1/* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2025 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
22
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
28
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
33
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
36
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
40
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
44
45#include "config.h"
46#define INCLUDE_ALGORITHM /* reverse */
47#include "system.h"
48#include "coretypes.h"
49#include "backend.h"
50#include "target.h"
51#include "rtl.h"
52#include "tree.h"
53#include "cfghooks.h"
54#include "df.h"
55#include "memmodel.h"
56#include "tm_p.h"
57#include "insn-config.h"
58#include "regs.h"
59#include "emit-rtl.h"
60#include "recog.h"
61#include "cgraph.h"
62#include "tree-pretty-print.h" /* for dump_function_header */
63#include "varasm.h"
64#include "insn-attr.h"
65#include "conditions.h"
66#include "flags.h"
67#include "output.h"
68#include "except.h"
69#include "rtl-error.h"
70#include "toplev.h" /* exact_log2, floor_log2 */
71#include "reload.h"
72#include "intl.h"
73#include "cfgrtl.h"
74#include "debug.h"
75#include "tree-pass.h"
76#include "tree-ssa.h"
77#include "cfgloop.h"
78#include "stringpool.h"
79#include "attribs.h"
80#include "asan.h"
81#include "rtl-iter.h"
82#include "print-rtl.h"
83#include "function-abi.h"
84#include "common/common-target.h"
85#include "diagnostic.h"
86
87#include "dwarf2out.h"
88
89/* Most ports don't need to define CC_STATUS_INIT.
90 So define a null default for it to save conditionalization later. */
91#ifndef CC_STATUS_INIT
92#define CC_STATUS_INIT
93#endif
94
95/* Is the given character a logical line separator for the assembler? */
96#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
97#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
98#endif
99
100#ifndef JUMP_TABLES_IN_TEXT_SECTION
101#define JUMP_TABLES_IN_TEXT_SECTION 0
102#endif
103
104/* Bitflags used by final_scan_insn. */
105#define SEEN_NOTE 1
106#define SEEN_EMITTED 2
107#define SEEN_NEXT_VIEW 4
108
109/* Last insn processed by final_scan_insn. */
110static rtx_insn *debug_insn;
111rtx_insn *current_output_insn;
112
113/* Line number of last NOTE. */
114static int last_linenum;
115
116/* Column number of last NOTE. */
117static int last_columnnum;
118
119/* Discriminator written to assembly. */
120static int last_discriminator;
121
122/* Compute discriminator to be written to assembly for current instruction.
123 Note: actual usage depends on loc_discriminator_kind setting. */
124static inline int compute_discriminator (location_t loc);
125
126/* Highest line number in current block. */
127static int high_block_linenum;
128
129/* Likewise for function. */
130static int high_function_linenum;
131
132/* Filename of last NOTE. */
133static const char *last_filename;
134
135/* Override filename, line and column number. */
136static const char *override_filename;
137static int override_linenum;
138static int override_columnnum;
139static int override_discriminator;
140
141/* Whether to force emission of a line note before the next insn. */
142static bool force_source_line = false;
143
144extern const int length_unit_log; /* This is defined in insn-attrtab.cc. */
145
146/* Nonzero while outputting an `asm' with operands.
147 This means that inconsistencies are the user's fault, so don't die.
148 The precise value is the insn being output, to pass to error_for_asm. */
149const rtx_insn *this_is_asm_operands;
150
151/* Number of operands of this insn, for an `asm' with operands. */
152unsigned int insn_noperands;
153
154/* Compare optimization flag. */
155
156static rtx last_ignored_compare = 0;
157
158/* Assign a unique number to each insn that is output.
159 This can be used to generate unique local labels. */
160
161static int insn_counter = 0;
162
163/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
164
165static int block_depth;
166
167/* True if have enabled APP processing of our assembler output. */
168
169static bool app_on;
170
171/* If we are outputting an insn sequence, this contains the sequence rtx.
172 Zero otherwise. */
173
174rtx_sequence *final_sequence;
175
176#ifdef ASSEMBLER_DIALECT
177
178/* Number of the assembler dialect to use, starting at 0. */
179static int dialect_number;
180#endif
181
182/* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
183rtx current_insn_predicate;
184
185/* True if printing into -fdump-final-insns= dump. */
186bool final_insns_dump_p;
187
188/* True if profile_function should be called, but hasn't been called yet. */
189static bool need_profile_function;
190
191static int asm_insn_count (rtx);
192static void profile_function (FILE *);
193static void profile_after_prologue (FILE *);
194static bool notice_source_line (rtx_insn *, bool *);
195static rtx walk_alter_subreg (rtx *, bool *);
196static void output_asm_name (void);
197static void output_alternate_entry_point (FILE *, rtx_insn *);
198static tree get_mem_expr_from_op (rtx, int *);
199static void output_asm_operand_names (rtx *, int *, int);
200#ifdef LEAF_REGISTERS
201static void leaf_renumber_regs (rtx_insn *);
202#endif
203static int align_fuzz (rtx, rtx, int, unsigned);
204static void collect_fn_hard_reg_usage (void);
205
206/* Initialize data in final at the beginning of a compilation. */
207
208void
209init_final (const char *filename ATTRIBUTE_UNUSED)
210{
211 app_on = 0;
212 final_sequence = 0;
213
214#ifdef ASSEMBLER_DIALECT
215 dialect_number = ASSEMBLER_DIALECT;
216#endif
217}
218
219/* Default target function prologue and epilogue assembler output.
220
221 If not overridden for epilogue code, then the function body itself
222 contains return instructions wherever needed. */
223void
224default_function_pro_epilogue (FILE *)
225{
226}
227
228void
229default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
230 tree decl ATTRIBUTE_UNUSED,
231 bool new_is_cold ATTRIBUTE_UNUSED)
232{
233}
234
235/* Default target hook that outputs nothing to a stream. */
236void
237no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
238{
239}
240
241/* Enable APP processing of subsequent output.
242 Used before the output from an `asm' statement. */
243
244void
245app_enable (void)
246{
247 if (! app_on)
248 {
249 fputs (ASM_APP_ON, stream: asm_out_file);
250 app_on = 1;
251 }
252}
253
254/* Disable APP processing of subsequent output.
255 Called from varasm.cc before most kinds of output. */
256
257void
258app_disable (void)
259{
260 if (app_on)
261 {
262 fputs (ASM_APP_OFF, stream: asm_out_file);
263 app_on = 0;
264 }
265}
266
267/* Return the number of slots filled in the current
268 delayed branch sequence (we don't count the insn needing the
269 delay slot). Zero if not in a delayed branch sequence. */
270
271int
272dbr_sequence_length (void)
273{
274 if (final_sequence != 0)
275 return XVECLEN (final_sequence, 0) - 1;
276 else
277 return 0;
278}
279
280/* The next two pages contain routines used to compute the length of an insn
281 and to shorten branches. */
282
283/* Arrays for insn lengths, and addresses. The latter is referenced by
284 `insn_current_length'. */
285
286static int *insn_lengths;
287
288vec<int> insn_addresses_;
289
290/* Max uid for which the above arrays are valid. */
291static int insn_lengths_max_uid;
292
293/* Address of insn being processed. Used by `insn_current_length'. */
294int insn_current_address;
295
296/* Address of insn being processed in previous iteration. */
297int insn_last_address;
298
299/* known invariant alignment of insn being processed. */
300int insn_current_align;
301
302/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
303 gives the next following alignment insn that increases the known
304 alignment, or NULL_RTX if there is no such insn.
305 For any alignment obtained this way, we can again index uid_align with
306 its uid to obtain the next following align that in turn increases the
307 alignment, till we reach NULL_RTX; the sequence obtained this way
308 for each insn we'll call the alignment chain of this insn in the following
309 comments. */
310
311static rtx *uid_align;
312static int *uid_shuid;
313static vec<align_flags> label_align;
314
315/* Indicate that branch shortening hasn't yet been done. */
316
317void
318init_insn_lengths (void)
319{
320 if (uid_shuid)
321 {
322 free (ptr: uid_shuid);
323 uid_shuid = 0;
324 }
325 if (insn_lengths)
326 {
327 free (ptr: insn_lengths);
328 insn_lengths = 0;
329 insn_lengths_max_uid = 0;
330 }
331 if (HAVE_ATTR_length)
332 INSN_ADDRESSES_FREE ();
333 if (uid_align)
334 {
335 free (ptr: uid_align);
336 uid_align = 0;
337 }
338}
339
340/* Obtain the current length of an insn. If branch shortening has been done,
341 get its actual length. Otherwise, use FALLBACK_FN to calculate the
342 length. */
343static int
344get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
345{
346 rtx body;
347 int i;
348 int length = 0;
349
350 if (!HAVE_ATTR_length)
351 return 0;
352
353 if (insn_lengths_max_uid > INSN_UID (insn))
354 return insn_lengths[INSN_UID (insn)];
355 else
356 switch (GET_CODE (insn))
357 {
358 case NOTE:
359 case BARRIER:
360 case CODE_LABEL:
361 case DEBUG_INSN:
362 return 0;
363
364 case CALL_INSN:
365 case JUMP_INSN:
366 body = PATTERN (insn);
367 if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
368 length = asm_insn_count (body) * fallback_fn (insn);
369 else
370 length = fallback_fn (insn);
371 break;
372
373 case INSN:
374 body = PATTERN (insn);
375 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
376 return 0;
377
378 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
379 length = asm_insn_count (body) * fallback_fn (insn);
380 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (p: body))
381 for (i = 0; i < seq->len (); i++)
382 length += get_attr_length_1 (insn: seq->insn (index: i), fallback_fn);
383 else
384 length = fallback_fn (insn);
385 break;
386
387 default:
388 break;
389 }
390
391#ifdef ADJUST_INSN_LENGTH
392 ADJUST_INSN_LENGTH (insn, length);
393#endif
394 return length;
395}
396
397/* Obtain the current length of an insn. If branch shortening has been done,
398 get its actual length. Otherwise, get its maximum length. */
399int
400get_attr_length (rtx_insn *insn)
401{
402 return get_attr_length_1 (insn, fallback_fn: insn_default_length);
403}
404
405/* Obtain the current length of an insn. If branch shortening has been done,
406 get its actual length. Otherwise, get its minimum length. */
407int
408get_attr_min_length (rtx_insn *insn)
409{
410 return get_attr_length_1 (insn, fallback_fn: insn_min_length);
411}
412
413/* Code to handle alignment inside shorten_branches. */
414
415/* Here is an explanation how the algorithm in align_fuzz can give
416 proper results:
417
418 Call a sequence of instructions beginning with alignment point X
419 and continuing until the next alignment point `block X'. When `X'
420 is used in an expression, it means the alignment value of the
421 alignment point.
422
423 Call the distance between the start of the first insn of block X, and
424 the end of the last insn of block X `IX', for the `inner size of X'.
425 This is clearly the sum of the instruction lengths.
426
427 Likewise with the next alignment-delimited block following X, which we
428 shall call block Y.
429
430 Call the distance between the start of the first insn of block X, and
431 the start of the first insn of block Y `OX', for the `outer size of X'.
432
433 The estimated padding is then OX - IX.
434
435 OX can be safely estimated as
436
437 if (X >= Y)
438 OX = round_up(IX, Y)
439 else
440 OX = round_up(IX, X) + Y - X
441
442 Clearly est(IX) >= real(IX), because that only depends on the
443 instruction lengths, and those being overestimated is a given.
444
445 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
446 we needn't worry about that when thinking about OX.
447
448 When X >= Y, the alignment provided by Y adds no uncertainty factor
449 for branch ranges starting before X, so we can just round what we have.
450 But when X < Y, we don't know anything about the, so to speak,
451 `middle bits', so we have to assume the worst when aligning up from an
452 address mod X to one mod Y, which is Y - X. */
453
454#ifndef LABEL_ALIGN
455#define LABEL_ALIGN(LABEL) align_labels
456#endif
457
458#ifndef LOOP_ALIGN
459#define LOOP_ALIGN(LABEL) align_loops
460#endif
461
462#ifndef LABEL_ALIGN_AFTER_BARRIER
463#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
464#endif
465
466#ifndef JUMP_ALIGN
467#define JUMP_ALIGN(LABEL) align_jumps
468#endif
469
470#ifndef ADDR_VEC_ALIGN
471static int
472final_addr_vec_align (rtx_jump_table_data *addr_vec)
473{
474 int align = GET_MODE_SIZE (mode: addr_vec->get_data_mode ());
475
476 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
477 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
478 return exact_log2 (x: align);
479
480}
481
482#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
483#endif
484
485#ifndef INSN_LENGTH_ALIGNMENT
486#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
487#endif
488
489#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
490
491static int min_labelno, max_labelno;
492
493#define LABEL_TO_ALIGNMENT(LABEL) \
494 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno])
495
496/* For the benefit of port specific code do this also as a function. */
497
498align_flags
499label_to_alignment (rtx label)
500{
501 if (CODE_LABEL_NUMBER (label) <= max_labelno)
502 return LABEL_TO_ALIGNMENT (label);
503 return align_flags ();
504}
505
506/* The differences in addresses
507 between a branch and its target might grow or shrink depending on
508 the alignment the start insn of the range (the branch for a forward
509 branch or the label for a backward branch) starts out on; if these
510 differences are used naively, they can even oscillate infinitely.
511 We therefore want to compute a 'worst case' address difference that
512 is independent of the alignment the start insn of the range end
513 up on, and that is at least as large as the actual difference.
514 The function align_fuzz calculates the amount we have to add to the
515 naively computed difference, by traversing the part of the alignment
516 chain of the start insn of the range that is in front of the end insn
517 of the range, and considering for each alignment the maximum amount
518 that it might contribute to a size increase.
519
520 For casesi tables, we also want to know worst case minimum amounts of
521 address difference, in case a machine description wants to introduce
522 some common offset that is added to all offsets in a table.
523 For this purpose, align_fuzz with a growth argument of 0 computes the
524 appropriate adjustment. */
525
526/* Compute the maximum delta by which the difference of the addresses of
527 START and END might grow / shrink due to a different address for start
528 which changes the size of alignment insns between START and END.
529 KNOWN_ALIGN_LOG is the alignment known for START.
530 GROWTH should be ~0 if the objective is to compute potential code size
531 increase, and 0 if the objective is to compute potential shrink.
532 The return value is undefined for any other value of GROWTH. */
533
534static int
535align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
536{
537 int uid = INSN_UID (insn: start);
538 rtx align_label;
539 int known_align = 1 << known_align_log;
540 int end_shuid = INSN_SHUID (end);
541 int fuzz = 0;
542
543 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
544 {
545 int align_addr, new_align;
546
547 uid = INSN_UID (insn: align_label);
548 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
549 if (uid_shuid[uid] > end_shuid)
550 break;
551 align_flags alignment = LABEL_TO_ALIGNMENT (align_label);
552 new_align = 1 << alignment.levels[0].log;
553 if (new_align < known_align)
554 continue;
555 fuzz += (-align_addr ^ growth) & (new_align - known_align);
556 known_align = new_align;
557 }
558 return fuzz;
559}
560
561/* Compute a worst-case reference address of a branch so that it
562 can be safely used in the presence of aligned labels. Since the
563 size of the branch itself is unknown, the size of the branch is
564 not included in the range. I.e. for a forward branch, the reference
565 address is the end address of the branch as known from the previous
566 branch shortening pass, minus a value to account for possible size
567 increase due to alignment. For a backward branch, it is the start
568 address of the branch as known from the current pass, plus a value
569 to account for possible size increase due to alignment.
570 NB.: Therefore, the maximum offset allowed for backward branches needs
571 to exclude the branch size. */
572
573int
574insn_current_reference_address (rtx_insn *branch)
575{
576 rtx dest;
577 int seq_uid;
578
579 if (! INSN_ADDRESSES_SET_P ())
580 return 0;
581
582 rtx_insn *seq = NEXT_INSN (insn: PREV_INSN (insn: branch));
583 seq_uid = INSN_UID (insn: seq);
584 if (!jump_to_label_p (branch))
585 /* This can happen for example on the PA; the objective is to know the
586 offset to address something in front of the start of the function.
587 Thus, we can treat it like a backward branch.
588 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
589 any alignment we'd encounter, so we skip the call to align_fuzz. */
590 return insn_current_address;
591 dest = JUMP_LABEL (branch);
592
593 /* BRANCH has no proper alignment chain set, so use SEQ.
