1/* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2023 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* Work around tree-optimization/91825. */
22#pragma GCC diagnostic warning "-Wmaybe-uninitialized"
23
24#include "config.h"
25#include "system.h"
26#include "coretypes.h"
27#include "backend.h"
28#include "target.h"
29#include "rtl.h"
30#include "tree.h"
31#include "predict.h"
32#include "memmodel.h"
33#include "tm_p.h"
34#include "optabs.h"
35#include "expmed.h"
36#include "regs.h"
37#include "emit-rtl.h"
38#include "diagnostic-core.h"
39#include "fold-const.h"
40#include "stor-layout.h"
41#include "dojump.h"
42#include "explow.h"
43#include "expr.h"
44#include "langhooks.h"
45#include "tree-vector-builder.h"
46
47struct target_expmed default_target_expmed;
48#if SWITCHABLE_TARGET
49struct target_expmed *this_target_expmed = &default_target_expmed;
50#endif
51
52static bool store_integral_bit_field (rtx, opt_scalar_int_mode,
53 unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT,
55 poly_uint64, poly_uint64,
56 machine_mode, rtx, bool, bool);
57static void store_fixed_bit_field (rtx, opt_scalar_int_mode,
58 unsigned HOST_WIDE_INT,
59 unsigned HOST_WIDE_INT,
60 poly_uint64, poly_uint64,
61 rtx, scalar_int_mode, bool);
62static void store_fixed_bit_field_1 (rtx, scalar_int_mode,
63 unsigned HOST_WIDE_INT,
64 unsigned HOST_WIDE_INT,
65 rtx, scalar_int_mode, bool);
66static void store_split_bit_field (rtx, opt_scalar_int_mode,
67 unsigned HOST_WIDE_INT,
68 unsigned HOST_WIDE_INT,
69 poly_uint64, poly_uint64,
70 rtx, scalar_int_mode, bool);
71static rtx extract_integral_bit_field (rtx, opt_scalar_int_mode,
72 unsigned HOST_WIDE_INT,
73 unsigned HOST_WIDE_INT, int, rtx,
74 machine_mode, machine_mode, bool, bool);
75static rtx extract_fixed_bit_field (machine_mode, rtx, opt_scalar_int_mode,
76 unsigned HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT, rtx, int, bool);
78static rtx extract_fixed_bit_field_1 (machine_mode, rtx, scalar_int_mode,
79 unsigned HOST_WIDE_INT,
80 unsigned HOST_WIDE_INT, rtx, int, bool);
81static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
82static rtx extract_split_bit_field (rtx, opt_scalar_int_mode,
83 unsigned HOST_WIDE_INT,
84 unsigned HOST_WIDE_INT, int, bool);
85static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
86static rtx expand_smod_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
87static rtx expand_sdiv_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
88
89/* Return a constant integer mask value of mode MODE with BITSIZE ones
90 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
91 The mask is truncated if necessary to the width of mode MODE. The
92 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
93
94static inline rtx
95mask_rtx (scalar_int_mode mode, int bitpos, int bitsize, bool complement)
96{
97 return immed_wide_int_const
98 (wi::shifted_mask (start: bitpos, width: bitsize, negate_p: complement,
99 precision: GET_MODE_PRECISION (mode)), mode);
100}
101
102/* Test whether a value is zero of a power of two. */
103#define EXACT_POWER_OF_2_OR_ZERO_P(x) \
104 (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
105
106struct init_expmed_rtl
107{
108 rtx reg;
109 rtx plus;
110 rtx neg;
111 rtx mult;
112 rtx sdiv;
113 rtx udiv;
114 rtx sdiv_32;
115 rtx smod_32;
116 rtx wide_mult;
117 rtx wide_lshr;
118 rtx wide_trunc;
119 rtx shift;
120 rtx shift_mult;
121 rtx shift_add;
122 rtx shift_sub0;
123 rtx shift_sub1;
124 rtx zext;
125 rtx trunc;
126
127 rtx pow2[MAX_BITS_PER_WORD];
128 rtx cint[MAX_BITS_PER_WORD];
129};
130
131static void
132init_expmed_one_conv (struct init_expmed_rtl *all, scalar_int_mode to_mode,
133 scalar_int_mode from_mode, bool speed)
134{
135 int to_size, from_size;
136 rtx which;
137
138 to_size = GET_MODE_PRECISION (mode: to_mode);
139 from_size = GET_MODE_PRECISION (mode: from_mode);
140
141 /* Most partial integers have a precision less than the "full"
142 integer it requires for storage. In case one doesn't, for
143 comparison purposes here, reduce the bit size by one in that
144 case. */
145 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
146 && pow2p_hwi (x: to_size))
147 to_size --;
148 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
149 && pow2p_hwi (x: from_size))
150 from_size --;
151
152 /* Assume cost of zero-extend and sign-extend is the same. */
153 which = (to_size < from_size ? all->trunc : all->zext);
154
155 PUT_MODE (x: all->reg, mode: from_mode);
156 set_convert_cost (to_mode, from_mode, speed,
157 cost: set_src_cost (x: which, mode: to_mode, speed_p: speed));
158 /* Restore all->reg's mode. */
159 PUT_MODE (x: all->reg, mode: to_mode);
160}
161
162static void
163init_expmed_one_mode (struct init_expmed_rtl *all,
164 machine_mode mode, int speed)
165{
166 int m, n, mode_bitsize;
167 machine_mode mode_from;
168
169 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
170
171 PUT_MODE (x: all->reg, mode);
172 PUT_MODE (x: all->plus, mode);
173 PUT_MODE (x: all->neg, mode);
174 PUT_MODE (x: all->mult, mode);
175 PUT_MODE (x: all->sdiv, mode);
176 PUT_MODE (x: all->udiv, mode);
177 PUT_MODE (x: all->sdiv_32, mode);
178 PUT_MODE (x: all->smod_32, mode);
179 PUT_MODE (x: all->wide_trunc, mode);
180 PUT_MODE (x: all->shift, mode);
181 PUT_MODE (x: all->shift_mult, mode);
182 PUT_MODE (x: all->shift_add, mode);
183 PUT_MODE (x: all->shift_sub0, mode);
184 PUT_MODE (x: all->shift_sub1, mode);
185 PUT_MODE (x: all->zext, mode);
186 PUT_MODE (x: all->trunc, mode);
187
188 set_add_cost (speed, mode, cost: set_src_cost (x: all->plus, mode, speed_p: speed));
189 set_neg_cost (speed, mode, cost: set_src_cost (x: all->neg, mode, speed_p: speed));
190 set_mul_cost (speed, mode, cost: set_src_cost (x: all->mult, mode, speed_p: speed));
191 set_sdiv_cost (speed, mode, cost: set_src_cost (x: all->sdiv, mode, speed_p: speed));
192 set_udiv_cost (speed, mode, cost: set_src_cost (x: all->udiv, mode, speed_p: speed));
193
194 set_sdiv_pow2_cheap (speed, mode, cheap_p: (set_src_cost (x: all->sdiv_32, mode, speed_p: speed)
195 <= 2 * add_cost (speed, mode)));
196 set_smod_pow2_cheap (speed, mode, cheap: (set_src_cost (x: all->smod_32, mode, speed_p: speed)
197 <= 4 * add_cost (speed, mode)));
198
199 set_shift_cost (speed, mode, bits: 0, cost: 0);
200 {
201 int cost = add_cost (speed, mode);
202 set_shiftadd_cost (speed, mode, bits: 0, cost);
203 set_shiftsub0_cost (speed, mode, bits: 0, cost);
204 set_shiftsub1_cost (speed, mode, bits: 0, cost);
205 }
206
207 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
208 for (m = 1; m < n; m++)
209 {
210 XEXP (all->shift, 1) = all->cint[m];
211 XEXP (all->shift_mult, 1) = all->pow2[m];
212
213 set_shift_cost (speed, mode, bits: m, cost: set_src_cost (x: all->shift, mode, speed_p: speed));
214 set_shiftadd_cost (speed, mode, bits: m, cost: set_src_cost (x: all->shift_add, mode,
215 speed_p: speed));
216 set_shiftsub0_cost (speed, mode, bits: m, cost: set_src_cost (x: all->shift_sub0, mode,
217 speed_p: speed));
218 set_shiftsub1_cost (speed, mode, bits: m, cost: set_src_cost (x: all->shift_sub1, mode,
219 speed_p: speed));
220 }
221
222 scalar_int_mode int_mode_to;
223 if (is_a <scalar_int_mode> (m: mode, result: &int_mode_to))
224 {
225 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
226 mode_from = (machine_mode)(mode_from + 1))
227 init_expmed_one_conv (all, to_mode: int_mode_to,
228 from_mode: as_a <scalar_int_mode> (m: mode_from), speed);
229
230 scalar_int_mode wider_mode;
231 if (GET_MODE_CLASS (int_mode_to) == MODE_INT
232 && GET_MODE_WIDER_MODE (m: int_mode_to).exists (mode: &wider_mode))
233 {
234 PUT_MODE (x: all->reg, mode);
235 PUT_MODE (x: all->zext, mode: wider_mode);
236 PUT_MODE (x: all->wide_mult, mode: wider_mode);
237 PUT_MODE (x: all->wide_lshr, mode: wider_mode);
238 XEXP (all->wide_lshr, 1)
239 = gen_int_shift_amount (wider_mode, mode_bitsize);
240
241 set_mul_widen_cost (speed, mode: wider_mode,
242 cost: set_src_cost (x: all->wide_mult, mode: wider_mode, speed_p: speed));
243 set_mul_highpart_cost (speed, mode: int_mode_to,
244 cost: set_src_cost (x: all->wide_trunc,
245 mode: int_mode_to, speed_p: speed));
246 }
247 }
248}
249
250void
251init_expmed (void)
252{
253 struct init_expmed_rtl all;
254 machine_mode mode = QImode;
255 int m, speed;
256
257 memset (s: &all, c: 0, n: sizeof all);
258 for (m = 1; m < MAX_BITS_PER_WORD; m++)
259 {
260 all.pow2[m] = GEN_INT (HOST_WIDE_INT_1 << m);
261 all.cint[m] = GEN_INT (m);
262 }
263
264 /* Avoid using hard regs in ways which may be unsupported. */
265 all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
266 all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
267 all.neg = gen_rtx_NEG (mode, all.reg);
268 all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
269 all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
270 all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
271 all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
272 all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
273 all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
274 all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
275 all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
276 all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
277 all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
278 all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
279 all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
280 all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
281 all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
282 all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
283
284 for (speed = 0; speed < 2; speed++)
285 {
286 crtl->maybe_hot_insn_p = speed;
287 set_zero_cost (speed, cost: set_src_cost (const0_rtx, mode, speed_p: speed));
288
289 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
290 mode = (machine_mode)(mode + 1))
291 init_expmed_one_mode (all: &all, mode, speed);
292
293 if (MIN_MODE_PARTIAL_INT != VOIDmode)
294 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
295 mode = (machine_mode)(mode + 1))
296 init_expmed_one_mode (all: &all, mode, speed);
297
298 if (MIN_MODE_VECTOR_INT != VOIDmode)
299 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
300 mode = (machine_mode)(mode + 1))
301 init_expmed_one_mode (all: &all, mode, speed);
302 }
303
304 if (alg_hash_used_p ())
305 {
306 struct alg_hash_entry *p = alg_hash_entry_ptr (idx: 0);
307 memset (s: p, c: 0, n: sizeof (*p) * NUM_ALG_HASH_ENTRIES);
308 }
309 else
310 set_alg_hash_used_p (true);
311 default_rtl_profile ();
312
313 ggc_free (all.trunc);
314 ggc_free (all.shift_sub1);
315 ggc_free (all.shift_sub0);
316 ggc_free (all.shift_add);
317 ggc_free (all.shift_mult);
318 ggc_free (all.shift);
319 ggc_free (all.wide_trunc);
320 ggc_free (all.wide_lshr);
321 ggc_free (all.wide_mult);
322 ggc_free (all.zext);
323 ggc_free (all.smod_32);
324 ggc_free (all.sdiv_32);
325 ggc_free (all.udiv);
326 ggc_free (all.sdiv);
327 ggc_free (all.mult);
328 ggc_free (all.neg);
329 ggc_free (all.plus);
330 ggc_free (all.reg);
331}
332
333/* Return an rtx representing minus the value of X.
334 MODE is the intended mode of the result,
335 useful if X is a CONST_INT. */
336
337rtx
338negate_rtx (machine_mode mode, rtx x)
339{
340 rtx result = simplify_unary_operation (code: NEG, mode, op: x, op_mode: mode);
341
342 if (result == 0)
343 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
344
345 return result;
346}
347
348/* Whether reverse storage order is supported on the target. */
349static int reverse_storage_order_supported = -1;
350
351/* Check whether reverse storage order is supported on the target. */
352
353static void
354check_reverse_storage_order_support (void)
355{
356 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
357 {
358 reverse_storage_order_supported = 0;
359 sorry ("reverse scalar storage order");
360 }
361 else
362 reverse_storage_order_supported = 1;
363}
364
365/* Whether reverse FP storage order is supported on the target. */
366static int reverse_float_storage_order_supported = -1;
367
368/* Check whether reverse FP storage order is supported on the target. */
369
370static void
371check_reverse_float_storage_order_support (void)
372{
373 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
374 {
375 reverse_float_storage_order_supported = 0;
376 sorry ("reverse floating-point scalar storage order");
377 }
378 else
379 reverse_float_storage_order_supported = 1;
380}
381
382/* Return an rtx representing value of X with reverse storage order.
383 MODE is the intended mode of the result,
384 useful if X is a CONST_INT. */
385
386rtx
387flip_storage_order (machine_mode mode, rtx x)
388{
389 scalar_int_mode int_mode;
390 rtx result;
391
392 if (mode == QImode)
393 return x;
394
395 if (COMPLEX_MODE_P (mode))
396 {
397 rtx real = read_complex_part (x, false);
398 rtx imag = read_complex_part (x, true);
399
400 real = flip_storage_order (GET_MODE_INNER (mode), x: real);
401 imag = flip_storage_order (GET_MODE_INNER (mode), x: imag);
402
403 return gen_rtx_CONCAT (mode, real, imag);
404 }
405
406 if (UNLIKELY (reverse_storage_order_supported < 0))
407 check_reverse_storage_order_support ();
408
409 if (!is_a <scalar_int_mode> (m: mode, result: &int_mode))
410 {
411 if (FLOAT_MODE_P (mode)
412 && UNLIKELY (reverse_float_storage_order_supported < 0))
413 check_reverse_float_storage_order_support ();
414
415 if (!int_mode_for_size (size: GET_MODE_PRECISION (mode), limit: 0).exists (mode: &int_mode)
416 || !targetm.scalar_mode_supported_p (int_mode))
417 {
418 sorry ("reverse storage order for %smode", GET_MODE_NAME (mode));
419 return x;
420 }
421 x = gen_lowpart (int_mode, x);
422 }
423
424 result = simplify_unary_operation (code: BSWAP, mode: int_mode, op: x, op_mode: int_mode);
425 if (result == 0)
426 result = expand_unop (int_mode, bswap_optab, x, NULL_RTX, 1);
427
428 if (int_mode != mode)
429 result = gen_lowpart (mode, result);
430
431 return result;
432}
433
434/* If MODE is set, adjust bitfield memory MEM so that it points to the
435 first unit of mode MODE that contains a bitfield of size BITSIZE at
436 bit position BITNUM. If MODE is not set, return a BLKmode reference
437 to every byte in the bitfield. Set *NEW_BITNUM to the bit position
438 of the field within the new memory. */
439
440static rtx
441narrow_bit_field_mem (rtx mem, opt_scalar_int_mode mode,
442 unsigned HOST_WIDE_INT bitsize,
443 unsigned HOST_WIDE_INT bitnum,
444 unsigned HOST_WIDE_INT *new_bitnum)
445{
446 scalar_int_mode imode;
447 if (mode.exists (mode: &imode))
448 {
449 unsigned int unit = GET_MODE_BITSIZE (mode: imode);
450 *new_bitnum = bitnum % unit;
451 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
452 return adjust_bitfield_address (mem, imode, offset);
453 }
454 else
455 {
456 *new_bitnum = bitnum % BITS_PER_UNIT;
457 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
458 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
459 / BITS_PER_UNIT);
460 return adjust_bitfield_address_size (mem, BLKmode, offset, size);
461 }
462}
463
464/* The caller wants to perform insertion or extraction PATTERN on a
465 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
466 BITREGION_START and BITREGION_END are as for store_bit_field
467 and FIELDMODE is the natural mode of the field.
468
469 Search for a mode that is compatible with the memory access
470 restrictions and (where applicable) with a register insertion or
471 extraction. Return the new memory on success, storing the adjusted
472 bit position in *NEW_BITNUM. Return null otherwise. */
473
474static rtx
475adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
476 rtx op0, HOST_WIDE_INT bitsize,
477 HOST_WIDE_INT bitnum,
478 poly_uint64 bitregion_start,
479 poly_uint64 bitregion_end,
480 machine_mode fieldmode,
481 unsigned HOST_WIDE_INT *new_bitnum)
482{
483 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
484 bitregion_end, MEM_ALIGN (op0),
485 MEM_VOLATILE_P (op0));
486 scalar_int_mode best_mode;
487 if (iter.next_mode (&best_mode))
488 {
489 /* We can use a memory in BEST_MODE. See whether this is true for
490 any wider modes. All other things being equal, we prefer to
491 use the widest mode possible because it tends to expose more
492 CSE opportunities. */
493 if (!iter.prefer_smaller_modes ())
494 {
495 /* Limit the search to the mode required by the corresponding
496 register insertion or extraction instruction, if any. */
497 scalar_int_mode limit_mode = word_mode;
498 extraction_insn insn;
499 if (get_best_reg_extraction_insn (&insn, pattern,
500 GET_MODE_BITSIZE (mode: best_mode),
501 fieldmode))
502 limit_mode = insn.field_mode;
503
504 scalar_int_mode wider_mode;
505 while (iter.next_mode (&wider_mode)
506 && GET_MODE_SIZE (mode: wider_mode) <= GET_MODE_SIZE (mode: limit_mode))
507 best_mode = wider_mode;
508 }
509 return narrow_bit_field_mem (mem: op0, mode: best_mode, bitsize, bitnum,
510 new_bitnum);
511 }
512 return NULL_RTX;
513}
514
515/* Return true if a bitfield of size BITSIZE at bit number BITNUM within
516 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
517 offset is then BITNUM / BITS_PER_UNIT. */
518
519static bool
520lowpart_bit_field_p (poly_uint64 bitnum, poly_uint64 bitsize,
521 machine_mode struct_mode)
522{
523 poly_uint64 regsize = REGMODE_NATURAL_SIZE (struct_mode);
524 if (BYTES_BIG_ENDIAN)
525 return (multiple_p (a: bitnum, BITS_PER_UNIT)
526 && (known_eq (bitnum + bitsize, GET_MODE_BITSIZE (struct_mode))
527 || multiple_p (a: bitnum + bitsize,
528 b: regsize * BITS_PER_UNIT)));
529 else
530 return multiple_p (a: bitnum, b: regsize * BITS_PER_UNIT);
531}
532
533/* Return true if -fstrict-volatile-bitfields applies to an access of OP0
534 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
535 Return false if the access would touch memory outside the range
536 BITREGION_START to BITREGION_END for conformance to the C++ memory
537 model. */
538
539static bool
540strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
541 unsigned HOST_WIDE_INT bitnum,
542 scalar_int_mode fieldmode,
543 poly_uint64 bitregion_start,
544 poly_uint64 bitregion_end)
545{
546 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode: fieldmode);
547
548 /* -fstrict-volatile-bitfields must be enabled and we must have a
549 volatile MEM. */
550 if (!MEM_P (op0)
551 || !MEM_VOLATILE_P (op0)
552 || flag_strict_volatile_bitfields <= 0)
553 return false;
554
555 /* The bit size must not be larger than the field mode, and
556 the field mode must not be larger than a word. */
557 if (bitsize > modesize || modesize > BITS_PER_WORD)
558 return false;
559
560 /* Check for cases of unaligned fields that must be split. */
561 if (bitnum % modesize + bitsize > modesize)
562 return false;
563
564 /* The memory must be sufficiently aligned for a MODESIZE access.
565 This condition guarantees, that the memory access will not
566 touch anything after the end of the structure. */
567 if (MEM_ALIGN (op0) < modesize)
568 return false;
569
570 /* Check for cases where the C++ memory model applies. */
571 if (maybe_ne (a: bitregion_end, b: 0U)
572 && (maybe_lt (a: bitnum - bitnum % modesize, b: bitregion_start)
573 || maybe_gt (bitnum - bitnum % modesize + modesize - 1,
574 bitregion_end)))
575 return false;
576
577 return true;
578}
579
580/* Return true if OP is a memory and if a bitfield of size BITSIZE at
581 bit number BITNUM can be treated as a simple value of mode MODE.
582 Store the byte offset in *BYTENUM if so. */
583
584static bool
585simple_mem_bitfield_p (rtx op0, poly_uint64 bitsize, poly_uint64 bitnum,
586 machine_mode mode, poly_uint64 *bytenum)
587{
588 return (MEM_P (op0)
589 && multiple_p (a: bitnum, BITS_PER_UNIT, multiple: bytenum)
590 && known_eq (bitsize, GET_MODE_BITSIZE (mode))
591 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (op0))
592 || (multiple_p (a: bitnum, GET_MODE_ALIGNMENT (mode))
593 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
594}
595
596/* Try to use instruction INSV to store VALUE into a field of OP0.
597 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a
598 BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM
599 are as for store_bit_field. */
600
601static bool
602store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
603 opt_scalar_int_mode op0_mode,
604 unsigned HOST_WIDE_INT bitsize,
605 unsigned HOST_WIDE_INT bitnum,
606 rtx value, scalar_int_mode value_mode)
607{
608 class expand_operand ops[4];
609 rtx value1;
610 rtx xop0 = op0;
611 rtx_insn *last = get_last_insn ();
612 bool copy_back = false;
613
614 scalar_int_mode op_mode = insv->field_mode;
615 unsigned int unit = GET_MODE_BITSIZE (mode: op_mode);
616 if (bitsize == 0 || bitsize > unit)
617 return false;
618
619 if (MEM_P (xop0))
620 /* Get a reference to the first byte of the field. */
621 xop0 = narrow_bit_field_mem (mem: xop0, mode: insv->struct_mode, bitsize, bitnum,
622 new_bitnum: &bitnum);
623 else
624 {
625 /* Convert from counting within OP0 to counting in OP_MODE. */
626 if (BYTES_BIG_ENDIAN)
627 bitnum += unit - GET_MODE_BITSIZE (mode: op0_mode.require ());
628
629 /* If xop0 is a register, we need it in OP_MODE
630 to make it acceptable to the format of insv. */
631 if (GET_CODE (xop0) == SUBREG)
632 {
633 /* If such a SUBREG can't be created, give up. */
634 if (!validate_subreg (op_mode, GET_MODE (SUBREG_REG (xop0)),
635 SUBREG_REG (xop0), SUBREG_BYTE (xop0)))
636 return false;
637 /* We can't just change the mode, because this might clobber op0,
638 and we will need the original value of op0 if insv fails. */
639 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0),
640 SUBREG_BYTE (xop0));
641 }
642 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
643 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
644 }
645
646 /* If the destination is a paradoxical subreg such that we need a
647 truncate to the inner mode, perform the insertion on a temporary and
648 truncate the result to the original destination. Note that we can't
649 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
650 X) 0)) is (reg:N X). */
651 if (GET_CODE (xop0) == SUBREG
652 && REG_P (SUBREG_REG (xop0))
653 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
654 op_mode))
655 {
656 rtx tem = gen_reg_rtx (op_mode);
657 emit_move_insn (tem, xop0);
658 xop0 = tem;
659 copy_back = true;
660 }
661
662 /* There are similar overflow check at the start of store_bit_field_1,
663 but that only check the situation where the field lies completely
664 outside the register, while there do have situation where the field
665 lies partialy in the register, we need to adjust bitsize for this
666 partial overflow situation. Without this fix, pr48335-2.c on big-endian
667 will broken on those arch support bit insert instruction, like arm, aarch64
668 etc. */
669 if (bitsize + bitnum > unit && bitnum < unit)
670 {
671 warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
672 "destination object, data truncated into %wu-bit",
673 bitsize, unit - bitnum);
674 bitsize = unit - bitnum;
675 }
676
677 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
678 "backwards" from the size of the unit we are inserting into.
679 Otherwise, we count bits from the most significant on a
680 BYTES/BITS_BIG_ENDIAN machine. */
681
682 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
683 bitnum = unit - bitsize - bitnum;
684
685 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
686 value1 = value;
687 if (value_mode != op_mode)
688 {
689 if (GET_MODE_BITSIZE (mode: value_mode) >= bitsize)
690 {
691 rtx tmp;
692 /* Optimization: Don't bother really extending VALUE
693 if it has all the bits we will actually use. However,
694 if we must narrow it, be sure we do it correctly. */
695
696 if (GET_MODE_SIZE (mode: value_mode) < GET_MODE_SIZE (mode: op_mode))
697 {
698 tmp = simplify_subreg (outermode: op_mode, op: value1, innermode: value_mode, byte: 0);
699 if (! tmp)
700 tmp = simplify_gen_subreg (outermode: op_mode,
701 op: force_reg (value_mode, value1),
702 innermode: value_mode, byte: 0);
703 }
704 else
705 {
706 tmp = gen_lowpart_if_possible (op_mode, value1);
707 if (! tmp)
708 tmp = gen_lowpart (op_mode, force_reg (value_mode, value1));
709 }
710 value1 = tmp;
711 }
712 else if (CONST_INT_P (value))
713 value1 = gen_int_mode (INTVAL (value), op_mode);
714 else
715 /* Parse phase is supposed to make VALUE's data type
716 match that of the component reference, which is a type
717 at least as wide as the field; so VALUE should have
718 a mode that corresponds to that type. */
719 gcc_assert (CONSTANT_P (value));
720 }
721
722 create_fixed_operand (op: &ops[0], x: xop0);
723 create_integer_operand (&ops[1], bitsize);
724 create_integer_operand (&ops[2], bitnum);
725 create_input_operand (op: &ops[3], value: value1, mode: op_mode);
726 if (maybe_expand_insn (icode: insv->icode, nops: 4, ops))
727 {
728 if (copy_back)
729 convert_move (op0, xop0, true);
730 return true;
731 }
732 delete_insns_since (last);
733 return false;
734}
735
736/* A subroutine of store_bit_field, with the same arguments. Return true
737 if the operation could be implemented.
738
739 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
740 no other way of implementing the operation. If FALLBACK_P is false,
741 return false instead.
742
743 if UNDEFINED_P is true then STR_RTX is undefined and may be set using
744 a subreg instead. */
745
746static bool
747store_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
748 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
749 machine_mode fieldmode,
750 rtx value, bool reverse, bool fallback_p, bool undefined_p)
751{
752 rtx op0 = str_rtx;
753
754 while (GET_CODE (op0) == SUBREG)
755 {
756 bitnum += subreg_memory_offset (op0) * BITS_PER_UNIT;
757 op0 = SUBREG_REG (op0);
758 }
759
760 /* No action is needed if the target is a register and if the field
761 lies completely outside that register. This can occur if the source
762 code contains an out-of-bounds access to a small array. */
763 if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
764 return true;
765
766 /* Use vec_set patterns for inserting parts of vectors whenever
767 available. */
768 machine_mode outermode = GET_MODE (op0);
769 scalar_mode innermode = GET_MODE_INNER (outermode);
770 poly_uint64 pos;
771 if (VECTOR_MODE_P (outermode)
772 && !MEM_P (op0)
773 && optab_handler (op: vec_set_optab, mode: outermode) != CODE_FOR_nothing
774 && fieldmode == innermode
775 && known_eq (bitsize, GET_MODE_BITSIZE (innermode))
776 && multiple_p (a: bitnum, b: GET_MODE_BITSIZE (mode: innermode), multiple: &pos))
777 {
778 class expand_operand ops[3];
779 enum insn_code icode = optab_handler (op: vec_set_optab, mode: outermode);
780
781 create_fixed_operand (op: &ops[0], x: op0);
782 create_input_operand (op: &ops[1], value, mode: innermode);
783 create_integer_operand (&ops[2], pos);
784 if (maybe_expand_insn (icode, nops: 3, ops))
785 return true;
786 }
787
788 /* If the target is a register, overwriting the entire object, or storing
789 a full-word or multi-word field can be done with just a SUBREG. */
790 if (!MEM_P (op0)
791 && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode)))
792 {
793 /* Use the subreg machinery either to narrow OP0 to the required
794 words or to cope with mode punning between equal-sized modes.
