1/* Operations with long integers.
2 Copyright (C) 2006-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8Free Software Foundation; either version 3, or (at your option) any
9later version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h" /* For BITS_PER_UNIT and *_BIG_ENDIAN. */
24#include "tree.h"
25
26static int add_double_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
27 unsigned HOST_WIDE_INT, HOST_WIDE_INT,
28 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
29 bool);
30
31#define add_double(l1,h1,l2,h2,lv,hv) \
32 add_double_with_sign (l1, h1, l2, h2, lv, hv, false)
33
34static int neg_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
35 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
36
37static int mul_double_wide_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
38 unsigned HOST_WIDE_INT, HOST_WIDE_INT,
39 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
40 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
41 bool);
42
43#define mul_double(l1,h1,l2,h2,lv,hv) \
44 mul_double_wide_with_sign (l1, h1, l2, h2, lv, hv, NULL, NULL, false)
45
46static int div_and_round_double (unsigned, int, unsigned HOST_WIDE_INT,
47 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
48 HOST_WIDE_INT, unsigned HOST_WIDE_INT *,
49 HOST_WIDE_INT *, unsigned HOST_WIDE_INT *,
50 HOST_WIDE_INT *);
51
52/* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
53 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
54 and SUM1. Then this yields nonzero if overflow occurred during the
55 addition.
56
57 Overflow occurs if A and B have the same sign, but A and SUM differ in
58 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
59 sign. */
60#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
61
62/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
63 We do that by representing the two-word integer in 4 words, with only
64 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
65 number. The value of the word is LOWPART + HIGHPART * BASE. */
66
67#define LOWPART(x) \
68 ((x) & ((HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
69#define HIGHPART(x) \
70 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
71#define BASE (HOST_WIDE_INT_1U << HOST_BITS_PER_WIDE_INT / 2)
72
73/* Unpack a two-word integer into 4 words.
74 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
75 WORDS points to the array of HOST_WIDE_INTs. */
76
77static void
78encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
79{
80 words[0] = LOWPART (low);
81 words[1] = HIGHPART (low);
82 words[2] = LOWPART (hi);
83 words[3] = HIGHPART (hi);
84}
85
86/* Pack an array of 4 words into a two-word integer.
87 WORDS points to the array of words.
88 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
89
90static void
91decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
92 HOST_WIDE_INT *hi)
93{
94 *low = words[0] + words[1] * BASE;
95 *hi = words[2] + words[3] * BASE;
96}
97
98/* Add two doubleword integers with doubleword result.
99 Return nonzero if the operation overflows according to UNSIGNED_P.
100 Each argument is given as two `HOST_WIDE_INT' pieces.
101 One argument is L1 and H1; the other, L2 and H2.
102 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
103
104static int
105add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
106 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
107 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
108 bool unsigned_p)
109{
110 unsigned HOST_WIDE_INT l;
111 HOST_WIDE_INT h;
112
113 l = l1 + l2;
114 h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
115 + (unsigned HOST_WIDE_INT) h2
116 + (l < l1));
117
118 *lv = l;
119 *hv = h;
120
121 if (unsigned_p)
122 return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
123 || (h == h1
124 && l < l1));
125 else
126 return OVERFLOW_SUM_SIGN (h1, h2, h);
127}
128
129/* Negate a doubleword integer with doubleword result.
130 Return nonzero if the operation overflows, assuming it's signed.
131 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
132 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
133
134static int
135neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
136 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
137{
138 if (l1 == 0)
139 {
140 *lv = 0;
141 *hv = - (unsigned HOST_WIDE_INT) h1;
142 return (*hv & h1) < 0;
143 }
144 else
145 {
146 *lv = -l1;
147 *hv = ~h1;
148 return 0;
149 }
150}
151
152/* Multiply two doubleword integers with quadword result.
153 Return nonzero if the operation overflows according to UNSIGNED_P.
154 Each argument is given as two `HOST_WIDE_INT' pieces.
155 One argument is L1 and H1; the other, L2 and H2.
156 The value is stored as four `HOST_WIDE_INT' pieces in *LV and *HV,
157 *LW and *HW.
158 If lw is NULL then only the low part and no overflow is computed. */
159
160static int
161mul_double_wide_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
162 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
163 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
164 unsigned HOST_WIDE_INT *lw, HOST_WIDE_INT *hw,
165 bool unsigned_p)
166{
167 HOST_WIDE_INT arg1[4];
168 HOST_WIDE_INT arg2[4];
169 HOST_WIDE_INT prod[4 * 2];
170 unsigned HOST_WIDE_INT carry;
171 int i, j, k;
172 unsigned HOST_WIDE_INT neglow;
173 HOST_WIDE_INT neghigh;
174
175 encode (words: arg1, low: l1, hi: h1);
176 encode (words: arg2, low: l2, hi: h2);
177
178 memset (s: prod, c: 0, n: sizeof prod);
179
180 for (i = 0; i < 4; i++)
181 {
182 carry = 0;
183 for (j = 0; j < 4; j++)
184 {
185 k = i + j;
186 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
187 carry += (unsigned HOST_WIDE_INT) arg1[i] * arg2[j];
188 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
189 carry += prod[k];
190 prod[k] = LOWPART (carry);
191 carry = HIGHPART (carry);
192 }
193 prod[i + 4] = carry;
194 }
195
196 decode (words: prod, low: lv, hi: hv);
197
198 /* We are not interested in the wide part nor in overflow. */
199 if (lw == NULL)
200 return 0;
201
202 decode (words: prod + 4, low: lw, hi: hw);
203
204 /* Unsigned overflow is immediate. */
205 if (unsigned_p)
206 return (*lw | *hw) != 0;
207
208 /* Check for signed overflow by calculating the signed representation of the
209 top half of the result; it should agree with the low half's sign bit. */
210 if (h1 < 0)
211 {
212 neg_double (l1: l2, h1: h2, lv: &neglow, hv: &neghigh);
213 add_double (neglow, neghigh, *lw, *hw, lw, hw);
214 }
215 if (h2 < 0)
216 {
217 neg_double (l1, h1, lv: &neglow, hv: &neghigh);
218 add_double (neglow, neghigh, *lw, *hw, lw, hw);
219 }
220 return (*hv < 0 ? ~(*lw & *hw) : *lw | *hw) != 0;
221}
222
223/* Shift the doubleword integer in L1, H1 right by COUNT places
224 keeping only PREC bits of result. ARITH nonzero specifies
225 arithmetic shifting; otherwise use logical shift.