594 BRANCH also has no INSN_SHUID. */
595 if (INSN_SHUID (seq) < INSN_SHUID (dest))
596 {
597 /* Forward branch. */
598 return (insn_last_address + insn_lengths[seq_uid]
599 - align_fuzz (start: seq, end: dest, known_align_log: length_unit_log, growth: ~0));
600 }
601 else
602 {
603 /* Backward branch. */
604 return (insn_current_address
605 + align_fuzz (start: dest, end: seq, known_align_log: length_unit_log, growth: ~0));
606 }
607}
608
609/* Compute branch alignments based on CFG profile. */
610
611void
612compute_alignments (void)
613{
614 basic_block bb;
615 align_flags max_alignment;
616
617 label_align.truncate (size: 0);
618
619 max_labelno = max_label_num ();
620 min_labelno = get_first_label_num ();
621 label_align.safe_grow_cleared (len: max_labelno - min_labelno + 1, exact: true);
622
623 /* If not optimizing or optimizing for size, don't assign any alignments. */
624 if (! optimize || optimize_function_for_size_p (cfun))
625 return;
626
627 if (dump_file)
628 {
629 dump_reg_info (dump_file);
630 dump_flow_info (dump_file, TDF_DETAILS);
631 flow_loops_dump (dump_file, NULL, 1);
632 }
633 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
634 profile_count count_threshold = cfun->cfg->count_max / param_align_threshold;
635
636 if (dump_file)
637 {
638 fprintf (stream: dump_file, format: "count_max: ");
639 cfun->cfg->count_max.dump (f: dump_file);
640 fprintf (stream: dump_file, format: "\n");
641 }
642 FOR_EACH_BB_FN (bb, cfun)
643 {
644 rtx_insn *label = BB_HEAD (bb);
645 bool has_fallthru = 0;
646 edge e;
647 edge_iterator ei;
648
649 if (!LABEL_P (label)
650 || optimize_bb_for_size_p (bb))
651 {
652 if (dump_file)
653 fprintf (stream: dump_file,
654 format: "BB %4i loop %2i loop_depth %2i skipped.\n",
655 bb->index,
656 bb->loop_father->num,
657 bb_loop_depth (bb));
658 continue;
659 }
660 max_alignment = LABEL_ALIGN (label);
661 profile_count fallthru_count = profile_count::zero ();
662 profile_count branch_count = profile_count::zero ();
663
664 FOR_EACH_EDGE (e, ei, bb->preds)
665 {
666 if (e->flags & EDGE_FALLTHRU)
667 has_fallthru = 1, fallthru_count += e->count ();
668 else
669 branch_count += e->count ();
670 }
671 if (dump_file)
672 {
673 fprintf (stream: dump_file, format: "BB %4i loop %2i loop_depth"
674 " %2i fall ",
675 bb->index, bb->loop_father->num,
676 bb_loop_depth (bb));
677 fallthru_count.dump (f: dump_file);
678 fprintf (stream: dump_file, format: " branch ");
679 branch_count.dump (f: dump_file);
680 if (!bb->loop_father->inner && bb->loop_father->num)
681 fprintf (stream: dump_file, format: " inner_loop");
682 if (bb->loop_father->header == bb)
683 fprintf (stream: dump_file, format: " loop_header");
684 fprintf (stream: dump_file, format: "\n");
685 }
686 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
687 continue;
688
689 /* There are two purposes to align block with no fallthru incoming edge:
690 1) to avoid fetch stalls when branch destination is near cache boundary
691 2) to improve cache efficiency in case the previous block is not executed
692 (so it does not need to be in the cache).
693
694 We to catch first case, we align frequently executed blocks.
695 To catch the second, we align blocks that are executed more frequently
696 than the predecessor and the predecessor is likely to not be executed
697 when function is called. */
698
699 if (!has_fallthru
700 && (branch_count > count_threshold
701 || (bb->count > bb->prev_bb->count * 10
702 && (bb->prev_bb->count
703 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->count / 2))))
704 {
705 align_flags alignment = JUMP_ALIGN (label);
706 if (dump_file)
707 fprintf (stream: dump_file, format: " jump alignment added.\n");
708 max_alignment = align_flags::max (f0: max_alignment, f1: alignment);
709 }
710 /* In case block is frequent and reached mostly by non-fallthru edge,
711 align it. It is most likely a first block of loop. */
712 if (has_fallthru
713 && !(single_succ_p (bb)
714 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
715 && optimize_bb_for_speed_p (bb)
716 && branch_count + fallthru_count > count_threshold
717 && (branch_count > fallthru_count * param_align_loop_iterations))
718 {
719 align_flags alignment = LOOP_ALIGN (label);
720 if (dump_file)
721 fprintf (stream: dump_file, format: " internal loop alignment added.\n");
722 max_alignment = align_flags::max (f0: max_alignment, f1: alignment);
723 }
724 LABEL_TO_ALIGNMENT (label) = max_alignment;
725 }
726
727 loop_optimizer_finalize ();
728 free_dominance_info (CDI_DOMINATORS);
729}
730
731/* Grow the LABEL_ALIGN array after new labels are created. */
732
733static void
734grow_label_align (void)
735{
736 int old = max_labelno;
737 int n_labels;
738 int n_old_labels;
739
740 max_labelno = max_label_num ();
741
742 n_labels = max_labelno - min_labelno + 1;
743 n_old_labels = old - min_labelno + 1;
744
745 label_align.safe_grow_cleared (len: n_labels, exact: true);
746
747 /* Range of labels grows monotonically in the function. Failing here
748 means that the initialization of array got lost. */
749 gcc_assert (n_old_labels <= n_labels);
750}
751
752/* Update the already computed alignment information. LABEL_PAIRS is a vector
753 made up of pairs of labels for which the alignment information of the first
754 element will be copied from that of the second element. */
755
756void
757update_alignments (vec<rtx> &label_pairs)
758{
759 unsigned int i = 0;
760 rtx iter, label = NULL_RTX;
761
762 if (max_labelno != max_label_num ())
763 grow_label_align ();
764
765 FOR_EACH_VEC_ELT (label_pairs, i, iter)
766 if (i & 1)
767 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
768 else
769 label = iter;
770}
771
772namespace {
773
774const pass_data pass_data_compute_alignments =
775{
776 .type: RTL_PASS, /* type */
777 .name: "alignments", /* name */
778 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
779 .tv_id: TV_NONE, /* tv_id */
780 .properties_required: 0, /* properties_required */
781 .properties_provided: 0, /* properties_provided */
782 .properties_destroyed: 0, /* properties_destroyed */
783 .todo_flags_start: 0, /* todo_flags_start */
784 .todo_flags_finish: 0, /* todo_flags_finish */
785};
786
787class pass_compute_alignments : public rtl_opt_pass
788{
789public:
790 pass_compute_alignments (gcc::context *ctxt)
791 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
792 {}
793
794 /* opt_pass methods: */
795 unsigned int execute (function *) final override
796 {
797 compute_alignments ();
798 return 0;
799 }
800
801}; // class pass_compute_alignments
802
803} // anon namespace
804
805rtl_opt_pass *
806make_pass_compute_alignments (gcc::context *ctxt)
807{
808 return new pass_compute_alignments (ctxt);
809}
810
811
812/* Make a pass over all insns and compute their actual lengths by shortening
813 any branches of variable length if possible. */
814
815/* shorten_branches might be called multiple times: for example, the SH
816 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
817 In order to do this, it needs proper length information, which it obtains
818 by calling shorten_branches. This cannot be collapsed with
819 shorten_branches itself into a single pass unless we also want to integrate
820 reorg.cc, since the branch splitting exposes new instructions with delay
821 slots. */
822
823void
824shorten_branches (rtx_insn *first)
825{
826 rtx_insn *insn;
827 int max_uid;
828 int i;
829 rtx_insn *seq;
830 bool something_changed = true;
831 char *varying_length;
832 rtx body;
833 int uid;
834 rtx align_tab[MAX_CODE_ALIGN + 1];
835
836 /* Compute maximum UID and allocate label_align / uid_shuid. */
837 max_uid = get_max_uid ();
838
839 /* Free uid_shuid before reallocating it. */
840 free (ptr: uid_shuid);
841
842 uid_shuid = XNEWVEC (int, max_uid);
843
844 if (max_labelno != max_label_num ())
845 grow_label_align ();
846
847 /* Initialize label_align and set up uid_shuid to be strictly
848 monotonically rising with insn order. */
849 /* We use alignment here to keep track of the maximum alignment we want to
850 impose on the next CODE_LABEL (or the current one if we are processing
851 the CODE_LABEL itself). */
852
853 align_flags max_alignment;
854
855 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
856 {
857 INSN_SHUID (insn) = i++;
858 if (INSN_P (insn))
859 continue;
860
861 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (p: insn))
862 {
863 /* Merge in alignments computed by compute_alignments. */
864 align_flags alignment = LABEL_TO_ALIGNMENT (label);
865 max_alignment = align_flags::max (f0: max_alignment, f1: alignment);
866
867 rtx_jump_table_data *table = jump_table_for_label (label);
868 if (!table)
869 {
870 align_flags alignment = LABEL_ALIGN (label);
871 max_alignment = align_flags::max (f0: max_alignment, f1: alignment);
872 }
873 /* ADDR_VECs only take room if read-only data goes into the text
874 section. */
875 if ((JUMP_TABLES_IN_TEXT_SECTION
876 || readonly_data_section == text_section)
877 && table)
878 {
879 align_flags alignment = align_flags (ADDR_VEC_ALIGN (table));
880 max_alignment = align_flags::max (f0: max_alignment, f1: alignment);
881 }
882 LABEL_TO_ALIGNMENT (label) = max_alignment;
883 max_alignment = align_flags ();
884 }
885 else if (BARRIER_P (insn))
886 {
887 rtx_insn *label;
888
889 for (label = insn; label && ! INSN_P (label);
890 label = NEXT_INSN (insn: label))
891 if (LABEL_P (label))
892 {
893 align_flags alignment
894 = align_flags (LABEL_ALIGN_AFTER_BARRIER (insn));
895 max_alignment = align_flags::max (f0: max_alignment, f1: alignment);
896 break;
897 }
898 }
899 }
900 if (!HAVE_ATTR_length)
901 return;
902
903 /* Allocate the rest of the arrays. */
904 insn_lengths = XNEWVEC (int, max_uid);
905 insn_lengths_max_uid = max_uid;
906 /* Syntax errors can lead to labels being outside of the main insn stream.
907 Initialize insn_addresses, so that we get reproducible results. */
908 INSN_ADDRESSES_ALLOC (max_uid);
909
910 varying_length = XCNEWVEC (char, max_uid);
911
912 /* Initialize uid_align. We scan instructions
913 from end to start, and keep in align_tab[n] the last seen insn
914 that does an alignment of at least n+1, i.e. the successor
915 in the alignment chain for an insn that does / has a known
916 alignment of n. */
917 uid_align = XCNEWVEC (rtx, max_uid);
918
919 for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
920 align_tab[i] = NULL_RTX;
921 seq = get_last_insn ();
922 for (; seq; seq = PREV_INSN (insn: seq))
923 {
924 int uid = INSN_UID (insn: seq);
925 int log;
926 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq).levels[0].log : 0);
927 uid_align[uid] = align_tab[0];
928 if (log)
929 {
930 /* Found an alignment label. */
931 gcc_checking_assert (log < MAX_CODE_ALIGN + 1);
932 uid_align[uid] = align_tab[log];
933 for (i = log - 1; i >= 0; i--)
934 align_tab[i] = seq;
935 }
936 }
937
938 /* When optimizing, we start assuming minimum length, and keep increasing
939 lengths as we find the need for this, till nothing changes.
940 When not optimizing, we start assuming maximum lengths, and
941 do a single pass to update the lengths. */
942 bool increasing = optimize != 0;
943
944#ifdef CASE_VECTOR_SHORTEN_MODE
945 if (optimize)
946 {
947 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
948 label fields. */
949
950 int min_shuid = INSN_SHUID (get_insns ()) - 1;
951 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
952 int rel;
953
954 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
955 {
956 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
957 int len, i, min, max, insn_shuid;
958 int min_align;
959 addr_diff_vec_flags flags;
960
961 if (! JUMP_TABLE_DATA_P (insn)
962 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
963 continue;
964 pat = PATTERN (insn);
965 len = XVECLEN (pat, 1);
966 gcc_assert (len > 0);
967 min_align = MAX_CODE_ALIGN;
968 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
969 {
970 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
971 int shuid = INSN_SHUID (lab);
972 if (shuid < min)
973 {
974 min = shuid;
975 min_lab = lab;
976 }
977 if (shuid > max)
978 {
979 max = shuid;
980 max_lab = lab;
981 }
982
983 int label_alignment = LABEL_TO_ALIGNMENT (lab).levels[0].log;
984 if (min_align > label_alignment)
985 min_align = label_alignment;
986 }
987 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
988 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
989 insn_shuid = INSN_SHUID (insn);
990 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
991 memset (&flags, 0, sizeof (flags));
992 flags.min_align = min_align;
993 flags.base_after_vec = rel > insn_shuid;
994 flags.min_after_vec = min > insn_shuid;
995 flags.max_after_vec = max > insn_shuid;
996 flags.min_after_base = min > rel;
997 flags.max_after_base = max > rel;
998 ADDR_DIFF_VEC_FLAGS (pat) = flags;
999
1000 if (increasing)
1001 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1002 }
1003 }
1004#endif /* CASE_VECTOR_SHORTEN_MODE */
1005
1006 /* Compute initial lengths, addresses, and varying flags for each insn. */
1007 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1008
1009 for (insn_current_address = 0, insn = first;
1010 insn != 0;
1011 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1012 {
1013 uid = INSN_UID (insn);
1014
1015 insn_lengths[uid] = 0;
1016
1017 if (LABEL_P (insn))
1018 {
1019 int log = LABEL_TO_ALIGNMENT (insn).levels[0].log;
1020 if (log)
1021 {
1022 int align = 1 << log;
1023 int new_address = (insn_current_address + align - 1) & -align;
1024 insn_lengths[uid] = new_address - insn_current_address;
1025 }
1026 }
1027
1028 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1029
1030 if (NOTE_P (insn) || BARRIER_P (insn)
1031 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1032 continue;
1033 if (insn->deleted ())
1034 continue;
1035
1036 body = PATTERN (insn);
1037 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (p: insn))
1038 {
1039 /* This only takes room if read-only data goes into the text
1040 section. */
1041 if (JUMP_TABLES_IN_TEXT_SECTION
1042 || readonly_data_section == text_section)
1043 insn_lengths[uid] = (XVECLEN (body,
1044 GET_CODE (body) == ADDR_DIFF_VEC)
1045 * GET_MODE_SIZE (mode: table->get_data_mode ()));
1046 /* Alignment is handled by ADDR_VEC_ALIGN. */
1047 }
1048 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1049 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1050 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (p: body))
1051 {
1052 int i;
1053 int const_delay_slots;
1054 if (DELAY_SLOTS)
1055 const_delay_slots = const_num_delay_slots (body_seq->insn (index: 0));
1056 else
1057 const_delay_slots = 0;
1058
1059 int (*inner_length_fun) (rtx_insn *)
1060 = const_delay_slots ? length_fun : insn_default_length;
1061 /* Inside a delay slot sequence, we do not do any branch shortening
1062 if the shortening could change the number of delay slots
1063 of the branch. */
1064 for (i = 0; i < body_seq->len (); i++)
1065 {
1066 rtx_insn *inner_insn = body_seq->insn (index: i);
1067 int inner_uid = INSN_UID (insn: inner_insn);
1068 int inner_length;
1069
1070 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1071 || asm_noperands (PATTERN (insn: inner_insn)) >= 0)
1072 inner_length = (asm_insn_count (PATTERN (insn: inner_insn))
1073 * insn_default_length (inner_insn));
1074 else
1075 inner_length = inner_length_fun (inner_insn);
1076
1077 insn_lengths[inner_uid] = inner_length;
1078 if (const_delay_slots)
1079 {
1080 if ((varying_length[inner_uid]
1081 = insn_variable_length_p (inner_insn)) != 0)
1082 varying_length[uid] = 1;
1083 INSN_ADDRESSES (inner_uid) = (insn_current_address
1084 + insn_lengths[uid]);
1085 }
1086 else
1087 varying_length[inner_uid] = 0;
1088 insn_lengths[uid] += inner_length;
1089 }
1090 }
1091 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1092 {
1093 insn_lengths[uid] = length_fun (insn);
1094 varying_length[uid] = insn_variable_length_p (insn);
1095 }
1096
1097 /* If needed, do any adjustment. */
1098#ifdef ADJUST_INSN_LENGTH
1099 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1100 if (insn_lengths[uid] < 0)
1101 fatal_insn ("negative insn length", insn);
1102#endif
1103 }
1104
1105 /* Now loop over all the insns finding varying length insns. For each,
1106 get the current insn length. If it has changed, reflect the change.