795 In the latter case, use subreg on the rhs side, not lhs. */
796 rtx sub;
797 poly_uint64 bytenum;
798 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (op0));
799 if (known_eq (bitnum, 0U)
800 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
801 {
802 sub = simplify_gen_subreg (GET_MODE (op0), op: value, innermode: fieldmode, byte: 0);
803 if (sub)
804 {
805 if (reverse)
806 sub = flip_storage_order (GET_MODE (op0), x: sub);
807 emit_move_insn (op0, sub);
808 return true;
809 }
810 }
811 else if (multiple_p (a: bitnum, BITS_PER_UNIT, multiple: &bytenum)
812 && (undefined_p
813 || (multiple_p (a: bitnum, b: regsize * BITS_PER_UNIT)
814 && multiple_p (a: bitsize, b: regsize * BITS_PER_UNIT)))
815 && known_ge (GET_MODE_BITSIZE (GET_MODE (op0)), bitsize))
816 {
817 sub = simplify_gen_subreg (outermode: fieldmode, op: op0, GET_MODE (op0), byte: bytenum);
818 if (sub)
819 {
820 if (reverse)
821 value = flip_storage_order (mode: fieldmode, x: value);
822 emit_move_insn (sub, value);
823 return true;
824 }
825 }
826 }
827
828 /* If the target is memory, storing any naturally aligned field can be
829 done with a simple store. For targets that support fast unaligned
830 memory, any naturally sized, unit aligned field can be done directly. */
831 poly_uint64 bytenum;
832 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode: fieldmode, bytenum: &bytenum))
833 {
834 op0 = adjust_bitfield_address (op0, fieldmode, bytenum);
835 if (reverse)
836 value = flip_storage_order (mode: fieldmode, x: value);
837 emit_move_insn (op0, value);
838 return true;
839 }
840
841 /* It's possible we'll need to handle other cases here for
842 polynomial bitnum and bitsize. */
843
844 /* From here on we need to be looking at a fixed-size insertion. */
845 unsigned HOST_WIDE_INT ibitsize = bitsize.to_constant ();
846 unsigned HOST_WIDE_INT ibitnum = bitnum.to_constant ();
847
848 /* Make sure we are playing with integral modes. Pun with subregs
849 if we aren't. This must come after the entire register case above,
850 since that case is valid for any mode. The following cases are only
851 valid for integral modes. */
852 opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
853 scalar_int_mode imode;
854 if (!op0_mode.exists (mode: &imode) || imode != GET_MODE (op0))
855 {
856 if (MEM_P (op0))
857 op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
858 0, MEM_SIZE (op0));
859 else if (!op0_mode.exists ())
860 {
861 if (ibitnum == 0
862 && known_eq (ibitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
863 && MEM_P (value)
864 && !reverse)
865 {
866 value = adjust_address (value, GET_MODE (op0), 0);
867 emit_move_insn (op0, value);
868 return true;
869 }
870 if (!fallback_p)
871 return false;
872 rtx temp = assign_stack_temp (GET_MODE (op0),
873 GET_MODE_SIZE (GET_MODE (op0)));
874 emit_move_insn (temp, op0);
875 store_bit_field_1 (str_rtx: temp, bitsize, bitnum, bitregion_start: 0, bitregion_end: 0, fieldmode, value,
876 reverse, fallback_p, undefined_p);
877 emit_move_insn (op0, temp);
878 return true;
879 }
880 else
881 op0 = gen_lowpart (op0_mode.require (), op0);
882 }
883
884 return store_integral_bit_field (op0, op0_mode, ibitsize, ibitnum,
885 bitregion_start, bitregion_end,
886 fieldmode, value, reverse, fallback_p);
887}
888
889/* Subroutine of store_bit_field_1, with the same arguments, except
890 that BITSIZE and BITNUM are constant. Handle cases specific to
891 integral modes. If OP0_MODE is defined, it is the mode of OP0,
892 otherwise OP0 is a BLKmode MEM. */
893
894static bool
895store_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
896 unsigned HOST_WIDE_INT bitsize,
897 unsigned HOST_WIDE_INT bitnum,
898 poly_uint64 bitregion_start,
899 poly_uint64 bitregion_end,
900 machine_mode fieldmode,
901 rtx value, bool reverse, bool fallback_p)
902{
903 /* Storing an lsb-aligned field in a register
904 can be done with a movstrict instruction. */
905
906 if (!MEM_P (op0)
907 && !reverse
908 && lowpart_bit_field_p (bitnum, bitsize, struct_mode: op0_mode.require ())
909 && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode))
910 && optab_handler (op: movstrict_optab, mode: fieldmode) != CODE_FOR_nothing)
911 {
912 class expand_operand ops[2];
913 enum insn_code icode = optab_handler (op: movstrict_optab, mode: fieldmode);
914 rtx arg0 = op0;
915 unsigned HOST_WIDE_INT subreg_off;
916
917 if (GET_CODE (arg0) == SUBREG)
918 {
919 /* Else we've got some float mode source being extracted into
920 a different float mode destination -- this combination of
921 subregs results in Severe Tire Damage. */
922 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
923 || GET_MODE_CLASS (fieldmode) == MODE_INT
924 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
925 arg0 = SUBREG_REG (arg0);
926 }
927
928 subreg_off = bitnum / BITS_PER_UNIT;
929 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off)
930 /* STRICT_LOW_PART must have a non-paradoxical subreg as
931 operand. */
932 && !paradoxical_subreg_p (outermode: fieldmode, GET_MODE (arg0)))
933 {
934 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
935
936 create_fixed_operand (op: &ops[0], x: arg0);
937 /* Shrink the source operand to FIELDMODE. */
938 create_convert_operand_to (op: &ops[1], value, mode: fieldmode, unsigned_p: false);
939 if (maybe_expand_insn (icode, nops: 2, ops))
940 return true;
941 }
942 }
943
944 /* Handle fields bigger than a word. */
945
946 if (bitsize > BITS_PER_WORD)
947 {
948 /* Here we transfer the words of the field
949 in the order least significant first.
950 This is because the most significant word is the one which may
951 be less than full.
952 However, only do that if the value is not BLKmode. */
953
954 const bool backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
955 const int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
956 rtx_insn *last;
957
958 /* This is the mode we must force value to, so that there will be enough
959 subwords to extract. Note that fieldmode will often (always?) be
960 VOIDmode, because that is what store_field uses to indicate that this
961 is a bit field, but passing VOIDmode to operand_subword_force
962 is not allowed.
963
964 The mode must be fixed-size, since insertions into variable-sized
965 objects are meant to be handled before calling this function. */
966 fixed_size_mode value_mode = as_a <fixed_size_mode> (GET_MODE (value));
967 if (value_mode == VOIDmode)
968 value_mode = smallest_int_mode_for_size (size: nwords * BITS_PER_WORD);
969
970 last = get_last_insn ();
971 for (int i = 0; i < nwords; i++)
972 {
973 /* Number of bits to be stored in this iteration, i.e. BITS_PER_WORD
974 except maybe for the last iteration. */
975 const unsigned HOST_WIDE_INT new_bitsize
976 = MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
977 /* Bit offset from the starting bit number in the target. */
978 const unsigned int bit_offset
979 = backwards ^ reverse
980 ? MAX ((int) bitsize - (i + 1) * BITS_PER_WORD, 0)
981 : i * BITS_PER_WORD;
982 /* Starting word number in the value. */
983 const unsigned int wordnum
984 = backwards
985 ? GET_MODE_SIZE (mode: value_mode) / UNITS_PER_WORD - (i + 1)
986 : i;
987 /* The chunk of the value in word_mode. We use bit-field extraction
988 in BLKmode to handle unaligned memory references and to shift the
989 last chunk right on big-endian machines if need be. */
990 rtx value_word
991 = fieldmode == BLKmode
992 ? extract_bit_field (value, new_bitsize, wordnum * BITS_PER_WORD,
993 1, NULL_RTX, word_mode, word_mode, false,
994 NULL)
995 : operand_subword_force (value, wordnum, value_mode);
996
997 if (!store_bit_field_1 (str_rtx: op0, bitsize: new_bitsize,
998 bitnum: bitnum + bit_offset,
999 bitregion_start, bitregion_end,
1000 fieldmode: word_mode,
1001 value: value_word, reverse, fallback_p, undefined_p: false))
1002 {
1003 delete_insns_since (last);
1004 return false;
1005 }
1006 }
1007 return true;
1008 }
1009
1010 /* If VALUE has a floating-point or complex mode, access it as an
1011 integer of the corresponding size. This can occur on a machine
1012 with 64 bit registers that uses SFmode for float. It can also
1013 occur for unaligned float or complex fields. */
1014 rtx orig_value = value;
1015 scalar_int_mode value_mode;
1016 if (GET_MODE (value) == VOIDmode)
1017 /* By this point we've dealt with values that are bigger than a word,
1018 so word_mode is a conservatively correct choice. */
1019 value_mode = word_mode;
1020 else if (!is_a <scalar_int_mode> (GET_MODE (value), result: &value_mode))
1021 {
1022 value_mode = int_mode_for_mode (GET_MODE (value)).require ();
1023 value = gen_reg_rtx (value_mode);
1024 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
1025 }
1026
1027 /* If OP0 is a multi-word register, narrow it to the affected word.
1028 If the region spans two words, defer to store_split_bit_field.
1029 Don't do this if op0 is a single hard register wider than word
1030 such as a float or vector register. */
1031 if (!MEM_P (op0)
1032 && GET_MODE_SIZE (mode: op0_mode.require ()) > UNITS_PER_WORD
1033 && (!REG_P (op0)
1034 || !HARD_REGISTER_P (op0)
1035 || hard_regno_nregs (REGNO (op0), mode: op0_mode.require ()) != 1))
1036 {
1037 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
1038 {
1039 if (!fallback_p)
1040 return false;
1041
1042 store_split_bit_field (op0, op0_mode, bitsize, bitnum,
1043 bitregion_start, bitregion_end,
1044 value, value_mode, reverse);
1045 return true;
1046 }
1047 op0 = simplify_gen_subreg (outermode: word_mode, op: op0, innermode: op0_mode.require (),
1048 byte: bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1049 gcc_assert (op0);
1050 op0_mode = word_mode;
1051 bitnum %= BITS_PER_WORD;
1052 }
1053
1054 /* From here on we can assume that the field to be stored in fits
1055 within a word. If the destination is a register, it too fits
1056 in a word. */
1057
1058 extraction_insn insv;
1059 if (!MEM_P (op0)
1060 && !reverse
1061 && get_best_reg_extraction_insn (&insv, EP_insv,
1062 GET_MODE_BITSIZE (mode: op0_mode.require ()),
1063 fieldmode)
1064 && store_bit_field_using_insv (insv: &insv, op0, op0_mode,
1065 bitsize, bitnum, value, value_mode))
1066 return true;
1067
1068 /* If OP0 is a memory, try copying it to a register and seeing if a
1069 cheap register alternative is available. */
1070 if (MEM_P (op0) && !reverse)
1071 {
1072 if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
1073 fieldmode)
1074 && store_bit_field_using_insv (insv: &insv, op0, op0_mode,
1075 bitsize, bitnum, value, value_mode))
1076 return true;
1077
1078 rtx_insn *last = get_last_insn ();
1079
1080 /* Try loading part of OP0 into a register, inserting the bitfield
1081 into that, and then copying the result back to OP0. */
1082 unsigned HOST_WIDE_INT bitpos;
1083 rtx xop0 = adjust_bit_field_mem_for_reg (pattern: EP_insv, op0, bitsize, bitnum,
1084 bitregion_start, bitregion_end,
1085 fieldmode, new_bitnum: &bitpos);
1086 if (xop0)
1087 {
1088 rtx tempreg = copy_to_reg (xop0);
1089 if (store_bit_field_1 (str_rtx: tempreg, bitsize, bitnum: bitpos,
1090 bitregion_start, bitregion_end,
1091 fieldmode, value: orig_value, reverse, fallback_p: false, undefined_p: false))
1092 {
1093 emit_move_insn (xop0, tempreg);
1094 return true;
1095 }
1096 delete_insns_since (last);
1097 }
1098 }
1099
1100 if (!fallback_p)
1101 return false;
1102
1103 store_fixed_bit_field (op0, op0_mode, bitsize, bitnum, bitregion_start,
1104 bitregion_end, value, value_mode, reverse);
1105 return true;
1106}
1107
1108/* Generate code to store value from rtx VALUE
1109 into a bit-field within structure STR_RTX
1110 containing BITSIZE bits starting at bit BITNUM.
1111
1112 BITREGION_START is bitpos of the first bitfield in this region.
1113 BITREGION_END is the bitpos of the ending bitfield in this region.
1114 These two fields are 0, if the C++ memory model does not apply,
1115 or we are not interested in keeping track of bitfield regions.
1116
1117 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
1118
1119 If REVERSE is true, the store is to be done in reverse order.
1120
1121 If UNDEFINED_P is true then STR_RTX is currently undefined. */
1122
1123void
1124store_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
1125 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1126 machine_mode fieldmode,
1127 rtx value, bool reverse, bool undefined_p)
1128{
1129 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1130 unsigned HOST_WIDE_INT ibitsize = 0, ibitnum = 0;
1131 scalar_int_mode int_mode;
1132 if (bitsize.is_constant (const_value: &ibitsize)
1133 && bitnum.is_constant (const_value: &ibitnum)
1134 && is_a <scalar_int_mode> (m: fieldmode, result: &int_mode)
1135 && strict_volatile_bitfield_p (op0: str_rtx, bitsize: ibitsize, bitnum: ibitnum, fieldmode: int_mode,
1136 bitregion_start, bitregion_end))
1137 {
1138 /* Storing of a full word can be done with a simple store.
1139 We know here that the field can be accessed with one single
1140 instruction. For targets that support unaligned memory,
1141 an unaligned access may be necessary. */
1142 if (ibitsize == GET_MODE_BITSIZE (mode: int_mode))
1143 {
1144 str_rtx = adjust_bitfield_address (str_rtx, int_mode,
1145 ibitnum / BITS_PER_UNIT);
1146 if (reverse)
1147 value = flip_storage_order (mode: int_mode, x: value);
1148 gcc_assert (ibitnum % BITS_PER_UNIT == 0);
1149 emit_move_insn (str_rtx, value);
1150 }
1151 else
1152 {
1153 rtx temp;
1154
1155 str_rtx = narrow_bit_field_mem (mem: str_rtx, mode: int_mode, bitsize: ibitsize,
1156 bitnum: ibitnum, new_bitnum: &ibitnum);
1157 gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
1158 temp = copy_to_reg (str_rtx);
1159 if (!store_bit_field_1 (str_rtx: temp, bitsize: ibitsize, bitnum: ibitnum, bitregion_start: 0, bitregion_end: 0,
1160 fieldmode: int_mode, value, reverse, fallback_p: true, undefined_p))
1161 gcc_unreachable ();
1162
1163 emit_move_insn (str_rtx, temp);
1164 }
1165
1166 return;
1167 }
1168
1169 /* Under the C++0x memory model, we must not touch bits outside the
1170 bit region. Adjust the address to start at the beginning of the
1171 bit region. */
1172 if (MEM_P (str_rtx) && maybe_ne (a: bitregion_start, b: 0U))
1173 {
1174 scalar_int_mode best_mode;
1175 machine_mode addr_mode = VOIDmode;
1176
1177 poly_uint64 offset = exact_div (a: bitregion_start, BITS_PER_UNIT);
1178 bitnum -= bitregion_start;
1179 poly_int64 size = bits_to_bytes_round_up (bitnum + bitsize);
1180 bitregion_end -= bitregion_start;
1181 bitregion_start = 0;
1182 if (bitsize.is_constant (const_value: &ibitsize)
1183 && bitnum.is_constant (const_value: &ibitnum)
1184 && get_best_mode (ibitsize, ibitnum,
1185 bitregion_start, bitregion_end,
1186 MEM_ALIGN (str_rtx), INT_MAX,
1187 MEM_VOLATILE_P (str_rtx), &best_mode))
1188 addr_mode = best_mode;
1189 str_rtx = adjust_bitfield_address_size (str_rtx, addr_mode,
1190 offset, size);
1191 }
1192
1193 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1194 bitregion_start, bitregion_end,
1195 fieldmode, value, reverse, fallback_p: true, undefined_p))
1196 gcc_unreachable ();
1197}
1198
1199/* Use shifts and boolean operations to store VALUE into a bit field of
1200 width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined,
1201 it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is
1202 the mode of VALUE.
1203
1204 If REVERSE is true, the store is to be done in reverse order. */
1205
1206static void
1207store_fixed_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1208 unsigned HOST_WIDE_INT bitsize,
1209 unsigned HOST_WIDE_INT bitnum,
1210 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1211 rtx value, scalar_int_mode value_mode, bool reverse)
1212{
1213 /* There is a case not handled here:
1214 a structure with a known alignment of just a halfword
1215 and a field split across two aligned halfwords within the structure.
1216 Or likewise a structure with a known alignment of just a byte
1217 and a field split across two bytes.
1218 Such cases are not supposed to be able to occur. */
1219
1220 scalar_int_mode best_mode;
1221 if (MEM_P (op0))
1222 {
1223 unsigned int max_bitsize = BITS_PER_WORD;
1224 scalar_int_mode imode;
1225 if (op0_mode.exists (mode: &imode) && GET_MODE_BITSIZE (mode: imode) < max_bitsize)
1226 max_bitsize = GET_MODE_BITSIZE (mode: imode);
1227
1228 if (!get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1229 MEM_ALIGN (op0), max_bitsize, MEM_VOLATILE_P (op0),
1230 &best_mode))
1231 {
1232 /* The only way this should occur is if the field spans word
1233 boundaries. */
1234 store_split_bit_field (op0, op0_mode, bitsize, bitnum,
1235 bitregion_start, bitregion_end,
1236 value, value_mode, reverse);
1237 return;
1238 }
1239
1240 op0 = narrow_bit_field_mem (mem: op0, mode: best_mode, bitsize, bitnum, new_bitnum: &bitnum);
1241 }
1242 else
1243 best_mode = op0_mode.require ();
1244
1245 store_fixed_bit_field_1 (op0, best_mode, bitsize, bitnum,
1246 value, value_mode, reverse);
1247}
1248
1249/* Helper function for store_fixed_bit_field, stores
1250 the bit field always using MODE, which is the mode of OP0. The other
1251 arguments are as for store_fixed_bit_field. */
1252
1253static void
1254store_fixed_bit_field_1 (rtx op0, scalar_int_mode mode,
1255 unsigned HOST_WIDE_INT bitsize,
1256 unsigned HOST_WIDE_INT bitnum,
1257 rtx value, scalar_int_mode value_mode, bool reverse)
1258{
1259 rtx temp;
1260 int all_zero = 0;
1261 int all_one = 0;
1262
1263 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1264 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1265
1266 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1267 /* BITNUM is the distance between our msb
1268 and that of the containing datum.
1269 Convert it to the distance from the lsb. */
1270 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1271
1272 /* Now BITNUM is always the distance between our lsb
1273 and that of OP0. */
1274
1275 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1276 we must first convert its mode to MODE. */
1277
1278 if (CONST_INT_P (value))
1279 {
1280 unsigned HOST_WIDE_INT v = UINTVAL (value);
1281
1282 if (bitsize < HOST_BITS_PER_WIDE_INT)
1283 v &= (HOST_WIDE_INT_1U << bitsize) - 1;
1284
1285 if (v == 0)
1286 all_zero = 1;
1287 else if ((bitsize < HOST_BITS_PER_WIDE_INT
1288 && v == (HOST_WIDE_INT_1U << bitsize) - 1)
1289 || (bitsize == HOST_BITS_PER_WIDE_INT
1290 && v == HOST_WIDE_INT_M1U))
1291 all_one = 1;
1292
1293 value = lshift_value (mode, v, bitnum);
1294 }
1295 else
1296 {
1297 int must_and = (GET_MODE_BITSIZE (mode: value_mode) != bitsize
1298 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1299
1300 if (value_mode != mode)
1301 value = convert_to_mode (mode, value, 1);
1302
1303 if (must_and)
1304 value = expand_binop (mode, and_optab, value,
1305 mask_rtx (mode, bitpos: 0, bitsize, complement: 0),
1306 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1307 if (bitnum > 0)
1308 value = expand_shift (LSHIFT_EXPR, mode, value,
1309 bitnum, NULL_RTX, 1);
1310 }
1311
1312 if (reverse)
1313 value = flip_storage_order (mode, x: value);
1314
1315 /* Now clear the chosen bits in OP0,
1316 except that if VALUE is -1 we need not bother. */
1317 /* We keep the intermediates in registers to allow CSE to combine
1318 consecutive bitfield assignments. */
1319
1320 temp = force_reg (mode, op0);
1321
1322 if (! all_one)
1323 {
1324 rtx mask = mask_rtx (mode, bitpos: bitnum, bitsize, complement: 1);
1325 if (reverse)
1326 mask = flip_storage_order (mode, x: mask);
1327 temp = expand_binop (mode, and_optab, temp, mask,
1328 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1329 temp = force_reg (mode, temp);
1330 }
1331
1332 /* Now logical-or VALUE into OP0, unless it is zero. */
1333
1334 if (! all_zero)
1335 {
1336 temp = expand_binop (mode, ior_optab, temp, value,
1337 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1338 temp = force_reg (mode, temp);
1339 }
1340
1341 if (op0 != temp)
1342 {
1343 op0 = copy_rtx (op0);
1344 emit_move_insn (op0, temp);
1345 }
1346}
1347
1348/* Store a bit field that is split across multiple accessible memory objects.
1349
1350 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1351 BITSIZE is the field width; BITPOS the position of its first bit
1352 (within the word).
1353 VALUE is the value to store, which has mode VALUE_MODE.
1354 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
1355 a BLKmode MEM.
1356
1357 If REVERSE is true, the store is to be done in reverse order.
1358
1359 This does not yet handle fields wider than BITS_PER_WORD. */
1360
1361static void
1362store_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1363 unsigned HOST_WIDE_INT bitsize,
1364 unsigned HOST_WIDE_INT bitpos,
1365 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1366 rtx value, scalar_int_mode value_mode, bool reverse)
1367{
1368 unsigned int unit, total_bits, bitsdone = 0;
1369
1370 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1371 much at a time. */
1372 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1373 unit = BITS_PER_WORD;
1374 else
1375 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1376
1377 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1378 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1379 again, and we will mutually recurse forever. */
1380 if (MEM_P (op0) && op0_mode.exists ())
1381 unit = MIN (unit, GET_MODE_BITSIZE (op0_mode.require ()));
1382
1383 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1384 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1385 that VALUE might be a floating-point constant. */
1386 if (CONSTANT_P (value) && !CONST_INT_P (value))
1387 {
1388 rtx word = gen_lowpart_common (word_mode, value);
1389
1390 if (word && (value != word))
1391 value = word;
1392 else
1393 value = gen_lowpart_common (word_mode, force_reg (value_mode, value));
1394 value_mode = word_mode;
1395 }
1396
1397 total_bits = GET_MODE_BITSIZE (mode: value_mode);
1398
1399 while (bitsdone < bitsize)
1400 {
1401 unsigned HOST_WIDE_INT thissize;
1402 unsigned HOST_WIDE_INT thispos;
1403 unsigned HOST_WIDE_INT offset;
1404 rtx part;
1405
1406 offset = (bitpos + bitsdone) / unit;
1407 thispos = (bitpos + bitsdone) % unit;
1408
1409 /* When region of bytes we can touch is restricted, decrease
1410 UNIT close to the end of the region as needed. If op0 is a REG
1411 or SUBREG of REG, don't do this, as there can't be data races
1412 on a register and we can expand shorter code in some cases. */
1413 if (maybe_ne (a: bitregion_end, b: 0U)
1414 && unit > BITS_PER_UNIT
1415 && maybe_gt (bitpos + bitsdone - thispos + unit, bitregion_end + 1)
1416 && !REG_P (op0)
1417 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1418 {
1419 unit = unit / 2;
1420 continue;
1421 }
1422
1423 /* THISSIZE must not overrun a word boundary. Otherwise,
1424 store_fixed_bit_field will call us again, and we will mutually
1425 recurse forever. */
1426 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1427 thissize = MIN (thissize, unit - thispos);
1428
1429 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1430 {
1431 /* Fetch successively less significant portions. */
1432 if (CONST_INT_P (value))
1433 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1434 >> (bitsize - bitsdone - thissize))
1435 & ((HOST_WIDE_INT_1 << thissize) - 1));
1436 /* Likewise, but the source is little-endian. */
1437 else if (reverse)
1438 part = extract_fixed_bit_field (word_mode, value, value_mode,
1439 thissize,
1440 bitsize - bitsdone - thissize,
1441 NULL_RTX, 1, false);
1442 else
1443 /* The args are chosen so that the last part includes the
1444 lsb. Give extract_bit_field the value it needs (with
1445 endianness compensation) to fetch the piece we want. */
1446 part = extract_fixed_bit_field (word_mode, value, value_mode,
1447 thissize,
1448 total_bits - bitsize + bitsdone,
1449 NULL_RTX, 1, false);
1450 }
1451 else
1452 {
1453 /* Fetch successively more significant portions. */
1454 if (CONST_INT_P (value))
1455 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1456 >> bitsdone)
1457 & ((HOST_WIDE_INT_1 << thissize) - 1));
1458 /* Likewise, but the source is big-endian. */
1459 else if (reverse)
1460 part = extract_fixed_bit_field (word_mode, value, value_mode,
1461 thissize,
1462 total_bits - bitsdone - thissize,
1463 NULL_RTX, 1, false);
1464 else
1465 part = extract_fixed_bit_field (word_mode, value, value_mode,
1466 thissize, bitsdone, NULL_RTX,
1467 1, false);
1468 }
1469
1470 /* If OP0 is a register, then handle OFFSET here. */
1471 rtx op0_piece = op0;
1472 opt_scalar_int_mode op0_piece_mode = op0_mode;
1473 if (SUBREG_P (op0) || REG_P (op0))
1474 {
1475 scalar_int_mode imode;
1476 if (op0_mode.exists (mode: &imode)
1477 && GET_MODE_SIZE (mode: imode) < UNITS_PER_WORD)
1478 {
1479 if (offset)
1480 op0_piece = const0_rtx;
1481 }
1482 else
1483 {
1484 op0_piece = operand_subword_force (op0,
1485 offset * unit / BITS_PER_WORD,
1486 GET_MODE (op0));
1487 op0_piece_mode = word_mode;
1488 }
1489 offset &= BITS_PER_WORD / unit - 1;
1490 }
1491
1492 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1493 it is just an out-of-bounds access. Ignore it. */
1494 if (op0_piece != const0_rtx)
1495 store_fixed_bit_field (op0: op0_piece, op0_mode: op0_piece_mode, bitsize: thissize,
1496 bitnum: offset * unit + thispos, bitregion_start,
1497 bitregion_end, value: part, value_mode: word_mode, reverse);
1498 bitsdone += thissize;
1499 }
1500}
1501
1502/* A subroutine of extract_bit_field_1 that converts return value X
1503 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1504 to extract_bit_field. */
1505
1506static rtx
1507convert_extracted_bit_field (rtx x, machine_mode mode,
1508 machine_mode tmode, bool unsignedp)
1509{
1510 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1511 return x;
1512
1513 /* If the x mode is not a scalar integral, first convert to the
1514 integer mode of that size and then access it as a floating-point
1515 value via a SUBREG. */
1516 if (!SCALAR_INT_MODE_P (tmode))
1517 {
1518 scalar_int_mode int_mode = int_mode_for_mode (tmode).require ();
1519 x = convert_to_mode (int_mode, x, unsignedp);
1520 x = force_reg (int_mode, x);
1521 return gen_lowpart (tmode, x);
1522 }
1523
1524 return convert_to_mode (tmode, x, unsignedp);
1525}
1526
1527/* Try to use an ext(z)v pattern to extract a field from OP0.
1528 Return the extracted value on success, otherwise return null.
1529 EXTV describes the extraction instruction to use. If OP0_MODE
1530 is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM.
1531 The other arguments are as for extract_bit_field. */
1532
1533static rtx
1534extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1535 opt_scalar_int_mode op0_mode,
1536 unsigned HOST_WIDE_INT bitsize,
1537 unsigned HOST_WIDE_INT bitnum,
1538 int unsignedp, rtx target,
1539 machine_mode mode, machine_mode tmode)
1540{
1541 class expand_operand ops[4];
1542 rtx spec_target = target;
1543 rtx spec_target_subreg = 0;
1544 scalar_int_mode ext_mode = extv->field_mode;
1545 unsigned unit = GET_MODE_BITSIZE (mode: ext_mode);
1546
1547 if (bitsize == 0 || unit < bitsize)
1548 return NULL_RTX;
1549
1550 if (MEM_P (op0))
1551 /* Get a reference to the first byte of the field. */
1552 op0 = narrow_bit_field_mem (mem: op0, mode: extv->struct_mode, bitsize, bitnum,
1553 new_bitnum: &bitnum);
1554 else
1555 {
1556 /* Convert from counting within OP0 to counting in EXT_MODE. */
1557 if (BYTES_BIG_ENDIAN)
1558 bitnum += unit - GET_MODE_BITSIZE (mode: op0_mode.require ());
1559
1560 /* If op0 is a register, we need it in EXT_MODE to make it
1561 acceptable to the format of ext(z)v. */
1562 if (GET_CODE (op0) == SUBREG && op0_mode.require () != ext_mode)
1563 return NULL_RTX;
1564 if (REG_P (op0) && op0_mode.require () != ext_mode)
1565 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1566 }
1567
1568 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1569 "backwards" from the size of the unit we are extracting from.
