT_P (XEXP (x, 0)))
7185 return x;
7186
7187 /* Reject modes that aren't scalar integers because turning vector
7188 or complex modes into shifts causes problems. */
7189 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), result: &inner_mode))
7190 return x;
7191
7192 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7193 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7194 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7195 reloaded. If not for that, MEM's would very rarely be safe.
7196
7197 Reject modes bigger than a word, because we might not be able
7198 to reference a two-register group starting with an arbitrary register
7199 (and currently gen_lowpart might crash for a SUBREG). */
7200
7201 if (GET_MODE_SIZE (mode: inner_mode) > UNITS_PER_WORD)
7202 return x;
7203
7204 len = GET_MODE_PRECISION (mode: inner_mode);
7205 /* If the inner object has VOIDmode (the only way this can happen
7206 is if it is an ASM_OPERANDS), we can't do anything since we don't
7207 know how much masking to do. */
7208 if (len == 0)
7209 return x;
7210
7211 break;
7212
7213 case ZERO_EXTRACT:
7214 unsignedp = true;
7215
7216 /* fall through */
7217
7218 case SIGN_EXTRACT:
7219 /* If the operand is a CLOBBER, just return it. */
7220 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7221 return XEXP (x, 0);
7222
7223 if (!CONST_INT_P (XEXP (x, 1))
7224 || !CONST_INT_P (XEXP (x, 2)))
7225 return x;
7226
7227 /* Reject modes that aren't scalar integers because turning vector
7228 or complex modes into shifts causes problems. */
7229 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), result: &inner_mode))
7230 return x;
7231
7232 len = INTVAL (XEXP (x, 1));
7233 pos = INTVAL (XEXP (x, 2));
7234
7235 /* This should stay within the object being extracted, fail otherwise. */
7236 if (len + pos > GET_MODE_PRECISION (mode: inner_mode))
7237 return x;
7238
7239 if (BITS_BIG_ENDIAN)
7240 pos = GET_MODE_PRECISION (mode: inner_mode) - len - pos;
7241
7242 break;
7243
7244 default:
7245 return x;
7246 }
7247
7248 /* We've rejected non-scalar operations by now. */
7249 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7250
7251 /* Convert sign extension to zero extension, if we know that the high
7252 bit is not set, as this is easier to optimize. It will be converted
7253 back to cheaper alternative in make_extraction. */
7254 if (GET_CODE (x) == SIGN_EXTEND
7255 && HWI_COMPUTABLE_MODE_P (mode)
7256 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7257 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7258 == 0))
7259 {
7260 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7261 rtx temp2 = expand_compound_operation (x: temp);
7262
7263 /* Make sure this is a profitable operation. */
7264 if (set_src_cost (x, mode, speed_p: optimize_this_for_speed_p)
7265 > set_src_cost (x: temp2, mode, speed_p: optimize_this_for_speed_p))
7266 return temp2;
7267 else if (set_src_cost (x, mode, speed_p: optimize_this_for_speed_p)
7268 > set_src_cost (x: temp, mode, speed_p: optimize_this_for_speed_p))
7269 return temp;
7270 else
7271 return x;
7272 }
7273
7274 /* We can optimize some special cases of ZERO_EXTEND. */
7275 if (GET_CODE (x) == ZERO_EXTEND)
7276 {
7277 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7278 know that the last value didn't have any inappropriate bits
7279 set. */
7280 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7281 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7282 && HWI_COMPUTABLE_MODE_P (mode)
7283 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7284 & ~GET_MODE_MASK (inner_mode)) == 0)
7285 return XEXP (XEXP (x, 0), 0);
7286
7287 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7288 if (GET_CODE (XEXP (x, 0)) == SUBREG
7289 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7290 && subreg_lowpart_p (XEXP (x, 0))
7291 && HWI_COMPUTABLE_MODE_P (mode)
7292 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7293 & ~GET_MODE_MASK (inner_mode)) == 0)
7294 return SUBREG_REG (XEXP (x, 0));
7295
7296 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7297 is a comparison and STORE_FLAG_VALUE permits. This is like
7298 the first case, but it works even when MODE is larger
7299 than HOST_WIDE_INT. */
7300 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7301 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7302 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7303 && GET_MODE_PRECISION (mode: inner_mode) <= HOST_BITS_PER_WIDE_INT
7304 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7305 return XEXP (XEXP (x, 0), 0);
7306
7307 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7308 if (GET_CODE (XEXP (x, 0)) == SUBREG
7309 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7310 && subreg_lowpart_p (XEXP (x, 0))
7311 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7312 && GET_MODE_PRECISION (mode: inner_mode) <= HOST_BITS_PER_WIDE_INT
7313 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7314 return SUBREG_REG (XEXP (x, 0));
7315
7316 }
7317
7318 /* If we reach here, we want to return a pair of shifts. The inner
7319 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7320 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7321 logical depending on the value of UNSIGNEDP.
7322
7323 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7324 converted into an AND of a shift.
7325
7326 We must check for the case where the left shift would have a negative
7327 count. This can happen in a case like (x >> 31) & 255 on machines
7328 that can't shift by a constant. On those machines, we would first
7329 combine the shift with the AND to produce a variable-position
7330 extraction. Then the constant of 31 would be substituted in
7331 to produce such a position. */
7332
7333 modewidth = GET_MODE_PRECISION (mode);
7334 if (modewidth >= pos + len)
7335 {
7336 tem = gen_lowpart (mode, XEXP (x, 0));
7337 if (!tem || GET_CODE (tem) == CLOBBER)
7338 return x;
7339 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7340 tem, modewidth - pos - len);
7341 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7342 mode, tem, modewidth - len);
7343 }
7344 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7345 {
7346 tem = simplify_shift_const (NULL_RTX, LSHIFTRT, inner_mode,
7347 XEXP (x, 0), pos);
7348 tem = gen_lowpart (mode, tem);
7349 if (!tem || GET_CODE (tem) == CLOBBER)
7350 return x;
7351 tem = simplify_and_const_int (NULL_RTX, mode, tem,
7352 (HOST_WIDE_INT_1U << len) - 1);
7353 }
7354 else
7355 /* Any other cases we can't handle. */
7356 return x;
7357
7358 /* If we couldn't do this for some reason, return the original
7359 expression. */
7360 if (GET_CODE (tem) == CLOBBER)
7361 return x;
7362
7363 return tem;
7364}
7365
7366/* X is a SET which contains an assignment of one object into
7367 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7368 or certain SUBREGS). If possible, convert it into a series of
7369 logical operations.
7370
7371 We half-heartedly support variable positions, but do not at all
7372 support variable lengths. */
7373
7374static const_rtx
7375expand_field_assignment (const_rtx x)
7376{
7377 rtx inner;
7378 rtx pos; /* Always counts from low bit. */
7379 int len, inner_len;
7380 rtx mask, cleared, masked;
7381 scalar_int_mode compute_mode;
7382
7383 /* Loop until we find something we can't simplify. */
7384 while (1)
7385 {
7386 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7387 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7388 {
7389 rtx x0 = XEXP (SET_DEST (x), 0);
7390 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (const_value: &len))
7391 break;
7392 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7393 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7394 MAX_MODE_INT);
7395 }
7396 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7397 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7398 {
7399 inner = XEXP (SET_DEST (x), 0);
7400 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (const_value: &inner_len))
7401 break;
7402
7403 len = INTVAL (XEXP (SET_DEST (x), 1));
7404 pos = XEXP (SET_DEST (x), 2);
7405
7406 /* A constant position should stay within the width of INNER. */
7407 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7408 break;
7409
7410 if (BITS_BIG_ENDIAN)
7411 {
7412 if (CONST_INT_P (pos))
7413 pos = GEN_INT (inner_len - len - INTVAL (pos));
7414 else if (GET_CODE (pos) == MINUS
7415 && CONST_INT_P (XEXP (pos, 1))
7416 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7417 /* If position is ADJUST - X, new position is X. */
7418 pos = XEXP (pos, 0);
7419 else
7420 pos = simplify_gen_binary (code: MINUS, GET_MODE (pos),
7421 op0: gen_int_mode (inner_len - len,
7422 GET_MODE (pos)),
7423 op1: pos);
7424 }
7425 }
7426
7427 /* If the destination is a subreg that overwrites the whole of the inner
7428 register, we can move the subreg to the source. */
7429 else if (GET_CODE (SET_DEST (x)) == SUBREG
7430 /* We need SUBREGs to compute nonzero_bits properly. */
7431 && nonzero_sign_valid
7432 && !read_modify_subreg_p (SET_DEST (x)))
7433 {
7434 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7435 gen_lowpart
7436 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7437 SET_SRC (x)));
7438 continue;
7439 }
7440 else
7441 break;
7442
7443 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7444 inner = SUBREG_REG (inner);
7445
7446 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7447 if (!is_a <scalar_int_mode> (GET_MODE (inner), result: &compute_mode))
7448 {
7449 /* Don't do anything for vector or complex integral types. */
7450 if (! FLOAT_MODE_P (GET_MODE (inner)))
7451 break;
7452
7453 /* Try to find an integral mode to pun with. */
7454 if (!int_mode_for_size (size: GET_MODE_BITSIZE (GET_MODE (inner)), limit: 0)
7455 .exists (mode: &compute_mode))
7456 break;
7457
7458 inner = gen_lowpart (compute_mode, inner);
7459 }
7460
7461 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7462 if (len >= HOST_BITS_PER_WIDE_INT)
7463 break;
7464
7465 /* Don't try to compute in too wide unsupported modes. */
7466 if (!targetm.scalar_mode_supported_p (compute_mode))
7467 break;
7468
7469 /* Now compute the equivalent expression. Make a copy of INNER
7470 for the SET_DEST in case it is a MEM into which we will substitute;
7471 we don't want shared RTL in that case. */
7472 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7473 compute_mode);
7474 cleared = simplify_gen_binary (code: AND, mode: compute_mode,
7475 op0: simplify_gen_unary (code: NOT, mode: compute_mode,
7476 op: simplify_gen_binary (code: ASHIFT,
7477 mode: compute_mode,
7478 op0: mask, op1: pos),
7479 op_mode: compute_mode),
7480 op1: inner);
7481 masked = simplify_gen_binary (code: ASHIFT, mode: compute_mode,
7482 op0: simplify_gen_binary (
7483 code: AND, mode: compute_mode,
7484 gen_lowpart (compute_mode, SET_SRC (x)),
7485 op1: mask),
7486 op1: pos);
7487
7488 x = gen_rtx_SET (copy_rtx (inner),
7489 simplify_gen_binary (IOR, compute_mode,
7490 cleared, masked));
7491 }
7492
7493 return x;
7494}
7495
7496/* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7497 it is an RTX that represents the (variable) starting position; otherwise,
7498 POS is the (constant) starting bit position. Both are counted from the LSB.
7499
7500 UNSIGNEDP is true for an unsigned reference and zero for a signed one.
7501
7502 IN_DEST is true if this is a reference in the destination of a SET.
7503 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7504 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7505 be used.
7506
7507 IN_COMPARE is true if we are in a COMPARE. This means that a
7508 ZERO_EXTRACT should be built even for bits starting at bit 0.
7509
7510 MODE is the desired mode of the result (if IN_DEST == 0).
7511
7512 The result is an RTX for the extraction or NULL_RTX if the target
7513 can't handle it. */
7514
7515static rtx
7516make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7517 rtx pos_rtx, unsigned HOST_WIDE_INT len, bool unsignedp,
7518 bool in_dest, bool in_compare)
7519{
7520 /* This mode describes the size of the storage area
7521 to fetch the overall value from. Within that, we
7522 ignore the POS lowest bits, etc. */
7523 machine_mode is_mode = GET_MODE (inner);
7524 machine_mode inner_mode;
7525 scalar_int_mode wanted_inner_mode;
7526 scalar_int_mode wanted_inner_reg_mode = word_mode;
7527 scalar_int_mode pos_mode = word_mode;
7528 machine_mode extraction_mode = word_mode;
7529 rtx new_rtx = 0;
7530 rtx orig_pos_rtx = pos_rtx;
7531 HOST_WIDE_INT orig_pos;
7532
7533 if (pos_rtx && CONST_INT_P (pos_rtx))
7534 pos = INTVAL (pos_rtx), pos_rtx = 0;
7535
7536 if (GET_CODE (inner) == SUBREG
7537 && subreg_lowpart_p (inner)
7538 && (paradoxical_subreg_p (x: inner)
7539 /* If trying or potentionally trying to extract
7540 bits outside of is_mode, don't look through
7541 non-paradoxical SUBREGs. See PR82192. */
7542 || (pos_rtx == NULL_RTX
7543 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7544 {
7545 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7546 consider just the QI as the memory to extract from.
7547 The subreg adds or removes high bits; its mode is
7548 irrelevant to the meaning of this extraction,
7549 since POS and LEN count from the lsb. */
7550 if (MEM_P (SUBREG_REG (inner)))
7551 is_mode = GET_MODE (SUBREG_REG (inner));
7552 inner = SUBREG_REG (inner);
7553 }
7554 else if (GET_CODE (inner) == ASHIFT
7555 && CONST_INT_P (XEXP (inner, 1))
7556 && pos_rtx == 0 && pos == 0
7557 && len > UINTVAL (XEXP (inner, 1)))
7558 {
7559 /* We're extracting the least significant bits of an rtx
7560 (ashift X (const_int C)), where LEN > C. Extract the
7561 least significant (LEN - C) bits of X, giving an rtx
7562 whose mode is MODE, then shift it left C times. */
7563 new_rtx = make_extraction (mode, XEXP (inner, 0),
7564 pos: 0, pos_rtx: 0, len: len - INTVAL (XEXP (inner, 1)),
7565 unsignedp, in_dest, in_compare);
7566 if (new_rtx != 0)
7567 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7568 }
7569 else if (GET_CODE (inner) == MULT
7570 && CONST_INT_P (XEXP (inner, 1))
7571 && pos_rtx == 0 && pos == 0)
7572 {
7573 /* We're extracting the least significant bits of an rtx
7574 (mult X (const_int 2^C)), where LEN > C. Extract the
7575 least significant (LEN - C) bits of X, giving an rtx
7576 whose mode is MODE, then multiply it by 2^C. */
7577 const HOST_WIDE_INT shift_amt = exact_log2 (INTVAL (XEXP (inner, 1)));
7578 if (IN_RANGE (shift_amt, 1, len - 1))
7579 {
7580 new_rtx = make_extraction (mode, XEXP (inner, 0),
7581 pos: 0, pos_rtx: 0, len: len - shift_amt,
7582 unsignedp, in_dest, in_compare);
7583 if (new_rtx)
7584 return gen_rtx_MULT (mode, new_rtx, XEXP (inner, 1));
7585 }
7586 }
7587 else if (GET_CODE (inner) == TRUNCATE
7588 /* If trying or potentionally trying to extract
7589 bits outside of is_mode, don't look through
7590 TRUNCATE. See PR82192. */
7591 && pos_rtx == NULL_RTX
7592 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7593 inner = XEXP (inner, 0);
7594
7595 inner_mode = GET_MODE (inner);
7596
7597 /* See if this can be done without an extraction. We never can if the
7598 width of the field is not the same as that of some integer mode. For
7599 registers, we can only avoid the extraction if the position is at the
7600 low-order bit and this is either not in the destination or we have the
7601 appropriate STRICT_LOW_PART operation available.
7602
7603 For MEM, we can avoid an extract if the field starts on an appropriate
7604 boundary and we can change the mode of the memory reference. */
7605
7606 scalar_int_mode tmode;
7607 if (int_mode_for_size (size: len, limit: 1).exists (mode: &tmode)
7608 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7609 && !MEM_P (inner)
7610 && (pos == 0 || REG_P (inner))
7611 && (inner_mode == tmode
7612 || !REG_P (inner)
7613 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7614 || reg_truncated_to_mode (tmode, inner))
7615 && (! in_dest
7616 || (REG_P (inner)
7617 && have_insn_for (STRICT_LOW_PART, tmode))))
7618 || (MEM_P (inner) && pos_rtx == 0
7619 && (pos
7620 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7621 : BITS_PER_UNIT)) == 0
7622 /* We can't do this if we are widening INNER_MODE (it
7623 may not be aligned, for one thing). */
7624 && !paradoxical_subreg_p (outermode: tmode, innermode: inner_mode)
7625 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7626 && (inner_mode == tmode
7627 || (! mode_dependent_address_p (XEXP (inner, 0),
7628 MEM_ADDR_SPACE (inner))
7629 && ! MEM_VOLATILE_P (inner))))))
7630 {
7631 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7632 field. If the original and current mode are the same, we need not
7633 adjust the offset. Otherwise, we do if bytes big endian.
7634
7635 If INNER is not a MEM, get a piece consisting of just the field
7636 of interest (in this case POS % BITS_PER_WORD must be 0). */
7637
7638 if (MEM_P (inner))
7639 {
7640 poly_int64 offset;
7641
7642 /* POS counts from lsb, but make OFFSET count in memory order. */
7643 if (BYTES_BIG_ENDIAN)
7644 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7645 - len - pos);
7646 else
7647 offset = pos / BITS_PER_UNIT;
7648
7649 new_rtx = adjust_address_nv (inner, tmode, offset);
7650 }
7651 else if (REG_P (inner))
7652 {
7653 if (tmode != inner_mode)
7654 {
7655 /* We can't call gen_lowpart in a DEST since we
7656 always want a SUBREG (see below) and it would sometimes
7657 return a new hard register. */
7658 if (pos || in_dest)
7659 {
7660 poly_uint64 offset
7661 = subreg_offset_from_lsb (outer_mode: tmode, inner_mode, lsb_shift: pos);
7662
7663 /* Avoid creating invalid subregs, for example when
7664 simplifying (x>>32)&255. */
7665 if (!validate_subreg (tmode, inner_mode, inner, offset))
7666 return NULL_RTX;
7667
7668 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7669 }
7670 else
7671 new_rtx = gen_lowpart (tmode, inner);
7672 }
7673 else
7674 new_rtx = inner;
7675 }
7676 else
7677 new_rtx = force_to_mode (inner, tmode,
7678 len >= HOST_BITS_PER_WIDE_INT
7679 ? HOST_WIDE_INT_M1U
7680 : (HOST_WIDE_INT_1U << len) - 1, false);
7681
7682 /* If this extraction is going into the destination of a SET,
7683 make a STRICT_LOW_PART unless we made a MEM. */
7684
7685 if (in_dest)
7686 return (MEM_P (new_rtx) ? new_rtx
7687 : (GET_CODE (new_rtx) != SUBREG
7688 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7689 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7690
7691 if (mode == tmode)
7692 return new_rtx;
7693
7694 if (CONST_SCALAR_INT_P (new_rtx))
7695 return simplify_unary_operation (code: unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7696 mode, op: new_rtx, op_mode: tmode);
7697
7698 /* If we know that no extraneous bits are set, and that the high
7699 bit is not set, convert the extraction to the cheaper of
7700 sign and zero extension, that are equivalent in these cases. */
7701 if (flag_expensive_optimizations
7702 && (HWI_COMPUTABLE_MODE_P (mode: tmode)
7703 && ((nonzero_bits (new_rtx, tmode)
7704 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7705 == 0)))
7706 {
7707 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7708 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7709
7710 /* Prefer ZERO_EXTENSION, since it gives more information to
7711 backends. */
7712 if (set_src_cost (x: temp, mode, speed_p: optimize_this_for_speed_p)
7713 <= set_src_cost (x: temp1, mode, speed_p: optimize_this_for_speed_p))
7714 return temp;
7715 return temp1;
7716 }
7717
7718 /* Otherwise, sign- or zero-extend unless we already are in the
7719 proper mode. */
7720
7721 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7722 mode, new_rtx));
7723 }
7724
7725 /* Unless this is a COMPARE or we have a funny memory reference,
7726 don't do anything with zero-extending field extracts starting at
7727 the low-order bit since they are simple AND operations. */
7728 if (pos_rtx == 0 && pos == 0 && ! in_dest
7729 && ! in_compare && unsignedp)
7730 return 0;
7731
7732 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7733 if the position is not a constant and the length is not 1. In all
7734 other cases, we would only be going outside our object in cases when
7735 an original shift would have been undefined. */
7736 if (MEM_P (inner)
7737 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7738 || (pos_rtx != 0 && len != 1)))
7739 return 0;
7740
7741 enum extraction_pattern pattern = (in_dest ? EP_insv
7742 : unsignedp ? EP_extzv : EP_extv);
7743
7744 /* If INNER is not from memory, we want it to have the mode of a register
7745 extraction pattern's structure operand, or word_mode if there is no
7746 such pattern. The same applies to extraction_mode and pos_mode
7747 and their respective operands.
7748
7749 For memory, assume that the desired extraction_mode and pos_mode
7750 are the same as for a register operation, since at present we don't
7751 have named patterns for aligned memory structures. */
7752 class extraction_insn insn;
7753 unsigned int inner_size;
7754 if (GET_MODE_BITSIZE (mode: inner_mode).is_constant (const_value: &inner_size)
7755 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7756 {
7757 wanted_inner_reg_mode = insn.struct_mode.require ();
7758 pos_mode = insn.pos_mode;
7759 extraction_mode = insn.field_mode;
7760 }
7761
7762 /* Never narrow an object, since that might not be safe. */
7763
7764 if (mode != VOIDmode
7765 && partial_subreg_p (outermode: extraction_mode, innermode: mode))
7766 extraction_mode = mode;
7767
7768 /* Punt if len is too large for extraction_mode. */
7769 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7770 return NULL_RTX;
7771
7772 if (!MEM_P (inner))
7773 wanted_inner_mode = wanted_inner_reg_mode;
7774 else
7775 {
7776 /* Be careful not to go beyond the extracted object and maintain the
7777 natural alignment of the memory. */
7778 wanted_inner_mode = smallest_int_mode_for_size (size: len);
7779 while (pos % GET_MODE_BITSIZE (mode: wanted_inner_mode) + len
7780 > GET_MODE_BITSIZE (mode: wanted_inner_mode))
7781 wanted_inner_mode = GET_MODE_WIDER_MODE (m: wanted_inner_mode).require ();
7782 }
7783
7784 orig_pos = pos;
7785
7786 if (BITS_BIG_ENDIAN)
7787 {
7788 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7789 BITS_BIG_ENDIAN style. If position is constant, compute new
7790 position. Otherwise, build subtraction.
7791 Note that POS is relative to the mode of the original argument.
7792 If it's a MEM we need to recompute POS relative to that.
7793 However, if we're extracting from (or inserting into) a register,
7794 we want to recompute POS relative to wanted_inner_mode. */
7795 int width;
7796 if (!MEM_P (inner))
7797 width = GET_MODE_BITSIZE (mode: wanted_inner_mode);
7798 else if (!GET_MODE_BITSIZE (mode: is_mode).is_constant (const_value: &width))
7799 return NULL_RTX;
7800
7801 if (pos_rtx == 0)
7802 pos = width - len - pos;
7803 else
7804 pos_rtx
7805 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7806 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7807 pos_rtx);
7808 /* POS may be less than 0 now, but we check for that below.
7809 Note that it can only be less than 0 if !MEM_P (inner). */
7810 }
7811
7812 /* If INNER has a wider mode, and this is a constant extraction, try to
7813 make it smaller and adjust the byte to point to the byte containing
7814 the value. */
7815 if (wanted_inner_mode != VOIDmode
7816 && inner_mode != wanted_inner_mode
7817 && ! pos_rtx
7818 && partial_subreg_p (outermode: wanted_inner_mode, innermode: is_mode)
7819 && MEM_P (inner)
7820 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7821 && ! MEM_VOLATILE_P (inner))
7822 {
7823 poly_int64 offset = 0;
7824
7825 /* The computations below will be correct if the machine is big
7826 endian in both bits and bytes or little endian in bits and bytes.
7827 If it is mixed, we must adjust. */
7828
7829 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7830 adjust OFFSET to compensate. */
7831 if (BYTES_BIG_ENDIAN
7832 && paradoxical_subreg_p (outermode: is_mode, innermode: inner_mode))
7833 offset -= GET_MODE_SIZE (mode: is_mode) - GET_MODE_SIZE (mode: inner_mode);
7834
7835 /* We can now move to the desired byte. */
7836 offset += (pos / GET_MODE_BITSIZE (mode: wanted_inner_mode))
7837 * GET_MODE_SIZE (mode: wanted_inner_mode);
7838 pos %= GET_MODE_BITSIZE (mode: wanted_inner_mode);
7839
7840 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7841 && is_mode != wanted_inner_mode)
7842 offset = (GET_MODE_SIZE (mode: is_mode)
7843 - GET_MODE_SIZE (mode: wanted_inner_mode) - offset);
7844
7845 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7846 }
7847
7848 /* If INNER is not memory, get it into the proper mode. If we are changing
7849 its mode, POS must be a constant and smaller than the size of the new
7850 mode. */
7851 else if (!MEM_P (inner))
7852 {
7853 /* On the LHS, don't create paradoxical subregs implicitely truncating
7854 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7855 if (in_dest
7856 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7857 wanted_inner_mode))
7858 return NULL_RTX;
7859
7860 if (GET_MODE (inner) != wanted_inner_mode
7861 && (pos_rtx != 0
7862 || orig_pos + len > GET_MODE_BITSIZE (mode: wanted_inner_mode)))
7863 return NULL_RTX;
7864
7865 if (orig_pos < 0)
7866 return NULL_RTX;
7867
7868 inner = force_to_mode (inner, wanted_inner_mode,
7869 pos_rtx
7870 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7871 ? HOST_WIDE_INT_M1U
7872 : (((HOST_WIDE_INT_1U << len) - 1)
7873 << orig_pos), false);
7874 }
7875
7876 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7877 have to zero extend. Otherwise, we can just use a SUBREG.
7878
7879 We dealt with constant rtxes earlier, so pos_rtx cannot
7880 have VOIDmode at this point. */
7881 if (pos_rtx != 0
7882 && (GET_MODE_SIZE (mode: pos_mode)
7883 > GET_MODE_SIZE (mode: as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7884 {
7885 rtx temp = simplify_gen_unary (code: ZERO_EXTEND, mode: pos_mode, op: pos_rtx,
7886 GET_MODE (pos_rtx));
7887
7888 /* If we know that no extraneous bits are set, and that the high
7889 bit is not set, convert extraction to cheaper one - either
7890 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7891 cases. */
7892 if (flag_expensive_optimizations
7893 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7894 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7895 & ~(((unsigned HOST_WIDE_INT)
7896 GET_MODE_MASK (GET_MODE (pos_rtx)))
7897 >> 1))
7898 == 0)))
7899 {
7900 rtx temp1 = simplify_gen_unary (code: SIGN_EXTEND, mode: pos_mode, op: pos_rtx,
7901 GET_MODE (pos_rtx));
7902
7903 /* Prefer ZERO_EXTENSION, since it gives more information to
7904 backends. */
7905 if (set_src_cost (x: temp1, mode: pos_mode, speed_p: optimize_this_for_speed_p)
7906 < set_src_cost (x: temp, mode: pos_mode, speed_p: optimize_this_for_speed_p))
7907 temp = temp1;
7908 }
7909 pos_rtx = temp;
7910 }
7911
7912 /* Make POS_RTX unless we already have it and it is correct. If we don't
7913 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7914 be a CONST_INT. */
7915 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7916 pos_rtx = orig_pos_rtx;
7917
7918 else if (pos_rtx == 0)
7919 pos_rtx = GEN_INT (pos);
7920
7921 /* Make the required operation. See if we can use existing rtx. */
7922 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7923 extraction_mode, inner, GEN_INT (len), pos_rtx);
7924 if (! in_dest)
7925 new_rtx = gen_lowpart (mode, new_rtx);
7926
7927 return new_rtx;
7928}
7929
7930/* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7931 can be commuted with any other operations in X. Return X without
7932 that shift if so. */
7933
7934static rtx
7935extract_left_shift (scalar_int_mode mode, rtx x, int count)
7936{
7937 enum rtx_code code = GET_CODE (x);
7938 rtx tem;
7939
7940 switch (code)
7941 {
7942 case ASHIFT:
7943 /* This is the shift itself. If it is wide enough, we will return
7944 either the value being shifted if the shift count is equal to
7945 COUNT or a shift for the difference. */
7946 if (CONST_INT_P (XEXP (x, 1))
7947 && INTVAL (XEXP (x, 1)) >= count)
7948 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7949 INTVAL (XEXP (x, 1)) - count);
7950 break;
7951
7952 case NEG: case NOT:
7953 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7954 return simplify_gen_unary (code, mode, op: tem, op_mode: mode);
7955
7956 break;
7957
7958 case PLUS: case IOR: case XOR: case AND:
7959 /* If we can safely shift this constant and we find the inner shift,
7960 make a new operation. */
7961 if (CONST_INT_P (XEXP (x, 1))
7962 && (UINTVAL (XEXP (x, 1))
7963 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7964 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7965 {
7966 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7967 return simplify_gen_binary (code, mode, op0: tem,
7968 op1: gen_int_mode (val, mode));
7969 }
7970 break;
7971
7972 default:
7973 break;
7974 }
7975
7976 return 0;
7977}
7978
7979/* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7980 level of the expression and MODE is its mode. IN_CODE is as for
7981 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7982 that should be used when recursing on operands of *X_PTR.
7983
7984 There are two possible actions:
7985
7986 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7987 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7988
7989 - Return a new rtx, which the caller returns directly. */
7990
7991static rtx
7992make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7993 enum rtx_code in_code,
7994 enum rtx_code *next_code_ptr)
7995{
7996 rtx x = *x_ptr;
7997 enum rtx_code next_code = *next_code_ptr;
7998 enum rtx_code code = GET_CODE (x);
7999 int mode_width = GET_MODE_PRECISION (mode);
8000 rtx rhs, lhs;
8001 rtx new_rtx = 0;
8002 int i;
8003 rtx tem;
8004 scalar_int_mode inner_mode;
8005 bool equality_comparison = false;
8006
8007 if (in_code == EQ)
8008 {
8009 equality_comparison = true;
8010 in_code = COMPARE;
8011 }
8012
8013 /* Process depending on the code of this operation. If NEW is set
8014 nonzero, it will be returned. */
8015
8016 switch (code)
8017 {
8018 case ASHIFT:
8019 /* Convert shifts by constants into multiplications if inside
8020 an address. */
8021 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8022 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8023 && INTVAL (XEXP (x, 1)) >= 0)
8024 {
8025 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8026 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8027
8028 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8029 if (GET_CODE (new_rtx) == NEG)
8030 {
8031 new_rtx = XEXP (new_rtx, 0);
8032 multval = -multval;
8033 }
8034 multval = trunc_int_for_mode (multval, mode);
8035 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8036 }
8037 break;
8038
8039 case PLUS:
8040 lhs = XEXP (x, 0);
8041 rhs = XEXP (x, 1);
8042 lhs = make_compound_operation (lhs, next_code);
8043 rhs = make_compound_operation (rhs, next_code);
8044 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8045 {
8046 tem = simplify_gen_binary (code: MULT, mode, XEXP (XEXP (lhs, 0), 0),
8047 XEXP (lhs, 1));
8048 new_rtx = simplify_gen_binary (code: MINUS, mode, op0: rhs, op1: tem);
8049 }
8050 else if (GET_CODE (lhs) == MULT
8051 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8052 {
8053 tem = simplify_gen_binary (code: MULT, mode, XEXP (lhs, 0),
8054 op1: simplify_gen_unary (code: NEG, mode,
8055 XEXP (lhs, 1),
8056 op_mode: mode));
8057 new_rtx = simplify_gen_binary (code: MINUS, mode, op0: rhs, op1: tem);
8058 }
8059 else
8060 {
8061 SUBST (XEXP (x, 0), lhs);
8062 SUBST (XEXP (x, 1), rhs);
8063 }
8064 maybe_swap_commutative_operands (x);
8065 return x;
8066
8067 case MINUS:
8068 lhs = XEXP (x, 0);
8069 rhs = XEXP (x, 1);
8070 lhs = make_compound_operation (lhs, next_code);
8071 rhs = make_compound_operation (rhs, next_code);
8072 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8073 {
8074 tem = simplify_gen_binary (code: MULT, mode, XEXP (XEXP (rhs, 0), 0),
8075 XEXP (rhs, 1));
8076 return simplify_gen_binary (code: PLUS, mode, op0: tem, op1: lhs);
8077 }
8078 else if (GET_CODE (rhs) == MULT
8079 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8080 {
8081 tem = simplify_gen_binary (code: MULT, mode, XEXP (rhs, 0),
8082 op1: simplify_gen_unary (code: NEG, mode,
8083 XEXP (rhs, 1),
8084 op_mode: mode));
8085 return simplify_gen_binary (code: PLUS, mode, op0: tem, op1: lhs);
8086 }
8087 else
8088 {
8089 SUBST (XEXP (x, 0), lhs);
8090 SUBST (XEXP (x, 1), rhs);
8091 return x;
8092 }
8093
8094 case AND:
8095 /* If the second operand is not a constant, we can't do anything
8096 with it. */
8097 if (!CONST_INT_P (XEXP (x, 1)))
8098 break;
8099
8100 /* If the constant is a power of two minus one and the first operand
8101 is a logical right shift, make an extraction. */
8102 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8103 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8104 {
8105 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8106 new_rtx = make_extraction (mode, inner: new_rtx, pos: 0, XEXP (XEXP (x, 0), 1),
8107 len: i, unsignedp: true, in_dest: false, in_compare: in_code == COMPARE);
8108 }
8109
8110 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8111 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8112 && subreg_lowpart_p (XEXP (x, 0))
8113 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8114 result: &inner_mode)
8115 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8116 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8117 {
8118 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8119 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8120 new_rtx = make_extraction (mode: inner_mode, inner: new_rtx, pos: 0,
8121 XEXP (inner_x0, 1),
8122 len: i, unsignedp: true, in_dest: false, in_compare: in_code == COMPARE);
8123
8124 /* If we narrowed the mode when dropping the subreg, then we lose. */
8125 if (GET_MODE_SIZE (mode: inner_mode) < GET_MODE_SIZE (mode))
8126 new_rtx = NULL;
8127
8128 /* If that didn't give anything, see if the AND simplifies on
8129 its own. */
8130 if (!new_rtx && i >= 0)
8131 {
8132 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8133 new_rtx = make_extraction (mode, inner: new_rtx, pos: 0, NULL_RTX, len: i,
8134 unsignedp: true, in_dest: false, in_compare: in_code == COMPARE);
8135 }
8136 }
8137 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8138 else if ((GET_CODE (XEXP (x, 0)) == XOR
8139 || GET_CODE (XEXP (x, 0)) == IOR)
8140 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8141 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8142 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8143 {
8144 /* Apply the distributive law, and then try to make extractions. */
8145 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8146 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8147 XEXP (x, 1)),
8148 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8149 XEXP (x, 1)));
8150 new_rtx = make_compound_operation (new_rtx, in_code);
8151 }
8152
8153 /* If we are have (and (rotate X C) M) and C is larger than the number
8154 of bits in M, this is an extraction. */
8155
8156 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8157 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8158 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8159 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8160 {
8161 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8162 new_rtx = make_extraction (mode, inner: new_rtx,
8163 pos: (GET_MODE_PRECISION (mode)
8164 - INTVAL (XEXP (XEXP (x, 0), 1))),
8165 NULL_RTX, len: i, unsignedp: true, in_dest: false,
8166 in_compare: in_code == COMPARE);
8167 }
8168
8169 /* On machines without logical shifts, if the operand of the AND is
8170 a logical shift and our mask turns off all the propagated sign
8171 bits, we can replace the logical shift with an arithmetic shift. */
8172 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8173 && !have_insn_for (LSHIFTRT, mode)
8174 && have_insn_for (ASHIFTRT, mode)
8175 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8176 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8177 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8178 && mode_width <= HOST_BITS_PER_WIDE_INT)
8179 {
8180 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8181
8182 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8183 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8184 SUBST (XEXP (x, 0),
8185 gen_rtx_ASHIFTRT (mode,
8186 make_compound_operation (XEXP (XEXP (x,
8187 0),
8188 0),
8189 next_code),
8190 XEXP (XEXP (x, 0), 1)));
8191 }
8192
8193 /* If the constant is one less than a power of two, this might be
8194 representable by an extraction even if no shift is present.