226 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
227
228static void
229rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
230 unsigned HOST_WIDE_INT count, unsigned int prec,
231 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
232 bool arith)
233{
234 unsigned HOST_WIDE_INT signmask;
235
236 signmask = (arith
237 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
238 : 0);
239
240 if (count >= HOST_BITS_PER_DOUBLE_INT)
241 {
242 /* Shifting by the host word size is undefined according to the
243 ANSI standard, so we must handle this as a special case. */
244 *hv = 0;
245 *lv = 0;
246 }
247 else if (count >= HOST_BITS_PER_WIDE_INT)
248 {
249 *hv = 0;
250 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
251 }
252 else
253 {
254 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
255 *lv = ((l1 >> count)
256 | ((unsigned HOST_WIDE_INT) h1
257 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
258 }
259
260 /* Zero / sign extend all bits that are beyond the precision. */
261
262 if (count >= prec)
263 {
264 *hv = signmask;
265 *lv = signmask;
266 }
267 else if ((prec - count) >= HOST_BITS_PER_DOUBLE_INT)
268 ;
269 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
270 {
271 *hv &= ~(HOST_WIDE_INT_M1U << (prec - count - HOST_BITS_PER_WIDE_INT));
272 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
273 }
274 else
275 {
276 *hv = signmask;
277 *lv &= ~(HOST_WIDE_INT_M1U << (prec - count));
278 *lv |= signmask << (prec - count);
279 }
280}
281
282/* Shift the doubleword integer in L1, H1 left by COUNT places
283 keeping only PREC bits of result.
284 Shift right if COUNT is negative.
285 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
286 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
287
288static void
289lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
290 unsigned HOST_WIDE_INT count, unsigned int prec,
291 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
292{
293 unsigned HOST_WIDE_INT signmask;
294
295 if (count >= HOST_BITS_PER_DOUBLE_INT)
296 {
297 /* Shifting by the host word size is undefined according to the
298 ANSI standard, so we must handle this as a special case. */
299 *hv = 0;
300 *lv = 0;
301 }
302 else if (count >= HOST_BITS_PER_WIDE_INT)
303 {
304 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
305 *lv = 0;
306 }
307 else
308 {
309 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
310 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
311 *lv = l1 << count;
312 }
313
314 /* Sign extend all bits that are beyond the precision. */
315
316 signmask = -((prec > HOST_BITS_PER_WIDE_INT
317 ? ((unsigned HOST_WIDE_INT) *hv
318 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
319 : (*lv >> (prec - 1))) & 1);
320
321 if (prec >= HOST_BITS_PER_DOUBLE_INT)
322 ;
323 else if (prec >= HOST_BITS_PER_WIDE_INT)
324 {
325 *hv &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
326 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
327 }
328 else
329 {
330 *hv = signmask;
331 *lv &= ~(HOST_WIDE_INT_M1U << prec);
332 *lv |= signmask << prec;
333 }
334}
335
336/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
337 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
338 CODE is a tree code for a kind of division, one of
339 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
340 or EXACT_DIV_EXPR
341 It controls how the quotient is rounded to an integer.
342 Return nonzero if the operation overflows.
343 UNS nonzero says do unsigned division. */
344
345static int
346div_and_round_double (unsigned code, int uns,
347 /* num == numerator == dividend */
348 unsigned HOST_WIDE_INT lnum_orig,
349 HOST_WIDE_INT hnum_orig,
350 /* den == denominator == divisor */
351 unsigned HOST_WIDE_INT lden_orig,
352 HOST_WIDE_INT hden_orig,
353 unsigned HOST_WIDE_INT *lquo,
354 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
355 HOST_WIDE_INT *hrem)
356{
357 int quo_neg = 0;
358 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
359 HOST_WIDE_INT den[4], quo[4];
360 int i, j;
361 unsigned HOST_WIDE_INT work;
362 unsigned HOST_WIDE_INT carry = 0;
363 unsigned HOST_WIDE_INT lnum = lnum_orig;
364 HOST_WIDE_INT hnum = hnum_orig;
365 unsigned HOST_WIDE_INT lden = lden_orig;
366 HOST_WIDE_INT hden = hden_orig;
367 int overflow = 0;
368
369 if (hden == 0 && lden == 0)
370 overflow = 1, lden = 1;
371
372 /* Calculate quotient sign and convert operands to unsigned. */
373 if (!uns)
374 {
375 if (hnum < 0)
376 {
377 quo_neg = ~ quo_neg;
378 /* (minimum integer) / (-1) is the only overflow case. */
379 if (neg_double (l1: lnum, h1: hnum, lv: &lnum, hv: &hnum)
380 && ((HOST_WIDE_INT) lden & hden) == -1)
381 overflow = 1;
382 }
383 if (hden < 0)
384 {
385 quo_neg = ~ quo_neg;
386 neg_double (l1: lden, h1: hden, lv: &lden, hv: &hden);
387 }
388 }
389
390 if (hnum == 0 && hden == 0)
391 { /* single precision */
392 *hquo = *hrem = 0;
393 /* This unsigned division rounds toward zero. */
394 *lquo = lnum / lden;
395 goto finish_up;
396 }
397
398 if (hnum == 0)
399 { /* trivial case: dividend < divisor */
400 /* hden != 0 already checked. */
401 *hquo = *lquo = 0;
402 *hrem = hnum;
403 *lrem = lnum;
404 goto finish_up;
405 }
406
407 memset (s: quo, c: 0, n: sizeof quo);
408
409 memset (s: num, c: 0, n: sizeof num); /* to zero 9th element */
410 memset (s: den, c: 0, n: sizeof den);
411
412 encode (words: num, low: lnum, hi: hnum);
413 encode (words: den, low: lden, hi: hden);
414
415 /* Special code for when the divisor < BASE. */
416 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
417 {
418 /* hnum != 0 already checked. */
419 for (i = 4 - 1; i >= 0; i--)
420 {
421 work = num[i] + carry * BASE;
422 quo[i] = work / lden;
423 carry = work % lden;
424 }
425 }
426 else
427 {
428 /* Full double precision division,
429 with thanks to Don Knuth's "Seminumerical Algorithms". */
430 int num_hi_sig, den_hi_sig;
431 unsigned HOST_WIDE_INT quo_est, scale;
432
433 /* Find the highest nonzero divisor digit. */
434 for (i = 4 - 1;; i--)
435 if (den[i] != 0)
436 {
437 den_hi_sig = i;
438 break;
439 }
440
441 /* Insure that the first digit of the divisor is at least BASE/2.