1570 Otherwise, we count bits from the most significant on a
1571 BYTES/BITS_BIG_ENDIAN machine. */
1572
1573 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1574 bitnum = unit - bitsize - bitnum;
1575
1576 if (target == 0)
1577 target = spec_target = gen_reg_rtx (tmode);
1578
1579 if (GET_MODE (target) != ext_mode)
1580 {
1581 rtx temp;
1582 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1583 between the mode of the extraction (word_mode) and the target
1584 mode. Instead, create a temporary and use convert_move to set
1585 the target. */
1586 if (REG_P (target)
1587 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode)
1588 && (temp = gen_lowpart_if_possible (ext_mode, target)))
1589 {
1590 target = temp;
1591 if (partial_subreg_p (GET_MODE (spec_target), innermode: ext_mode))
1592 spec_target_subreg = target;
1593 }
1594 else
1595 target = gen_reg_rtx (ext_mode);
1596 }
1597
1598 create_output_operand (op: &ops[0], x: target, mode: ext_mode);
1599 create_fixed_operand (op: &ops[1], x: op0);
1600 create_integer_operand (&ops[2], bitsize);
1601 create_integer_operand (&ops[3], bitnum);
1602 if (maybe_expand_insn (icode: extv->icode, nops: 4, ops))
1603 {
1604 target = ops[0].value;
1605 if (target == spec_target)
1606 return target;
1607 if (target == spec_target_subreg)
1608 return spec_target;
1609 return convert_extracted_bit_field (x: target, mode, tmode, unsignedp);
1610 }
1611 return NULL_RTX;
1612}
1613
1614/* See whether it would be valid to extract the part of OP0 with
1615 mode OP0_MODE described by BITNUM and BITSIZE into a value of
1616 mode MODE using a subreg operation.
1617 Return the subreg if so, otherwise return null. */
1618
1619static rtx
1620extract_bit_field_as_subreg (machine_mode mode, rtx op0,
1621 machine_mode op0_mode,
1622 poly_uint64 bitsize, poly_uint64 bitnum)
1623{
1624 poly_uint64 bytenum;
1625 if (multiple_p (a: bitnum, BITS_PER_UNIT, multiple: &bytenum)
1626 && known_eq (bitsize, GET_MODE_BITSIZE (mode))
1627 && lowpart_bit_field_p (bitnum, bitsize, struct_mode: op0_mode)
1628 && TRULY_NOOP_TRUNCATION_MODES_P (mode, op0_mode))
1629 return simplify_gen_subreg (outermode: mode, op: op0, innermode: op0_mode, byte: bytenum);
1630 return NULL_RTX;
1631}
1632
1633/* A subroutine of extract_bit_field, with the same arguments.
1634 If UNSIGNEDP is -1, the result need not be sign or zero extended.
1635 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1636 if we can find no other means of implementing the operation.
1637 if FALLBACK_P is false, return NULL instead. */
1638
1639static rtx
1640extract_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
1641 int unsignedp, rtx target, machine_mode mode,
1642 machine_mode tmode, bool reverse, bool fallback_p,
1643 rtx *alt_rtl)
1644{
1645 rtx op0 = str_rtx;
1646 machine_mode mode1;
1647
1648 if (tmode == VOIDmode)
1649 tmode = mode;
1650
1651 while (GET_CODE (op0) == SUBREG)
1652 {
1653 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1654 op0 = SUBREG_REG (op0);
1655 }
1656
1657 /* If we have an out-of-bounds access to a register, just return an
1658 uninitialized register of the required mode. This can occur if the
1659 source code contains an out-of-bounds access to a small array. */
1660 if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
1661 return gen_reg_rtx (tmode);
1662
1663 if (REG_P (op0)
1664 && mode == GET_MODE (op0)
1665 && known_eq (bitnum, 0U)
1666 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
1667 {
1668 if (reverse)
1669 op0 = flip_storage_order (mode, x: op0);
1670 /* We're trying to extract a full register from itself. */
1671 return op0;
1672 }
1673
1674 /* First try to check for vector from vector extractions. */
1675 if (VECTOR_MODE_P (GET_MODE (op0))
1676 && !MEM_P (op0)
1677 && VECTOR_MODE_P (tmode)
1678 && known_eq (bitsize, GET_MODE_BITSIZE (tmode))
1679 && maybe_gt (GET_MODE_SIZE (GET_MODE (op0)), GET_MODE_SIZE (tmode)))
1680 {
1681 machine_mode new_mode = GET_MODE (op0);
1682 if (GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode))
1683 {
1684 scalar_mode inner_mode = GET_MODE_INNER (tmode);
1685 poly_uint64 nunits;
1686 if (!multiple_p (a: GET_MODE_BITSIZE (GET_MODE (op0)),
1687 GET_MODE_UNIT_BITSIZE (tmode), multiple: &nunits)
1688 || !related_vector_mode (tmode, inner_mode,
1689 nunits).exists (mode: &new_mode)
1690 || maybe_ne (a: GET_MODE_SIZE (mode: new_mode),
1691 b: GET_MODE_SIZE (GET_MODE (op0))))
1692 new_mode = VOIDmode;
1693 }
1694 poly_uint64 pos;
1695 if (new_mode != VOIDmode
1696 && (convert_optab_handler (op: vec_extract_optab, to_mode: new_mode, from_mode: tmode)
1697 != CODE_FOR_nothing)
1698 && multiple_p (a: bitnum, b: GET_MODE_BITSIZE (mode: tmode), multiple: &pos))
1699 {
1700 class expand_operand ops[3];
1701 machine_mode outermode = new_mode;
1702 machine_mode innermode = tmode;
1703 enum insn_code icode
1704 = convert_optab_handler (op: vec_extract_optab, to_mode: outermode, from_mode: innermode);
1705
1706 if (new_mode != GET_MODE (op0))
1707 op0 = gen_lowpart (new_mode, op0);
1708 create_output_operand (op: &ops[0], x: target, mode: innermode);
1709 ops[0].target = 1;
1710 create_input_operand (op: &ops[1], value: op0, mode: outermode);
1711 create_integer_operand (&ops[2], pos);
1712 if (maybe_expand_insn (icode, nops: 3, ops))
1713 {
1714 if (alt_rtl && ops[0].target)
1715 *alt_rtl = target;
1716 target = ops[0].value;
1717 if (GET_MODE (target) != mode)
1718 return gen_lowpart (tmode, target);
1719 return target;
1720 }
1721 }
1722 }
1723
1724 /* See if we can get a better vector mode before extracting. */
1725 if (VECTOR_MODE_P (GET_MODE (op0))
1726 && !MEM_P (op0)
1727 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1728 {
1729 machine_mode new_mode;
1730
1731 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1732 new_mode = MIN_MODE_VECTOR_FLOAT;
1733 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1734 new_mode = MIN_MODE_VECTOR_FRACT;
1735 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1736 new_mode = MIN_MODE_VECTOR_UFRACT;
1737 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1738 new_mode = MIN_MODE_VECTOR_ACCUM;
1739 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1740 new_mode = MIN_MODE_VECTOR_UACCUM;
1741 else
1742 new_mode = MIN_MODE_VECTOR_INT;
1743
1744 FOR_EACH_MODE_FROM (new_mode, new_mode)
1745 if (known_eq (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (GET_MODE (op0)))
1746 && known_eq (GET_MODE_UNIT_SIZE (new_mode), GET_MODE_SIZE (tmode))
1747 && targetm.vector_mode_supported_p (new_mode)
1748 && targetm.modes_tieable_p (GET_MODE (op0), new_mode))
1749 break;
1750 if (new_mode != VOIDmode)
1751 op0 = gen_lowpart (new_mode, op0);
1752 }
1753
1754 /* Use vec_extract patterns for extracting parts of vectors whenever
1755 available. If that fails, see whether the current modes and bitregion
1756 give a natural subreg. */
1757 machine_mode outermode = GET_MODE (op0);
1758 if (VECTOR_MODE_P (outermode) && !MEM_P (op0))
1759 {
1760 scalar_mode innermode = GET_MODE_INNER (outermode);
1761 enum insn_code icode
1762 = convert_optab_handler (op: vec_extract_optab, to_mode: outermode, from_mode: innermode);
1763 poly_uint64 pos;
1764 if (icode != CODE_FOR_nothing
1765 && known_eq (bitsize, GET_MODE_BITSIZE (innermode))
1766 && multiple_p (a: bitnum, b: GET_MODE_BITSIZE (mode: innermode), multiple: &pos))
1767 {
1768 class expand_operand ops[3];
1769
1770 create_output_operand (op: &ops[0], x: target, mode: innermode);
1771 ops[0].target = 1;
1772 create_input_operand (op: &ops[1], value: op0, mode: outermode);
1773 create_integer_operand (&ops[2], pos);
1774 if (maybe_expand_insn (icode, nops: 3, ops))
1775 {
1776 if (alt_rtl && ops[0].target)
1777 *alt_rtl = target;
1778 target = ops[0].value;
1779 if (GET_MODE (target) != mode)
1780 return gen_lowpart (tmode, target);
1781 return target;
1782 }
1783 }
1784 /* Using subregs is useful if we're extracting one register vector
1785 from a multi-register vector. extract_bit_field_as_subreg checks
1786 for valid bitsize and bitnum, so we don't need to do that here. */
1787 if (VECTOR_MODE_P (mode))
1788 {
1789 rtx sub = extract_bit_field_as_subreg (mode, op0, op0_mode: outermode,
1790 bitsize, bitnum);
1791 if (sub)
1792 return sub;
1793 }
1794 }
1795
1796 /* Make sure we are playing with integral modes. Pun with subregs
1797 if we aren't. */
1798 opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
1799 scalar_int_mode imode;
1800 if (!op0_mode.exists (mode: &imode) || imode != GET_MODE (op0))
1801 {
1802 if (MEM_P (op0))
1803 op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
1804 0, MEM_SIZE (op0));
1805 else if (op0_mode.exists (mode: &imode))
1806 {
1807 op0 = gen_lowpart (imode, op0);
1808
1809 /* If we got a SUBREG, force it into a register since we
1810 aren't going to be able to do another SUBREG on it. */
1811 if (GET_CODE (op0) == SUBREG)
1812 op0 = force_reg (imode, op0);
1813 }
1814 else
1815 {
1816 poly_int64 size = GET_MODE_SIZE (GET_MODE (op0));
1817 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1818 emit_move_insn (mem, op0);
1819 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1820 }
1821 }
1822
1823 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1824 If that's wrong, the solution is to test for it and set TARGET to 0
1825 if needed. */
1826
1827 /* Get the mode of the field to use for atomic access or subreg
1828 conversion. */
1829 if (!SCALAR_INT_MODE_P (tmode)
1830 || !mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0).exists (mode: &mode1))
1831 mode1 = mode;
1832 gcc_assert (mode1 != BLKmode);
1833
1834 /* Extraction of a full MODE1 value can be done with a subreg as long
1835 as the least significant bit of the value is the least significant
1836 bit of either OP0 or a word of OP0. */
1837 if (!MEM_P (op0) && !reverse && op0_mode.exists (mode: &imode))
1838 {
1839 rtx sub = extract_bit_field_as_subreg (mode: mode1, op0, op0_mode: imode,
1840 bitsize, bitnum);
1841 if (sub)
1842 return convert_extracted_bit_field (x: sub, mode, tmode, unsignedp);
1843 }
1844
1845 /* Extraction of a full MODE1 value can be done with a load as long as
1846 the field is on a byte boundary and is sufficiently aligned. */
1847 poly_uint64 bytenum;
1848 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode: mode1, bytenum: &bytenum))
1849 {
1850 op0 = adjust_bitfield_address (op0, mode1, bytenum);
1851 if (reverse)
1852 op0 = flip_storage_order (mode: mode1, x: op0);
1853 return convert_extracted_bit_field (x: op0, mode, tmode, unsignedp);
1854 }
1855
1856 /* If we have a memory source and a non-constant bit offset, restrict
1857 the memory to the referenced bytes. This is a worst-case fallback
1858 but is useful for things like vector booleans. */
1859 if (MEM_P (op0) && !bitnum.is_constant ())
1860 {
1861 bytenum = bits_to_bytes_round_down (bitnum);
1862 bitnum = num_trailing_bits (bitnum);
1863 poly_uint64 bytesize = bits_to_bytes_round_up (bitnum + bitsize);
1864 op0 = adjust_bitfield_address_size (op0, BLKmode, bytenum, bytesize);
1865 op0_mode = opt_scalar_int_mode ();
1866 }
1867
1868 /* It's possible we'll need to handle other cases here for
1869 polynomial bitnum and bitsize. */
1870
1871 /* From here on we need to be looking at a fixed-size insertion. */
1872 return extract_integral_bit_field (op0, op0_mode, bitsize.to_constant (),
1873 bitnum.to_constant (), unsignedp,
1874 target, mode, tmode, reverse, fallback_p);
1875}
1876
1877/* Subroutine of extract_bit_field_1, with the same arguments, except
1878 that BITSIZE and BITNUM are constant. Handle cases specific to
1879 integral modes. If OP0_MODE is defined, it is the mode of OP0,
1880 otherwise OP0 is a BLKmode MEM. */
1881
1882static rtx
1883extract_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1884 unsigned HOST_WIDE_INT bitsize,
1885 unsigned HOST_WIDE_INT bitnum, int unsignedp,
1886 rtx target, machine_mode mode, machine_mode tmode,
1887 bool reverse, bool fallback_p)
1888{
1889 /* Handle fields bigger than a word. */
1890
1891 if (bitsize > BITS_PER_WORD)
1892 {
1893 /* Here we transfer the words of the field
1894 in the order least significant first.
1895 This is because the most significant word is the one which may
1896 be less than full. */
1897
1898 const bool backwards = WORDS_BIG_ENDIAN;
1899 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1900 unsigned int i;
1901 rtx_insn *last;
1902
1903 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1904 target = gen_reg_rtx (mode);
1905
1906 /* In case we're about to clobber a base register or something
1907 (see gcc.c-torture/execute/20040625-1.c). */
1908 if (reg_mentioned_p (target, op0))
1909 target = gen_reg_rtx (mode);
1910
1911 /* Indicate for flow that the entire target reg is being set. */
1912 emit_clobber (target);
1913
1914 /* The mode must be fixed-size, since extract_bit_field_1 handles
1915 extractions from variable-sized objects before calling this
1916 function. */
1917 unsigned int target_size
1918 = GET_MODE_SIZE (GET_MODE (target)).to_constant ();
1919 last = get_last_insn ();
1920 for (i = 0; i < nwords; i++)
1921 {
1922 /* If I is 0, use the low-order word in both field and target;
1923 if I is 1, use the next to lowest word; and so on. */
1924 /* Word number in TARGET to use. */
1925 unsigned int wordnum
1926 = (backwards ? target_size / UNITS_PER_WORD - i - 1 : i);
1927 /* Offset from start of field in OP0. */
1928 unsigned int bit_offset = (backwards ^ reverse
1929 ? MAX ((int) bitsize - ((int) i + 1)
1930 * BITS_PER_WORD,
1931 0)
1932 : (int) i * BITS_PER_WORD);
1933 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1934 rtx result_part
1935 = extract_bit_field_1 (str_rtx: op0, MIN (BITS_PER_WORD,
1936 bitsize - i * BITS_PER_WORD),
1937 bitnum: bitnum + bit_offset,
1938 unsignedp: (unsignedp ? 1 : -1), target: target_part,
1939 mode, tmode: word_mode, reverse, fallback_p, NULL);
1940
1941 gcc_assert (target_part);
1942 if (!result_part)
1943 {
1944 delete_insns_since (last);
1945 return NULL;
1946 }
1947
1948 if (result_part != target_part)
1949 emit_move_insn (target_part, result_part);
1950 }
1951
1952 if (unsignedp)
1953 {
1954 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1955 need to be zero'd out. */
1956 if (target_size > nwords * UNITS_PER_WORD)
1957 {
1958 unsigned int i, total_words;
1959
1960 total_words = target_size / UNITS_PER_WORD;
1961 for (i = nwords; i < total_words; i++)
1962 emit_move_insn
1963 (operand_subword (target,
1964 backwards ? total_words - i - 1 : i,
1965 1, VOIDmode),
1966 const0_rtx);
1967 }
1968 return target;
1969 }
1970
1971 /* Signed bit field: sign-extend with two arithmetic shifts. */
1972 target = expand_shift (LSHIFT_EXPR, mode, target,
1973 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1974 return expand_shift (RSHIFT_EXPR, mode, target,
1975 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1976 }
1977
1978 /* If OP0 is a multi-word register, narrow it to the affected word.
1979 If the region spans two words, defer to extract_split_bit_field. */
1980 if (!MEM_P (op0) && GET_MODE_SIZE (mode: op0_mode.require ()) > UNITS_PER_WORD)
1981 {
1982 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
1983 {
1984 if (!fallback_p)
1985 return NULL_RTX;
1986 target = extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
1987 unsignedp, reverse);
1988 return convert_extracted_bit_field (x: target, mode, tmode, unsignedp);
1989 }
1990 /* If OP0 is a hard register, copy it to a pseudo before calling
1991 simplify_gen_subreg. */
1992 if (REG_P (op0) && HARD_REGISTER_P (op0))
1993 op0 = copy_to_reg (op0);
1994 op0 = simplify_gen_subreg (outermode: word_mode, op: op0, innermode: op0_mode.require (),
1995 byte: bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1996 op0_mode = word_mode;
1997 bitnum %= BITS_PER_WORD;
1998 }
1999
2000 /* From here on we know the desired field is smaller than a word.
2001 If OP0 is a register, it too fits within a word. */
2002 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
2003 extraction_insn extv;
2004 if (!MEM_P (op0)
2005 && !reverse
2006 /* ??? We could limit the structure size to the part of OP0 that
2007 contains the field, with appropriate checks for endianness
2008 and TARGET_TRULY_NOOP_TRUNCATION. */
2009 && get_best_reg_extraction_insn (&extv, pattern,
2010 GET_MODE_BITSIZE (mode: op0_mode.require ()),
2011 tmode))
2012 {
2013 rtx result = extract_bit_field_using_extv (extv: &extv, op0, op0_mode,
2014 bitsize, bitnum,
2015 unsignedp, target, mode,
2016 tmode);
2017 if (result)
2018 return result;
2019 }
2020
2021 /* If OP0 is a memory, try copying it to a register and seeing if a
2022 cheap register alternative is available. */
2023 if (MEM_P (op0) & !reverse)
2024 {
2025 if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
2026 tmode))
2027 {
2028 rtx result = extract_bit_field_using_extv (extv: &extv, op0, op0_mode,
2029 bitsize, bitnum,
2030 unsignedp, target, mode,
2031 tmode);
2032 if (result)
2033 return result;
2034 }
2035
2036 rtx_insn *last = get_last_insn ();
2037
2038 /* Try loading part of OP0 into a register and extracting the
2039 bitfield from that. */
2040 unsigned HOST_WIDE_INT bitpos;
2041 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
2042 bitregion_start: 0, bitregion_end: 0, fieldmode: tmode, new_bitnum: &bitpos);
2043 if (xop0)
2044 {
2045 xop0 = copy_to_reg (xop0);
2046 rtx result = extract_bit_field_1 (str_rtx: xop0, bitsize, bitnum: bitpos,
2047 unsignedp, target,
2048 mode, tmode, reverse, fallback_p: false, NULL);
2049 if (result)
2050 return result;
2051 delete_insns_since (last);
2052 }
2053 }
2054
2055 if (!fallback_p)
2056 return NULL;
2057
2058 /* Find a correspondingly-sized integer field, so we can apply
2059 shifts and masks to it. */
2060 scalar_int_mode int_mode;
2061 if (!int_mode_for_mode (tmode).exists (mode: &int_mode))
2062 /* If this fails, we should probably push op0 out to memory and then
2063 do a load. */
2064 int_mode = int_mode_for_mode (mode).require ();
2065
2066 target = extract_fixed_bit_field (int_mode, op0, op0_mode, bitsize,
2067 bitnum, target, unsignedp, reverse);
2068
2069 /* Complex values must be reversed piecewise, so we need to undo the global
2070 reversal, convert to the complex mode and reverse again. */
2071 if (reverse && COMPLEX_MODE_P (tmode))
2072 {
2073 target = flip_storage_order (mode: int_mode, x: target);
2074 target = convert_extracted_bit_field (x: target, mode, tmode, unsignedp);
2075 target = flip_storage_order (mode: tmode, x: target);
2076 }
2077 else
2078 target = convert_extracted_bit_field (x: target, mode, tmode, unsignedp);
2079
2080 return target;
2081}
2082
2083/* Generate code to extract a byte-field from STR_RTX
2084 containing BITSIZE bits, starting at BITNUM,
2085 and put it in TARGET if possible (if TARGET is nonzero).
2086 Regardless of TARGET, we return the rtx for where the value is placed.
2087
2088 STR_RTX is the structure containing the byte (a REG or MEM).
2089 UNSIGNEDP is nonzero if this is an unsigned bit field.
2090 MODE is the natural mode of the field value once extracted.
2091 TMODE is the mode the caller would like the value to have;
2092 but the value may be returned with type MODE instead.
2093
2094 If REVERSE is true, the extraction is to be done in reverse order.
2095
2096 If a TARGET is specified and we can store in it at no extra cost,
2097 we do so, and return TARGET.
2098 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
2099 if they are equally easy.
2100
2101 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
2102 then *ALT_RTL is set to TARGET (before legitimziation). */
2103
2104rtx
2105extract_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
2106 int unsignedp, rtx target, machine_mode mode,
2107 machine_mode tmode, bool reverse, rtx *alt_rtl)
2108{
2109 machine_mode mode1;
2110
2111 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
2112 if (maybe_ne (a: GET_MODE_BITSIZE (GET_MODE (str_rtx)), b: 0))
2113 mode1 = GET_MODE (str_rtx);
2114 else if (target && maybe_ne (a: GET_MODE_BITSIZE (GET_MODE (target)), b: 0))
2115 mode1 = GET_MODE (target);
2116 else
2117 mode1 = tmode;
2118
2119 unsigned HOST_WIDE_INT ibitsize, ibitnum;
2120 scalar_int_mode int_mode;
2121 if (bitsize.is_constant (const_value: &ibitsize)
2122 && bitnum.is_constant (const_value: &ibitnum)
2123 && is_a <scalar_int_mode> (m: mode1, result: &int_mode)
2124 && strict_volatile_bitfield_p (op0: str_rtx, bitsize: ibitsize, bitnum: ibitnum,
2125 fieldmode: int_mode, bitregion_start: 0, bitregion_end: 0))
2126 {
2127 /* Extraction of a full INT_MODE value can be done with a simple load.
2128 We know here that the field can be accessed with one single
2129 instruction. For targets that support unaligned memory,
2130 an unaligned access may be necessary. */
2131 if (ibitsize == GET_MODE_BITSIZE (mode: int_mode))
2132 {
2133 rtx result = adjust_bitfield_address (str_rtx, int_mode,
2134 ibitnum / BITS_PER_UNIT);
2135 if (reverse)
2136 result = flip_storage_order (mode: int_mode, x: result);
2137 gcc_assert (ibitnum % BITS_PER_UNIT == 0);
2138 return convert_extracted_bit_field (x: result, mode, tmode, unsignedp);
2139 }
2140
2141 str_rtx = narrow_bit_field_mem (mem: str_rtx, mode: int_mode, bitsize: ibitsize, bitnum: ibitnum,
2142 new_bitnum: &ibitnum);
2143 gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
2144 str_rtx = copy_to_reg (str_rtx);
2145 return extract_bit_field_1 (str_rtx, bitsize: ibitsize, bitnum: ibitnum, unsignedp,
2146 target, mode, tmode, reverse, fallback_p: true, alt_rtl);
2147 }
2148
2149 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
2150 target, mode, tmode, reverse, fallback_p: true, alt_rtl);
2151}
2152
2153/* Use shifts and boolean operations to extract a field of BITSIZE bits
2154 from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0,
2155 otherwise OP0 is a BLKmode MEM.
2156
2157 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
2158 If REVERSE is true, the extraction is to be done in reverse order.
2159
2160 If TARGET is nonzero, attempts to store the value there
2161 and return TARGET, but this is not guaranteed.
2162 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
2163
2164static rtx
2165extract_fixed_bit_field (machine_mode tmode, rtx op0,
2166 opt_scalar_int_mode op0_mode,
2167 unsigned HOST_WIDE_INT bitsize,
2168 unsigned HOST_WIDE_INT bitnum, rtx target,
2169 int unsignedp, bool reverse)
2170{
2171 scalar_int_mode mode;
2172 if (MEM_P (op0))
2173 {
2174 if (!get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0),
2175 BITS_PER_WORD, MEM_VOLATILE_P (op0), &mode))
2176 /* The only way this should occur is if the field spans word
2177 boundaries. */
2178 return extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
2179 unsignedp, reverse);
2180
2181 op0 = narrow_bit_field_mem (mem: op0, mode, bitsize, bitnum, new_bitnum: &bitnum);
2182 }
2183 else
2184 mode = op0_mode.require ();
2185
2186 return extract_fixed_bit_field_1 (tmode, op0, mode, bitsize, bitnum,
2187 target, unsignedp, reverse);
2188}
2189
2190/* Helper function for extract_fixed_bit_field, extracts
2191 the bit field always using MODE, which is the mode of OP0.
2192 If UNSIGNEDP is -1, the result need not be sign or zero extended.
2193 The other arguments are as for extract_fixed_bit_field. */
2194
2195static rtx
2196extract_fixed_bit_field_1 (machine_mode tmode, rtx op0, scalar_int_mode mode,
2197 unsigned HOST_WIDE_INT bitsize,
2198 unsigned HOST_WIDE_INT bitnum, rtx target,
2199 int unsignedp, bool reverse)
2200{
2201 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
2202 for invalid input, such as extract equivalent of f5 from
2203 gcc.dg/pr48335-2.c. */
2204
2205 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2206 /* BITNUM is the distance between our msb and that of OP0.
2207 Convert it to the distance from the lsb. */
2208 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
2209
2210 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
2211 We have reduced the big-endian case to the little-endian case. */
2212 if (reverse)
2213 op0 = flip_storage_order (mode, x: op0);
2214
2215 if (unsignedp)
2216 {
2217 if (bitnum)
2218 {
2219 /* If the field does not already start at the lsb,
2220 shift it so it does. */
2221 /* Maybe propagate the target for the shift. */
2222 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2223 if (tmode != mode)
2224 subtarget = 0;
2225 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
2226 }
2227 /* Convert the value to the desired mode. TMODE must also be a
2228 scalar integer for this conversion to make sense, since we
2229 shouldn't reinterpret the bits. */
2230 scalar_int_mode new_mode = as_a <scalar_int_mode> (m: tmode);
2231 if (mode != new_mode)
2232 op0 = convert_to_mode (new_mode, op0, 1);
2233
2234 /* Unless the msb of the field used to be the msb when we shifted,
2235 mask out the upper bits. */
2236
2237 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize
2238 && unsignedp != -1)
2239 return expand_binop (new_mode, and_optab, op0,
2240 mask_rtx (mode: new_mode, bitpos: 0, bitsize, complement: 0),
2241 target, 1, OPTAB_LIB_WIDEN);
2242 return op0;
2243 }
2244
2245 /* To extract a signed bit-field, first shift its msb to the msb of the word,
2246 then arithmetic-shift its lsb to the lsb of the word. */
2247 op0 = force_reg (mode, op0);
2248
2249 /* Find the narrowest integer mode that contains the field. */
2250
2251 opt_scalar_int_mode mode_iter;
2252 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2253 if (GET_MODE_BITSIZE (mode: mode_iter.require ()) >= bitsize + bitnum)
2254 break;
2255
2256 mode = mode_iter.require ();
2257 op0 = convert_to_mode (mode, op0, 0);
2258
2259 if (mode != tmode)
2260 target = 0;
2261
2262 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
2263 {
2264 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
2265 /* Maybe propagate the target for the shift. */
2266 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2267 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
2268 }
2269
2270 return expand_shift (RSHIFT_EXPR, mode, op0,
2271 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
2272}
2273
2274/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
2275 VALUE << BITPOS. */
2276
2277static rtx
2278lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
2279 int bitpos)
2280{
2281 return immed_wide_int_const (wi::lshift (x: value, y: bitpos), mode);
2282}
2283
2284/* Extract a bit field that is split across two words
2285 and return an RTX for the result.
2286
2287 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2288 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2289 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
2290 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
2291 a BLKmode MEM.
2292
2293 If REVERSE is true, the extraction is to be done in reverse order. */
2294
2295static rtx
2296extract_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
2297 unsigned HOST_WIDE_INT bitsize,
2298 unsigned HOST_WIDE_INT bitpos, int unsignedp,
2299 bool reverse)
2300{
2301 unsigned int unit;
2302 unsigned int bitsdone = 0;
2303 rtx result = NULL_RTX;
2304 int first = 1;
2305
2306 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2307 much at a time. */
2308 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2309 unit = BITS_PER_WORD;
2310 else
2311 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2312
2313 while (bitsdone < bitsize)
2314 {
2315 unsigned HOST_WIDE_INT thissize;
2316 rtx part;
2317 unsigned HOST_WIDE_INT thispos;
2318 unsigned HOST_WIDE_INT offset;
2319
2320 offset = (bitpos + bitsdone) / unit;
2321 thispos = (bitpos + bitsdone) % unit;
2322
2323 /* THISSIZE must not overrun a word boundary. Otherwise,
2324 extract_fixed_bit_field will call us again, and we will mutually
2325 recurse forever. */
2326 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2327 thissize = MIN (thissize, unit - thispos);
2328
2329 /* If OP0 is a register, then handle OFFSET here. */
2330 rtx op0_piece = op0;
2331 opt_scalar_int_mode op0_piece_mode = op0_mode;
2332 if (SUBREG_P (op0) || REG_P (op0))
2333 {
2334 op0_piece = operand_subword_force (op0, offset, op0_mode.require ());
2335 op0_piece_mode = word_mode;
2336 offset = 0;
2337 }
2338
2339 /* Extract the parts in bit-counting order,
2340 whose meaning is determined by BYTES_PER_UNIT.