1107 When nothing changes for a full pass, we are done. */
1108
1109 while (something_changed)
1110 {
1111 something_changed = false;
1112 insn_current_align = MAX_CODE_ALIGN - 1;
1113 for (insn_current_address = 0, insn = first;
1114 insn != 0;
1115 insn = NEXT_INSN (insn))
1116 {
1117 int new_length;
1118#ifdef ADJUST_INSN_LENGTH
1119 int tmp_length;
1120#endif
1121 int length_align;
1122
1123 uid = INSN_UID (insn);
1124
1125 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (p: insn))
1126 {
1127 int log = LABEL_TO_ALIGNMENT (label).levels[0].log;
1128
1129#ifdef CASE_VECTOR_SHORTEN_MODE
1130 /* If the mode of a following jump table was changed, we
1131 may need to update the alignment of this label. */
1132
1133 if (JUMP_TABLES_IN_TEXT_SECTION
1134 || readonly_data_section == text_section)
1135 {
1136 rtx_jump_table_data *table = jump_table_for_label (label);
1137 if (table)
1138 {
1139 int newlog = ADDR_VEC_ALIGN (table);
1140 if (newlog != log)
1141 {
1142 log = newlog;
1143 LABEL_TO_ALIGNMENT (insn) = log;
1144 something_changed = true;
1145 }
1146 }
1147 }
1148#endif
1149
1150 if (log > insn_current_align)
1151 {
1152 int align = 1 << log;
1153 int new_address= (insn_current_address + align - 1) & -align;
1154 insn_lengths[uid] = new_address - insn_current_address;
1155 insn_current_align = log;
1156 insn_current_address = new_address;
1157 }
1158 else
1159 insn_lengths[uid] = 0;
1160 INSN_ADDRESSES (uid) = insn_current_address;
1161 continue;
1162 }
1163
1164 length_align = INSN_LENGTH_ALIGNMENT (insn);
1165 if (length_align < insn_current_align)
1166 insn_current_align = length_align;
1167
1168 insn_last_address = INSN_ADDRESSES (uid);
1169 INSN_ADDRESSES (uid) = insn_current_address;
1170
1171#ifdef CASE_VECTOR_SHORTEN_MODE
1172 if (optimize
1173 && JUMP_TABLE_DATA_P (insn)
1174 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1175 {
1176 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1177 rtx body = PATTERN (insn);
1178 int old_length = insn_lengths[uid];
1179 rtx_insn *rel_lab =
1180 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1181 rtx min_lab = XEXP (XEXP (body, 2), 0);
1182 rtx max_lab = XEXP (XEXP (body, 3), 0);
1183 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1184 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1185 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1186 rtx_insn *prev;
1187 int rel_align = 0;
1188 addr_diff_vec_flags flags;
1189 scalar_int_mode vec_mode;
1190
1191 /* Avoid automatic aggregate initialization. */
1192 flags = ADDR_DIFF_VEC_FLAGS (body);
1193
1194 /* Try to find a known alignment for rel_lab. */
1195 for (prev = rel_lab;
1196 prev
1197 && ! insn_lengths[INSN_UID (prev)]
1198 && ! (varying_length[INSN_UID (prev)] & 1);
1199 prev = PREV_INSN (prev))
1200 if (varying_length[INSN_UID (prev)] & 2)
1201 {
1202 rel_align = LABEL_TO_ALIGNMENT (prev).levels[0].log;
1203 break;
1204 }
1205
1206 /* See the comment on addr_diff_vec_flags in rtl.h for the
1207 meaning of the flags values. base: REL_LAB vec: INSN */
1208 /* Anything after INSN has still addresses from the last
1209 pass; adjust these so that they reflect our current
1210 estimate for this pass. */
1211 if (flags.base_after_vec)
1212 rel_addr += insn_current_address - insn_last_address;
1213 if (flags.min_after_vec)
1214 min_addr += insn_current_address - insn_last_address;
1215 if (flags.max_after_vec)
1216 max_addr += insn_current_address - insn_last_address;
1217 /* We want to know the worst case, i.e. lowest possible value
1218 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1219 its offset is positive, and we have to be wary of code shrink;
1220 otherwise, it is negative, and we have to be vary of code
1221 size increase. */
1222 if (flags.min_after_base)
1223 {
1224 /* If INSN is between REL_LAB and MIN_LAB, the size
1225 changes we are about to make can change the alignment
1226 within the observed offset, therefore we have to break
1227 it up into two parts that are independent. */
1228 if (! flags.base_after_vec && flags.min_after_vec)
1229 {
1230 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1231 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1232 }
1233 else
1234 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1235 }
1236 else
1237 {
1238 if (flags.base_after_vec && ! flags.min_after_vec)
1239 {
1240 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1241 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1242 }
1243 else
1244 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1245 }
1246 /* Likewise, determine the highest lowest possible value
1247 for the offset of MAX_LAB. */
1248 if (flags.max_after_base)
1249 {
1250 if (! flags.base_after_vec && flags.max_after_vec)
1251 {
1252 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1253 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1254 }
1255 else
1256 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1257 }
1258 else
1259 {
1260 if (flags.base_after_vec && ! flags.max_after_vec)
1261 {
1262 max_addr += align_fuzz (max_lab, insn, 0, 0);
1263 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1264 }
1265 else
1266 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1267 }
1268 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1269 max_addr - rel_addr, body);
1270 if (!increasing
1271 || (GET_MODE_SIZE (vec_mode)
1272 >= GET_MODE_SIZE (table->get_data_mode ())))
1273 PUT_MODE (body, vec_mode);
1274 if (JUMP_TABLES_IN_TEXT_SECTION
1275 || readonly_data_section == text_section)
1276 {
1277 insn_lengths[uid]
1278 = (XVECLEN (body, 1)
1279 * GET_MODE_SIZE (table->get_data_mode ()));
1280 insn_current_address += insn_lengths[uid];
1281 if (insn_lengths[uid] != old_length)
1282 something_changed = true;
1283 }
1284
1285 continue;
1286 }
1287#endif /* CASE_VECTOR_SHORTEN_MODE */
1288
1289 if (! (varying_length[uid]))
1290 {
1291 if (NONJUMP_INSN_P (insn)
1292 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1293 {
1294 int i;
1295
1296 body = PATTERN (insn);
1297 for (i = 0; i < XVECLEN (body, 0); i++)
1298 {
1299 rtx inner_insn = XVECEXP (body, 0, i);
1300 int inner_uid = INSN_UID (insn: inner_insn);
1301
1302 INSN_ADDRESSES (inner_uid) = insn_current_address;
1303
1304 insn_current_address += insn_lengths[inner_uid];
1305 }
1306 }
1307 else
1308 insn_current_address += insn_lengths[uid];
1309
1310 continue;
1311 }
1312
1313 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1314 {
1315 rtx_sequence *seqn = as_a <rtx_sequence *> (p: PATTERN (insn));
1316 int i;
1317
1318 body = PATTERN (insn);
1319 new_length = 0;
1320 for (i = 0; i < seqn->len (); i++)
1321 {
1322 rtx_insn *inner_insn = seqn->insn (index: i);
1323 int inner_uid = INSN_UID (insn: inner_insn);
1324 int inner_length;
1325
1326 INSN_ADDRESSES (inner_uid) = insn_current_address;
1327
1328 /* insn_current_length returns 0 for insns with a
1329 non-varying length. */
1330 if (! varying_length[inner_uid])
1331 inner_length = insn_lengths[inner_uid];
1332 else
1333 inner_length = insn_current_length (inner_insn);
1334
1335 if (inner_length != insn_lengths[inner_uid])
1336 {
1337 if (!increasing || inner_length > insn_lengths[inner_uid])
1338 {
1339 insn_lengths[inner_uid] = inner_length;
1340 something_changed = true;
1341 }
1342 else
1343 inner_length = insn_lengths[inner_uid];
1344 }
1345 insn_current_address += inner_length;
1346 new_length += inner_length;
1347 }
1348 }
1349 else
1350 {
1351 new_length = insn_current_length (insn);
1352 insn_current_address += new_length;
1353 }
1354
1355#ifdef ADJUST_INSN_LENGTH
1356 /* If needed, do any adjustment. */
1357 tmp_length = new_length;
1358 ADJUST_INSN_LENGTH (insn, new_length);
1359 insn_current_address += (new_length - tmp_length);
1360#endif
1361
1362 if (new_length != insn_lengths[uid]
1363 && (!increasing || new_length > insn_lengths[uid]))
1364 {
1365 insn_lengths[uid] = new_length;
1366 something_changed = true;
1367 }
1368 else
1369 insn_current_address += insn_lengths[uid] - new_length;
1370 }
1371 /* For a non-optimizing compile, do only a single pass. */
1372 if (!increasing)
1373 break;
1374 }
1375 crtl->max_insn_address = insn_current_address;
1376 free (ptr: varying_length);
1377}
1378
1379/* Given the body of an INSN known to be generated by an ASM statement, return
1380 the number of machine instructions likely to be generated for this insn.
1381 This is used to compute its length. */
1382
1383static int
1384asm_insn_count (rtx body)
1385{
1386 const char *templ;
1387
1388 if (GET_CODE (body) == ASM_INPUT)
1389 templ = XSTR (body, 0);
1390 else
1391 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1392
1393 return asm_str_count (templ);
1394}
1395
1396/* Return the number of machine instructions likely to be generated for the
1397 inline-asm template. */
1398int
1399asm_str_count (const char *templ)
1400{
1401 int count = 1;
1402
1403 if (!*templ)
1404 return 0;
1405
1406 for (; *templ; templ++)
1407 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1408 || *templ == '\n')
1409 count++;
1410
1411 return count;
1412}
1413
1414/* Return true if DWARF2 debug info can be emitted for DECL. */
1415
1416static bool
1417dwarf2_debug_info_emitted_p (tree decl)
1418{
1419 /* When DWARF2 debug info is not generated internally. */
1420 if (!dwarf_debuginfo_p () && !dwarf_based_debuginfo_p ())
1421 return false;
1422
1423 if (DECL_IGNORED_P (decl))
1424 return false;
1425
1426 return true;
1427}
1428
1429/* Return scope resulting from combination of S1 and S2. */
1430static tree
1431choose_inner_scope (tree s1, tree s2)
1432{
1433 if (!s1)
1434 return s2;
1435 if (!s2)
1436 return s1;
1437 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1438 return s1;
1439 return s2;
1440}
1441
1442/* Emit lexical block notes needed to change scope from S1 to S2. */
1443
1444static void
1445change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1446{
1447 rtx_insn *insn = orig_insn;
1448 tree com = NULL_TREE;
1449 tree ts1 = s1, ts2 = s2;
1450 tree s;
1451
1452 while (ts1 != ts2)
1453 {
1454 gcc_assert (ts1 && ts2);
1455 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1456 ts1 = BLOCK_SUPERCONTEXT (ts1);
1457 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1458 ts2 = BLOCK_SUPERCONTEXT (ts2);
1459 else
1460 {
1461 ts1 = BLOCK_SUPERCONTEXT (ts1);
1462 ts2 = BLOCK_SUPERCONTEXT (ts2);
1463 }
1464 }
1465 com = ts1;
1466
1467 /* Close scopes. */
1468 s = s1;
1469 while (s != com)
1470 {
1471 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1472 NOTE_BLOCK (note) = s;
1473 s = BLOCK_SUPERCONTEXT (s);
1474 }
1475
1476 /* Open scopes. */
1477 s = s2;
1478 while (s != com)
1479 {
1480 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1481 NOTE_BLOCK (insn) = s;
1482 s = BLOCK_SUPERCONTEXT (s);
1483 }
1484}
1485
1486/* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1487 on the scope tree and the newly reordered instructions. */
1488
1489static void
1490reemit_insn_block_notes (void)
1491{
1492 tree cur_block = DECL_INITIAL (cfun->decl);
1493 rtx_insn *insn;
1494
1495 insn = get_insns ();
1496 for (; insn; insn = NEXT_INSN (insn))
1497 {
1498 tree this_block;
1499
1500 /* Prevent lexical blocks from straddling section boundaries. */
1501 if (NOTE_P (insn))
1502 switch (NOTE_KIND (insn))
1503 {
1504 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1505 {
1506 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1507 s = BLOCK_SUPERCONTEXT (s))
1508 {
1509 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1510 NOTE_BLOCK (note) = s;
1511 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1512 NOTE_BLOCK (note) = s;
1513 }
1514 }
1515 break;
1516
1517 case NOTE_INSN_BEGIN_STMT:
1518 case NOTE_INSN_INLINE_ENTRY:
1519 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1520 if (!this_block)
1521 continue;
1522 goto set_cur_block_to_this_block;
1523
1524 default:
1525 continue;
1526 }
1527
1528 if (!active_insn_p (insn))
1529 continue;
1530
1531 /* Avoid putting scope notes between jump table and its label. */
1532 if (JUMP_TABLE_DATA_P (insn))
1533 continue;
1534
1535 this_block = insn_scope (insn);
1536 /* For sequences compute scope resulting from merging all scopes
1537 of instructions nested inside. */
1538 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (p: PATTERN (insn)))
1539 {
1540 int i;
1541
1542 this_block = NULL;
1543 for (i = 0; i < body->len (); i++)
1544 this_block = choose_inner_scope (s1: this_block,
1545 s2: insn_scope (body->insn (index: i)));
1546 }
1547 if (! this_block)
1548 {
1549 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1550 continue;
1551 else
1552 this_block = DECL_INITIAL (cfun->decl);
1553 }
1554
1555 set_cur_block_to_this_block:
1556 if (this_block != cur_block)
1557 {
1558 change_scope (orig_insn: insn, s1: cur_block, s2: this_block);
1559 cur_block = this_block;
1560 }
1561 }
1562
1563 /* change_scope emits before the insn, not after. */
1564 rtx_note *note = emit_note (NOTE_INSN_DELETED);
1565 change_scope (orig_insn: note, s1: cur_block, DECL_INITIAL (cfun->decl));
1566 delete_insn (note);
1567
1568 reorder_blocks ();
1569}
1570
1571static const char *some_local_dynamic_name;
1572
1573/* Locate some local-dynamic symbol still in use by this function
1574 so that we can print its name in local-dynamic base patterns.
1575 Return null if there are no local-dynamic references. */
1576
1577const char *
1578get_some_local_dynamic_name ()
1579{
1580 subrtx_iterator::array_type array;
1581 rtx_insn *insn;
1582
1583 if (some_local_dynamic_name)
1584 return some_local_dynamic_name;
1585
1586 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1587 if (NONDEBUG_INSN_P (insn))
1588 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1589 {
1590 const_rtx x = *iter;
1591 if (GET_CODE (x) == SYMBOL_REF)
1592 {
1593 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1594 return some_local_dynamic_name = XSTR (x, 0);
1595 if (CONSTANT_POOL_ADDRESS_P (x))
1596 iter.substitute (x: get_pool_constant (x));
1597 }
1598 }
1599
1600 return 0;
1601}
1602
1603/* Arrange for us to emit a source location note before any further
1604 real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1605 *SEEN, as long as we are keeping track of location views. The bit
1606 indicates we have referenced the next view at the current PC, so we
1607 have to emit it. This should be called next to the var_location
1608 debug hook. */
1609
1610static inline void
1611set_next_view_needed (int *seen)
1612{
1613 if (debug_variable_location_views)
1614 *seen |= SEEN_NEXT_VIEW;
1615}
1616
1617/* Clear the flag in *SEEN indicating we need to emit the next view.
1618 This should be called next to the source_line debug hook. */
1619
1620static inline void
1621clear_next_view_needed (int *seen)
1622{
1623 *seen &= ~SEEN_NEXT_VIEW;
1624}
1625
1626/* Test whether we have a pending request to emit the next view in
1627 *SEEN, and emit it if needed, clearing the request bit. */
1628
1629static inline void
1630maybe_output_next_view (int *seen)
1631{
1632 if ((*seen & SEEN_NEXT_VIEW) != 0)
1633 {
1634 clear_next_view_needed (seen);
1635 (*debug_hooks->source_line) (last_linenum, last_columnnum,
1636 last_filename, last_discriminator,
1637 false);
1638 }
1639}
1640
1641/* We want to emit param bindings (before the first begin_stmt) in the
1642 initial view, if we are emitting views. To that end, we may
1643 consume initial notes in the function, processing them in
1644 final_start_function, before signaling the beginning of the
1645 prologue, rather than in final.
1646
1647 We don't test whether the DECLs are PARM_DECLs: the assumption is
1648 that there will be a NOTE_INSN_BEGIN_STMT marker before any
1649 non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not
1650 there, we'll just have more variable locations bound in the initial
1651 view, which is consistent with their being bound without any code
1652 that would give them a value. */
1653
1654static inline bool
1655in_initial_view_p (rtx_insn *insn)
1656{
1657 return (!DECL_IGNORED_P (current_function_decl)
1658 && debug_variable_location_views
1659 && insn && GET_CODE (insn) == NOTE
1660 && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1661 || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1662}
1663
1664/* Output assembler code for the start of a function,
1665 and initialize some of the variables in this file
1666 for the new function. The label for the function and associated
1667 assembler pseudo-ops have already been output in `assemble_start_function'.
1668
1669 FIRST is the first insn of the rtl for the function being compiled.
1670 FILE is the file to write assembler code to.
1671 SEEN should be initially set to zero, and it may be updated to
1672 indicate we have references to the next location view, that would
1673 require us to emit it at the current PC.
1674 OPTIMIZE_P is nonzero if we should eliminate redundant
1675 test and compare insns. */
1676
1677static void
1678final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1679 int optimize_p ATTRIBUTE_UNUSED)
1680{
1681 block_depth = 0;
1682
1683 this_is_asm_operands = 0;
1684
1685 need_profile_function = false;
1686
1687 last_filename = LOCATION_FILE (prologue_location);
1688 last_linenum = LOCATION_LINE (prologue_location);
1689 last_columnnum = LOCATION_COLUMN (prologue_location);
1690 last_discriminator = 0;
1691 force_source_line = false;
1692
1693 high_block_linenum = high_function_linenum = last_linenum;
1694
1695 rtx_insn *first = *firstp;
1696 if (in_initial_view_p (insn: first))
1697 {
1698 do
1699 {
1700 final_scan_insn (first, file, 0, 0, seen);
1701 first = NEXT_INSN (insn: first);
1702 }
1703 while (in_initial_view_p (insn: first));
1704 *firstp = first;
1705 }
1706
1707 if (!DECL_IGNORED_P (current_function_decl))
1708 debug_hooks->begin_prologue (last_linenum, last_columnnum,
1709 last_filename);
1710
1711 if (!dwarf2_debug_info_emitted_p (decl: current_function_decl))
1712 dwarf2out_begin_prologue (0, 0, NULL);
1713
1714 if (DECL_IGNORED_P (current_function_decl) && last_linenum && last_filename)
1715 debug_hooks->set_ignored_loc (last_linenum, last_columnnum, last_filename);
1716
1717#ifdef LEAF_REG_REMAP
1718 if (crtl->uses_only_leaf_regs)
1719 leaf_renumber_regs (first);
1720#endif
1721
1722 /* The Sun386i and perhaps other machines don't work right
1723 if the profiling code comes after the prologue. */
1724 if (targetm.profile_before_prologue () && crtl->profile)
1725 {
1726 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1727 && targetm.have_prologue ())
1728 {
1729 rtx_insn *insn;
1730 for (insn = first; insn; insn = NEXT_INSN (insn))
1731 if (!NOTE_P (insn))
1732 {
1733 insn = NULL;
1734 break;
1735 }
1736 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1737 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1738 break;
1739 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1740 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1741 continue;
1742 else
1743 {
1744 insn = NULL;
1745 break;
1746 }
1747
1748 if (insn)
1749 need_profile_function = true;
1750 else
1751 profile_function (file);
1752 }
1753 else
1754 profile_function (file);
1755 }
1756
1757 /* If debugging, assign block numbers to all of the blocks in this
1758 function. */
1759 if (write_symbols)
1760 {
1761 reemit_insn_block_notes ();
1762 number_blocks (current_function_decl);
1763 /* We never actually put out begin/end notes for the top-level
1764 block in the function. But, conceptually, that block is
1765 always needed. */
1766 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1767 }
1768
1769 unsigned HOST_WIDE_INT min_frame_size
1770 = constant_lower_bound (a: get_frame_size ());
1771 if (min_frame_size > (unsigned HOST_WIDE_INT) warn_frame_larger_than_size)
1772 {
1773 /* Issue a warning */
1774 warning (OPT_Wframe_larger_than_,
1775 "the frame size of %wu bytes is larger than %wu bytes",
1776 min_frame_size, warn_frame_larger_than_size);
1777 }
1778
1779 /* First output the function prologue: code to set up the stack frame. */
1780 targetm.asm_out.function_prologue (file);
1781
1782 /* If the machine represents the prologue as RTL, the profiling code must
1783 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1784 if (! targetm.have_prologue ())
1785 profile_after_prologue (file);
1786}
1787
1788/* This is an exported final_start_function_1, callable without SEEN. */
1789
1790void
1791final_start_function (rtx_insn *first, FILE *file,
1792 int optimize_p ATTRIBUTE_UNUSED)
1793{
1794 int seen = 0;
1795 final_start_function_1 (firstp: &first, file, seen: &seen, optimize_p);
1796 gcc_assert (seen == 0);
1797}
1798
1799static void
1800profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1801{
1802 if (!targetm.profile_before_prologue () && crtl->profile)
1803 profile_function (file);
1804}
1805
1806static void
1807profile_function (FILE *file ATTRIBUTE_UNUSED)
1808{
1809#ifndef NO_PROFILE_COUNTERS
1810# define NO_PROFILE_COUNTERS 0
1811#endif
1812#ifdef ASM_OUTPUT_REG_PUSH
1813 rtx sval = NULL, chain = NULL;
1814
1815 if (cfun->returns_struct)
1816 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1817 true);
1818 if (cfun->static_chain_decl)
1819 chain = targetm.calls.static_chain (current_function_decl, true);
1820#endif /* ASM_OUTPUT_REG_PUSH */
1821
1822 if (! NO_PROFILE_COUNTERS)
1823 {
1824 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1825 switch_to_section (data_section);
1826 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1827 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1828 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1829 }
1830
1831 switch_to_section (current_function_section ());
1832
1833#ifdef ASM_OUTPUT_REG_PUSH
1834 if (sval && REG_P (sval))
1835 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1836 if (chain && REG_P (chain))
1837 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1838#endif
1839
1840 FUNCTION_PROFILER (file, current_function_funcdef_no);
1841
1842#ifdef ASM_OUTPUT_REG_PUSH
1843 if (chain && REG_P (chain))
1844 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1845 if (sval && REG_P (sval))
1846 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1847#endif
1848}
1849
1850/* Output assembler code for the end of a function.