8195 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8196 we are in a COMPARE. */
8197 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8198 new_rtx = make_extraction (mode,
8199 inner: make_compound_operation (XEXP (x, 0),
8200 next_code),
8201 pos: 0, NULL_RTX, len: i,
8202 unsignedp: true, in_dest: false, in_compare: in_code == COMPARE);
8203
8204 /* If we are in a comparison and this is an AND with a power of two,
8205 convert this into the appropriate bit extract. */
8206 else if (in_code == COMPARE
8207 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8208 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8209 new_rtx = make_extraction (mode,
8210 inner: make_compound_operation (XEXP (x, 0),
8211 next_code),
8212 pos: i, NULL_RTX, len: 1, unsignedp: true, in_dest: false, in_compare: true);
8213
8214 /* If the one operand is a paradoxical subreg of a register or memory and
8215 the constant (limited to the smaller mode) has only zero bits where
8216 the sub expression has known zero bits, this can be expressed as
8217 a zero_extend. */
8218 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8219 {
8220 rtx sub;
8221
8222 sub = XEXP (XEXP (x, 0), 0);
8223 machine_mode sub_mode = GET_MODE (sub);
8224 int sub_width;
8225 if ((REG_P (sub) || MEM_P (sub))
8226 && GET_MODE_PRECISION (mode: sub_mode).is_constant (const_value: &sub_width)
8227 && sub_width < mode_width)
8228 {
8229 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8230 unsigned HOST_WIDE_INT mask;
8231
8232 /* original AND constant with all the known zero bits set */
8233 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8234 if ((mask & mode_mask) == mode_mask)
8235 {
8236 new_rtx = make_compound_operation (sub, next_code);
8237 new_rtx = make_extraction (mode, inner: new_rtx, pos: 0, pos_rtx: 0, len: sub_width,
8238 unsignedp: true, in_dest: false, in_compare: in_code == COMPARE);
8239 }
8240 }
8241 }
8242
8243 break;
8244
8245 case LSHIFTRT:
8246 /* If the sign bit is known to be zero, replace this with an
8247 arithmetic shift. */
8248 if (have_insn_for (ASHIFTRT, mode)
8249 && ! have_insn_for (LSHIFTRT, mode)
8250 && mode_width <= HOST_BITS_PER_WIDE_INT
8251 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8252 {
8253 new_rtx = gen_rtx_ASHIFTRT (mode,
8254 make_compound_operation (XEXP (x, 0),
8255 next_code),
8256 XEXP (x, 1));
8257 break;
8258 }
8259
8260 /* fall through */
8261
8262 case ASHIFTRT:
8263 lhs = XEXP (x, 0);
8264 rhs = XEXP (x, 1);
8265
8266 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8267 this is a SIGN_EXTRACT. */
8268 if (CONST_INT_P (rhs)
8269 && GET_CODE (lhs) == ASHIFT
8270 && CONST_INT_P (XEXP (lhs, 1))
8271 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8272 && INTVAL (XEXP (lhs, 1)) >= 0
8273 && INTVAL (rhs) < mode_width)
8274 {
8275 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8276 new_rtx = make_extraction (mode, inner: new_rtx,
8277 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8278 NULL_RTX, len: mode_width - INTVAL (rhs),
8279 unsignedp: code == LSHIFTRT, in_dest: false,
8280 in_compare: in_code == COMPARE);
8281 break;
8282 }
8283
8284 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8285 If so, try to merge the shifts into a SIGN_EXTEND. We could
8286 also do this for some cases of SIGN_EXTRACT, but it doesn't
8287 seem worth the effort; the case checked for occurs on Alpha. */
8288
8289 if (!OBJECT_P (lhs)
8290 && ! (GET_CODE (lhs) == SUBREG
8291 && (OBJECT_P (SUBREG_REG (lhs))))
8292 && CONST_INT_P (rhs)
8293 && INTVAL (rhs) >= 0
8294 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8295 && INTVAL (rhs) < mode_width
8296 && (new_rtx = extract_left_shift (mode, x: lhs, INTVAL (rhs))) != 0)
8297 new_rtx = make_extraction (mode, inner: make_compound_operation (new_rtx,
8298 next_code),
8299 pos: 0, NULL_RTX, len: mode_width - INTVAL (rhs),
8300 unsignedp: code == LSHIFTRT, in_dest: false, in_compare: in_code == COMPARE);
8301
8302 break;
8303
8304 case SUBREG:
8305 /* Call ourselves recursively on the inner expression. If we are
8306 narrowing the object and it has a different RTL code from
8307 what it originally did, do this SUBREG as a force_to_mode. */
8308 {
8309 rtx inner = SUBREG_REG (x), simplified;
8310 enum rtx_code subreg_code = in_code;
8311
8312 /* If the SUBREG is masking of a logical right shift,
8313 make an extraction. */
8314 if (GET_CODE (inner) == LSHIFTRT
8315 && is_a <scalar_int_mode> (GET_MODE (inner), result: &inner_mode)
8316 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (mode: inner_mode)
8317 && CONST_INT_P (XEXP (inner, 1))
8318 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (mode: inner_mode)
8319 && subreg_lowpart_p (x))
8320 {
8321 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8322 int width = GET_MODE_PRECISION (mode: inner_mode)
8323 - INTVAL (XEXP (inner, 1));
8324 if (width > mode_width)
8325 width = mode_width;
8326 new_rtx = make_extraction (mode, inner: new_rtx, pos: 0, XEXP (inner, 1),
8327 len: width, unsignedp: true, in_dest: false, in_compare: in_code == COMPARE);
8328 break;
8329 }
8330
8331 /* If in_code is COMPARE, it isn't always safe to pass it through
8332 to the recursive make_compound_operation call. */
8333 if (subreg_code == COMPARE
8334 && (!subreg_lowpart_p (x)
8335 || GET_CODE (inner) == SUBREG
8336 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8337 is (const_int 0), rather than
8338 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8339 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8340 for non-equality comparisons against 0 is not equivalent
8341 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8342 || (GET_CODE (inner) == AND
8343 && CONST_INT_P (XEXP (inner, 1))
8344 && partial_subreg_p (x)
8345 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8346 >= GET_MODE_BITSIZE (mode) - 1)))
8347 subreg_code = SET;
8348
8349 tem = make_compound_operation (inner, subreg_code);
8350
8351 simplified
8352 = simplify_subreg (outermode: mode, op: tem, GET_MODE (inner), SUBREG_BYTE (x));
8353 if (simplified)
8354 tem = simplified;
8355
8356 if (GET_CODE (tem) != GET_CODE (inner)
8357 && partial_subreg_p (x)
8358 && subreg_lowpart_p (x))
8359 {
8360 rtx newer
8361 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, false);
8362
8363 /* If we have something other than a SUBREG, we might have
8364 done an expansion, so rerun ourselves. */
8365 if (GET_CODE (newer) != SUBREG)
8366 newer = make_compound_operation (newer, in_code);
8367
8368 /* force_to_mode can expand compounds. If it just re-expanded
8369 the compound, use gen_lowpart to convert to the desired
8370 mode. */
8371 if (rtx_equal_p (newer, x)
8372 /* Likewise if it re-expanded the compound only partially.
8373 This happens for SUBREG of ZERO_EXTRACT if they extract
8374 the same number of bits. */
8375 || (GET_CODE (newer) == SUBREG
8376 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8377 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8378 && GET_CODE (inner) == AND
8379 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8380 return gen_lowpart (GET_MODE (x), tem);
8381
8382 return newer;
8383 }
8384
8385 if (simplified)
8386 return tem;
8387 }
8388 break;
8389
8390 default:
8391 break;
8392 }
8393
8394 if (new_rtx)
8395 *x_ptr = gen_lowpart (mode, new_rtx);
8396 *next_code_ptr = next_code;
8397 return NULL_RTX;
8398}
8399
8400/* Look at the expression rooted at X. Look for expressions
8401 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8402 Form these expressions.
8403
8404 Return the new rtx, usually just X.
8405
8406 Also, for machines like the VAX that don't have logical shift insns,
8407 try to convert logical to arithmetic shift operations in cases where
8408 they are equivalent. This undoes the canonicalizations to logical
8409 shifts done elsewhere.
8410
8411 We try, as much as possible, to re-use rtl expressions to save memory.
8412
8413 IN_CODE says what kind of expression we are processing. Normally, it is
8414 SET. In a memory address it is MEM. When processing the arguments of
8415 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8416 precisely it is an equality comparison against zero. */
8417
8418rtx
8419make_compound_operation (rtx x, enum rtx_code in_code)
8420{
8421 enum rtx_code code = GET_CODE (x);
8422 const char *fmt;
8423 int i, j;
8424 enum rtx_code next_code;
8425 rtx new_rtx, tem;
8426
8427 /* Select the code to be used in recursive calls. Once we are inside an
8428 address, we stay there. If we have a comparison, set to COMPARE,
8429 but once inside, go back to our default of SET. */
8430
8431 next_code = (code == MEM ? MEM
8432 : ((code == COMPARE || COMPARISON_P (x))
8433 && XEXP (x, 1) == const0_rtx) ? COMPARE
8434 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8435
8436 scalar_int_mode mode;
8437 if (is_a <scalar_int_mode> (GET_MODE (x), result: &mode))
8438 {
8439 rtx new_rtx = make_compound_operation_int (mode, x_ptr: &x, in_code,
8440 next_code_ptr: &next_code);
8441 if (new_rtx)
8442 return new_rtx;
8443 code = GET_CODE (x);
8444 }
8445
8446 /* Now recursively process each operand of this operation. We need to
8447 handle ZERO_EXTEND specially so that we don't lose track of the
8448 inner mode. */
8449 if (code == ZERO_EXTEND)
8450 {
8451 new_rtx = make_compound_operation (XEXP (x, 0), in_code: next_code);
8452 tem = simplify_unary_operation (code: ZERO_EXTEND, GET_MODE (x),
8453 op: new_rtx, GET_MODE (XEXP (x, 0)));
8454 if (tem)
8455 return tem;
8456 SUBST (XEXP (x, 0), new_rtx);
8457 return x;
8458 }
8459
8460 fmt = GET_RTX_FORMAT (code);
8461 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8462 if (fmt[i] == 'e')
8463 {
8464 new_rtx = make_compound_operation (XEXP (x, i), in_code: next_code);
8465 SUBST (XEXP (x, i), new_rtx);
8466 }
8467 else if (fmt[i] == 'E')
8468 for (j = 0; j < XVECLEN (x, i); j++)
8469 {
8470 new_rtx = make_compound_operation (XVECEXP (x, i, j), in_code: next_code);
8471 SUBST (XVECEXP (x, i, j), new_rtx);
8472 }
8473
8474 maybe_swap_commutative_operands (x);
8475 return x;
8476}
8477
8478/* Given M see if it is a value that would select a field of bits
8479 within an item, but not the entire word. Return -1 if not.
8480 Otherwise, return the starting position of the field, where 0 is the
8481 low-order bit.
8482
8483 *PLEN is set to the length of the field. */
8484
8485static int
8486get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8487{
8488 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8489 int pos = m ? ctz_hwi (x: m) : -1;
8490 int len = 0;
8491
8492 if (pos >= 0)
8493 /* Now shift off the low-order zero bits and see if we have a
8494 power of two minus 1. */
8495 len = exact_log2 (x: (m >> pos) + 1);
8496
8497 if (len <= 0)
8498 pos = -1;
8499
8500 *plen = len;
8501 return pos;
8502}
8503
8504/* If X refers to a register that equals REG in value, replace these
8505 references with REG. */
8506static rtx
8507canon_reg_for_combine (rtx x, rtx reg)
8508{
8509 rtx op0, op1, op2;
8510 const char *fmt;
8511 int i;
8512 bool copied;
8513
8514 enum rtx_code code = GET_CODE (x);
8515 switch (GET_RTX_CLASS (code))
8516 {
8517 case RTX_UNARY:
8518 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8519 if (op0 != XEXP (x, 0))
8520 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op: op0,
8521 GET_MODE (reg));
8522 break;
8523
8524 case RTX_BIN_ARITH:
8525 case RTX_COMM_ARITH:
8526 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8527 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8528 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8529 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8530 break;
8531
8532 case RTX_COMPARE:
8533 case RTX_COMM_COMPARE:
8534 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8535 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8536 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8537 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8538 GET_MODE (op0), op0, op1);
8539 break;
8540
8541 case RTX_TERNARY:
8542 case RTX_BITFIELD_OPS:
8543 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8544 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8545 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8546 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8547 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8548 GET_MODE (op0), op0, op1, op2);
8549 /* FALLTHRU */
8550
8551 case RTX_OBJ:
8552 if (REG_P (x))
8553 {
8554 if (rtx_equal_p (get_last_value (reg), x)
8555 || rtx_equal_p (reg, get_last_value (x)))
8556 return reg;
8557 else
8558 break;
8559 }
8560
8561 /* fall through */
8562
8563 default:
8564 fmt = GET_RTX_FORMAT (code);
8565 copied = false;
8566 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8567 if (fmt[i] == 'e')
8568 {
8569 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8570 if (op != XEXP (x, i))
8571 {
8572 if (!copied)
8573 {
8574 copied = true;
8575 x = copy_rtx (x);
8576 }
8577 XEXP (x, i) = op;
8578 }
8579 }
8580 else if (fmt[i] == 'E')
8581 {
8582 int j;
8583 for (j = 0; j < XVECLEN (x, i); j++)
8584 {
8585 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8586 if (op != XVECEXP (x, i, j))
8587 {
8588 if (!copied)
8589 {
8590 copied = true;
8591 x = copy_rtx (x);
8592 }
8593 XVECEXP (x, i, j) = op;
8594 }
8595 }
8596 }
8597
8598 break;
8599 }
8600
8601 return x;
8602}
8603
8604/* Return X converted to MODE. If the value is already truncated to
8605 MODE we can just return a subreg even though in the general case we
8606 would need an explicit truncation. */
8607
8608static rtx
8609gen_lowpart_or_truncate (machine_mode mode, rtx x)
8610{
8611 if (!CONST_INT_P (x)
8612 && partial_subreg_p (outermode: mode, GET_MODE (x))
8613 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8614 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8615 {
8616 /* Bit-cast X into an integer mode. */
8617 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8618 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8619 x = simplify_gen_unary (code: TRUNCATE, mode: int_mode_for_mode (mode).require (),
8620 op: x, GET_MODE (x));
8621 }
8622
8623 return gen_lowpart (mode, x);
8624}
8625
8626/* See if X can be simplified knowing that we will only refer to it in
8627 MODE and will only refer to those bits that are nonzero in MASK.
8628 If other bits are being computed or if masking operations are done
8629 that select a superset of the bits in MASK, they can sometimes be
8630 ignored.
8631
8632 Return a possibly simplified expression, but always convert X to
8633 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8634
8635 If JUST_SELECT is true, don't optimize by noticing that bits in MASK
8636 are all off in X. This is used when X will be complemented, by either
8637 NOT, NEG, or XOR. */
8638
8639static rtx
8640force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8641 bool just_select)
8642{
8643 enum rtx_code code = GET_CODE (x);
8644 bool next_select = just_select || code == XOR || code == NOT || code == NEG;
8645 machine_mode op_mode;
8646 unsigned HOST_WIDE_INT nonzero;
8647
8648 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8649 code below will do the wrong thing since the mode of such an
8650 expression is VOIDmode.
8651
8652 Also do nothing if X is a CLOBBER; this can happen if X was
8653 the return value from a call to gen_lowpart. */
8654 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8655 return x;
8656
8657 /* We want to perform the operation in its present mode unless we know
8658 that the operation is valid in MODE, in which case we do the operation
8659 in MODE. */
8660 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8661 && have_insn_for (code, mode))
8662 ? mode : GET_MODE (x));
8663
8664 /* It is not valid to do a right-shift in a narrower mode
8665 than the one it came in with. */
8666 if ((code == LSHIFTRT || code == ASHIFTRT)
8667 && partial_subreg_p (outermode: mode, GET_MODE (x)))
8668 op_mode = GET_MODE (x);
8669
8670 /* Truncate MASK to fit OP_MODE. */
8671 if (op_mode)
8672 mask &= GET_MODE_MASK (op_mode);
8673
8674 /* Determine what bits of X are guaranteed to be (non)zero. */
8675 nonzero = nonzero_bits (x, mode);
8676
8677 /* If none of the bits in X are needed, return a zero. */
8678 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8679 x = const0_rtx;
8680
8681 /* If X is a CONST_INT, return a new one. Do this here since the
8682 test below will fail. */
8683 if (CONST_INT_P (x))
8684 {
8685 if (SCALAR_INT_MODE_P (mode))
8686 return gen_int_mode (INTVAL (x) & mask, mode);
8687 else
8688 {
8689 x = GEN_INT (INTVAL (x) & mask);
8690 return gen_lowpart_common (mode, x);
8691 }
8692 }
8693
8694 /* If X is narrower than MODE and we want all the bits in X's mode, just
8695 get X in the proper mode. */
8696 if (paradoxical_subreg_p (outermode: mode, GET_MODE (x))
8697 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8698 return gen_lowpart (mode, x);
8699
8700 /* We can ignore the effect of a SUBREG if it narrows the mode or
8701 if the constant masks to zero all the bits the mode doesn't have. */
8702 if (GET_CODE (x) == SUBREG
8703 && subreg_lowpart_p (x)
8704 && (partial_subreg_p (x)
8705 || (mask
8706 & GET_MODE_MASK (GET_MODE (x))
8707 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8708 return force_to_mode (SUBREG_REG (x), mode, mask, just_select: next_select);
8709
8710 scalar_int_mode int_mode, xmode;
8711 if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
8712 && is_a <scalar_int_mode> (GET_MODE (x), result: &xmode))
8713 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8714 integer too. */
8715 return force_int_to_mode (x, int_mode, xmode,
8716 as_a <scalar_int_mode> (m: op_mode),
8717 mask, just_select);
8718
8719 return gen_lowpart_or_truncate (mode, x);
8720}
8721
8722/* Subroutine of force_to_mode that handles cases in which both X and
8723 the result are scalar integers. MODE is the mode of the result,
8724 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8725 is preferred for simplified versions of X. The other arguments
8726 are as for force_to_mode. */
8727
8728static rtx
8729force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8730 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8731 bool just_select)
8732{
8733 enum rtx_code code = GET_CODE (x);
8734 bool next_select = just_select || code == XOR || code == NOT || code == NEG;
8735 unsigned HOST_WIDE_INT fuller_mask;
8736 rtx op0, op1, temp;
8737 poly_int64 const_op0;
8738
8739 /* When we have an arithmetic operation, or a shift whose count we
8740 do not know, we need to assume that all bits up to the highest-order
8741 bit in MASK will be needed. This is how we form such a mask. */
8742 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8743 fuller_mask = HOST_WIDE_INT_M1U;
8744 else
8745 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (x: mask) + 1)) - 1);
8746
8747 switch (code)
8748 {
8749 case CLOBBER:
8750 /* If X is a (clobber (const_int)), return it since we know we are
8751 generating something that won't match. */
8752 return x;
8753
8754 case SIGN_EXTEND:
8755 case ZERO_EXTEND:
8756 case ZERO_EXTRACT:
8757 case SIGN_EXTRACT:
8758 x = expand_compound_operation (x);
8759 if (GET_CODE (x) != code)
8760 return force_to_mode (x, mode, mask, just_select: next_select);
8761 break;
8762
8763 case TRUNCATE:
8764 /* Similarly for a truncate. */
8765 return force_to_mode (XEXP (x, 0), mode, mask, just_select: next_select);
8766
8767 case AND:
8768 /* If this is an AND with a constant, convert it into an AND
8769 whose constant is the AND of that constant with MASK. If it
8770 remains an AND of MASK, delete it since it is redundant. */
8771
8772 if (CONST_INT_P (XEXP (x, 1)))
8773 {
8774 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8775 mask & INTVAL (XEXP (x, 1)));
8776 xmode = op_mode;
8777
8778 /* If X is still an AND, see if it is an AND with a mask that
8779 is just some low-order bits. If so, and it is MASK, we don't
8780 need it. */
8781
8782 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8783 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8784 x = XEXP (x, 0);
8785
8786 /* If it remains an AND, try making another AND with the bits
8787 in the mode mask that aren't in MASK turned on. If the
8788 constant in the AND is wide enough, this might make a
8789 cheaper constant. */
8790
8791 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8792 && GET_MODE_MASK (xmode) != mask
8793 && HWI_COMPUTABLE_MODE_P (mode: xmode))
8794 {
8795 unsigned HOST_WIDE_INT cval
8796 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8797 rtx y;
8798
8799 y = simplify_gen_binary (code: AND, mode: xmode, XEXP (x, 0),
8800 op1: gen_int_mode (cval, xmode));
8801 if (set_src_cost (x: y, mode: xmode, speed_p: optimize_this_for_speed_p)
8802 < set_src_cost (x, mode: xmode, speed_p: optimize_this_for_speed_p))
8803 x = y;
8804 }
8805
8806 break;
8807 }
8808
8809 goto binop;
8810
8811 case PLUS:
8812 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8813 low-order bits (as in an alignment operation) and FOO is already
8814 aligned to that boundary, mask C1 to that boundary as well.
8815 This may eliminate that PLUS and, later, the AND. */
8816
8817 {
8818 unsigned int width = GET_MODE_PRECISION (mode);
8819 unsigned HOST_WIDE_INT smask = mask;
8820
8821 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8822 number, sign extend it. */
8823
8824 if (width < HOST_BITS_PER_WIDE_INT
8825 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8826 smask |= HOST_WIDE_INT_M1U << width;
8827
8828 if (CONST_INT_P (XEXP (x, 1))
8829 && pow2p_hwi (x: - smask)
8830 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8831 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8832 return force_to_mode (x: plus_constant (xmode, XEXP (x, 0),
8833 (INTVAL (XEXP (x, 1)) & smask)),
8834 mode, mask: smask, just_select: next_select);
8835 }
8836
8837 /* fall through */
8838
8839 case MULT:
8840 /* Substituting into the operands of a widening MULT is not likely to
8841 create RTL matching a machine insn. */
8842 if (code == MULT
8843 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8844 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8845 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8846 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8847 && REG_P (XEXP (XEXP (x, 0), 0))
8848 && REG_P (XEXP (XEXP (x, 1), 0)))
8849 return gen_lowpart_or_truncate (mode, x);
8850
8851 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8852 most significant bit in MASK since carries from those bits will
8853 affect the bits we are interested in. */
8854 mask = fuller_mask;
8855 goto binop;
8856
8857 case MINUS:
8858 /* If X is (minus C Y) where C's least set bit is larger than any bit
8859 in the mask, then we may replace with (neg Y). */
8860 if (poly_int_rtx_p (XEXP (x, 0), res: &const_op0)
8861 && known_alignment (a: poly_uint64 (const_op0)) > mask)
8862 {
8863 x = simplify_gen_unary (code: NEG, mode: xmode, XEXP (x, 1), op_mode: xmode);
8864 return force_to_mode (x, mode, mask, just_select: next_select);
8865 }
8866
8867 /* Similarly, if C contains every bit in the fuller_mask, then we may
8868 replace with (not Y). */
8869 if (CONST_INT_P (XEXP (x, 0))
8870 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8871 {
8872 x = simplify_gen_unary (code: NOT, mode: xmode, XEXP (x, 1), op_mode: xmode);
8873 return force_to_mode (x, mode, mask, just_select: next_select);
8874 }
8875
8876 mask = fuller_mask;
8877 goto binop;
8878
8879 case IOR:
8880 case XOR:
8881 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8882 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8883 operation which may be a bitfield extraction. Ensure that the
8884 constant we form is not wider than the mode of X. */
8885
8886 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8887 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8888 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8889 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8890 && CONST_INT_P (XEXP (x, 1))
8891 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8892 + floor_log2 (INTVAL (XEXP (x, 1))))
8893 < GET_MODE_PRECISION (mode: xmode))
8894 && (UINTVAL (XEXP (x, 1))
8895 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8896 {
8897 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8898 << INTVAL (XEXP (XEXP (x, 0), 1)),
8899 xmode);
8900 temp = simplify_gen_binary (GET_CODE (x), mode: xmode,
8901 XEXP (XEXP (x, 0), 0), op1: temp);
8902 x = simplify_gen_binary (code: LSHIFTRT, mode: xmode, op0: temp,
8903 XEXP (XEXP (x, 0), 1));
8904 return force_to_mode (x, mode, mask, just_select: next_select);
8905 }
8906
8907 binop:
8908 /* For most binary operations, just propagate into the operation and
8909 change the mode if we have an operation of that mode. */
8910
8911 op0 = force_to_mode (XEXP (x, 0), mode, mask, just_select: next_select);
8912 op1 = force_to_mode (XEXP (x, 1), mode, mask, just_select: next_select);
8913
8914 /* If we ended up truncating both operands, truncate the result of the
8915 operation instead. */
8916 if (GET_CODE (op0) == TRUNCATE
8917 && GET_CODE (op1) == TRUNCATE)
8918 {
8919 op0 = XEXP (op0, 0);
8920 op1 = XEXP (op1, 0);
8921 }
8922
8923 op0 = gen_lowpart_or_truncate (mode: op_mode, x: op0);
8924 op1 = gen_lowpart_or_truncate (mode: op_mode, x: op1);
8925
8926 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8927 {
8928 x = simplify_gen_binary (code, mode: op_mode, op0, op1);
8929 xmode = op_mode;
8930 }
8931 break;
8932
8933 case ASHIFT:
8934 /* For left shifts, do the same, but just for the first operand.
8935 However, we cannot do anything with shifts where we cannot
8936 guarantee that the counts are smaller than the size of the mode
8937 because such a count will have a different meaning in a
8938 wider mode. */
8939
8940 if (! (CONST_INT_P (XEXP (x, 1))
8941 && INTVAL (XEXP (x, 1)) >= 0
8942 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8943 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8944 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8945 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8946 break;
8947
8948 /* If the shift count is a constant and we can do arithmetic in
8949 the mode of the shift, refine which bits we need. Otherwise, use the
8950 conservative form of the mask. */
8951 if (CONST_INT_P (XEXP (x, 1))
8952 && INTVAL (XEXP (x, 1)) >= 0
8953 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode: op_mode)
8954 && HWI_COMPUTABLE_MODE_P (mode: op_mode))
8955 mask >>= INTVAL (XEXP (x, 1));
8956 else
8957 mask = fuller_mask;
8958
8959 op0 = gen_lowpart_or_truncate (mode: op_mode,
8960 x: force_to_mode (XEXP (x, 0), mode,
8961 mask, just_select: next_select));
8962
8963 if (op_mode != xmode || op0 != XEXP (x, 0))
8964 {
8965 x = simplify_gen_binary (code, mode: op_mode, op0, XEXP (x, 1));
8966 xmode = op_mode;
8967 }
8968 break;
8969
8970 case LSHIFTRT:
8971 /* Here we can only do something if the shift count is a constant,
8972 this shift constant is valid for the host, and we can do arithmetic
8973 in OP_MODE. */
8974
8975 if (CONST_INT_P (XEXP (x, 1))
8976 && INTVAL (XEXP (x, 1)) >= 0
8977 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8978 && HWI_COMPUTABLE_MODE_P (mode: op_mode))
8979 {
8980 rtx inner = XEXP (x, 0);
8981 unsigned HOST_WIDE_INT inner_mask;
8982
8983 /* Select the mask of the bits we need for the shift operand. */
8984 inner_mask = mask << INTVAL (XEXP (x, 1));
8985
8986 /* We can only change the mode of the shift if we can do arithmetic
8987 in the mode of the shift and INNER_MASK is no wider than the
8988 width of X's mode. */
8989 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8990 op_mode = xmode;
8991
8992 inner = force_to_mode (x: inner, mode: op_mode, mask: inner_mask, just_select: next_select);
8993
8994 if (xmode != op_mode || inner != XEXP (x, 0))
8995 {
8996 x = simplify_gen_binary (code: LSHIFTRT, mode: op_mode, op0: inner, XEXP (x, 1));
8997 xmode = op_mode;
8998 }
8999 }
9000
9001 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9002 shift and AND produces only copies of the sign bit (C2 is one less
9003 than a power of two), we can do this with just a shift. */
9004
9005 if (GET_CODE (x) == LSHIFTRT
9006 && CONST_INT_P (XEXP (x, 1))
9007 /* The shift puts one of the sign bit copies in the least significant
9008 bit. */
9009 && ((INTVAL (XEXP (x, 1))
9010 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9011 >= GET_MODE_PRECISION (mode: xmode))
9012 && pow2p_hwi (x: mask + 1)
9013 /* Number of bits left after the shift must be more than the mask
9014 needs. */
9015 && ((INTVAL (XEXP (x, 1)) + exact_log2 (x: mask + 1))
9016 <= GET_MODE_PRECISION (mode: xmode))
9017 /* Must be more sign bit copies than the mask needs. */
9018 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9019 >= exact_log2 (x: mask + 1)))
9020 {
9021 int nbits = GET_MODE_PRECISION (mode: xmode) - exact_log2 (x: mask + 1);
9022 x = simplify_gen_binary (code: LSHIFTRT, mode: xmode, XEXP (x, 0),
9023 op1: gen_int_shift_amount (xmode, nbits));
9024 }
9025 goto shiftrt;
9026
9027 case ASHIFTRT:
9028 /* If we are just looking for the sign bit, we don't need this shift at
9029 all, even if it has a variable count. */
9030 if (val_signbit_p (xmode, mask))
9031 return force_to_mode (XEXP (x, 0), mode, mask, just_select: next_select);
9032
9033 /* If this is a shift by a constant, get a mask that contains those bits
9034 that are not copies of the sign bit. We then have two cases: If
9035 MASK only includes those bits, this can be a logical shift, which may
9036 allow simplifications. If MASK is a single-bit field not within
9037 those bits, we are requesting a copy of the sign bit and hence can
9038 shift the sign bit to the appropriate location. */
9039
9040 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9041 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9042 {
9043 unsigned HOST_WIDE_INT nonzero;
9044 int i;
9045
9046 /* If the considered data is wider than HOST_WIDE_INT, we can't
9047 represent a mask for all its bits in a single scalar.
9048 But we only care about the lower bits, so calculate these. */
9049
9050 if (GET_MODE_PRECISION (mode: xmode) > HOST_BITS_PER_WIDE_INT)
9051 {
9052 nonzero = HOST_WIDE_INT_M1U;
9053
9054 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9055 is the number of bits a full-width mask would have set.