2341 OFFSET is in UNITs, and UNIT is in bits. */
2342 part = extract_fixed_bit_field (tmode: word_mode, op0: op0_piece, op0_mode: op0_piece_mode,
2343 bitsize: thissize, bitnum: offset * unit + thispos,
2344 target: 0, unsignedp: 1, reverse);
2345 bitsdone += thissize;
2346
2347 /* Shift this part into place for the result. */
2348 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2349 {
2350 if (bitsize != bitsdone)
2351 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2352 bitsize - bitsdone, 0, 1);
2353 }
2354 else
2355 {
2356 if (bitsdone != thissize)
2357 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2358 bitsdone - thissize, 0, 1);
2359 }
2360
2361 if (first)
2362 result = part;
2363 else
2364 /* Combine the parts with bitwise or. This works
2365 because we extracted each part as an unsigned bit field. */
2366 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2367 OPTAB_LIB_WIDEN);
2368
2369 first = 0;
2370 }
2371
2372 /* Unsigned bit field: we are done. */
2373 if (unsignedp)
2374 return result;
2375 /* Signed bit field: sign-extend with two arithmetic shifts. */
2376 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2377 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2378 return expand_shift (RSHIFT_EXPR, word_mode, result,
2379 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2380}
2381
2382/* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2383 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2384 MODE, fill the upper bits with zeros. Fail if the layout of either
2385 mode is unknown (as for CC modes) or if the extraction would involve
2386 unprofitable mode punning. Return the value on success, otherwise
2387 return null.
2388
2389 This is different from gen_lowpart* in these respects:
2390
2391 - the returned value must always be considered an rvalue
2392
2393 - when MODE is wider than SRC_MODE, the extraction involves
2394 a zero extension
2395
2396 - when MODE is smaller than SRC_MODE, the extraction involves
2397 a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION).
2398
2399 In other words, this routine performs a computation, whereas the
2400 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2401 operations. */
2402
2403rtx
2404extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
2405{
2406 scalar_int_mode int_mode, src_int_mode;
2407
2408 if (mode == src_mode)
2409 return src;
2410
2411 if (CONSTANT_P (src))
2412 {
2413 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2414 fails, it will happily create (subreg (symbol_ref)) or similar
2415 invalid SUBREGs. */
2416 poly_uint64 byte = subreg_lowpart_offset (outermode: mode, innermode: src_mode);
2417 rtx ret = simplify_subreg (outermode: mode, op: src, innermode: src_mode, byte);
2418 if (ret)
2419 return ret;
2420
2421 if (GET_MODE (src) == VOIDmode
2422 || !validate_subreg (mode, src_mode, src, byte))
2423 return NULL_RTX;
2424
2425 src = force_reg (GET_MODE (src), src);
2426 return gen_rtx_SUBREG (mode, src, byte);
2427 }
2428
2429 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2430 return NULL_RTX;
2431
2432 if (known_eq (GET_MODE_BITSIZE (mode), GET_MODE_BITSIZE (src_mode))
2433 && targetm.modes_tieable_p (mode, src_mode))
2434 {
2435 rtx x = gen_lowpart_common (mode, src);
2436 if (x)
2437 return x;
2438 }
2439
2440 if (!int_mode_for_mode (src_mode).exists (mode: &src_int_mode)
2441 || !int_mode_for_mode (mode).exists (mode: &int_mode))
2442 return NULL_RTX;
2443
2444 if (!targetm.modes_tieable_p (src_int_mode, src_mode))
2445 return NULL_RTX;
2446 if (!targetm.modes_tieable_p (int_mode, mode))
2447 return NULL_RTX;
2448
2449 src = gen_lowpart (src_int_mode, src);
2450 if (!validate_subreg (int_mode, src_int_mode, src,
2451 subreg_lowpart_offset (outermode: int_mode, innermode: src_int_mode)))
2452 return NULL_RTX;
2453
2454 src = convert_modes (mode: int_mode, oldmode: src_int_mode, x: src, unsignedp: true);
2455 src = gen_lowpart (mode, src);
2456 return src;
2457}
2458
2459/* Add INC into TARGET. */
2460
2461void
2462expand_inc (rtx target, rtx inc)
2463{
2464 rtx value = expand_binop (GET_MODE (target), add_optab,
2465 target, inc,
2466 target, 0, OPTAB_LIB_WIDEN);
2467 if (value != target)
2468 emit_move_insn (target, value);
2469}
2470
2471/* Subtract DEC from TARGET. */
2472
2473void
2474expand_dec (rtx target, rtx dec)
2475{
2476 rtx value = expand_binop (GET_MODE (target), sub_optab,
2477 target, dec,
2478 target, 0, OPTAB_LIB_WIDEN);
2479 if (value != target)
2480 emit_move_insn (target, value);
2481}
2482
2483/* Output a shift instruction for expression code CODE,
2484 with SHIFTED being the rtx for the value to shift,
2485 and AMOUNT the rtx for the amount to shift by.
2486 Store the result in the rtx TARGET, if that is convenient.
2487 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2488 Return the rtx for where the value is.
2489 If that cannot be done, abort the compilation unless MAY_FAIL is true,
2490 in which case 0 is returned. */
2491
2492static rtx
2493expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
2494 rtx amount, rtx target, int unsignedp, bool may_fail = false)
2495{
2496 rtx op1, temp = 0;
2497 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2498 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2499 optab lshift_optab = ashl_optab;
2500 optab rshift_arith_optab = ashr_optab;
2501 optab rshift_uns_optab = lshr_optab;
2502 optab lrotate_optab = rotl_optab;
2503 optab rrotate_optab = rotr_optab;
2504 machine_mode op1_mode;
2505 scalar_mode scalar_mode = GET_MODE_INNER (mode);
2506 int attempt;
2507 bool speed = optimize_insn_for_speed_p ();
2508
2509 op1 = amount;
2510 op1_mode = GET_MODE (op1);
2511
2512 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2513 shift amount is a vector, use the vector/vector shift patterns. */
2514 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2515 {
2516 lshift_optab = vashl_optab;
2517 rshift_arith_optab = vashr_optab;
2518 rshift_uns_optab = vlshr_optab;
2519 lrotate_optab = vrotl_optab;
2520 rrotate_optab = vrotr_optab;
2521 }
2522
2523 /* Previously detected shift-counts computed by NEGATE_EXPR
2524 and shifted in the other direction; but that does not work
2525 on all machines. */
2526
2527 if (SHIFT_COUNT_TRUNCATED)
2528 {
2529 if (CONST_INT_P (op1)
2530 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2531 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode: scalar_mode)))
2532 op1 = gen_int_shift_amount (mode,
2533 (unsigned HOST_WIDE_INT) INTVAL (op1)
2534 % GET_MODE_BITSIZE (mode: scalar_mode));
2535 else if (GET_CODE (op1) == SUBREG
2536 && subreg_lowpart_p (op1)
2537 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2538 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2539 op1 = SUBREG_REG (op1);
2540 }
2541
2542 /* Canonicalize rotates by constant amount. We may canonicalize
2543 to reduce the immediate or if the ISA can rotate by constants
2544 in only on direction. */
2545 if (rotate && reverse_rotate_by_imm_p (scalar_mode, left, op1))
2546 {
2547 op1 = gen_int_shift_amount (mode, (GET_MODE_BITSIZE (mode: scalar_mode)
2548 - INTVAL (op1)));
2549 left = !left;
2550 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2551 }
2552
2553 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2554 Note that this is not the case for bigger values. For instance a rotation
2555 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2556 0x04030201 (bswapsi). */
2557 if (rotate
2558 && CONST_INT_P (op1)
2559 && INTVAL (op1) == BITS_PER_UNIT
2560 && GET_MODE_SIZE (mode: scalar_mode) == 2
2561 && optab_handler (op: bswap_optab, mode) != CODE_FOR_nothing)
2562 return expand_unop (mode, bswap_optab, shifted, NULL_RTX, unsignedp);
2563
2564 if (op1 == const0_rtx)
2565 return shifted;
2566
2567 /* Check whether its cheaper to implement a left shift by a constant
2568 bit count by a sequence of additions. */
2569 if (code == LSHIFT_EXPR
2570 && CONST_INT_P (op1)
2571 && INTVAL (op1) > 0
2572 && INTVAL (op1) < GET_MODE_PRECISION (mode: scalar_mode)
2573 && INTVAL (op1) < MAX_BITS_PER_WORD
2574 && (shift_cost (speed, mode, INTVAL (op1))
2575 > INTVAL (op1) * add_cost (speed, mode))
2576 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2577 {
2578 int i;
2579 for (i = 0; i < INTVAL (op1); i++)
2580 {
2581 temp = force_reg (mode, shifted);
2582 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2583 unsignedp, OPTAB_LIB_WIDEN);
2584 }
2585 return shifted;
2586 }
2587
2588 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2589 {
2590 enum optab_methods methods;
2591
2592 if (attempt == 0)
2593 methods = OPTAB_DIRECT;
2594 else if (attempt == 1)
2595 methods = OPTAB_WIDEN;
2596 else
2597 methods = OPTAB_LIB_WIDEN;
2598
2599 if (rotate)
2600 {
2601 /* Widening does not work for rotation. */
2602 if (methods == OPTAB_WIDEN)
2603 continue;
2604 else if (methods == OPTAB_LIB_WIDEN)
2605 {
2606 /* If we have been unable to open-code this by a rotation,
2607 do it as the IOR of two shifts. I.e., to rotate A
2608 by N bits, compute
2609 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2610 where C is the bitsize of A.
2611
2612 It is theoretically possible that the target machine might
2613 not be able to perform either shift and hence we would
2614 be making two libcalls rather than just the one for the
2615 shift (similarly if IOR could not be done). We will allow
2616 this extremely unlikely lossage to avoid complicating the
2617 code below. */
2618
2619 rtx subtarget = target == shifted ? 0 : target;
2620 rtx new_amount, other_amount;
2621 rtx temp1;
2622
2623 new_amount = op1;
2624 if (op1 == const0_rtx)
2625 return shifted;
2626 else if (CONST_INT_P (op1))
2627 other_amount = gen_int_shift_amount
2628 (mode, GET_MODE_BITSIZE (mode: scalar_mode) - INTVAL (op1));
2629 else
2630 {
2631 other_amount
2632 = simplify_gen_unary (code: NEG, GET_MODE (op1),
2633 op: op1, GET_MODE (op1));
2634 HOST_WIDE_INT mask = GET_MODE_PRECISION (mode: scalar_mode) - 1;
2635 other_amount
2636 = simplify_gen_binary (code: AND, GET_MODE (op1), op0: other_amount,
2637 op1: gen_int_mode (mask, GET_MODE (op1)));
2638 }
2639
2640 shifted = force_reg (mode, shifted);
2641
2642 temp = expand_shift_1 (code: left ? LSHIFT_EXPR : RSHIFT_EXPR,
2643 mode, shifted, amount: new_amount, target: 0, unsignedp: 1);
2644 temp1 = expand_shift_1 (code: left ? RSHIFT_EXPR : LSHIFT_EXPR,
2645 mode, shifted, amount: other_amount,
2646 target: subtarget, unsignedp: 1);
2647 return expand_binop (mode, ior_optab, temp, temp1, target,
2648 unsignedp, methods);
2649 }
2650
2651 temp = expand_binop (mode,
2652 left ? lrotate_optab : rrotate_optab,
2653 shifted, op1, target, unsignedp, methods);
2654 }
2655 else if (unsignedp)
2656 temp = expand_binop (mode,
2657 left ? lshift_optab : rshift_uns_optab,
2658 shifted, op1, target, unsignedp, methods);
2659
2660 /* Do arithmetic shifts.
2661 Also, if we are going to widen the operand, we can just as well
2662 use an arithmetic right-shift instead of a logical one. */
2663 if (temp == 0 && ! rotate
2664 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2665 {
2666 enum optab_methods methods1 = methods;
2667
2668 /* If trying to widen a log shift to an arithmetic shift,
2669 don't accept an arithmetic shift of the same size. */
2670 if (unsignedp)
2671 methods1 = OPTAB_MUST_WIDEN;
2672
2673 /* Arithmetic shift */
2674
2675 temp = expand_binop (mode,
2676 left ? lshift_optab : rshift_arith_optab,
2677 shifted, op1, target, unsignedp, methods1);
2678 }
2679
2680 /* We used to try extzv here for logical right shifts, but that was
2681 only useful for one machine, the VAX, and caused poor code
2682 generation there for lshrdi3, so the code was deleted and a
2683 define_expand for lshrsi3 was added to vax.md. */
2684 }
2685
2686 gcc_assert (temp != NULL_RTX || may_fail);
2687 return temp;
2688}
2689
2690/* Output a shift instruction for expression code CODE,
2691 with SHIFTED being the rtx for the value to shift,
2692 and AMOUNT the amount to shift by.
2693 Store the result in the rtx TARGET, if that is convenient.
2694 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2695 Return the rtx for where the value is. */
2696
2697rtx
2698expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2699 poly_int64 amount, rtx target, int unsignedp)
2700{
2701 return expand_shift_1 (code, mode, shifted,
2702 amount: gen_int_shift_amount (mode, amount),
2703 target, unsignedp);
2704}
2705
2706/* Likewise, but return 0 if that cannot be done. */
2707
2708rtx
2709maybe_expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2710 int amount, rtx target, int unsignedp)
2711{
2712 return expand_shift_1 (code, mode,
2713 shifted, GEN_INT (amount), target, unsignedp, may_fail: true);
2714}
2715
2716/* Output a shift instruction for expression code CODE,
2717 with SHIFTED being the rtx for the value to shift,
2718 and AMOUNT the tree for the amount to shift by.
2719 Store the result in the rtx TARGET, if that is convenient.
2720 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2721 Return the rtx for where the value is. */
2722
2723rtx
2724expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
2725 tree amount, rtx target, int unsignedp)
2726{
2727 return expand_shift_1 (code, mode,
2728 shifted, amount: expand_normal (exp: amount), target, unsignedp);
2729}
2730
2731
2732static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2733 const struct mult_cost *, machine_mode mode);
2734static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
2735 const struct algorithm *, enum mult_variant);
2736static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2737static rtx extract_high_half (scalar_int_mode, rtx);
2738static rtx expmed_mult_highpart (scalar_int_mode, rtx, rtx, rtx, int, int);
2739static rtx expmed_mult_highpart_optab (scalar_int_mode, rtx, rtx, rtx,
2740 int, int);
2741/* Compute and return the best algorithm for multiplying by T.
2742 The algorithm must cost less than cost_limit
2743 If retval.cost >= COST_LIMIT, no algorithm was found and all
2744 other field of the returned struct are undefined.
2745 MODE is the machine mode of the multiplication. */
2746
2747static void
2748synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2749 const struct mult_cost *cost_limit, machine_mode mode)
2750{
2751 int m;
2752 struct algorithm *alg_in, *best_alg;
2753 struct mult_cost best_cost;
2754 struct mult_cost new_limit;
2755 int op_cost, op_latency;
2756 unsigned HOST_WIDE_INT orig_t = t;
2757 unsigned HOST_WIDE_INT q;
2758 int maxm, hash_index;
2759 bool cache_hit = false;
2760 enum alg_code cache_alg = alg_zero;
2761 bool speed = optimize_insn_for_speed_p ();
2762 scalar_int_mode imode;
2763 struct alg_hash_entry *entry_ptr;
2764
2765 /* Indicate that no algorithm is yet found. If no algorithm
2766 is found, this value will be returned and indicate failure. */
2767 alg_out->cost.cost = cost_limit->cost + 1;
2768 alg_out->cost.latency = cost_limit->latency + 1;
2769
2770 if (cost_limit->cost < 0
2771 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2772 return;
2773
2774 /* Be prepared for vector modes. */
2775 imode = as_a <scalar_int_mode> (GET_MODE_INNER (mode));
2776
2777 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2778
2779 /* Restrict the bits of "t" to the multiplication's mode. */
2780 t &= GET_MODE_MASK (imode);
2781
2782 /* t == 1 can be done in zero cost. */
2783 if (t == 1)
2784 {
2785 alg_out->ops = 1;
2786 alg_out->cost.cost = 0;
2787 alg_out->cost.latency = 0;
2788 alg_out->op[0] = alg_m;
2789 return;
2790 }
2791
2792 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2793 fail now. */
2794 if (t == 0)
2795 {
2796 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2797 return;
2798 else
2799 {
2800 alg_out->ops = 1;
2801 alg_out->cost.cost = zero_cost (speed);
2802 alg_out->cost.latency = zero_cost (speed);
2803 alg_out->op[0] = alg_zero;
2804 return;
2805 }
2806 }
2807
2808 /* We'll be needing a couple extra algorithm structures now. */
2809
2810 alg_in = XALLOCA (struct algorithm);
2811 best_alg = XALLOCA (struct algorithm);
2812 best_cost = *cost_limit;
2813
2814 /* Compute the hash index. */
2815 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2816
2817 /* See if we already know what to do for T. */
2818 entry_ptr = alg_hash_entry_ptr (idx: hash_index);
2819 if (entry_ptr->t == t
2820 && entry_ptr->mode == mode
2821 && entry_ptr->speed == speed
2822 && entry_ptr->alg != alg_unknown)
2823 {
2824 cache_alg = entry_ptr->alg;
2825
2826 if (cache_alg == alg_impossible)
2827 {
2828 /* The cache tells us that it's impossible to synthesize
2829 multiplication by T within entry_ptr->cost. */
2830 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2831 /* COST_LIMIT is at least as restrictive as the one
2832 recorded in the hash table, in which case we have no
2833 hope of synthesizing a multiplication. Just
2834 return. */
2835 return;
2836
2837 /* If we get here, COST_LIMIT is less restrictive than the
2838 one recorded in the hash table, so we may be able to
2839 synthesize a multiplication. Proceed as if we didn't
2840 have the cache entry. */
2841 }
2842 else
2843 {
2844 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2845 /* The cached algorithm shows that this multiplication
2846 requires more cost than COST_LIMIT. Just return. This
2847 way, we don't clobber this cache entry with
2848 alg_impossible but retain useful information. */
2849 return;
2850
2851 cache_hit = true;
2852
2853 switch (cache_alg)
2854 {
2855 case alg_shift:
2856 goto do_alg_shift;
2857
2858 case alg_add_t_m2:
2859 case alg_sub_t_m2:
2860 goto do_alg_addsub_t_m2;
2861
2862 case alg_add_factor:
2863 case alg_sub_factor:
2864 goto do_alg_addsub_factor;
2865
2866 case alg_add_t2_m:
2867 goto do_alg_add_t2_m;
2868
2869 case alg_sub_t2_m:
2870 goto do_alg_sub_t2_m;
2871
2872 default:
2873 gcc_unreachable ();
2874 }
2875 }
2876 }
2877
2878 /* If we have a group of zero bits at the low-order part of T, try
2879 multiplying by the remaining bits and then doing a shift. */
2880
2881 if ((t & 1) == 0)
2882 {
2883 do_alg_shift:
2884 m = ctz_or_zero (x: t); /* m = number of low zero bits */
2885 if (m < maxm)
2886 {
2887 q = t >> m;
2888 /* The function expand_shift will choose between a shift and
2889 a sequence of additions, so the observed cost is given as
2890 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2891 op_cost = m * add_cost (speed, mode);
2892 if (shift_cost (speed, mode, bits: m) < op_cost)
2893 op_cost = shift_cost (speed, mode, bits: m);
2894 new_limit.cost = best_cost.cost - op_cost;
2895 new_limit.latency = best_cost.latency - op_cost;
2896 synth_mult (alg_out: alg_in, t: q, cost_limit: &new_limit, mode);
2897
2898 alg_in->cost.cost += op_cost;
2899 alg_in->cost.latency += op_cost;
2900 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2901 {
2902 best_cost = alg_in->cost;
2903 std::swap (a&: alg_in, b&: best_alg);
2904 best_alg->log[best_alg->ops] = m;
2905 best_alg->op[best_alg->ops] = alg_shift;
2906 }
2907
2908 /* See if treating ORIG_T as a signed number yields a better
2909 sequence. Try this sequence only for a negative ORIG_T
2910 as it would be useless for a non-negative ORIG_T. */
2911 if ((HOST_WIDE_INT) orig_t < 0)
2912 {
2913 /* Shift ORIG_T as follows because a right shift of a
2914 negative-valued signed type is implementation
2915 defined. */
2916 q = ~(~orig_t >> m);
2917 /* The function expand_shift will choose between a shift
2918 and a sequence of additions, so the observed cost is
2919 given as MIN (m * add_cost(speed, mode),
2920 shift_cost(speed, mode, m)). */
2921 op_cost = m * add_cost (speed, mode);
2922 if (shift_cost (speed, mode, bits: m) < op_cost)
2923 op_cost = shift_cost (speed, mode, bits: m);
2924 new_limit.cost = best_cost.cost - op_cost;
2925 new_limit.latency = best_cost.latency - op_cost;
2926 synth_mult (alg_out: alg_in, t: q, cost_limit: &new_limit, mode);
2927
2928 alg_in->cost.cost += op_cost;
2929 alg_in->cost.latency += op_cost;
2930 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2931 {
2932 best_cost = alg_in->cost;
2933 std::swap (a&: alg_in, b&: best_alg);
2934 best_alg->log[best_alg->ops] = m;
2935 best_alg->op[best_alg->ops] = alg_shift;
2936 }
2937 }
2938 }
2939 if (cache_hit)
2940 goto done;
2941 }
2942
2943 /* If we have an odd number, add or subtract one. */
2944 if ((t & 1) != 0)
2945 {
2946 unsigned HOST_WIDE_INT w;
2947
2948 do_alg_addsub_t_m2:
2949 for (w = 1; (w & t) != 0; w <<= 1)
2950 ;
2951 /* If T was -1, then W will be zero after the loop. This is another
2952 case where T ends with ...111. Handling this with (T + 1) and
2953 subtract 1 produces slightly better code and results in algorithm
2954 selection much faster than treating it like the ...0111 case
2955 below. */
2956 if (w == 0
2957 || (w > 2
2958 /* Reject the case where t is 3.
2959 Thus we prefer addition in that case. */
2960 && t != 3))
2961 {
2962 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2963
2964 op_cost = add_cost (speed, mode);
2965 new_limit.cost = best_cost.cost - op_cost;
2966 new_limit.latency = best_cost.latency - op_cost;
2967 synth_mult (alg_out: alg_in, t: t + 1, cost_limit: &new_limit, mode);
2968
2969 alg_in->cost.cost += op_cost;
2970 alg_in->cost.latency += op_cost;
2971 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2972 {
2973 best_cost = alg_in->cost;
2974 std::swap (a&: alg_in, b&: best_alg);
2975 best_alg->log[best_alg->ops] = 0;
2976 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2977 }
2978 }
2979 else
2980 {
2981 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2982
2983 op_cost = add_cost (speed, mode);
2984 new_limit.cost = best_cost.cost - op_cost;
2985 new_limit.latency = best_cost.latency - op_cost;
2986 synth_mult (alg_out: alg_in, t: t - 1, cost_limit: &new_limit, mode);
2987
2988 alg_in->cost.cost += op_cost;
2989 alg_in->cost.latency += op_cost;
2990 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2991 {
2992 best_cost = alg_in->cost;
2993 std::swap (a&: alg_in, b&: best_alg);
2994 best_alg->log[best_alg->ops] = 0;
2995 best_alg->op[best_alg->ops] = alg_add_t_m2;
2996 }
2997 }
2998
2999 /* We may be able to calculate a * -7, a * -15, a * -31, etc
3000 quickly with a - a * n for some appropriate constant n. */
3001 m = exact_log2 (x: -orig_t + 1);
3002 if (m >= 0 && m < maxm)
3003 {
3004 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, bits: m);
3005 /* If the target has a cheap shift-and-subtract insn use
3006 that in preference to a shift insn followed by a sub insn.
3007 Assume that the shift-and-sub is "atomic" with a latency
3008 equal to it's cost, otherwise assume that on superscalar
3009 hardware the shift may be executed concurrently with the
3010 earlier steps in the algorithm. */
3011 if (shiftsub1_cost (speed, mode, bits: m) <= op_cost)
3012 {
3013 op_cost = shiftsub1_cost (speed, mode, bits: m);
3014 op_latency = op_cost;
3015 }
3016 else
3017 op_latency = add_cost (speed, mode);
3018
3019 new_limit.cost = best_cost.cost - op_cost;
3020 new_limit.latency = best_cost.latency - op_latency;
3021 synth_mult (alg_out: alg_in, t: (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
3022 cost_limit: &new_limit, mode);
3023
3024 alg_in->cost.cost += op_cost;
3025 alg_in->cost.latency += op_latency;
3026 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3027 {
3028 best_cost = alg_in->cost;
3029 std::swap (a&: alg_in, b&: best_alg);
3030 best_alg->log[best_alg->ops] = m;
3031 best_alg->op[best_alg->ops] = alg_sub_t_m2;
3032 }
3033 }
3034
3035 if (cache_hit)
3036 goto done;
3037 }
3038
3039 /* Look for factors of t of the form
3040 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
3041 If we find such a factor, we can multiply by t using an algorithm that
3042 multiplies by q, shift the result by m and add/subtract it to itself.
3043
3044 We search for large factors first and loop down, even if large factors
3045 are less probable than small; if we find a large factor we will find a
3046 good sequence quickly, and therefore be able to prune (by decreasing
3047 COST_LIMIT) the search. */
3048
3049 do_alg_addsub_factor:
3050 for (m = floor_log2 (x: t - 1); m >= 2; m--)
3051 {
3052 unsigned HOST_WIDE_INT d;
3053
3054 d = (HOST_WIDE_INT_1U << m) + 1;
3055 if (t % d == 0 && t > d && m < maxm
3056 && (!cache_hit || cache_alg == alg_add_factor))
3057 {
3058 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, bits: m);
3059 if (shiftadd_cost (speed, mode, bits: m) <= op_cost)
3060 op_cost = shiftadd_cost (speed, mode, bits: m);
3061
3062 op_latency = op_cost;
3063
3064
3065 new_limit.cost = best_cost.cost - op_cost;
3066 new_limit.latency = best_cost.latency - op_latency;
3067 synth_mult (alg_out: alg_in, t: t / d, cost_limit: &new_limit, mode);
3068
3069 alg_in->cost.cost += op_cost;
3070 alg_in->cost.latency += op_latency;
3071 if (alg_in->cost.latency < op_cost)
3072 alg_in->cost.latency = op_cost;
3073 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3074 {
3075 best_cost = alg_in->cost;
3076 std::swap (a&: alg_in, b&: best_alg);
3077 best_alg->log[best_alg->ops] = m;
3078 best_alg->op[best_alg->ops] = alg_add_factor;
3079 }
3080 /* Other factors will have been taken care of in the recursion. */
3081 break;
3082 }
3083
3084 d = (HOST_WIDE_INT_1U << m) - 1;
3085 if (t % d == 0 && t > d && m < maxm
3086 && (!cache_hit || cache_alg == alg_sub_factor))
3087 {
3088 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, bits: m);
3089 if (shiftsub0_cost (speed, mode, bits: m) <= op_cost)
3090 op_cost = shiftsub0_cost (speed, mode, bits: m);
3091
3092 op_latency = op_cost;
3093
3094 new_limit.cost = best_cost.cost - op_cost;
3095 new_limit.latency = best_cost.latency - op_latency;
3096 synth_mult (alg_out: alg_in, t: t / d, cost_limit: &new_limit, mode);
3097
3098 alg_in->cost.cost += op_cost;
3099 alg_in->cost.latency += op_latency;
3100 if (alg_in->cost.latency < op_cost)
3101 alg_in->cost.latency = op_cost;
3102 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3103 {
3104 best_cost = alg_in->cost;
3105 std::swap (a&: alg_in, b&: best_alg);
3106 best_alg->log[best_alg->ops] = m;
3107 best_alg->op[best_alg->ops] = alg_sub_factor;
3108 }
3109 break;
3110 }
3111 }
3112 if (cache_hit)
3113 goto done;
3114
3115 /* Try shift-and-add (load effective address) instructions,
3116 i.e. do a*3, a*5, a*9. */
3117 if ((t & 1) != 0)
3118 {
3119 do_alg_add_t2_m:
3120 q = t - 1;
3121 m = ctz_hwi (x: q);
3122 if (q && m < maxm)
3123 {
3124 op_cost = shiftadd_cost (speed, mode, bits: m);
3125 new_limit.cost = best_cost.cost - op_cost;
3126 new_limit.latency = best_cost.latency - op_cost;
3127 synth_mult (alg_out: alg_in, t: (t - 1) >> m, cost_limit: &new_limit, mode);
3128
3129 alg_in->cost.cost += op_cost;
3130 alg_in->cost.latency += op_cost;
3131 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3132 {
3133 best_cost = alg_in->cost;
3134 std::swap (a&: alg_in, b&: best_alg);
3135 best_alg->log[best_alg->ops] = m;
3136 best_alg->op[best_alg->ops] = alg_add_t2_m;
3137 }
3138 }
3139 if (cache_hit)
3140 goto done;
3141
3142 do_alg_sub_t2_m:
3143 q = t + 1;
3144 m = ctz_hwi (x: q);
3145 if (q && m < maxm)
3146 {
3147 op_cost = shiftsub0_cost (speed, mode, bits: m);
3148 new_limit.cost = best_cost.cost - op_cost;
3149 new_limit.latency = best_cost.latency - op_cost;
3150 synth_mult (alg_out: alg_in, t: (t + 1) >> m, cost_limit: &new_limit, mode);
3151
3152 alg_in->cost.cost += op_cost;
3153 alg_in->cost.latency += op_cost;
3154 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3155 {
3156 best_cost = alg_in->cost;
3157 std::swap (a&: alg_in, b&: best_alg);
3158 best_alg->log[best_alg->ops] = m;
3159 best_alg->op[best_alg->ops] = alg_sub_t2_m;
3160 }
3161 }
3162 if (cache_hit)
3163 goto done;
3164 }
3165
3166 done:
3167 /* If best_cost has not decreased, we have not found any algorithm. */
3168 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
3169 {
3170 /* We failed to find an algorithm. Record alg_impossible for
3171 this case (that is, <T, MODE, COST_LIMIT>) so that next time
3172 we are asked to find an algorithm for T within the same or
3173 lower COST_LIMIT, we can immediately return to the
3174 caller. */
3175 entry_ptr->t = t;
3176 entry_ptr->mode = mode;
3177 entry_ptr->speed = speed;
3178 entry_ptr->alg = alg_impossible;
3179 entry_ptr->cost = *cost_limit;
3180 return;
3181 }
3182
3183 /* Cache the result. */
3184 if (!cache_hit)
3185 {
3186 entry_ptr->t = t;
3187 entry_ptr->mode = mode;
3188 entry_ptr->speed = speed;
3189 entry_ptr->alg = best_alg->op[best_alg->ops];
3190 entry_ptr->cost.cost = best_cost.cost;
3191 entry_ptr->cost.latency = best_cost.latency;
3192 }
3193
3194 /* If we are getting a too long sequence for `struct algorithm'
3195 to record, make this search fail. */
3196 if (best_alg->ops == MAX_BITS_PER_WORD)
3197 return;
3198
3199 /* Copy the algorithm from temporary space to the space at alg_out.