442 This is required by the quotient digit estimation algorithm. */
443
444 scale = BASE / (den[den_hi_sig] + 1);
445 if (scale > 1)
446 { /* scale divisor and dividend */
447 carry = 0;
448 for (i = 0; i <= 4 - 1; i++)
449 {
450 work = (num[i] * scale) + carry;
451 num[i] = LOWPART (work);
452 carry = HIGHPART (work);
453 }
454
455 num[4] = carry;
456 carry = 0;
457 for (i = 0; i <= 4 - 1; i++)
458 {
459 work = (den[i] * scale) + carry;
460 den[i] = LOWPART (work);
461 carry = HIGHPART (work);
462 if (den[i] != 0) den_hi_sig = i;
463 }
464 }
465
466 num_hi_sig = 4;
467
468 /* Main loop */
469 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
470 {
471 /* Guess the next quotient digit, quo_est, by dividing the first
472 two remaining dividend digits by the high order quotient digit.
473 quo_est is never low and is at most 2 high. */
474 unsigned HOST_WIDE_INT tmp;
475
476 num_hi_sig = i + den_hi_sig + 1;
477 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
478 if (num[num_hi_sig] != den[den_hi_sig])
479 quo_est = work / den[den_hi_sig];
480 else
481 quo_est = BASE - 1;
482
483 /* Refine quo_est so it's usually correct, and at most one high. */
484 tmp = work - quo_est * den[den_hi_sig];
485 if (tmp < BASE
486 && (den[den_hi_sig - 1] * quo_est
487 > (tmp * BASE + num[num_hi_sig - 2])))
488 quo_est--;
489
490 /* Try QUO_EST as the quotient digit, by multiplying the
491 divisor by QUO_EST and subtracting from the remaining dividend.
492 Keep in mind that QUO_EST is the I - 1st digit. */
493
494 carry = 0;
495 for (j = 0; j <= den_hi_sig; j++)
496 {
497 work = quo_est * den[j] + carry;
498 carry = HIGHPART (work);
499 work = num[i + j] - LOWPART (work);
500 num[i + j] = LOWPART (work);
501 carry += HIGHPART (work) != 0;
502 }
503
504 /* If quo_est was high by one, then num[i] went negative and
505 we need to correct things. */
506 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
507 {
508 quo_est--;
509 carry = 0; /* add divisor back in */
510 for (j = 0; j <= den_hi_sig; j++)
511 {
512 work = num[i + j] + den[j] + carry;
513 carry = HIGHPART (work);
514 num[i + j] = LOWPART (work);
515 }
516
517 num [num_hi_sig] += carry;
518 }
519
520 /* Store the quotient digit. */
521 quo[i] = quo_est;
522 }
523 }
524
525 decode (words: quo, low: lquo, hi: hquo);
526
527 finish_up:
528 /* If result is negative, make it so. */
529 if (quo_neg)
530 neg_double (l1: *lquo, h1: *hquo, lv: lquo, hv: hquo);
531
532 /* Compute trial remainder: rem = num - (quo * den) */
533 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
534 neg_double (l1: *lrem, h1: *hrem, lv: lrem, hv: hrem);
535 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
536
537 switch (code)
538 {
539 case TRUNC_DIV_EXPR:
540 case TRUNC_MOD_EXPR: /* round toward zero */
541 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
542 return overflow;
543
544 case FLOOR_DIV_EXPR:
545 case FLOOR_MOD_EXPR: /* round toward negative infinity */
546 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
547 {
548 /* quo = quo - 1; */
549 add_double (*lquo, *hquo, HOST_WIDE_INT_M1, HOST_WIDE_INT_M1,
550 lquo, hquo);
551 }
552 else
553 return overflow;
554 break;
555
556 case CEIL_DIV_EXPR:
557 case CEIL_MOD_EXPR: /* round toward positive infinity */
558 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
559 {
560 add_double (*lquo, *hquo, HOST_WIDE_INT_1, HOST_WIDE_INT_0,
561 lquo, hquo);
562 }
563 else
564 return overflow;
565 break;
566
567 case ROUND_DIV_EXPR:
568 case ROUND_MOD_EXPR: /* round to closest integer */
569 {
570 unsigned HOST_WIDE_INT labs_rem = *lrem;
571 HOST_WIDE_INT habs_rem = *hrem;
572 unsigned HOST_WIDE_INT labs_den = lden, lnegabs_rem, ldiff;
