1/* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
27
28/* The entry points in this file are fold, size_int_wide and size_binop.
29
30 fold takes a tree as argument and returns a simplified tree.
31
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
35
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
38
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
42
43#define INCLUDE_ALGORITHM
44#include "config.h"
45#include "system.h"
46#include "coretypes.h"
47#include "backend.h"
48#include "target.h"
49#include "rtl.h"
50#include "tree.h"
51#include "gimple.h"
52#include "predict.h"
53#include "memmodel.h"
54#include "tm_p.h"
55#include "tree-ssa-operands.h"
56#include "optabs-query.h"
57#include "cgraph.h"
58#include "diagnostic-core.h"
59#include "flags.h"
60#include "alias.h"
61#include "fold-const.h"
62#include "fold-const-call.h"
63#include "stor-layout.h"
64#include "calls.h"
65#include "tree-iterator.h"
66#include "expr.h"
67#include "intl.h"
68#include "langhooks.h"
69#include "tree-eh.h"
70#include "gimplify.h"
71#include "tree-dfa.h"
72#include "builtins.h"
73#include "generic-match.h"
74#include "gimple-iterator.h"
75#include "gimple-fold.h"
76#include "tree-into-ssa.h"
77#include "md5.h"
78#include "case-cfn-macros.h"
79#include "stringpool.h"
80#include "tree-vrp.h"
81#include "tree-ssanames.h"
82#include "selftest.h"
83#include "stringpool.h"
84#include "attribs.h"
85#include "tree-vector-builder.h"
86#include "vec-perm-indices.h"
87#include "asan.h"
88#include "gimple-range.h"
89
90/* Nonzero if we are folding constants inside an initializer or a C++
91 manifestly-constant-evaluated context; zero otherwise.
92 Should be used when folding in initializer enables additional
93 optimizations. */
94int folding_initializer = 0;
95
96/* Nonzero if we are folding C++ manifestly-constant-evaluated context; zero
97 otherwise.
98 Should be used when certain constructs shouldn't be optimized
99 during folding in that context. */
100bool folding_cxx_constexpr = false;
101
102/* The following constants represent a bit based encoding of GCC's
103 comparison operators. This encoding simplifies transformations
104 on relational comparison operators, such as AND and OR. */
105enum comparison_code {
106 COMPCODE_FALSE = 0,
107 COMPCODE_LT = 1,
108 COMPCODE_EQ = 2,
109 COMPCODE_LE = 3,
110 COMPCODE_GT = 4,
111 COMPCODE_LTGT = 5,
112 COMPCODE_GE = 6,
113 COMPCODE_ORD = 7,
114 COMPCODE_UNORD = 8,
115 COMPCODE_UNLT = 9,
116 COMPCODE_UNEQ = 10,
117 COMPCODE_UNLE = 11,
118 COMPCODE_UNGT = 12,
119 COMPCODE_NE = 13,
120 COMPCODE_UNGE = 14,
121 COMPCODE_TRUE = 15
122};
123
124static bool negate_expr_p (tree);
125static tree negate_expr (tree);
126static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
127static enum comparison_code comparison_to_compcode (enum tree_code);
128static enum tree_code compcode_to_comparison (enum comparison_code);
129static bool twoval_comparison_p (tree, tree *, tree *);
130static tree eval_subst (location_t, tree, tree, tree, tree, tree);
131static tree optimize_bit_field_compare (location_t, enum tree_code,
132 tree, tree, tree);
133static bool simple_operand_p (const_tree);
134static tree range_binop (enum tree_code, tree, tree, int, tree, int);
135static tree range_predecessor (tree);
136static tree range_successor (tree);
137static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
138static tree fold_cond_expr_with_comparison (location_t, tree, enum tree_code,
139 tree, tree, tree, tree);
140static tree unextend (tree, int, int, tree);
141static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
142static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
143static tree fold_binary_op_with_conditional_arg (location_t,
144 enum tree_code, tree,
145 tree, tree,
146 tree, tree, int);
147static tree fold_negate_const (tree, tree);
148static tree fold_not_const (const_tree, tree);
149static tree fold_relational_const (enum tree_code, tree, tree, tree);
150static tree fold_convert_const (enum tree_code, tree, tree);
151static tree fold_view_convert_expr (tree, tree);
152static tree fold_negate_expr (location_t, tree);
153
154/* This is a helper function to detect min/max for some operands of COND_EXPR.