9056 We need only shift if these are fewer than nonzero can
9057 hold. If not, we must keep all bits set in nonzero. */
9058
9059 if (GET_MODE_PRECISION (mode: xmode) - INTVAL (XEXP (x, 1))
9060 < HOST_BITS_PER_WIDE_INT)
9061 nonzero >>= INTVAL (XEXP (x, 1))
9062 + HOST_BITS_PER_WIDE_INT
9063 - GET_MODE_PRECISION (mode: xmode);
9064 }
9065 else
9066 {
9067 nonzero = GET_MODE_MASK (xmode);
9068 nonzero >>= INTVAL (XEXP (x, 1));
9069 }
9070
9071 if ((mask & ~nonzero) == 0)
9072 {
9073 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9074 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9075 if (GET_CODE (x) != ASHIFTRT)
9076 return force_to_mode (x, mode, mask, just_select: next_select);
9077 }
9078
9079 else if ((i = exact_log2 (x: mask)) >= 0)
9080 {
9081 x = simplify_shift_const
9082 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9083 GET_MODE_PRECISION (mode: xmode) - 1 - i);
9084
9085 if (GET_CODE (x) != ASHIFTRT)
9086 return force_to_mode (x, mode, mask, just_select: next_select);
9087 }
9088 }
9089
9090 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9091 even if the shift count isn't a constant. */
9092 if (mask == 1)
9093 x = simplify_gen_binary (code: LSHIFTRT, mode: xmode, XEXP (x, 0), XEXP (x, 1));
9094
9095 shiftrt:
9096
9097 /* If this is a zero- or sign-extension operation that just affects bits
9098 we don't care about, remove it. Be sure the call above returned
9099 something that is still a shift. */
9100
9101 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9102 && CONST_INT_P (XEXP (x, 1))
9103 && INTVAL (XEXP (x, 1)) >= 0
9104 && (INTVAL (XEXP (x, 1))
9105 <= GET_MODE_PRECISION (mode: xmode) - (floor_log2 (x: mask) + 1))
9106 && GET_CODE (XEXP (x, 0)) == ASHIFT
9107 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9108 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask, just_select: next_select);
9109
9110 break;
9111
9112 case ROTATE:
9113 case ROTATERT:
9114 /* If the shift count is constant and we can do computations
9115 in the mode of X, compute where the bits we care about are.
9116 Otherwise, we can't do anything. Don't change the mode of
9117 the shift or propagate MODE into the shift, though. */
9118 if (CONST_INT_P (XEXP (x, 1))
9119 && INTVAL (XEXP (x, 1)) >= 0)
9120 {
9121 temp = simplify_binary_operation (code: code == ROTATE ? ROTATERT : ROTATE,
9122 mode: xmode, op0: gen_int_mode (mask, xmode),
9123 XEXP (x, 1));
9124 if (temp && CONST_INT_P (temp))
9125 x = simplify_gen_binary (code, mode: xmode,
9126 op0: force_to_mode (XEXP (x, 0), mode: xmode,
9127 INTVAL (temp), just_select: next_select),
9128 XEXP (x, 1));
9129 }
9130 break;
9131
9132 case NEG:
9133 /* If we just want the low-order bit, the NEG isn't needed since it
9134 won't change the low-order bit. */
9135 if (mask == 1)
9136 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9137
9138 /* We need any bits less significant than the most significant bit in
9139 MASK since carries from those bits will affect the bits we are
9140 interested in. */
9141 mask = fuller_mask;
9142 goto unop;
9143
9144 case NOT:
9145 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9146 same as the XOR case above. Ensure that the constant we form is not
9147 wider than the mode of X. */
9148
9149 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9150 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9151 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9152 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (x: mask)
9153 < GET_MODE_PRECISION (mode: xmode))
9154 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9155 {
9156 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9157 temp = simplify_gen_binary (code: XOR, mode: xmode, XEXP (XEXP (x, 0), 0), op1: temp);
9158 x = simplify_gen_binary (code: LSHIFTRT, mode: xmode,
9159 op0: temp, XEXP (XEXP (x, 0), 1));
9160
9161 return force_to_mode (x, mode, mask, just_select: next_select);
9162 }
9163
9164 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9165 use the full mask inside the NOT. */
9166 mask = fuller_mask;
9167
9168 unop:
9169 op0 = gen_lowpart_or_truncate (mode: op_mode,
9170 x: force_to_mode (XEXP (x, 0), mode, mask,
9171 just_select: next_select));
9172 if (op_mode != xmode || op0 != XEXP (x, 0))
9173 {
9174 x = simplify_gen_unary (code, mode: op_mode, op: op0, op_mode);
9175 xmode = op_mode;
9176 }
9177 break;
9178
9179 case NE:
9180 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9181 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9182 which is equal to STORE_FLAG_VALUE. */
9183 if ((mask & ~STORE_FLAG_VALUE) == 0
9184 && XEXP (x, 1) == const0_rtx
9185 && GET_MODE (XEXP (x, 0)) == mode
9186 && pow2p_hwi (x: nonzero_bits (XEXP (x, 0), mode))
9187 && (nonzero_bits (XEXP (x, 0), mode)
9188 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9189 return force_to_mode (XEXP (x, 0), mode, mask, just_select: next_select);
9190
9191 break;
9192
9193 case IF_THEN_ELSE:
9194 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9195 written in a narrower mode. We play it safe and do not do so. */
9196
9197 op0 = gen_lowpart_or_truncate (mode: xmode,
9198 x: force_to_mode (XEXP (x, 1), mode,
9199 mask, just_select: next_select));
9200 op1 = gen_lowpart_or_truncate (mode: xmode,
9201 x: force_to_mode (XEXP (x, 2), mode,
9202 mask, just_select: next_select));
9203 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9204 x = simplify_gen_ternary (code: IF_THEN_ELSE, mode: xmode,
9205 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9206 op1: op0, op2: op1);
9207 break;
9208
9209 default:
9210 break;
9211 }
9212
9213 /* Ensure we return a value of the proper mode. */
9214 return gen_lowpart_or_truncate (mode, x);
9215}
9216
9217/* Return nonzero if X is an expression that has one of two values depending on
9218 whether some other value is zero or nonzero. In that case, we return the
9219 value that is being tested, *PTRUE is set to the value if the rtx being
9220 returned has a nonzero value, and *PFALSE is set to the other alternative.
9221
9222 If we return zero, we set *PTRUE and *PFALSE to X. */
9223
9224static rtx
9225if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9226{
9227 machine_mode mode = GET_MODE (x);
9228 enum rtx_code code = GET_CODE (x);
9229 rtx cond0, cond1, true0, true1, false0, false1;
9230 unsigned HOST_WIDE_INT nz;
9231 scalar_int_mode int_mode;
9232
9233 /* If we are comparing a value against zero, we are done. */
9234 if ((code == NE || code == EQ)
9235 && XEXP (x, 1) == const0_rtx)
9236 {
9237 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9238 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9239 return XEXP (x, 0);
9240 }
9241
9242 /* If this is a unary operation whose operand has one of two values, apply
9243 our opcode to compute those values. */
9244 else if (UNARY_P (x)
9245 && (cond0 = if_then_else_cond (XEXP (x, 0), ptrue: &true0, pfalse: &false0)) != 0)
9246 {
9247 *ptrue = simplify_gen_unary (code, mode, op: true0, GET_MODE (XEXP (x, 0)));
9248 *pfalse = simplify_gen_unary (code, mode, op: false0,
9249 GET_MODE (XEXP (x, 0)));
9250 return cond0;
9251 }
9252
9253 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9254 make can't possibly match and would suppress other optimizations. */
9255 else if (code == COMPARE)
9256 ;
9257
9258 /* If this is a binary operation, see if either side has only one of two
9259 values. If either one does or if both do and they are conditional on
9260 the same value, compute the new true and false values. */
9261 else if (BINARY_P (x))
9262 {
9263 rtx op0 = XEXP (x, 0);
9264 rtx op1 = XEXP (x, 1);
9265 cond0 = if_then_else_cond (x: op0, ptrue: &true0, pfalse: &false0);
9266 cond1 = if_then_else_cond (x: op1, ptrue: &true1, pfalse: &false1);
9267
9268 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9269 && (REG_P (op0) || REG_P (op1)))
9270 {
9271 /* Try to enable a simplification by undoing work done by
9272 if_then_else_cond if it converted a REG into something more
9273 complex. */
9274 if (REG_P (op0))
9275 {
9276 cond0 = 0;
9277 true0 = false0 = op0;
9278 }
9279 else
9280 {
9281 cond1 = 0;
9282 true1 = false1 = op1;
9283 }
9284 }
9285
9286 if ((cond0 != 0 || cond1 != 0)
9287 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9288 {
9289 /* If if_then_else_cond returned zero, then true/false are the
9290 same rtl. We must copy one of them to prevent invalid rtl
9291 sharing. */
9292 if (cond0 == 0)
9293 true0 = copy_rtx (true0);
9294 else if (cond1 == 0)
9295 true1 = copy_rtx (true1);
9296
9297 if (COMPARISON_P (x))
9298 {
9299 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9300 op0: true0, op1: true1);
9301 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9302 op0: false0, op1: false1);
9303 }
9304 else
9305 {
9306 *ptrue = simplify_gen_binary (code, mode, op0: true0, op1: true1);
9307 *pfalse = simplify_gen_binary (code, mode, op0: false0, op1: false1);
9308 }
9309
9310 return cond0 ? cond0 : cond1;
9311 }
9312
9313 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9314 operands is zero when the other is nonzero, and vice-versa,
9315 and STORE_FLAG_VALUE is 1 or -1. */
9316
9317 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9318 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9319 || code == UMAX)
9320 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9321 {
9322 rtx op0 = XEXP (XEXP (x, 0), 1);
9323 rtx op1 = XEXP (XEXP (x, 1), 1);
9324
9325 cond0 = XEXP (XEXP (x, 0), 0);
9326 cond1 = XEXP (XEXP (x, 1), 0);
9327
9328 if (COMPARISON_P (cond0)
9329 && COMPARISON_P (cond1)
9330 && SCALAR_INT_MODE_P (mode)
9331 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9332 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9333 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9334 || ((swap_condition (GET_CODE (cond0))
9335 == reversed_comparison_code (cond1, NULL))
9336 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9337 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9338 && ! side_effects_p (x))
9339 {
9340 *ptrue = simplify_gen_binary (code: MULT, mode, op0, op1: const_true_rtx);
9341 *pfalse = simplify_gen_binary (code: MULT, mode,
9342 op0: (code == MINUS
9343 ? simplify_gen_unary (code: NEG, mode,
9344 op: op1, op_mode: mode)
9345 : op1),
9346 op1: const_true_rtx);
9347 return cond0;
9348 }
9349 }
9350
9351 /* Similarly for MULT, AND and UMIN, except that for these the result
9352 is always zero. */
9353 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9354 && (code == MULT || code == AND || code == UMIN)
9355 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9356 {
9357 cond0 = XEXP (XEXP (x, 0), 0);
9358 cond1 = XEXP (XEXP (x, 1), 0);
9359
9360 if (COMPARISON_P (cond0)
9361 && COMPARISON_P (cond1)
9362 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9363 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9364 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9365 || ((swap_condition (GET_CODE (cond0))
9366 == reversed_comparison_code (cond1, NULL))
9367 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9368 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9369 && ! side_effects_p (x))
9370 {
9371 *ptrue = *pfalse = const0_rtx;
9372 return cond0;
9373 }
9374 }
9375 }
9376
9377 else if (code == IF_THEN_ELSE)
9378 {
9379 /* If we have IF_THEN_ELSE already, extract the condition and
9380 canonicalize it if it is NE or EQ. */
9381 cond0 = XEXP (x, 0);
9382 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9383 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9384 return XEXP (cond0, 0);
9385 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9386 {
9387 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9388 return XEXP (cond0, 0);
9389 }
9390 else
9391 return cond0;
9392 }
9393
9394 /* If X is a SUBREG, we can narrow both the true and false values
9395 if the inner expression, if there is a condition. */
9396 else if (code == SUBREG
9397 && (cond0 = if_then_else_cond (SUBREG_REG (x), ptrue: &true0,
9398 pfalse: &false0)) != 0)
9399 {
9400 true0 = simplify_gen_subreg (outermode: mode, op: true0,
9401 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9402 false0 = simplify_gen_subreg (outermode: mode, op: false0,
9403 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9404 if (true0 && false0)
9405 {
9406 *ptrue = true0;
9407 *pfalse = false0;
9408 return cond0;
9409 }
9410 }
9411
9412 /* If X is a constant, this isn't special and will cause confusions
9413 if we treat it as such. Likewise if it is equivalent to a constant. */
9414 else if (CONSTANT_P (x)
9415 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9416 ;
9417
9418 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9419 will be least confusing to the rest of the compiler. */
9420 else if (mode == BImode)
9421 {
9422 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9423 return x;
9424 }
9425
9426 /* If X is known to be either 0 or -1, those are the true and
9427 false values when testing X. */
9428 else if (x == constm1_rtx || x == const0_rtx
9429 || (is_a <scalar_int_mode> (m: mode, result: &int_mode)
9430 && (num_sign_bit_copies (x, int_mode)
9431 == GET_MODE_PRECISION (mode: int_mode))))
9432 {
9433 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9434 return x;
9435 }
9436
9437 /* Likewise for 0 or a single bit. */
9438 else if (HWI_COMPUTABLE_MODE_P (mode)
9439 && pow2p_hwi (x: nz = nonzero_bits (x, mode)))
9440 {
9441 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9442 return x;
9443 }
9444
9445 /* Otherwise fail; show no condition with true and false values the same. */
9446 *ptrue = *pfalse = x;
9447 return 0;
9448}
9449
9450/* Return the value of expression X given the fact that condition COND
9451 is known to be true when applied to REG as its first operand and VAL
9452 as its second. X is known to not be shared and so can be modified in
9453 place.
9454
9455 We only handle the simplest cases, and specifically those cases that
9456 arise with IF_THEN_ELSE expressions. */
9457
9458static rtx
9459known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9460{
9461 enum rtx_code code = GET_CODE (x);
9462 const char *fmt;
9463 int i, j;
9464
9465 if (side_effects_p (x))
9466 return x;
9467
9468 /* If either operand of the condition is a floating point value,
9469 then we have to avoid collapsing an EQ comparison. */
9470 if (cond == EQ
9471 && rtx_equal_p (x, reg)
9472 && ! FLOAT_MODE_P (GET_MODE (x))
9473 && ! FLOAT_MODE_P (GET_MODE (val)))
9474 return val;
9475
9476 if (cond == UNEQ && rtx_equal_p (x, reg))
9477 return val;
9478
9479 /* If X is (abs REG) and we know something about REG's relationship
9480 with zero, we may be able to simplify this. */
9481
9482 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9483 switch (cond)
9484 {
9485 case GE: case GT: case EQ:
9486 return XEXP (x, 0);
9487 case LT: case LE:
9488 return simplify_gen_unary (code: NEG, GET_MODE (XEXP (x, 0)),
9489 XEXP (x, 0),
9490 GET_MODE (XEXP (x, 0)));
9491 default:
9492 break;
9493 }
9494
9495 /* The only other cases we handle are MIN, MAX, and comparisons if the
9496 operands are the same as REG and VAL. */
9497
9498 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9499 {
9500 if (rtx_equal_p (XEXP (x, 0), val))
9501 {
9502 std::swap (a&: val, b&: reg);
9503 cond = swap_condition (cond);
9504 }
9505
9506 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9507 {
9508 if (COMPARISON_P (x))
9509 {
9510 if (comparison_dominates_p (cond, code))
9511 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9512
9513 code = reversed_comparison_code (x, NULL);
9514 if (code != UNKNOWN
9515 && comparison_dominates_p (cond, code))
9516 return CONST0_RTX (GET_MODE (x));
9517 else
9518 return x;
9519 }
9520 else if (code == SMAX || code == SMIN
9521 || code == UMIN || code == UMAX)
9522 {
9523 int unsignedp = (code == UMIN || code == UMAX);
9524
9525 /* Do not reverse the condition when it is NE or EQ.
9526 This is because we cannot conclude anything about
9527 the value of 'SMAX (x, y)' when x is not equal to y,
9528 but we can when x equals y. */
9529 if ((code == SMAX || code == UMAX)
9530 && ! (cond == EQ || cond == NE))
9531 cond = reverse_condition (cond);
9532
9533 switch (cond)
9534 {
9535 case GE: case GT:
9536 return unsignedp ? x : XEXP (x, 1);
9537 case LE: case LT:
9538 return unsignedp ? x : XEXP (x, 0);
9539 case GEU: case GTU:
9540 return unsignedp ? XEXP (x, 1) : x;
9541 case LEU: case LTU:
9542 return unsignedp ? XEXP (x, 0) : x;
9543 default:
9544 break;
9545 }
9546 }
9547 }
9548 }
9549 else if (code == SUBREG)
9550 {
9551 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9552 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9553
9554 if (SUBREG_REG (x) != r)
9555 {
9556 /* We must simplify subreg here, before we lose track of the
9557 original inner_mode. */
9558 new_rtx = simplify_subreg (GET_MODE (x), op: r,
9559 innermode: inner_mode, SUBREG_BYTE (x));
9560 if (new_rtx)
9561 return new_rtx;
9562 else
9563 SUBST (SUBREG_REG (x), r);
9564 }
9565
9566 return x;
9567 }
9568 /* We don't have to handle SIGN_EXTEND here, because even in the
9569 case of replacing something with a modeless CONST_INT, a
9570 CONST_INT is already (supposed to be) a valid sign extension for
9571 its narrower mode, which implies it's already properly
9572 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9573 story is different. */
9574 else if (code == ZERO_EXTEND)
9575 {
9576 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9577 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9578
9579 if (XEXP (x, 0) != r)
9580 {
9581 /* We must simplify the zero_extend here, before we lose
9582 track of the original inner_mode. */
9583 new_rtx = simplify_unary_operation (code: ZERO_EXTEND, GET_MODE (x),
9584 op: r, op_mode: inner_mode);
9585 if (new_rtx)
9586 return new_rtx;
9587 else
9588 SUBST (XEXP (x, 0), r);
9589 }
9590
9591 return x;
9592 }
9593
9594 fmt = GET_RTX_FORMAT (code);
9595 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9596 {
9597 if (fmt[i] == 'e')
9598 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9599 else if (fmt[i] == 'E')
9600 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9601 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9602 cond, reg, val));
9603 }
9604
9605 return x;
9606}
9607
9608/* See if X and Y are equal for the purposes of seeing if we can rewrite an
9609 assignment as a field assignment. */
9610
9611static bool
9612rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9613{
9614 if (widen_x && GET_MODE (x) != GET_MODE (y))
9615 {
9616 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9617 return false;
9618 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9619 return false;
9620 x = adjust_address_nv (x, GET_MODE (y),
9621 byte_lowpart_offset (GET_MODE (y),
9622 GET_MODE (x)));
9623 }
9624
9625 if (x == y || rtx_equal_p (x, y))
9626 return true;
9627
9628 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9629 return false;
9630
9631 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9632 Note that all SUBREGs of MEM are paradoxical; otherwise they
9633 would have been rewritten. */
9634 if (MEM_P (x) && GET_CODE (y) == SUBREG
9635 && MEM_P (SUBREG_REG (y))
9636 && rtx_equal_p (SUBREG_REG (y),
9637 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9638 return true;
9639
9640 if (MEM_P (y) && GET_CODE (x) == SUBREG
9641 && MEM_P (SUBREG_REG (x))
9642 && rtx_equal_p (SUBREG_REG (x),
9643 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9644 return true;
9645
9646 /* We used to see if get_last_value of X and Y were the same but that's
9647 not correct. In one direction, we'll cause the assignment to have
9648 the wrong destination and in the case, we'll import a register into this
9649 insn that might have already have been dead. So fail if none of the
9650 above cases are true. */
9651 return false;
9652}
9653
9654/* See if X, a SET operation, can be rewritten as a bit-field assignment.
9655 Return that assignment if so.
9656
9657 We only handle the most common cases. */
9658
9659static rtx
9660make_field_assignment (rtx x)
9661{
9662 rtx dest = SET_DEST (x);
9663 rtx src = SET_SRC (x);
9664 rtx assign;
9665 rtx rhs, lhs;
9666 HOST_WIDE_INT c1;
9667 HOST_WIDE_INT pos;
9668 unsigned HOST_WIDE_INT len;
9669 rtx other;
9670
9671 /* All the rules in this function are specific to scalar integers. */
9672 scalar_int_mode mode;
9673 if (!is_a <scalar_int_mode> (GET_MODE (dest), result: &mode))
9674 return x;
9675
9676 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9677 a clear of a one-bit field. We will have changed it to
9678 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9679 for a SUBREG. */
9680
9681 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9682 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9683 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9684 && rtx_equal_for_field_assignment_p (x: dest, XEXP (src, 1)))
9685 {
9686 assign = make_extraction (VOIDmode, inner: dest, pos: 0, XEXP (XEXP (src, 0), 1),
9687 len: 1, unsignedp: true, in_dest: true, in_compare: false);
9688 if (assign != 0)
9689 return gen_rtx_SET (assign, const0_rtx);
9690 return x;
9691 }
9692
9693 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9694 && subreg_lowpart_p (XEXP (src, 0))
9695 && partial_subreg_p (XEXP (src, 0))
9696 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9697 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9698 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9699 && rtx_equal_for_field_assignment_p (x: dest, XEXP (src, 1)))
9700 {
9701 assign = make_extraction (VOIDmode, inner: dest, pos: 0,
9702 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9703 len: 1, unsignedp: true, in_dest: true, in_compare: false);
9704 if (assign != 0)
9705 return gen_rtx_SET (assign, const0_rtx);
9706 return x;
9707 }
9708
9709 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9710 one-bit field. */
9711 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9712 && XEXP (XEXP (src, 0), 0) == const1_rtx
9713 && rtx_equal_for_field_assignment_p (x: dest, XEXP (src, 1)))
9714 {
9715 assign = make_extraction (VOIDmode, inner: dest, pos: 0, XEXP (XEXP (src, 0), 1),
9716 len: 1, unsignedp: true, in_dest: true, in_compare: false);
9717 if (assign != 0)
9718 return gen_rtx_SET (assign, const1_rtx);
9719 return x;
9720 }
9721
9722 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9723 SRC is an AND with all bits of that field set, then we can discard
9724 the AND. */
9725 if (GET_CODE (dest) == ZERO_EXTRACT
9726 && CONST_INT_P (XEXP (dest, 1))
9727 && GET_CODE (src) == AND
9728 && CONST_INT_P (XEXP (src, 1)))
9729 {
9730 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9731 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9732 unsigned HOST_WIDE_INT ze_mask;
9733
9734 if (width >= HOST_BITS_PER_WIDE_INT)
9735 ze_mask = -1;
9736 else
9737 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9738
9739 /* Complete overlap. We can remove the source AND. */
9740 if ((and_mask & ze_mask) == ze_mask)
9741 return gen_rtx_SET (dest, XEXP (src, 0));
9742
9743 /* Partial overlap. We can reduce the source AND. */
9744 if ((and_mask & ze_mask) != and_mask)
9745 {
9746 src = gen_rtx_AND (mode, XEXP (src, 0),
9747 gen_int_mode (and_mask & ze_mask, mode));
9748 return gen_rtx_SET (dest, src);
9749 }
9750 }
9751
9752 /* The other case we handle is assignments into a constant-position
9753 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9754 a mask that has all one bits except for a group of zero bits and
9755 OTHER is known to have zeros where C1 has ones, this is such an
9756 assignment. Compute the position and length from C1. Shift OTHER
9757 to the appropriate position, force it to the required mode, and
9758 make the extraction. Check for the AND in both operands. */
9759
9760 /* One or more SUBREGs might obscure the constant-position field
9761 assignment. The first one we are likely to encounter is an outer
9762 narrowing SUBREG, which we can just strip for the purposes of
9763 identifying the constant-field assignment. */
9764 scalar_int_mode src_mode = mode;
9765 if (GET_CODE (src) == SUBREG
9766 && subreg_lowpart_p (src)
9767 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), result: &src_mode))
9768 src = SUBREG_REG (src);
9769
9770 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9771 return x;
9772
9773 rhs = expand_compound_operation (XEXP (src, 0));
9774 lhs = expand_compound_operation (XEXP (src, 1));
9775
9776 if (GET_CODE (rhs) == AND
9777 && CONST_INT_P (XEXP (rhs, 1))
9778 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), y: dest))
9779 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9780 /* The second SUBREG that might get in the way is a paradoxical
9781 SUBREG around the first operand of the AND. We want to
9782 pretend the operand is as wide as the destination here. We
9783 do this by adjusting the MEM to wider mode for the sole
9784 purpose of the call to rtx_equal_for_field_assignment_p. Also
9785 note this trick only works for MEMs. */
9786 else if (GET_CODE (rhs) == AND
9787 && paradoxical_subreg_p (XEXP (rhs, 0))
9788 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9789 && CONST_INT_P (XEXP (rhs, 1))
9790 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9791 y: dest, widen_x: true))
9792 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9793 else if (GET_CODE (lhs) == AND
9794 && CONST_INT_P (XEXP (lhs, 1))
9795 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), y: dest))
9796 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9797 /* The second SUBREG that might get in the way is a paradoxical
9798 SUBREG around the first operand of the AND. We want to
9799 pretend the operand is as wide as the destination here. We
9800 do this by adjusting the MEM to wider mode for the sole
9801 purpose of the call to rtx_equal_for_field_assignment_p. Also
9802 note this trick only works for MEMs. */
9803 else if (GET_CODE (lhs) == AND
9804 && paradoxical_subreg_p (XEXP (lhs, 0))
9805 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9806 && CONST_INT_P (XEXP (lhs, 1))
9807 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9808 y: dest, widen_x: true))
9809 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9810 else
9811 return x;
9812
9813 pos = get_pos_from_mask (m: (~c1) & GET_MODE_MASK (mode), plen: &len);
9814 if (pos < 0
9815 || pos + len > GET_MODE_PRECISION (mode)
9816 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9817 || (c1 & nonzero_bits (other, mode)) != 0)
9818 return x;
9819
9820 assign = make_extraction (VOIDmode, inner: dest, pos, NULL_RTX, len,
9821 unsignedp: true, in_dest: true, in_compare: false);
9822 if (assign == 0)
9823 return x;
9824
9825 /* The mode to use for the source is the mode of the assignment, or of
9826 what is inside a possible STRICT_LOW_PART. */
9827 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9828 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9829
9830 /* Shift OTHER right POS places and make it the source, restricting it
9831 to the proper length and mode. */
9832
9833 src = canon_reg_for_combine (x: simplify_shift_const (NULL_RTX, LSHIFTRT,
9834 src_mode, other, pos),
9835 reg: dest);
9836 src = force_to_mode (x: src, mode: new_mode,
9837 mask: len >= HOST_BITS_PER_WIDE_INT
9838 ? HOST_WIDE_INT_M1U
9839 : (HOST_WIDE_INT_1U << len) - 1, just_select: false);
9840
9841 /* If SRC is masked by an AND that does not make a difference in
9842 the value being stored, strip it. */
9843 if (GET_CODE (assign) == ZERO_EXTRACT
9844 && CONST_INT_P (XEXP (assign, 1))
9845 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9846 && GET_CODE (src) == AND
9847 && CONST_INT_P (XEXP (src, 1))
9848 && UINTVAL (XEXP (src, 1))
9849 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9850 src = XEXP (src, 0);
9851
9852 return gen_rtx_SET (assign, src);
9853}
9854
9855/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9856 if so. */
9857
9858static rtx
9859apply_distributive_law (rtx x)
9860{
9861 enum rtx_code code = GET_CODE (x);
9862 enum rtx_code inner_code;
9863 rtx lhs, rhs, other;
9864 rtx tem;
9865
9866 /* Distributivity is not true for floating point as it can change the
9867 value. So we don't do it unless -funsafe-math-optimizations. */
9868 if (FLOAT_MODE_P (GET_MODE (x))
9869 && ! flag_unsafe_math_optimizations)
9870 return x;
9871
9872 /* The outer operation can only be one of the following: */
9873 if (code != IOR && code != AND && code != XOR
9874 && code != PLUS && code != MINUS)
9875 return x;
9876
9877 lhs = XEXP (x, 0);
9878 rhs = XEXP (x, 1);
9879
9880 /* If either operand is a primitive we can't do anything, so get out
9881 fast. */
9882 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9883 return x;
9884
9885 lhs = expand_compound_operation (x: lhs);
9886 rhs = expand_compound_operation (x: rhs);
9887 inner_code = GET_CODE (lhs);
9888 if (inner_code != GET_CODE (rhs))
9889 return x;
9890
9891 /* See if the inner and outer operations distribute. */
9892 switch (inner_code)
9893 {
9894 case LSHIFTRT:
9895 case ASHIFTRT:
9896 case AND:
9897 case IOR:
9898 /* These all distribute except over PLUS. */
9899 if (code == PLUS || code == MINUS)
9900 return x;
9901 break;
9902
9903 case MULT:
9904 if (code != PLUS && code != MINUS)
9905 return x;
9906 break;
9907
9908 case ASHIFT:
9909 /* This is also a multiply, so it distributes over everything. */
9910 break;
9911
9912 /* This used to handle SUBREG, but this turned out to be counter-
9913 productive, since (subreg (op ...)) usually is not handled by
9914 insn patterns, and this "optimization" therefore transformed
9915 recognizable patterns into unrecognizable ones. Therefore the
9916 SUBREG case was removed from here.
9917
9918 It is possible that distributing SUBREG over arithmetic operations
9919 leads to an intermediate result than can then be optimized further,
9920 e.g. by moving the outer SUBREG to the other side of a SET as done
9921 in simplify_set. This seems to have been the original intent of
9922 handling SUBREGs here.
9923
9924 However, with current GCC this does not appear to actually happen,
9925 at least on major platforms. If some case is found where removing
9926 the SUBREG case here prevents follow-on optimizations, distributing
9927 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9928
9929 default:
9930 return x;
9931 }
9932
9933 /* Set LHS and RHS to the inner operands (A and B in the example
9934 above) and set OTHER to the common operand (C in the example).
9935 There is only one way to do this unless the inner operation is
9936 commutative. */
9937 if (COMMUTATIVE_ARITH_P (lhs)
9938 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9939 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9940 else if (COMMUTATIVE_ARITH_P (lhs)
9941 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9942 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9943 else if (COMMUTATIVE_ARITH_P (lhs)
9944 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9945 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9946 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9947 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9948 else
9949 return x;
9950
9951 /* Form the new inner operation, seeing if it simplifies first. */
9952 tem = simplify_gen_binary (code, GET_MODE (x), op0: lhs, op1: rhs);
9953
9954 /* There is one exception to the general way of distributing:
9955 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9956 if (code == XOR && inner_code == IOR)
9957 {
9958 inner_code = AND;
9959 other = simplify_gen_unary (code: NOT, GET_MODE (x), op: other, GET_MODE (x));
9960 }
9961
9962 /* We may be able to continuing distributing the result, so call
9963 ourselves recursively on the inner operation before forming the
9964 outer operation, which we return. */
9965 return simplify_gen_binary (code: inner_code, GET_MODE (x),
9966 op0: apply_distributive_law (x: tem), op1: other);
9967}
9968
9969/* See if X is of the form (* (+ A B) C), and if so convert to
9970 (+ (* A C) (* B C)) and try to simplify.
9971
9972 Most of the time, this results in no change. However, if some of
9973 the operands are the same or inverses of each other, simplifications
9974 will result.
9975
9976 For example, (and (ior A B) (not B)) can occur as the result of
9977 expanding a bit field assignment. When we apply the distributive
9978 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9979 which then simplifies to (and (A (not B))).
9980
9981 Note that no checks happen on the validity of applying the inverse
9982 distributive law. This is pointless since we can do it in the
9983 few places where this routine is called.
9984
9985 N is the index of the term that is decomposed (the arithmetic operation,
9986 i.e. (+ A B) in the first example above). !N is the index of the term that
9987 is distributed, i.e. of C in the first example above. */
9988static rtx
9989distribute_and_simplify_rtx (rtx x, int n)
9990{
9991 machine_mode mode;
9992 enum rtx_code outer_code, inner_code;
9993 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9994
9995 /* Distributivity is not true for floating point as it can change the
9996 value. So we don't do it unless -funsafe-math-optimizations. */
9997 if (FLOAT_MODE_P (GET_MODE (x))
9998 && ! flag_unsafe_math_optimizations)
9999 return NULL_RTX;
10000
10001 decomposed = XEXP (x, n);
10002 if (!ARITHMETIC_P (decomposed))
10003 return NULL_RTX;
10004
10005 mode = GET_MODE (x);
10006 outer_code = GET_CODE (x);
10007 distributed = XEXP (x, !n);
10008
10009 inner_code = GET_CODE (decomposed);
10010 inner_op0 = XEXP (decomposed, 0);
10011 inner_op1 = XEXP (decomposed, 1);
10012
10013 /* Special case (and (xor B C) (not A)), which is equivalent to
10014 (xor (ior A B) (ior A C)) */
10015 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10016 {
10017 distributed = XEXP (distributed, 0);
10018 outer_code = IOR;
10019 }
10020
10021 if (n == 0)
10022 {
10023 /* Distribute the second term. */
10024 new_op0 = simplify_gen_binary (code: outer_code, mode, op0: inner_op0, op1: distributed);
10025 new_op1 = simplify_gen_binary (code: outer_code, mode, op0: inner_op1, op1: distributed);
10026 }
10027 else
10028 {
10029 /* Distribute the first term. */
10030 new_op0 = simplify_gen_binary (code: outer_code, mode, op0: distributed, op1: inner_op0);
10031 new_op1 = simplify_gen_binary (code: outer_code, mode, op0: distributed, op1: inner_op1);
10032 }
10033
10034 tmp = apply_distributive_law (x: simplify_gen_binary (code: inner_code, mode,
10035 op0: new_op0, op1: new_op1));
10036 if (GET_CODE (tmp) != outer_code
10037 && (set_src_cost (x: tmp, mode, speed_p: optimize_this_for_speed_p)
10038 < set_src_cost (x, mode, speed_p: optimize_this_for_speed_p)))
10039 return tmp;
10040
10041 return NULL_RTX;
10042}
10043
10044/* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10045 in MODE. Return an equivalent form, if different from (and VAROP
10046 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10047
10048static rtx
10049simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10050 unsigned HOST_WIDE_INT constop)
10051{
10052 unsigned HOST_WIDE_INT nonzero;
10053 unsigned HOST_WIDE_INT orig_constop;
10054 rtx orig_varop;
10055 int i;
10056
10057 orig_varop = varop;
10058 orig_constop = constop;
10059 if (GET_CODE (varop) == CLOBBER)
10060 return NULL_RTX;
10061
10062 /* Simplify VAROP knowing that we will be only looking at some of the
10063 bits in it.