3200 We avoid using structure assignment because the majority of
3201 best_alg is normally undefined, and this is a critical function. */
3202 alg_out->ops = best_alg->ops + 1;
3203 alg_out->cost = best_cost;
3204 memcpy (dest: alg_out->op, src: best_alg->op,
3205 n: alg_out->ops * sizeof *alg_out->op);
3206 memcpy (dest: alg_out->log, src: best_alg->log,
3207 n: alg_out->ops * sizeof *alg_out->log);
3208}
3209
3210/* Find the cheapest way of multiplying a value of mode MODE by VAL.
3211 Try three variations:
3212
3213 - a shift/add sequence based on VAL itself
3214 - a shift/add sequence based on -VAL, followed by a negation
3215 - a shift/add sequence based on VAL - 1, followed by an addition.
3216
3217 Return true if the cheapest of these cost less than MULT_COST,
3218 describing the algorithm in *ALG and final fixup in *VARIANT. */
3219
3220bool
3221choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
3222 struct algorithm *alg, enum mult_variant *variant,
3223 int mult_cost)
3224{
3225 struct algorithm alg2;
3226 struct mult_cost limit;
3227 int op_cost;
3228 bool speed = optimize_insn_for_speed_p ();
3229
3230 /* Fail quickly for impossible bounds. */
3231 if (mult_cost < 0)
3232 return false;
3233
3234 /* Ensure that mult_cost provides a reasonable upper bound.
3235 Any constant multiplication can be performed with less
3236 than 2 * bits additions. */
3237 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
3238 if (mult_cost > op_cost)
3239 mult_cost = op_cost;
3240
3241 *variant = basic_variant;
3242 limit.cost = mult_cost;
3243 limit.latency = mult_cost;
3244 synth_mult (alg_out: alg, t: val, cost_limit: &limit, mode);
3245
3246 /* This works only if the inverted value actually fits in an
3247 `unsigned int' */
3248 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
3249 {
3250 op_cost = neg_cost (speed, mode);
3251 if (MULT_COST_LESS (&alg->cost, mult_cost))
3252 {
3253 limit.cost = alg->cost.cost - op_cost;
3254 limit.latency = alg->cost.latency - op_cost;
3255 }
3256 else
3257 {
3258 limit.cost = mult_cost - op_cost;
3259 limit.latency = mult_cost - op_cost;
3260 }
3261
3262 synth_mult (alg_out: &alg2, t: -val, cost_limit: &limit, mode);
3263 alg2.cost.cost += op_cost;
3264 alg2.cost.latency += op_cost;
3265 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3266 *alg = alg2, *variant = negate_variant;
3267 }
3268
3269 /* This proves very useful for division-by-constant. */
3270 op_cost = add_cost (speed, mode);
3271 if (MULT_COST_LESS (&alg->cost, mult_cost))
3272 {
3273 limit.cost = alg->cost.cost - op_cost;
3274 limit.latency = alg->cost.latency - op_cost;
3275 }
3276 else
3277 {
3278 limit.cost = mult_cost - op_cost;
3279 limit.latency = mult_cost - op_cost;
3280 }
3281
3282 synth_mult (alg_out: &alg2, t: val - 1, cost_limit: &limit, mode);
3283 alg2.cost.cost += op_cost;
3284 alg2.cost.latency += op_cost;
3285 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3286 *alg = alg2, *variant = add_variant;
3287
3288 return MULT_COST_LESS (&alg->cost, mult_cost);
3289}
3290
3291/* A subroutine of expand_mult, used for constant multiplications.
3292 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
3293 convenient. Use the shift/add sequence described by ALG and apply
3294 the final fixup specified by VARIANT. */
3295
3296static rtx
3297expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
3298 rtx target, const struct algorithm *alg,
3299 enum mult_variant variant)
3300{
3301 unsigned HOST_WIDE_INT val_so_far;
3302 rtx_insn *insn;
3303 rtx accum, tem;
3304 int opno;
3305 machine_mode nmode;
3306
3307 /* Avoid referencing memory over and over and invalid sharing
3308 on SUBREGs. */
3309 op0 = force_reg (mode, op0);
3310
3311 /* ACCUM starts out either as OP0 or as a zero, depending on
3312 the first operation. */
3313
3314 if (alg->op[0] == alg_zero)
3315 {
3316 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
3317 val_so_far = 0;
3318 }
3319 else if (alg->op[0] == alg_m)
3320 {
3321 accum = copy_to_mode_reg (mode, op0);
3322 val_so_far = 1;
3323 }
3324 else
3325 gcc_unreachable ();
3326
3327 for (opno = 1; opno < alg->ops; opno++)
3328 {
3329 int log = alg->log[opno];
3330 rtx shift_subtarget = optimize ? 0 : accum;
3331 rtx add_target
3332 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
3333 && !optimize)
3334 ? target : 0;
3335 rtx accum_target = optimize ? 0 : accum;
3336 rtx accum_inner;
3337
3338 switch (alg->op[opno])
3339 {
3340 case alg_shift:
3341 tem = expand_shift (code: LSHIFT_EXPR, mode, shifted: accum, amount: log, NULL_RTX, unsignedp: 0);
3342 /* REG_EQUAL note will be attached to the following insn. */
3343 emit_move_insn (accum, tem);
3344 val_so_far <<= log;
3345 break;
3346
3347 case alg_add_t_m2:
3348 tem = expand_shift (code: LSHIFT_EXPR, mode, shifted: op0, amount: log, NULL_RTX, unsignedp: 0);
3349 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3350 add_target ? add_target : accum_target);
3351 val_so_far += HOST_WIDE_INT_1U << log;
3352 break;
3353
3354 case alg_sub_t_m2:
3355 tem = expand_shift (code: LSHIFT_EXPR, mode, shifted: op0, amount: log, NULL_RTX, unsignedp: 0);
3356 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3357 add_target ? add_target : accum_target);
3358 val_so_far -= HOST_WIDE_INT_1U << log;
3359 break;
3360
3361 case alg_add_t2_m:
3362 accum = expand_shift (code: LSHIFT_EXPR, mode, shifted: accum,
3363 amount: log, target: shift_subtarget, unsignedp: 0);
3364 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3365 add_target ? add_target : accum_target);
3366 val_so_far = (val_so_far << log) + 1;
3367 break;
3368
3369 case alg_sub_t2_m:
3370 accum = expand_shift (code: LSHIFT_EXPR, mode, shifted: accum,
3371 amount: log, target: shift_subtarget, unsignedp: 0);
3372 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3373 add_target ? add_target : accum_target);
3374 val_so_far = (val_so_far << log) - 1;
3375 break;
3376
3377 case alg_add_factor:
3378 tem = expand_shift (code: LSHIFT_EXPR, mode, shifted: accum, amount: log, NULL_RTX, unsignedp: 0);
3379 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3380 add_target ? add_target : accum_target);
3381 val_so_far += val_so_far << log;
3382 break;
3383
3384 case alg_sub_factor:
3385 tem = expand_shift (code: LSHIFT_EXPR, mode, shifted: accum, amount: log, NULL_RTX, unsignedp: 0);
3386 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3387 (add_target
3388 ? add_target : (optimize ? 0 : tem)));
3389 val_so_far = (val_so_far << log) - val_so_far;
3390 break;
3391
3392 default:
3393 gcc_unreachable ();
3394 }
3395
3396 if (SCALAR_INT_MODE_P (mode))
3397 {
3398 /* Write a REG_EQUAL note on the last insn so that we can cse
3399 multiplication sequences. Note that if ACCUM is a SUBREG,
3400 we've set the inner register and must properly indicate that. */
3401 tem = op0, nmode = mode;
3402 accum_inner = accum;
3403 if (GET_CODE (accum) == SUBREG)
3404 {
3405 accum_inner = SUBREG_REG (accum);
3406 nmode = GET_MODE (accum_inner);
3407 tem = gen_lowpart (nmode, op0);
3408 }
3409
3410 /* Don't add a REG_EQUAL note if tem is a paradoxical SUBREG.
3411 In that case, only the low bits of accum would be guaranteed to
3412 be equal to the content of the REG_EQUAL note, the upper bits
3413 can be anything. */
3414 if (!paradoxical_subreg_p (x: tem))
3415 {
3416 insn = get_last_insn ();
3417 wide_int wval_so_far
3418 = wi::uhwi (val: val_so_far,
3419 precision: GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: nmode)));
3420 rtx c = immed_wide_int_const (wval_so_far, nmode);
3421 set_dst_reg_note (insn, REG_EQUAL, gen_rtx_MULT (nmode, tem, c),
3422 accum_inner);
3423 }
3424 }
3425 }
3426
3427 if (variant == negate_variant)
3428 {
3429 val_so_far = -val_so_far;
3430 accum = expand_unop (mode, neg_optab, accum, target, 0);
3431 }
3432 else if (variant == add_variant)
3433 {
3434 val_so_far = val_so_far + 1;
3435 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3436 }
3437
3438 /* Compare only the bits of val and val_so_far that are significant
3439 in the result mode, to avoid sign-/zero-extension confusion. */
3440 nmode = GET_MODE_INNER (mode);
3441 val &= GET_MODE_MASK (nmode);
3442 val_so_far &= GET_MODE_MASK (nmode);
3443 gcc_assert (val == (HOST_WIDE_INT) val_so_far);
3444
3445 return accum;
3446}
3447
3448/* Perform a multiplication and return an rtx for the result.
3449 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3450 TARGET is a suggestion for where to store the result (an rtx).
3451
3452 We check specially for a constant integer as OP1.
3453 If you want this check for OP0 as well, then before calling
3454 you should swap the two operands if OP0 would be constant. */
3455
3456rtx
3457expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3458 int unsignedp, bool no_libcall)
3459{
3460 enum mult_variant variant;
3461 struct algorithm algorithm;
3462 rtx scalar_op1;
3463 int max_cost;
3464 bool speed = optimize_insn_for_speed_p ();
3465 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3466
3467 if (CONSTANT_P (op0))
3468 std::swap (a&: op0, b&: op1);
3469
3470 /* For vectors, there are several simplifications that can be made if
3471 all elements of the vector constant are identical. */
3472 scalar_op1 = unwrap_const_vec_duplicate (x: op1);
3473
3474 if (INTEGRAL_MODE_P (mode))
3475 {
3476 rtx fake_reg;
3477 HOST_WIDE_INT coeff;
3478 bool is_neg;
3479 int mode_bitsize;
3480
3481 if (op1 == CONST0_RTX (mode))
3482 return op1;
3483 if (op1 == CONST1_RTX (mode))
3484 return op0;
3485 if (op1 == CONSTM1_RTX (mode))
3486 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3487 op0, target, 0);
3488
3489 if (do_trapv)
3490 goto skip_synth;
3491
3492 /* If mode is integer vector mode, check if the backend supports
3493 vector lshift (by scalar or vector) at all. If not, we can't use
3494 synthetized multiply. */
3495 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3496 && optab_handler (op: vashl_optab, mode) == CODE_FOR_nothing
3497 && optab_handler (op: ashl_optab, mode) == CODE_FOR_nothing)
3498 goto skip_synth;
3499
3500 /* These are the operations that are potentially turned into
3501 a sequence of shifts and additions. */
3502 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3503
3504 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3505 less than or equal in size to `unsigned int' this doesn't matter.
3506 If the mode is larger than `unsigned int', then synth_mult works
3507 only if the constant value exactly fits in an `unsigned int' without
3508 any truncation. This means that multiplying by negative values does
3509 not work; results are off by 2^32 on a 32 bit machine. */
3510 if (CONST_INT_P (scalar_op1))
3511 {
3512 coeff = INTVAL (scalar_op1);
3513 is_neg = coeff < 0;
3514 }
3515#if TARGET_SUPPORTS_WIDE_INT
3516 else if (CONST_WIDE_INT_P (scalar_op1))
3517#else
3518 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3519#endif
3520 {
3521 int shift = wi::exact_log2 (rtx_mode_t (scalar_op1, mode));
3522 /* Perfect power of 2 (other than 1, which is handled above). */
3523 if (shift > 0)
3524 return expand_shift (code: LSHIFT_EXPR, mode, shifted: op0,
3525 amount: shift, target, unsignedp);
3526 else
3527 goto skip_synth;
3528 }
3529 else
3530 goto skip_synth;
3531
3532 /* We used to test optimize here, on the grounds that it's better to
3533 produce a smaller program when -O is not used. But this causes
3534 such a terrible slowdown sometimes that it seems better to always
3535 use synth_mult. */
3536
3537 /* Special case powers of two. */
3538 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3539 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3540 return expand_shift (code: LSHIFT_EXPR, mode, shifted: op0,
3541 amount: floor_log2 (x: coeff), target, unsignedp);
3542
3543 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3544
3545 /* Attempt to handle multiplication of DImode values by negative
3546 coefficients, by performing the multiplication by a positive
3547 multiplier and then inverting the result. */
3548 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3549 {
3550 /* Its safe to use -coeff even for INT_MIN, as the
3551 result is interpreted as an unsigned coefficient.
3552 Exclude cost of op0 from max_cost to match the cost
3553 calculation of the synth_mult. */
3554 coeff = -(unsigned HOST_WIDE_INT) coeff;
3555 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
3556 mode, speed_p: speed)
3557 - neg_cost (speed, mode));
3558 if (max_cost <= 0)
3559 goto skip_synth;
3560
3561 /* Special case powers of two. */
3562 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3563 {
3564 rtx temp = expand_shift (code: LSHIFT_EXPR, mode, shifted: op0,
3565 amount: floor_log2 (x: coeff), target, unsignedp);
3566 return expand_unop (mode, neg_optab, temp, target, 0);
3567 }
3568
3569 if (choose_mult_variant (mode, val: coeff, alg: &algorithm, variant: &variant,
3570 mult_cost: max_cost))
3571 {
3572 rtx temp = expand_mult_const (mode, op0, val: coeff, NULL_RTX,
3573 alg: &algorithm, variant);
3574 return expand_unop (mode, neg_optab, temp, target, 0);
3575 }
3576 goto skip_synth;
3577 }
3578
3579 /* Exclude cost of op0 from max_cost to match the cost
3580 calculation of the synth_mult. */
3581 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed_p: speed);
3582 if (choose_mult_variant (mode, val: coeff, alg: &algorithm, variant: &variant, mult_cost: max_cost))
3583 return expand_mult_const (mode, op0, val: coeff, target,
3584 alg: &algorithm, variant);
3585 }
3586 skip_synth:
3587
3588 /* Expand x*2.0 as x+x. */
3589 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1)
3590 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1), &dconst2))
3591 {
3592 op0 = force_reg (GET_MODE (op0), op0);
3593 return expand_binop (mode, add_optab, op0, op0,
3594 target, unsignedp,
3595 no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
3596 }
3597
3598 /* This used to use umul_optab if unsigned, but for non-widening multiply
3599 there is no difference between signed and unsigned. */
3600 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3601 op0, op1, target, unsignedp,
3602 no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
3603 gcc_assert (op0 || no_libcall);
3604 return op0;
3605}
3606
3607/* Return a cost estimate for multiplying a register by the given
3608 COEFFicient in the given MODE and SPEED. */
3609
3610int
3611mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
3612{
3613 int max_cost;
3614 struct algorithm algorithm;
3615 enum mult_variant variant;
3616
3617 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3618 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg),
3619 mode, speed_p: speed);
3620 if (choose_mult_variant (mode, val: coeff, alg: &algorithm, variant: &variant, mult_cost: max_cost))
3621 return algorithm.cost.cost;
3622 else
3623 return max_cost;
3624}
3625
3626/* Perform a widening multiplication and return an rtx for the result.
3627 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3628 TARGET is a suggestion for where to store the result (an rtx).
3629 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3630 or smul_widen_optab.
3631
3632 We check specially for a constant integer as OP1, comparing the
3633 cost of a widening multiply against the cost of a sequence of shifts
3634 and adds. */
3635
3636rtx
3637expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3638 int unsignedp, optab this_optab)
3639{
3640 bool speed = optimize_insn_for_speed_p ();
3641 rtx cop1;
3642
3643 if (CONST_INT_P (op1)
3644 && GET_MODE (op0) != VOIDmode
3645 && (cop1 = convert_modes (mode, GET_MODE (op0), x: op1,
3646 unsignedp: this_optab == umul_widen_optab))
3647 && CONST_INT_P (cop1)
3648 && (INTVAL (cop1) >= 0
3649 || HWI_COMPUTABLE_MODE_P (mode)))
3650 {
3651 HOST_WIDE_INT coeff = INTVAL (cop1);
3652 int max_cost;
3653 enum mult_variant variant;
3654 struct algorithm algorithm;
3655
3656 if (coeff == 0)
3657 return CONST0_RTX (mode);
3658
3659 /* Special case powers of two. */
3660 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3661 {
3662 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3663 return expand_shift (code: LSHIFT_EXPR, mode, shifted: op0,
3664 amount: floor_log2 (x: coeff), target, unsignedp);
3665 }
3666
3667 /* Exclude cost of op0 from max_cost to match the cost
3668 calculation of the synth_mult. */
3669 max_cost = mul_widen_cost (speed, mode);
3670 if (choose_mult_variant (mode, val: coeff, alg: &algorithm, variant: &variant,
3671 mult_cost: max_cost))
3672 {
3673 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3674 return expand_mult_const (mode, op0, val: coeff, target,
3675 alg: &algorithm, variant);
3676 }
3677 }
3678 return expand_binop (mode, this_optab, op0, op1, target,
3679 unsignedp, OPTAB_LIB_WIDEN);
3680}
3681
3682/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3683 replace division by D, and put the least significant N bits of the result
3684 in *MULTIPLIER_PTR and return the most significant bit.
3685
3686 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3687 needed precision is in PRECISION (should be <= N).
3688
3689 PRECISION should be as small as possible so this function can choose
3690 multiplier more freely.
3691
3692 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3693 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3694
3695 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3696 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3697
3698unsigned HOST_WIDE_INT
3699choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3700 unsigned HOST_WIDE_INT *multiplier_ptr,
3701 int *post_shift_ptr, int *lgup_ptr)
3702{
3703 int lgup, post_shift;
3704 int pow, pow2;
3705
3706 /* lgup = ceil(log2(divisor)); */
3707 lgup = ceil_log2 (x: d);
3708
3709 gcc_assert (lgup <= n);
3710
3711 pow = n + lgup;
3712 pow2 = n + lgup - precision;
3713
3714 /* mlow = 2^(N + lgup)/d */
3715 wide_int val = wi::set_bit_in_zero (bit: pow, HOST_BITS_PER_DOUBLE_INT);
3716 wide_int mlow = wi::udiv_trunc (x: val, y: d);
3717
3718 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3719 val |= wi::set_bit_in_zero (bit: pow2, HOST_BITS_PER_DOUBLE_INT);
3720 wide_int mhigh = wi::udiv_trunc (x: val, y: d);
3721
3722 /* If precision == N, then mlow, mhigh exceed 2^N
3723 (but they do not exceed 2^(N+1)). */
3724
3725 /* Reduce to lowest terms. */
3726 for (post_shift = lgup; post_shift > 0; post_shift--)
3727 {
3728 unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (x: mlow, bitpos: 1,
3729 HOST_BITS_PER_WIDE_INT);
3730 unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (x: mhigh, bitpos: 1,
3731 HOST_BITS_PER_WIDE_INT);
3732 if (ml_lo >= mh_lo)
3733 break;
3734
3735 mlow = wi::uhwi (val: ml_lo, HOST_BITS_PER_DOUBLE_INT);
3736 mhigh = wi::uhwi (val: mh_lo, HOST_BITS_PER_DOUBLE_INT);
3737 }
3738
3739 *post_shift_ptr = post_shift;
3740 *lgup_ptr = lgup;
3741 if (n < HOST_BITS_PER_WIDE_INT)
3742 {
3743 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << n) - 1;
3744 *multiplier_ptr = mhigh.to_uhwi () & mask;
3745 return mhigh.to_uhwi () > mask;
3746 }
3747 else
3748 {
3749 *multiplier_ptr = mhigh.to_uhwi ();
3750 return wi::extract_uhwi (x: mhigh, HOST_BITS_PER_WIDE_INT, width: 1);
3751 }
3752}
3753
3754/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3755 congruent to 1 (mod 2**N). */
3756
3757static unsigned HOST_WIDE_INT
3758invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3759{
3760 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3761
3762 /* The algorithm notes that the choice y = x satisfies
3763 x*y == 1 mod 2^3, since x is assumed odd.
3764 Each iteration doubles the number of bits of significance in y. */
3765
3766 unsigned HOST_WIDE_INT mask;
3767 unsigned HOST_WIDE_INT y = x;
3768 int nbit = 3;
3769
3770 mask = (n == HOST_BITS_PER_WIDE_INT
3771 ? HOST_WIDE_INT_M1U
3772 : (HOST_WIDE_INT_1U << n) - 1);
3773
3774 while (nbit < n)
3775 {
3776 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3777 nbit *= 2;
3778 }
3779 return y;
3780}
3781
3782/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3783 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3784 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3785 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3786 become signed.
3787
3788 The result is put in TARGET if that is convenient.
3789
3790 MODE is the mode of operation. */
3791
3792rtx
3793expand_mult_highpart_adjust (scalar_int_mode mode, rtx adj_operand, rtx op0,
3794 rtx op1, rtx target, int unsignedp)
3795{
3796 rtx tem;
3797 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3798
3799 tem = expand_shift (code: RSHIFT_EXPR, mode, shifted: op0,
3800 amount: GET_MODE_BITSIZE (mode) - 1, NULL_RTX, unsignedp: 0);
3801 tem = expand_and (mode, tem, op1, NULL_RTX);
3802 adj_operand
3803 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3804 adj_operand);
3805
3806 tem = expand_shift (code: RSHIFT_EXPR, mode, shifted: op1,
3807 amount: GET_MODE_BITSIZE (mode) - 1, NULL_RTX, unsignedp: 0);
3808 tem = expand_and (mode, tem, op0, NULL_RTX);
3809 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3810 target);
3811
3812 return target;
3813}
3814
3815/* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3816
3817static rtx
3818extract_high_half (scalar_int_mode mode, rtx op)
3819{
3820 if (mode == word_mode)
3821 return gen_highpart (mode, op);
3822
3823 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (m: mode).require ();
3824
3825 op = expand_shift (code: RSHIFT_EXPR, mode: wider_mode, shifted: op,
3826 amount: GET_MODE_BITSIZE (mode), target: 0, unsignedp: 1);
3827 return convert_modes (mode, oldmode: wider_mode, x: op, unsignedp: 0);
3828}
3829
3830/* Like expmed_mult_highpart, but only consider using a multiplication
3831 optab. OP1 is an rtx for the constant operand. */
3832
3833static rtx
3834expmed_mult_highpart_optab (scalar_int_mode mode, rtx op0, rtx op1,
3835 rtx target, int unsignedp, int max_cost)
3836{
3837 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3838 optab moptab;
3839 rtx tem;
3840 int size;
3841 bool speed = optimize_insn_for_speed_p ();
3842
3843 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (m: mode).require ();
3844
3845 size = GET_MODE_BITSIZE (mode);
3846
3847 /* Firstly, try using a multiplication insn that only generates the needed
3848 high part of the product, and in the sign flavor of unsignedp. */
3849 if (mul_highpart_cost (speed, mode) < max_cost)
3850 {
3851 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3852 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3853 unsignedp, OPTAB_DIRECT);
3854 if (tem)
3855 return tem;
3856 }
3857
3858 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3859 Need to adjust the result after the multiplication. */
3860 if (size - 1 < BITS_PER_WORD
3861 && (mul_highpart_cost (speed, mode)
3862 + 2 * shift_cost (speed, mode, bits: size-1)
3863 + 4 * add_cost (speed, mode) < max_cost))
3864 {
3865 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3866 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3867 unsignedp, OPTAB_DIRECT);
3868 if (tem)
3869 /* We used the wrong signedness. Adjust the result. */
3870 return expand_mult_highpart_adjust (mode, adj_operand: tem, op0, op1: narrow_op1,
3871 target: tem, unsignedp);
3872 }
3873
3874 /* Try widening multiplication. */
3875 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3876 if (convert_optab_handler (op: moptab, to_mode: wider_mode, from_mode: mode) != CODE_FOR_nothing
3877 && mul_widen_cost (speed, mode: wider_mode) < max_cost)
3878 {
3879 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3880 unsignedp, OPTAB_WIDEN);
3881 if (tem)
3882 return extract_high_half (mode, op: tem);
3883 }
3884
3885 /* Try widening the mode and perform a non-widening multiplication. */
3886 if (optab_handler (op: smul_optab, mode: wider_mode) != CODE_FOR_nothing
3887 && size - 1 < BITS_PER_WORD
3888 && (mul_cost (speed, mode: wider_mode) + shift_cost (speed, mode, bits: size-1)
3889 < max_cost))
3890 {
3891 rtx_insn *insns;
3892 rtx wop0, wop1;
3893
3894 /* We need to widen the operands, for example to ensure the
3895 constant multiplier is correctly sign or zero extended.
3896 Use a sequence to clean-up any instructions emitted by
3897 the conversions if things don't work out. */
3898 start_sequence ();
3899 wop0 = convert_modes (mode: wider_mode, oldmode: mode, x: op0, unsignedp);
3900 wop1 = convert_modes (mode: wider_mode, oldmode: mode, x: op1, unsignedp);
3901 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3902 unsignedp, OPTAB_WIDEN);
3903 insns = get_insns ();
3904 end_sequence ();
3905
3906 if (tem)
3907 {
3908 emit_insn (insns);
3909 return extract_high_half (mode, op: tem);
3910 }
3911 }
3912
3913 /* Try widening multiplication of opposite signedness, and adjust. */
3914 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3915 if (convert_optab_handler (op: moptab, to_mode: wider_mode, from_mode: mode) != CODE_FOR_nothing
3916 && size - 1 < BITS_PER_WORD
3917 && (mul_widen_cost (speed, mode: wider_mode)
3918 + 2 * shift_cost (speed, mode, bits: size-1)
3919 + 4 * add_cost (speed, mode) < max_cost))
3920 {
3921 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3922 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3923 if (tem != 0)
3924 {
3925 tem = extract_high_half (mode, op: tem);
3926 /* We used the wrong signedness. Adjust the result. */
3927 return expand_mult_highpart_adjust (mode, adj_operand: tem, op0, op1: narrow_op1,
3928 target, unsignedp);
3929 }
3930 }
3931
3932 return 0;
3933}
3934
3935/* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3936 putting the high half of the result in TARGET if that is convenient,
3937 and return where the result is. If the operation cannot be performed,
3938 0 is returned.