573 HOST_WIDE_INT habs_den = hden, hnegabs_rem, hdiff;
574
575 /* Get absolute values. */
576 if (!uns && *hrem < 0)
577 neg_double (l1: *lrem, h1: *hrem, lv: &labs_rem, hv: &habs_rem);
578 if (!uns && hden < 0)
579 neg_double (l1: lden, h1: hden, lv: &labs_den, hv: &habs_den);
580
581 /* If abs(rem) >= abs(den) - abs(rem), adjust the quotient. */
582 neg_double (l1: labs_rem, h1: habs_rem, lv: &lnegabs_rem, hv: &hnegabs_rem);
583 add_double (labs_den, habs_den, lnegabs_rem, hnegabs_rem,
584 &ldiff, &hdiff);
585
586 if (((unsigned HOST_WIDE_INT) habs_rem
587 > (unsigned HOST_WIDE_INT) hdiff)
588 || (habs_rem == hdiff && labs_rem >= ldiff))
589 {
590 if (quo_neg)
591 /* quo = quo - 1; */
592 add_double (*lquo, *hquo,
593 HOST_WIDE_INT_M1, HOST_WIDE_INT_M1, lquo, hquo);
594 else
595 /* quo = quo + 1; */
596 add_double (*lquo, *hquo, HOST_WIDE_INT_1, HOST_WIDE_INT_0,
597 lquo, hquo);
598 }
599 else
600 return overflow;
601 }
602 break;
603
604 default:
605 gcc_unreachable ();
606 }
607
608 /* Compute true remainder: rem = num - (quo * den) */
609 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
610 neg_double (l1: *lrem, h1: *hrem, lv: lrem, hv: hrem);
611 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
612 return overflow;
613}
614
615
616/* Construct from a buffer of length LEN. BUFFER will be read according
617 to byte endianness and word endianness. Only the lower LEN bytes
618 of the result are set; the remaining high bytes are cleared. */
619
620double_int
621double_int::from_buffer (const unsigned char *buffer, int len)
622{
623 double_int result = double_int_zero;
624 int words = len / UNITS_PER_WORD;
625
626 gcc_assert (len * BITS_PER_UNIT <= HOST_BITS_PER_DOUBLE_INT);
627
628 for (int byte = 0; byte < len; byte++)
629 {
630 int offset;
631 int bitpos = byte * BITS_PER_UNIT;
632 unsigned HOST_WIDE_INT value;
633
634 if (len > UNITS_PER_WORD)
635 {
636 int word = byte / UNITS_PER_WORD;
637
638 if (WORDS_BIG_ENDIAN)
639 word = (words - 1) - word;
640
641 offset = word * UNITS_PER_WORD;
642
643 if (BYTES_BIG_ENDIAN)
644 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
645 else
646 offset += byte % UNITS_PER_WORD;
647 }
648 else
649 offset = BYTES_BIG_ENDIAN ? (len - 1) - byte : byte;
650
651 value = (unsigned HOST_WIDE_INT) buffer[offset];
652
653 if (bitpos < HOST_BITS_PER_WIDE_INT)
654 result.low |= value << bitpos;
655 else
656 result.high |= value << (bitpos - HOST_BITS_PER_WIDE_INT);
657 }
658
659 return result;
660}
661
662
663/* Returns mask for PREC bits. */
664
665double_int
666double_int::mask (unsigned prec)
667{
668 unsigned HOST_WIDE_INT m;
669 double_int mask;
670
671 if (prec > HOST_BITS_PER_WIDE_INT)
672 {
673 prec -= HOST_BITS_PER_WIDE_INT;
674 m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
675 mask.high = (HOST_WIDE_INT) m;
676 mask.low = ALL_ONES;
677 }
678 else
679 {
680 mask.high = 0;
681 mask.low = prec ? ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1 : 0;
682 }
683
684 return mask;
685}
686
687/* Returns a maximum value for signed or unsigned integer
688 of precision PREC. */
689
690double_int
691double_int::max_value (unsigned int prec, bool uns)
692{
693 return double_int::mask (prec: prec - (uns ? 0 : 1));
694}
695
696/* Returns a minimum value for signed or unsigned integer
697 of precision PREC. */
698
699double_int
700double_int::min_value (unsigned int prec, bool uns)
701{
702 if (uns)
703 return double_int_zero;
704 return double_int_one.lshift (count: prec - 1, prec, arith: false);
705}
706
707/* Clears the bits of CST over the precision PREC. If UNS is false, the bits
708 outside of the precision are set to the sign bit (i.e., the PREC-th one),
709 otherwise they are set to zero.