1851 For clarity, args are same as those of `final_start_function'
1852 even though not all of them are needed. */
1853
1854void
1855final_end_function (void)
1856{
1857 app_disable ();
1858
1859 if (!DECL_IGNORED_P (current_function_decl))
1860 debug_hooks->end_function (high_function_linenum);
1861
1862 /* Finally, output the function epilogue:
1863 code to restore the stack frame and return to the caller. */
1864 targetm.asm_out.function_epilogue (asm_out_file);
1865
1866 /* And debug output. */
1867 if (!DECL_IGNORED_P (current_function_decl))
1868 debug_hooks->end_epilogue (last_linenum, last_filename);
1869
1870 if (!dwarf2_debug_info_emitted_p (decl: current_function_decl)
1871 && dwarf2out_do_frame ())
1872 dwarf2out_end_epilogue (last_linenum, last_filename);
1873
1874 some_local_dynamic_name = 0;
1875}
1876
1877
1878/* Dumper helper for basic block information. FILE is the assembly
1879 output file, and INSN is the instruction being emitted. */
1880
1881static void
1882dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1883 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1884{
1885 basic_block bb;
1886
1887 if (!flag_debug_asm)
1888 return;
1889
1890 if (INSN_UID (insn) < bb_map_size
1891 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1892 {
1893 edge e;
1894 edge_iterator ei;
1895
1896 fprintf (stream: file, format: "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1897 if (bb->count.initialized_p ())
1898 {
1899 fprintf (stream: file, format: ", count:");
1900 bb->count.dump (f: file);
1901 }
1902 fprintf (stream: file, format: " seq:%d", (*bb_seqn)++);
1903 fprintf (stream: file, format: "\n%s PRED:", ASM_COMMENT_START);
1904 FOR_EACH_EDGE (e, ei, bb->preds)
1905 {
1906 dump_edge_info (file, e, TDF_DETAILS, 0);
1907 }
1908 fprintf (stream: file, format: "\n");
1909 }
1910 if (INSN_UID (insn) < bb_map_size
1911 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1912 {
1913 edge e;
1914 edge_iterator ei;
1915
1916 fprintf (stream: asm_out_file, format: "%s SUCC:", ASM_COMMENT_START);
1917 FOR_EACH_EDGE (e, ei, bb->succs)
1918 {
1919 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1920 }
1921 fprintf (stream: file, format: "\n");
1922 }
1923}
1924
1925/* Output assembler code for some insns: all or part of a function.
1926 For description of args, see `final_start_function', above. */
1927
1928static void
1929final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
1930{
1931 rtx_insn *insn, *next;
1932
1933 /* Used for -dA dump. */
1934 basic_block *start_to_bb = NULL;
1935 basic_block *end_to_bb = NULL;
1936 int bb_map_size = 0;
1937 int bb_seqn = 0;
1938
1939 last_ignored_compare = 0;
1940
1941 init_recog ();
1942
1943 CC_STATUS_INIT;
1944
1945 if (flag_debug_asm)
1946 {
1947 basic_block bb;
1948
1949 bb_map_size = get_max_uid () + 1;
1950 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
1951 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
1952
1953 /* There is no cfg for a thunk. */
1954 if (!cfun->is_thunk)
1955 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1956 {
1957 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
1958 end_to_bb[INSN_UID (BB_END (bb))] = bb;
1959 }
1960 }
1961
1962 /* Output the insns. */
1963 for (insn = first; insn;)
1964 {
1965 if (HAVE_ATTR_length)
1966 {
1967 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1968 {
1969 /* This can be triggered by bugs elsewhere in the compiler if
1970 new insns are created after init_insn_lengths is called. */
1971 gcc_assert (NOTE_P (insn));
1972 insn_current_address = -1;
1973 }
1974 else
1975 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1976 /* final can be seen as an iteration of shorten_branches that
1977 does nothing (since a fixed point has already been reached). */
1978 insn_last_address = insn_current_address;
1979 }
1980
1981 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
1982 bb_map_size, bb_seqn: &bb_seqn);
1983 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
1984 }
1985
1986 maybe_output_next_view (seen: &seen);
1987
1988 if (flag_debug_asm)
1989 {
1990 free (ptr: start_to_bb);
1991 free (ptr: end_to_bb);
1992 }
1993
1994 /* Remove CFI notes, to avoid compare-debug failures. */
1995 for (insn = first; insn; insn = next)
1996 {
1997 next = NEXT_INSN (insn);
1998 if (NOTE_P (insn)
1999 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2000 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2001 delete_insn (insn);
2002 }
2003}
2004
2005/* This is an exported final_1, callable without SEEN. */
2006
2007void
2008final (rtx_insn *first, FILE *file, int optimize_p)
2009{
2010 /* Those that use the internal final_start_function_1/final_1 API
2011 skip initial debug bind notes in final_start_function_1, and pass
2012 the modified FIRST to final_1. But those that use the public
2013 final_start_function/final APIs, final_start_function can't move
2014 FIRST because it's not passed by reference, so if they were
2015 skipped there, skip them again here. */
2016 while (in_initial_view_p (insn: first))
2017 first = NEXT_INSN (insn: first);
2018
2019 final_1 (first, file, seen: 0, optimize_p);
2020}
2021
2022const char *
2023get_insn_template (int code, rtx_insn *insn)
2024{
2025 switch (insn_data[code].output_format)
2026 {
2027 case INSN_OUTPUT_FORMAT_SINGLE:
2028 return insn_data[code].output.single;
2029 case INSN_OUTPUT_FORMAT_MULTI:
2030 return insn_data[code].output.multi[which_alternative];
2031 case INSN_OUTPUT_FORMAT_FUNCTION:
2032 gcc_assert (insn);
2033 return (*insn_data[code].output.function) (recog_data.operand, insn);
2034
2035 default:
2036 gcc_unreachable ();
2037 }
2038}
2039
2040/* Emit the appropriate declaration for an alternate-entry-point
2041 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2042 LABEL_KIND != LABEL_NORMAL.
2043
2044 The case fall-through in this function is intentional. */
2045static void
2046output_alternate_entry_point (FILE *file, rtx_insn *insn)
2047{
2048 const char *name = LABEL_NAME (insn);
2049
2050 switch (LABEL_KIND (insn))
2051 {
2052 case LABEL_WEAK_ENTRY:
2053#ifdef ASM_WEAKEN_LABEL
2054 ASM_WEAKEN_LABEL (file, name);
2055 gcc_fallthrough ();
2056#endif
2057 case LABEL_GLOBAL_ENTRY:
2058 targetm.asm_out.globalize_label (file, name);
2059 gcc_fallthrough ();
2060 case LABEL_STATIC_ENTRY:
2061#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2062 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2063#endif
2064 ASM_OUTPUT_LABEL (file, name);
2065 break;
2066
2067 case LABEL_NORMAL:
2068 default:
2069 gcc_unreachable ();
2070 }
2071}
2072
2073/* Given a CALL_INSN, find and return the nested CALL. */
2074static rtx
2075call_from_call_insn (const rtx_call_insn *insn)
2076{
2077 rtx x;
2078 gcc_assert (CALL_P (insn));
2079 x = PATTERN (insn);
2080
2081 while (GET_CODE (x) != CALL)
2082 {
2083 switch (GET_CODE (x))
2084 {
2085 default:
2086 gcc_unreachable ();
2087 case COND_EXEC:
2088 x = COND_EXEC_CODE (x);
2089 break;
2090 case PARALLEL:
2091 x = XVECEXP (x, 0, 0);
2092 break;
2093 case SET:
2094 x = XEXP (x, 1);
2095 break;
2096 }
2097 }
2098 return x;
2099}
2100
2101/* Return the CALL in X if there is one. */
2102
2103rtx
2104get_call_rtx_from (const rtx_insn *insn)
2105{
2106 const rtx_call_insn *call_insn = as_a<const rtx_call_insn *> (p: insn);
2107 return call_from_call_insn (insn: call_insn);
2108}
2109
2110/* Print a comment into the asm showing FILENAME, LINENUM, and the
2111 corresponding source line, if available. */
2112
2113static void
2114asm_show_source (const char *filename, int linenum)
2115{
2116 if (!filename)
2117 return;
2118
2119 char_span line
2120 = global_dc->get_file_cache ().get_source_line (file_path: filename, line: linenum);
2121 if (!line)
2122 return;
2123
2124 fprintf (stream: asm_out_file, format: "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2125 /* "line" is not 0-terminated, so we must use its length. */
2126 fwrite (ptr: line.get_buffer (), size: 1, n: line.length (), s: asm_out_file);
2127 fputc (c: '\n', stream: asm_out_file);
2128}
2129
2130/* Judge if an absolute jump table is relocatable. */
2131
2132bool
2133jumptable_relocatable (void)
2134{
2135 bool relocatable = false;
2136
2137 if (!CASE_VECTOR_PC_RELATIVE
2138 && !targetm.asm_out.generate_pic_addr_diff_vec ()
2139 && targetm_common.have_named_sections)
2140 relocatable = targetm.asm_out.reloc_rw_mask ();
2141
2142 return relocatable;
2143}
2144
2145/* The final scan for one insn, INSN.
2146 Args are same as in `final', except that INSN
2147 is the insn being scanned.
2148 Value returned is the next insn to be scanned.
2149
2150 NOPEEPHOLES is the flag to disallow peephole processing (currently
2151 used for within delayed branch sequence output).
2152
2153 SEEN is used to track the end of the prologue, for emitting
2154 debug information. We force the emission of a line note after
2155 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2156
2157static rtx_insn *
2158final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2159 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2160{
2161 rtx_insn *next;
2162 rtx_jump_table_data *table;
2163
2164 insn_counter++;
2165
2166 /* Ignore deleted insns. These can occur when we split insns (due to a
2167 template of "#") while not optimizing. */
2168 if (insn->deleted ())
2169 return NEXT_INSN (insn);
2170
2171 switch (GET_CODE (insn))
2172 {
2173 case NOTE:
2174 switch (NOTE_KIND (insn))
2175 {
2176 case NOTE_INSN_DELETED:
2177 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2178 break;
2179
2180 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2181 maybe_output_next_view (seen);
2182
2183 output_function_exception_table (0);
2184
2185 if (targetm.asm_out.unwind_emit)
2186 targetm.asm_out.unwind_emit (asm_out_file, insn);
2187
2188 in_cold_section_p = !in_cold_section_p;
2189
2190 gcc_checking_assert (in_cold_section_p);
2191 if (in_cold_section_p)
2192 cold_function_name
2193 = clone_function_name (decl: current_function_decl, suffix: "cold");
2194
2195 if (dwarf2out_do_frame ())
2196 {
2197 dwarf2out_switch_text_section ();
2198 if (!dwarf2_debug_info_emitted_p (decl: current_function_decl)
2199 && !DECL_IGNORED_P (current_function_decl))
2200 debug_hooks->switch_text_section ();
2201 }
2202 else if (!DECL_IGNORED_P (current_function_decl))
2203 debug_hooks->switch_text_section ();
2204 if (DECL_IGNORED_P (current_function_decl) && last_linenum
2205 && last_filename)
2206 debug_hooks->set_ignored_loc (last_linenum, last_columnnum,
2207 last_filename);
2208
2209 switch_to_section (current_function_section ());
2210 targetm.asm_out.function_switched_text_sections (asm_out_file,
2211 current_function_decl,
2212 in_cold_section_p);
2213 /* Emit a label for the split cold section. Form label name by
2214 suffixing "cold" to the original function's name. */
2215 if (in_cold_section_p)
2216 {
2217#ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2218 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2219 IDENTIFIER_POINTER
2220 (cold_function_name),
2221 current_function_decl);
2222#else
2223 ASM_OUTPUT_LABEL (asm_out_file,
2224 IDENTIFIER_POINTER (cold_function_name));
2225#endif
2226 if (dwarf2out_do_frame ()
2227 && cfun->fde->dw_fde_second_begin != NULL)
2228 ASM_OUTPUT_LABEL (asm_out_file, cfun->fde->dw_fde_second_begin);
2229 }
2230 break;
2231
2232 case NOTE_INSN_BASIC_BLOCK:
2233 if (need_profile_function)
2234 {
2235 profile_function (file: asm_out_file);
2236 need_profile_function = false;
2237 }
2238
2239 if (targetm.asm_out.unwind_emit)
2240 targetm.asm_out.unwind_emit (asm_out_file, insn);
2241
2242 break;
2243
2244 case NOTE_INSN_EH_REGION_BEG:
2245 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2246 NOTE_EH_HANDLER (insn));
2247 break;
2248
2249 case NOTE_INSN_EH_REGION_END:
2250 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2251 NOTE_EH_HANDLER (insn));
2252 break;
2253
2254 case NOTE_INSN_PROLOGUE_END:
2255 targetm.asm_out.function_end_prologue (file);
2256 profile_after_prologue (file);
2257
2258 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2259 {
2260 *seen |= SEEN_EMITTED;
2261 force_source_line = true;
2262 }
2263 else
2264 *seen |= SEEN_NOTE;
2265
2266 break;
2267
2268 case NOTE_INSN_EPILOGUE_BEG:
2269 if (!DECL_IGNORED_P (current_function_decl))
2270 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2271 targetm.asm_out.function_begin_epilogue (file);
2272 break;
2273
2274 case NOTE_INSN_CFI:
2275 dwarf2out_emit_cfi (NOTE_CFI (insn));
2276 break;
2277
2278 case NOTE_INSN_CFI_LABEL:
2279 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2280 NOTE_LABEL_NUMBER (insn));
2281 break;
2282
2283 case NOTE_INSN_FUNCTION_BEG:
2284 if (need_profile_function)
2285 {
2286 profile_function (file: asm_out_file);
2287 need_profile_function = false;
2288 }
2289
2290 app_disable ();
2291 if (!DECL_IGNORED_P (current_function_decl))
2292 debug_hooks->end_prologue (last_linenum, last_filename);
2293
2294 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2295 {
2296 *seen |= SEEN_EMITTED;
2297 force_source_line = true;
2298 }
2299 else
2300 *seen |= SEEN_NOTE;
2301
2302 break;
2303
2304 case NOTE_INSN_BLOCK_BEG:
2305 if (debug_info_level >= DINFO_LEVEL_NORMAL
2306 || dwarf_debuginfo_p ()
2307 || write_symbols == VMS_DEBUG)
2308 {
2309 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2310
2311 app_disable ();
2312 ++block_depth;
2313 high_block_linenum = last_linenum;
2314
2315 /* Output debugging info about the symbol-block beginning. */
2316 if (!DECL_IGNORED_P (current_function_decl))
2317 debug_hooks->begin_block (last_linenum, n, NOTE_BLOCK (insn));
2318
2319 /* Mark this block as output. */
2320 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2321 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2322 }
2323 break;
2324
2325 case NOTE_INSN_BLOCK_END:
2326 maybe_output_next_view (seen);
2327
2328 if (debug_info_level >= DINFO_LEVEL_NORMAL
2329 || dwarf_debuginfo_p ()
2330 || write_symbols == VMS_DEBUG)
2331 {
2332 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2333
2334 app_disable ();
2335
2336 /* End of a symbol-block. */
2337 --block_depth;
2338 gcc_assert (block_depth >= 0);
2339
2340 if (!DECL_IGNORED_P (current_function_decl))
2341 debug_hooks->end_block (high_block_linenum, n);
2342 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2343 == in_cold_section_p);
2344 }
2345 break;
2346
2347 case NOTE_INSN_DELETED_LABEL:
2348 /* Emit the label. We may have deleted the CODE_LABEL because
2349 the label could be proved to be unreachable, though still
2350 referenced (in the form of having its address taken. */
2351 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2352 break;
2353
2354 case NOTE_INSN_DELETED_DEBUG_LABEL:
2355 /* Similarly, but need to use different namespace for it. */
2356 if (CODE_LABEL_NUMBER (insn) != -1)
2357 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2358 break;
2359
2360 case NOTE_INSN_VAR_LOCATION:
2361 if (!DECL_IGNORED_P (current_function_decl))
2362 {
2363 debug_hooks->var_location (insn);
2364 set_next_view_needed (seen);
2365 }
2366 break;
2367
2368 case NOTE_INSN_BEGIN_STMT:
2369 gcc_checking_assert (cfun->debug_nonbind_markers);
2370 if (!DECL_IGNORED_P (current_function_decl)
2371 && notice_source_line (insn, NULL))
2372 {
2373 output_source_line:
2374 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2375 last_filename, last_discriminator,
2376 true);
2377 clear_next_view_needed (seen);
2378 }
2379 break;
2380
2381 case NOTE_INSN_INLINE_ENTRY:
2382 gcc_checking_assert (cfun->debug_nonbind_markers);
2383 if (!DECL_IGNORED_P (current_function_decl)
2384 && notice_source_line (insn, NULL))
2385 {
2386 (*debug_hooks->inline_entry) (LOCATION_BLOCK
2387 (NOTE_MARKER_LOCATION (insn)));
2388 goto output_source_line;
2389 }
2390 break;
2391
2392 default:
2393 gcc_unreachable ();
2394 break;
2395 }
2396 break;
2397
2398 case BARRIER:
2399 break;
2400
2401 case CODE_LABEL:
2402 /* The target port might emit labels in the output function for
2403 some insn, e.g. sh.cc output_branchy_insn. */
2404 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2405 {
2406 align_flags alignment = LABEL_TO_ALIGNMENT (insn);
2407 if (alignment.levels[0].log && NEXT_INSN (insn))
2408 {
2409#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2410 /* Output both primary and secondary alignment. */
2411 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[0].log,
2412 alignment.levels[0].maxskip);
2413 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[1].log,
2414 alignment.levels[1].maxskip);
2415#else
2416#ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2417 ASM_OUTPUT_ALIGN_WITH_NOP (file, alignment.levels[0].log);
2418#else
2419 ASM_OUTPUT_ALIGN (file, alignment.levels[0].log);
2420#endif
2421#endif
2422 }
2423 }
2424 CC_STATUS_INIT;
2425
2426 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2427 debug_hooks->label (as_a <rtx_code_label *> (p: insn));
2428
2429 app_disable ();
2430
2431 /* If this label is followed by a jump-table, make sure we put
2432 the label in the read-only section. Also possibly write the
2433 label and jump table together. */
2434 table = jump_table_for_label (label: as_a <rtx_code_label *> (p: insn));
2435 if (table)
2436 {
2437#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2438 /* In this case, the case vector is being moved by the
2439 target, so don't output the label at all. Leave that
2440 to the back end macros. */
2441#else
2442 if (! JUMP_TABLES_IN_TEXT_SECTION)
2443 {
2444 int log_align;
2445
2446 switch_to_section (targetm.asm_out.function_rodata_section
2447 (current_function_decl,
2448 jumptable_relocatable ()));
2449
2450#ifdef ADDR_VEC_ALIGN
2451 log_align = ADDR_VEC_ALIGN (table);
2452#else
2453 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2454#endif
2455 ASM_OUTPUT_ALIGN (file, log_align);
2456 }
2457 else
2458 switch_to_section (current_function_section ());
2459
2460#ifdef ASM_OUTPUT_CASE_LABEL
2461 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2462#else
2463 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2464#endif
2465#endif
2466 break;
2467 }
2468 if (LABEL_ALT_ENTRY_P (insn))
2469 output_alternate_entry_point (file, insn);
2470 else
2471 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2472 break;
2473
2474 default:
2475 {
2476 rtx body = PATTERN (insn);
2477 int insn_code_number;
2478 const char *templ;
2479 bool is_stmt, *is_stmt_p;
2480
2481 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2482 {
2483 is_stmt = false;
2484 is_stmt_p = NULL;
2485 }
2486 else
2487 is_stmt_p = &is_stmt;
2488
2489 /* Reset this early so it is correct for ASM statements. */
2490 current_insn_predicate = NULL_RTX;
2491
2492 /* An INSN, JUMP_INSN or CALL_INSN.