3939
3940 MODE is the mode of operation and result.
3941
3942 UNSIGNEDP nonzero means unsigned multiply.
3943
3944 MAX_COST is the total allowed cost for the expanded RTL. */
3945
3946static rtx
3947expmed_mult_highpart (scalar_int_mode mode, rtx op0, rtx op1,
3948 rtx target, int unsignedp, int max_cost)
3949{
3950 unsigned HOST_WIDE_INT cnst1;
3951 int extra_cost;
3952 bool sign_adjust = false;
3953 enum mult_variant variant;
3954 struct algorithm alg;
3955 rtx tem;
3956 bool speed = optimize_insn_for_speed_p ();
3957
3958 /* We can't support modes wider than HOST_BITS_PER_INT. */
3959 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3960
3961 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3962
3963 /* We can't optimize modes wider than BITS_PER_WORD.
3964 ??? We might be able to perform double-word arithmetic if
3965 mode == word_mode, however all the cost calculations in
3966 synth_mult etc. assume single-word operations. */
3967 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (m: mode).require ();
3968 if (GET_MODE_BITSIZE (mode: wider_mode) > BITS_PER_WORD)
3969 return expmed_mult_highpart_optab (mode, op0, op1, target,
3970 unsignedp, max_cost);
3971
3972 extra_cost = shift_cost (speed, mode, bits: GET_MODE_BITSIZE (mode) - 1);
3973
3974 /* Check whether we try to multiply by a negative constant. */
3975 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3976 {
3977 sign_adjust = true;
3978 extra_cost += add_cost (speed, mode);
3979 }
3980
3981 /* See whether shift/add multiplication is cheap enough. */
3982 if (choose_mult_variant (mode: wider_mode, val: cnst1, alg: &alg, variant: &variant,
3983 mult_cost: max_cost - extra_cost))
3984 {
3985 /* See whether the specialized multiplication optabs are
3986 cheaper than the shift/add version. */
3987 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3988 max_cost: alg.cost.cost + extra_cost);
3989 if (tem)
3990 return tem;
3991
3992 tem = convert_to_mode (wider_mode, op0, unsignedp);
3993 tem = expand_mult_const (mode: wider_mode, op0: tem, val: cnst1, target: 0, alg: &alg, variant);
3994 tem = extract_high_half (mode, op: tem);
3995
3996 /* Adjust result for signedness. */
3997 if (sign_adjust)
3998 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3999
4000 return tem;
4001 }
4002 return expmed_mult_highpart_optab (mode, op0, op1, target,
4003 unsignedp, max_cost);
4004}
4005
4006
4007/* Expand signed modulus of OP0 by a power of two D in mode MODE. */
4008
4009static rtx
4010expand_smod_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
4011{
4012 rtx result, temp, shift;
4013 rtx_code_label *label;
4014 int logd;
4015 int prec = GET_MODE_PRECISION (mode);
4016
4017 logd = floor_log2 (x: d);
4018 result = gen_reg_rtx (mode);
4019
4020 /* Avoid conditional branches when they're expensive. */
4021 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
4022 && optimize_insn_for_speed_p ())
4023 {
4024 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
4025 mode, 0, -1);
4026 if (signmask)
4027 {
4028 HOST_WIDE_INT masklow = (HOST_WIDE_INT_1 << logd) - 1;
4029 signmask = force_reg (mode, signmask);
4030 shift = gen_int_shift_amount (mode, GET_MODE_BITSIZE (mode) - logd);
4031
4032 /* Use the rtx_cost of a LSHIFTRT instruction to determine
4033 which instruction sequence to use. If logical right shifts
4034 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
4035 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
4036
4037 temp = gen_rtx_LSHIFTRT (mode, result, shift);
4038 if (optab_handler (op: lshr_optab, mode) == CODE_FOR_nothing
4039 || (set_src_cost (x: temp, mode, speed_p: optimize_insn_for_speed_p ())
4040 > COSTS_N_INSNS (2)))
4041 {
4042 temp = expand_binop (mode, xor_optab, op0, signmask,
4043 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4044 temp = expand_binop (mode, sub_optab, temp, signmask,
4045 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4046 temp = expand_binop (mode, and_optab, temp,
4047 gen_int_mode (masklow, mode),
4048 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4049 temp = expand_binop (mode, xor_optab, temp, signmask,
4050 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4051 temp = expand_binop (mode, sub_optab, temp, signmask,
4052 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4053 }
4054 else
4055 {
4056 signmask = expand_binop (mode, lshr_optab, signmask, shift,
4057 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4058 signmask = force_reg (mode, signmask);
4059
4060 temp = expand_binop (mode, add_optab, op0, signmask,
4061 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4062 temp = expand_binop (mode, and_optab, temp,
4063 gen_int_mode (masklow, mode),
4064 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4065 temp = expand_binop (mode, sub_optab, temp, signmask,
4066 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4067 }
4068 return temp;
4069 }
4070 }
4071
4072 /* Mask contains the mode's signbit and the significant bits of the
4073 modulus. By including the signbit in the operation, many targets
4074 can avoid an explicit compare operation in the following comparison
4075 against zero. */
4076 wide_int mask = wi::mask (width: logd, negate_p: false, precision: prec);
4077 mask = wi::set_bit (x: mask, bit: prec - 1);
4078
4079 temp = expand_binop (mode, and_optab, op0,
4080 immed_wide_int_const (mask, mode),
4081 result, 1, OPTAB_LIB_WIDEN);
4082 if (temp != result)
4083 emit_move_insn (result, temp);
4084
4085 label = gen_label_rtx ();
4086 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
4087
4088 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
4089 0, OPTAB_LIB_WIDEN);
4090
4091 mask = wi::mask (width: logd, negate_p: true, precision: prec);
4092 temp = expand_binop (mode, ior_optab, temp,
4093 immed_wide_int_const (mask, mode),
4094 result, 1, OPTAB_LIB_WIDEN);
4095 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
4096 0, OPTAB_LIB_WIDEN);
4097 if (temp != result)
4098 emit_move_insn (result, temp);
4099 emit_label (label);
4100 return result;
4101}
4102
4103/* Expand signed division of OP0 by a power of two D in mode MODE.
4104 This routine is only called for positive values of D. */
4105
4106static rtx
4107expand_sdiv_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
4108{
4109 rtx temp;
4110 rtx_code_label *label;
4111 int logd;
4112
4113 logd = floor_log2 (x: d);
4114
4115 if (d == 2
4116 && BRANCH_COST (optimize_insn_for_speed_p (),
4117 false) >= 1)
4118 {
4119 temp = gen_reg_rtx (mode);
4120 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
4121 if (temp != NULL_RTX)
4122 {
4123 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
4124 0, OPTAB_LIB_WIDEN);
4125 return expand_shift (code: RSHIFT_EXPR, mode, shifted: temp, amount: logd, NULL_RTX, unsignedp: 0);
4126 }
4127 }
4128
4129 if (HAVE_conditional_move
4130 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
4131 {
4132 rtx temp2;
4133
4134 start_sequence ();
4135 temp2 = copy_to_mode_reg (mode, op0);
4136 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
4137 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4138 temp = force_reg (mode, temp);
4139
4140 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
4141 temp2 = emit_conditional_move (temp2, { .code: LT, .op0: temp2, const0_rtx, .mode: mode },
4142 temp, temp2, mode, 0);
4143 if (temp2)
4144 {
4145 rtx_insn *seq = get_insns ();
4146 end_sequence ();
4147 emit_insn (seq);
4148 return expand_shift (code: RSHIFT_EXPR, mode, shifted: temp2, amount: logd, NULL_RTX, unsignedp: 0);
4149 }
4150 end_sequence ();
4151 }
4152
4153 if (BRANCH_COST (optimize_insn_for_speed_p (),
4154 false) >= 2)
4155 {
4156 int ushift = GET_MODE_BITSIZE (mode) - logd;
4157
4158 temp = gen_reg_rtx (mode);
4159 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
4160 if (temp != NULL_RTX)
4161 {
4162 if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
4163 || shift_cost (speed: optimize_insn_for_speed_p (), mode, bits: ushift)
4164 > COSTS_N_INSNS (1))
4165 temp = expand_binop (mode, and_optab, temp,
4166 gen_int_mode (d - 1, mode),
4167 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4168 else
4169 temp = expand_shift (code: RSHIFT_EXPR, mode, shifted: temp,
4170 amount: ushift, NULL_RTX, unsignedp: 1);
4171 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
4172 0, OPTAB_LIB_WIDEN);
4173 return expand_shift (code: RSHIFT_EXPR, mode, shifted: temp, amount: logd, NULL_RTX, unsignedp: 0);
4174 }
4175 }
4176
4177 label = gen_label_rtx ();
4178 temp = copy_to_mode_reg (mode, op0);
4179 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
4180 expand_inc (target: temp, inc: gen_int_mode (d - 1, mode));
4181 emit_label (label);
4182 return expand_shift (code: RSHIFT_EXPR, mode, shifted: temp, amount: logd, NULL_RTX, unsignedp: 0);
4183}
4184
4185/* Emit the code to divide OP0 by OP1, putting the result in TARGET
4186 if that is convenient, and returning where the result is.
4187 You may request either the quotient or the remainder as the result;
4188 specify REM_FLAG nonzero to get the remainder.
4189
4190 CODE is the expression code for which kind of division this is;
4191 it controls how rounding is done. MODE is the machine mode to use.
4192 UNSIGNEDP nonzero means do unsigned division. */
4193
4194/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
4195 and then correct it by or'ing in missing high bits
4196 if result of ANDI is nonzero.
4197 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
4198 This could optimize to a bfexts instruction.
4199 But C doesn't use these operations, so their optimizations are
4200 left for later. */
4201/* ??? For modulo, we don't actually need the highpart of the first product,
4202 the low part will do nicely. And for small divisors, the second multiply
4203 can also be a low-part only multiply or even be completely left out.
4204 E.g. to calculate the remainder of a division by 3 with a 32 bit
4205 multiply, multiply with 0x55555556 and extract the upper two bits;
4206 the result is exact for inputs up to 0x1fffffff.
4207 The input range can be reduced by using cross-sum rules.
4208 For odd divisors >= 3, the following table gives right shift counts
4209 so that if a number is shifted by an integer multiple of the given
4210 amount, the remainder stays the same:
4211 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
4212 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
4213 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
4214 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
4215 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
4216
4217 Cross-sum rules for even numbers can be derived by leaving as many bits
4218 to the right alone as the divisor has zeros to the right.
4219 E.g. if x is an unsigned 32 bit number:
4220 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
4221 */
4222
4223rtx
4224expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
4225 rtx op0, rtx op1, rtx target, int unsignedp,
4226 enum optab_methods methods)
4227{
4228 machine_mode compute_mode;
4229 rtx tquotient;
4230 rtx quotient = 0, remainder = 0;
4231 rtx_insn *last;
4232 rtx_insn *insn;
4233 optab optab1, optab2;
4234 int op1_is_constant, op1_is_pow2 = 0;
4235 int max_cost, extra_cost;
4236 static HOST_WIDE_INT last_div_const = 0;
4237 bool speed = optimize_insn_for_speed_p ();
4238
4239 op1_is_constant = CONST_INT_P (op1);
4240 if (op1_is_constant)
4241 {
4242 wide_int ext_op1 = rtx_mode_t (op1, mode);
4243 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4244 || (! unsignedp
4245 && wi::popcount (wi::neg (x: ext_op1)) == 1));
4246 }
4247
4248 /*
4249 This is the structure of expand_divmod:
4250
4251 First comes code to fix up the operands so we can perform the operations
4252 correctly and efficiently.
4253
4254 Second comes a switch statement with code specific for each rounding mode.
4255 For some special operands this code emits all RTL for the desired
4256 operation, for other cases, it generates only a quotient and stores it in
4257 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
4258 to indicate that it has not done anything.
4259
4260 Last comes code that finishes the operation. If QUOTIENT is set and
4261 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
4262 QUOTIENT is not set, it is computed using trunc rounding.
4263
4264 We try to generate special code for division and remainder when OP1 is a
4265 constant. If |OP1| = 2**n we can use shifts and some other fast
4266 operations. For other values of OP1, we compute a carefully selected
4267 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
4268 by m.
4269
4270 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
4271 half of the product. Different strategies for generating the product are
4272 implemented in expmed_mult_highpart.
4273
4274 If what we actually want is the remainder, we generate that by another
4275 by-constant multiplication and a subtraction. */
4276
4277 /* We shouldn't be called with OP1 == const1_rtx, but some of the
4278 code below will malfunction if we are, so check here and handle
4279 the special case if so. */
4280 if (op1 == const1_rtx)
4281 return rem_flag ? const0_rtx : op0;
4282
4283 /* When dividing by -1, we could get an overflow.
4284 negv_optab can handle overflows. */
4285 if (! unsignedp && op1 == constm1_rtx)
4286 {
4287 if (rem_flag)
4288 return const0_rtx;
4289 return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
4290 ? negv_optab : neg_optab, op0, target, 0);
4291 }
4292
4293 if (target
4294 /* Don't use the function value register as a target
4295 since we have to read it as well as write it,
4296 and function-inlining gets confused by this. */
4297 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
4298 /* Don't clobber an operand while doing a multi-step calculation. */
4299 || ((rem_flag || op1_is_constant)
4300 && (reg_mentioned_p (target, op0)
4301 || (MEM_P (op0) && MEM_P (target))))
4302 || reg_mentioned_p (target, op1)
4303 || (MEM_P (op1) && MEM_P (target))))
4304 target = 0;
4305
4306 /* Get the mode in which to perform this computation. Normally it will
4307 be MODE, but sometimes we can't do the desired operation in MODE.
4308 If so, pick a wider mode in which we can do the operation. Convert
4309 to that mode at the start to avoid repeated conversions.
4310
4311 First see what operations we need. These depend on the expression
4312 we are evaluating. (We assume that divxx3 insns exist under the
4313 same conditions that modxx3 insns and that these insns don't normally
4314 fail. If these assumptions are not correct, we may generate less
4315 efficient code in some cases.)
4316
4317 Then see if we find a mode in which we can open-code that operation
4318 (either a division, modulus, or shift). Finally, check for the smallest
4319 mode for which we can do the operation with a library call. */
4320
4321 /* We might want to refine this now that we have division-by-constant
4322 optimization. Since expmed_mult_highpart tries so many variants, it is
4323 not straightforward to generalize this. Maybe we should make an array
4324 of possible modes in init_expmed? Save this for GCC 2.7. */
4325
4326 optab1 = (op1_is_pow2
4327 ? (unsignedp ? lshr_optab : ashr_optab)
4328 : (unsignedp ? udiv_optab : sdiv_optab));
4329 optab2 = (op1_is_pow2 ? optab1
4330 : (unsignedp ? udivmod_optab : sdivmod_optab));
4331
4332 if (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN)
4333 {
4334 FOR_EACH_MODE_FROM (compute_mode, mode)
4335 if (optab_handler (op: optab1, mode: compute_mode) != CODE_FOR_nothing
4336 || optab_handler (op: optab2, mode: compute_mode) != CODE_FOR_nothing)
4337 break;
4338
4339 if (compute_mode == VOIDmode && methods == OPTAB_LIB_WIDEN)
4340 FOR_EACH_MODE_FROM (compute_mode, mode)
4341 if (optab_libfunc (optab1, compute_mode)
4342 || optab_libfunc (optab2, compute_mode))
4343 break;
4344 }
4345 else
4346 compute_mode = mode;
4347
4348 /* If we still couldn't find a mode, use MODE, but expand_binop will
4349 probably die. */
4350 if (compute_mode == VOIDmode)
4351 compute_mode = mode;
4352
4353 if (target && GET_MODE (target) == compute_mode)
4354 tquotient = target;
4355 else
4356 tquotient = gen_reg_rtx (compute_mode);
4357
4358#if 0
4359 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4360 (mode), and thereby get better code when OP1 is a constant. Do that
4361 later. It will require going over all usages of SIZE below. */
4362 size = GET_MODE_BITSIZE (mode);
4363#endif
4364
4365 /* Only deduct something for a REM if the last divide done was
4366 for a different constant. Then set the constant of the last
4367 divide. */
4368 max_cost = (unsignedp
4369 ? udiv_cost (speed, mode: compute_mode)
4370 : sdiv_cost (speed, mode: compute_mode));
4371 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4372 && INTVAL (op1) == last_div_const))
4373 max_cost -= (mul_cost (speed, mode: compute_mode)
4374 + add_cost (speed, mode: compute_mode));
4375
4376 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4377
4378 /* Now convert to the best mode to use. */
4379 if (compute_mode != mode)
4380 {
4381 op0 = convert_modes (mode: compute_mode, oldmode: mode, x: op0, unsignedp);
4382 op1 = convert_modes (mode: compute_mode, oldmode: mode, x: op1, unsignedp);
4383
4384 /* convert_modes may have placed op1 into a register, so we
4385 must recompute the following. */
4386 op1_is_constant = CONST_INT_P (op1);
4387 if (op1_is_constant)
4388 {
4389 wide_int ext_op1 = rtx_mode_t (op1, compute_mode);
4390 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4391 || (! unsignedp
4392 && wi::popcount (wi::neg (x: ext_op1)) == 1));
4393 }
4394 else
4395 op1_is_pow2 = 0;
4396 }
4397
4398 /* If one of the operands is a volatile MEM, copy it into a register. */
4399
4400 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4401 op0 = force_reg (compute_mode, op0);
4402 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4403 op1 = force_reg (compute_mode, op1);
4404
4405 /* If we need the remainder or if OP1 is constant, we need to
4406 put OP0 in a register in case it has any queued subexpressions. */
4407 if (rem_flag || op1_is_constant)
4408 op0 = force_reg (compute_mode, op0);
4409
4410 last = get_last_insn ();
4411
4412 /* Promote floor rounding to trunc rounding for unsigned operations. */
4413 if (unsignedp)
4414 {
4415 if (code == FLOOR_DIV_EXPR)
4416 code = TRUNC_DIV_EXPR;
4417 if (code == FLOOR_MOD_EXPR)
4418 code = TRUNC_MOD_EXPR;
4419 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4420 code = TRUNC_DIV_EXPR;
4421 }
4422
4423 if (op1 != const0_rtx)
4424 switch (code)
4425 {
4426 case TRUNC_MOD_EXPR:
4427 case TRUNC_DIV_EXPR:
4428 if (op1_is_constant)
4429 {
4430 scalar_int_mode int_mode = as_a <scalar_int_mode> (m: compute_mode);
4431 int size = GET_MODE_BITSIZE (mode: int_mode);
4432 if (unsignedp)
4433 {
4434 unsigned HOST_WIDE_INT mh, ml;
4435 int pre_shift, post_shift;
4436 int dummy;
4437 wide_int wd = rtx_mode_t (op1, int_mode);
4438 unsigned HOST_WIDE_INT d = wd.to_uhwi ();
4439
4440 if (wi::popcount (wd) == 1)
4441 {
4442 pre_shift = floor_log2 (x: d);
4443 if (rem_flag)
4444 {
4445 unsigned HOST_WIDE_INT mask
4446 = (HOST_WIDE_INT_1U << pre_shift) - 1;
4447 remainder
4448 = expand_binop (int_mode, and_optab, op0,
4449 gen_int_mode (mask, int_mode),
4450 remainder, 1, methods);
4451 if (remainder)
4452 return gen_lowpart (mode, remainder);
4453 }
4454 quotient = expand_shift (code: RSHIFT_EXPR, mode: int_mode, shifted: op0,
4455 amount: pre_shift, target: tquotient, unsignedp: 1);
4456 }
4457 else if (size <= HOST_BITS_PER_WIDE_INT)
4458 {
4459 if (d >= (HOST_WIDE_INT_1U << (size - 1)))
4460 {
4461 /* Most significant bit of divisor is set; emit an scc
4462 insn. */
4463 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4464 int_mode, 1, 1);
4465 }
4466 else
4467 {
4468 /* Find a suitable multiplier and right shift count
4469 instead of multiplying with D. */
4470
4471 mh = choose_multiplier (d, n: size, precision: size,
4472 multiplier_ptr: &ml, post_shift_ptr: &post_shift, lgup_ptr: &dummy);
4473
4474 /* If the suggested multiplier is more than SIZE bits,
4475 we can do better for even divisors, using an
4476 initial right shift. */
4477 if (mh != 0 && (d & 1) == 0)
4478 {
4479 pre_shift = ctz_or_zero (x: d);
4480 mh = choose_multiplier (d: d >> pre_shift, n: size,
4481 precision: size - pre_shift,
4482 multiplier_ptr: &ml, post_shift_ptr: &post_shift, lgup_ptr: &dummy);
4483 gcc_assert (!mh);
4484 }
4485 else
4486 pre_shift = 0;
4487
4488 if (mh != 0)
4489 {
4490 rtx t1, t2, t3, t4;
4491
4492 if (post_shift - 1 >= BITS_PER_WORD)
4493 goto fail1;
4494
4495 extra_cost
4496 = (shift_cost (speed, mode: int_mode, bits: post_shift - 1)
4497 + shift_cost (speed, mode: int_mode, bits: 1)
4498 + 2 * add_cost (speed, mode: int_mode));
4499 t1 = expmed_mult_highpart
4500 (mode: int_mode, op0, op1: gen_int_mode (ml, int_mode),
4501 NULL_RTX, unsignedp: 1, max_cost: max_cost - extra_cost);
4502 if (t1 == 0)
4503 goto fail1;
4504 t2 = force_operand (gen_rtx_MINUS (int_mode,
4505 op0, t1),
4506 NULL_RTX);
4507 t3 = expand_shift (code: RSHIFT_EXPR, mode: int_mode,
4508 shifted: t2, amount: 1, NULL_RTX, unsignedp: 1);
4509 t4 = force_operand (gen_rtx_PLUS (int_mode,
4510 t1, t3),
4511 NULL_RTX);
4512 quotient = expand_shift
4513 (code: RSHIFT_EXPR, mode: int_mode, shifted: t4,
4514 amount: post_shift - 1, target: tquotient, unsignedp: 1);
4515 }
4516 else
4517 {
4518 rtx t1, t2;
4519
4520 if (pre_shift >= BITS_PER_WORD
4521 || post_shift >= BITS_PER_WORD)
4522 goto fail1;
4523
4524 t1 = expand_shift
4525 (code: RSHIFT_EXPR, mode: int_mode, shifted: op0,
4526 amount: pre_shift, NULL_RTX, unsignedp: 1);
4527 extra_cost
4528 = (shift_cost (speed, mode: int_mode, bits: pre_shift)
4529 + shift_cost (speed, mode: int_mode, bits: post_shift));
4530 t2 = expmed_mult_highpart
4531 (mode: int_mode, op0: t1,
4532 op1: gen_int_mode (ml, int_mode),
4533 NULL_RTX, unsignedp: 1, max_cost: max_cost - extra_cost);
4534 if (t2 == 0)
4535 goto fail1;
4536 quotient = expand_shift
4537 (code: RSHIFT_EXPR, mode: int_mode, shifted: t2,
4538 amount: post_shift, target: tquotient, unsignedp: 1);
4539 }
4540 }
4541 }
4542 else /* Too wide mode to use tricky code */
4543 break;
4544
4545 insn = get_last_insn ();
4546 if (insn != last)
4547 set_dst_reg_note (insn, REG_EQUAL,
4548 gen_rtx_UDIV (int_mode, op0, op1),
4549 quotient);
4550 }
4551 else /* TRUNC_DIV, signed */
4552 {
4553 unsigned HOST_WIDE_INT ml;
4554 int lgup, post_shift;
4555 rtx mlr;
4556 HOST_WIDE_INT d = INTVAL (op1);
4557 unsigned HOST_WIDE_INT abs_d;
4558
4559 /* Not prepared to handle division/remainder by
4560 0xffffffffffffffff8000000000000000 etc. */
4561 if (d == HOST_WIDE_INT_MIN && size > HOST_BITS_PER_WIDE_INT)
4562 break;
4563
4564 /* Since d might be INT_MIN, we have to cast to
4565 unsigned HOST_WIDE_INT before negating to avoid
4566 undefined signed overflow. */
4567 abs_d = (d >= 0
4568 ? (unsigned HOST_WIDE_INT) d
4569 : - (unsigned HOST_WIDE_INT) d);
4570
4571 /* n rem d = n rem -d */
4572 if (rem_flag && d < 0)
4573 {
4574 d = abs_d;
4575 op1 = gen_int_mode (abs_d, int_mode);
4576 }
4577
4578 if (d == 1)
4579 quotient = op0;
4580 else if (d == -1)
4581 quotient = expand_unop (int_mode, neg_optab, op0,
4582 tquotient, 0);
4583 else if (size <= HOST_BITS_PER_WIDE_INT
4584 && abs_d == HOST_WIDE_INT_1U << (size - 1))
4585 {
4586 /* This case is not handled correctly below. */
4587 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4588 int_mode, 1, 1);
4589 if (quotient == 0)
4590 goto fail1;
4591 }
4592 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4593 && (size <= HOST_BITS_PER_WIDE_INT || d >= 0)
4594 && (rem_flag
4595 ? smod_pow2_cheap (speed, mode: int_mode)
4596 : sdiv_pow2_cheap (speed, mode: int_mode))
4597 /* We assume that cheap metric is true if the
4598 optab has an expander for this mode. */
4599 && ((optab_handler (op: (rem_flag ? smod_optab
4600 : sdiv_optab),
4601 mode: int_mode)
4602 != CODE_FOR_nothing)
4603 || (optab_handler (op: sdivmod_optab, mode: int_mode)
4604 != CODE_FOR_nothing)))
4605 ;
4606 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4607 {
4608 if (rem_flag)
4609 {
4610 remainder = expand_smod_pow2 (mode: int_mode, op0, d);
4611 if (remainder)
4612 return gen_lowpart (mode, remainder);
4613 }
4614
4615 if (sdiv_pow2_cheap (speed, mode: int_mode)
4616 && ((optab_handler (op: sdiv_optab, mode: int_mode)
4617 != CODE_FOR_nothing)
4618 || (optab_handler (op: sdivmod_optab, mode: int_mode)
4619 != CODE_FOR_nothing)))
4620 quotient = expand_divmod (rem_flag: 0, code: TRUNC_DIV_EXPR,
4621 mode: int_mode, op0,
4622 op1: gen_int_mode (abs_d,
4623 int_mode),
4624 NULL_RTX, unsignedp: 0);
4625 else
4626 quotient = expand_sdiv_pow2 (mode: int_mode, op0, d: abs_d);
4627
4628 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4629 negate the quotient. */
4630 if (d < 0)
4631 {
4632 insn = get_last_insn ();
4633 if (insn != last
4634 && abs_d < (HOST_WIDE_INT_1U
4635 << (HOST_BITS_PER_WIDE_INT - 1)))
4636 set_dst_reg_note (insn, REG_EQUAL,
4637 gen_rtx_DIV (int_mode, op0,
4638 gen_int_mode
4639 (abs_d,
4640 int_mode)),
4641 quotient);
4642
4643 quotient = expand_unop (int_mode, neg_optab,
4644 quotient, quotient, 0);
4645 }
4646 }
4647 else if (size <= HOST_BITS_PER_WIDE_INT)
4648 {
4649 choose_multiplier (d: abs_d, n: size, precision: size - 1,
4650 multiplier_ptr: &ml, post_shift_ptr: &post_shift, lgup_ptr: &lgup);
4651 if (ml < HOST_WIDE_INT_1U << (size - 1))
4652 {
4653 rtx t1, t2, t3;
4654
4655 if (post_shift >= BITS_PER_WORD
4656 || size - 1 >= BITS_PER_WORD)
4657 goto fail1;
4658
4659 extra_cost = (shift_cost (speed, mode: int_mode, bits: post_shift)
4660 + shift_cost (speed, mode: int_mode, bits: size - 1)
4661 + add_cost (speed, mode: int_mode));
4662 t1 = expmed_mult_highpart
4663 (mode: int_mode, op0, op1: gen_int_mode (ml, int_mode),
4664 NULL_RTX, unsignedp: 0, max_cost: max_cost - extra_cost);
4665 if (t1 == 0)
4666 goto fail1;
4667 t2 = expand_shift
4668 (code: RSHIFT_EXPR, mode: int_mode, shifted: t1,
4669 amount: post_shift, NULL_RTX, unsignedp: 0);
4670 t3 = expand_shift
4671 (code: RSHIFT_EXPR, mode: int_mode, shifted: op0,
4672 amount: size - 1, NULL_RTX, unsignedp: 0);
4673 if (d < 0)
4674 quotient
4675 = force_operand (gen_rtx_MINUS (int_mode, t3, t2),
4676 tquotient);
4677 else
4678 quotient
4679 = force_operand (gen_rtx_MINUS (int_mode, t2, t3),
4680 tquotient);
4681 }
4682 else
4683 {
4684 rtx t1, t2, t3, t4;
4685
4686 if (post_shift >= BITS_PER_WORD
4687 || size - 1 >= BITS_PER_WORD)
4688 goto fail1;
4689
4690 ml |= HOST_WIDE_INT_M1U << (size - 1);
4691 mlr = gen_int_mode (ml, int_mode);
4692 extra_cost = (shift_cost (speed, mode: int_mode, bits: post_shift)
4693 + shift_cost (speed, mode: int_mode, bits: size - 1)
4694 + 2 * add_cost (speed, mode: int_mode));
4695 t1 = expmed_mult_highpart (mode: int_mode, op0, op1: mlr,
4696 NULL_RTX, unsignedp: 0,
4697 max_cost: max_cost - extra_cost);
4698 if (t1 == 0)
4699 goto fail1;
4700 t2 = force_operand (gen_rtx_PLUS (int_mode, t1, op0),
4701 NULL_RTX);
4702 t3 = expand_shift
4703 (code: RSHIFT_EXPR, mode: int_mode, shifted: t2,
4704 amount: post_shift, NULL_RTX, unsignedp: 0);
4705 t4 = expand_shift
4706 (code: RSHIFT_EXPR, mode: int_mode, shifted: op0,
4707 amount: size - 1, NULL_RTX, unsignedp: 0);
4708 if (d < 0)
4709 quotient
4710 = force_operand (gen_rtx_MINUS (int_mode, t4, t3),
4711 tquotient);
4712 else
4713 quotient
4714 = force_operand (gen_rtx_MINUS (int_mode, t3, t4),
4715 tquotient);
4716 }
4717 }
4718 else /* Too wide mode to use tricky code */
4719 break;
4720
4721 insn = get_last_insn ();
4722 if (insn != last)
4723 set_dst_reg_note (insn, REG_EQUAL,
4724 gen_rtx_DIV (int_mode, op0, op1),
4725 quotient);
4726 }
4727 break;
4728 }
4729 fail1:
4730 delete_insns_since (last);
4731 break;
4732
4733 case FLOOR_DIV_EXPR:
4734 case FLOOR_MOD_EXPR:
4735 /* We will come here only for signed operations. */
4736 if (op1_is_constant && HWI_COMPUTABLE_MODE_P (mode: compute_mode))
4737 {
4738 scalar_int_mode int_mode = as_a <scalar_int_mode> (m: compute_mode);
4739 int size = GET_MODE_BITSIZE (mode: int_mode);
4740 unsigned HOST_WIDE_INT mh, ml;
4741 int pre_shift, lgup, post_shift;
4742 HOST_WIDE_INT d = INTVAL (op1);
4743
4744 if (d > 0)
4745 {
4746 /* We could just as easily deal with negative constants here,
4747 but it does not seem worth the trouble for GCC 2.6. */
4748 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4749 {
4750 pre_shift = floor_log2 (x: d);
4751 if (rem_flag)
4752 {
4753 unsigned HOST_WIDE_INT mask
4754 = (HOST_WIDE_INT_1U << pre_shift) - 1;
4755 remainder = expand_binop
4756 (int_mode, and_optab, op0,
4757 gen_int_mode (mask, int_mode),
4758 remainder, 0, methods);
4759 if (remainder)
4760 return gen_lowpart (mode, remainder);
4761 }
4762 quotient = expand_shift
4763 (code: RSHIFT_EXPR, mode: int_mode, shifted: op0,
4764 amount: pre_shift, target: tquotient, unsignedp: 0);
4765 }
4766 else
4767 {
4768 rtx t1, t2, t3, t4;
4769
4770 mh = choose_multiplier (d, n: size, precision: size - 1,
4771 multiplier_ptr: &ml, post_shift_ptr: &post_shift, lgup_ptr: &lgup);
4772 gcc_assert (!mh);
4773
4774 if (post_shift < BITS_PER_WORD
4775 && size - 1 < BITS_PER_WORD)
4776 {
4777 t1 = expand_shift
4778 (code: RSHIFT_EXPR, mode: int_mode, shifted: op0,
4779 amount: size - 1, NULL_RTX, unsignedp: 0);
4780 t2 = expand_binop (int_mode, xor_optab, op0, t1,
4781 NULL_RTX, 0, OPTAB_WIDEN);
4782 extra_cost = (shift_cost (speed, mode: int_mode, bits: post_shift)
4783 + shift_cost (speed, mode: int_mode, bits: size - 1)
4784 + 2 * add_cost (speed, mode: int_mode));
4785 t3 = expmed_mult_highpart
4786 (mode: int_mode, op0: t2, op1: gen_int_mode (ml, int_mode),
4787 NULL_RTX, unsignedp: 1, max_cost: max_cost - extra_cost);
4788 if (t3 != 0)
4789 {
4790 t4 = expand_shift
4791 (code: RSHIFT_EXPR, mode: int_mode, shifted: t3,
4792 amount: post_shift, NULL_RTX, unsignedp: 1);
4793 quotient = expand_binop (int_mode, xor_optab,
4794 t4, t1, tquotient, 0,
4795 OPTAB_WIDEN);
4796 }
4797 }
4798 }
4799 }
4800 else
4801 {
4802 rtx nsign, t1, t2, t3, t4;
4803 t1 = force_operand (gen_rtx_PLUS (int_mode,
4804 op0, constm1_rtx), NULL_RTX);
4805 t2 = expand_binop (int_mode, ior_optab, op0, t1, NULL_RTX,
4806 0, OPTAB_WIDEN);
4807 nsign = expand_shift (code: RSHIFT_EXPR, mode: int_mode, shifted: t2,
4808 amount: size - 1, NULL_RTX, unsignedp: 0);
4809 t3 = force_operand (gen_rtx_MINUS (int_mode, t1, nsign),
4810 NULL_RTX);
4811 t4 = expand_divmod (rem_flag: 0, code: TRUNC_DIV_EXPR, mode: int_mode, op0: t3, op1,
4812 NULL_RTX, unsignedp: 0);
4813 if (t4)
4814 {
4815 rtx t5;
4816 t5 = expand_unop (int_mode, one_cmpl_optab, nsign,
4817 NULL_RTX, 0);
4818 quotient = force_operand (gen_rtx_PLUS (int_mode, t4, t5),
4819 tquotient);
4820 }
4821 }
4822 }
4823
4824 if (quotient != 0)
4825 break;
4826 delete_insns_since (last);
4827
4828 /* Try using an instruction that produces both the quotient and
4829 remainder, using truncation. We can easily compensate the quotient
4830 or remainder to get floor rounding, once we have the remainder.