710
711 This corresponds to returning the value represented by PREC lowermost bits
712 of CST, with the given signedness. */
713
714double_int
715double_int::ext (unsigned prec, bool uns) const
716{
717 if (uns)
718 return this->zext (prec);
719 else
720 return this->sext (prec);
721}
722
723/* The same as double_int::ext with UNS = true. */
724
725double_int
726double_int::zext (unsigned prec) const
727{
728 const double_int &cst = *this;
729 double_int mask = double_int::mask (prec);
730 double_int r;
731
732 r.low = cst.low & mask.low;
733 r.high = cst.high & mask.high;
734
735 return r;
736}
737
738/* The same as double_int::ext with UNS = false. */
739
740double_int
741double_int::sext (unsigned prec) const
742{
743 const double_int &cst = *this;
744 double_int mask = double_int::mask (prec);
745 double_int r;
746 unsigned HOST_WIDE_INT snum;
747
748 if (prec <= HOST_BITS_PER_WIDE_INT)
749 snum = cst.low;
750 else
751 {
752 prec -= HOST_BITS_PER_WIDE_INT;
753 snum = (unsigned HOST_WIDE_INT) cst.high;
754 }
755 if (((snum >> (prec - 1)) & 1) == 1)
756 {
757 r.low = cst.low | ~mask.low;
758 r.high = cst.high | ~mask.high;
759 }
760 else
761 {
762 r.low = cst.low & mask.low;
763 r.high = cst.high & mask.high;
764 }
765
766 return r;
767}
768
769/* Returns true if CST fits in signed HOST_WIDE_INT. */
770
771bool
772double_int::fits_shwi () const
773{
774 const double_int &cst = *this;
775 if (cst.high == 0)
776 return (HOST_WIDE_INT) cst.low >= 0;
777 else if (cst.high == -1)
778 return (HOST_WIDE_INT) cst.low < 0;
779 else
780 return false;
781}
782
783/* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in
784 unsigned HOST_WIDE_INT if UNS is true. */
785
786bool
787double_int::fits_hwi (bool uns) const
788{
789 if (uns)
790 return this->fits_uhwi ();
791 else
792 return this->fits_shwi ();
793}
794
795/* Returns A * B. */
796
797double_int
798double_int::operator * (double_int b) const
799{
800 const double_int &a = *this;
801 double_int ret;
802 mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
803 return ret;
804}
805
806/* Multiplies *this with B and returns a reference to *this. */
807
808double_int &
809double_int::operator *= (double_int b)
810{
811 mul_double (low, high, b.low, b.high, &low, &high);
812 return *this;
813}
814
815/* Returns A * B. If the operation overflows according to UNSIGNED_P,
816 *OVERFLOW is set to nonzero. */
817
818double_int
819double_int::mul_with_sign (double_int b, bool unsigned_p, bool *overflow) const
820{
821 const double_int &a = *this;
822 double_int ret, tem;
823 *overflow = mul_double_wide_with_sign (l1: a.low, h1: a.high, l2: b.low, h2: b.high,
824 lv: &ret.low, hv: &ret.high,
825 lw: &tem.low, hw: &tem.high, unsigned_p);
826 return ret;
827}
828
829double_int
830double_int::wide_mul_with_sign (double_int b, bool unsigned_p,
831 double_int *higher, bool *overflow) const
832
833{
834 double_int lower;
835 *overflow = mul_double_wide_with_sign (l1: low, h1: high, l2: b.low, h2: b.high,
836 lv: &lower.low, hv: &lower.high,
837 lw: &higher->low, hw: &higher->high,
838 unsigned_p);
839 return lower;
840}
841
842/* Returns A + B. */
843
844double_int
845double_int::operator + (double_int b) const
846{
847 const double_int &a = *this;
848 double_int ret;
849 add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
850 return ret;
851}
852
853/* Adds B to *this and returns a reference to *this. */
854
855double_int &
856double_int::operator += (double_int b)
857{
858 add_double (low, high, b.low, b.high, &low, &high);
859 return *this;
860}
861
862
863/* Returns A + B. If the operation overflows according to UNSIGNED_P,
864 *OVERFLOW is set to nonzero. */
865
866double_int
867double_int::add_with_sign (double_int b, bool unsigned_p, bool *overflow) const
868{
869 const double_int &a = *this;
870 double_int ret;
871 *overflow = add_double_with_sign (l1: a.low, h1: a.high, l2: b.low, h2: b.high,
872 lv: &ret.low, hv: &ret.high, unsigned_p);
873 return ret;
874}
875
876/* Returns A - B. */
877
878double_int
879double_int::operator - (double_int b) const
880{
881 const double_int &a = *this;
882 double_int ret;
883 neg_double (l1: b.low, h1: b.high, lv: &b.low, hv: &b.high);
884 add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
885 return ret;
886}
887
888/* Subtracts B from *this and returns a reference to *this. */
889
890double_int &
891double_int::operator -= (double_int b)
892{
893 neg_double (l1: b.low, h1: b.high, lv: &b.low, hv: &b.high);
894 add_double (low, high, b.low, b.high, &low, &high);
895 return *this;
896}
897
898
899/* Returns A - B. If the operation overflows via inconsistent sign bits,
900 *OVERFLOW is set to nonzero. */
901
902double_int
903double_int::sub_with_overflow (double_int b, bool *overflow) const
904{
905 double_int ret;
906 neg_double (l1: b.low, h1: b.high, lv: &ret.low, hv: &ret.high);
907 add_double (low, high, ret.low, ret.high, &ret.low, &ret.high);
908 *overflow = OVERFLOW_SUM_SIGN (ret.high, b.high, high);
909 return ret;
910}
911
912/* Returns -A. */
913
914double_int
915double_int::operator - () const
916{
917 const double_int &a = *this;
918 double_int ret;
919 neg_double (l1: a.low, h1: a.high, lv: &ret.low, hv: &ret.high);
920 return ret;
921}
922
923double_int
924double_int::neg_with_overflow (bool *overflow) const
925{
926 double_int ret;
927 *overflow = neg_double (l1: low, h1: high, lv: &ret.low, hv: &ret.high);
928 return ret;
929}
930
931/* Returns A / B (computed as unsigned depending on UNS, and rounded as
932 specified by CODE). CODE is enum tree_code in fact, but double_int.h
933 must be included before tree.h. The remainder after the division is
934 stored to MOD. */
935
936double_int
937double_int::divmod_with_overflow (double_int b, bool uns, unsigned code,
938 double_int *mod, bool *overflow) const
939{
940 const double_int &a = *this;
941 double_int ret;
942
943 *overflow = div_and_round_double (code, uns, lnum_orig: a.low, hnum_orig: a.high,
944 lden_orig: b.low, hden_orig: b.high, lquo: &ret.low, hquo: &ret.high,
945 lrem: &mod->low, hrem: &mod->high);
946 return ret;
947}
948
949double_int
950double_int::divmod (double_int b, bool uns, unsigned code,
951 double_int *mod) const
952{