10064
10065 Note by passing in CONSTOP, we guarantee that the bits not set in
10066 CONSTOP are not significant and will never be examined. We must
10067 ensure that is the case by explicitly masking out those bits
10068 before returning. */
10069 varop = force_to_mode (x: varop, mode, mask: constop, just_select: false);
10070
10071 /* If VAROP is a CLOBBER, we will fail so return it. */
10072 if (GET_CODE (varop) == CLOBBER)
10073 return varop;
10074
10075 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10076 to VAROP and return the new constant. */
10077 if (CONST_INT_P (varop))
10078 return gen_int_mode (INTVAL (varop) & constop, mode);
10079
10080 /* See what bits may be nonzero in VAROP. Unlike the general case of
10081 a call to nonzero_bits, here we don't care about bits outside
10082 MODE unless WORD_REGISTER_OPERATIONS is true. */
10083
10084 scalar_int_mode tmode = mode;
10085 if (WORD_REGISTER_OPERATIONS && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
10086 tmode = word_mode;
10087 nonzero = nonzero_bits (varop, tmode) & GET_MODE_MASK (tmode);
10088
10089 /* Turn off all bits in the constant that are known to already be zero.
10090 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10091 which is tested below. */
10092
10093 constop &= nonzero;
10094
10095 /* If we don't have any bits left, return zero. */
10096 if (constop == 0 && !side_effects_p (varop))
10097 return const0_rtx;
10098
10099 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10100 a power of two, we can replace this with an ASHIFT. */
10101 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), tmode) == 1
10102 && (i = exact_log2 (x: constop)) >= 0)
10103 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10104
10105 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10106 or XOR, then try to apply the distributive law. This may eliminate
10107 operations if either branch can be simplified because of the AND.
10108 It may also make some cases more complex, but those cases probably
10109 won't match a pattern either with or without this. */
10110
10111 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10112 {
10113 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10114 return
10115 gen_lowpart
10116 (mode,
10117 apply_distributive_law
10118 (x: simplify_gen_binary (GET_CODE (varop), mode: varop_mode,
10119 op0: simplify_and_const_int (NULL_RTX, varop_mode,
10120 XEXP (varop, 0),
10121 constop),
10122 op1: simplify_and_const_int (NULL_RTX, varop_mode,
10123 XEXP (varop, 1),
10124 constop))));
10125 }
10126
10127 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10128 the AND and see if one of the operands simplifies to zero. If so, we
10129 may eliminate it. */
10130
10131 if (GET_CODE (varop) == PLUS
10132 && pow2p_hwi (x: constop + 1))
10133 {
10134 rtx o0, o1;
10135
10136 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10137 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10138 if (o0 == const0_rtx)
10139 return o1;
10140 if (o1 == const0_rtx)
10141 return o0;
10142 }
10143
10144 /* Make a SUBREG if necessary. If we can't make it, fail. */
10145 varop = gen_lowpart (mode, varop);
10146 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10147 return NULL_RTX;
10148
10149 /* If we are only masking insignificant bits, return VAROP. */
10150 if (constop == nonzero)
10151 return varop;
10152
10153 if (varop == orig_varop && constop == orig_constop)
10154 return NULL_RTX;
10155
10156 /* Otherwise, return an AND. */
10157 return simplify_gen_binary (code: AND, mode, op0: varop, op1: gen_int_mode (constop, mode));
10158}
10159
10160
10161/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10162 in MODE.
10163
10164 Return an equivalent form, if different from X. Otherwise, return X. If
10165 X is zero, we are to always construct the equivalent form. */
10166
10167static rtx
10168simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10169 unsigned HOST_WIDE_INT constop)
10170{
10171 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10172 if (tem)
10173 return tem;
10174
10175 if (!x)
10176 x = simplify_gen_binary (code: AND, GET_MODE (varop), op0: varop,
10177 op1: gen_int_mode (constop, mode));
10178 if (GET_MODE (x) != mode)
10179 x = gen_lowpart (mode, x);
10180 return x;
10181}
10182
10183/* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10184 We don't care about bits outside of those defined in MODE.
10185 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10186
10187 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10188 a shift, AND, or zero_extract, we can do better. */
10189
10190static rtx
10191reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10192 scalar_int_mode mode,
10193 unsigned HOST_WIDE_INT *nonzero)
10194{
10195 rtx tem;
10196 reg_stat_type *rsp;
10197
10198 /* If X is a register whose nonzero bits value is current, use it.
10199 Otherwise, if X is a register whose value we can find, use that
10200 value. Otherwise, use the previously-computed global nonzero bits
10201 for this register. */
10202
10203 rsp = &reg_stat[REGNO (x)];
10204 if (rsp->last_set_value != 0
10205 && (rsp->last_set_mode == mode
10206 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10207 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10208 && GET_MODE_CLASS (mode) == MODE_INT))
10209 && ((rsp->last_set_label >= label_tick_ebb_start
10210 && rsp->last_set_label < label_tick)
10211 || (rsp->last_set_label == label_tick
10212 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10213 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10214 && REGNO (x) < reg_n_sets_max
10215 && REG_N_SETS (REGNO (x)) == 1
10216 && !REGNO_REG_SET_P
10217 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10218 REGNO (x)))))
10219 {
10220 /* Note that, even if the precision of last_set_mode is lower than that
10221 of mode, record_value_for_reg invoked nonzero_bits on the register
10222 with nonzero_bits_mode (because last_set_mode is necessarily integral
10223 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10224 are all valid, hence in mode too since nonzero_bits_mode is defined
10225 to the largest HWI_COMPUTABLE_MODE_P mode. */
10226 *nonzero &= rsp->last_set_nonzero_bits;
10227 return NULL;
10228 }
10229
10230 tem = get_last_value (x);
10231 if (tem)
10232 {
10233 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10234 tem = sign_extend_short_imm (src: tem, mode: xmode, prec: GET_MODE_PRECISION (mode));
10235
10236 return tem;
10237 }
10238
10239 if (nonzero_sign_valid && rsp->nonzero_bits)
10240 {
10241 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10242
10243 if (GET_MODE_PRECISION (mode: xmode) < GET_MODE_PRECISION (mode))
10244 /* We don't know anything about the upper bits. */
10245 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10246
10247 *nonzero &= mask;
10248 }
10249
10250 return NULL;
10251}
10252
10253/* Given a reg X of mode XMODE, return the number of bits at the high-order
10254 end of X that are known to be equal to the sign bit. X will be used
10255 in mode MODE; the returned value will always be between 1 and the
10256 number of bits in MODE. */
10257
10258static rtx
10259reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10260 scalar_int_mode mode,
10261 unsigned int *result)
10262{
10263 rtx tem;
10264 reg_stat_type *rsp;
10265
10266 rsp = &reg_stat[REGNO (x)];
10267 if (rsp->last_set_value != 0
10268 && rsp->last_set_mode == mode
10269 && ((rsp->last_set_label >= label_tick_ebb_start
10270 && rsp->last_set_label < label_tick)
10271 || (rsp->last_set_label == label_tick
10272 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10273 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10274 && REGNO (x) < reg_n_sets_max
10275 && REG_N_SETS (REGNO (x)) == 1
10276 && !REGNO_REG_SET_P
10277 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10278 REGNO (x)))))
10279 {
10280 *result = rsp->last_set_sign_bit_copies;
10281 return NULL;
10282 }
10283
10284 tem = get_last_value (x);
10285 if (tem != 0)
10286 return tem;
10287
10288 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10289 && GET_MODE_PRECISION (mode: xmode) == GET_MODE_PRECISION (mode))
10290 *result = rsp->sign_bit_copies;
10291
10292 return NULL;
10293}
10294
10295/* Return the number of "extended" bits there are in X, when interpreted
10296 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10297 unsigned quantities, this is the number of high-order zero bits.
10298 For signed quantities, this is the number of copies of the sign bit
10299 minus 1. In both case, this function returns the number of "spare"
10300 bits. For example, if two quantities for which this function returns
10301 at least 1 are added, the addition is known not to overflow.
10302
10303 This function will always return 0 unless called during combine, which
10304 implies that it must be called from a define_split. */
10305
10306unsigned int
10307extended_count (const_rtx x, machine_mode mode, bool unsignedp)
10308{
10309 if (nonzero_sign_valid == 0)
10310 return 0;
10311
10312 scalar_int_mode int_mode;
10313 return (unsignedp
10314 ? (is_a <scalar_int_mode> (m: mode, result: &int_mode)
10315 && HWI_COMPUTABLE_MODE_P (mode: int_mode)
10316 ? (unsigned int) (GET_MODE_PRECISION (mode: int_mode) - 1
10317 - floor_log2 (x: nonzero_bits (x, int_mode)))
10318 : 0)
10319 : num_sign_bit_copies (x, mode) - 1);
10320}
10321
10322/* This function is called from `simplify_shift_const' to merge two
10323 outer operations. Specifically, we have already found that we need
10324 to perform operation *POP0 with constant *PCONST0 at the outermost
10325 position. We would now like to also perform OP1 with constant CONST1
10326 (with *POP0 being done last).
10327
10328 Return true if we can do the operation and update *POP0 and *PCONST0 with
10329 the resulting operation. *PCOMP_P is set to true if we would need to
10330 complement the innermost operand, otherwise it is unchanged.
10331
10332 MODE is the mode in which the operation will be done. No bits outside
10333 the width of this mode matter. It is assumed that the width of this mode
10334 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10335
10336 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10337 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10338 result is simply *PCONST0.
10339
10340 If the resulting operation cannot be expressed as one operation, we
10341 return false and do not change *POP0, *PCONST0, and *PCOMP_P. */
10342
10343static bool
10344merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0,
10345 enum rtx_code op1, HOST_WIDE_INT const1,
10346 machine_mode mode, bool *pcomp_p)
10347{
10348 enum rtx_code op0 = *pop0;
10349 HOST_WIDE_INT const0 = *pconst0;
10350
10351 const0 &= GET_MODE_MASK (mode);
10352 const1 &= GET_MODE_MASK (mode);
10353
10354 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10355 if (op0 == AND)
10356 const1 &= const0;
10357
10358 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10359 if OP0 is SET. */
10360
10361 if (op1 == UNKNOWN || op0 == SET)
10362 return true;
10363
10364 else if (op0 == UNKNOWN)
10365 op0 = op1, const0 = const1;
10366
10367 else if (op0 == op1)
10368 {
10369 switch (op0)
10370 {
10371 case AND:
10372 const0 &= const1;
10373 break;
10374 case IOR:
10375 const0 |= const1;
10376 break;
10377 case XOR:
10378 const0 ^= const1;
10379 break;
10380 case PLUS:
10381 const0 += const1;
10382 break;
10383 case NEG:
10384 op0 = UNKNOWN;
10385 break;
10386 default:
10387 break;
10388 }
10389 }
10390
10391 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10392 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10393 return false;
10394
10395 /* If the two constants aren't the same, we can't do anything. The
10396 remaining six cases can all be done. */
10397 else if (const0 != const1)
10398 return false;
10399
10400 else
10401 switch (op0)
10402 {
10403 case IOR:
10404 if (op1 == AND)
10405 /* (a & b) | b == b */
10406 op0 = SET;
10407 else /* op1 == XOR */
10408 /* (a ^ b) | b == a | b */
10409 {;}
10410 break;
10411
10412 case XOR:
10413 if (op1 == AND)
10414 /* (a & b) ^ b == (~a) & b */
10415 op0 = AND, *pcomp_p = true;
10416 else /* op1 == IOR */
10417 /* (a | b) ^ b == a & ~b */
10418 op0 = AND, const0 = ~const0;
10419 break;
10420
10421 case AND:
10422 if (op1 == IOR)
10423 /* (a | b) & b == b */
10424 op0 = SET;
10425 else /* op1 == XOR */
10426 /* (a ^ b) & b) == (~a) & b */
10427 *pcomp_p = true;
10428 break;
10429 default:
10430 break;
10431 }
10432
10433 /* Check for NO-OP cases. */
10434 const0 &= GET_MODE_MASK (mode);
10435 if (const0 == 0
10436 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10437 op0 = UNKNOWN;
10438 else if (const0 == 0 && op0 == AND)
10439 op0 = SET;
10440 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10441 && op0 == AND)
10442 op0 = UNKNOWN;
10443
10444 *pop0 = op0;
10445
10446 /* ??? Slightly redundant with the above mask, but not entirely.
10447 Moving this above means we'd have to sign-extend the mode mask
10448 for the final test. */
10449 if (op0 != UNKNOWN && op0 != NEG)
10450 *pconst0 = trunc_int_for_mode (const0, mode);
10451
10452 return true;
10453}
10454
10455/* A helper to simplify_shift_const_1 to determine the mode we can perform
10456 the shift in. The original shift operation CODE is performed on OP in
10457 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10458 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10459 result of the shift is subject to operation OUTER_CODE with operand
10460 OUTER_CONST. */
10461
10462static scalar_int_mode
10463try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10464 scalar_int_mode orig_mode, scalar_int_mode mode,
10465 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10466{
10467 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10468
10469 /* In general we can't perform in wider mode for right shift and rotate. */
10470 switch (code)
10471 {
10472 case ASHIFTRT:
10473 /* We can still widen if the bits brought in from the left are identical
10474 to the sign bit of ORIG_MODE. */
10475 if (num_sign_bit_copies (op, mode)
10476 > (unsigned) (GET_MODE_PRECISION (mode)
10477 - GET_MODE_PRECISION (mode: orig_mode)))
10478 return mode;
10479 return orig_mode;
10480
10481 case LSHIFTRT:
10482 /* Similarly here but with zero bits. */
10483 if (HWI_COMPUTABLE_MODE_P (mode)
10484 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10485 return mode;
10486
10487 /* We can also widen if the bits brought in will be masked off. This
10488 operation is performed in ORIG_MODE. */
10489 if (outer_code == AND)
10490 {
10491 int care_bits = low_bitmask_len (orig_mode, outer_const);
10492
10493 if (care_bits >= 0
10494 && GET_MODE_PRECISION (mode: orig_mode) - care_bits >= count)
10495 return mode;
10496 }
10497 /* fall through */
10498
10499 case ROTATE:
10500 return orig_mode;
10501
10502 case ROTATERT:
10503 gcc_unreachable ();
10504
10505 default:
10506 return mode;
10507 }
10508}
10509
10510/* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10511 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10512 if we cannot simplify it. Otherwise, return a simplified value.
10513
10514 The shift is normally computed in the widest mode we find in VAROP, as
10515 long as it isn't a different number of words than RESULT_MODE. Exceptions
10516 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10517
10518static rtx
10519simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10520 rtx varop, int orig_count)
10521{
10522 enum rtx_code orig_code = code;
10523 rtx orig_varop = varop;
10524 int count, log2;
10525 machine_mode mode = result_mode;
10526 machine_mode shift_mode;
10527 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10528 /* We form (outer_op (code varop count) (outer_const)). */
10529 enum rtx_code outer_op = UNKNOWN;
10530 HOST_WIDE_INT outer_const = 0;
10531 bool complement_p = false;
10532 rtx new_rtx, x;
10533
10534 /* Make sure and truncate the "natural" shift on the way in. We don't
10535 want to do this inside the loop as it makes it more difficult to
10536 combine shifts. */
10537 if (SHIFT_COUNT_TRUNCATED)
10538 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10539
10540 /* If we were given an invalid count, don't do anything except exactly
10541 what was requested. */
10542
10543 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10544 return NULL_RTX;
10545
10546 count = orig_count;
10547
10548 /* Unless one of the branches of the `if' in this loop does a `continue',
10549 we will `break' the loop after the `if'. */
10550
10551 while (count != 0)
10552 {
10553 /* If we have an operand of (clobber (const_int 0)), fail. */
10554 if (GET_CODE (varop) == CLOBBER)
10555 return NULL_RTX;
10556
10557 /* Convert ROTATERT to ROTATE. */
10558 if (code == ROTATERT)
10559 {
10560 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10561 code = ROTATE;
10562 count = bitsize - count;
10563 }
10564
10565 shift_mode = result_mode;
10566 if (shift_mode != mode)
10567 {
10568 /* We only change the modes of scalar shifts. */
10569 int_mode = as_a <scalar_int_mode> (m: mode);
10570 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
10571 shift_mode = try_widen_shift_mode (code, op: varop, count,
10572 orig_mode: int_result_mode, mode: int_mode,
10573 outer_code: outer_op, outer_const);
10574 }
10575
10576 scalar_int_mode shift_unit_mode
10577 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10578
10579 /* Handle cases where the count is greater than the size of the mode
10580 minus 1. For ASHIFT, use the size minus one as the count (this can
10581 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10582 take the count modulo the size. For other shifts, the result is
10583 zero.
10584
10585 Since these shifts are being produced by the compiler by combining
10586 multiple operations, each of which are defined, we know what the
10587 result is supposed to be. */
10588
10589 if (count > (GET_MODE_PRECISION (mode: shift_unit_mode) - 1))
10590 {
10591 if (code == ASHIFTRT)
10592 count = GET_MODE_PRECISION (mode: shift_unit_mode) - 1;
10593 else if (code == ROTATE || code == ROTATERT)
10594 count %= GET_MODE_PRECISION (mode: shift_unit_mode);
10595 else
10596 {
10597 /* We can't simply return zero because there may be an
10598 outer op. */
10599 varop = const0_rtx;
10600 count = 0;
10601 break;
10602 }
10603 }
10604
10605 /* If we discovered we had to complement VAROP, leave. Making a NOT
10606 here would cause an infinite loop. */
10607 if (complement_p)
10608 break;
10609
10610 if (shift_mode == shift_unit_mode)
10611 {
10612 /* An arithmetic right shift of a quantity known to be -1 or 0
10613 is a no-op. */
10614 if (code == ASHIFTRT
10615 && (num_sign_bit_copies (varop, shift_unit_mode)
10616 == GET_MODE_PRECISION (mode: shift_unit_mode)))
10617 {
10618 count = 0;
10619 break;
10620 }
10621
10622 /* If we are doing an arithmetic right shift and discarding all but
10623 the sign bit copies, this is equivalent to doing a shift by the
10624 bitsize minus one. Convert it into that shift because it will
10625 often allow other simplifications. */
10626
10627 if (code == ASHIFTRT
10628 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10629 >= GET_MODE_PRECISION (mode: shift_unit_mode)))
10630 count = GET_MODE_PRECISION (mode: shift_unit_mode) - 1;
10631
10632 /* We simplify the tests below and elsewhere by converting
10633 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10634 `make_compound_operation' will convert it to an ASHIFTRT for
10635 those machines (such as VAX) that don't have an LSHIFTRT. */
10636 if (code == ASHIFTRT
10637 && HWI_COMPUTABLE_MODE_P (mode: shift_unit_mode)
10638 && val_signbit_known_clear_p (shift_unit_mode,
10639 nonzero_bits (varop,
10640 shift_unit_mode)))
10641 code = LSHIFTRT;
10642
10643 if (((code == LSHIFTRT
10644 && HWI_COMPUTABLE_MODE_P (mode: shift_unit_mode)
10645 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10646 || (code == ASHIFT
10647 && HWI_COMPUTABLE_MODE_P (mode: shift_unit_mode)
10648 && !((nonzero_bits (varop, shift_unit_mode) << count)
10649 & GET_MODE_MASK (shift_unit_mode))))
10650 && !side_effects_p (varop))
10651 varop = const0_rtx;
10652 }
10653
10654 switch (GET_CODE (varop))
10655 {
10656 case SIGN_EXTEND:
10657 case ZERO_EXTEND:
10658 case SIGN_EXTRACT:
10659 case ZERO_EXTRACT:
10660 new_rtx = expand_compound_operation (x: varop);
10661 if (new_rtx != varop)
10662 {
10663 varop = new_rtx;
10664 continue;
10665 }
10666 break;
10667
10668 case MEM:
10669 /* The following rules apply only to scalars. */
10670 if (shift_mode != shift_unit_mode)
10671 break;
10672 int_mode = as_a <scalar_int_mode> (m: mode);
10673
10674 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10675 minus the width of a smaller mode, we can do this with a
10676 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10677 if ((code == ASHIFTRT || code == LSHIFTRT)
10678 && ! mode_dependent_address_p (XEXP (varop, 0),
10679 MEM_ADDR_SPACE (varop))
10680 && ! MEM_VOLATILE_P (varop)
10681 && (int_mode_for_size (size: GET_MODE_BITSIZE (mode: int_mode) - count, limit: 1)
10682 .exists (mode: &tmode)))
10683 {
10684 new_rtx = adjust_address_nv (varop, tmode,
10685 BYTES_BIG_ENDIAN ? 0
10686 : count / BITS_PER_UNIT);
10687
10688 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10689 : ZERO_EXTEND, int_mode, new_rtx);
10690 count = 0;
10691 continue;
10692 }
10693 break;
10694
10695 case SUBREG:
10696 /* The following rules apply only to scalars. */
10697 if (shift_mode != shift_unit_mode)
10698 break;
10699 int_mode = as_a <scalar_int_mode> (m: mode);
10700 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10701
10702 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10703 the same number of words as what we've seen so far. Then store
10704 the widest mode in MODE. */
10705 if (subreg_lowpart_p (varop)
10706 && is_int_mode (GET_MODE (SUBREG_REG (varop)), int_mode: &inner_mode)
10707 && GET_MODE_SIZE (mode: inner_mode) > GET_MODE_SIZE (mode: int_varop_mode)
10708 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10709 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10710 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10711 {
10712 varop = SUBREG_REG (varop);
10713 if (GET_MODE_SIZE (mode: inner_mode) > GET_MODE_SIZE (mode: int_mode))
10714 mode = inner_mode;
10715 continue;
10716 }
10717 break;
10718
10719 case MULT:
10720 /* Some machines use MULT instead of ASHIFT because MULT
10721 is cheaper. But it is still better on those machines to
10722 merge two shifts into one. */
10723 if (CONST_INT_P (XEXP (varop, 1))
10724 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10725 {
10726 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10727 varop = simplify_gen_binary (code: ASHIFT, GET_MODE (varop),
10728 XEXP (varop, 0), op1: log2_rtx);
10729 continue;
10730 }
10731 break;
10732
10733 case UDIV:
10734 /* Similar, for when divides are cheaper. */
10735 if (CONST_INT_P (XEXP (varop, 1))
10736 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10737 {
10738 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10739 varop = simplify_gen_binary (code: LSHIFTRT, GET_MODE (varop),
10740 XEXP (varop, 0), op1: log2_rtx);
10741 continue;
10742 }
10743 break;
10744
10745 case ASHIFTRT:
10746 /* If we are extracting just the sign bit of an arithmetic
10747 right shift, that shift is not needed. However, the sign
10748 bit of a wider mode may be different from what would be
10749 interpreted as the sign bit in a narrower mode, so, if
10750 the result is narrower, don't discard the shift. */
10751 if (code == LSHIFTRT
10752 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10753 && (GET_MODE_UNIT_BITSIZE (result_mode)
10754 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10755 {
10756 varop = XEXP (varop, 0);
10757 continue;
10758 }
10759
10760 /* fall through */
10761
10762 case LSHIFTRT:
10763 case ASHIFT:
10764 case ROTATE:
10765 /* The following rules apply only to scalars. */
10766 if (shift_mode != shift_unit_mode)
10767 break;
10768 int_mode = as_a <scalar_int_mode> (m: mode);
10769 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10770 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
10771
10772 /* Here we have two nested shifts. The result is usually the
10773 AND of a new shift with a mask. We compute the result below. */
10774 if (CONST_INT_P (XEXP (varop, 1))
10775 && INTVAL (XEXP (varop, 1)) >= 0
10776 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (mode: int_varop_mode)
10777 && HWI_COMPUTABLE_MODE_P (mode: int_result_mode)
10778 && HWI_COMPUTABLE_MODE_P (mode: int_mode))
10779 {
10780 enum rtx_code first_code = GET_CODE (varop);
10781 unsigned int first_count = INTVAL (XEXP (varop, 1));
10782 unsigned HOST_WIDE_INT mask;
10783 rtx mask_rtx;
10784
10785 /* We have one common special case. We can't do any merging if
10786 the inner code is an ASHIFTRT of a smaller mode. However, if
10787 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10788 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10789 we can convert it to
10790 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10791 This simplifies certain SIGN_EXTEND operations. */
10792 if (code == ASHIFT && first_code == ASHIFTRT
10793 && count == (GET_MODE_PRECISION (mode: int_result_mode)
10794 - GET_MODE_PRECISION (mode: int_varop_mode)))
10795 {
10796 /* C3 has the low-order C1 bits zero. */
10797
10798 mask = GET_MODE_MASK (int_mode)
10799 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10800
10801 varop = simplify_and_const_int (NULL_RTX, mode: int_result_mode,
10802 XEXP (varop, 0), constop: mask);
10803 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10804 int_result_mode, varop, count);
10805 count = first_count;
10806 code = ASHIFTRT;
10807 continue;
10808 }
10809
10810 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10811 than C1 high-order bits equal to the sign bit, we can convert
10812 this to either an ASHIFT or an ASHIFTRT depending on the
10813 two counts.
10814
10815 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10816
10817 if (code == ASHIFTRT && first_code == ASHIFT
10818 && int_varop_mode == shift_unit_mode
10819 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10820 > first_count))
10821 {
10822 varop = XEXP (varop, 0);
10823 count -= first_count;
10824 if (count < 0)
10825 {
10826 count = -count;
10827 code = ASHIFT;
10828 }
10829
10830 continue;
10831 }
10832
10833 /* There are some cases we can't do. If CODE is ASHIFTRT,
10834 we can only do this if FIRST_CODE is also ASHIFTRT.
10835
10836 We can't do the case when CODE is ROTATE and FIRST_CODE is
10837 ASHIFTRT.
10838
10839 If the mode of this shift is not the mode of the outer shift,
10840 we can't do this if either shift is a right shift or ROTATE.
10841
10842 Finally, we can't do any of these if the mode is too wide
10843 unless the codes are the same.
10844
10845 Handle the case where the shift codes are the same
10846 first. */
10847
10848 if (code == first_code)
10849 {
10850 if (int_varop_mode != int_result_mode
10851 && (code == ASHIFTRT || code == LSHIFTRT
10852 || code == ROTATE))
10853 break;
10854
10855 count += first_count;
10856 varop = XEXP (varop, 0);
10857 continue;
10858 }
10859
10860 if (code == ASHIFTRT
10861 || (code == ROTATE && first_code == ASHIFTRT)
10862 || GET_MODE_PRECISION (mode: int_mode) > HOST_BITS_PER_WIDE_INT
10863 || (int_varop_mode != int_result_mode
10864 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10865 || first_code == ROTATE
10866 || code == ROTATE)))
10867 break;
10868
10869 /* To compute the mask to apply after the shift, shift the
10870 nonzero bits of the inner shift the same way the
10871 outer shift will. */
10872
10873 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10874 int_result_mode);
10875 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10876 mask_rtx
10877 = simplify_const_binary_operation (code, int_result_mode,
10878 mask_rtx, count_rtx);
10879
10880 /* Give up if we can't compute an outer operation to use. */
10881 if (mask_rtx == 0
10882 || !CONST_INT_P (mask_rtx)
10883 || ! merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, op1: AND,
10884 INTVAL (mask_rtx),
10885 mode: int_result_mode, pcomp_p: &complement_p))
10886 break;
10887
10888 /* If the shifts are in the same direction, we add the
10889 counts. Otherwise, we subtract them. */
10890 if ((code == ASHIFTRT || code == LSHIFTRT)
10891 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10892 count += first_count;
10893 else
10894 count -= first_count;
10895
10896 /* If COUNT is positive, the new shift is usually CODE,
10897 except for the two exceptions below, in which case it is
10898 FIRST_CODE. If the count is negative, FIRST_CODE should
10899 always be used */
10900 if (count > 0
10901 && ((first_code == ROTATE && code == ASHIFT)
10902 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10903 code = first_code;
10904 else if (count < 0)
10905 code = first_code, count = -count;
10906
10907 varop = XEXP (varop, 0);
10908 continue;
10909 }
10910
10911 /* If we have (A << B << C) for any shift, we can convert this to
10912 (A << C << B). This wins if A is a constant. Only try this if
10913 B is not a constant. */
10914
10915 else if (GET_CODE (varop) == code
10916 && CONST_INT_P (XEXP (varop, 0))
10917 && !CONST_INT_P (XEXP (varop, 1)))
10918 {
10919 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10920 sure the result will be masked. See PR70222. */
10921 if (code == LSHIFTRT
10922 && int_mode != int_result_mode
10923 && !merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, op1: AND,
10924 GET_MODE_MASK (int_result_mode)
10925 >> orig_count, mode: int_result_mode,
10926 pcomp_p: &complement_p))
10927 break;
10928 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10929 up outer sign extension (often left and right shift) is
10930 hardly more efficient than the original. See PR70429.
10931 Similarly punt for rotates with different modes.
10932 See PR97386. */
10933 if ((code == ASHIFTRT || code == ROTATE)
10934 && int_mode != int_result_mode)
10935 break;
10936
10937 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10938 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10939 XEXP (varop, 0),
10940 count_rtx);
10941 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10942 count = 0;
10943 continue;
10944 }
10945 break;
10946
10947 case NOT:
10948 /* The following rules apply only to scalars. */
10949 if (shift_mode != shift_unit_mode)
10950 break;
10951
10952 /* Make this fit the case below. */
10953 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10954 continue;
10955
10956 case IOR:
10957 case AND:
10958 case XOR:
10959 /* The following rules apply only to scalars. */
10960 if (shift_mode != shift_unit_mode)
10961 break;
10962 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10963 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
10964
10965 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10966 with C the size of VAROP - 1 and the shift is logical if
10967 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10968 we have an (le X 0) operation. If we have an arithmetic shift
10969 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10970 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10971
10972 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10973 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10974 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10975 && (code == LSHIFTRT || code == ASHIFTRT)
10976 && count == (GET_MODE_PRECISION (mode: int_varop_mode) - 1)
10977 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10978 {
10979 count = 0;
10980 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10981 const0_rtx);
10982
10983 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10984 varop = gen_rtx_NEG (int_varop_mode, varop);
10985
10986 continue;
10987 }
10988
10989 /* If we have (shift (logical)), move the logical to the outside
10990 to allow it to possibly combine with another logical and the
10991 shift to combine with another shift. This also canonicalizes to
10992 what a ZERO_EXTRACT looks like. Also, some machines have
10993 (and (shift)) insns. */
10994
10995 if (CONST_INT_P (XEXP (varop, 1))
10996 /* We can't do this if we have (ashiftrt (xor)) and the
10997 constant has its sign bit set in shift_unit_mode with
10998 shift_unit_mode wider than result_mode. */
10999 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11000 && int_result_mode != shift_unit_mode
11001 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11002 shift_unit_mode) < 0)
11003 && (new_rtx = simplify_const_binary_operation
11004 (code, int_result_mode,
11005 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11006 gen_int_shift_amount (int_result_mode, count))) != 0
11007 && CONST_INT_P (new_rtx)
11008 && merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, GET_CODE (varop),
11009 INTVAL (new_rtx), mode: int_result_mode,
11010 pcomp_p: &complement_p))
11011 {
11012 varop = XEXP (varop, 0);
11013 continue;
11014 }
11015
11016 /* If we can't do that, try to simplify the shift in each arm of the
11017 logical expression, make a new logical expression, and apply
11018 the inverse distributive law. This also can't be done for
11019 (ashiftrt (xor)) where we've widened the shift and the constant
11020 changes the sign bit. */
11021 if (CONST_INT_P (XEXP (varop, 1))
11022 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11023 && int_result_mode != shift_unit_mode
11024 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11025 shift_unit_mode) < 0))
11026 {
11027 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11028 XEXP (varop, 0), count);
11029 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11030 XEXP (varop, 1), count);
11031
11032 varop = simplify_gen_binary (GET_CODE (varop), mode: shift_unit_mode,
11033 op0: lhs, op1: rhs);
11034 varop = apply_distributive_law (x: varop);
11035
11036 count = 0;
11037 continue;
11038 }
11039 break;
11040
11041 case EQ:
11042 /* The following rules apply only to scalars. */
11043 if (shift_mode != shift_unit_mode)
11044 break;
11045 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
11046
11047 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11048 says that the sign bit can be tested, FOO has mode MODE, C is
11049 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11050 that may be nonzero. */
11051 if (code == LSHIFTRT
11052 && XEXP (varop, 1) == const0_rtx
11053 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11054 && count == (GET_MODE_PRECISION (mode: int_result_mode) - 1)
11055 && HWI_COMPUTABLE_MODE_P (mode: int_result_mode)
11056 && STORE_FLAG_VALUE == -1
11057 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11058 && merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, op1: XOR, const1: 1,
11059 mode: int_result_mode, pcomp_p: &complement_p))
11060 {
11061 varop = XEXP (varop, 0);
11062 count = 0;
11063 continue;
11064 }
11065 break;
11066
11067 case NEG:
11068 /* The following rules apply only to scalars. */
11069 if (shift_mode != shift_unit_mode)
11070 break;
11071 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
11072
11073 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11074 than the number of bits in the mode is equivalent to A. */
11075 if (code == LSHIFTRT
11076 && count == (GET_MODE_PRECISION (mode: int_result_mode) - 1)
11077 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11078 {
11079 varop = XEXP (varop, 0);
11080 count = 0;
11081 continue;
11082 }
11083
11084 /* NEG commutes with ASHIFT since it is multiplication. Move the
11085 NEG outside to allow shifts to combine. */
11086 if (code == ASHIFT
11087 && merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, op1: NEG, const1: 0,
11088 mode: int_result_mode, pcomp_p: &complement_p))
11089 {
11090 varop = XEXP (varop, 0);
11091 continue;
11092 }
11093 break;
11094
11095 case PLUS:
11096 /* The following rules apply only to scalars. */
11097 if (shift_mode != shift_unit_mode)
11098 break;
11099 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
11100
11101 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11102 is one less than the number of bits in the mode is
11103 equivalent to (xor A 1). */
11104 if (code == LSHIFTRT
11105 && count == (GET_MODE_PRECISION (mode: int_result_mode) - 1)
11106 && XEXP (varop, 1) == constm1_rtx
11107 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11108 && merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, op1: XOR, const1: 1,
11109 mode: int_result_mode, pcomp_p: &complement_p))
11110 {
11111 count = 0;
11112 varop = XEXP (varop, 0);
11113 continue;
11114 }
11115
11116 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11117 that might be nonzero in BAR are those being shifted out and those
11118 bits are known zero in FOO, we can replace the PLUS with FOO.