2493 First check for special kinds that recog doesn't recognize. */
2494
2495 if (GET_CODE (body) == USE /* These are just declarations. */
2496 || GET_CODE (body) == CLOBBER)
2497 break;
2498
2499 /* Detect insns that are really jump-tables
2500 and output them as such. */
2501
2502 if (JUMP_TABLE_DATA_P (insn))
2503 {
2504#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2505 int vlen, idx;
2506#endif
2507
2508 if (! JUMP_TABLES_IN_TEXT_SECTION)
2509 switch_to_section (targetm.asm_out.function_rodata_section
2510 (current_function_decl,
2511 jumptable_relocatable ()));
2512 else
2513 switch_to_section (current_function_section ());
2514
2515 app_disable ();
2516
2517#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2518 if (GET_CODE (body) == ADDR_VEC)
2519 {
2520#ifdef ASM_OUTPUT_ADDR_VEC
2521 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2522#else
2523 gcc_unreachable ();
2524#endif
2525 }
2526 else
2527 {
2528#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2529 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2530#else
2531 gcc_unreachable ();
2532#endif
2533 }
2534#else
2535 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2536 for (idx = 0; idx < vlen; idx++)
2537 {
2538 if (GET_CODE (body) == ADDR_VEC)
2539 {
2540#ifdef ASM_OUTPUT_ADDR_VEC_ELT
2541 ASM_OUTPUT_ADDR_VEC_ELT
2542 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2543#else
2544 gcc_unreachable ();
2545#endif
2546 }
2547 else
2548 {
2549#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2550 ASM_OUTPUT_ADDR_DIFF_ELT
2551 (file,
2552 body,
2553 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2554 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2555#else
2556 gcc_unreachable ();
2557#endif
2558 }
2559 }
2560#ifdef ASM_OUTPUT_CASE_END
2561 ASM_OUTPUT_CASE_END (file,
2562 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2563 insn);
2564#endif
2565#endif
2566
2567 switch_to_section (current_function_section ());
2568
2569 if (debug_variable_location_views
2570 && !DECL_IGNORED_P (current_function_decl))
2571 debug_hooks->var_location (insn);
2572
2573 break;
2574 }
2575 /* Output this line note if it is the first or the last line
2576 note in a row. */
2577 if (!DECL_IGNORED_P (current_function_decl)
2578 && notice_source_line (insn, is_stmt_p))
2579 {
2580 if (flag_verbose_asm)
2581 asm_show_source (filename: last_filename, linenum: last_linenum);
2582 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2583 last_filename, last_discriminator,
2584 is_stmt);
2585 clear_next_view_needed (seen);
2586 }
2587 else
2588 maybe_output_next_view (seen);
2589
2590 gcc_checking_assert (!DEBUG_INSN_P (insn));
2591
2592 if (GET_CODE (body) == PARALLEL
2593 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2594 body = XVECEXP (body, 0, 0);
2595
2596 if (GET_CODE (body) == ASM_INPUT)
2597 {
2598 const char *string = XSTR (body, 0);
2599
2600 /* There's no telling what that did to the condition codes. */
2601 CC_STATUS_INIT;
2602
2603 if (string[0])
2604 {
2605 expanded_location loc;
2606
2607 app_enable ();
2608 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2609 if (*loc.file && loc.line)
2610 fprintf (stream: asm_out_file, format: "%s %i \"%s\" 1\n",
2611 ASM_COMMENT_START, loc.line, loc.file);
2612 fprintf (stream: asm_out_file, format: "\t%s\n", string);
2613#if HAVE_AS_LINE_ZERO
2614 if (*loc.file && loc.line)
2615 fprintf (stream: asm_out_file, format: "%s 0 \"\" 2\n", ASM_COMMENT_START);
2616#endif
2617 }
2618 break;
2619 }
2620
2621 /* Detect `asm' construct with operands. */
2622 if (asm_noperands (body) >= 0)
2623 {
2624 unsigned int noperands = asm_noperands (body);
2625 rtx *ops = XALLOCAVEC (rtx, noperands);
2626 const char *string;
2627 location_t loc;
2628 expanded_location expanded;
2629
2630 /* There's no telling what that did to the condition codes. */
2631 CC_STATUS_INIT;
2632
2633 /* Get out the operand values. */
2634 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2635 /* Inhibit dying on what would otherwise be compiler bugs. */
2636 insn_noperands = noperands;
2637 this_is_asm_operands = insn;
2638 expanded = expand_location (loc);
2639
2640#ifdef FINAL_PRESCAN_INSN
2641 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2642#endif
2643
2644 /* Output the insn using them. */
2645 if (string[0])
2646 {
2647 app_enable ();
2648 if (expanded.file && expanded.line)
2649 fprintf (stream: asm_out_file, format: "%s %i \"%s\" 1\n",
2650 ASM_COMMENT_START, expanded.line, expanded.file);
2651 output_asm_insn (string, ops);
2652#if HAVE_AS_LINE_ZERO
2653 if (expanded.file && expanded.line)
2654 fprintf (stream: asm_out_file, format: "%s 0 \"\" 2\n", ASM_COMMENT_START);
2655#endif
2656 }
2657
2658 if (targetm.asm_out.final_postscan_insn)
2659 targetm.asm_out.final_postscan_insn (file, insn, ops,
2660 insn_noperands);
2661
2662 this_is_asm_operands = 0;
2663 break;
2664 }
2665
2666 app_disable ();
2667
2668 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (p: body))
2669 {
2670 /* A delayed-branch sequence */
2671 int i;
2672
2673 final_sequence = seq;
2674
2675 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2676 force the restoration of a comparison that was previously
2677 thought unnecessary. If that happens, cancel this sequence
2678 and cause that insn to be restored. */
2679
2680 next = final_scan_insn (seq->insn (index: 0), file, 0, 1, seen);
2681 if (next != seq->insn (index: 1))
2682 {
2683 final_sequence = 0;
2684 return next;
2685 }
2686
2687 for (i = 1; i < seq->len (); i++)
2688 {
2689 rtx_insn *insn = seq->insn (index: i);
2690 rtx_insn *next = NEXT_INSN (insn);
2691 /* We loop in case any instruction in a delay slot gets
2692 split. */
2693 do
2694 insn = final_scan_insn (insn, file, 0, 1, seen);
2695 while (insn != next);
2696 }
2697#ifdef DBR_OUTPUT_SEQEND
2698 DBR_OUTPUT_SEQEND (file);
2699#endif
2700 final_sequence = 0;
2701
2702 /* If the insn requiring the delay slot was a CALL_INSN, the
2703 insns in the delay slot are actually executed before the
2704 called function. Hence we don't preserve any CC-setting
2705 actions in these insns and the CC must be marked as being
2706 clobbered by the function. */
2707 if (CALL_P (seq->insn (0)))
2708 {
2709 CC_STATUS_INIT;
2710 }
2711 break;
2712 }
2713
2714 /* We have a real machine instruction as rtl. */
2715
2716 body = PATTERN (insn);
2717
2718 /* Do machine-specific peephole optimizations if desired. */
2719
2720 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2721 {
2722 rtx_insn *next = peephole (insn);
2723 /* When peepholing, if there were notes within the peephole,
2724 emit them before the peephole. */
2725 if (next != 0 && next != NEXT_INSN (insn))
2726 {
2727 rtx_insn *note, *prev = PREV_INSN (insn);
2728
2729 for (note = NEXT_INSN (insn); note != next;
2730 note = NEXT_INSN (insn: note))
2731 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2732
2733 /* Put the notes in the proper position for a later
2734 rescan. For example, the SH target can do this
2735 when generating a far jump in a delayed branch
2736 sequence. */
2737 note = NEXT_INSN (insn);
2738 SET_PREV_INSN (note) = prev;
2739 SET_NEXT_INSN (prev) = note;
2740 SET_NEXT_INSN (PREV_INSN (insn: next)) = insn;
2741 SET_PREV_INSN (insn) = PREV_INSN (insn: next);
2742 SET_NEXT_INSN (insn) = next;
2743 SET_PREV_INSN (next) = insn;
2744 }
2745
2746 /* PEEPHOLE might have changed this. */
2747 body = PATTERN (insn);
2748 }
2749
2750 /* Try to recognize the instruction.
2751 If successful, verify that the operands satisfy the
2752 constraints for the instruction. Crash if they don't,
2753 since `reload' should have changed them so that they do. */
2754
2755 insn_code_number = recog_memoized (insn);
2756 cleanup_subreg_operands (insn);
2757
2758 /* Dump the insn in the assembly for debugging (-dAP).
2759 If the final dump is requested as slim RTL, dump slim
2760 RTL to the assembly file also. */
2761 if (flag_dump_rtl_in_asm)
2762 {
2763 print_rtx_head = ASM_COMMENT_START;
2764 if (! (dump_flags & TDF_SLIM))
2765 print_rtl_single (asm_out_file, insn);
2766 else
2767 dump_insn_slim (asm_out_file, insn);
2768 print_rtx_head = "";
2769 }
2770
2771 if (! constrain_operands_cached (insn, 1))
2772 fatal_insn_not_found (insn);
2773
2774 /* Some target machines need to prescan each insn before
2775 it is output. */
2776
2777#ifdef FINAL_PRESCAN_INSN
2778 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2779#endif
2780
2781 if (targetm.have_conditional_execution ()
2782 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2783 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2784
2785 current_output_insn = debug_insn = insn;
2786
2787 /* Find the proper template for this insn. */
2788 templ = get_insn_template (code: insn_code_number, insn);
2789
2790 /* If the C code returns 0, it means that it is a jump insn
2791 which follows a deleted test insn, and that test insn
2792 needs to be reinserted. */
2793 if (templ == 0)
2794 {
2795 rtx_insn *prev;
2796
2797 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2798
2799 /* We have already processed the notes between the setter and
2800 the user. Make sure we don't process them again, this is
2801 particularly important if one of the notes is a block
2802 scope note or an EH note. */
2803 for (prev = insn;
2804 prev != last_ignored_compare;
2805 prev = PREV_INSN (insn: prev))
2806 {
2807 if (NOTE_P (prev))
2808 delete_insn (prev); /* Use delete_note. */
2809 }
2810
2811 return prev;
2812 }
2813
2814 /* If the template is the string "#", it means that this insn must
2815 be split. */
2816 if (templ[0] == '#' && templ[1] == '\0')
2817 {
2818 rtx_insn *new_rtx = try_split (body, insn, 0);
2819
2820 /* If we didn't split the insn, go away. */
2821 if (new_rtx == insn && PATTERN (insn: new_rtx) == body)
2822 fatal_insn ("could not split insn", insn);
2823
2824 /* If we have a length attribute, this instruction should have
2825 been split in shorten_branches, to ensure that we would have
2826 valid length info for the splitees. */
2827 gcc_assert (!HAVE_ATTR_length);
2828
2829 return new_rtx;
2830 }
2831
2832 /* ??? This will put the directives in the wrong place if
2833 get_insn_template outputs assembly directly. However calling it
2834 before get_insn_template breaks if the insns is split. */
2835 if (targetm.asm_out.unwind_emit_before_insn
2836 && targetm.asm_out.unwind_emit)
2837 targetm.asm_out.unwind_emit (asm_out_file, insn);
2838
2839 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (p: insn);
2840 if (call_insn != NULL)
2841 {
2842 rtx x = call_from_call_insn (insn: call_insn);
2843 x = XEXP (x, 0);
2844 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2845 {
2846 tree t;
2847 x = XEXP (x, 0);
2848 t = SYMBOL_REF_DECL (x);
2849 if (t)
2850 assemble_external (t);
2851 }
2852 }
2853
2854 /* Output assembler code from the template. */
2855 output_asm_insn (templ, recog_data.operand);
2856
2857 /* Some target machines need to postscan each insn after
2858 it is output. */
2859 if (targetm.asm_out.final_postscan_insn)
2860 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
2861 recog_data.n_operands);
2862
2863 if (!targetm.asm_out.unwind_emit_before_insn
2864 && targetm.asm_out.unwind_emit)
2865 targetm.asm_out.unwind_emit (asm_out_file, insn);
2866
2867 /* Let the debug info back-end know about this call. We do this only
2868 after the instruction has been emitted because labels that may be
2869 created to reference the call instruction must appear after it. */
2870 if ((debug_variable_location_views || call_insn != NULL)
2871 && !DECL_IGNORED_P (current_function_decl))
2872 debug_hooks->var_location (insn);
2873
2874 current_output_insn = debug_insn = 0;
2875 }
2876 }
2877 return NEXT_INSN (insn);
2878}
2879
2880/* This is a wrapper around final_scan_insn_1 that allows ports to
2881 call it recursively without a known value for SEEN. The value is
2882 saved at the outermost call, and recovered for recursive calls.