953 const double_int &a = *this;
954 double_int ret;
955
956 div_and_round_double (code, uns, lnum_orig: a.low, hnum_orig: a.high,
957 lden_orig: b.low, hden_orig: b.high, lquo: &ret.low, hquo: &ret.high,
958 lrem: &mod->low, hrem: &mod->high);
959 return ret;
960}
961
962/* The same as double_int::divmod with UNS = false. */
963
964double_int
965double_int::sdivmod (double_int b, unsigned code, double_int *mod) const
966{
967 return this->divmod (b, uns: false, code, mod);
968}
969
970/* The same as double_int::divmod with UNS = true. */
971
972double_int
973double_int::udivmod (double_int b, unsigned code, double_int *mod) const
974{
975 return this->divmod (b, uns: true, code, mod);
976}
977
978/* Returns A / B (computed as unsigned depending on UNS, and rounded as
979 specified by CODE). CODE is enum tree_code in fact, but double_int.h
980 must be included before tree.h. */
981
982double_int
983double_int::div (double_int b, bool uns, unsigned code) const
984{
985 double_int mod;
986
987 return this->divmod (b, uns, code, mod: &mod);
988}
989
990/* The same as double_int::div with UNS = false. */
991
992double_int
993double_int::sdiv (double_int b, unsigned code) const
994{
995 return this->div (b, uns: false, code);
996}
997
998/* The same as double_int::div with UNS = true. */
999
1000double_int
1001double_int::udiv (double_int b, unsigned code) const
1002{
1003 return this->div (b, uns: true, code);
1004}
1005
1006/* Returns A % B (computed as unsigned depending on UNS, and rounded as
1007 specified by CODE). CODE is enum tree_code in fact, but double_int.h
1008 must be included before tree.h. */
1009
1010double_int
1011double_int::mod (double_int b, bool uns, unsigned code) const
1012{
1013 double_int mod;
1014
1015 this->divmod (b, uns, code, mod: &mod);
1016 return mod;
1017}
1018
1019/* The same as double_int::mod with UNS = false. */
1020
1021double_int
1022double_int::smod (double_int b, unsigned code) const
1023{
1024 return this->mod (b, uns: false, code);
1025}
1026
1027/* The same as double_int::mod with UNS = true. */
1028
1029double_int
1030double_int::umod (double_int b, unsigned code) const
1031{
1032 return this->mod (b, uns: true, code);
1033}
1034
1035/* Return TRUE iff PRODUCT is an integral multiple of FACTOR, and return
1036 the multiple in *MULTIPLE. Otherwise return FALSE and leave *MULTIPLE
1037 unchanged. */
1038
1039bool
1040double_int::multiple_of (double_int factor,
1041 bool unsigned_p, double_int *multiple) const
1042{
1043 double_int remainder;
1044 double_int quotient = this->divmod (b: factor, uns: unsigned_p,
1045 code: TRUNC_DIV_EXPR, mod: &remainder);
1046 if (remainder.is_zero ())
1047 {
1048 *multiple = quotient;
1049 return true;
1050 }
1051
1052 return false;
1053}
1054
1055/* Set BITPOS bit in A. */
1056double_int
1057double_int::set_bit (unsigned bitpos) const
1058{
1059 double_int a = *this;
1060 if (bitpos < HOST_BITS_PER_WIDE_INT)
1061 a.low |= HOST_WIDE_INT_1U << bitpos;
1062 else
1063 a.high |= HOST_WIDE_INT_1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1064
1065 return a;
1066}
1067
1068/* Count trailing zeros in A. */
1069int
1070double_int::trailing_zeros () const
1071{
1072 const double_int &a = *this;
1073 unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high;
1074 unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT;
1075 if (!w)
1076 return HOST_BITS_PER_DOUBLE_INT;
1077 bits += ctz_hwi (x: w);
1078 return bits;
1079}
1080
1081/* Shift A left by COUNT places. */
1082
1083double_int
1084double_int::lshift (HOST_WIDE_INT count) const
1085{
1086 double_int ret;
1087
1088 gcc_checking_assert (count >= 0);
1089
1090 if (count >= HOST_BITS_PER_DOUBLE_INT)
1091 {
1092 /* Shifting by the host word size is undefined according to the
1093 ANSI standard, so we must handle this as a special case. */
1094 ret.high = 0;
1095 ret.low = 0;
1096 }
1097 else if (count >= HOST_BITS_PER_WIDE_INT)
1098 {
1099 ret.high = low << (count - HOST_BITS_PER_WIDE_INT);
1100 ret.low = 0;
1101 }
1102 else
1103 {
1104 ret.high = (((unsigned HOST_WIDE_INT) high << count)
1105 | (low >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
1106 ret.low = low << count;
1107 }
1108
1109 return ret;
1110}
1111
1112/* Shift A right by COUNT places. */
1113
1114double_int
1115double_int::rshift (HOST_WIDE_INT count) const
1116{
1117 double_int ret;
1118
1119 gcc_checking_assert (count >= 0);
1120
1121 if (count >= HOST_BITS_PER_DOUBLE_INT)
1122 {
1123 /* Shifting by the host word size is undefined according to the
1124 ANSI standard, so we must handle this as a special case. */
1125 ret.high = 0;
1126 ret.low = 0;
1127 }
1128 else if (count >= HOST_BITS_PER_WIDE_INT)
1129 {
1130 ret.high = 0;
1131 ret.low
1132 = (unsigned HOST_WIDE_INT) (high >> (count - HOST_BITS_PER_WIDE_INT));
1133 }
1134 else
1135 {
1136 ret.high = high >> count;
1137 ret.low = ((low >> count)
1138 | ((unsigned HOST_WIDE_INT) high
1139 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
1140 }
1141
1142 return ret;
1143}
1144
1145/* Shift A left by COUNT places keeping only PREC bits of result. Shift
1146 right if COUNT is negative. ARITH true specifies arithmetic shifting;
1147 otherwise use logical shift. */
1148
1149double_int
1150double_int::lshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
1151{
1152 double_int ret;
1153 if (count > 0)
1154 lshift_double (l1: low, h1: high, count, prec, lv: &ret.low, hv: &ret.high);
1155 else
1156 rshift_double (l1: low, h1: high, count: absu_hwi (x: count), prec, lv: &ret.low, hv: &ret.high, arith);
1157 return ret;
1158}
1159
1160/* Shift A right by COUNT places keeping only PREC bits of result. Shift
1161 left if COUNT is negative. ARITH true specifies arithmetic shifting;
1162 otherwise use logical shift. */
1163
1164double_int
1165double_int::rshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
1166{
1167 double_int ret;
1168 if (count > 0)
1169 rshift_double (l1: low, h1: high, count, prec, lv: &ret.low, hv: &ret.high, arith);
1170 else
1171 lshift_double (l1: low, h1: high, count: absu_hwi (x: count), prec, lv: &ret.low, hv: &ret.high);
1172 return ret;
1173}
1174
1175/* Arithmetic shift A left by COUNT places keeping only PREC bits of result.