11119 Similarly in the other operand order. This code occurs when
11120 we are computing the size of a variable-size array. */
11121
11122 if ((code == ASHIFTRT || code == LSHIFTRT)
11123 && count < HOST_BITS_PER_WIDE_INT
11124 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11125 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11126 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11127 {
11128 varop = XEXP (varop, 0);
11129 continue;
11130 }
11131 else if ((code == ASHIFTRT || code == LSHIFTRT)
11132 && count < HOST_BITS_PER_WIDE_INT
11133 && HWI_COMPUTABLE_MODE_P (mode: int_result_mode)
11134 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11135 >> count) == 0
11136 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11137 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11138 {
11139 varop = XEXP (varop, 1);
11140 continue;
11141 }
11142
11143 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11144 if (code == ASHIFT
11145 && CONST_INT_P (XEXP (varop, 1))
11146 && (new_rtx = simplify_const_binary_operation
11147 (ASHIFT, int_result_mode,
11148 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11149 gen_int_shift_amount (int_result_mode, count))) != 0
11150 && CONST_INT_P (new_rtx)
11151 && merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, op1: PLUS,
11152 INTVAL (new_rtx), mode: int_result_mode,
11153 pcomp_p: &complement_p))
11154 {
11155 varop = XEXP (varop, 0);
11156 continue;
11157 }
11158
11159 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11160 signbit', and attempt to change the PLUS to an XOR and move it to
11161 the outer operation as is done above in the AND/IOR/XOR case
11162 leg for shift(logical). See details in logical handling above
11163 for reasoning in doing so. */
11164 if (code == LSHIFTRT
11165 && CONST_INT_P (XEXP (varop, 1))
11166 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11167 && (new_rtx = simplify_const_binary_operation
11168 (code, int_result_mode,
11169 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11170 gen_int_shift_amount (int_result_mode, count))) != 0
11171 && CONST_INT_P (new_rtx)
11172 && merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, op1: XOR,
11173 INTVAL (new_rtx), mode: int_result_mode,
11174 pcomp_p: &complement_p))
11175 {
11176 varop = XEXP (varop, 0);
11177 continue;
11178 }
11179
11180 break;
11181
11182 case MINUS:
11183 /* The following rules apply only to scalars. */
11184 if (shift_mode != shift_unit_mode)
11185 break;
11186 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11187
11188 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11189 with C the size of VAROP - 1 and the shift is logical if
11190 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11191 we have a (gt X 0) operation. If the shift is arithmetic with
11192 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11193 we have a (neg (gt X 0)) operation. */
11194
11195 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11196 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11197 && count == (GET_MODE_PRECISION (mode: int_varop_mode) - 1)
11198 && (code == LSHIFTRT || code == ASHIFTRT)
11199 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11200 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11201 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11202 {
11203 count = 0;
11204 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11205 const0_rtx);
11206
11207 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11208 varop = gen_rtx_NEG (int_varop_mode, varop);
11209
11210 continue;
11211 }
11212 break;
11213
11214 case TRUNCATE:
11215 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11216 if the truncate does not affect the value. */
11217 if (code == LSHIFTRT
11218 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11219 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11220 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11221 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11222 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11223 {
11224 rtx varop_inner = XEXP (varop, 0);
11225 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11226 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11227 new_count);
11228 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11229 XEXP (varop_inner, 0),
11230 new_count_rtx);
11231 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11232 count = 0;
11233 continue;
11234 }
11235 break;
11236
11237 default:
11238 break;
11239 }
11240
11241 break;
11242 }
11243
11244 shift_mode = result_mode;
11245 if (shift_mode != mode)
11246 {
11247 /* We only change the modes of scalar shifts. */
11248 int_mode = as_a <scalar_int_mode> (m: mode);
11249 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
11250 shift_mode = try_widen_shift_mode (code, op: varop, count, orig_mode: int_result_mode,
11251 mode: int_mode, outer_code: outer_op, outer_const);
11252 }
11253
11254 /* We have now finished analyzing the shift. The result should be
11255 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11256 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11257 to the result of the shift. OUTER_CONST is the relevant constant,
11258 but we must turn off all bits turned off in the shift. */
11259
11260 if (outer_op == UNKNOWN
11261 && orig_code == code && orig_count == count
11262 && varop == orig_varop
11263 && shift_mode == GET_MODE (varop))
11264 return NULL_RTX;
11265
11266 /* Make a SUBREG if necessary. If we can't make it, fail. */
11267 varop = gen_lowpart (shift_mode, varop);
11268 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11269 return NULL_RTX;
11270
11271 /* If we have an outer operation and we just made a shift, it is
11272 possible that we could have simplified the shift were it not
11273 for the outer operation. So try to do the simplification
11274 recursively. */
11275
11276 if (outer_op != UNKNOWN)
11277 x = simplify_shift_const_1 (code, result_mode: shift_mode, varop, orig_count: count);
11278 else
11279 x = NULL_RTX;
11280
11281 if (x == NULL_RTX)
11282 x = simplify_gen_binary (code, mode: shift_mode, op0: varop,
11283 op1: gen_int_shift_amount (shift_mode, count));
11284
11285 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11286 turn off all the bits that the shift would have turned off. */
11287 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11288 /* We only change the modes of scalar shifts. */
11289 x = simplify_and_const_int (NULL_RTX, mode: as_a <scalar_int_mode> (m: shift_mode),
11290 varop: x, GET_MODE_MASK (result_mode) >> orig_count);
11291
11292 /* Do the remainder of the processing in RESULT_MODE. */
11293 x = gen_lowpart_or_truncate (mode: result_mode, x);
11294
11295 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11296 operation. */
11297 if (complement_p)
11298 x = simplify_gen_unary (code: NOT, mode: result_mode, op: x, op_mode: result_mode);
11299
11300 if (outer_op != UNKNOWN)
11301 {
11302 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
11303
11304 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11305 && GET_MODE_PRECISION (mode: int_result_mode) < HOST_BITS_PER_WIDE_INT)
11306 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11307
11308 if (outer_op == AND)
11309 x = simplify_and_const_int (NULL_RTX, mode: int_result_mode, varop: x, constop: outer_const);
11310 else if (outer_op == SET)
11311 {
11312 /* This means that we have determined that the result is
11313 equivalent to a constant. This should be rare. */
11314 if (!side_effects_p (x))
11315 x = GEN_INT (outer_const);
11316 }
11317 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11318 x = simplify_gen_unary (code: outer_op, mode: int_result_mode, op: x, op_mode: int_result_mode);
11319 else
11320 x = simplify_gen_binary (code: outer_op, mode: int_result_mode, op0: x,
11321 GEN_INT (outer_const));
11322 }
11323
11324 return x;
11325}
11326
11327/* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11328 The result of the shift is RESULT_MODE. If we cannot simplify it,
11329 return X or, if it is NULL, synthesize the expression with
11330 simplify_gen_binary. Otherwise, return a simplified value.
11331
11332 The shift is normally computed in the widest mode we find in VAROP, as
11333 long as it isn't a different number of words than RESULT_MODE. Exceptions
11334 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11335
11336static rtx
11337simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11338 rtx varop, int count)
11339{
11340 rtx tem = simplify_shift_const_1 (code, result_mode, varop, orig_count: count);
11341 if (tem)
11342 return tem;
11343
11344 if (!x)
11345 x = simplify_gen_binary (code, GET_MODE (varop), op0: varop,
11346 op1: gen_int_shift_amount (GET_MODE (varop), count));
11347 if (GET_MODE (x) != result_mode)
11348 x = gen_lowpart (result_mode, x);
11349 return x;
11350}
11351
11352
11353/* A subroutine of recog_for_combine. See there for arguments and
11354 return value. */
11355
11356static int
11357recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11358{
11359 rtx pat = *pnewpat;
11360 rtx pat_without_clobbers;
11361 int insn_code_number;
11362 int num_clobbers_to_add = 0;
11363 int i;
11364 rtx notes = NULL_RTX;
11365 rtx old_notes, old_pat;
11366 int old_icode;
11367
11368 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11369 we use to indicate that something didn't match. If we find such a
11370 thing, force rejection. */
11371 if (GET_CODE (pat) == PARALLEL)
11372 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11373 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11374 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11375 return -1;
11376
11377 old_pat = PATTERN (insn);
11378 old_notes = REG_NOTES (insn);
11379 PATTERN (insn) = pat;
11380 REG_NOTES (insn) = NULL_RTX;
11381
11382 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11383 if (dump_file && (dump_flags & TDF_DETAILS))
11384 {
11385 if (insn_code_number < 0)
11386 fputs (s: "Failed to match this instruction:\n", stream: dump_file);
11387 else
11388 fputs (s: "Successfully matched this instruction:\n", stream: dump_file);
11389 print_rtl_single (dump_file, pat);
11390 }
11391
11392 /* If it isn't, there is the possibility that we previously had an insn
11393 that clobbered some register as a side effect, but the combined
11394 insn doesn't need to do that. So try once more without the clobbers
11395 unless this represents an ASM insn. */
11396
11397 if (insn_code_number < 0 && ! check_asm_operands (pat)
11398 && GET_CODE (pat) == PARALLEL)
11399 {
11400 int pos;
11401
11402 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11403 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11404 {
11405 if (i != pos)
11406 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11407 pos++;
11408 }
11409
11410 SUBST_INT (XVECLEN (pat, 0), pos);
11411
11412 if (pos == 1)
11413 pat = XVECEXP (pat, 0, 0);
11414
11415 PATTERN (insn) = pat;
11416 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11417 if (dump_file && (dump_flags & TDF_DETAILS))
11418 {
11419 if (insn_code_number < 0)
11420 fputs (s: "Failed to match this instruction:\n", stream: dump_file);
11421 else
11422 fputs (s: "Successfully matched this instruction:\n", stream: dump_file);
11423 print_rtl_single (dump_file, pat);
11424 }
11425 }
11426
11427 pat_without_clobbers = pat;
11428
11429 PATTERN (insn) = old_pat;
11430 REG_NOTES (insn) = old_notes;
11431
11432 /* Recognize all noop sets, these will be killed by followup pass. */
11433 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11434 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11435
11436 /* If we had any clobbers to add, make a new pattern than contains
11437 them. Then check to make sure that all of them are dead. */
11438 if (num_clobbers_to_add)
11439 {
11440 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11441 rtvec_alloc (GET_CODE (pat) == PARALLEL
11442 ? (XVECLEN (pat, 0)
11443 + num_clobbers_to_add)
11444 : num_clobbers_to_add + 1));
11445
11446 if (GET_CODE (pat) == PARALLEL)
11447 for (i = 0; i < XVECLEN (pat, 0); i++)
11448 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11449 else
11450 XVECEXP (newpat, 0, 0) = pat;
11451
11452 add_clobbers (newpat, insn_code_number);
11453
11454 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11455 i < XVECLEN (newpat, 0); i++)
11456 {
11457 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11458 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11459 return -1;
11460 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11461 {
11462 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11463 notes = alloc_reg_note (REG_UNUSED,
11464 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11465 }
11466 }
11467 pat = newpat;
11468 }
11469
11470 if (insn_code_number >= 0
11471 && insn_code_number != NOOP_MOVE_INSN_CODE)
11472 {
11473 old_pat = PATTERN (insn);
11474 old_notes = REG_NOTES (insn);
11475 old_icode = INSN_CODE (insn);
11476 PATTERN (insn) = pat;
11477 REG_NOTES (insn) = notes;
11478 INSN_CODE (insn) = insn_code_number;
11479
11480 /* Allow targets to reject combined insn. */
11481 if (!targetm.legitimate_combined_insn (insn))
11482 {
11483 if (dump_file && (dump_flags & TDF_DETAILS))
11484 fputs (s: "Instruction not appropriate for target.",
11485 stream: dump_file);
11486
11487 /* Callers expect recog_for_combine to strip
11488 clobbers from the pattern on failure. */
11489 pat = pat_without_clobbers;
11490 notes = NULL_RTX;
11491
11492 insn_code_number = -1;
11493 }
11494
11495 PATTERN (insn) = old_pat;
11496 REG_NOTES (insn) = old_notes;
11497 INSN_CODE (insn) = old_icode;
11498 }
11499
11500 *pnewpat = pat;
11501 *pnotes = notes;
11502
11503 return insn_code_number;
11504}
11505
11506/* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11507 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11508 Return whether anything was so changed. */
11509
11510static bool
11511change_zero_ext (rtx pat)
11512{
11513 bool changed = false;
11514 rtx *src = &SET_SRC (pat);
11515
11516 subrtx_ptr_iterator::array_type array;
11517 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11518 {
11519 rtx x = **iter;
11520 scalar_int_mode mode, inner_mode;
11521 if (!is_a <scalar_int_mode> (GET_MODE (x), result: &mode))
11522 continue;
11523 int size;
11524
11525 if (GET_CODE (x) == ZERO_EXTRACT
11526 && CONST_INT_P (XEXP (x, 1))
11527 && CONST_INT_P (XEXP (x, 2))
11528 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), result: &inner_mode)
11529 && GET_MODE_PRECISION (mode: inner_mode) <= GET_MODE_PRECISION (mode))
11530 {
11531 size = INTVAL (XEXP (x, 1));
11532
11533 int start = INTVAL (XEXP (x, 2));
11534 if (BITS_BIG_ENDIAN)
11535 start = GET_MODE_PRECISION (mode: inner_mode) - size - start;
11536
11537 if (start != 0)
11538 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11539 gen_int_shift_amount (inner_mode, start));
11540 else
11541 x = XEXP (x, 0);
11542
11543 if (mode != inner_mode)
11544 {
11545 if (REG_P (x) && HARD_REGISTER_P (x)
11546 && !can_change_dest_mode (x, added_sets: 0, mode))
11547 continue;
11548
11549 x = gen_lowpart_SUBREG (mode, x);
11550 }
11551 }
11552 else if (GET_CODE (x) == ZERO_EXTEND
11553 && GET_CODE (XEXP (x, 0)) == SUBREG
11554 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11555 && !paradoxical_subreg_p (XEXP (x, 0))
11556 && subreg_lowpart_p (XEXP (x, 0)))
11557 {
11558 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11559 size = GET_MODE_PRECISION (mode: inner_mode);
11560 x = SUBREG_REG (XEXP (x, 0));
11561 if (GET_MODE (x) != mode)
11562 {
11563 if (REG_P (x) && HARD_REGISTER_P (x)
11564 && !can_change_dest_mode (x, added_sets: 0, mode))
11565 continue;
11566
11567 x = gen_lowpart_SUBREG (mode, x);
11568 }
11569 }
11570 else if (GET_CODE (x) == ZERO_EXTEND
11571 && REG_P (XEXP (x, 0))
11572 && HARD_REGISTER_P (XEXP (x, 0))
11573 && can_change_dest_mode (XEXP (x, 0), added_sets: 0, mode))
11574 {
11575 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11576 size = GET_MODE_PRECISION (mode: inner_mode);
11577 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11578 }
11579 else
11580 continue;
11581
11582 if (!(GET_CODE (x) == LSHIFTRT
11583 && CONST_INT_P (XEXP (x, 1))
11584 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11585 {
11586 wide_int mask = wi::mask (width: size, negate_p: false, precision: GET_MODE_PRECISION (mode));
11587 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11588 }
11589
11590 SUBST (**iter, x);
11591 changed = true;
11592 }
11593
11594 if (changed)
11595 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11596 maybe_swap_commutative_operands (x: **iter);
11597
11598 rtx *dst = &SET_DEST (pat);
11599 scalar_int_mode mode;
11600 if (GET_CODE (*dst) == ZERO_EXTRACT
11601 && REG_P (XEXP (*dst, 0))
11602 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), result: &mode)
11603 && CONST_INT_P (XEXP (*dst, 1))
11604 && CONST_INT_P (XEXP (*dst, 2)))
11605 {
11606 rtx reg = XEXP (*dst, 0);
11607 int width = INTVAL (XEXP (*dst, 1));
11608 int offset = INTVAL (XEXP (*dst, 2));
11609 int reg_width = GET_MODE_PRECISION (mode);
11610 if (BITS_BIG_ENDIAN)
11611 offset = reg_width - width - offset;
11612
11613 rtx x, y, z, w;
11614 wide_int mask = wi::shifted_mask (start: offset, width, negate_p: true, precision: reg_width);
11615 wide_int mask2 = wi::shifted_mask (start: offset, width, negate_p: false, precision: reg_width);
11616 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11617 if (offset)
11618 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11619 else
11620 y = SET_SRC (pat);
11621 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11622 w = gen_rtx_IOR (mode, x, z);
11623 SUBST (SET_DEST (pat), reg);
11624 SUBST (SET_SRC (pat), w);
11625
11626 changed = true;
11627 }
11628
11629 return changed;
11630}
11631
11632/* Like recog, but we receive the address of a pointer to a new pattern.
11633 We try to match the rtx that the pointer points to.
11634 If that fails, we may try to modify or replace the pattern,
11635 storing the replacement into the same pointer object.
11636
11637 Modifications include deletion or addition of CLOBBERs. If the
11638 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11639 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11640 (and undo if that fails).
11641
11642 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11643 the CLOBBERs are placed.
11644
11645 The value is the final insn code from the pattern ultimately matched,
11646 or -1. */
11647
11648static int
11649recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11650{
11651 rtx pat = *pnewpat;
11652 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11653 if (insn_code_number >= 0 || check_asm_operands (pat))
11654 return insn_code_number;
11655
11656 void *marker = get_undo_marker ();
11657 bool changed = false;
11658
11659 if (GET_CODE (pat) == SET)
11660 {
11661 /* For an unrecognized single set of a constant, try placing it in
11662 the constant pool, if this function already uses one. */
11663 rtx src = SET_SRC (pat);
11664 if (CONSTANT_P (src)
11665 && !CONST_INT_P (src)
11666 && crtl->uses_const_pool)
11667 {
11668 machine_mode mode = GET_MODE (src);
11669 if (mode == VOIDmode)
11670 mode = GET_MODE (SET_DEST (pat));
11671 src = force_const_mem (mode, src);
11672 if (src)
11673 {
11674 SUBST (SET_SRC (pat), src);
11675 changed = true;
11676 }
11677 }
11678 else
11679 changed = change_zero_ext (pat);
11680 }
11681 else if (GET_CODE (pat) == PARALLEL)
11682 {
11683 int i;
11684 for (i = 0; i < XVECLEN (pat, 0); i++)
11685 {
11686 rtx set = XVECEXP (pat, 0, i);
11687 if (GET_CODE (set) == SET)
11688 changed |= change_zero_ext (pat: set);
11689 }
11690 }
11691
11692 if (changed)
11693 {
11694 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11695
11696 if (insn_code_number < 0)
11697 undo_to_marker (marker);
11698 }
11699
11700 return insn_code_number;
11701}
11702
11703/* Like gen_lowpart_general but for use by combine. In combine it
11704 is not possible to create any new pseudoregs. However, it is
11705 safe to create invalid memory addresses, because combine will
11706 try to recognize them and all they will do is make the combine
11707 attempt fail.
11708
11709 If for some reason this cannot do its job, an rtx
11710 (clobber (const_int 0)) is returned.
11711 An insn containing that will not be recognized. */
11712
11713static rtx
11714gen_lowpart_for_combine (machine_mode omode, rtx x)
11715{
11716 machine_mode imode = GET_MODE (x);
11717 rtx result;
11718
11719 if (omode == imode)
11720 return x;
11721
11722 /* We can only support MODE being wider than a word if X is a
11723 constant integer or has a mode the same size. */
11724 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11725 && ! (CONST_SCALAR_INT_P (x)
11726 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11727 goto fail;
11728
11729 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11730 won't know what to do. So we will strip off the SUBREG here and
11731 process normally. */
11732 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11733 {
11734 x = SUBREG_REG (x);
11735
11736 /* For use in case we fall down into the address adjustments
11737 further below, we need to adjust the known mode and size of
11738 x; imode and isize, since we just adjusted x. */
11739 imode = GET_MODE (x);
11740
11741 if (imode == omode)
11742 return x;
11743 }
11744
11745 result = gen_lowpart_common (omode, x);
11746
11747 if (result)
11748 return result;
11749
11750 if (MEM_P (x))
11751 {
11752 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11753 address. */
11754 if (MEM_VOLATILE_P (x)
11755 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11756 goto fail;
11757
11758 /* If we want to refer to something bigger than the original memref,
11759 generate a paradoxical subreg instead. That will force a reload
11760 of the original memref X. */
11761 if (paradoxical_subreg_p (outermode: omode, innermode: imode))
11762 return gen_rtx_SUBREG (omode, x, 0);
11763
11764 poly_int64 offset = byte_lowpart_offset (omode, imode);
11765 return adjust_address_nv (x, omode, offset);
11766 }
11767
11768 /* If X is a comparison operator, rewrite it in a new mode. This
11769 probably won't match, but may allow further simplifications. */
11770 else if (COMPARISON_P (x)
11771 && SCALAR_INT_MODE_P (imode)
11772 && SCALAR_INT_MODE_P (omode))
11773 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11774
11775 /* If we couldn't simplify X any other way, just enclose it in a
11776 SUBREG. Normally, this SUBREG won't match, but some patterns may
11777 include an explicit SUBREG or we may simplify it further in combine. */
11778 else
11779 {
11780 rtx res;
11781
11782 if (imode == VOIDmode)
11783 {
11784 imode = int_mode_for_mode (omode).require ();
11785 x = gen_lowpart_common (imode, x);
11786 if (x == NULL)
11787 goto fail;
11788 }
11789 res = lowpart_subreg (outermode: omode, op: x, innermode: imode);
11790 if (res)
11791 return res;
11792 }
11793
11794 fail:
11795 return gen_rtx_CLOBBER (omode, const0_rtx);
11796}
11797
11798/* Try to simplify a comparison between OP0 and a constant OP1,
11799 where CODE is the comparison code that will be tested, into a
11800 (CODE OP0 const0_rtx) form.
11801
11802 The result is a possibly different comparison code to use.
11803 *POP0 and *POP1 may be updated. */
11804
11805static enum rtx_code
11806simplify_compare_const (enum rtx_code code, machine_mode mode,
11807 rtx *pop0, rtx *pop1)
11808{
11809 scalar_int_mode int_mode;
11810 rtx op0 = *pop0;
11811 HOST_WIDE_INT const_op = INTVAL (*pop1);
11812
11813 /* Get the constant we are comparing against and turn off all bits
11814 not on in our mode. */
11815 if (mode != VOIDmode)
11816 const_op = trunc_int_for_mode (const_op, mode);
11817
11818 /* If we are comparing against a constant power of two and the value
11819 being compared can only have that single bit nonzero (e.g., it was
11820 `and'ed with that bit), we can replace this with a comparison
11821 with zero. */
11822 if (const_op
11823 && (code == EQ || code == NE || code == GE || code == GEU
11824 || code == LT || code == LTU)
11825 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
11826 && GET_MODE_PRECISION (mode: int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11827 && pow2p_hwi (x: const_op & GET_MODE_MASK (int_mode))
11828 && (nonzero_bits (op0, int_mode)
11829 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11830 {
11831 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11832 const_op = 0;
11833 }
11834
11835 /* Similarly, if we are comparing a value known to be either -1 or
11836 0 with -1, change it to the opposite comparison against zero. */
11837 if (const_op == -1
11838 && (code == EQ || code == NE || code == GT || code == LE
11839 || code == GEU || code == LTU)
11840 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
11841 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (mode: int_mode))
11842 {
11843 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11844 const_op = 0;
11845 }
11846
11847 /* Do some canonicalizations based on the comparison code. We prefer
11848 comparisons against zero and then prefer equality comparisons.
11849 If we can reduce the size of a constant, we will do that too. */
11850 switch (code)
11851 {
11852 case LT:
11853 /* < C is equivalent to <= (C - 1) */
11854 if (const_op > 0)
11855 {
11856 const_op -= 1;
11857 code = LE;
11858 /* ... fall through to LE case below. */
11859 gcc_fallthrough ();
11860 }
11861 else
11862 break;
11863
11864 case LE:
11865 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11866 if (const_op < 0)
11867 {
11868 const_op += 1;
11869 code = LT;
11870 }
11871
11872 /* If we are doing a <= 0 comparison on a value known to have
11873 a zero sign bit, we can replace this with == 0. */
11874 else if (const_op == 0
11875 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
11876 && GET_MODE_PRECISION (mode: int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11877 && (nonzero_bits (op0, int_mode)
11878 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (mode: int_mode) - 1)))
11879 == 0)
11880 code = EQ;
11881 break;
11882
11883 case GE:
11884 /* >= C is equivalent to > (C - 1). */
11885 if (const_op > 0)
11886 {
11887 const_op -= 1;
11888 code = GT;
11889 /* ... fall through to GT below. */
11890 gcc_fallthrough ();
11891 }
11892 else
11893 break;
11894
11895 case GT:
11896 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11897 if (const_op < 0)
11898 {
11899 const_op += 1;
11900 code = GE;
11901 }
11902
11903 /* If we are doing a > 0 comparison on a value known to have
11904 a zero sign bit, we can replace this with != 0. */
11905 else if (const_op == 0
11906 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
11907 && GET_MODE_PRECISION (mode: int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11908 && (nonzero_bits (op0, int_mode)
11909 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (mode: int_mode) - 1)))
11910 == 0)
11911 code = NE;
11912 break;
11913
11914 case LTU:
11915 /* < C is equivalent to <= (C - 1). */
11916 if (const_op > 0)
11917 {
11918 const_op -= 1;
11919 code = LEU;
11920 /* ... fall through ... */
11921 gcc_fallthrough ();
11922 }
11923 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11924 else if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
11925 && GET_MODE_PRECISION (mode: int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11926 && (((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode))
11927 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (mode: int_mode) - 1)))
11928 {
11929 const_op = 0;
11930 code = GE;
11931 break;
11932 }
11933 else
11934 break;
11935
11936 case LEU:
11937 /* unsigned <= 0 is equivalent to == 0 */
11938 if (const_op == 0)
11939 code = EQ;
11940 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11941 else if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
11942 && GET_MODE_PRECISION (mode: int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11943 && ((unsigned HOST_WIDE_INT) const_op
11944 == ((HOST_WIDE_INT_1U
11945 << (GET_MODE_PRECISION (mode: int_mode) - 1)) - 1)))
11946 {
11947 const_op = 0;
11948 code = GE;
11949 }
11950 break;
11951
11952 case GEU:
11953 /* >= C is equivalent to > (C - 1). */
11954 if (const_op > 1)
11955 {
11956 const_op -= 1;
11957 code = GTU;
11958 /* ... fall through ... */
11959 gcc_fallthrough ();
11960 }
11961
11962 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11963 else if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
11964 && GET_MODE_PRECISION (mode: int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11965 && (((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode))
11966 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (mode: int_mode) - 1)))
11967 {
11968 const_op = 0;
11969 code = LT;
11970 break;
11971 }
11972 else
11973 break;
11974
11975 case GTU:
11976 /* unsigned > 0 is equivalent to != 0 */
11977 if (const_op == 0)
11978 code = NE;
11979 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11980 else if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
11981 && GET_MODE_PRECISION (mode: int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11982 && ((unsigned HOST_WIDE_INT) const_op
11983 == (HOST_WIDE_INT_1U
11984 << (GET_MODE_PRECISION (mode: int_mode) - 1)) - 1))
11985 {
11986 const_op = 0;
11987 code = LT;
11988 }
11989 break;
11990
11991 default:
11992 break;
11993 }
11994
11995 /* Narrow non-symmetric comparison of memory and constant as e.g.
11996 x0...x7 <= 0x3fffffffffffffff into x0 <= 0x3f where x0 is the most
11997 significant byte. Likewise, transform x0...x7 >= 0x4000000000000000 into
11998 x0 >= 0x40. */
11999 if ((code == LEU || code == LTU || code == GEU || code == GTU)
12000 && is_a <scalar_int_mode> (GET_MODE (op0), result: &int_mode)
12001 && HWI_COMPUTABLE_MODE_P (mode: int_mode)
12002 && MEM_P (op0)
12003 && !MEM_VOLATILE_P (op0)
12004 /* The optimization makes only sense for constants which are big enough
12005 so that we have a chance to chop off something at all. */
12006 && ((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode)) > 0xff
12007 /* Ensure that we do not overflow during normalization. */
12008 && (code != GTU
12009 || ((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode))
12010 < HOST_WIDE_INT_M1U)
12011 && trunc_int_for_mode (const_op, int_mode) == const_op)
12012 {
12013 unsigned HOST_WIDE_INT n
12014 = (unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode);
12015 enum rtx_code adjusted_code;
12016
12017 /* Normalize code to either LEU or GEU. */
12018 if (code == LTU)
12019 {
12020 --n;
12021 adjusted_code = LEU;
12022 }
12023 else if (code == GTU)
12024 {
12025 ++n;
12026 adjusted_code = GEU;
12027 }
12028 else
12029 adjusted_code = code;
12030
12031 scalar_int_mode narrow_mode_iter;
12032 FOR_EACH_MODE_UNTIL (narrow_mode_iter, int_mode)
12033 {
12034 unsigned nbits = GET_MODE_PRECISION (mode: int_mode)
12035 - GET_MODE_PRECISION (mode: narrow_mode_iter);
12036 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << nbits) - 1;
12037 unsigned HOST_WIDE_INT lower_bits = n & mask;
12038 if ((adjusted_code == LEU && lower_bits == mask)
12039 || (adjusted_code == GEU && lower_bits == 0))
12040 {
12041 n >>= nbits;
12042 break;
12043 }
12044 }
12045
12046 if (narrow_mode_iter < int_mode)
12047 {
12048 if (dump_file && (dump_flags & TDF_DETAILS))
12049 {
12050 fprintf (
12051 stream: dump_file, format: "narrow comparison from mode %s to %s: (MEM %s "
12052 HOST_WIDE_INT_PRINT_HEX ") to (MEM %s "
12053 HOST_WIDE_INT_PRINT_HEX ").\n", GET_MODE_NAME (int_mode),
12054 GET_MODE_NAME (narrow_mode_iter), GET_RTX_NAME (code),
12055 (unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode),
12056 GET_RTX_NAME (adjusted_code), n);
12057 }
12058 poly_int64 offset = (BYTES_BIG_ENDIAN
12059 ? 0
12060 : (GET_MODE_SIZE (mode: int_mode)
12061 - GET_MODE_SIZE (mode: narrow_mode_iter)));
12062 *pop0 = adjust_address_nv (op0, narrow_mode_iter, offset);
12063 *pop1 = gen_int_mode (n, narrow_mode_iter);
12064 return adjusted_code;
12065 }
12066 }
12067
12068 *pop1 = GEN_INT (const_op);
12069 return code;
12070}
12071
12072/* Simplify a comparison between *POP0 and *POP1 where CODE is the
12073 comparison code that will be tested.
12074
12075 The result is a possibly different comparison code to use. *POP0 and
12076 *POP1 may be updated.