155 The form is "(EXP0 CMP EXP1) ? EXP2 : EXP3". */
156tree_code
157minmax_from_comparison (tree_code cmp, tree exp0, tree exp1, tree exp2, tree exp3)
158{
159 enum tree_code code = ERROR_MARK;
160
161 if (HONOR_NANS (exp0) || HONOR_SIGNED_ZEROS (exp0))
162 return ERROR_MARK;
163
164 if (!operand_equal_p (exp0, exp2))
165 return ERROR_MARK;
166
167 if (TREE_CODE (exp3) == INTEGER_CST && TREE_CODE (exp1) == INTEGER_CST)
168 {
169 if (wi::to_widest (t: exp1) == (wi::to_widest (t: exp3) - 1))
170 {
171 /* X <= Y - 1 equals to X < Y. */
172 if (cmp == LE_EXPR)
173 code = LT_EXPR;
174 /* X > Y - 1 equals to X >= Y. */
175 if (cmp == GT_EXPR)
176 code = GE_EXPR;
177 /* a != MIN_RANGE<a> ? a : MIN_RANGE<a>+1 -> MAX_EXPR<MIN_RANGE<a>+1, a> */
178 if (cmp == NE_EXPR && TREE_CODE (exp0) == SSA_NAME)
179 {
180 value_range r;
181 get_range_query (cfun)->range_of_expr (r, expr: exp0);
182 if (r.undefined_p ())
183 r.set_varying (TREE_TYPE (exp0));
184
185 widest_int min = widest_int::from (x: r.lower_bound (),
186 TYPE_SIGN (TREE_TYPE (exp0)));
187 if (min == wi::to_widest (t: exp1))
188 code = MAX_EXPR;
189 }
190 }
191 if (wi::to_widest (t: exp1) == (wi::to_widest (t: exp3) + 1))
192 {
193 /* X < Y + 1 equals to X <= Y. */
194 if (cmp == LT_EXPR)
195 code = LE_EXPR;
196 /* X >= Y + 1 equals to X > Y. */
197 if (cmp == GE_EXPR)
198 code = GT_EXPR;
199 /* a != MAX_RANGE<a> ? a : MAX_RANGE<a>-1 -> MIN_EXPR<MIN_RANGE<a>-1, a> */
200 if (cmp == NE_EXPR && TREE_CODE (exp0) == SSA_NAME)
201 {
202 value_range r;
203 get_range_query (cfun)->range_of_expr (r, expr: exp0);
204 if (r.undefined_p ())
205 r.set_varying (TREE_TYPE (exp0));
206
207 widest_int max = widest_int::from (x: r.upper_bound (),
208 TYPE_SIGN (TREE_TYPE (exp0)));
209 if (max == wi::to_widest (t: exp1))
210 code = MIN_EXPR;
211 }
212 }
213 }
214 if (code != ERROR_MARK
215 || operand_equal_p (exp1, exp3))
216 {
217 if (cmp == LT_EXPR || cmp == LE_EXPR)
218 code = MIN_EXPR;
219 if (cmp == GT_EXPR || cmp == GE_EXPR)
220 code = MAX_EXPR;
221 }
222 return code;
223}
224
225/* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
226 Otherwise, return LOC. */
227
228static location_t
229expr_location_or (tree t, location_t loc)
230{
231 location_t tloc = EXPR_LOCATION (t);
232 return tloc == UNKNOWN_LOCATION ? loc : tloc;
233}
234
235/* Similar to protected_set_expr_location, but never modify x in place,
236 if location can and needs to be set, unshare it. */
237
238tree
239protected_set_expr_location_unshare (tree x, location_t loc)
240{
241 if (CAN_HAVE_LOCATION_P (x)
242 && EXPR_LOCATION (x) != loc
243 && !(TREE_CODE (x) == SAVE_EXPR
244 || TREE_CODE (x) == TARGET_EXPR
245 || TREE_CODE (x) == BIND_EXPR))
246 {
247 x = copy_node (x);
248 SET_EXPR_LOCATION (x, loc);
249 }
250 return x;
251}
252
253/* If ARG2 divides ARG1 with zero remainder, carries out the exact
254 division and returns the quotient. Otherwise returns
255 NULL_TREE. */
256
257tree