1176 Shift right if COUNT is negative. */
1177
1178double_int
1179double_int::alshift (HOST_WIDE_INT count, unsigned int prec) const
1180{
1181 double_int r;
1182 if (count > 0)
1183 lshift_double (l1: low, h1: high, count, prec, lv: &r.low, hv: &r.high);
1184 else
1185 rshift_double (l1: low, h1: high, count: absu_hwi (x: count), prec, lv: &r.low, hv: &r.high, arith: true);
1186 return r;
1187}
1188
1189/* Arithmetic shift A right by COUNT places keeping only PREC bits of result.
1190 Shift left if COUNT is negative. */
1191
1192double_int
1193double_int::arshift (HOST_WIDE_INT count, unsigned int prec) const
1194{
1195 double_int r;
1196 if (count > 0)
1197 rshift_double (l1: low, h1: high, count, prec, lv: &r.low, hv: &r.high, arith: true);
1198 else
1199 lshift_double (l1: low, h1: high, count: absu_hwi (x: count), prec, lv: &r.low, hv: &r.high);
1200 return r;
1201}
1202
1203/* Logical shift A left by COUNT places keeping only PREC bits of result.
1204 Shift right if COUNT is negative. */
1205
1206double_int
1207double_int::llshift (HOST_WIDE_INT count, unsigned int prec) const
1208{
1209 double_int r;
1210 if (count > 0)
1211 lshift_double (l1: low, h1: high, count, prec, lv: &r.low, hv: &r.high);
1212 else
1213 rshift_double (l1: low, h1: high, count: absu_hwi (x: count), prec, lv: &r.low, hv: &r.high, arith: false);
1214 return r;
1215}
1216
1217/* Logical shift A right by COUNT places keeping only PREC bits of result.
1218 Shift left if COUNT is negative. */
1219
1220double_int
1221double_int::lrshift (HOST_WIDE_INT count, unsigned int prec) const
1222{
1223 double_int r;
1224 if (count > 0)
1225 rshift_double (l1: low, h1: high, count, prec, lv: &r.low, hv: &r.high, arith: false);
1226 else
1227 lshift_double (l1: low, h1: high, count: absu_hwi (x: count), prec, lv: &r.low, hv: &r.high);
1228 return r;
1229}
1230
1231/* Rotate A left by COUNT places keeping only PREC bits of result.
1232 Rotate right if COUNT is negative. */
1233
1234double_int
1235double_int::lrotate (HOST_WIDE_INT count, unsigned int prec) const
1236{
1237 double_int t1, t2;
1238
1239 count %= prec;
1240 if (count < 0)
1241 count += prec;
1242
1243 t1 = this->llshift (count, prec);
1244 t2 = this->lrshift (count: prec - count, prec);
1245
1246 return t1 | t2;
1247}
1248
1249/* Rotate A rigth by COUNT places keeping only PREC bits of result.
1250 Rotate right if COUNT is negative. */
1251
1252double_int
1253double_int::rrotate (HOST_WIDE_INT count, unsigned int prec) const
1254{
1255 double_int t1, t2;
1256
1257 count %= prec;
1258 if (count < 0)
1259 count += prec;
1260
1261 t1 = this->lrshift (count, prec);
1262 t2 = this->llshift (count: prec - count, prec);
1263
1264 return t1 | t2;
1265}
1266
1267/* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the
1268 comparison is given by UNS. */
1269
1270int
1271double_int::cmp (double_int b, bool uns) const
1272{
1273 if (uns)
1274 return this->ucmp (b);
1275 else
1276 return this->scmp (b);
1277}
1278
1279/* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B,
1280 and 1 if A > B. */
1281
1282int
1283double_int::ucmp (double_int b) const
1284{
1285 const double_int &a = *this;
1286 if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high)
1287 return -1;
1288 if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high)
1289 return 1;
1290 if (a.low < b.low)
1291 return -1;
1292 if (a.low > b.low)
1293 return 1;
1294
1295 return 0;
1296}
1297
1298/* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B,
1299 and 1 if A > B. */
1300
1301int
1302double_int::scmp (double_int b) const
1303{
1304 const double_int &a = *this;
1305 if (a.high < b.high)
1306 return -1;
1307 if (a.high > b.high)
1308 return 1;
1309 if (a.low < b.low)
1310 return -1;
1311 if (a.low > b.low)
1312 return 1;
1313
1314 return 0;
1315}
1316
1317/* Compares two unsigned values A and B for less-than. */
1318
1319bool
1320double_int::ult (double_int b) const
1321{
1322 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1323 return true;
1324 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1325 return false;
1326 if (low < b.low)
1327 return true;
1328 return false;
1329}
1330
1331/* Compares two unsigned values A and B for less-than or equal-to. */
1332
1333bool
1334double_int::ule (double_int b) const
1335{
1336 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1337 return true;
1338 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1339 return false;
1340 if (low <= b.low)
1341 return true;
1342 return false;
1343}
1344
1345/* Compares two unsigned values A and B for greater-than. */
1346
1347bool
1348double_int::ugt (double_int b) const
1349{
1350 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1351 return true;
1352 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1353 return false;
1354 if (low > b.low)
1355 return true;
1356 return false;
1357}
1358
1359/* Compares two signed values A and B for less-than. */
1360
1361bool
1362double_int::slt (double_int b) const
1363{
1364 if (high < b.high)
1365 return true;
1366 if (high > b.high)
1367 return false;
1368 if (low < b.low)