12077
12078 It is possible that we might detect that a comparison is either always
12079 true or always false. However, we do not perform general constant
12080 folding in combine, so this knowledge isn't useful. Such tautologies
12081 should have been detected earlier. Hence we ignore all such cases. */
12082
12083static enum rtx_code
12084simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12085{
12086 rtx op0 = *pop0;
12087 rtx op1 = *pop1;
12088 rtx tem, tem1;
12089 int i;
12090 scalar_int_mode mode, inner_mode, tmode;
12091 opt_scalar_int_mode tmode_iter;
12092
12093 /* Try a few ways of applying the same transformation to both operands. */
12094 while (1)
12095 {
12096 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12097 so check specially. */
12098 if (!WORD_REGISTER_OPERATIONS
12099 && code != GTU && code != GEU && code != LTU && code != LEU
12100 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12101 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12102 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12103 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12104 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12105 && is_a <scalar_int_mode> (GET_MODE (op0), result: &mode)
12106 && (is_a <scalar_int_mode>
12107 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), result: &inner_mode))
12108 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12109 && CONST_INT_P (XEXP (op0, 1))
12110 && XEXP (op0, 1) == XEXP (op1, 1)
12111 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12112 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12113 && (INTVAL (XEXP (op0, 1))
12114 == (GET_MODE_PRECISION (mode)
12115 - GET_MODE_PRECISION (mode: inner_mode))))
12116 {
12117 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12118 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12119 }
12120
12121 /* If both operands are the same constant shift, see if we can ignore the
12122 shift. We can if the shift is a rotate or if the bits shifted out of
12123 this shift are known to be zero for both inputs and if the type of
12124 comparison is compatible with the shift. */
12125 if (GET_CODE (op0) == GET_CODE (op1)
12126 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12127 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12128 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12129 && (code != GT && code != LT && code != GE && code != LE))
12130 || (GET_CODE (op0) == ASHIFTRT
12131 && (code != GTU && code != LTU
12132 && code != GEU && code != LEU)))
12133 && CONST_INT_P (XEXP (op0, 1))
12134 && INTVAL (XEXP (op0, 1)) >= 0
12135 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12136 && XEXP (op0, 1) == XEXP (op1, 1))
12137 {
12138 machine_mode mode = GET_MODE (op0);
12139 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12140 int shift_count = INTVAL (XEXP (op0, 1));
12141
12142 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12143 mask &= (mask >> shift_count) << shift_count;
12144 else if (GET_CODE (op0) == ASHIFT)
12145 mask = (mask & (mask << shift_count)) >> shift_count;
12146
12147 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12148 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12149 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12150 else
12151 break;
12152 }
12153
12154 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12155 SUBREGs are of the same mode, and, in both cases, the AND would
12156 be redundant if the comparison was done in the narrower mode,
12157 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12158 and the operand's possibly nonzero bits are 0xffffff01; in that case
12159 if we only care about QImode, we don't need the AND). This case
12160 occurs if the output mode of an scc insn is not SImode and
12161 STORE_FLAG_VALUE == 1 (e.g., the 386).
12162
12163 Similarly, check for a case where the AND's are ZERO_EXTEND
12164 operations from some narrower mode even though a SUBREG is not
12165 present. */
12166
12167 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12168 && CONST_INT_P (XEXP (op0, 1))
12169 && CONST_INT_P (XEXP (op1, 1)))
12170 {
12171 rtx inner_op0 = XEXP (op0, 0);
12172 rtx inner_op1 = XEXP (op1, 0);
12173 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12174 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12175 bool changed = false;
12176
12177 if (paradoxical_subreg_p (x: inner_op0)
12178 && GET_CODE (inner_op1) == SUBREG
12179 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12180 && (GET_MODE (SUBREG_REG (inner_op0))
12181 == GET_MODE (SUBREG_REG (inner_op1)))
12182 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12183 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12184 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12185 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12186 {
12187 op0 = SUBREG_REG (inner_op0);
12188 op1 = SUBREG_REG (inner_op1);
12189
12190 /* The resulting comparison is always unsigned since we masked
12191 off the original sign bit. */
12192 code = unsigned_condition (code);
12193
12194 changed = true;
12195 }
12196
12197 else if (c0 == c1)
12198 FOR_EACH_MODE_UNTIL (tmode,
12199 as_a <scalar_int_mode> (GET_MODE (op0)))
12200 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12201 {
12202 op0 = gen_lowpart_or_truncate (mode: tmode, x: inner_op0);
12203 op1 = gen_lowpart_or_truncate (mode: tmode, x: inner_op1);
12204 code = unsigned_condition (code);
12205 changed = true;
12206 break;
12207 }
12208
12209 if (! changed)
12210 break;
12211 }
12212
12213 /* If both operands are NOT, we can strip off the outer operation
12214 and adjust the comparison code for swapped operands; similarly for
12215 NEG, except that this must be an equality comparison. */
12216 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12217 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12218 && (code == EQ || code == NE)))
12219 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12220
12221 else
12222 break;
12223 }
12224
12225 /* If the first operand is a constant, swap the operands and adjust the
12226 comparison code appropriately, but don't do this if the second operand
12227 is already a constant integer. */
12228 if (swap_commutative_operands_p (op0, op1))
12229 {
12230 std::swap (a&: op0, b&: op1);
12231 code = swap_condition (code);
12232 }
12233
12234 /* We now enter a loop during which we will try to simplify the comparison.
12235 For the most part, we only are concerned with comparisons with zero,
12236 but some things may really be comparisons with zero but not start
12237 out looking that way. */
12238
12239 while (CONST_INT_P (op1))
12240 {
12241 machine_mode raw_mode = GET_MODE (op0);
12242 scalar_int_mode int_mode;
12243 int equality_comparison_p;
12244 int sign_bit_comparison_p;
12245 int unsigned_comparison_p;
12246 HOST_WIDE_INT const_op;
12247
12248 /* We only want to handle integral modes. This catches VOIDmode,
12249 CCmode, and the floating-point modes. An exception is that we
12250 can handle VOIDmode if OP0 is a COMPARE or a comparison
12251 operation. */
12252
12253 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12254 && ! (raw_mode == VOIDmode
12255 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12256 break;
12257
12258 /* Try to simplify the compare to constant, possibly changing the
12259 comparison op, and/or changing op1 to zero. */
12260 code = simplify_compare_const (code, mode: raw_mode, pop0: &op0, pop1: &op1);
12261 const_op = INTVAL (op1);
12262
12263 /* Compute some predicates to simplify code below. */
12264
12265 equality_comparison_p = (code == EQ || code == NE);
12266 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12267 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12268 || code == GEU);
12269
12270 /* If this is a sign bit comparison and we can do arithmetic in
12271 MODE, say that we will only be needing the sign bit of OP0. */
12272 if (sign_bit_comparison_p
12273 && is_a <scalar_int_mode> (m: raw_mode, result: &int_mode)
12274 && HWI_COMPUTABLE_MODE_P (mode: int_mode))
12275 op0 = force_to_mode (x: op0, mode: int_mode,
12276 HOST_WIDE_INT_1U
12277 << (GET_MODE_PRECISION (mode: int_mode) - 1), just_select: false);
12278
12279 if (COMPARISON_P (op0))
12280 {
12281 /* We can't do anything if OP0 is a condition code value, rather
12282 than an actual data value. */
12283 if (const_op != 0
12284 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12285 break;
12286
12287 /* Get the two operands being compared. */
12288 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12289 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12290 else
12291 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12292
12293 /* Check for the cases where we simply want the result of the
12294 earlier test or the opposite of that result. */
12295 if (code == NE || code == EQ
12296 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12297 && (code == LT || code == GE)))
12298 {
12299 enum rtx_code new_code;
12300 if (code == LT || code == NE)
12301 new_code = GET_CODE (op0);
12302 else
12303 new_code = reversed_comparison_code (op0, NULL);
12304
12305 if (new_code != UNKNOWN)
12306 {
12307 code = new_code;
12308 op0 = tem;
12309 op1 = tem1;
12310 continue;
12311 }
12312 }
12313 break;
12314 }
12315
12316 if (raw_mode == VOIDmode)
12317 break;
12318 scalar_int_mode mode = as_a <scalar_int_mode> (m: raw_mode);
12319
12320 /* Now try cases based on the opcode of OP0. If none of the cases
12321 does a "continue", we exit this loop immediately after the
12322 switch. */
12323
12324 unsigned int mode_width = GET_MODE_PRECISION (mode);
12325 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12326 switch (GET_CODE (op0))
12327 {
12328 case ZERO_EXTRACT:
12329 /* If we are extracting a single bit from a variable position in
12330 a constant that has only a single bit set and are comparing it
12331 with zero, we can convert this into an equality comparison
12332 between the position and the location of the single bit. */
12333 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12334 have already reduced the shift count modulo the word size. */
12335 if (!SHIFT_COUNT_TRUNCATED
12336 && CONST_INT_P (XEXP (op0, 0))
12337 && XEXP (op0, 1) == const1_rtx
12338 && equality_comparison_p && const_op == 0
12339 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12340 {
12341 if (BITS_BIG_ENDIAN)
12342 i = BITS_PER_WORD - 1 - i;
12343
12344 op0 = XEXP (op0, 2);
12345 op1 = GEN_INT (i);
12346 const_op = i;
12347
12348 /* Result is nonzero iff shift count is equal to I. */
12349 code = reverse_condition (code);
12350 continue;
12351 }
12352
12353 /* fall through */
12354
12355 case SIGN_EXTRACT:
12356 tem = expand_compound_operation (x: op0);
12357 if (tem != op0)
12358 {
12359 op0 = tem;
12360 continue;
12361 }
12362 break;
12363
12364 case NOT:
12365 /* If testing for equality, we can take the NOT of the constant. */
12366 if (equality_comparison_p
12367 && (tem = simplify_unary_operation (code: NOT, mode, op: op1, op_mode: mode)) != 0)
12368 {
12369 op0 = XEXP (op0, 0);
12370 op1 = tem;
12371 continue;
12372 }
12373
12374 /* If just looking at the sign bit, reverse the sense of the
12375 comparison. */
12376 if (sign_bit_comparison_p)
12377 {
12378 op0 = XEXP (op0, 0);
12379 code = (code == GE ? LT : GE);
12380 continue;
12381 }
12382 break;
12383
12384 case NEG:
12385 /* If testing for equality, we can take the NEG of the constant. */
12386 if (equality_comparison_p
12387 && (tem = simplify_unary_operation (code: NEG, mode, op: op1, op_mode: mode)) != 0)
12388 {
12389 op0 = XEXP (op0, 0);
12390 op1 = tem;
12391 continue;
12392 }
12393
12394 /* The remaining cases only apply to comparisons with zero. */
12395 if (const_op != 0)
12396 break;
12397
12398 /* When X is ABS or is known positive,
12399 (neg X) is < 0 if and only if X != 0. */
12400
12401 if (sign_bit_comparison_p
12402 && (GET_CODE (XEXP (op0, 0)) == ABS
12403 || (mode_width <= HOST_BITS_PER_WIDE_INT
12404 && (nonzero_bits (XEXP (op0, 0), mode)
12405 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12406 == 0)))
12407 {
12408 op0 = XEXP (op0, 0);
12409 code = (code == LT ? NE : EQ);
12410 continue;
12411 }
12412
12413 /* If we have NEG of something whose two high-order bits are the
12414 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12415 if (num_sign_bit_copies (op0, mode) >= 2)
12416 {
12417 op0 = XEXP (op0, 0);
12418 code = swap_condition (code);
12419 continue;
12420 }
12421 break;
12422
12423 case ROTATE:
12424 /* If we are testing equality and our count is a constant, we
12425 can perform the inverse operation on our RHS. */
12426 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12427 && (tem = simplify_binary_operation (code: ROTATERT, mode,
12428 op0: op1, XEXP (op0, 1))) != 0)
12429 {
12430 op0 = XEXP (op0, 0);
12431 op1 = tem;
12432 continue;
12433 }
12434
12435 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12436 a particular bit. Convert it to an AND of a constant of that
12437 bit. This will be converted into a ZERO_EXTRACT. */
12438 if (const_op == 0 && sign_bit_comparison_p
12439 && CONST_INT_P (XEXP (op0, 1))
12440 && mode_width <= HOST_BITS_PER_WIDE_INT
12441 && UINTVAL (XEXP (op0, 1)) < mode_width)
12442 {
12443 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12444 constop: (HOST_WIDE_INT_1U
12445 << (mode_width - 1
12446 - INTVAL (XEXP (op0, 1)))));
12447 code = (code == LT ? NE : EQ);
12448 continue;
12449 }
12450
12451 /* Fall through. */
12452
12453 case ABS:
12454 /* ABS is ignorable inside an equality comparison with zero. */
12455 if (const_op == 0 && equality_comparison_p)
12456 {
12457 op0 = XEXP (op0, 0);
12458 continue;
12459 }
12460 break;
12461
12462 case SIGN_EXTEND:
12463 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12464 (compare FOO CONST) if CONST fits in FOO's mode and we
12465 are either testing inequality or have an unsigned
12466 comparison with ZERO_EXTEND or a signed comparison with
12467 SIGN_EXTEND. But don't do it if we don't have a compare
12468 insn of the given mode, since we'd have to revert it
12469 later on, and then we wouldn't know whether to sign- or
12470 zero-extend. */
12471 if (is_int_mode (GET_MODE (XEXP (op0, 0)), int_mode: &mode)
12472 && ! unsigned_comparison_p
12473 && HWI_COMPUTABLE_MODE_P (mode)
12474 && trunc_int_for_mode (const_op, mode) == const_op
12475 && have_insn_for (COMPARE, mode))
12476 {
12477 op0 = XEXP (op0, 0);
12478 continue;
12479 }
12480 break;
12481
12482 case SUBREG:
12483 /* Check for the case where we are comparing A - C1 with C2, that is
12484
12485 (subreg:MODE (plus (A) (-C1))) op (C2)
12486
12487 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12488 comparison in the wider mode. One of the following two conditions
12489 must be true in order for this to be valid:
12490
12491 1. The mode extension results in the same bit pattern being added
12492 on both sides and the comparison is equality or unsigned. As
12493 C2 has been truncated to fit in MODE, the pattern can only be
12494 all 0s or all 1s.
12495
12496 2. The mode extension results in the sign bit being copied on
12497 each side.
12498
12499 The difficulty here is that we have predicates for A but not for
12500 (A - C1) so we need to check that C1 is within proper bounds so
12501 as to perturbate A as little as possible. */
12502
12503 if (mode_width <= HOST_BITS_PER_WIDE_INT
12504 && subreg_lowpart_p (op0)
12505 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12506 result: &inner_mode)
12507 && GET_MODE_PRECISION (mode: inner_mode) > mode_width
12508 && GET_CODE (SUBREG_REG (op0)) == PLUS
12509 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12510 {
12511 rtx a = XEXP (SUBREG_REG (op0), 0);
12512 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12513
12514 if ((c1 > 0
12515 && (unsigned HOST_WIDE_INT) c1
12516 < HOST_WIDE_INT_1U << (mode_width - 1)
12517 && (equality_comparison_p || unsigned_comparison_p)
12518 /* (A - C1) zero-extends if it is positive and sign-extends
12519 if it is negative, C2 both zero- and sign-extends. */
12520 && (((nonzero_bits (a, inner_mode)
12521 & ~GET_MODE_MASK (mode)) == 0
12522 && const_op >= 0)
12523 /* (A - C1) sign-extends if it is positive and 1-extends
12524 if it is negative, C2 both sign- and 1-extends. */
12525 || (num_sign_bit_copies (a, inner_mode)
12526 > (unsigned int) (GET_MODE_PRECISION (mode: inner_mode)
12527 - mode_width)
12528 && const_op < 0)))
12529 || ((unsigned HOST_WIDE_INT) c1
12530 < HOST_WIDE_INT_1U << (mode_width - 2)
12531 /* (A - C1) always sign-extends, like C2. */
12532 && num_sign_bit_copies (a, inner_mode)
12533 > (unsigned int) (GET_MODE_PRECISION (mode: inner_mode)
12534 - (mode_width - 1))))
12535 {
12536 op0 = SUBREG_REG (op0);
12537 continue;
12538 }
12539 }
12540
12541 /* If the inner mode is narrower and we are extracting the low part,
12542 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12543 if (paradoxical_subreg_p (x: op0))
12544 ;
12545 else if (subreg_lowpart_p (op0)
12546 && GET_MODE_CLASS (mode) == MODE_INT
12547 && is_int_mode (GET_MODE (SUBREG_REG (op0)), int_mode: &inner_mode)
12548 && (code == NE || code == EQ)
12549 && GET_MODE_PRECISION (mode: inner_mode) <= HOST_BITS_PER_WIDE_INT
12550 && !paradoxical_subreg_p (x: op0)
12551 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12552 & ~GET_MODE_MASK (mode)) == 0)
12553 {
12554 /* Remove outer subregs that don't do anything. */
12555 tem = gen_lowpart (inner_mode, op1);
12556
12557 if ((nonzero_bits (tem, inner_mode)
12558 & ~GET_MODE_MASK (mode)) == 0)
12559 {
12560 op0 = SUBREG_REG (op0);
12561 op1 = tem;
12562 continue;
12563 }
12564 break;
12565 }
12566 else
12567 break;
12568
12569 /* FALLTHROUGH */
12570
12571 case ZERO_EXTEND:
12572 if (is_int_mode (GET_MODE (XEXP (op0, 0)), int_mode: &mode)
12573 && (unsigned_comparison_p || equality_comparison_p)
12574 && HWI_COMPUTABLE_MODE_P (mode)
12575 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12576 && const_op >= 0
12577 && have_insn_for (COMPARE, mode))
12578 {
12579 op0 = XEXP (op0, 0);
12580 continue;
12581 }
12582 break;
12583
12584 case PLUS:
12585 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12586 this for equality comparisons due to pathological cases involving
12587 overflows. */
12588 if (equality_comparison_p
12589 && (tem = simplify_binary_operation (code: MINUS, mode,
12590 op0: op1, XEXP (op0, 1))) != 0)
12591 {
12592 op0 = XEXP (op0, 0);
12593 op1 = tem;
12594 continue;
12595 }
12596
12597 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12598 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12599 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12600 {
12601 op0 = XEXP (XEXP (op0, 0), 0);
12602 code = (code == LT ? EQ : NE);
12603 continue;
12604 }
12605 break;
12606
12607 case MINUS:
12608 /* We used to optimize signed comparisons against zero, but that
12609 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12610 arrive here as equality comparisons, or (GEU, LTU) are
12611 optimized away. No need to special-case them. */
12612
12613 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12614 (eq B (minus A C)), whichever simplifies. We can only do
12615 this for equality comparisons due to pathological cases involving
12616 overflows. */
12617 if (equality_comparison_p
12618 && (tem = simplify_binary_operation (code: PLUS, mode,
12619 XEXP (op0, 1), op1)) != 0)
12620 {
12621 op0 = XEXP (op0, 0);
12622 op1 = tem;
12623 continue;
12624 }
12625
12626 if (equality_comparison_p
12627 && (tem = simplify_binary_operation (code: MINUS, mode,
12628 XEXP (op0, 0), op1)) != 0)
12629 {
12630 op0 = XEXP (op0, 1);
12631 op1 = tem;
12632 continue;
12633 }
12634
12635 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12636 of bits in X minus 1, is one iff X > 0. */
12637 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12638 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12639 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12640 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12641 {
12642 op0 = XEXP (op0, 1);
12643 code = (code == GE ? LE : GT);
12644 continue;
12645 }
12646 break;
12647
12648 case XOR:
12649 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12650 if C is zero or B is a constant. */
12651 if (equality_comparison_p
12652 && (tem = simplify_binary_operation (code: XOR, mode,
12653 XEXP (op0, 1), op1)) != 0)
12654 {
12655 op0 = XEXP (op0, 0);
12656 op1 = tem;
12657 continue;
12658 }
12659 break;
12660
12661
12662 case IOR:
12663 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12664 iff X <= 0. */
12665 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12666 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12667 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12668 {
12669 op0 = XEXP (op0, 1);
12670 code = (code == GE ? GT : LE);
12671 continue;
12672 }
12673 break;
12674
12675 case AND:
12676 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12677 will be converted to a ZERO_EXTRACT later. */
12678 if (const_op == 0 && equality_comparison_p
12679 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12680 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12681 {
12682 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12683 XEXP (XEXP (op0, 0), 1));
12684 op0 = simplify_and_const_int (NULL_RTX, mode, varop: op0, constop: 1);
12685 continue;
12686 }
12687
12688 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12689 zero and X is a comparison and C1 and C2 describe only bits set
12690 in STORE_FLAG_VALUE, we can compare with X. */
12691 if (const_op == 0 && equality_comparison_p
12692 && mode_width <= HOST_BITS_PER_WIDE_INT
12693 && CONST_INT_P (XEXP (op0, 1))
12694 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12695 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12696 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12697 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12698 {
12699 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12700 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12701 if ((~STORE_FLAG_VALUE & mask) == 0
12702 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12703 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12704 && COMPARISON_P (tem))))
12705 {
12706 op0 = XEXP (XEXP (op0, 0), 0);
12707 continue;
12708 }
12709 }
12710
12711 /* If we are doing an equality comparison of an AND of a bit equal
12712 to the sign bit, replace this with a LT or GE comparison of
12713 the underlying value. */
12714 if (equality_comparison_p
12715 && const_op == 0
12716 && CONST_INT_P (XEXP (op0, 1))
12717 && mode_width <= HOST_BITS_PER_WIDE_INT
12718 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12719 == HOST_WIDE_INT_1U << (mode_width - 1)))
12720 {
12721 op0 = XEXP (op0, 0);
12722 code = (code == EQ ? GE : LT);
12723 continue;
12724 }
12725
12726 /* If this AND operation is really a ZERO_EXTEND from a narrower
12727 mode, the constant fits within that mode, and this is either an
12728 equality or unsigned comparison, try to do this comparison in
12729 the narrower mode.
12730
12731 Note that in:
12732
12733 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12734 -> (ne:DI (reg:SI 4) (const_int 0))
12735
12736 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12737 known to hold a value of the required mode the
12738 transformation is invalid. */
12739 if ((equality_comparison_p || unsigned_comparison_p)
12740 && CONST_INT_P (XEXP (op0, 1))
12741 && (i = exact_log2 (x: (UINTVAL (XEXP (op0, 1))
12742 & GET_MODE_MASK (mode))
12743 + 1)) >= 0
12744 && const_op >> i == 0
12745 && int_mode_for_size (size: i, limit: 1).exists (mode: &tmode))
12746 {
12747 op0 = gen_lowpart_or_truncate (mode: tmode, XEXP (op0, 0));
12748 continue;
12749 }
12750
12751 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12752 fits in both M1 and M2 and the SUBREG is either paradoxical
12753 or represents the low part, permute the SUBREG and the AND
12754 and try again. */
12755 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12756 && CONST_INT_P (XEXP (op0, 1)))
12757 {
12758 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12759 /* Require an integral mode, to avoid creating something like
12760 (AND:SF ...). */
12761 if ((is_a <scalar_int_mode>
12762 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), result: &tmode))
12763 /* It is unsafe to commute the AND into the SUBREG if the
12764 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12765 not defined. As originally written the upper bits
12766 have a defined value due to the AND operation.
12767 However, if we commute the AND inside the SUBREG then
12768 they no longer have defined values and the meaning of
12769 the code has been changed.
12770 Also C1 should not change value in the smaller mode,
12771 see PR67028 (a positive C1 can become negative in the
12772 smaller mode, so that the AND does no longer mask the
12773 upper bits). */
12774 && ((WORD_REGISTER_OPERATIONS
12775 && mode_width > GET_MODE_PRECISION (mode: tmode)
12776 && mode_width <= BITS_PER_WORD
12777 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12778 || (mode_width <= GET_MODE_PRECISION (mode: tmode)
12779 && subreg_lowpart_p (XEXP (op0, 0))))
12780 && mode_width <= HOST_BITS_PER_WIDE_INT
12781 && HWI_COMPUTABLE_MODE_P (mode: tmode)
12782 && (c1 & ~mask) == 0
12783 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12784 && c1 != mask
12785 && c1 != GET_MODE_MASK (tmode))
12786 {
12787 op0 = simplify_gen_binary (code: AND, mode: tmode,
12788 SUBREG_REG (XEXP (op0, 0)),
12789 op1: gen_int_mode (c1, tmode));
12790 op0 = gen_lowpart (mode, op0);
12791 continue;
12792 }
12793 }
12794
12795 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12796 if (const_op == 0 && equality_comparison_p
12797 && XEXP (op0, 1) == const1_rtx
12798 && GET_CODE (XEXP (op0, 0)) == NOT)
12799 {
12800 op0 = simplify_and_const_int (NULL_RTX, mode,
12801 XEXP (XEXP (op0, 0), 0), constop: 1);
12802 code = (code == NE ? EQ : NE);
12803 continue;
12804 }
12805
12806 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12807 (eq (and (lshiftrt X) 1) 0).
12808 Also handle the case where (not X) is expressed using xor. */
12809 if (const_op == 0 && equality_comparison_p
12810 && XEXP (op0, 1) == const1_rtx
12811 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12812 {
12813 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12814 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12815
12816 if (GET_CODE (shift_op) == NOT
12817 || (GET_CODE (shift_op) == XOR
12818 && CONST_INT_P (XEXP (shift_op, 1))
12819 && CONST_INT_P (shift_count)
12820 && HWI_COMPUTABLE_MODE_P (mode)
12821 && (UINTVAL (XEXP (shift_op, 1))
12822 == HOST_WIDE_INT_1U
12823 << INTVAL (shift_count))))
12824 {
12825 op0
12826 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12827 op0 = simplify_and_const_int (NULL_RTX, mode, varop: op0, constop: 1);
12828 code = (code == NE ? EQ : NE);
12829 continue;
12830 }
12831 }
12832 break;
12833
12834 case ASHIFT:
12835 /* If we have (compare (ashift FOO N) (const_int C)) and
12836 the high order N bits of FOO (N+1 if an inequality comparison)
12837 are known to be zero, we can do this by comparing FOO with C
12838 shifted right N bits so long as the low-order N bits of C are
12839 zero. */
12840 if (CONST_INT_P (XEXP (op0, 1))
12841 && INTVAL (XEXP (op0, 1)) >= 0
12842 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12843 < HOST_BITS_PER_WIDE_INT)
12844 && (((unsigned HOST_WIDE_INT) const_op
12845 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12846 - 1)) == 0)
12847 && mode_width <= HOST_BITS_PER_WIDE_INT
12848 && (nonzero_bits (XEXP (op0, 0), mode)
12849 & ~(mask >> (INTVAL (XEXP (op0, 1))
12850 + ! equality_comparison_p))) == 0)
12851 {
12852 /* We must perform a logical shift, not an arithmetic one,
12853 as we want the top N bits of C to be zero. */
12854 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12855
12856 temp >>= INTVAL (XEXP (op0, 1));
12857 op1 = gen_int_mode (temp, mode);
12858 op0 = XEXP (op0, 0);
12859 continue;
12860 }
12861
12862 /* If we are doing a sign bit comparison, it means we are testing
12863 a particular bit. Convert it to the appropriate AND. */
12864 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12865 && mode_width <= HOST_BITS_PER_WIDE_INT)
12866 {
12867 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12868 constop: (HOST_WIDE_INT_1U
12869 << (mode_width - 1
12870 - INTVAL (XEXP (op0, 1)))));
12871 code = (code == LT ? NE : EQ);
12872 continue;
12873 }
12874
12875 /* If this an equality comparison with zero and we are shifting
12876 the low bit to the sign bit, we can convert this to an AND of the
12877 low-order bit. */
12878 if (const_op == 0 && equality_comparison_p
12879 && CONST_INT_P (XEXP (op0, 1))
12880 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12881 {
12882 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), constop: 1);
12883 continue;
12884 }
12885 break;
12886
12887 case ASHIFTRT:
12888 /* If this is an equality comparison with zero, we can do this
12889 as a logical shift, which might be much simpler. */
12890 if (equality_comparison_p && const_op == 0
12891 && CONST_INT_P (XEXP (op0, 1)))
12892 {
12893 op0 = simplify_shift_const (NULL_RTX, code: LSHIFTRT, result_mode: mode,
12894 XEXP (op0, 0),
12895 INTVAL (XEXP (op0, 1)));
12896 continue;
12897 }
12898
12899 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12900 do the comparison in a narrower mode. */
12901 if (! unsigned_comparison_p
12902 && CONST_INT_P (XEXP (op0, 1))
12903 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12904 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12905 && (int_mode_for_size (size: mode_width - INTVAL (XEXP (op0, 1)), limit: 1)
12906 .exists (mode: &tmode))
12907 && (((unsigned HOST_WIDE_INT) const_op
12908 + (GET_MODE_MASK (tmode) >> 1) + 1)
12909 <= GET_MODE_MASK (tmode)))
12910 {
12911 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12912 continue;
12913 }
12914
12915 /* Likewise if OP0 is a PLUS of a sign extension with a
12916 constant, which is usually represented with the PLUS
12917 between the shifts. */
12918 if (! unsigned_comparison_p
12919 && CONST_INT_P (XEXP (op0, 1))
12920 && GET_CODE (XEXP (op0, 0)) == PLUS
12921 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12922 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12923 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12924 && (int_mode_for_size (size: mode_width - INTVAL (XEXP (op0, 1)), limit: 1)
12925 .exists (mode: &tmode))
12926 && (((unsigned HOST_WIDE_INT) const_op
12927 + (GET_MODE_MASK (tmode) >> 1) + 1)
12928 <= GET_MODE_MASK (tmode)))
12929 {
12930 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12931 rtx add_const = XEXP (XEXP (op0, 0), 1);
12932 rtx new_const = simplify_gen_binary (code: ASHIFTRT, mode,
12933 op0: add_const, XEXP (op0, 1));
12934
12935 op0 = simplify_gen_binary (code: PLUS, mode: tmode,
12936 gen_lowpart (tmode, inner),
12937 op1: new_const);
12938 continue;
12939 }
12940
12941 /* FALLTHROUGH */
12942 case LSHIFTRT:
12943 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12944 the low order N bits of FOO are known to be zero, we can do this
12945 by comparing FOO with C shifted left N bits so long as no
12946 overflow occurs. Even if the low order N bits of FOO aren't known
12947 to be zero, if the comparison is >= or < we can use the same
12948 optimization and for > or <= by setting all the low
12949 order N bits in the comparison constant. */
12950 if (CONST_INT_P (XEXP (op0, 1))
12951 && INTVAL (XEXP (op0, 1)) > 0
12952 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12953 && mode_width <= HOST_BITS_PER_WIDE_INT
12954 && (((unsigned HOST_WIDE_INT) const_op
12955 + (GET_CODE (op0) != LSHIFTRT
12956 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12957 + 1)
12958 : 0))
12959 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12960 {
12961 unsigned HOST_WIDE_INT low_bits
12962 = (nonzero_bits (XEXP (op0, 0), mode)
12963 & ((HOST_WIDE_INT_1U
12964 << INTVAL (XEXP (op0, 1))) - 1));
12965 if (low_bits == 0 || !equality_comparison_p)
12966 {
12967 /* If the shift was logical, then we must make the condition
12968 unsigned. */
12969 if (GET_CODE (op0) == LSHIFTRT)
12970 code = unsigned_condition (code);
12971
12972 const_op = (unsigned HOST_WIDE_INT) const_op
12973 << INTVAL (XEXP (op0, 1));
12974 if (low_bits != 0
12975 && (code == GT || code == GTU
12976 || code == LE || code == LEU))
12977 const_op
12978 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12979 op1 = GEN_INT (const_op);
12980 op0 = XEXP (op0, 0);
12981 continue;
12982 }
12983 }
12984
12985 /* If we are using this shift to extract just the sign bit, we
12986 can replace this with an LT or GE comparison. */
12987 if (const_op == 0
12988 && (equality_comparison_p || sign_bit_comparison_p)
12989 && CONST_INT_P (XEXP (op0, 1))
12990 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12991 {
12992 op0 = XEXP (op0, 0);
12993 code = (code == NE || code == GT ? LT : GE);
12994 continue;
12995 }
12996 break;
12997
12998 default:
12999 break;
13000 }
13001
13002 break;
13003 }
13004
13005 /* Now make any compound operations involved in this comparison. Then,
13006 check for an outmost SUBREG on OP0 that is not doing anything or is
13007 paradoxical. The latter transformation must only be performed when
13008 it is known that the "extra" bits will be the same in op0 and op1 or
13009 that they don't matter. There are three cases to consider:
13010
13011 1. SUBREG_REG (op0) is a register. In this case the bits are don't
13012 care bits and we can assume they have any convenient value. So
13013 making the transformation is safe.
13014
13015 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
13016 In this case the upper bits of op0 are undefined. We should not make
13017 the simplification in that case as we do not know the contents of
13018 those bits.
13019
13020 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
13021 In that case we know those bits are zeros or ones. We must also be
13022 sure that they are the same as the upper bits of op1.