258div_if_zero_remainder (const_tree arg1, const_tree arg2)
259{
260 widest_int quo;
261
262 if (wi::multiple_of_p (x: wi::to_widest (t: arg1), y: wi::to_widest (t: arg2),
263 sgn: SIGNED, res: &quo))
264 return wide_int_to_tree (TREE_TYPE (arg1), cst: quo);
265
266 return NULL_TREE;
267}
268
269/* This is nonzero if we should defer warnings about undefined
270 overflow. This facility exists because these warnings are a
271 special case. The code to estimate loop iterations does not want
272 to issue any warnings, since it works with expressions which do not
273 occur in user code. Various bits of cleanup code call fold(), but
274 only use the result if it has certain characteristics (e.g., is a
275 constant); that code only wants to issue a warning if the result is
276 used. */
277
278static int fold_deferring_overflow_warnings;
279
280/* If a warning about undefined overflow is deferred, this is the
281 warning. Note that this may cause us to turn two warnings into
282 one, but that is fine since it is sufficient to only give one
283 warning per expression. */
284
285static const char* fold_deferred_overflow_warning;
286
287/* If a warning about undefined overflow is deferred, this is the
288 level at which the warning should be emitted. */
289
290static enum warn_strict_overflow_code fold_deferred_overflow_code;
291
292/* Start deferring overflow warnings. We could use a stack here to
293 permit nested calls, but at present it is not necessary. */
294
295void
296fold_defer_overflow_warnings (void)
297{
298 ++fold_deferring_overflow_warnings;
299}
300
301/* Stop deferring overflow warnings. If there is a pending warning,
302 and ISSUE is true, then issue the warning if appropriate. STMT is
303 the statement with which the warning should be associated (used for
304 location information); STMT may be NULL. CODE is the level of the
305 warning--a warn_strict_overflow_code value. This function will use
306 the smaller of CODE and the deferred code when deciding whether to
307 issue the warning. CODE may be zero to mean to always use the
308 deferred code. */
309
310void
311fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
312{
313 const char *warnmsg;
314 location_t locus;
315
316 gcc_assert (fold_deferring_overflow_warnings > 0);
317 --fold_deferring_overflow_warnings;
318 if (fold_deferring_overflow_warnings > 0)
319 {
320 if (fold_deferred_overflow_warning != NULL
321 && code != 0
322 && code < (int) fold_deferred_overflow_code)
323 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
324 return;
325 }
326
327 warnmsg = fold_deferred_overflow_warning;
328 fold_deferred_overflow_warning = NULL;
329
330 if (!issue || warnmsg == NULL)
331 return;
332
333 if (warning_suppressed_p (stmt, OPT_Wstrict_overflow))
334 return;
335
336 /* Use the smallest code level when deciding to issue the
337 warning. */
338 if (code == 0 || code > (int) fold_deferred_overflow_code)
339 code = fold_deferred_overflow_code;
340