2883 Recursive calls MUST pass NULL, or the same pointer if they can
2884 otherwise get to it. */
2885
2886rtx_insn *
2887final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
2888 int nopeepholes, int *seen)
2889{
2890 static int *enclosing_seen;
2891 static int recursion_counter;
2892
2893 gcc_assert (seen || recursion_counter);
2894 gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
2895
2896 if (!recursion_counter++)
2897 enclosing_seen = seen;
2898 else if (!seen)
2899 seen = enclosing_seen;
2900
2901 rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
2902
2903 if (!--recursion_counter)
2904 enclosing_seen = NULL;
2905
2906 return ret;
2907}
2908
2909
2910
2911/* Map DECLs to instance discriminators. This is allocated and
2912 defined in ada/gcc-interfaces/trans.cc, when compiling with -gnateS.
2913 Mappings from this table are saved and restored for LTO, so
2914 link-time compilation will have this map set, at least in
2915 partitions containing at least one DECL with an associated instance
2916 discriminator. */
2917
2918decl_to_instance_map_t *decl_to_instance_map;
2919
2920/* Return the instance number assigned to DECL. */
2921
2922static inline int
2923map_decl_to_instance (const_tree decl)
2924{
2925 int *inst;
2926
2927 if (!decl_to_instance_map || !decl || !DECL_P (decl))
2928 return 0;
2929
2930 inst = decl_to_instance_map->get (k: decl);
2931
2932 if (!inst)
2933 return 0;
2934
2935 return *inst;
2936}
2937
2938/* Set DISCRIMINATOR to the appropriate value, possibly derived from LOC. */
2939
2940static inline int
2941compute_discriminator (location_t loc)
2942{
2943 int discriminator;
2944
2945 if (!decl_to_instance_map)
2946 discriminator = get_discriminator_from_loc (loc);
2947 else
2948 {
2949 tree block = LOCATION_BLOCK (loc);
2950
2951 while (block && TREE_CODE (block) == BLOCK
2952 && !inlined_function_outer_scope_p (block))
2953 block = BLOCK_SUPERCONTEXT (block);
2954
2955 tree decl;
2956
2957 if (!block)
2958 decl = current_function_decl;
2959 else if (DECL_P (block))
2960 decl = block;
2961 else
2962 decl = block_ultimate_origin (block);
2963
2964 discriminator = map_decl_to_instance (decl);
2965 }
2966
2967 return discriminator;
2968}
2969
2970/* Return discriminator of the statement that produced this insn. */
2971int
2972insn_discriminator (const rtx_insn *insn)
2973{
2974 return compute_discriminator (loc: INSN_LOCATION (insn));
2975}
2976
2977/* Return whether a source line note needs to be emitted before INSN.
2978 Sets IS_STMT to TRUE if the line should be marked as a possible
2979 breakpoint location. */
2980
2981static bool
2982notice_source_line (rtx_insn *insn, bool *is_stmt)
2983{
2984 const char *filename;
2985 int linenum, columnnum;
2986 int discriminator;
2987
2988 if (NOTE_MARKER_P (insn))
2989 {
2990 location_t loc = NOTE_MARKER_LOCATION (insn);
2991 expanded_location xloc = expand_location (loc);
2992 if (xloc.line == 0
2993 && (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
2994 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION))
2995 return false;
2996
2997 filename = xloc.file;
2998 linenum = xloc.line;
2999 columnnum = xloc.column;
3000 discriminator = compute_discriminator (loc);
3001 force_source_line = true;
3002 }
3003 else if (override_filename)
3004 {
3005 filename = override_filename;
3006 linenum = override_linenum;
3007 columnnum = override_columnnum;
3008 discriminator = override_discriminator;
3009 }
3010 else if (INSN_HAS_LOCATION (insn))
3011 {
3012 expanded_location xloc = insn_location (insn);
3013 filename = xloc.file;
3014 linenum = xloc.line;
3015 columnnum = xloc.column;
3016 discriminator = insn_discriminator (insn);
3017 }
3018 else
3019 {
3020 filename = NULL;
3021 linenum = 0;
3022 columnnum = 0;
3023 discriminator = 0;
3024 }
3025
3026 if (filename == NULL)
3027 return false;
3028
3029 if (force_source_line
3030 || filename != last_filename
3031 || last_linenum != linenum
3032 || (debug_column_info && last_columnnum != columnnum))
3033 {
3034 force_source_line = false;
3035 last_filename = filename;
3036 last_linenum = linenum;
3037 last_columnnum = columnnum;
3038 last_discriminator = discriminator;
3039 if (is_stmt)
3040 *is_stmt = true;
3041 high_block_linenum = MAX (last_linenum, high_block_linenum);
3042 high_function_linenum = MAX (last_linenum, high_function_linenum);
3043 return true;
3044 }
3045
3046 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3047 {
3048 /* If the discriminator changed, but the line number did not,
3049 output the line table entry with is_stmt false so the
3050 debugger does not treat this as a breakpoint location. */
3051 last_discriminator = discriminator;
3052 if (is_stmt)
3053 *is_stmt = false;
3054 return true;
3055 }
3056
3057 return false;
3058}
3059
3060/* For each operand in INSN, simplify (subreg (reg)) so that it refers
3061 directly to the desired hard register. */
3062
3063void
3064cleanup_subreg_operands (rtx_insn *insn)
3065{
3066 int i;
3067 bool changed = false;
3068 extract_insn_cached (insn);
3069 for (i = 0; i < recog_data.n_operands; i++)
3070 {
3071 /* The following test cannot use recog_data.operand when testing
3072 for a SUBREG: the underlying object might have been changed
3073 already if we are inside a match_operator expression that
3074 matches the else clause. Instead we test the underlying
3075 expression directly. */
3076 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3077 {
3078 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3079 changed = true;
3080 }
3081 else if (GET_CODE (recog_data.operand[i]) == PLUS
3082 || GET_CODE (recog_data.operand[i]) == MULT
3083 || MEM_P (recog_data.operand[i]))
3084 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3085 }
3086
3087 for (i = 0; i < recog_data.n_dups; i++)
3088 {
3089 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3090 {
3091 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3092 changed = true;
3093 }
3094 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3095 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3096 || MEM_P (*recog_data.dup_loc[i]))
3097 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3098 }
3099 if (changed)
3100 df_insn_rescan (insn);
3101}
3102
3103/* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3104 the thing it is a subreg of. Do it anyway if FINAL_P. */
3105
3106rtx
3107alter_subreg (rtx *xp, bool final_p)
3108{
3109 rtx x = *xp;
3110 rtx y = SUBREG_REG (x);
3111
3112 /* simplify_subreg does not remove subreg from volatile references.
3113 We are required to. */
3114 if (MEM_P (y))
3115 {
3116 poly_int64 offset = SUBREG_BYTE (x);
3117
3118 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3119 contains 0 instead of the proper offset. See simplify_subreg. */
3120 if (paradoxical_subreg_p (x))
3121 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3122
3123 if (final_p)
3124 *xp = adjust_address (y, GET_MODE (x), offset);
3125 else
3126 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3127 }
3128 else if (REG_P (y) && HARD_REGISTER_P (y))
3129 {
3130 rtx new_rtx = simplify_subreg (GET_MODE (x), op: y, GET_MODE (y),
3131 SUBREG_BYTE (x));
3132
3133 if (new_rtx != 0)
3134 *xp = new_rtx;
3135 else if (final_p && REG_P (y))
3136 {
3137 /* Simplify_subreg can't handle some REG cases, but we have to. */
3138 unsigned int regno;
3139 poly_int64 offset;
3140
3141 regno = subreg_regno (x);
3142 if (subreg_lowpart_p (x))
3143 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3144 else
3145 offset = SUBREG_BYTE (x);
3146 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3147 }
3148 }
3149
3150 return *xp;
3151}
3152
3153/* Do alter_subreg on all the SUBREGs contained in X. */
3154
3155static rtx
3156walk_alter_subreg (rtx *xp, bool *changed)
3157{
3158 rtx x = *xp;
3159 switch (GET_CODE (x))
3160 {
3161 case PLUS:
3162 case MULT:
3163 case AND:
3164 case ASHIFT:
3165 XEXP (x, 0) = walk_alter_subreg (xp: &XEXP (x, 0), changed);
3166 XEXP (x, 1) = walk_alter_subreg (xp: &XEXP (x, 1), changed);
3167 break;
3168
3169 case MEM:
3170 case ZERO_EXTEND:
3171 XEXP (x, 0) = walk_alter_subreg (xp: &XEXP (x, 0), changed);
3172 break;
3173
3174 case SUBREG:
3175 *changed = true;
3176 return alter_subreg (xp, final_p: true);
3177
3178 default:
3179 break;
3180 }
3181
3182 return *xp;
3183}
3184
3185/* Report inconsistency between the assembler template and the operands.
3186 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3187
3188void
3189output_operand_lossage (const char *cmsgid, ...)
3190{
3191 char *fmt_string;
3192 char *new_message;
3193 const char *pfx_str;
3194 va_list ap;
3195
3196 va_start (ap, cmsgid);
3197
3198 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3199 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3200 new_message = xvasprintf (fmt_string, ap);
3201
3202 if (this_is_asm_operands)
3203 error_for_asm (this_is_asm_operands, "%s", new_message);
3204 else
3205 internal_error ("%s", new_message);
3206
3207 free (ptr: fmt_string);
3208 free (ptr: new_message);
3209 va_end (ap);
3210}
3211
3212/* Output of assembler code from a template, and its subroutines. */
3213
3214/* Annotate the assembly with a comment describing the pattern and
3215 alternative used. */
3216
3217static void
3218output_asm_name (void)
3219{
3220 if (debug_insn)
3221 {
3222 fprintf (stream: asm_out_file, format: "\t%s %d\t",
3223 ASM_COMMENT_START, INSN_UID (insn: debug_insn));
3224
3225 fprintf (stream: asm_out_file, format: "[c=%d",
3226 insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3227 if (HAVE_ATTR_length)
3228 fprintf (stream: asm_out_file, format: " l=%d",
3229 get_attr_length (insn: debug_insn));
3230 fprintf (stream: asm_out_file, format: "] ");
3231
3232 int num = INSN_CODE (debug_insn);
3233 fprintf (stream: asm_out_file, format: "%s", insn_data[num].name);
3234 if (insn_data[num].n_alternatives > 1)
3235 fprintf (stream: asm_out_file, format: "/%d", which_alternative);
3236
3237 /* Clear this so only the first assembler insn
3238 of any rtl insn will get the special comment for -dp. */
3239 debug_insn = 0;
3240 }
3241}
3242
3243/* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3244 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3245 corresponds to the address of the object and 0 if to the object. */
3246
3247static tree
3248get_mem_expr_from_op (rtx op, int *paddressp)
3249{
3250 tree expr;
3251 int inner_addressp;
3252
3253 *paddressp = 0;
3254
3255 if (REG_P (op))
3256 return REG_EXPR (op);
3257 else if (!MEM_P (op))
3258 return 0;
3259
3260 if (MEM_EXPR (op) != 0)
3261 return MEM_EXPR (op);
3262
3263 /* Otherwise we have an address, so indicate it and look at the address. */
3264 *paddressp = 1;
3265 op = XEXP (op, 0);
3266
3267 /* First check if we have a decl for the address, then look at the right side
3268 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3269 But don't allow the address to itself be indirect. */
3270 if ((expr = get_mem_expr_from_op (op, paddressp: &inner_addressp)) && ! inner_addressp)
3271 return expr;
3272 else if (GET_CODE (op) == PLUS
3273 && (expr = get_mem_expr_from_op (XEXP (op, 1), paddressp: &inner_addressp)))
3274 return expr;
3275
3276 while (UNARY_P (op)
3277 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3278 op = XEXP (op, 0);
3279
3280 expr = get_mem_expr_from_op (op, paddressp: &inner_addressp);
3281 return inner_addressp ? 0 : expr;
3282}
3283
3284/* Output operand names for assembler instructions. OPERANDS is the
3285 operand vector, OPORDER is the order to write the operands, and NOPS
3286 is the number of operands to write. */
3287
3288static void
3289output_asm_operand_names (rtx *operands, int *oporder, int nops)
3290{
3291 int wrote = 0;
3292 int i;
3293
3294 for (i = 0; i < nops; i++)
3295 {
3296 int addressp;
3297 rtx op = operands[oporder[i]];
3298 tree expr = get_mem_expr_from_op (op, paddressp: &addressp);
3299
3300 fprintf (stream: asm_out_file, format: "%c%s",
3301 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3302 wrote = 1;
3303 if (expr)
3304 {
3305 fprintf (stream: asm_out_file, format: "%s",
3306 addressp ? "*" : "");
3307 print_mem_expr (asm_out_file, expr);
3308 wrote = 1;
3309 }
3310 else if (REG_P (op) && ORIGINAL_REGNO (op)
3311 && ORIGINAL_REGNO (op) != REGNO (op))
3312 fprintf (stream: asm_out_file, format: " tmp%i", ORIGINAL_REGNO (op));
3313 }
3314}
3315
3316#ifdef ASSEMBLER_DIALECT
3317/* Helper function to parse assembler dialects in the asm string.
3318 This is called from output_asm_insn and asm_fprintf. */
3319static const char *
3320do_assembler_dialects (const char *p, int *dialect)
3321{
3322 char c = *(p - 1);
3323
3324 switch (c)
3325 {
3326 case '{':
3327 {
3328 int i;
3329
3330 if (*dialect)
3331 output_operand_lossage (cmsgid: "nested assembly dialect alternatives");
3332 else
3333 *dialect = 1;
3334
3335 /* If we want the first dialect, do nothing. Otherwise, skip
3336 DIALECT_NUMBER of strings ending with '|'. */
3337 for (i = 0; i < dialect_number; i++)
3338 {
3339 while (*p && *p != '}')
3340 {
3341 if (*p == '|')
3342 {
3343 p++;
3344 break;
3345 }
3346
3347 /* Skip over any character after a percent sign. */
3348 if (*p == '%')
3349 p++;
3350 if (*p)
3351 p++;
3352 }
3353
3354 if (*p == '}')
3355 break;
3356 }
3357
3358 if (*p == '\0')
3359 output_operand_lossage (cmsgid: "unterminated assembly dialect alternative");
3360 }
3361 break;
3362
3363 case '|':
3364 if (*dialect)
3365 {
3366 /* Skip to close brace. */
3367 do
3368 {
3369 if (*p == '\0')
3370 {
3371 output_operand_lossage (cmsgid: "unterminated assembly dialect alternative");
3372 break;
3373 }
3374
3375 /* Skip over any character after a percent sign. */
3376 if (*p == '%' && p[1])
3377 {
3378 p += 2;
3379 continue;
3380 }
3381
3382 if (*p++ == '}')
3383 break;
3384 }
3385 while (1);
3386
3387 *dialect = 0;
3388 }
3389 else
3390 putc (c: c, stream: asm_out_file);
3391 break;
3392
3393 case '}':
3394 if (! *dialect)
3395 putc (c: c, stream: asm_out_file);
3396 *dialect = 0;
3397 break;
3398 default:
3399 gcc_unreachable ();
3400 }
3401
3402 return p;
3403}
3404#endif
3405
3406/* Output text from TEMPLATE to the assembler output file,
3407 obeying %-directions to substitute operands taken from
3408 the vector OPERANDS.
3409
3410 %N (for N a digit) means print operand N in usual manner.
3411 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3412 and print the label name with no punctuation.
3413 %cN means require operand N to be a constant
3414 and print the constant expression with no punctuation.
3415 %aN means expect operand N to be a memory address
3416 (not a memory reference!) and print a reference
3417 to that address.
3418 %nN means expect operand N to be a constant
3419 and print a constant expression for minus the value
3420 of the operand, with no other punctuation. */
3421
3422void
3423output_asm_insn (const char *templ, rtx *operands)
3424{
3425 const char *p;
3426 int c;
3427#ifdef ASSEMBLER_DIALECT
3428 int dialect = 0;
3429#endif
3430 int oporder[MAX_RECOG_OPERANDS];
3431 char opoutput[MAX_RECOG_OPERANDS];
3432 int ops = 0;
3433
3434 /* An insn may return a null string template
3435 in a case where no assembler code is needed. */
3436 if (*templ == 0)
3437 return;
3438
3439 memset (s: opoutput, c: 0, n: sizeof opoutput);
3440 p = templ;
3441 putc (c: '\t', stream: asm_out_file);
3442
3443#ifdef ASM_OUTPUT_OPCODE
3444 ASM_OUTPUT_OPCODE (asm_out_file, p);
3445#endif
3446
3447 while ((c = *p++))
3448 switch (c)
3449 {
3450 case '\n':
3451 if (flag_verbose_asm)
3452 output_asm_operand_names (operands, oporder, nops: ops);
3453 if (flag_print_asm_name)
3454 output_asm_name ();
3455
3456 ops = 0;
3457 memset (s: opoutput, c: 0, n: sizeof opoutput);
3458
3459 putc (c: c, stream: asm_out_file);
3460#ifdef ASM_OUTPUT_OPCODE
3461 while ((c = *p) == '\t')
3462 {
3463 putc (c: c, stream: asm_out_file);
3464 p++;
3465 }
3466 ASM_OUTPUT_OPCODE (asm_out_file, p);
3467#endif
3468 break;
3469
3470#ifdef ASSEMBLER_DIALECT
3471 case '{':
3472 case '}':
3473 case '|':
3474 p = do_assembler_dialects (p, dialect: &dialect);
3475 break;
3476#endif
3477
3478 case '%':
3479 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3480 if ASSEMBLER_DIALECT defined and these characters have a special
3481 meaning as dialect delimiters.*/
3482 if (*p == '%'
3483#ifdef ASSEMBLER_DIALECT
3484 || *p == '{' || *p == '}' || *p == '|'
3485#endif
3486 )
3487 {
3488 putc (c: *p, stream: asm_out_file);
3489 p++;
3490 }
3491 /* %= outputs a number which is unique to each insn in the entire
3492 compilation. This is useful for making local labels that are
3493 referred to more than once in a given insn. */
3494 else if (*p == '=')
3495 {
3496 p++;
3497 fprintf (stream: asm_out_file, format: "%d", insn_counter);
3498 }
3499 /* % followed by a letter and some digits
3500 outputs an operand in a special way depending on the letter.