13023
13024 We can never remove a SUBREG for a non-equality comparison because
13025 the sign bit is in a different place in the underlying object. */
13026
13027 rtx_code op0_mco_code = SET;
13028 if (op1 == const0_rtx)
13029 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
13030
13031 op0 = make_compound_operation (x: op0, in_code: op0_mco_code);
13032 op1 = make_compound_operation (x: op1, in_code: SET);
13033
13034 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
13035 && is_int_mode (GET_MODE (op0), int_mode: &mode)
13036 && is_int_mode (GET_MODE (SUBREG_REG (op0)), int_mode: &inner_mode)
13037 && (code == NE || code == EQ))
13038 {
13039 if (paradoxical_subreg_p (x: op0))
13040 {
13041 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13042 implemented. */
13043 if (REG_P (SUBREG_REG (op0)))
13044 {
13045 op0 = SUBREG_REG (op0);
13046 op1 = gen_lowpart (inner_mode, op1);
13047 }
13048 }
13049 else if (GET_MODE_PRECISION (mode: inner_mode) <= HOST_BITS_PER_WIDE_INT
13050 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13051 & ~GET_MODE_MASK (mode)) == 0)
13052 {
13053 tem = gen_lowpart (inner_mode, op1);
13054
13055 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13056 op0 = SUBREG_REG (op0), op1 = tem;
13057 }
13058 }
13059
13060 /* We now do the opposite procedure: Some machines don't have compare
13061 insns in all modes. If OP0's mode is an integer mode smaller than a
13062 word and we can't do a compare in that mode, see if there is a larger
13063 mode for which we can do the compare. There are a number of cases in
13064 which we can use the wider mode. */
13065
13066 if (is_int_mode (GET_MODE (op0), int_mode: &mode)
13067 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13068 && ! have_insn_for (COMPARE, mode))
13069 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13070 {
13071 tmode = tmode_iter.require ();
13072 if (!HWI_COMPUTABLE_MODE_P (mode: tmode))
13073 break;
13074 if (have_insn_for (COMPARE, tmode))
13075 {
13076 int zero_extended;
13077
13078 /* If this is a test for negative, we can make an explicit
13079 test of the sign bit. Test this first so we can use
13080 a paradoxical subreg to extend OP0. */
13081
13082 if (op1 == const0_rtx && (code == LT || code == GE)
13083 && HWI_COMPUTABLE_MODE_P (mode))
13084 {
13085 unsigned HOST_WIDE_INT sign
13086 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13087 op0 = simplify_gen_binary (code: AND, mode: tmode,
13088 gen_lowpart (tmode, op0),
13089 op1: gen_int_mode (sign, tmode));
13090 code = (code == LT) ? NE : EQ;
13091 break;
13092 }
13093
13094 /* If the only nonzero bits in OP0 and OP1 are those in the
13095 narrower mode and this is an equality or unsigned comparison,
13096 we can use the wider mode. Similarly for sign-extended
13097 values, in which case it is true for all comparisons. */
13098 zero_extended = ((code == EQ || code == NE
13099 || code == GEU || code == GTU
13100 || code == LEU || code == LTU)
13101 && (nonzero_bits (op0, tmode)
13102 & ~GET_MODE_MASK (mode)) == 0
13103 && ((CONST_INT_P (op1)
13104 || (nonzero_bits (op1, tmode)
13105 & ~GET_MODE_MASK (mode)) == 0)));
13106
13107 if (zero_extended
13108 || ((num_sign_bit_copies (op0, tmode)
13109 > (unsigned int) (GET_MODE_PRECISION (mode: tmode)
13110 - GET_MODE_PRECISION (mode)))
13111 && (num_sign_bit_copies (op1, tmode)
13112 > (unsigned int) (GET_MODE_PRECISION (mode: tmode)
13113 - GET_MODE_PRECISION (mode)))))
13114 {
13115 /* If OP0 is an AND and we don't have an AND in MODE either,
13116 make a new AND in the proper mode. */
13117 if (GET_CODE (op0) == AND
13118 && !have_insn_for (AND, mode))
13119 op0 = simplify_gen_binary (code: AND, mode: tmode,
13120 gen_lowpart (tmode,
13121 XEXP (op0, 0)),
13122 gen_lowpart (tmode,
13123 XEXP (op0, 1)));
13124 else
13125 {
13126 if (zero_extended)
13127 {
13128 op0 = simplify_gen_unary (code: ZERO_EXTEND, mode: tmode,
13129 op: op0, op_mode: mode);
13130 op1 = simplify_gen_unary (code: ZERO_EXTEND, mode: tmode,
13131 op: op1, op_mode: mode);
13132 }
13133 else
13134 {
13135 op0 = simplify_gen_unary (code: SIGN_EXTEND, mode: tmode,
13136 op: op0, op_mode: mode);
13137 op1 = simplify_gen_unary (code: SIGN_EXTEND, mode: tmode,
13138 op: op1, op_mode: mode);
13139 }
13140 break;
13141 }
13142 }
13143 }
13144 }
13145
13146 /* We may have changed the comparison operands. Re-canonicalize. */
13147 if (swap_commutative_operands_p (op0, op1))
13148 {
13149 std::swap (a&: op0, b&: op1);
13150 code = swap_condition (code);
13151 }
13152
13153 /* If this machine only supports a subset of valid comparisons, see if we
13154 can convert an unsupported one into a supported one. */
13155 target_canonicalize_comparison (code: &code, op0: &op0, op1: &op1, op0_preserve_value: 0);
13156
13157 *pop0 = op0;
13158 *pop1 = op1;
13159
13160 return code;
13161}
13162
13163/* Utility function for record_value_for_reg. Count number of
13164 rtxs in X. */
13165static int
13166count_rtxs (rtx x)
13167{
13168 enum rtx_code code = GET_CODE (x);
13169 const char *fmt;
13170 int i, j, ret = 1;
13171
13172 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13173 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13174 {
13175 rtx x0 = XEXP (x, 0);
13176 rtx x1 = XEXP (x, 1);
13177
13178 if (x0 == x1)
13179 return 1 + 2 * count_rtxs (x: x0);
13180
13181 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13182 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13183 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13184 return 2 + 2 * count_rtxs (x: x0)
13185 + count_rtxs (x: x == XEXP (x1, 0)
13186 ? XEXP (x1, 1) : XEXP (x1, 0));
13187
13188 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13189 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13190 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13191 return 2 + 2 * count_rtxs (x: x1)
13192 + count_rtxs (x: x == XEXP (x0, 0)
13193 ? XEXP (x0, 1) : XEXP (x0, 0));
13194 }
13195
13196 fmt = GET_RTX_FORMAT (code);
13197 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13198 if (fmt[i] == 'e')
13199 ret += count_rtxs (XEXP (x, i));
13200 else if (fmt[i] == 'E')
13201 for (j = 0; j < XVECLEN (x, i); j++)
13202 ret += count_rtxs (XVECEXP (x, i, j));
13203
13204 return ret;
13205}
13206
13207/* Utility function for following routine. Called when X is part of a value
13208 being stored into last_set_value. Sets last_set_table_tick
13209 for each register mentioned. Similar to mention_regs in cse.cc */
13210
13211static void
13212update_table_tick (rtx x)
13213{
13214 enum rtx_code code = GET_CODE (x);
13215 const char *fmt = GET_RTX_FORMAT (code);
13216 int i, j;
13217
13218 if (code == REG)
13219 {
13220 unsigned int regno = REGNO (x);
13221 unsigned int endregno = END_REGNO (x);
13222 unsigned int r;
13223
13224 for (r = regno; r < endregno; r++)
13225 {
13226 reg_stat_type *rsp = &reg_stat[r];
13227 rsp->last_set_table_tick = label_tick;
13228 }
13229
13230 return;
13231 }
13232
13233 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13234 if (fmt[i] == 'e')
13235 {
13236 /* Check for identical subexpressions. If x contains
13237 identical subexpression we only have to traverse one of
13238 them. */
13239 if (i == 0 && ARITHMETIC_P (x))
13240 {
13241 /* Note that at this point x1 has already been
13242 processed. */
13243 rtx x0 = XEXP (x, 0);
13244 rtx x1 = XEXP (x, 1);
13245
13246 /* If x0 and x1 are identical then there is no need to
13247 process x0. */
13248 if (x0 == x1)
13249 break;
13250
13251 /* If x0 is identical to a subexpression of x1 then while
13252 processing x1, x0 has already been processed. Thus we
13253 are done with x. */
13254 if (ARITHMETIC_P (x1)
13255 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13256 break;
13257
13258 /* If x1 is identical to a subexpression of x0 then we
13259 still have to process the rest of x0. */
13260 if (ARITHMETIC_P (x0)
13261 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13262 {
13263 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13264 break;
13265 }
13266 }
13267
13268 update_table_tick (XEXP (x, i));
13269 }
13270 else if (fmt[i] == 'E')
13271 for (j = 0; j < XVECLEN (x, i); j++)
13272 update_table_tick (XVECEXP (x, i, j));
13273}
13274
13275/* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13276 are saying that the register is clobbered and we no longer know its
13277 value. If INSN is zero, don't update reg_stat[].last_set; this is
13278 only permitted with VALUE also zero and is used to invalidate the
13279 register. */
13280
13281static void
13282record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13283{
13284 unsigned int regno = REGNO (reg);
13285 unsigned int endregno = END_REGNO (x: reg);
13286 unsigned int i;
13287 reg_stat_type *rsp;
13288
13289 /* If VALUE contains REG and we have a previous value for REG, substitute
13290 the previous value. */
13291 if (value && insn && reg_overlap_mentioned_p (reg, value))
13292 {
13293 rtx tem;
13294
13295 /* Set things up so get_last_value is allowed to see anything set up to
13296 our insn. */
13297 subst_low_luid = DF_INSN_LUID (insn);
13298 tem = get_last_value (reg);
13299
13300 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13301 it isn't going to be useful and will take a lot of time to process,
13302 so just use the CLOBBER. */
13303
13304 if (tem)
13305 {
13306 if (ARITHMETIC_P (tem)
13307 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13308 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13309 tem = XEXP (tem, 0);
13310 else if (count_occurrences (value, reg, 1) >= 2)
13311 {
13312 /* If there are two or more occurrences of REG in VALUE,
13313 prevent the value from growing too much. */
13314 if (count_rtxs (x: tem) > param_max_last_value_rtl)
13315 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13316 }
13317
13318 value = replace_rtx (copy_rtx (value), reg, tem);
13319 }
13320 }
13321
13322 /* For each register modified, show we don't know its value, that
13323 we don't know about its bitwise content, that its value has been
13324 updated, and that we don't know the location of the death of the
13325 register. */
13326 for (i = regno; i < endregno; i++)
13327 {
13328 rsp = &reg_stat[i];
13329
13330 if (insn)
13331 rsp->last_set = insn;
13332
13333 rsp->last_set_value = 0;
13334 rsp->last_set_mode = VOIDmode;
13335 rsp->last_set_nonzero_bits = 0;
13336 rsp->last_set_sign_bit_copies = 0;
13337 rsp->last_death = 0;
13338 rsp->truncated_to_mode = VOIDmode;
13339 }
13340
13341 /* Mark registers that are being referenced in this value. */
13342 if (value)
13343 update_table_tick (x: value);
13344
13345 /* Now update the status of each register being set.
13346 If someone is using this register in this block, set this register
13347 to invalid since we will get confused between the two lives in this
13348 basic block. This makes using this register always invalid. In cse, we
13349 scan the table to invalidate all entries using this register, but this
13350 is too much work for us. */
13351
13352 for (i = regno; i < endregno; i++)
13353 {
13354 rsp = &reg_stat[i];
13355 rsp->last_set_label = label_tick;
13356 if (!insn
13357 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13358 rsp->last_set_invalid = true;
13359 else
13360 rsp->last_set_invalid = false;
13361 }
13362
13363 /* The value being assigned might refer to X (like in "x++;"). In that
13364 case, we must replace it with (clobber (const_int 0)) to prevent
13365 infinite loops. */
13366 rsp = &reg_stat[regno];
13367 if (value && !get_last_value_validate (&value, insn, label_tick, false))
13368 {
13369 value = copy_rtx (value);
13370 if (!get_last_value_validate (&value, insn, label_tick, true))
13371 value = 0;
13372 }
13373
13374 /* For the main register being modified, update the value, the mode, the
13375 nonzero bits, and the number of sign bit copies. */
13376
13377 rsp->last_set_value = value;
13378
13379 if (value)
13380 {
13381 machine_mode mode = GET_MODE (reg);
13382 subst_low_luid = DF_INSN_LUID (insn);
13383 rsp->last_set_mode = mode;
13384 if (GET_MODE_CLASS (mode) == MODE_INT
13385 && HWI_COMPUTABLE_MODE_P (mode))
13386 mode = nonzero_bits_mode;
13387 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13388 rsp->last_set_sign_bit_copies
13389 = num_sign_bit_copies (value, GET_MODE (reg));
13390 }
13391}
13392
13393/* Called via note_stores from record_dead_and_set_regs to handle one
13394 SET or CLOBBER in an insn. DATA is the instruction in which the
13395 set is occurring. */
13396
13397static void
13398record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13399{
13400 rtx_insn *record_dead_insn = (rtx_insn *) data;
13401
13402 if (GET_CODE (dest) == SUBREG)
13403 dest = SUBREG_REG (dest);
13404
13405 if (!record_dead_insn)
13406 {
13407 if (REG_P (dest))
13408 record_value_for_reg (reg: dest, NULL, NULL_RTX);
13409 return;
13410 }
13411
13412 if (REG_P (dest))
13413 {
13414 /* If we are setting the whole register, we know its value. */
13415 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13416 record_value_for_reg (reg: dest, insn: record_dead_insn, SET_SRC (setter));
13417 /* We can handle a SUBREG if it's the low part, but we must be
13418 careful with paradoxical SUBREGs on RISC architectures because
13419 we cannot strip e.g. an extension around a load and record the
13420 naked load since the RTL middle-end considers that the upper bits
13421 are defined according to LOAD_EXTEND_OP. */
13422 else if (GET_CODE (setter) == SET
13423 && GET_CODE (SET_DEST (setter)) == SUBREG
13424 && SUBREG_REG (SET_DEST (setter)) == dest
13425 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13426 BITS_PER_WORD)
13427 && subreg_lowpart_p (SET_DEST (setter)))
13428 {
13429 if (WORD_REGISTER_OPERATIONS
13430 && word_register_operation_p (SET_SRC (setter))
13431 && paradoxical_subreg_p (SET_DEST (setter)))
13432 record_value_for_reg (reg: dest, insn: record_dead_insn, SET_SRC (setter));
13433 else if (!partial_subreg_p (SET_DEST (setter)))
13434 record_value_for_reg (reg: dest, insn: record_dead_insn,
13435 gen_lowpart (GET_MODE (dest),
13436 SET_SRC (setter)));
13437 else
13438 {
13439 record_value_for_reg (reg: dest, insn: record_dead_insn,
13440 gen_lowpart (GET_MODE (dest),
13441 SET_SRC (setter)));
13442
13443 unsigned HOST_WIDE_INT mask;
13444 reg_stat_type *rsp = &reg_stat[REGNO (dest)];
13445 mask = GET_MODE_MASK (GET_MODE (SET_DEST (setter)));
13446 rsp->last_set_nonzero_bits |= ~mask;
13447 rsp->last_set_sign_bit_copies = 1;
13448 }
13449 }
13450 /* Otherwise show that we don't know the value. */
13451 else
13452 record_value_for_reg (reg: dest, insn: record_dead_insn, NULL_RTX);
13453 }
13454 else if (MEM_P (dest)
13455 /* Ignore pushes, they clobber nothing. */
13456 && ! push_operand (dest, GET_MODE (dest)))
13457 mem_last_set = DF_INSN_LUID (record_dead_insn);
13458}
13459
13460/* Update the records of when each REG was most recently set or killed
13461 for the things done by INSN. This is the last thing done in processing
13462 INSN in the combiner loop.
13463
13464 We update reg_stat[], in particular fields last_set, last_set_value,
13465 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13466 last_death, and also the similar information mem_last_set (which insn
13467 most recently modified memory) and last_call_luid (which insn was the
13468 most recent subroutine call). */
13469
13470static void
13471record_dead_and_set_regs (rtx_insn *insn)
13472{
13473 rtx link;
13474 unsigned int i;
13475
13476 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13477 {
13478 if (REG_NOTE_KIND (link) == REG_DEAD
13479 && REG_P (XEXP (link, 0)))
13480 {
13481 unsigned int regno = REGNO (XEXP (link, 0));
13482 unsigned int endregno = END_REGNO (XEXP (link, 0));
13483
13484 for (i = regno; i < endregno; i++)
13485 {
13486 reg_stat_type *rsp;
13487
13488 rsp = &reg_stat[i];
13489 rsp->last_death = insn;
13490 }
13491 }
13492 else if (REG_NOTE_KIND (link) == REG_INC)
13493 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13494 }
13495
13496 if (CALL_P (insn))
13497 {
13498 HARD_REG_SET callee_clobbers
13499 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
13500 hard_reg_set_iterator hrsi;
13501 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
13502 {
13503 reg_stat_type *rsp;
13504
13505 /* ??? We could try to preserve some information from the last
13506 set of register I if the call doesn't actually clobber
13507 (reg:last_set_mode I), which might be true for ABIs with
13508 partial clobbers. However, it would be difficult to
13509 update last_set_nonzero_bits and last_sign_bit_copies
13510 to account for the part of I that actually was clobbered.
13511 It wouldn't help much anyway, since we rarely see this
13512 situation before RA. */
13513 rsp = &reg_stat[i];
13514 rsp->last_set_invalid = true;
13515 rsp->last_set = insn;
13516 rsp->last_set_value = 0;
13517 rsp->last_set_mode = VOIDmode;
13518 rsp->last_set_nonzero_bits = 0;
13519 rsp->last_set_sign_bit_copies = 0;
13520 rsp->last_death = 0;
13521 rsp->truncated_to_mode = VOIDmode;
13522 }
13523
13524 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13525
13526 /* We can't combine into a call pattern. Remember, though, that
13527 the return value register is set at this LUID. We could
13528 still replace a register with the return value from the
13529 wrong subroutine call! */
13530 note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
13531 }
13532 else
13533 note_stores (insn, record_dead_and_set_regs_1, insn);
13534}
13535
13536/* If a SUBREG has the promoted bit set, it is in fact a property of the
13537 register present in the SUBREG, so for each such SUBREG go back and
13538 adjust nonzero and sign bit information of the registers that are
13539 known to have some zero/sign bits set.
13540
13541 This is needed because when combine blows the SUBREGs away, the
13542 information on zero/sign bits is lost and further combines can be
13543 missed because of that. */
13544
13545static void
13546record_promoted_value (rtx_insn *insn, rtx subreg)
13547{
13548 struct insn_link *links;
13549 rtx set;
13550 unsigned int regno = REGNO (SUBREG_REG (subreg));
13551 machine_mode mode = GET_MODE (subreg);
13552
13553 if (!HWI_COMPUTABLE_MODE_P (mode))
13554 return;
13555
13556 for (links = LOG_LINKS (insn); links;)
13557 {
13558 reg_stat_type *rsp;
13559
13560 insn = links->insn;
13561 set = single_set (insn);
13562
13563 if (! set || !REG_P (SET_DEST (set))
13564 || REGNO (SET_DEST (set)) != regno
13565 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13566 {
13567 links = links->next;
13568 continue;
13569 }
13570
13571 rsp = &reg_stat[regno];
13572 if (rsp->last_set == insn)
13573 {
13574 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13575 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13576 }
13577
13578 if (REG_P (SET_SRC (set)))
13579 {
13580 regno = REGNO (SET_SRC (set));
13581 links = LOG_LINKS (insn);
13582 }
13583 else
13584 break;
13585 }
13586}
13587
13588/* Check if X, a register, is known to contain a value already
13589 truncated to MODE. In this case we can use a subreg to refer to
13590 the truncated value even though in the generic case we would need
13591 an explicit truncation. */
13592
13593static bool
13594reg_truncated_to_mode (machine_mode mode, const_rtx x)
13595{
13596 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13597 machine_mode truncated = rsp->truncated_to_mode;
13598
13599 if (truncated == 0
13600 || rsp->truncation_label < label_tick_ebb_start)
13601 return false;
13602 if (!partial_subreg_p (outermode: mode, innermode: truncated))
13603 return true;
13604 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13605 return true;
13606 return false;
13607}
13608
13609/* If X is a hard reg or a subreg record the mode that the register is
13610 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13611 able to turn a truncate into a subreg using this information. Return true
13612 if traversing X is complete. */
13613
13614static bool
13615record_truncated_value (rtx x)
13616{
13617 machine_mode truncated_mode;
13618 reg_stat_type *rsp;
13619
13620 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13621 {
13622 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13623 truncated_mode = GET_MODE (x);
13624
13625 if (!partial_subreg_p (outermode: truncated_mode, innermode: original_mode))
13626 return true;
13627
13628 truncated_mode = GET_MODE (x);
13629 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13630 return true;
13631
13632 x = SUBREG_REG (x);
13633 }
13634 /* ??? For hard-regs we now record everything. We might be able to
13635 optimize this using last_set_mode. */
13636 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13637 truncated_mode = GET_MODE (x);
13638 else
13639 return false;
13640
13641 rsp = &reg_stat[REGNO (x)];
13642 if (rsp->truncated_to_mode == 0
13643 || rsp->truncation_label < label_tick_ebb_start
13644 || partial_subreg_p (outermode: truncated_mode, innermode: rsp->truncated_to_mode))
13645 {
13646 rsp->truncated_to_mode = truncated_mode;
13647 rsp->truncation_label = label_tick;
13648 }
13649
13650 return true;
13651}
13652
13653/* Callback for note_uses. Find hardregs and subregs of pseudos and
13654 the modes they are used in. This can help truning TRUNCATEs into
13655 SUBREGs. */
13656
13657static void
13658record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13659{
13660 subrtx_var_iterator::array_type array;
13661 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13662 if (record_truncated_value (x: *iter))
13663 iter.skip_subrtxes ();
13664}
13665
13666/* Scan X for promoted SUBREGs. For each one found,
13667 note what it implies to the registers used in it. */
13668
13669static void
13670check_promoted_subreg (rtx_insn *insn, rtx x)
13671{
13672 if (GET_CODE (x) == SUBREG
13673 && SUBREG_PROMOTED_VAR_P (x)
13674 && REG_P (SUBREG_REG (x)))
13675 record_promoted_value (insn, subreg: x);
13676 else
13677 {
13678 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13679 int i, j;
13680
13681 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13682 switch (format[i])
13683 {
13684 case 'e':
13685 check_promoted_subreg (insn, XEXP (x, i));
13686 break;
13687 case 'V':
13688 case 'E':
13689 if (XVEC (x, i) != 0)
13690 for (j = 0; j < XVECLEN (x, i); j++)
13691 check_promoted_subreg (insn, XVECEXP (x, i, j));
13692 break;
13693 }
13694 }
13695}
13696
13697/* Verify that all the registers and memory references mentioned in *LOC are
13698 still valid. *LOC was part of a value set in INSN when label_tick was
13699 equal to TICK. Return false if some are not. If REPLACE is true, replace
13700 the invalid references with (clobber (const_int 0)) and return true. This
13701 replacement is useful because we often can get useful information about
13702 the form of a value (e.g., if it was produced by a shift that always
13703 produces -1 or 0) even though we don't know exactly what registers it
13704 was produced from. */
13705
13706static bool
13707get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, bool replace)
13708{
13709 rtx x = *loc;
13710 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13711 int len = GET_RTX_LENGTH (GET_CODE (x));
13712 int i, j;
13713
13714 if (REG_P (x))
13715 {
13716 unsigned int regno = REGNO (x);
13717 unsigned int endregno = END_REGNO (x);
13718 unsigned int j;
13719
13720 for (j = regno; j < endregno; j++)
13721 {
13722 reg_stat_type *rsp = &reg_stat[j];
13723 if (rsp->last_set_invalid
13724 /* If this is a pseudo-register that was only set once and not
13725 live at the beginning of the function, it is always valid. */
13726 || (! (regno >= FIRST_PSEUDO_REGISTER
13727 && regno < reg_n_sets_max
13728 && REG_N_SETS (regno) == 1
13729 && (!REGNO_REG_SET_P
13730 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13731 regno)))
13732 && rsp->last_set_label > tick))
13733 {
13734 if (replace)
13735 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13736 return replace;
13737 }
13738 }
13739
13740 return true;
13741 }
13742 /* If this is a memory reference, make sure that there were no stores after
13743 it that might have clobbered the value. We don't have alias info, so we
13744 assume any store invalidates it. Moreover, we only have local UIDs, so
13745 we also assume that there were stores in the intervening basic blocks. */
13746 else if (MEM_P (x) && !MEM_READONLY_P (x)
13747 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13748 {
13749 if (replace)
13750 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13751 return replace;
13752 }
13753
13754 for (i = 0; i < len; i++)
13755 {
13756 if (fmt[i] == 'e')
13757 {
13758 /* Check for identical subexpressions. If x contains
13759 identical subexpression we only have to traverse one of
13760 them. */
13761 if (i == 1 && ARITHMETIC_P (x))
13762 {
13763 /* Note that at this point x0 has already been checked
13764 and found valid. */
13765 rtx x0 = XEXP (x, 0);
13766 rtx x1 = XEXP (x, 1);
13767
13768 /* If x0 and x1 are identical then x is also valid. */
13769 if (x0 == x1)
13770 return true;
13771
13772 /* If x1 is identical to a subexpression of x0 then
13773 while checking x0, x1 has already been checked. Thus
13774 it is valid and so as x. */
13775 if (ARITHMETIC_P (x0)
13776 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13777 return true;
13778
13779 /* If x0 is identical to a subexpression of x1 then x is
13780 valid iff the rest of x1 is valid. */
13781 if (ARITHMETIC_P (x1)
13782 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13783 return
13784 get_last_value_validate (loc: &XEXP (x1,
13785 x0 == XEXP (x1, 0) ? 1 : 0),
13786 insn, tick, replace);
13787 }
13788
13789 if (!get_last_value_validate (loc: &XEXP (x, i), insn, tick, replace))
13790 return false;
13791 }
13792 else if (fmt[i] == 'E')
13793 for (j = 0; j < XVECLEN (x, i); j++)
13794 if (!get_last_value_validate (loc: &XVECEXP (x, i, j),
13795 insn, tick, replace))
13796 return false;
13797 }
13798
13799 /* If we haven't found a reason for it to be invalid, it is valid. */
13800 return true;
13801}
13802
13803/* Get the last value assigned to X, if known. Some registers
13804 in the value may be replaced with (clobber (const_int 0)) if their value
13805 is known longer known reliably. */
13806
13807static rtx
13808get_last_value (const_rtx x)
13809{
13810 unsigned int regno;
13811 rtx value;
13812 reg_stat_type *rsp;
13813
13814 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13815 then convert it to the desired mode. If this is a paradoxical SUBREG,
13816 we cannot predict what values the "extra" bits might have. */
13817 if (GET_CODE (x) == SUBREG
13818 && subreg_lowpart_p (x)
13819 && !paradoxical_subreg_p (x)
13820 && (value = get_last_value (SUBREG_REG (x))) != 0)
13821 return gen_lowpart (GET_MODE (x), value);
13822
13823 if (!REG_P (x))
13824 return 0;
13825
13826 regno = REGNO (x);
13827 rsp = &reg_stat[regno];
13828 value = rsp->last_set_value;
13829
13830 /* If we don't have a value, or if it isn't for this basic block and
13831 it's either a hard register, set more than once, or it's a live
13832 at the beginning of the function, return 0.
13833
13834 Because if it's not live at the beginning of the function then the reg
13835 is always set before being used (is never used without being set).
13836 And, if it's set only once, and it's always set before use, then all
13837 uses must have the same last value, even if it's not from this basic
13838 block. */
13839
13840 if (value == 0
13841 || (rsp->last_set_label < label_tick_ebb_start
13842 && (regno < FIRST_PSEUDO_REGISTER
13843 || regno >= reg_n_sets_max
13844 || REG_N_SETS (regno) != 1
13845 || REGNO_REG_SET_P
13846 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13847 return 0;
13848
13849 /* If the value was set in a later insn than the ones we are processing,
13850 we can't use it even if the register was only set once. */
13851 if (rsp->last_set_label == label_tick
13852 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13853 return 0;
13854
13855 /* If fewer bits were set than what we are asked for now, we cannot use
13856 the value. */
13857 if (maybe_lt (a: GET_MODE_PRECISION (mode: rsp->last_set_mode),
13858 b: GET_MODE_PRECISION (GET_MODE (x))))
13859 return 0;
13860
13861 /* If the value has all its registers valid, return it. */
13862 if (get_last_value_validate (loc: &value, insn: rsp->last_set,
13863 tick: rsp->last_set_label, replace: false))
13864 return value;
13865
13866 /* Otherwise, make a copy and replace any invalid register with
13867 (clobber (const_int 0)). If that fails for some reason, return 0. */
13868
13869 value = copy_rtx (value);
13870 if (get_last_value_validate (loc: &value, insn: rsp->last_set,
13871 tick: rsp->last_set_label, replace: true))
13872 return value;
13873
13874 return 0;
13875}
13876
13877/* Define three variables used for communication between the following
13878 routines. */
13879
13880static unsigned int reg_dead_regno, reg_dead_endregno;
13881static int reg_dead_flag;
13882rtx reg_dead_reg;
13883
13884/* Function called via note_stores from reg_dead_at_p.
13885
13886 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13887 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13888
13889static void
13890reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13891{
13892 unsigned int regno, endregno;
13893
13894 if (!REG_P (dest))
13895 return;
13896
13897 regno = REGNO (dest);
13898 endregno = END_REGNO (x: dest);
13899 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13900 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13901}
13902
13903/* Return true if REG is known to be dead at INSN.
13904
13905 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13906 referencing REG, it is dead. If we hit a SET referencing REG, it is
13907 live. Otherwise, see if it is live or dead at the start of the basic
13908 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13909 must be assumed to be always live. */
13910
13911static bool
13912reg_dead_at_p (rtx reg, rtx_insn *insn)
13913{
13914 basic_block block;
13915 unsigned int i;
13916
13917 /* Set variables for reg_dead_at_p_1. */
13918 reg_dead_regno = REGNO (reg);
13919 reg_dead_endregno = END_REGNO (x: reg);
13920 reg_dead_reg = reg;
13921
13922 reg_dead_flag = 0;
13923
13924 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13925 we allow the machine description to decide whether use-and-clobber
13926 patterns are OK. */
13927 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13928 {
13929 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13930 if (!fixed_regs[i] && TEST_HARD_REG_BIT (set: newpat_used_regs, bit: i))
13931 return false;
13932 }
13933
13934 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13935 beginning of basic block. */
13936 block = BLOCK_FOR_INSN (insn);
13937 for (;;)
13938 {
13939 if (INSN_P (insn))
13940 {
13941 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13942 return true;
13943
13944 note_stores (insn, reg_dead_at_p_1, NULL);
13945 if (reg_dead_flag)
13946 return reg_dead_flag == 1 ? 1 : 0;
13947
13948 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13949 return true;
13950 }
13951
13952 if (insn == BB_HEAD (block))
13953 break;
13954
13955 insn = PREV_INSN (insn);
13956 }
13957
13958 /* Look at live-in sets for the basic block that we were in. */
13959 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13960 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13961 return false;
13962
13963 return true;
13964}
13965
13966/* Note hard registers in X that are used. */
13967
13968static void
13969mark_used_regs_combine (rtx x)
13970{
13971 RTX_CODE code = GET_CODE (x);
13972 unsigned int regno;
13973 int i;
13974
13975 switch (code)
13976 {
13977 case LABEL_REF:
13978 case SYMBOL_REF:
13979 case CONST:
13980 CASE_CONST_ANY:
13981 case PC:
13982 case ADDR_VEC:
13983 case ADDR_DIFF_VEC:
13984 case ASM_INPUT:
13985 return;
13986
13987 case CLOBBER:
13988 /* If we are clobbering a MEM, mark any hard registers inside the
13989 address as used. */
13990 if (MEM_P (XEXP (x, 0)))
13991 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13992 return;
13993
13994 case REG:
13995 regno = REGNO (x);
13996 /* A hard reg in a wide mode may really be multiple registers.
13997 If so, mark all of them just like the first. */
13998 if (regno < FIRST_PSEUDO_REGISTER)
13999 {
14000 /* None of this applies to the stack, frame or arg pointers. */
14001 if (regno == STACK_POINTER_REGNUM
14002 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
14003 && regno == HARD_FRAME_POINTER_REGNUM)
14004 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
14005 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
14006 || regno == FRAME_POINTER_REGNUM)
14007 return;
14008
14009 add_to_hard_reg_set (regs: &newpat_used_regs, GET_MODE (x), regno);
14010 }
14011 return;
14012
14013 case SET:
14014 {
14015 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
14016 the address. */
14017 rtx testreg = SET_DEST (x);
14018
14019 while (GET_CODE (testreg) == SUBREG
14020 || GET_CODE (testreg) == ZERO_EXTRACT
14021 || GET_CODE (testreg) == STRICT_LOW_PART)
14022 testreg = XEXP (testreg, 0);
14023
14024 if (MEM_P (testreg))
14025 mark_used_regs_combine (XEXP (testreg, 0));
14026
14027 mark_used_regs_combine (SET_SRC (x));
14028 }
14029 return;
14030
14031 default:
14032 break;
14033 }
14034
14035 /* Recursively scan the operands of this expression. */
14036
14037 {
14038 const char *fmt = GET_RTX_FORMAT (code);
14039
14040 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
14041 {
14042 if (fmt[i] == 'e')
14043 mark_used_regs_combine (XEXP (x, i));
14044 else if (fmt[i] == 'E')
14045 {
14046 int j;
14047
14048 for (j = 0; j < XVECLEN (x, i); j++)
14049 mark_used_regs_combine (XVECEXP (x, i, j));
14050 }
14051 }
14052 }
14053}
14054
14055/* Remove register number REGNO from the dead registers list of INSN.
14056
14057 Return the note used to record the death, if there was one. */
14058
14059rtx
14060remove_death (unsigned int regno, rtx_insn *insn)
14061{
14062 rtx note = find_regno_note (insn, REG_DEAD, regno);
14063
14064 if (note)
14065 remove_note (insn, note);
14066
14067 return note;
14068}
14069
14070/* For each register (hardware or pseudo) used within expression X, if its
14071 death is in an instruction with luid between FROM_LUID (inclusive) and
14072 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14073 list headed by PNOTES.