4831 Notice that we compute also the final remainder value here,
4832 and return the result right away. */
4833 if (target == 0 || GET_MODE (target) != compute_mode)
4834 target = gen_reg_rtx (compute_mode);
4835
4836 if (rem_flag)
4837 {
4838 remainder
4839 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4840 quotient = gen_reg_rtx (compute_mode);
4841 }
4842 else
4843 {
4844 quotient
4845 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4846 remainder = gen_reg_rtx (compute_mode);
4847 }
4848
4849 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4850 quotient, remainder, 0))
4851 {
4852 /* This could be computed with a branch-less sequence.
4853 Save that for later. */
4854 rtx tem;
4855 rtx_code_label *label = gen_label_rtx ();
4856 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4857 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4858 NULL_RTX, 0, OPTAB_WIDEN);
4859 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4860 expand_dec (target: quotient, const1_rtx);
4861 expand_inc (target: remainder, inc: op1);
4862 emit_label (label);
4863 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4864 }
4865
4866 /* No luck with division elimination or divmod. Have to do it
4867 by conditionally adjusting op0 *and* the result. */
4868 {
4869 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4870 rtx adjusted_op0;
4871 rtx tem;
4872
4873 quotient = gen_reg_rtx (compute_mode);
4874 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4875 label1 = gen_label_rtx ();
4876 label2 = gen_label_rtx ();
4877 label3 = gen_label_rtx ();
4878 label4 = gen_label_rtx ();
4879 label5 = gen_label_rtx ();
4880 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4881 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4882 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4883 quotient, 0, methods);
4884 if (tem != quotient)
4885 emit_move_insn (quotient, tem);
4886 emit_jump_insn (targetm.gen_jump (label5));
4887 emit_barrier ();
4888 emit_label (label1);
4889 expand_inc (target: adjusted_op0, const1_rtx);
4890 emit_jump_insn (targetm.gen_jump (label4));
4891 emit_barrier ();
4892 emit_label (label2);
4893 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4894 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4895 quotient, 0, methods);
4896 if (tem != quotient)
4897 emit_move_insn (quotient, tem);
4898 emit_jump_insn (targetm.gen_jump (label5));
4899 emit_barrier ();
4900 emit_label (label3);
4901 expand_dec (target: adjusted_op0, const1_rtx);
4902 emit_label (label4);
4903 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4904 quotient, 0, methods);
4905 if (tem != quotient)
4906 emit_move_insn (quotient, tem);
4907 expand_dec (target: quotient, const1_rtx);
4908 emit_label (label5);
4909 }
4910 break;
4911
4912 case CEIL_DIV_EXPR:
4913 case CEIL_MOD_EXPR:
4914 if (unsignedp)
4915 {
4916 if (op1_is_constant
4917 && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4918 && (HWI_COMPUTABLE_MODE_P (mode: compute_mode)
4919 || INTVAL (op1) >= 0))
4920 {
4921 scalar_int_mode int_mode
4922 = as_a <scalar_int_mode> (m: compute_mode);
4923 rtx t1, t2, t3;
4924 unsigned HOST_WIDE_INT d = INTVAL (op1);
4925 t1 = expand_shift (code: RSHIFT_EXPR, mode: int_mode, shifted: op0,
4926 amount: floor_log2 (x: d), target: tquotient, unsignedp: 1);
4927 t2 = expand_binop (int_mode, and_optab, op0,
4928 gen_int_mode (d - 1, int_mode),
4929 NULL_RTX, 1, methods);
4930 t3 = gen_reg_rtx (int_mode);
4931 t3 = emit_store_flag (t3, NE, t2, const0_rtx, int_mode, 1, 1);
4932 if (t3 == 0)
4933 {
4934 rtx_code_label *lab;
4935 lab = gen_label_rtx ();
4936 do_cmp_and_jump (t2, const0_rtx, EQ, int_mode, lab);
4937 expand_inc (target: t1, const1_rtx);
4938 emit_label (lab);
4939 quotient = t1;
4940 }
4941 else
4942 quotient = force_operand (gen_rtx_PLUS (int_mode, t1, t3),
4943 tquotient);
4944 break;
4945 }
4946
4947 /* Try using an instruction that produces both the quotient and
4948 remainder, using truncation. We can easily compensate the
4949 quotient or remainder to get ceiling rounding, once we have the
4950 remainder. Notice that we compute also the final remainder
4951 value here, and return the result right away. */
4952 if (target == 0 || GET_MODE (target) != compute_mode)
4953 target = gen_reg_rtx (compute_mode);
4954
4955 if (rem_flag)
4956 {
4957 remainder = (REG_P (target)
4958 ? target : gen_reg_rtx (compute_mode));
4959 quotient = gen_reg_rtx (compute_mode);
4960 }
4961 else
4962 {
4963 quotient = (REG_P (target)
4964 ? target : gen_reg_rtx (compute_mode));
4965 remainder = gen_reg_rtx (compute_mode);
4966 }
4967
4968 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4969 remainder, 1))
4970 {
4971 /* This could be computed with a branch-less sequence.
4972 Save that for later. */
4973 rtx_code_label *label = gen_label_rtx ();
4974 do_cmp_and_jump (remainder, const0_rtx, EQ,
4975 compute_mode, label);
4976 expand_inc (target: quotient, const1_rtx);
4977 expand_dec (target: remainder, dec: op1);
4978 emit_label (label);
4979 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4980 }
4981
4982 /* No luck with division elimination or divmod. Have to do it
4983 by conditionally adjusting op0 *and* the result. */
4984 {
4985 rtx_code_label *label1, *label2;
4986 rtx adjusted_op0, tem;
4987
4988 quotient = gen_reg_rtx (compute_mode);
4989 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4990 label1 = gen_label_rtx ();
4991 label2 = gen_label_rtx ();
4992 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4993 compute_mode, label1);
4994 emit_move_insn (quotient, const0_rtx);
4995 emit_jump_insn (targetm.gen_jump (label2));
4996 emit_barrier ();
4997 emit_label (label1);
4998 expand_dec (target: adjusted_op0, const1_rtx);
4999 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
5000 quotient, 1, methods);
5001 if (tem != quotient)
5002 emit_move_insn (quotient, tem);
5003 expand_inc (target: quotient, const1_rtx);
5004 emit_label (label2);
5005 }
5006 }
5007 else /* signed */
5008 {
5009 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
5010 && INTVAL (op1) >= 0)
5011 {
5012 /* This is extremely similar to the code for the unsigned case
5013 above. For 2.7 we should merge these variants, but for
5014 2.6.1 I don't want to touch the code for unsigned since that
5015 get used in C. The signed case will only be used by other
5016 languages (Ada). */
5017
5018 rtx t1, t2, t3;
5019 unsigned HOST_WIDE_INT d = INTVAL (op1);
5020 t1 = expand_shift (code: RSHIFT_EXPR, mode: compute_mode, shifted: op0,
5021 amount: floor_log2 (x: d), target: tquotient, unsignedp: 0);
5022 t2 = expand_binop (compute_mode, and_optab, op0,
5023 gen_int_mode (d - 1, compute_mode),
5024 NULL_RTX, 1, methods);
5025 t3 = gen_reg_rtx (compute_mode);
5026 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
5027 compute_mode, 1, 1);
5028 if (t3 == 0)
5029 {
5030 rtx_code_label *lab;
5031 lab = gen_label_rtx ();
5032 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
5033 expand_inc (target: t1, const1_rtx);
5034 emit_label (lab);
5035 quotient = t1;
5036 }
5037 else
5038 quotient = force_operand (gen_rtx_PLUS (compute_mode,
5039 t1, t3),
5040 tquotient);
5041 break;
5042 }
5043
5044 /* Try using an instruction that produces both the quotient and
5045 remainder, using truncation. We can easily compensate the
5046 quotient or remainder to get ceiling rounding, once we have the
5047 remainder. Notice that we compute also the final remainder
5048 value here, and return the result right away. */
5049 if (target == 0 || GET_MODE (target) != compute_mode)
5050 target = gen_reg_rtx (compute_mode);
5051 if (rem_flag)
5052 {
5053 remainder= (REG_P (target)
5054 ? target : gen_reg_rtx (compute_mode));
5055 quotient = gen_reg_rtx (compute_mode);
5056 }
5057 else
5058 {
5059 quotient = (REG_P (target)
5060 ? target : gen_reg_rtx (compute_mode));
5061 remainder = gen_reg_rtx (compute_mode);
5062 }
5063
5064 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
5065 remainder, 0))
5066 {
5067 /* This could be computed with a branch-less sequence.
5068 Save that for later. */
5069 rtx tem;
5070 rtx_code_label *label = gen_label_rtx ();
5071 do_cmp_and_jump (remainder, const0_rtx, EQ,
5072 compute_mode, label);
5073 tem = expand_binop (compute_mode, xor_optab, op0, op1,
5074 NULL_RTX, 0, OPTAB_WIDEN);
5075 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
5076 expand_inc (target: quotient, const1_rtx);
5077 expand_dec (target: remainder, dec: op1);
5078 emit_label (label);
5079 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5080 }
5081
5082 /* No luck with division elimination or divmod. Have to do it
5083 by conditionally adjusting op0 *and* the result. */
5084 {
5085 rtx_code_label *label1, *label2, *label3, *label4, *label5;
5086 rtx adjusted_op0;
5087 rtx tem;
5088
5089 quotient = gen_reg_rtx (compute_mode);
5090 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
5091 label1 = gen_label_rtx ();
5092 label2 = gen_label_rtx ();
5093 label3 = gen_label_rtx ();
5094 label4 = gen_label_rtx ();
5095 label5 = gen_label_rtx ();
5096 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
5097 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
5098 compute_mode, label1);
5099 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5100 quotient, 0, methods);
5101 if (tem != quotient)
5102 emit_move_insn (quotient, tem);
5103 emit_jump_insn (targetm.gen_jump (label5));
5104 emit_barrier ();
5105 emit_label (label1);
5106 expand_dec (target: adjusted_op0, const1_rtx);
5107 emit_jump_insn (targetm.gen_jump (label4));
5108 emit_barrier ();
5109 emit_label (label2);
5110 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
5111 compute_mode, label3);
5112 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5113 quotient, 0, methods);
5114 if (tem != quotient)
5115 emit_move_insn (quotient, tem);
5116 emit_jump_insn (targetm.gen_jump (label5));
5117 emit_barrier ();
5118 emit_label (label3);
5119 expand_inc (target: adjusted_op0, const1_rtx);
5120 emit_label (label4);
5121 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5122 quotient, 0, methods);
5123 if (tem != quotient)
5124 emit_move_insn (quotient, tem);
5125 expand_inc (target: quotient, const1_rtx);
5126 emit_label (label5);
5127 }
5128 }
5129 break;
5130
5131 case EXACT_DIV_EXPR:
5132 if (op1_is_constant && HWI_COMPUTABLE_MODE_P (mode: compute_mode))
5133 {
5134 scalar_int_mode int_mode = as_a <scalar_int_mode> (m: compute_mode);
5135 int size = GET_MODE_BITSIZE (mode: int_mode);
5136 HOST_WIDE_INT d = INTVAL (op1);
5137 unsigned HOST_WIDE_INT ml;
5138 int pre_shift;
5139 rtx t1;
5140
5141 pre_shift = ctz_or_zero (x: d);
5142 ml = invert_mod2n (x: d >> pre_shift, n: size);
5143 t1 = expand_shift (code: RSHIFT_EXPR, mode: int_mode, shifted: op0,
5144 amount: pre_shift, NULL_RTX, unsignedp);
5145 quotient = expand_mult (mode: int_mode, op0: t1, op1: gen_int_mode (ml, int_mode),
5146 NULL_RTX, unsignedp: 1);
5147
5148 insn = get_last_insn ();
5149 set_dst_reg_note (insn, REG_EQUAL,
5150 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
5151 int_mode, op0, op1),
5152 quotient);
5153 }
5154 break;
5155
5156 case ROUND_DIV_EXPR:
5157 case ROUND_MOD_EXPR:
5158 if (unsignedp)
5159 {
5160 scalar_int_mode int_mode = as_a <scalar_int_mode> (m: compute_mode);
5161 rtx tem;
5162 rtx_code_label *label;
5163 label = gen_label_rtx ();
5164 quotient = gen_reg_rtx (int_mode);
5165 remainder = gen_reg_rtx (int_mode);
5166 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
5167 {
5168 rtx tem;
5169 quotient = expand_binop (int_mode, udiv_optab, op0, op1,
5170 quotient, 1, methods);
5171 tem = expand_mult (mode: int_mode, op0: quotient, op1, NULL_RTX, unsignedp: 1);
5172 remainder = expand_binop (int_mode, sub_optab, op0, tem,
5173 remainder, 1, methods);
5174 }
5175 tem = plus_constant (int_mode, op1, -1);
5176 tem = expand_shift (code: RSHIFT_EXPR, mode: int_mode, shifted: tem, amount: 1, NULL_RTX, unsignedp: 1);
5177 do_cmp_and_jump (remainder, tem, LEU, int_mode, label);
5178 expand_inc (target: quotient, const1_rtx);
5179 expand_dec (target: remainder, dec: op1);
5180 emit_label (label);
5181 }
5182 else
5183 {
5184 scalar_int_mode int_mode = as_a <scalar_int_mode> (m: compute_mode);
5185 int size = GET_MODE_BITSIZE (mode: int_mode);
5186 rtx abs_rem, abs_op1, tem, mask;
5187 rtx_code_label *label;
5188 label = gen_label_rtx ();
5189 quotient = gen_reg_rtx (int_mode);
5190 remainder = gen_reg_rtx (int_mode);
5191 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
5192 {
5193 rtx tem;
5194 quotient = expand_binop (int_mode, sdiv_optab, op0, op1,
5195 quotient, 0, methods);
5196 tem = expand_mult (mode: int_mode, op0: quotient, op1, NULL_RTX, unsignedp: 0);
5197 remainder = expand_binop (int_mode, sub_optab, op0, tem,
5198 remainder, 0, methods);
5199 }
5200 abs_rem = expand_abs (int_mode, remainder, NULL_RTX, 1, 0);
5201 abs_op1 = expand_abs (int_mode, op1, NULL_RTX, 1, 0);
5202 tem = expand_shift (code: LSHIFT_EXPR, mode: int_mode, shifted: abs_rem,
5203 amount: 1, NULL_RTX, unsignedp: 1);
5204 do_cmp_and_jump (tem, abs_op1, LTU, int_mode, label);
5205 tem = expand_binop (int_mode, xor_optab, op0, op1,
5206 NULL_RTX, 0, OPTAB_WIDEN);
5207 mask = expand_shift (code: RSHIFT_EXPR, mode: int_mode, shifted: tem,
5208 amount: size - 1, NULL_RTX, unsignedp: 0);
5209 tem = expand_binop (int_mode, xor_optab, mask, const1_rtx,
5210 NULL_RTX, 0, OPTAB_WIDEN);
5211 tem = expand_binop (int_mode, sub_optab, tem, mask,
5212 NULL_RTX, 0, OPTAB_WIDEN);
5213 expand_inc (target: quotient, inc: tem);
5214 tem = expand_binop (int_mode, xor_optab, mask, op1,
5215 NULL_RTX, 0, OPTAB_WIDEN);
5216 tem = expand_binop (int_mode, sub_optab, tem, mask,
5217 NULL_RTX, 0, OPTAB_WIDEN);
5218 expand_dec (target: remainder, dec: tem);
5219 emit_label (label);
5220 }
5221 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5222
5223 default:
5224 gcc_unreachable ();
5225 }
5226
5227 if (quotient == 0)
5228 {
5229 if (target && GET_MODE (target) != compute_mode)
5230 target = 0;
5231
5232 if (rem_flag)
5233 {
5234 /* Try to produce the remainder without producing the quotient.
5235 If we seem to have a divmod pattern that does not require widening,
5236 don't try widening here. We should really have a WIDEN argument
5237 to expand_twoval_binop, since what we'd really like to do here is
5238 1) try a mod insn in compute_mode
5239 2) try a divmod insn in compute_mode
5240 3) try a div insn in compute_mode and multiply-subtract to get
5241 remainder
5242 4) try the same things with widening allowed. */
5243 remainder
5244 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5245 op0, op1, target,
5246 unsignedp,
5247 ((optab_handler (op: optab2, mode: compute_mode)
5248 != CODE_FOR_nothing)
5249 ? OPTAB_DIRECT : OPTAB_WIDEN));
5250 if (remainder == 0)
5251 {
5252 /* No luck there. Can we do remainder and divide at once
5253 without a library call? */
5254 remainder = gen_reg_rtx (compute_mode);
5255 if (! expand_twoval_binop ((unsignedp
5256 ? udivmod_optab
5257 : sdivmod_optab),
5258 op0, op1,
5259 NULL_RTX, remainder, unsignedp))
5260 remainder = 0;
5261 }
5262
5263 if (remainder)
5264 return gen_lowpart (mode, remainder);
5265 }
5266
5267 /* Produce the quotient. Try a quotient insn, but not a library call.
5268 If we have a divmod in this mode, use it in preference to widening
5269 the div (for this test we assume it will not fail). Note that optab2
5270 is set to the one of the two optabs that the call below will use. */
5271 quotient
5272 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
5273 op0, op1, rem_flag ? NULL_RTX : target,
5274 unsignedp,
5275 ((optab_handler (op: optab2, mode: compute_mode)
5276 != CODE_FOR_nothing)
5277 ? OPTAB_DIRECT : OPTAB_WIDEN));
5278
5279 if (quotient == 0)
5280 {
5281 /* No luck there. Try a quotient-and-remainder insn,
5282 keeping the quotient alone. */
5283 quotient = gen_reg_rtx (compute_mode);
5284 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
5285 op0, op1,
5286 quotient, NULL_RTX, unsignedp))
5287 {
5288 quotient = 0;
5289 if (! rem_flag)
5290 /* Still no luck. If we are not computing the remainder,
5291 use a library call for the quotient. */
5292 quotient = sign_expand_binop (compute_mode,
5293 udiv_optab, sdiv_optab,
5294 op0, op1, target,
5295 unsignedp, methods);
5296 }
5297 }
5298 }
5299
5300 if (rem_flag)
5301 {
5302 if (target && GET_MODE (target) != compute_mode)
5303 target = 0;
5304
5305 if (quotient == 0)
5306 {
5307 /* No divide instruction either. Use library for remainder. */
5308 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5309 op0, op1, target,
5310 unsignedp, methods);
5311 /* No remainder function. Try a quotient-and-remainder
5312 function, keeping the remainder. */
5313 if (!remainder
5314 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
5315 {
5316 remainder = gen_reg_rtx (compute_mode);
5317 if (!expand_twoval_binop_libfunc
5318 (unsignedp ? udivmod_optab : sdivmod_optab,
5319 op0, op1,
5320 NULL_RTX, remainder,
5321 unsignedp ? UMOD : MOD))
5322 remainder = NULL_RTX;
5323 }
5324 }
5325 else
5326 {
5327 /* We divided. Now finish doing X - Y * (X / Y). */
5328 remainder = expand_mult (mode: compute_mode, op0: quotient, op1,
5329 NULL_RTX, unsignedp);
5330 remainder = expand_binop (compute_mode, sub_optab, op0,
5331 remainder, target, unsignedp,
5332 methods);
5333 }
5334 }
5335
5336 if (methods != OPTAB_LIB_WIDEN
5337 && (rem_flag ? remainder : quotient) == NULL_RTX)
5338 return NULL_RTX;
5339
5340 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5341}
5342
5343/* Return a tree node with data type TYPE, describing the value of X.
5344 Usually this is an VAR_DECL, if there is no obvious better choice.
5345 X may be an expression, however we only support those expressions
5346 generated by loop.c. */
5347
5348tree
5349make_tree (tree type, rtx x)
5350{
5351 tree t;
5352
5353 switch (GET_CODE (x))
5354 {
5355 case CONST_INT:
5356 case CONST_WIDE_INT:
5357 t = wide_int_to_tree (type, cst: rtx_mode_t (x, TYPE_MODE (type)));
5358 return t;
5359
5360 case CONST_DOUBLE:
5361 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
5362 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
5363 t = wide_int_to_tree (type,
5364 cst: wide_int::from_array (val: &CONST_DOUBLE_LOW (x), len: 2,
5365 HOST_BITS_PER_WIDE_INT * 2));
5366 else
5367 t = build_real (type, *CONST_DOUBLE_REAL_VALUE (x));
5368
5369 return t;
5370
5371 case CONST_VECTOR:
5372 {
5373 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5374 unsigned int nelts_per_pattern = CONST_VECTOR_NELTS_PER_PATTERN (x);
5375 tree itype = TREE_TYPE (type);
5376
5377 /* Build a tree with vector elements. */
5378 tree_vector_builder elts (type, npatterns, nelts_per_pattern);
5379 unsigned int count = elts.encoded_nelts ();
5380 for (unsigned int i = 0; i < count; ++i)
5381 {
5382 rtx elt = CONST_VECTOR_ELT (x, i);
5383 elts.quick_push (obj: make_tree (type: itype, x: elt));
5384 }
5385
5386 return elts.build ();
5387 }
5388
5389 case PLUS:
5390 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5391 make_tree (type, XEXP (x, 1)));
5392
5393 case MINUS:
5394 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5395 make_tree (type, XEXP (x, 1)));
5396
5397 case NEG:
5398 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5399
5400 case MULT:
5401 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5402 make_tree (type, XEXP (x, 1)));
5403
5404 case ASHIFT:
5405 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5406 make_tree (type, XEXP (x, 1)));
5407
5408 case LSHIFTRT:
5409 t = unsigned_type_for (type);
5410 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5411 make_tree (t, XEXP (x, 0)),
5412 make_tree (type, XEXP (x, 1))));
5413
5414 case ASHIFTRT:
5415 t = signed_type_for (type);
5416 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5417 make_tree (t, XEXP (x, 0)),
5418 make_tree (type, XEXP (x, 1))));
5419
5420 case DIV:
5421 if (TREE_CODE (type) != REAL_TYPE)
5422 t = signed_type_for (type);
5423 else
5424 t = type;
5425
5426 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5427 make_tree (t, XEXP (x, 0)),
5428 make_tree (t, XEXP (x, 1))));
5429 case UDIV:
5430 t = unsigned_type_for (type);
5431 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5432 make_tree (t, XEXP (x, 0)),
5433 make_tree (t, XEXP (x, 1))));
5434
5435 case SIGN_EXTEND:
5436 case ZERO_EXTEND:
5437 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5438 GET_CODE (x) == ZERO_EXTEND);
5439 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5440
5441 case CONST:
5442 return make_tree (type, XEXP (x, 0));
5443
5444 case SYMBOL_REF:
5445 t = SYMBOL_REF_DECL (x);
5446 if (t)
5447 return fold_convert (type, build_fold_addr_expr (t));
5448 /* fall through. */
5449
5450 default:
5451 if (CONST_POLY_INT_P (x))
5452 return wide_int_to_tree (type: t, cst: const_poly_int_value (x));
5453
5454 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5455
5456 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5457 address mode to pointer mode. */
5458 if (POINTER_TYPE_P (type))
5459 x = convert_memory_address_addr_space
5460 (SCALAR_INT_TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5461
5462 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5463 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5464 t->decl_with_rtl.rtl = x;
5465
5466 return t;
5467 }
5468}
5469
5470/* Compute the logical-and of OP0 and OP1, storing it in TARGET
5471 and returning TARGET.