3501 Letters `acln' are implemented directly.
3502 Other letters are passed to `output_operand' so that
3503 the TARGET_PRINT_OPERAND hook can define them. */
3504 else if (ISALPHA (*p))
3505 {
3506 int letter = *p++;
3507 unsigned long opnum;
3508 char *endptr;
3509 int letter2 = 0;
3510
3511 if (letter == 'c' && *p == 'c')
3512 letter2 = *p++;
3513 opnum = strtoul (nptr: p, endptr: &endptr, base: 10);
3514
3515 if (endptr == p)
3516 output_operand_lossage (cmsgid: "operand number missing "
3517 "after %%-letter");
3518 else if (this_is_asm_operands && opnum >= insn_noperands)
3519 output_operand_lossage (cmsgid: "operand number out of range");
3520 else if (letter == 'l')
3521 output_asm_label (operands[opnum]);
3522 else if (letter == 'a')
3523 output_address (VOIDmode, operands[opnum]);
3524 else if (letter == 'c')
3525 {
3526 if (letter2 == 'c' || CONSTANT_ADDRESS_P (operands[opnum]))
3527 output_addr_const (asm_out_file, operands[opnum]);
3528 else
3529 output_operand (operands[opnum], 'c');
3530 }
3531 else if (letter == 'n')
3532 {
3533 if (CONST_INT_P (operands[opnum]))
3534 fprintf (stream: asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3535 - INTVAL (operands[opnum]));
3536 else
3537 {
3538 putc (c: '-', stream: asm_out_file);
3539 output_addr_const (asm_out_file, operands[opnum]);
3540 }
3541 }
3542 else
3543 output_operand (operands[opnum], letter);
3544
3545 if (!opoutput[opnum])
3546 oporder[ops++] = opnum;
3547 opoutput[opnum] = 1;
3548
3549 p = endptr;
3550 c = *p;
3551 }
3552 /* % followed by a digit outputs an operand the default way. */
3553 else if (ISDIGIT (*p))
3554 {
3555 unsigned long opnum;
3556 char *endptr;
3557
3558 opnum = strtoul (nptr: p, endptr: &endptr, base: 10);
3559 if (this_is_asm_operands && opnum >= insn_noperands)
3560 output_operand_lossage (cmsgid: "operand number out of range");
3561 else
3562 output_operand (operands[opnum], 0);
3563
3564 if (!opoutput[opnum])
3565 oporder[ops++] = opnum;
3566 opoutput[opnum] = 1;
3567
3568 p = endptr;
3569 c = *p;
3570 }
3571 /* % followed by punctuation: output something for that
3572 punctuation character alone, with no operand. The
3573 TARGET_PRINT_OPERAND hook decides what is actually done. */
3574 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3575 output_operand (NULL_RTX, *p++);
3576 else
3577 output_operand_lossage (cmsgid: "invalid %%-code");
3578 break;
3579
3580 default:
3581 putc (c: c, stream: asm_out_file);
3582 }
3583
3584 /* Try to keep the asm a bit more readable. */
3585 if ((flag_verbose_asm || flag_print_asm_name) && strlen (s: templ) < 9)
3586 putc (c: '\t', stream: asm_out_file);
3587
3588 /* Write out the variable names for operands, if we know them. */
3589 if (flag_verbose_asm)
3590 output_asm_operand_names (operands, oporder, nops: ops);
3591 if (flag_print_asm_name)
3592 output_asm_name ();
3593
3594 putc (c: '\n', stream: asm_out_file);
3595}
3596
3597/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3598
3599void
3600output_asm_label (rtx x)
3601{
3602 char buf[256];
3603
3604 if (GET_CODE (x) == LABEL_REF)
3605 x = label_ref_label (ref: x);
3606 if (LABEL_P (x)
3607 || (NOTE_P (x)
3608 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3609 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3610 else
3611 output_operand_lossage (cmsgid: "'%%l' operand isn't a label");
3612
3613 assemble_name (asm_out_file, buf);
3614}
3615
3616/* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3617
3618void
3619mark_symbol_refs_as_used (rtx x)
3620{
3621 subrtx_iterator::array_type array;
3622 FOR_EACH_SUBRTX (iter, array, x, ALL)
3623 {
3624 const_rtx x = *iter;
3625 if (GET_CODE (x) == SYMBOL_REF)
3626 if (tree t = SYMBOL_REF_DECL (x))
3627 assemble_external (t);
3628 }
3629}
3630
3631/* Print operand X using machine-dependent assembler syntax.
3632 CODE is a non-digit that preceded the operand-number in the % spec,
3633 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3634 between the % and the digits.
3635 When CODE is a non-letter, X is 0.
3636
3637 The meanings of the letters are machine-dependent and controlled
3638 by TARGET_PRINT_OPERAND. */
3639
3640void
3641output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3642{
3643 if (x && GET_CODE (x) == SUBREG)
3644 x = alter_subreg (xp: &x, final_p: true);
3645
3646 /* X must not be a pseudo reg. */
3647 if (!targetm.no_register_allocation)
3648 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3649
3650 targetm.asm_out.print_operand (asm_out_file, x, code);
3651
3652 if (x == NULL_RTX)
3653 return;
3654
3655 mark_symbol_refs_as_used (x);
3656}
3657
3658/* Print a memory reference operand for address X using
3659 machine-dependent assembler syntax. */
3660
3661void
3662output_address (machine_mode mode, rtx x)
3663{
3664 bool changed = false;
3665 walk_alter_subreg (xp: &x, changed: &changed);
3666 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
3667}
3668
3669/* Print an integer constant expression in assembler syntax.
3670 Addition and subtraction are the only arithmetic
3671 that may appear in these expressions. */
3672
3673void
3674output_addr_const (FILE *file, rtx x)
3675{
3676 char buf[256];
3677
3678 restart:
3679 switch (GET_CODE (x))
3680 {
3681 case PC:
3682 putc (c: '.', stream: file);
3683 break;
3684
3685 case SYMBOL_REF:
3686 if (SYMBOL_REF_DECL (x))
3687 assemble_external (SYMBOL_REF_DECL (x));
3688#ifdef ASM_OUTPUT_SYMBOL_REF
3689 ASM_OUTPUT_SYMBOL_REF (file, x);
3690#else
3691 assemble_name (file, XSTR (x, 0));
3692#endif
3693 break;
3694
3695 case LABEL_REF:
3696 x = label_ref_label (ref: x);
3697 /* Fall through. */
3698 case CODE_LABEL:
3699 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3700#ifdef ASM_OUTPUT_LABEL_REF
3701 ASM_OUTPUT_LABEL_REF (file, buf);
3702#else
3703 assemble_name (file, buf);
3704#endif
3705 break;
3706
3707 case CONST_INT:
3708 fprintf (stream: file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3709 break;
3710
3711 case CONST:
3712 /* This used to output parentheses around the expression,
3713 but that does not work on the 386 (either ATT or BSD assembler). */
3714 output_addr_const (file, XEXP (x, 0));
3715 break;
3716
3717 case CONST_WIDE_INT:
3718 /* We do not know the mode here so we have to use a round about
3719 way to build a wide-int to get it printed properly. */
3720 {
3721 wide_int w = wide_int::from_array (val: &CONST_WIDE_INT_ELT (x, 0),
3722 CONST_WIDE_INT_NUNITS (x),
3723 CONST_WIDE_INT_NUNITS (x)
3724 * HOST_BITS_PER_WIDE_INT,
3725 need_canon_p: false);
3726 print_decs (wi: w, file);
3727 }
3728 break;
3729
3730 case CONST_DOUBLE:
3731 if (CONST_DOUBLE_AS_INT_P (x))
3732 {
3733 /* We can use %d if the number is one word and positive. */
3734 if (CONST_DOUBLE_HIGH (x))
3735 fprintf (stream: file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3736 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3737 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3738 else if (CONST_DOUBLE_LOW (x) < 0)
3739 fprintf (stream: file, HOST_WIDE_INT_PRINT_HEX,
3740 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3741 else
3742 fprintf (stream: file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3743 }
3744 else
3745 /* We can't handle floating point constants;
3746 PRINT_OPERAND must handle them. */
3747 output_operand_lossage (cmsgid: "floating constant misused");
3748 break;
3749
3750 case CONST_FIXED:
3751 fprintf (stream: file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3752 break;
3753
3754 case PLUS:
3755 /* Some assemblers need integer constants to appear last (eg masm). */
3756 if (CONST_INT_P (XEXP (x, 0)))
3757 {
3758 output_addr_const (file, XEXP (x, 1));
3759 if (INTVAL (XEXP (x, 0)) >= 0)
3760 fprintf (stream: file, format: "+");
3761 output_addr_const (file, XEXP (x, 0));
3762 }
3763 else
3764 {
3765 output_addr_const (file, XEXP (x, 0));
3766 if (!CONST_INT_P (XEXP (x, 1))
3767 || INTVAL (XEXP (x, 1)) >= 0)
3768 fprintf (stream: file, format: "+");
3769 output_addr_const (file, XEXP (x, 1));
3770 }
3771 break;
3772
3773 case MINUS:
3774 /* Avoid outputting things like x-x or x+5-x,
3775 since some assemblers can't handle that. */
3776 x = simplify_subtraction (x);
3777 if (GET_CODE (x) != MINUS)
3778 goto restart;
3779
3780 output_addr_const (file, XEXP (x, 0));
3781 fprintf (stream: file, format: "-");
3782 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3783 || GET_CODE (XEXP (x, 1)) == PC
3784 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3785 output_addr_const (file, XEXP (x, 1));
3786 else
3787 {
3788 fputs (s: targetm.asm_out.open_paren, stream: file);
3789 output_addr_const (file, XEXP (x, 1));
3790 fputs (s: targetm.asm_out.close_paren, stream: file);
3791 }
3792 break;
3793
3794 case ZERO_EXTEND:
3795 case SIGN_EXTEND:
3796 case SUBREG:
3797 case TRUNCATE:
3798 output_addr_const (file, XEXP (x, 0));
3799 break;
3800
3801 default:
3802 if (targetm.asm_out.output_addr_const_extra (file, x))
3803 break;
3804
3805 output_operand_lossage (cmsgid: "invalid expression as operand");
3806 }
3807}
3808
3809/* Output a quoted string. */
3810
3811void
3812output_quoted_string (FILE *asm_file, const char *string)
3813{
3814#ifdef OUTPUT_QUOTED_STRING
3815 OUTPUT_QUOTED_STRING (asm_file, string);
3816#else
3817 char c;
3818
3819 putc (c: '\"', stream: asm_file);
3820 while ((c = *string++) != 0)
3821 {
3822 if (ISPRINT (c))
3823 {
3824 if (c == '\"' || c == '\\')
3825 putc (c: '\\', stream: asm_file);
3826 putc (c: c, stream: asm_file);
3827 }
3828 else
3829 fprintf (stream: asm_file, format: "\\%03o", (unsigned char) c);
3830 }
3831 putc (c: '\"', stream: asm_file);
3832#endif
3833}
3834
3835/* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
3836
3837void
3838fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
3839{
3840 char buf[2 + CHAR_BIT * sizeof (value) / 4];
3841 if (value == 0)
3842 putc (c: '0', stream: f);
3843 else
3844 {
3845 char *p = buf + sizeof (buf);
3846 do
3847 *--p = "0123456789abcdef"[value % 16];
3848 while ((value /= 16) != 0);
3849 *--p = 'x';
3850 *--p = '0';
3851 fwrite (ptr: p, size: 1, n: buf + sizeof (buf) - p, s: f);
3852 }
3853}
3854
3855/* Internal function that prints an unsigned long in decimal in reverse.
3856 The output string IS NOT null-terminated. */
3857
3858static int
3859sprint_ul_rev (char *s, unsigned long value)
3860{
3861 int i = 0;
3862 do
3863 {
3864 s[i] = "0123456789"[value % 10];
3865 value /= 10;
3866 i++;
3867 /* alternate version, without modulo */
3868 /* oldval = value; */
3869 /* value /= 10; */
3870 /* s[i] = "0123456789" [oldval - 10*value]; */
3871 /* i++ */
3872 }
3873 while (value != 0);
3874 return i;
3875}
3876
3877/* Write an unsigned long as decimal to a file, fast. */
3878
3879void
3880fprint_ul (FILE *f, unsigned long value)
3881{
3882 /* python says: len(str(2**64)) == 20 */
3883 char s[20];
3884 int i;
3885
3886 i = sprint_ul_rev (s, value);
3887
3888 /* It's probably too small to bother with string reversal and fputs. */
3889 do
3890 {
3891 i--;
3892 putc (c: s[i], stream: f);
3893 }
3894 while (i != 0);
3895}
3896
3897/* Write an unsigned long as decimal to a string, fast.
3898 s must be wide enough to not overflow, at least 21 chars.
3899 Returns the length of the string (without terminating '\0'). */
3900
3901int
3902sprint_ul (char *s, unsigned long value)
3903{
3904 int len = sprint_ul_rev (s, value);
3905 s[len] = '\0';
3906
3907 std::reverse (first: s, last: s + len);
3908 return len;
3909}
3910
3911/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3912 %R prints the value of REGISTER_PREFIX.
3913 %L prints the value of LOCAL_LABEL_PREFIX.
3914 %U prints the value of USER_LABEL_PREFIX.
3915 %I prints the value of IMMEDIATE_PREFIX.
3916 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3917 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3918
3919 We handle alternate assembler dialects here, just like output_asm_insn. */
3920
3921void
3922asm_fprintf (FILE *file, const char *p, ...)
3923{
3924 char buf[10];
3925 char *q, c;
3926#ifdef ASSEMBLER_DIALECT
3927 int dialect = 0;
3928#endif
3929 va_list argptr;
3930
3931 va_start (argptr, p);
3932
3933 buf[0] = '%';
3934
3935 while ((c = *p++))
3936 switch (c)
3937 {
3938#ifdef ASSEMBLER_DIALECT
3939 case '{':
3940 case '}':
3941 case '|':
3942 p = do_assembler_dialects (p, dialect: &dialect);
3943 break;
3944#endif
3945
3946 case '%':
3947 c = *p++;
3948 q = &buf[1];
3949 while (strchr (s: "-+ #0", c: c))
3950 {
3951 *q++ = c;
3952 c = *p++;
3953 }
3954 while (ISDIGIT (c) || c == '.')
3955 {
3956 *q++ = c;
3957 c = *p++;
3958 }
3959 switch (c)
3960 {
3961 case '%':
3962 putc (c: '%', stream: file);
3963 break;
3964
3965 case 'd': case 'i': case 'u':
3966 case 'x': case 'X': case 'o':
3967 case 'c':
3968 *q++ = c;
3969 *q = 0;
3970 fprintf (stream: file, format: buf, va_arg (argptr, int));
3971 break;
3972
3973 case 'w':
3974 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3975 'o' cases, but we do not check for those cases. It
3976 means that the value is a HOST_WIDE_INT, which may be
3977 either `long' or `long long'. */
3978 memcpy (dest: q, HOST_WIDE_INT_PRINT, n: strlen (HOST_WIDE_INT_PRINT));
3979 q += strlen (HOST_WIDE_INT_PRINT);
3980 *q++ = *p++;
3981 *q = 0;
3982 fprintf (stream: file, format: buf, va_arg (argptr, HOST_WIDE_INT));
3983 break;
3984
3985 case 'l':
3986 *q++ = c;
3987#ifdef HAVE_LONG_LONG
3988 if (*p == 'l')
3989 {
3990 *q++ = *p++;
3991 *q++ = *p++;
3992 *q = 0;
3993 fprintf (stream: file, format: buf, va_arg (argptr, long long));
3994 }
3995 else
3996#endif
3997 {
3998 *q++ = *p++;
3999 *q = 0;
4000 fprintf (stream: file, format: buf, va_arg (argptr, long));
4001 }
4002
4003 break;
4004
4005 case 's':
4006 *q++ = c;
4007 *q = 0;
4008 fprintf (stream: file, format: buf, va_arg (argptr, char *));
4009 break;
4010
4011 case 'O':
4012#ifdef ASM_OUTPUT_OPCODE
4013 ASM_OUTPUT_OPCODE (asm_out_file, p);
4014#endif
4015 break;
4016
4017 case 'R':
4018#ifdef REGISTER_PREFIX
4019 fprintf (file, "%s", REGISTER_PREFIX);
4020#endif
4021 break;
4022
4023 case 'I':
4024#ifdef IMMEDIATE_PREFIX
4025 fprintf (file, "%s", IMMEDIATE_PREFIX);
4026#endif
4027 break;
4028
4029 case 'L':
4030#ifdef LOCAL_LABEL_PREFIX
4031 fprintf (stream: file, format: "%s", LOCAL_LABEL_PREFIX);
4032#endif
4033 break;
4034
4035 case 'U':
4036 fputs (s: user_label_prefix, stream: file);
4037 break;
4038
4039#ifdef ASM_FPRINTF_EXTENSIONS
4040 /* Uppercase letters are reserved for general use by asm_fprintf
4041 and so are not available to target specific code. In order to
4042 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4043 they are defined here. As they get turned into real extensions
4044 to asm_fprintf they should be removed from this list. */
4045 case 'A': case 'B': case 'C': case 'D': case 'E':
4046 case 'F': case 'G': case 'H': case 'J': case 'K':
4047 case 'M': case 'N': case 'P': case 'Q': case 'S':
4048 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4049 break;
4050
4051 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4052#endif
4053 default:
4054 gcc_unreachable ();
4055 }
4056 break;
4057
4058 default:
4059 putc (c: c, stream: file);
4060 }
4061 va_end (argptr);
4062}
4063
4064/* Return true if this function has no function calls. */
4065
4066bool
4067leaf_function_p (void)
4068{
4069 rtx_insn *insn;
4070
4071 /* Ensure we walk the entire function body. */
4072 gcc_assert (!in_sequence_p ());
4073
4074 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4075 functions even if they call mcount. */
4076 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4077 return false;
4078
4079 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4080 {
4081 if (CALL_P (insn)
4082 && ! SIBLING_CALL_P (insn)
4083 && ! FAKE_CALL_P (insn))
4084 return false;
4085 if (NONJUMP_INSN_P (insn)
4086 && GET_CODE (PATTERN (insn)) == SEQUENCE
4087 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4088 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4089 return false;
4090 }
4091
4092 return true;
4093}
4094
4095/* Return true if branch is a forward branch.