14074
14075 That said, don't move registers killed by maybe_kill_insn.
14076
14077 This is done when X is being merged by combination into TO_INSN. These
14078 notes will then be distributed as needed. */
14079
14080static void
14081move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14082 rtx *pnotes)
14083{
14084 const char *fmt;
14085 int len, i;
14086 enum rtx_code code = GET_CODE (x);
14087
14088 if (code == REG)
14089 {
14090 unsigned int regno = REGNO (x);
14091 rtx_insn *where_dead = reg_stat[regno].last_death;
14092
14093 /* If we do not know where the register died, it may still die between
14094 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14095 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14096 {
14097 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14098 while (insn
14099 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (insn: to_insn)
14100 && DF_INSN_LUID (insn) >= from_luid)
14101 {
14102 if (dead_or_set_regno_p (insn, regno))
14103 {
14104 if (find_regno_note (insn, REG_DEAD, regno))
14105 where_dead = insn;
14106 break;
14107 }
14108
14109 insn = prev_real_nondebug_insn (insn);
14110 }
14111 }
14112
14113 /* Don't move the register if it gets killed in between from and to. */
14114 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14115 && ! reg_referenced_p (x, maybe_kill_insn))
14116 return;
14117
14118 if (where_dead
14119 && BLOCK_FOR_INSN (insn: where_dead) == BLOCK_FOR_INSN (insn: to_insn)
14120 && DF_INSN_LUID (where_dead) >= from_luid
14121 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14122 {
14123 rtx note = remove_death (regno, insn: where_dead);
14124
14125 /* It is possible for the call above to return 0. This can occur
14126 when last_death points to I2 or I1 that we combined with.
14127 In that case make a new note.
14128
14129 We must also check for the case where X is a hard register
14130 and NOTE is a death note for a range of hard registers
14131 including X. In that case, we must put REG_DEAD notes for
14132 the remaining registers in place of NOTE. */
14133
14134 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14135 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14136 {
14137 unsigned int deadregno = REGNO (XEXP (note, 0));
14138 unsigned int deadend = END_REGNO (XEXP (note, 0));
14139 unsigned int ourend = END_REGNO (x);
14140 unsigned int i;
14141
14142 for (i = deadregno; i < deadend; i++)
14143 if (i < regno || i >= ourend)
14144 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14145 }
14146
14147 /* If we didn't find any note, or if we found a REG_DEAD note that
14148 covers only part of the given reg, and we have a multi-reg hard
14149 register, then to be safe we must check for REG_DEAD notes
14150 for each register other than the first. They could have
14151 their own REG_DEAD notes lying around. */
14152 else if ((note == 0
14153 || (note != 0
14154 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14155 GET_MODE (x))))
14156 && regno < FIRST_PSEUDO_REGISTER
14157 && REG_NREGS (x) > 1)
14158 {
14159 unsigned int ourend = END_REGNO (x);
14160 unsigned int i, offset;
14161 rtx oldnotes = 0;
14162
14163 if (note)
14164 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14165 else
14166 offset = 1;
14167
14168 for (i = regno + offset; i < ourend; i++)
14169 move_deaths (x: regno_reg_rtx[i],
14170 maybe_kill_insn, from_luid, to_insn, pnotes: &oldnotes);
14171 }
14172
14173 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14174 {
14175 XEXP (note, 1) = *pnotes;
14176 *pnotes = note;
14177 }
14178 else
14179 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14180 }
14181
14182 return;
14183 }
14184
14185 else if (GET_CODE (x) == SET)
14186 {
14187 rtx dest = SET_DEST (x);
14188
14189 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14190
14191 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14192 that accesses one word of a multi-word item, some
14193 piece of everything register in the expression is used by
14194 this insn, so remove any old death. */
14195 /* ??? So why do we test for equality of the sizes? */
14196
14197 if (GET_CODE (dest) == ZERO_EXTRACT
14198 || GET_CODE (dest) == STRICT_LOW_PART
14199 || (GET_CODE (dest) == SUBREG
14200 && !read_modify_subreg_p (dest)))
14201 {
14202 move_deaths (x: dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14203 return;
14204 }
14205
14206 /* If this is some other SUBREG, we know it replaces the entire
14207 value, so use that as the destination. */
14208 if (GET_CODE (dest) == SUBREG)
14209 dest = SUBREG_REG (dest);
14210
14211 /* If this is a MEM, adjust deaths of anything used in the address.
14212 For a REG (the only other possibility), the entire value is
14213 being replaced so the old value is not used in this insn. */
14214
14215 if (MEM_P (dest))
14216 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14217 to_insn, pnotes);
14218 return;
14219 }
14220
14221 else if (GET_CODE (x) == CLOBBER)
14222 return;
14223
14224 len = GET_RTX_LENGTH (code);
14225 fmt = GET_RTX_FORMAT (code);
14226
14227 for (i = 0; i < len; i++)
14228 {
14229 if (fmt[i] == 'E')
14230 {
14231 int j;
14232 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14233 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14234 to_insn, pnotes);
14235 }
14236 else if (fmt[i] == 'e')
14237 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14238 }
14239}
14240
14241/* Return true if X is the target of a bit-field assignment in BODY, the
14242 pattern of an insn. X must be a REG. */
14243
14244static bool
14245reg_bitfield_target_p (rtx x, rtx body)
14246{
14247 int i;
14248
14249 if (GET_CODE (body) == SET)
14250 {
14251 rtx dest = SET_DEST (body);
14252 rtx target;
14253 unsigned int regno, tregno, endregno, endtregno;
14254
14255 if (GET_CODE (dest) == ZERO_EXTRACT)
14256 target = XEXP (dest, 0);
14257 else if (GET_CODE (dest) == STRICT_LOW_PART)
14258 target = SUBREG_REG (XEXP (dest, 0));
14259 else
14260 return false;
14261
14262 if (GET_CODE (target) == SUBREG)
14263 target = SUBREG_REG (target);
14264
14265 if (!REG_P (target))
14266 return false;
14267
14268 tregno = REGNO (target), regno = REGNO (x);
14269 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14270 return target == x;
14271
14272 endtregno = end_hard_regno (GET_MODE (target), regno: tregno);
14273 endregno = end_hard_regno (GET_MODE (x), regno);
14274
14275 return endregno > tregno && regno < endtregno;
14276 }
14277
14278 else if (GET_CODE (body) == PARALLEL)
14279 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14280 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14281 return true;
14282
14283 return false;
14284}
14285
14286/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14287 as appropriate. I3 and I2 are the insns resulting from the combination
14288 insns including FROM (I2 may be zero).
14289
14290 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14291 not need REG_DEAD notes because they are being substituted for. This
14292 saves searching in the most common cases.
14293
14294 Each note in the list is either ignored or placed on some insns, depending
14295 on the type of note. */
14296
14297static void
14298distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14299 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14300{
14301 rtx note, next_note;
14302 rtx tem_note;
14303 rtx_insn *tem_insn;
14304
14305 for (note = notes; note; note = next_note)
14306 {
14307 rtx_insn *place = 0, *place2 = 0;
14308
14309 next_note = XEXP (note, 1);
14310 switch (REG_NOTE_KIND (note))
14311 {
14312 case REG_BR_PROB:
14313 case REG_BR_PRED:
14314 /* Doesn't matter much where we put this, as long as it's somewhere.
14315 It is preferable to keep these notes on branches, which is most
14316 likely to be i3. */
14317 place = i3;
14318 break;
14319
14320 case REG_NON_LOCAL_GOTO:
14321 if (JUMP_P (i3))
14322 place = i3;
14323 else
14324 {
14325 gcc_assert (i2 && JUMP_P (i2));
14326 place = i2;
14327 }
14328 break;
14329
14330 case REG_EH_REGION:
14331 {
14332 /* The landing pad handling needs to be kept in sync with the
14333 prerequisite checking in try_combine. */
14334 int lp_nr = INTVAL (XEXP (note, 0));
14335 /* A REG_EH_REGION note transfering control can only ever come
14336 from i3. */
14337 if (lp_nr > 0)
14338 gcc_assert (from_insn == i3);
14339 /* We are making sure there is a single effective REG_EH_REGION
14340 note and it's valid to put it on i3. */
14341 if (!insn_could_throw_p (from_insn)
14342 && !(lp_nr == INT_MIN && can_nonlocal_goto (from_insn)))
14343 /* Throw away stray notes on insns that can never throw or
14344 make a nonlocal goto. */
14345 ;
14346 else
14347 {
14348 if (CALL_P (i3))
14349 place = i3;
14350 else
14351 {
14352 gcc_assert (cfun->can_throw_non_call_exceptions);
14353 /* If i3 can still trap preserve the note, otherwise we've
14354 combined things such that we can now prove that the
14355 instructions can't trap. Drop the note in this case. */
14356 if (may_trap_p (i3))
14357 place = i3;
14358 }
14359 }
14360 break;
14361 }
14362
14363 case REG_ARGS_SIZE:
14364 /* ??? How to distribute between i3-i1. Assume i3 contains the
14365 entire adjustment. Assert i3 contains at least some adjust. */
14366 if (!noop_move_p (i3))
14367 {
14368 poly_int64 old_size, args_size = get_args_size (note);
14369 /* fixup_args_size_notes looks at REG_NORETURN note,
14370 so ensure the note is placed there first. */
14371 if (CALL_P (i3))
14372 {
14373 rtx *np;
14374 for (np = &next_note; *np; np = &XEXP (*np, 1))
14375 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14376 {
14377 rtx n = *np;
14378 *np = XEXP (n, 1);
14379 XEXP (n, 1) = REG_NOTES (i3);
14380 REG_NOTES (i3) = n;
14381 break;
14382 }
14383 }
14384 old_size = fixup_args_size_notes (PREV_INSN (insn: i3), i3, args_size);
14385 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14386 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14387 gcc_assert (maybe_ne (old_size, args_size)
14388 || (CALL_P (i3)
14389 && !ACCUMULATE_OUTGOING_ARGS
14390 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14391 }
14392 break;
14393
14394 case REG_NORETURN:
14395 case REG_SETJMP:
14396 case REG_TM:
14397 case REG_CALL_DECL:
14398 case REG_UNTYPED_CALL:
14399 case REG_CALL_NOCF_CHECK:
14400 /* These notes must remain with the call. It should not be
14401 possible for both I2 and I3 to be a call. */
14402 if (CALL_P (i3))
14403 place = i3;
14404 else
14405 {
14406 gcc_assert (i2 && CALL_P (i2));
14407 place = i2;
14408 }
14409 break;
14410
14411 case REG_UNUSED:
14412 /* Any clobbers for i3 may still exist, and so we must process
14413 REG_UNUSED notes from that insn.
14414
14415 Any clobbers from i2 or i1 can only exist if they were added by
14416 recog_for_combine. In that case, recog_for_combine created the
14417 necessary REG_UNUSED notes. Trying to keep any original
14418 REG_UNUSED notes from these insns can cause incorrect output
14419 if it is for the same register as the original i3 dest.
14420 In that case, we will notice that the register is set in i3,
14421 and then add a REG_UNUSED note for the destination of i3, which
14422 is wrong. However, it is possible to have REG_UNUSED notes from
14423 i2 or i1 for register which were both used and clobbered, so
14424 we keep notes from i2 or i1 if they will turn into REG_DEAD
14425 notes. */
14426
14427 /* If this register is set or clobbered between FROM_INSN and I3,
14428 we should not create a note for it. */
14429 if (reg_set_between_p (XEXP (note, 0), from_insn, i3))
14430 break;
14431
14432 /* If this register is set or clobbered in I3, put the note there
14433 unless there is one already. */
14434 if (reg_set_p (XEXP (note, 0), PATTERN (insn: i3)))
14435 {
14436 if (from_insn != i3)
14437 break;
14438
14439 if (! (REG_P (XEXP (note, 0))
14440 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14441 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14442 place = i3;
14443 }
14444 /* Otherwise, if this register is used by I3, then this register
14445 now dies here, so we must put a REG_DEAD note here unless there
14446 is one already. */
14447 else if (reg_referenced_p (XEXP (note, 0), PATTERN (insn: i3))
14448 && ! (REG_P (XEXP (note, 0))
14449 ? find_regno_note (i3, REG_DEAD,
14450 REGNO (XEXP (note, 0)))
14451 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14452 {
14453 PUT_REG_NOTE_KIND (note, REG_DEAD);
14454 place = i3;
14455 }
14456
14457 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14458 but we can't tell which at this point. We must reset any
14459 expectations we had about the value that was previously
14460 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14461 and, if appropriate, restore its previous value, but we
14462 don't have enough information for that at this point. */
14463 else
14464 {
14465 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14466
14467 /* Otherwise, if this register is now referenced in i2
14468 then the register used to be modified in one of the
14469 original insns. If it was i3 (say, in an unused
14470 parallel), it's now completely gone, so the note can
14471 be discarded. But if it was modified in i2, i1 or i0
14472 and we still reference it in i2, then we're
14473 referencing the previous value, and since the
14474 register was modified and REG_UNUSED, we know that
14475 the previous value is now dead. So, if we only
14476 reference the register in i2, we change the note to
14477 REG_DEAD, to reflect the previous value. However, if
14478 we're also setting or clobbering the register as
14479 scratch, we know (because the register was not
14480 referenced in i3) that it's unused, just as it was
14481 unused before, and we place the note in i2. */
14482 if (from_insn != i3 && i2 && INSN_P (i2)
14483 && reg_referenced_p (XEXP (note, 0), PATTERN (insn: i2)))
14484 {
14485 if (!reg_set_p (XEXP (note, 0), PATTERN (insn: i2)))
14486 PUT_REG_NOTE_KIND (note, REG_DEAD);
14487 if (! (REG_P (XEXP (note, 0))
14488 ? find_regno_note (i2, REG_NOTE_KIND (note),
14489 REGNO (XEXP (note, 0)))
14490 : find_reg_note (i2, REG_NOTE_KIND (note),
14491 XEXP (note, 0))))
14492 place = i2;
14493 }
14494 }
14495
14496 break;
14497
14498 case REG_EQUAL:
14499 case REG_EQUIV:
14500 case REG_NOALIAS:
14501 /* These notes say something about results of an insn. We can
14502 only support them if they used to be on I3 in which case they
14503 remain on I3. Otherwise they are ignored.
14504
14505 If the note refers to an expression that is not a constant, we
14506 must also ignore the note since we cannot tell whether the
14507 equivalence is still true. It might be possible to do
14508 slightly better than this (we only have a problem if I2DEST
14509 or I1DEST is present in the expression), but it doesn't
14510 seem worth the trouble. */
14511
14512 if (from_insn == i3
14513 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14514 place = i3;
14515 break;
14516
14517 case REG_INC:
14518 /* These notes say something about how a register is used. They must
14519 be present on any use of the register in I2 or I3. */
14520 if (reg_mentioned_p (XEXP (note, 0), PATTERN (insn: i3)))
14521 place = i3;
14522
14523 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (insn: i2)))
14524 {
14525 if (place)
14526 place2 = i2;
14527 else
14528 place = i2;
14529 }
14530 break;
14531
14532 case REG_LABEL_TARGET:
14533 case REG_LABEL_OPERAND:
14534 /* This can show up in several ways -- either directly in the
14535 pattern, or hidden off in the constant pool with (or without?)
14536 a REG_EQUAL note. */
14537 /* ??? Ignore the without-reg_equal-note problem for now. */
14538 if (reg_mentioned_p (XEXP (note, 0), PATTERN (insn: i3))
14539 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14540 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14541 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14542 place = i3;
14543
14544 if (i2
14545 && (reg_mentioned_p (XEXP (note, 0), PATTERN (insn: i2))
14546 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14547 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14548 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14549 {
14550 if (place)
14551 place2 = i2;
14552 else
14553 place = i2;
14554 }
14555
14556 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14557 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14558 there. */
14559 if (place && JUMP_P (place)
14560 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14561 && (JUMP_LABEL (place) == NULL
14562 || JUMP_LABEL (place) == XEXP (note, 0)))
14563 {
14564 rtx label = JUMP_LABEL (place);
14565
14566 if (!label)
14567 JUMP_LABEL (place) = XEXP (note, 0);
14568 else if (LABEL_P (label))
14569 LABEL_NUSES (label)--;
14570 }
14571
14572 if (place2 && JUMP_P (place2)
14573 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14574 && (JUMP_LABEL (place2) == NULL
14575 || JUMP_LABEL (place2) == XEXP (note, 0)))
14576 {
14577 rtx label = JUMP_LABEL (place2);
14578
14579 if (!label)
14580 JUMP_LABEL (place2) = XEXP (note, 0);
14581 else if (LABEL_P (label))
14582 LABEL_NUSES (label)--;
14583 place2 = 0;
14584 }
14585 break;
14586
14587 case REG_NONNEG:
14588 /* This note says something about the value of a register prior
14589 to the execution of an insn. It is too much trouble to see
14590 if the note is still correct in all situations. It is better
14591 to simply delete it. */
14592 break;
14593
14594 case REG_DEAD:
14595 /* If we replaced the right hand side of FROM_INSN with a
14596 REG_EQUAL note, the original use of the dying register
14597 will not have been combined into I3 and I2. In such cases,
14598 FROM_INSN is guaranteed to be the first of the combined
14599 instructions, so we simply need to search back before
14600 FROM_INSN for the previous use or set of this register,
14601 then alter the notes there appropriately.
14602
14603 If the register is used as an input in I3, it dies there.
14604 Similarly for I2, if it is nonzero and adjacent to I3.
14605
14606 If the register is not used as an input in either I3 or I2
14607 and it is not one of the registers we were supposed to eliminate,
14608 there are two possibilities. We might have a non-adjacent I2
14609 or we might have somehow eliminated an additional register
14610 from a computation. For example, we might have had A & B where
14611 we discover that B will always be zero. In this case we will
14612 eliminate the reference to A.
14613
14614 In both cases, we must search to see if we can find a previous
14615 use of A and put the death note there. */
14616
14617 if (from_insn
14618 && from_insn == i2mod
14619 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14620 tem_insn = from_insn;
14621 else
14622 {
14623 if (from_insn
14624 && CALL_P (from_insn)
14625 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14626 place = from_insn;
14627 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (insn: i2)))
14628 {
14629 /* If the new I2 sets the same register that is marked
14630 dead in the note, we do not in general know where to
14631 put the note. One important case we _can_ handle is
14632 when the note comes from I3. */
14633 if (from_insn == i3)
14634 place = i3;
14635 else
14636 break;
14637 }
14638 else if (reg_referenced_p (XEXP (note, 0), PATTERN (insn: i3)))
14639 place = i3;
14640 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14641 && reg_referenced_p (XEXP (note, 0), PATTERN (insn: i2)))
14642 place = i2;
14643 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14644 && !(i2mod
14645 && reg_overlap_mentioned_p (XEXP (note, 0),
14646 i2mod_old_rhs)))
14647 || rtx_equal_p (XEXP (note, 0), elim_i1)
14648 || rtx_equal_p (XEXP (note, 0), elim_i0))
14649 break;
14650 tem_insn = i3;
14651 }
14652
14653 if (place == 0)
14654 {
14655 basic_block bb = this_basic_block;
14656
14657 for (tem_insn = PREV_INSN (insn: tem_insn); place == 0; tem_insn = PREV_INSN (insn: tem_insn))
14658 {
14659 if (!NONDEBUG_INSN_P (tem_insn))
14660 {
14661 if (tem_insn == BB_HEAD (bb))
14662 break;
14663 continue;
14664 }
14665
14666 /* If the register is being set at TEM_INSN, see if that is all
14667 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14668 into a REG_UNUSED note instead. Don't delete sets to
14669 global register vars. */
14670 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14671 || !global_regs[REGNO (XEXP (note, 0))])
14672 && reg_set_p (XEXP (note, 0), PATTERN (insn: tem_insn)))
14673 {
14674 rtx set = single_set (insn: tem_insn);
14675 rtx inner_dest = 0;
14676
14677 if (set != 0)
14678 for (inner_dest = SET_DEST (set);
14679 (GET_CODE (inner_dest) == STRICT_LOW_PART
14680 || GET_CODE (inner_dest) == SUBREG
14681 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14682 inner_dest = XEXP (inner_dest, 0))
14683 ;
14684
14685 /* Verify that it was the set, and not a clobber that
14686 modified the register.
14687
14688 If we cannot delete the setter due to side
14689 effects, mark the user with an UNUSED note instead
14690 of deleting it. */
14691
14692 if (set != 0 && ! side_effects_p (SET_SRC (set))
14693 && rtx_equal_p (XEXP (note, 0), inner_dest))
14694 {
14695 /* Move the notes and links of TEM_INSN elsewhere.
14696 This might delete other dead insns recursively.
14697 First set the pattern to something that won't use
14698 any register. */
14699 rtx old_notes = REG_NOTES (tem_insn);
14700
14701 PATTERN (insn: tem_insn) = pc_rtx;
14702 REG_NOTES (tem_insn) = NULL;
14703
14704 distribute_notes (notes: old_notes, from_insn: tem_insn, i3: tem_insn, NULL,
14705 NULL_RTX, NULL_RTX, NULL_RTX);
14706 distribute_links (LOG_LINKS (tem_insn));
14707
14708 unsigned int regno = REGNO (XEXP (note, 0));
14709 reg_stat_type *rsp = &reg_stat[regno];
14710 if (rsp->last_set == tem_insn)
14711 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14712
14713 SET_INSN_DELETED (tem_insn);
14714 if (tem_insn == i2)
14715 i2 = NULL;
14716 }
14717 else
14718 {
14719 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14720
14721 /* If there isn't already a REG_UNUSED note, put one
14722 here. Do not place a REG_DEAD note, even if
14723 the register is also used here; that would not
14724 match the algorithm used in lifetime analysis
14725 and can cause the consistency check in the
14726 scheduler to fail. */
14727 if (! find_regno_note (tem_insn, REG_UNUSED,
14728 REGNO (XEXP (note, 0))))
14729 place = tem_insn;
14730 break;
14731 }
14732 }
14733 else if (reg_referenced_p (XEXP (note, 0), PATTERN (insn: tem_insn))
14734 || (CALL_P (tem_insn)
14735 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14736 {
14737 place = tem_insn;
14738
14739 /* If we are doing a 3->2 combination, and we have a
14740 register which formerly died in i3 and was not used
14741 by i2, which now no longer dies in i3 and is used in
14742 i2 but does not die in i2, and place is between i2
14743 and i3, then we may need to move a link from place to
14744 i2. */
14745 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14746 && from_insn
14747 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14748 && reg_referenced_p (XEXP (note, 0), PATTERN (insn: i2)))
14749 {
14750 struct insn_link *links = LOG_LINKS (place);
14751 LOG_LINKS (place) = NULL;
14752 distribute_links (links);
14753 }
14754 break;
14755 }
14756
14757 if (tem_insn == BB_HEAD (bb))
14758 break;
14759 }
14760
14761 }
14762
14763 /* If the register is set or already dead at PLACE, we needn't do
14764 anything with this note if it is still a REG_DEAD note.
14765 We check here if it is set at all, not if is it totally replaced,
14766 which is what `dead_or_set_p' checks, so also check for it being
14767 set partially. */
14768
14769 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14770 {
14771 unsigned int regno = REGNO (XEXP (note, 0));
14772 reg_stat_type *rsp = &reg_stat[regno];
14773
14774 if (dead_or_set_p (place, XEXP (note, 0))
14775 || reg_bitfield_target_p (XEXP (note, 0), body: PATTERN (insn: place)))
14776 {
14777 /* Unless the register previously died in PLACE, clear
14778 last_death. [I no longer understand why this is
14779 being done.] */
14780 if (rsp->last_death != place)
14781 rsp->last_death = 0;
14782 place = 0;
14783 }
14784 else
14785 rsp->last_death = place;
14786
14787 /* If this is a death note for a hard reg that is occupying
14788 multiple registers, ensure that we are still using all
14789 parts of the object. If we find a piece of the object
14790 that is unused, we must arrange for an appropriate REG_DEAD
14791 note to be added for it. However, we can't just emit a USE
14792 and tag the note to it, since the register might actually
14793 be dead; so we recourse, and the recursive call then finds
14794 the previous insn that used this register. */
14795
14796 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14797 {
14798 unsigned int endregno = END_REGNO (XEXP (note, 0));
14799 bool all_used = true;
14800 unsigned int i;
14801
14802 for (i = regno; i < endregno; i++)
14803 if ((! refers_to_regno_p (regnum: i, x: PATTERN (insn: place))
14804 && ! find_regno_fusage (place, USE, i))
14805 || dead_or_set_regno_p (place, i))
14806 {
14807 all_used = false;
14808 break;
14809 }
14810
14811 if (! all_used)
14812 {
14813 /* Put only REG_DEAD notes for pieces that are
14814 not already dead or set. */
14815
14816 for (i = regno; i < endregno;
14817 i += hard_regno_nregs (regno: i, reg_raw_mode[i]))
14818 {
14819 rtx piece = regno_reg_rtx[i];
14820 basic_block bb = this_basic_block;
14821
14822 if (! dead_or_set_p (place, piece)
14823 && ! reg_bitfield_target_p (x: piece,
14824 body: PATTERN (insn: place)))
14825 {
14826 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14827 NULL_RTX);
14828
14829 distribute_notes (notes: new_note, from_insn: place, i3: place,
14830 NULL, NULL_RTX, NULL_RTX,
14831 NULL_RTX);
14832 }
14833 else if (! refers_to_regno_p (regnum: i, x: PATTERN (insn: place))
14834 && ! find_regno_fusage (place, USE, i))
14835 for (tem_insn = PREV_INSN (insn: place); ;
14836 tem_insn = PREV_INSN (insn: tem_insn))
14837 {
14838 if (!NONDEBUG_INSN_P (tem_insn))
14839 {
14840 if (tem_insn == BB_HEAD (bb))
14841 break;
14842 continue;
14843 }
14844 if (dead_or_set_p (tem_insn, piece)
14845 || reg_bitfield_target_p (x: piece,
14846 body: PATTERN (insn: tem_insn)))
14847 {
14848 add_reg_note (tem_insn, REG_UNUSED, piece);
14849 break;
14850 }
14851 }
14852 }
14853
14854 place = 0;
14855 }
14856 }
14857 }
14858 break;
14859
14860 default:
14861 /* Any other notes should not be present at this point in the
14862 compilation. */
14863 gcc_unreachable ();
14864 }
14865
14866 if (place)
14867 {
14868 XEXP (note, 1) = REG_NOTES (place);
14869 REG_NOTES (place) = note;
14870
14871 /* Set added_notes_insn to the earliest insn we added a note to. */
14872 if (added_notes_insn == 0
14873 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14874 added_notes_insn = place;
14875 }
14876
14877 if (place2)
14878 {
14879 add_shallow_copy_of_reg_note (place2, note);
14880
14881 /* Set added_notes_insn to the earliest insn we added a note to. */
14882 if (added_notes_insn == 0
14883 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14884 added_notes_insn = place2;
14885 }
14886 }
14887}
14888
14889/* Similarly to above, distribute the LOG_LINKS that used to be present on
14890 I3, I2, and I1 to new locations. This is also called to add a link
14891 pointing at I3 when I3's destination is changed. */
14892
14893static void
14894distribute_links (struct insn_link *links)
14895{
14896 struct insn_link *link, *next_link;
14897
14898 for (link = links; link; link = next_link)
14899 {
14900 rtx_insn *place = 0;
14901 rtx_insn *insn;
14902 rtx set, reg;
14903
14904 next_link = link->next;
14905
14906 /* If the insn that this link points to is a NOTE, ignore it. */
14907 if (NOTE_P (link->insn))
14908 continue;
14909
14910 set = 0;
14911 rtx pat = PATTERN (insn: link->insn);
14912 if (GET_CODE (pat) == SET)
14913 set = pat;
14914 else if (GET_CODE (pat) == PARALLEL)
14915 {
14916 int i;
14917 for (i = 0; i < XVECLEN (pat, 0); i++)
14918 {
14919 set = XVECEXP (pat, 0, i);
14920 if (GET_CODE (set) != SET)
14921 continue;
14922
14923 reg = SET_DEST (set);
14924 while (GET_CODE (reg) == ZERO_EXTRACT
14925 || GET_CODE (reg) == STRICT_LOW_PART
14926 || GET_CODE (reg) == SUBREG)
14927 reg = XEXP (reg, 0);
14928
14929 if (!REG_P (reg))
14930 continue;
14931
14932 if (REGNO (reg) == link->regno)
14933 break;
14934 }
14935 if (i == XVECLEN (pat, 0))
14936 continue;
14937 }
14938 else
14939 continue;
14940
14941 reg = SET_DEST (set);
14942
14943 while (GET_CODE (reg) == ZERO_EXTRACT
14944 || GET_CODE (reg) == STRICT_LOW_PART
14945 || GET_CODE (reg) == SUBREG)
14946 reg = XEXP (reg, 0);
14947
14948 if (reg == pc_rtx)
14949 continue;
14950
14951 /* A LOG_LINK is defined as being placed on the first insn that uses
14952 a register and points to the insn that sets the register. Start
14953 searching at the next insn after the target of the link and stop
14954 when we reach a set of the register or the end of the basic block.
14955
14956 Note that this correctly handles the link that used to point from
14957 I3 to I2. Also note that not much searching is typically done here
14958 since most links don't point very far away. */
14959
14960 for (insn = NEXT_INSN (insn: link->insn);
14961 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14962 || BB_HEAD (this_basic_block->next_bb) != insn));
14963 insn = NEXT_INSN (insn))
14964 if (DEBUG_INSN_P (insn))
14965 continue;
14966 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14967 {
14968 if (reg_referenced_p (reg, PATTERN (insn)))
14969 place = insn;
14970 break;
14971 }
14972 else if (CALL_P (insn)
14973 && find_reg_fusage (insn, USE, reg))
14974 {
14975 place = insn;
14976 break;
14977 }
14978 else if (INSN_P (insn) && reg_set_p (reg, insn))
14979 break;
14980
14981 /* If we found a place to put the link, place it there unless there
14982 is already a link to the same insn as LINK at that point. */
14983
14984 if (place)
14985 {
14986 struct insn_link *link2;
14987
14988 FOR_EACH_LOG_LINK (link2, place)
14989 if (link2->insn == link->insn && link2->regno == link->regno)
14990 break;
14991
14992 if (link2 == NULL)
14993 {
14994 link->next = LOG_LINKS (place);
14995 LOG_LINKS (place) = link;
14996
14997 /* Set added_links_insn to the earliest insn we added a
14998 link to. */
14999 if (added_links_insn == 0
15000 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
15001 added_links_insn = place;
15002 }
15003 }
15004 }
15005}
15006
15007/* Check for any register or memory mentioned in EQUIV that is not
15008 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
15009 of EXPR where some registers may have been replaced by constants. */
15010
15011static bool
15012unmentioned_reg_p (rtx equiv, rtx expr)
15013{
15014 subrtx_iterator::array_type array;
15015 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
15016 {
15017 const_rtx x = *iter;
15018 if ((REG_P (x) || MEM_P (x))
15019 && !reg_mentioned_p (x, expr))
15020 return true;
15021 }
15022 return false;
15023}
15024
15025/* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15026 the reg-to-reg copy can usefully combine with later instructions, but we
15027 do not want to combine the hard reg into later instructions, for that
15028 restricts register allocation. */
15029static void
15030make_more_copies (void)
15031{
15032 basic_block bb;
15033
15034 FOR_EACH_BB_FN (bb, cfun)
15035 {
15036 rtx_insn *insn;
15037
15038 FOR_BB_INSNS (bb, insn)
15039 {
15040 if (!NONDEBUG_INSN_P (insn))
15041 continue;
15042
15043 rtx set = single_set (insn);
15044 if (!set)
15045 continue;
15046
15047 rtx dest = SET_DEST (set);
15048 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15049 continue;
15050
15051 rtx src = SET_SRC (set);
15052 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15053 continue;
15054 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15055 continue;
15056
15057 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15058 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15059 SET_SRC (set) = new_reg;
15060 emit_insn_before (new_insn, insn);
15061 df_insn_rescan (insn);
15062 }
15063 }
15064}
15065
15066/* Try combining insns through substitution. */
15067static void
15068rest_of_handle_combine (void)
15069{
15070 make_more_copies ();
15071
15072 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15073 df_note_add_problem ();
15074 df_analyze ();
15075
15076 regstat_init_n_sets_and_refs ();
15077 reg_n_sets_max = max_reg_num ();
15078
15079 bool rebuild_jump_labels_after_combine
15080 = combine_instructions (f: get_insns (), nregs: max_reg_num ());
15081
15082 /* Combining insns may have turned an indirect jump into a
15083 direct jump. Rebuild the JUMP_LABEL fields of jumping
15084 instructions. */
15085 if (rebuild_jump_labels_after_combine)
15086 {
15087 if (dom_info_available_p (CDI_DOMINATORS))
15088 free_dominance_info (CDI_DOMINATORS);
15089 timevar_push (tv: TV_JUMP);
15090 rebuild_jump_labels (get_insns ());
15091 cleanup_cfg (0);
15092 timevar_pop (tv: TV_JUMP);
15093 }
15094
15095 regstat_free_n_sets_and_refs ();
15096}
15097
15098namespace {
15099
15100const pass_data pass_data_combine =
15101{
15102 .type: RTL_PASS, /* type */
15103 .name: "combine", /* name */
15104 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
15105 .tv_id: TV_COMBINE, /* tv_id */
15106 PROP_cfglayout, /* properties_required */
15107 .properties_provided: 0, /* properties_provided */
15108 .properties_destroyed: 0, /* properties_destroyed */
15109 .todo_flags_start: 0, /* todo_flags_start */
15110 TODO_df_finish, /* todo_flags_finish */
15111};
15112
15113class pass_combine : public rtl_opt_pass
15114{
15115public:
15116 pass_combine (gcc::context *ctxt)
15117 : rtl_opt_pass (pass_data_combine, ctxt)
15118 {}
15119
15120 /* opt_pass methods: */
15121 bool gate (function *) final override { return (optimize > 0); }
15122 unsigned int execute (function *) final override
15123 {
15124 rest_of_handle_combine ();
15125 return 0;
15126 }
15127
15128}; // class pass_combine
15129
15130} // anon namespace
15131
15132rtl_opt_pass *
15133make_pass_combine (gcc::context *ctxt)
15134{
15135 return new pass_combine (ctxt);
15136}
15137

source code of gcc/combine.cc