1369 return true;
1370 return false;
1371}
1372
1373/* Compares two signed values A and B for less-than or equal-to. */
1374
1375bool
1376double_int::sle (double_int b) const
1377{
1378 if (high < b.high)
1379 return true;
1380 if (high > b.high)
1381 return false;
1382 if (low <= b.low)
1383 return true;
1384 return false;
1385}
1386
1387/* Compares two signed values A and B for greater-than. */
1388
1389bool
1390double_int::sgt (double_int b) const
1391{
1392 if (high > b.high)
1393 return true;
1394 if (high < b.high)
1395 return false;
1396 if (low > b.low)
1397 return true;
1398 return false;
1399}
1400
1401
1402/* Compares two values A and B. Returns max value. Signedness of the
1403 comparison is given by UNS. */
1404
1405double_int
1406double_int::max (double_int b, bool uns)
1407{
1408 return (this->cmp (b, uns) == 1) ? *this : b;
1409}
1410
1411/* Compares two signed values A and B. Returns max value. */
1412
1413double_int
1414double_int::smax (double_int b)
1415{
1416 return (this->scmp (b) == 1) ? *this : b;
1417}
1418
1419/* Compares two unsigned values A and B. Returns max value. */
1420
1421double_int
1422double_int::umax (double_int b)
1423{
1424 return (this->ucmp (b) == 1) ? *this : b;
1425}
1426
1427/* Compares two values A and B. Returns mix value. Signedness of the
1428 comparison is given by UNS. */
1429
1430double_int
1431double_int::min (double_int b, bool uns)
1432{
1433 return (this->cmp (b, uns) == -1) ? *this : b;
1434}
1435
1436/* Compares two signed values A and B. Returns min value. */
1437
1438double_int
1439double_int::smin (double_int b)
1440{
1441 return (this->scmp (b) == -1) ? *this : b;
1442}
1443
1444/* Compares two unsigned values A and B. Returns min value. */
1445
1446double_int
1447double_int::umin (double_int b)
1448{
1449 return (this->ucmp (b) == -1) ? *this : b;
1450}
1451
1452/* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */
1453
1454static unsigned
1455double_int_split_digit (double_int *cst, unsigned base)
1456{
1457 unsigned HOST_WIDE_INT resl, reml;
1458 HOST_WIDE_INT resh, remh;
1459
1460 div_and_round_double (code: FLOOR_DIV_EXPR, uns: true, lnum_orig: cst->low, hnum_orig: cst->high, lden_orig: base, hden_orig: 0,
1461 lquo: &resl, hquo: &resh, lrem: &reml, hrem: &remh);
1462 cst->high = resh;
1463 cst->low = resl;
1464
1465 return reml;
1466}
1467
1468/* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned,
1469 otherwise it is signed. */
1470
1471void
1472dump_double_int (FILE *file, double_int cst, bool uns)
1473{
1474 unsigned digits[100], n;
1475 int i;
1476
1477 if (cst.is_zero ())
1478 {
1479 fprintf (stream: file, format: "0");
1480 return;
1481 }
1482
1483 if (!uns && cst.is_negative ())
1484 {
1485 fprintf (stream: file, format: "-");
1486 cst = -cst;
1487 }
1488
1489 for (n = 0; !cst.is_zero (); n++)
1490 digits[n] = double_int_split_digit (cst: &cst, base: 10);
1491 for (i = n - 1; i >= 0; i--)
1492 fprintf (stream: file, format: "%u", digits[i]);
1493}
1494
1495
1496/* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
1497 otherwise. */
1498
1499void
1500mpz_set_double_int (mpz_t result, double_int val, bool uns)
1501{
1502 bool negate = false;
1503 unsigned HOST_WIDE_INT vp[2];
1504
1505 if (!uns && val.is_negative ())
1506 {
1507 negate = true;
1508 val = -val;
1509 }
1510
1511 vp[0] = val.low;
1512 vp[1] = (unsigned HOST_WIDE_INT) val.high;
1513 mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp);
1514
1515 if (negate)
1516 mpz_neg (gmp_w: result, gmp_u: result);
1517}
1518
1519/* Returns VAL converted to TYPE. If WRAP is true, then out-of-range
1520 values of VAL will be wrapped; otherwise, they will be set to the
1521 appropriate minimum or maximum TYPE bound. */
1522
1523double_int
1524mpz_get_double_int (const_tree type, mpz_t val, bool wrap)
1525{
1526 unsigned HOST_WIDE_INT *vp;
1527 size_t count, numb;
1528 double_int res;
1529
1530 if (!wrap)
1531 {
1532 mpz_t min, max;
1533
1534 mpz_init (min);
1535 mpz_init (max);
1536 get_type_static_bounds (type, min, max);
1537
1538 if (mpz_cmp (val, min) < 0)
1539 mpz_set (val, min);
1540 else if (mpz_cmp (val, max) > 0)
1541 mpz_set (val, max);
1542
1543 mpz_clear (min);
1544 mpz_clear (max);
1545 }
1546
1547 /* Determine the number of unsigned HOST_WIDE_INT that are required
1548 for representing the value. The code to calculate count is
1549 extracted from the GMP manual, section "Integer Import and Export":
1550 http://gmplib.org/manual/Integer-Import-and-Export.html */
1551 numb = 8 * sizeof (HOST_WIDE_INT);
1552 count = (mpz_sizeinbase (val, 2) + numb-1) / numb;
1553 if (count < 2)
1554 count = 2;
1555 vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof (HOST_WIDE_INT));
1556
1557 vp[0] = 0;
1558 vp[1] = 0;
1559 mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val);
1560
1561 gcc_assert (wrap || count <= 2);
1562
1563 res.low = vp[0];
1564 res.high = (HOST_WIDE_INT) vp[1];
1565
1566 res = res.ext (TYPE_PRECISION (type), TYPE_UNSIGNED (type));
1567 if (mpz_sgn (val) < 0)
1568 res = -res;
1569
1570 return res;
1571}
1572

source code of gcc/double-int.cc