5472
5473 If TARGET is 0, a pseudo-register or constant is returned. */
5474
5475rtx
5476expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
5477{
5478 rtx tem = 0;
5479
5480 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5481 tem = simplify_binary_operation (code: AND, mode, op0, op1);
5482 if (tem == 0)
5483 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5484
5485 if (target == 0)
5486 target = tem;
5487 else if (tem != target)
5488 emit_move_insn (target, tem);
5489 return target;
5490}
5491
5492/* Helper function for emit_store_flag. */
5493rtx
5494emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5495 machine_mode mode, machine_mode compare_mode,
5496 int unsignedp, rtx x, rtx y, int normalizep,
5497 machine_mode target_mode)
5498{
5499 class expand_operand ops[4];
5500 rtx op0, comparison, subtarget;
5501 rtx_insn *last;
5502 scalar_int_mode result_mode = targetm.cstore_mode (icode);
5503 scalar_int_mode int_target_mode;
5504
5505 last = get_last_insn ();
5506 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5507 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5508 if (!x || !y)
5509 {
5510 delete_insns_since (last);
5511 return NULL_RTX;
5512 }
5513
5514 if (target_mode == VOIDmode)
5515 int_target_mode = result_mode;
5516 else
5517 int_target_mode = as_a <scalar_int_mode> (m: target_mode);
5518 if (!target)
5519 target = gen_reg_rtx (int_target_mode);
5520
5521 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5522
5523 create_output_operand (op: &ops[0], optimize ? NULL_RTX : target, mode: result_mode);
5524 create_fixed_operand (op: &ops[1], x: comparison);
5525 create_fixed_operand (op: &ops[2], x);
5526 create_fixed_operand (op: &ops[3], x: y);
5527 if (!maybe_expand_insn (icode, nops: 4, ops))
5528 {
5529 delete_insns_since (last);
5530 return NULL_RTX;
5531 }
5532 subtarget = ops[0].value;
5533
5534 /* If we are converting to a wider mode, first convert to
5535 INT_TARGET_MODE, then normalize. This produces better combining
5536 opportunities on machines that have a SIGN_EXTRACT when we are
5537 testing a single bit. This mostly benefits the 68k.
5538
5539 If STORE_FLAG_VALUE does not have the sign bit set when
5540 interpreted in MODE, we can do this conversion as unsigned, which
5541 is usually more efficient. */
5542 if (GET_MODE_PRECISION (mode: int_target_mode) > GET_MODE_PRECISION (mode: result_mode))
5543 {
5544 gcc_assert (GET_MODE_PRECISION (result_mode) != 1
5545 || STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1);
5546
5547 bool unsignedp = (STORE_FLAG_VALUE >= 0);
5548 convert_move (target, subtarget, unsignedp);
5549
5550 op0 = target;
5551 result_mode = int_target_mode;
5552 }
5553 else
5554 op0 = subtarget;
5555
5556 /* If we want to keep subexpressions around, don't reuse our last
5557 target. */
5558 if (optimize)
5559 subtarget = 0;
5560
5561 /* Now normalize to the proper value in MODE. Sometimes we don't
5562 have to do anything. */
5563 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5564 ;
5565 /* STORE_FLAG_VALUE might be the most negative number, so write
5566 the comparison this way to avoid a compiler-time warning. */
5567 else if (- normalizep == STORE_FLAG_VALUE)
5568 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5569
5570 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5571 it hard to use a value of just the sign bit due to ANSI integer
5572 constant typing rules. */
5573 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5574 op0 = expand_shift (code: RSHIFT_EXPR, mode: result_mode, shifted: op0,
5575 amount: GET_MODE_BITSIZE (mode: result_mode) - 1, target: subtarget,
5576 unsignedp: normalizep == 1);
5577 else
5578 {
5579 gcc_assert (STORE_FLAG_VALUE & 1);
5580
5581 op0 = expand_and (mode: result_mode, op0, const1_rtx, target: subtarget);
5582 if (normalizep == -1)
5583 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5584 }
5585
5586 /* If we were converting to a smaller mode, do the conversion now. */
5587 if (int_target_mode != result_mode)
5588 {
5589 convert_move (target, op0, 0);
5590 return target;
5591 }
5592 else
5593 return op0;
5594}
5595
5596
5597/* A subroutine of emit_store_flag only including "tricks" that do not
5598 need a recursive call. These are kept separate to avoid infinite
5599 loops. */
5600
5601static rtx
5602emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5603 machine_mode mode, int unsignedp, int normalizep,
5604 machine_mode target_mode)
5605{
5606 rtx subtarget;
5607 enum insn_code icode;
5608 machine_mode compare_mode;
5609 enum mode_class mclass;
5610 enum rtx_code scode;
5611
5612 if (unsignedp)
5613 code = unsigned_condition (code);
5614 scode = swap_condition (code);
5615
5616 /* If one operand is constant, make it the second one. Only do this
5617 if the other operand is not constant as well. */
5618
5619 if (swap_commutative_operands_p (op0, op1))
5620 {
5621 std::swap (a&: op0, b&: op1);
5622 code = swap_condition (code);
5623 }
5624
5625 if (mode == VOIDmode)
5626 mode = GET_MODE (op0);
5627
5628 if (CONST_SCALAR_INT_P (op1))
5629 canonicalize_comparison (mode, &code, &op1);
5630
5631 /* For some comparisons with 1 and -1, we can convert this to
5632 comparisons with zero. This will often produce more opportunities for
5633 store-flag insns. */
5634
5635 switch (code)
5636 {
5637 case LT:
5638 if (op1 == const1_rtx)
5639 op1 = const0_rtx, code = LE;
5640 break;
5641 case LE:
5642 if (op1 == constm1_rtx)
5643 op1 = const0_rtx, code = LT;
5644 break;
5645 case GE:
5646 if (op1 == const1_rtx)
5647 op1 = const0_rtx, code = GT;
5648 break;
5649 case GT:
5650 if (op1 == constm1_rtx)
5651 op1 = const0_rtx, code = GE;
5652 break;
5653 case GEU:
5654 if (op1 == const1_rtx)
5655 op1 = const0_rtx, code = NE;
5656 break;
5657 case LTU:
5658 if (op1 == const1_rtx)
5659 op1 = const0_rtx, code = EQ;
5660 break;
5661 default:
5662 break;
5663 }
5664
5665 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5666 complement of A (for GE) and shifting the sign bit to the low bit. */
5667 scalar_int_mode int_mode;
5668 if (op1 == const0_rtx && (code == LT || code == GE)
5669 && is_int_mode (mode, int_mode: &int_mode)
5670 && (normalizep || STORE_FLAG_VALUE == 1
5671 || val_signbit_p (int_mode, STORE_FLAG_VALUE)))
5672 {
5673 scalar_int_mode int_target_mode;
5674 subtarget = target;
5675
5676 if (!target)
5677 int_target_mode = int_mode;
5678 else
5679 {
5680 /* If the result is to be wider than OP0, it is best to convert it
5681 first. If it is to be narrower, it is *incorrect* to convert it
5682 first. */
5683 int_target_mode = as_a <scalar_int_mode> (m: target_mode);
5684 if (GET_MODE_SIZE (mode: int_target_mode) > GET_MODE_SIZE (mode: int_mode))
5685 {
5686 op0 = convert_modes (mode: int_target_mode, oldmode: int_mode, x: op0, unsignedp: 0);
5687 int_mode = int_target_mode;
5688 }
5689 }
5690
5691 if (int_target_mode != int_mode)
5692 subtarget = 0;
5693
5694 if (code == GE)
5695 op0 = expand_unop (int_mode, one_cmpl_optab, op0,
5696 ((STORE_FLAG_VALUE == 1 || normalizep)
5697 ? 0 : subtarget), 0);
5698
5699 if (STORE_FLAG_VALUE == 1 || normalizep)
5700 /* If we are supposed to produce a 0/1 value, we want to do
5701 a logical shift from the sign bit to the low-order bit; for
5702 a -1/0 value, we do an arithmetic shift. */
5703 op0 = expand_shift (code: RSHIFT_EXPR, mode: int_mode, shifted: op0,
5704 amount: GET_MODE_BITSIZE (mode: int_mode) - 1,
5705 target: subtarget, unsignedp: normalizep != -1);
5706
5707 if (int_mode != int_target_mode)
5708 op0 = convert_modes (mode: int_target_mode, oldmode: int_mode, x: op0, unsignedp: 0);
5709
5710 return op0;
5711 }
5712
5713 /* Next try expanding this via the backend's cstore<mode>4. */
5714 mclass = GET_MODE_CLASS (mode);
5715 FOR_EACH_WIDER_MODE_FROM (compare_mode, mode)
5716 {
5717 machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5718 icode = optab_handler (op: cstore_optab, mode: optab_mode);
5719 if (icode != CODE_FOR_nothing)
5720 {
5721 do_pending_stack_adjust ();
5722 rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
5723 unsignedp, x: op0, y: op1, normalizep, target_mode);
5724 if (tem)
5725 return tem;
5726
5727 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5728 {
5729 tem = emit_cstore (target, icode, code: scode, mode, compare_mode,
5730 unsignedp, x: op1, y: op0, normalizep, target_mode);
5731 if (tem)
5732 return tem;
5733 }
5734 break;
5735 }
5736 }
5737
5738 /* If we are comparing a double-word integer with zero or -1, we can
5739 convert the comparison into one involving a single word. */
5740 if (is_int_mode (mode, int_mode: &int_mode)
5741 && GET_MODE_BITSIZE (mode: int_mode) == BITS_PER_WORD * 2
5742 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5743 {
5744 rtx tem;
5745 if ((code == EQ || code == NE)
5746 && (op1 == const0_rtx || op1 == constm1_rtx))
5747 {
5748 rtx op00, op01;
5749
5750 /* Do a logical OR or AND of the two words and compare the
5751 result. */
5752 op00 = simplify_gen_subreg (outermode: word_mode, op: op0, innermode: int_mode, byte: 0);
5753 op01 = simplify_gen_subreg (outermode: word_mode, op: op0, innermode: int_mode, UNITS_PER_WORD);
5754 tem = expand_binop (word_mode,
5755 op1 == const0_rtx ? ior_optab : and_optab,
5756 op00, op01, NULL_RTX, unsignedp,
5757 OPTAB_DIRECT);
5758
5759 if (tem != 0)
5760 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5761 unsignedp, normalizep);
5762 }
5763 else if ((code == LT || code == GE) && op1 == const0_rtx)
5764 {
5765 rtx op0h;
5766
5767 /* If testing the sign bit, can just test on high word. */
5768 op0h = simplify_gen_subreg (outermode: word_mode, op: op0, innermode: int_mode,
5769 byte: subreg_highpart_offset (outermode: word_mode,
5770 innermode: int_mode));
5771 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5772 unsignedp, normalizep);
5773 }
5774 else
5775 tem = NULL_RTX;
5776
5777 if (tem)
5778 {
5779 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5780 return tem;
5781 if (!target)
5782 target = gen_reg_rtx (target_mode);
5783
5784 convert_move (target, tem,
5785 !val_signbit_known_set_p (word_mode,
5786 (normalizep ? normalizep
5787 : STORE_FLAG_VALUE)));
5788 return target;
5789 }
5790 }
5791
5792 return 0;
5793}
5794
5795/* Subroutine of emit_store_flag that handles cases in which the operands
5796 are scalar integers. SUBTARGET is the target to use for temporary
5797 operations and TRUEVAL is the value to store when the condition is
5798 true. All other arguments are as for emit_store_flag. */
5799
5800rtx
5801emit_store_flag_int (rtx target, rtx subtarget, enum rtx_code code, rtx op0,
5802 rtx op1, scalar_int_mode mode, int unsignedp,
5803 int normalizep, rtx trueval)
5804{
5805 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5806 rtx_insn *last = get_last_insn ();
5807
5808 /* If this is an equality comparison of integers, we can try to exclusive-or
5809 (or subtract) the two operands and use a recursive call to try the
5810 comparison with zero. Don't do any of these cases if branches are
5811 very cheap. */
5812
5813 if ((code == EQ || code == NE) && op1 != const0_rtx)
5814 {
5815 rtx tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5816 OPTAB_WIDEN);
5817
5818 if (tem == 0)
5819 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5820 OPTAB_WIDEN);
5821 if (tem != 0)
5822 tem = emit_store_flag (target, code, tem, const0_rtx,
5823 mode, unsignedp, normalizep);
5824 if (tem != 0)
5825 return tem;
5826
5827 delete_insns_since (last);
5828 }
5829
5830 /* For integer comparisons, try the reverse comparison. However, for
5831 small X and if we'd have anyway to extend, implementing "X != 0"
5832 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5833 rtx_code rcode = reverse_condition (code);
5834 if (can_compare_p (rcode, mode, ccp_store_flag)
5835 && ! (optab_handler (op: cstore_optab, mode) == CODE_FOR_nothing
5836 && code == NE
5837 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5838 && op1 == const0_rtx))
5839 {
5840 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5841 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5842
5843 /* Again, for the reverse comparison, use either an addition or a XOR. */
5844 if (want_add
5845 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5846 optimize_insn_for_speed_p ()) == 0)
5847 {
5848 rtx tem = emit_store_flag_1 (target: subtarget, code: rcode, op0, op1, mode, unsignedp: 0,
5849 STORE_FLAG_VALUE, target_mode);
5850 if (tem != 0)
5851 tem = expand_binop (target_mode, add_optab, tem,
5852 gen_int_mode (normalizep, target_mode),
5853 target, 0, OPTAB_WIDEN);
5854 if (tem != 0)
5855 return tem;
5856 }
5857 else if (!want_add
5858 && rtx_cost (trueval, mode, XOR, 1,
5859 optimize_insn_for_speed_p ()) == 0)
5860 {
5861 rtx tem = emit_store_flag_1 (target: subtarget, code: rcode, op0, op1, mode, unsignedp: 0,
5862 normalizep, target_mode);
5863 if (tem != 0)
5864 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5865 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5866 if (tem != 0)
5867 return tem;
5868 }
5869
5870 delete_insns_since (last);
5871 }
5872
5873 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5874 the constant zero. Reject all other comparisons at this point. Only
5875 do LE and GT if branches are expensive since they are expensive on
5876 2-operand machines. */
5877
5878 if (op1 != const0_rtx
5879 || (code != EQ && code != NE
5880 && (BRANCH_COST (optimize_insn_for_speed_p (),
5881 false) <= 1 || (code != LE && code != GT))))
5882 return 0;
5883
5884 /* Try to put the result of the comparison in the sign bit. Assume we can't
5885 do the necessary operation below. */
5886
5887 rtx tem = 0;
5888
5889 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5890 the sign bit set. */
5891
5892 if (code == LE)
5893 {
5894 /* This is destructive, so SUBTARGET can't be OP0. */
5895 if (rtx_equal_p (subtarget, op0))
5896 subtarget = 0;
5897
5898 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5899 OPTAB_WIDEN);
5900 if (tem)
5901 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5902 OPTAB_WIDEN);
5903 }
5904
5905 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5906 number of bits in the mode of OP0, minus one. */
5907
5908 if (code == GT)
5909 {
5910 if (rtx_equal_p (subtarget, op0))
5911 subtarget = 0;
5912
5913 tem = maybe_expand_shift (code: RSHIFT_EXPR, mode, shifted: op0,
5914 amount: GET_MODE_BITSIZE (mode) - 1,
5915 target: subtarget, unsignedp: 0);
5916 if (tem)
5917 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5918 OPTAB_WIDEN);
5919 }
5920
5921 if (code == EQ || code == NE)
5922 {
5923 /* For EQ or NE, one way to do the comparison is to apply an operation
5924 that converts the operand into a positive number if it is nonzero
5925 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5926 for NE we negate. This puts the result in the sign bit. Then we
5927 normalize with a shift, if needed.
5928
5929 Two operations that can do the above actions are ABS and FFS, so try
5930 them. If that doesn't work, and MODE is smaller than a full word,
5931 we can use zero-extension to the wider mode (an unsigned conversion)
5932 as the operation. */
5933
5934 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5935 that is compensated by the subsequent overflow when subtracting
5936 one / negating. */
5937
5938 if (optab_handler (op: abs_optab, mode) != CODE_FOR_nothing)
5939 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5940 else if (optab_handler (op: ffs_optab, mode) != CODE_FOR_nothing)
5941 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5942 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5943 {
5944 tem = convert_modes (mode: word_mode, oldmode: mode, x: op0, unsignedp: 1);
5945 mode = word_mode;
5946 }
5947
5948 if (tem != 0)
5949 {
5950 if (code == EQ)
5951 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5952 0, OPTAB_WIDEN);
5953 else
5954 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5955 }
5956
5957 /* If we couldn't do it that way, for NE we can "or" the two's complement
5958 of the value with itself. For EQ, we take the one's complement of
5959 that "or", which is an extra insn, so we only handle EQ if branches
5960 are expensive. */
5961
5962 if (tem == 0
5963 && (code == NE
5964 || BRANCH_COST (optimize_insn_for_speed_p (),
5965 false) > 1))
5966 {
5967 if (rtx_equal_p (subtarget, op0))
5968 subtarget = 0;
5969
5970 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5971 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5972 OPTAB_WIDEN);
5973
5974 if (tem && code == EQ)
5975 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5976 }
5977 }
5978
5979 if (tem && normalizep)
5980 tem = maybe_expand_shift (code: RSHIFT_EXPR, mode, shifted: tem,
5981 amount: GET_MODE_BITSIZE (mode) - 1,
5982 target: subtarget, unsignedp: normalizep == 1);
5983
5984 if (tem)
5985 {
5986 if (!target)
5987 ;
5988 else if (GET_MODE (tem) != target_mode)
5989 {
5990 convert_move (target, tem, 0);
5991 tem = target;
5992 }
5993 else if (!subtarget)
5994 {
5995 emit_move_insn (target, tem);
5996 tem = target;
5997 }
5998 }
5999 else
6000 delete_insns_since (last);
6001
6002 return tem;
6003}
6004
6005/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
6006 and storing in TARGET. Normally return TARGET.
6007 Return 0 if that cannot be done.
6008
6009 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
6010 it is VOIDmode, they cannot both be CONST_INT.
6011
6012 UNSIGNEDP is for the case where we have to widen the operands
6013 to perform the operation. It says to use zero-extension.
6014
6015 NORMALIZEP is 1 if we should convert the result to be either zero
6016 or one. Normalize is -1 if we should convert the result to be
6017 either zero or -1. If NORMALIZEP is zero, the result will be left
6018 "raw" out of the scc insn. */
6019
6020rtx
6021emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
6022 machine_mode mode, int unsignedp, int normalizep)
6023{
6024 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
6025 enum rtx_code rcode;
6026 rtx subtarget;
6027 rtx tem, trueval;
6028 rtx_insn *last;
6029
6030 /* If we compare constants, we shouldn't use a store-flag operation,
6031 but a constant load. We can get there via the vanilla route that
6032 usually generates a compare-branch sequence, but will in this case
6033 fold the comparison to a constant, and thus elide the branch. */
6034 if (CONSTANT_P (op0) && CONSTANT_P (op1))
6035 return NULL_RTX;
6036
6037 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
6038 target_mode);
6039 if (tem)
6040 return tem;
6041
6042 /* If we reached here, we can't do this with a scc insn, however there
6043 are some comparisons that can be done in other ways. Don't do any
6044 of these cases if branches are very cheap. */
6045 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
6046 return 0;
6047
6048 /* See what we need to return. We can only return a 1, -1, or the
6049 sign bit. */
6050
6051 if (normalizep == 0)
6052 {
6053 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6054 normalizep = STORE_FLAG_VALUE;
6055
6056 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
6057 ;
6058 else
6059 return 0;
6060 }
6061
6062 last = get_last_insn ();
6063
6064 /* If optimizing, use different pseudo registers for each insn, instead
6065 of reusing the same pseudo. This leads to better CSE, but slows
6066 down the compiler, since there are more pseudos. */
6067 subtarget = (!optimize
6068 && (target_mode == mode)) ? target : NULL_RTX;
6069 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
6070
6071 /* For floating-point comparisons, try the reverse comparison or try
6072 changing the "orderedness" of the comparison. */
6073 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
6074 {
6075 enum rtx_code first_code;
6076 bool and_them;
6077
6078 rcode = reverse_condition_maybe_unordered (code);
6079 if (can_compare_p (rcode, mode, ccp_store_flag)
6080 && (code == ORDERED || code == UNORDERED
6081 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
6082 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
6083 {
6084 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
6085 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
6086
6087 /* For the reverse comparison, use either an addition or a XOR. */
6088 if (want_add
6089 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
6090 optimize_insn_for_speed_p ()) == 0)
6091 {
6092 tem = emit_store_flag_1 (target: subtarget, code: rcode, op0, op1, mode, unsignedp: 0,
6093 STORE_FLAG_VALUE, target_mode);
6094 if (tem)
6095 return expand_binop (target_mode, add_optab, tem,
6096 gen_int_mode (normalizep, target_mode),
6097 target, 0, OPTAB_WIDEN);
6098 }
6099 else if (!want_add
6100 && rtx_cost (trueval, mode, XOR, 1,
6101 optimize_insn_for_speed_p ()) == 0)
6102 {
6103 tem = emit_store_flag_1 (target: subtarget, code: rcode, op0, op1, mode, unsignedp: 0,
6104 normalizep, target_mode);
6105 if (tem)
6106 return expand_binop (target_mode, xor_optab, tem, trueval,
6107 target, INTVAL (trueval) >= 0,
6108 OPTAB_WIDEN);
6109 }
6110 }
6111
6112 delete_insns_since (last);
6113
6114 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
6115 if (code == ORDERED || code == UNORDERED)
6116 return 0;
6117
6118 and_them = split_comparison (code, mode, &first_code, &code);
6119
6120 /* If there are no NaNs, the first comparison should always fall through.
6121 Effectively change the comparison to the other one. */
6122 if (!HONOR_NANS (mode))
6123 {
6124 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
6125 return emit_store_flag_1 (target, code, op0, op1, mode, unsignedp: 0, normalizep,
6126 target_mode);
6127 }
6128
6129 if (!HAVE_conditional_move)
6130 return 0;
6131
6132 /* Do not turn a trapping comparison into a non-trapping one. */
6133 if ((code != EQ && code != NE && code != UNEQ && code != LTGT)
6134 && flag_trapping_math)
6135 return 0;
6136
6137 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
6138 conditional move. */
6139 tem = emit_store_flag_1 (target: subtarget, code: first_code, op0, op1, mode, unsignedp: 0,
6140 normalizep, target_mode);
6141 if (tem == 0)
6142 return 0;
6143
6144 if (and_them)
6145 tem = emit_conditional_move (target, { .code: code, .op0: op0, .op1: op1, .mode: mode },
6146 tem, const0_rtx, GET_MODE (tem), 0);
6147 else
6148 tem = emit_conditional_move (target, { .code: code, .op0: op0, .op1: op1, .mode: mode },
6149 trueval, tem, GET_MODE (tem), 0);
6150
6151 if (tem == 0)
6152 delete_insns_since (last);
6153 return tem;
6154 }
6155
6156 /* The remaining tricks only apply to integer comparisons. */
6157
6158 scalar_int_mode int_mode;
6159 if (is_int_mode (mode, int_mode: &int_mode))
6160 return emit_store_flag_int (target, subtarget, code, op0, op1, mode: int_mode,
6161 unsignedp, normalizep, trueval);
6162
6163 return 0;
6164}
6165
6166/* Like emit_store_flag, but always succeeds. */
6167
6168rtx
6169emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
6170 machine_mode mode, int unsignedp, int normalizep)
6171{
6172 rtx tem;
6173 rtx_code_label *label;
6174 rtx trueval, falseval;
6175
6176 /* First see if emit_store_flag can do the job. */
6177 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
6178 if (tem != 0)
6179 return tem;
6180
6181 /* If one operand is constant, make it the second one. Only do this
6182 if the other operand is not constant as well. */
6183 if (swap_commutative_operands_p (op0, op1))
6184 {
6185 std::swap (a&: op0, b&: op1);
6186 code = swap_condition (code);
6187 }
6188
6189 if (mode == VOIDmode)
6190 mode = GET_MODE (op0);
6191
6192 if (!target)
6193 target = gen_reg_rtx (word_mode);
6194
6195 /* If this failed, we have to do this with set/compare/jump/set code.
6196 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
6197 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
6198 if (code == NE
6199 && GET_MODE_CLASS (mode) == MODE_INT
6200 && REG_P (target)
6201 && op0 == target
6202 && op1 == const0_rtx)
6203 {
6204 label = gen_label_rtx ();
6205 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
6206 NULL_RTX, NULL, label,
6207 profile_probability::uninitialized ());
6208 emit_move_insn (target, trueval);
6209 emit_label (label);
6210 return target;
6211 }
6212
6213 if (!REG_P (target)
6214 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
6215 target = gen_reg_rtx (GET_MODE (target));
6216
6217 /* Jump in the right direction if the target cannot implement CODE
6218 but can jump on its reverse condition. */
6219 falseval = const0_rtx;
6220 if (! can_compare_p (code, mode, ccp_jump)
6221 && (! FLOAT_MODE_P (mode)
6222 || code == ORDERED || code == UNORDERED
6223 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
6224 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
6225 {
6226 enum rtx_code rcode;
6227 if (FLOAT_MODE_P (mode))
6228 rcode = reverse_condition_maybe_unordered (code);
6229 else
6230 rcode = reverse_condition (code);
6231
6232 /* Canonicalize to UNORDERED for the libcall. */
6233 if (can_compare_p (rcode, mode, ccp_jump)
6234 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
6235 {
6236 falseval = trueval;
6237 trueval = const0_rtx;
6238 code = rcode;
6239 }
6240 }
6241
6242 emit_move_insn (target, trueval);
6243 label = gen_label_rtx ();
6244 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
6245 label, profile_probability::uninitialized ());
6246
6247 emit_move_insn (target, falseval);
6248 emit_label (label);
6249
6250 return target;
6251}
6252
6253/* Helper function for canonicalize_cmp_for_target. Swap between inclusive
6254 and exclusive ranges in order to create an equivalent comparison. See
6255 canonicalize_cmp_for_target for the possible cases. */
6256
6257static enum rtx_code
6258equivalent_cmp_code (enum rtx_code code)
6259{
6260 switch (code)
6261 {
6262 case GT:
6263 return GE;
6264 case GE:
6265 return GT;
6266 case LT:
6267 return LE;
6268 case LE:
6269 return LT;
6270 case GTU:
6271 return GEU;
6272 case GEU:
6273 return GTU;
6274 case LTU:
6275 return LEU;
6276 case LEU:
6277 return LTU;
6278
6279 default:
6280 return code;
6281 }
6282}
6283
6284/* Choose the more appropiate immediate in scalar integer comparisons. The
6285 purpose of this is to end up with an immediate which can be loaded into a
6286 register in fewer moves, if possible.
6287
6288 For each integer comparison there exists an equivalent choice:
6289 i) a > b or a >= b + 1
6290 ii) a <= b or a < b + 1
6291 iii) a >= b or a > b - 1
6292 iv) a < b or a <= b - 1
6293
6294 MODE is the mode of the first operand.
6295 CODE points to the comparison code.
6296 IMM points to the rtx containing the immediate. *IMM must satisfy
6297 CONST_SCALAR_INT_P on entry and continues to satisfy CONST_SCALAR_INT_P
6298 on exit. */
6299
6300void
6301canonicalize_comparison (machine_mode mode, enum rtx_code *code, rtx *imm)
6302{
6303 if (!SCALAR_INT_MODE_P (mode))
6304 return;
6305
6306 int to_add = 0;
6307 enum signop sgn = unsigned_condition_p (code: *code) ? UNSIGNED : SIGNED;
6308
6309 /* Extract the immediate value from the rtx. */
6310 wide_int imm_val = rtx_mode_t (*imm, mode);
6311
6312 if (*code == GT || *code == GTU || *code == LE || *code == LEU)
6313 to_add = 1;
6314 else if (*code == GE || *code == GEU || *code == LT || *code == LTU)
6315 to_add = -1;
6316 else
6317 return;
6318
6319 /* Check for overflow/underflow in the case of signed values and
6320 wrapping around in the case of unsigned values. If any occur
6321 cancel the optimization. */
6322 wi::overflow_type overflow = wi::OVF_NONE;
6323 wide_int imm_modif;
6324
6325 if (to_add == 1)
6326 imm_modif = wi::add (x: imm_val, y: 1, sgn, overflow: &overflow);
6327 else
6328 imm_modif = wi::sub (x: imm_val, y: 1, sgn, overflow: &overflow);
6329
6330 if (overflow)
6331 return;
6332
6333 /* The following creates a pseudo; if we cannot do that, bail out. */
6334 if (!can_create_pseudo_p ())
6335 return;
6336
6337 rtx reg = gen_rtx_REG (mode, LAST_VIRTUAL_REGISTER + 1);
6338 rtx new_imm = immed_wide_int_const (imm_modif, mode);
6339
6340 rtx_insn *old_rtx = gen_move_insn (reg, *imm);
6341 rtx_insn *new_rtx = gen_move_insn (reg, new_imm);
6342
6343 /* Update the immediate and the code. */
6344 if (insn_cost (old_rtx, true) > insn_cost (new_rtx, true))
6345 {
6346 *code = equivalent_cmp_code (code: *code);
6347 *imm = new_imm;
6348 }
6349}
6350
6351
6352
6353/* Perform possibly multi-word comparison and conditional jump to LABEL
6354 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
6355 now a thin wrapper around do_compare_rtx_and_jump. */
6356
6357static void
6358do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
6359 rtx_code_label *label)
6360{
6361 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
6362 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
6363 NULL, label, profile_probability::uninitialized ());
6364}
6365

source code of gcc/expmed.cc