4096 Uses insn_shuid array, so it works only in the final pass. May be used by
4097 output templates to customary add branch prediction hints.
4098 */
4099bool
4100final_forward_branch_p (rtx_insn *insn)
4101{
4102 int insn_id, label_id;
4103
4104 gcc_assert (uid_shuid);
4105 insn_id = INSN_SHUID (insn);
4106 label_id = INSN_SHUID (JUMP_LABEL (insn));
4107 /* We've hit some insns that does not have id information available. */
4108 gcc_assert (insn_id && label_id);
4109 return insn_id < label_id;
4110}
4111
4112/* On some machines, a function with no call insns
4113 can run faster if it doesn't create its own register window.
4114 When output, the leaf function should use only the "output"
4115 registers. Ordinarily, the function would be compiled to use
4116 the "input" registers to find its arguments; it is a candidate
4117 for leaf treatment if it uses only the "input" registers.
4118 Leaf function treatment means renumbering so the function
4119 uses the "output" registers instead. */
4120
4121#ifdef LEAF_REGISTERS
4122
4123/* Return bool if this function uses only the registers that can be
4124 safely renumbered. */
4125
4126bool
4127only_leaf_regs_used (void)
4128{
4129 int i;
4130 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4131
4132 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4133 if ((df_regs_ever_live_p (i) || global_regs[i])
4134 && ! permitted_reg_in_leaf_functions[i])
4135 return false;
4136
4137 if (crtl->uses_pic_offset_table
4138 && pic_offset_table_rtx != 0
4139 && REG_P (pic_offset_table_rtx)
4140 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4141 return false;
4142
4143 return true;
4144}
4145
4146/* Scan all instructions and renumber all registers into those
4147 available in leaf functions. */
4148
4149static void
4150leaf_renumber_regs (rtx_insn *first)
4151{
4152 rtx_insn *insn;
4153
4154 /* Renumber only the actual patterns.
4155 The reg-notes can contain frame pointer refs,
4156 and renumbering them could crash, and should not be needed. */
4157 for (insn = first; insn; insn = NEXT_INSN (insn))
4158 if (INSN_P (insn))
4159 leaf_renumber_regs_insn (PATTERN (insn));
4160}
4161
4162/* Scan IN_RTX and its subexpressions, and renumber all regs into those
4163 available in leaf functions. */
4164
4165void
4166leaf_renumber_regs_insn (rtx in_rtx)
4167{
4168 int i, j;
4169 const char *format_ptr;
4170
4171 if (in_rtx == 0)
4172 return;
4173
4174 /* Renumber all input-registers into output-registers.
4175 renumbered_regs would be 1 for an output-register;
4176 they */
4177
4178 if (REG_P (in_rtx))
4179 {
4180 int newreg;
4181
4182 /* Don't renumber the same reg twice. */
4183 if (in_rtx->used)
4184 return;
4185
4186 newreg = REGNO (in_rtx);
4187 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4188 to reach here as part of a REG_NOTE. */
4189 if (newreg >= FIRST_PSEUDO_REGISTER)
4190 {
4191 in_rtx->used = 1;
4192 return;
4193 }
4194 newreg = LEAF_REG_REMAP (newreg);
4195 gcc_assert (newreg >= 0);
4196 df_set_regs_ever_live (REGNO (in_rtx), false);
4197 df_set_regs_ever_live (newreg, true);
4198 SET_REGNO (in_rtx, newreg);
4199 in_rtx->used = 1;
4200 return;
4201 }
4202
4203 if (INSN_P (in_rtx))
4204 {
4205 /* Inside a SEQUENCE, we find insns.
4206 Renumber just the patterns of these insns,
4207 just as we do for the top-level insns. */
4208 leaf_renumber_regs_insn (PATTERN (in_rtx));
4209 return;
4210 }
4211
4212 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4213
4214 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4215 switch (*format_ptr++)
4216 {
4217 case 'e':
4218 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4219 break;
4220
4221 case 'E':
4222 if (XVEC (in_rtx, i) != NULL)
4223 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4224 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4225 break;
4226
4227 case 'S':
4228 case 's':
4229 case '0':
4230 case 'i':
4231 case 'L':
4232 case 'w':
4233 case 'p':
4234 case 'n':
4235 case 'u':
4236 break;
4237
4238 default:
4239 gcc_unreachable ();
4240 }
4241}
4242#endif
4243
4244/* Turn the RTL into assembly. */
4245static unsigned int
4246rest_of_handle_final (void)
4247{
4248 const char *fnname = get_fnname_from_decl (current_function_decl);
4249
4250 /* Turn debug markers into notes if the var-tracking pass has not
4251 been invoked. */
4252 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4253 delete_vta_debug_insns (false);
4254
4255 assemble_start_function (current_function_decl, fnname);
4256 rtx_insn *first = get_insns ();
4257 int seen = 0;
4258 final_start_function_1 (firstp: &first, file: asm_out_file, seen: &seen, optimize);
4259 final_1 (first, file: asm_out_file, seen, optimize);
4260 if (flag_ipa_ra
4261 && !lookup_attribute (attr_name: "noipa", DECL_ATTRIBUTES (current_function_decl))
4262 /* Functions with naked attributes are supported only with basic asm
4263 statements in the body, thus for supported use cases the information
4264 on clobbered registers is not available. */
4265 && !lookup_attribute (attr_name: "naked", DECL_ATTRIBUTES (current_function_decl)))
4266 collect_fn_hard_reg_usage ();
4267 final_end_function ();
4268
4269 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4270 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4271 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4272 output_function_exception_table (crtl->has_bb_partition ? 1 : 0);
4273
4274 assemble_end_function (current_function_decl, fnname);
4275
4276 /* Free up reg info memory. */
4277 free_reg_info ();
4278
4279 if (! quiet_flag)
4280 fflush (stream: asm_out_file);
4281
4282 /* Note that for those inline functions where we don't initially
4283 know for certain that we will be generating an out-of-line copy,
4284 the first invocation of this routine (rest_of_compilation) will
4285 skip over this code by doing a `goto exit_rest_of_compilation;'.
4286 Later on, wrapup_global_declarations will (indirectly) call
4287 rest_of_compilation again for those inline functions that need
4288 to have out-of-line copies generated. During that call, we
4289 *will* be routed past here. */
4290
4291 timevar_push (tv: TV_SYMOUT);
4292 if (!DECL_IGNORED_P (current_function_decl))
4293 debug_hooks->function_decl (current_function_decl);
4294 timevar_pop (tv: TV_SYMOUT);
4295
4296 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4297 DECL_INITIAL (current_function_decl) = error_mark_node;
4298
4299 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4300 && targetm.have_ctors_dtors)
4301 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4302 decl_init_priority_lookup
4303 (current_function_decl));
4304 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4305 && targetm.have_ctors_dtors)
4306 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4307 decl_fini_priority_lookup
4308 (current_function_decl));
4309 return 0;
4310}
4311
4312namespace {
4313
4314const pass_data pass_data_final =
4315{
4316 .type: RTL_PASS, /* type */
4317 .name: "final", /* name */
4318 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
4319 .tv_id: TV_FINAL, /* tv_id */
4320 .properties_required: 0, /* properties_required */
4321 .properties_provided: 0, /* properties_provided */
4322 .properties_destroyed: 0, /* properties_destroyed */
4323 .todo_flags_start: 0, /* todo_flags_start */
4324 .todo_flags_finish: 0, /* todo_flags_finish */
4325};
4326
4327class pass_final : public rtl_opt_pass
4328{
4329public:
4330 pass_final (gcc::context *ctxt)
4331 : rtl_opt_pass (pass_data_final, ctxt)
4332 {}
4333
4334 /* opt_pass methods: */
4335 unsigned int execute (function *) final override
4336 {
4337 return rest_of_handle_final ();
4338 }
4339
4340}; // class pass_final
4341
4342} // anon namespace
4343
4344rtl_opt_pass *
4345make_pass_final (gcc::context *ctxt)
4346{
4347 return new pass_final (ctxt);
4348}
4349
4350
4351static unsigned int
4352rest_of_handle_shorten_branches (void)
4353{
4354 /* Shorten branches. */
4355 shorten_branches (first: get_insns ());
4356 return 0;
4357}
4358
4359namespace {
4360
4361const pass_data pass_data_shorten_branches =
4362{
4363 .type: RTL_PASS, /* type */
4364 .name: "shorten", /* name */
4365 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
4366 .tv_id: TV_SHORTEN_BRANCH, /* tv_id */
4367 .properties_required: 0, /* properties_required */
4368 .properties_provided: 0, /* properties_provided */
4369 .properties_destroyed: 0, /* properties_destroyed */
4370 .todo_flags_start: 0, /* todo_flags_start */
4371 .todo_flags_finish: 0, /* todo_flags_finish */
4372};
4373
4374class pass_shorten_branches : public rtl_opt_pass
4375{
4376public:
4377 pass_shorten_branches (gcc::context *ctxt)
4378 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4379 {}
4380
4381 /* opt_pass methods: */
4382 unsigned int execute (function *) final override
4383 {
4384 return rest_of_handle_shorten_branches ();
4385 }
4386
4387}; // class pass_shorten_branches
4388
4389} // anon namespace
4390
4391rtl_opt_pass *
4392make_pass_shorten_branches (gcc::context *ctxt)
4393{
4394 return new pass_shorten_branches (ctxt);
4395}
4396
4397
4398static unsigned int
4399rest_of_clean_state (void)
4400{
4401 rtx_insn *insn, *next;
4402 FILE *final_output = NULL;
4403 int save_unnumbered = flag_dump_unnumbered;
4404 int save_noaddr = flag_dump_noaddr;
4405
4406 if (flag_dump_final_insns)
4407 {
4408 final_output = fopen (flag_dump_final_insns, modes: "a");
4409 if (!final_output)
4410 {
4411 error ("could not open final insn dump file %qs: %m",
4412 flag_dump_final_insns);
4413 flag_dump_final_insns = NULL;
4414 }
4415 else
4416 {
4417 flag_dump_noaddr = flag_dump_unnumbered = 1;
4418 if (flag_compare_debug_opt || flag_compare_debug)
4419 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4420 dump_function_header (final_output, current_function_decl,
4421 dump_flags);
4422 final_insns_dump_p = true;
4423
4424 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4425 if (LABEL_P (insn))
4426 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4427 else
4428 {
4429 if (NOTE_P (insn))
4430 set_block_for_insn (insn, NULL);
4431 INSN_UID (insn) = 0;
4432 }
4433 }
4434 }
4435
4436 /* It is very important to decompose the RTL instruction chain here:
4437 debug information keeps pointing into CODE_LABEL insns inside the function
4438 body. If these remain pointing to the other insns, we end up preserving
4439 whole RTL chain and attached detailed debug info in memory. */
4440 for (insn = get_insns (); insn; insn = next)
4441 {
4442 next = NEXT_INSN (insn);
4443 SET_NEXT_INSN (insn) = NULL;
4444 SET_PREV_INSN (insn) = NULL;
4445
4446 rtx_insn *call_insn = insn;
4447 if (NONJUMP_INSN_P (call_insn)
4448 && GET_CODE (PATTERN (call_insn)) == SEQUENCE)
4449 {
4450 rtx_sequence *seq = as_a <rtx_sequence *> (p: PATTERN (insn: call_insn));
4451 call_insn = seq->insn (index: 0);
4452 }
4453 if (CALL_P (call_insn))
4454 {
4455 rtx note
4456 = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
4457 if (note)
4458 remove_note (call_insn, note);
4459 }
4460
4461 if (final_output
4462 && (!NOTE_P (insn)
4463 || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4464 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4465 && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4466 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4467 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4468 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4469 print_rtl_single (final_output, insn);
4470 }
4471
4472 if (final_output)
4473 {
4474 flag_dump_noaddr = save_noaddr;
4475 flag_dump_unnumbered = save_unnumbered;
4476 final_insns_dump_p = false;
4477
4478 if (fclose (stream: final_output))
4479 {
4480 error ("could not close final insn dump file %qs: %m",
4481 flag_dump_final_insns);
4482 flag_dump_final_insns = NULL;
4483 }
4484 }
4485
4486 flag_rerun_cse_after_global_opts = 0;
4487 reload_completed = 0;
4488 epilogue_completed = 0;
4489#ifdef STACK_REGS
4490 regstack_completed = 0;
4491#endif
4492
4493 /* Clear out the insn_length contents now that they are no
4494 longer valid. */
4495 init_insn_lengths ();
4496
4497 /* Show no temporary slots allocated. */
4498 init_temp_slots ();
4499
4500 free_bb_for_insn ();
4501
4502 if (cfun->gimple_df)
4503 delete_tree_ssa (cfun);
4504
4505 /* We can reduce stack alignment on call site only when we are sure that
4506 the function body just produced will be actually used in the final
4507 executable. */
4508 if (flag_ipa_stack_alignment
4509 && decl_binds_to_current_def_p (current_function_decl))
4510 {
4511 unsigned int pref = crtl->preferred_stack_boundary;
4512 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4513 pref = crtl->stack_alignment_needed;
4514 cgraph_node::rtl_info (current_function_decl)
4515 ->preferred_incoming_stack_boundary = pref;
4516 }
4517
4518 /* Make sure volatile mem refs aren't considered valid operands for
4519 arithmetic insns. We must call this here if this is a nested inline
4520 function, since the above code leaves us in the init_recog state,
4521 and the function context push/pop code does not save/restore volatile_ok.
4522
4523 ??? Maybe it isn't necessary for expand_start_function to call this
4524 anymore if we do it here? */
4525
4526 init_recog_no_volatile ();
4527
4528 /* We're done with this function. Free up memory if we can. */
4529 free_after_parsing (cfun);
4530 free_after_compilation (cfun);
4531 return 0;
4532}
4533
4534namespace {
4535
4536const pass_data pass_data_clean_state =
4537{
4538 .type: RTL_PASS, /* type */
4539 .name: "*clean_state", /* name */
4540 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
4541 .tv_id: TV_FINAL, /* tv_id */
4542 .properties_required: 0, /* properties_required */
4543 .properties_provided: 0, /* properties_provided */
4544 PROP_rtl, /* properties_destroyed */
4545 .todo_flags_start: 0, /* todo_flags_start */
4546 .todo_flags_finish: 0, /* todo_flags_finish */
4547};
4548
4549class pass_clean_state : public rtl_opt_pass
4550{
4551public:
4552 pass_clean_state (gcc::context *ctxt)
4553 : rtl_opt_pass (pass_data_clean_state, ctxt)
4554 {}
4555
4556 /* opt_pass methods: */
4557 unsigned int execute (function *) final override
4558 {
4559 return rest_of_clean_state ();
4560 }
4561
4562}; // class pass_clean_state
4563
4564} // anon namespace
4565
4566rtl_opt_pass *
4567make_pass_clean_state (gcc::context *ctxt)
4568{
4569 return new pass_clean_state (ctxt);
4570}
4571
4572/* Return true if INSN is a call to the current function. */
4573
4574static bool
4575self_recursive_call_p (rtx_insn *insn)
4576{
4577 tree fndecl = get_call_fndecl (insn);
4578 return (fndecl == current_function_decl
4579 && decl_binds_to_current_def_p (fndecl));
4580}
4581
4582/* Collect hard register usage for the current function. */
4583
4584static void
4585collect_fn_hard_reg_usage (void)
4586{
4587 rtx_insn *insn;
4588#ifdef STACK_REGS
4589 int i;
4590#endif
4591 struct cgraph_rtl_info *node;
4592 HARD_REG_SET function_used_regs;
4593
4594 /* ??? To be removed when all the ports have been fixed. */
4595 if (!targetm.call_fusage_contains_non_callee_clobbers)
4596 return;
4597
4598 /* Be conservative - mark fixed and global registers as used. */
4599 function_used_regs = fixed_reg_set;
4600
4601#ifdef STACK_REGS
4602 /* Handle STACK_REGS conservatively, since the df-framework does not
4603 provide accurate information for them. */
4604
4605 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4606 SET_HARD_REG_BIT (set&: function_used_regs, bit: i);
4607#endif
4608
4609 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4610 {
4611 HARD_REG_SET insn_used_regs;
4612
4613 if (!NONDEBUG_INSN_P (insn))
4614 continue;
4615
4616 if (CALL_P (insn)
4617 && !self_recursive_call_p (insn))
4618 function_used_regs
4619 |= insn_callee_abi (insn).full_and_partial_reg_clobbers ();
4620
4621 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4622 function_used_regs |= insn_used_regs;
4623
4624 if (hard_reg_set_subset_p (crtl->abi->full_and_partial_reg_clobbers (),
4625 y: function_used_regs))
4626 return;
4627 }
4628
4629 /* Mask out fully-saved registers, so that they don't affect equality
4630 comparisons between function_abis. */
4631 function_used_regs &= crtl->abi->full_and_partial_reg_clobbers ();
4632
4633 node = cgraph_node::rtl_info (current_function_decl);
4634 gcc_assert (node != NULL);
4635
4636 node->function_used_regs = function_used_regs;
4637}
4638

source code of gcc/final.cc