341 if (!issue_strict_overflow_warning (code))
342 return;
343
344 if (stmt == NULL)
345 locus = input_location;
346 else
347 locus = gimple_location (g: stmt);
348 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
349}
350
351/* Stop deferring overflow warnings, ignoring any deferred
352 warnings. */
353
354void
355fold_undefer_and_ignore_overflow_warnings (void)
356{
357 fold_undefer_overflow_warnings (issue: false, NULL, code: 0);
358}
359
360/* Whether we are deferring overflow warnings. */
361
362bool
363fold_deferring_overflow_warnings_p (void)
364{
365 return fold_deferring_overflow_warnings > 0;
366}
367
368/* This is called when we fold something based on the fact that signed
369 overflow is undefined. */
370
371void
372fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
373{
374 if (fold_deferring_overflow_warnings > 0)
375 {
376 if (fold_deferred_overflow_warning == NULL
377 || wc < fold_deferred_overflow_code)
378 {
379 fold_deferred_overflow_warning = gmsgid;
380 fold_deferred_overflow_code = wc;
381 }
382 }
383 else if (issue_strict_overflow_warning (wc))
384 warning (OPT_Wstrict_overflow, gmsgid);
385}
386
387/* Return true if the built-in mathematical function specified by CODE
388 is odd, i.e. -f(x) == f(-x). */
389
390bool
391negate_mathfn_p (combined_fn fn)
392{
393 switch (fn)
394 {
395 CASE_CFN_ASIN:
396 CASE_CFN_ASIN_FN:
397 CASE_CFN_ASINH:
398 CASE_CFN_ASINH_FN:
399 CASE_CFN_ATAN:
400 CASE_CFN_ATAN_FN:
401 CASE_CFN_ATANH:
402 CASE_CFN_ATANH_FN:
403 CASE_CFN_CASIN:
404 CASE_CFN_CASIN_FN:
405 CASE_CFN_CASINH:
406 CASE_CFN_CASINH_FN:
407 CASE_CFN_CATAN:
408 CASE_CFN_CATAN_FN:
409 CASE_CFN_CATANH:
410 CASE_CFN_CATANH_FN:
411 CASE_CFN_CBRT:
412 CASE_CFN_CBRT_FN:
413 CASE_CFN_CPROJ:
414 CASE_CFN_CPROJ_FN:
415 CASE_CFN_CSIN:
416 CASE_CFN_CSIN_FN:
417 CASE_CFN_CSINH:
418 CASE_CFN_CSINH_FN:
419 CASE_CFN_CTAN:
420 CASE_CFN_CTAN_FN:
421 CASE_CFN_CTANH:
422 CASE_CFN_CTANH_FN:
423 CASE_CFN_ERF:
424 CASE_CFN_ERF_FN:
425 CASE_CFN_LLROUND:
426 CASE_CFN_LLROUND_FN:
427 CASE_CFN_LROUND:
428 CASE_CFN_LROUND_FN:
429 CASE_CFN_ROUND:
430 CASE_CFN_ROUNDEVEN:
431 CASE_CFN_ROUNDEVEN_FN:
432 CASE_CFN_SIN:
433 CASE_CFN_SIN_FN:
434 CASE_CFN_SINH:
435 CASE_CFN_SINH_FN:
436 CASE_CFN_TAN:
437 CASE_CFN_TAN_FN:
438 CASE_CFN_TANH:
439 CASE_CFN_TANH_FN:
440 CASE_CFN_TRUNC:
441 CASE_CFN_TRUNC_FN:
442 return true;
443
444 CASE_CFN_LLRINT:
445 CASE_CFN_LLRINT_FN:
446 CASE_CFN_LRINT:
447 CASE_CFN_LRINT_FN:
448 CASE_CFN_NEARBYINT:
449 CASE_CFN_NEARBYINT_FN:
450 CASE_CFN_RINT:
451 CASE_CFN_RINT_FN:
452 return !flag_rounding_math;
453
454 default:
455 break;
456 }
457 return false;
458}
459
460/* Check whether we may negate an integer constant T without causing
461 overflow. */
462
463bool
464may_negate_without_overflow_p (const_tree t)
465{
466 tree type;
467
468 gcc_assert (TREE_CODE (t) == INTEGER_CST);
469
470 type = TREE_TYPE (t);
471 if (TYPE_UNSIGNED (type))
472 return false;
473
474 return !wi::only_sign_bit_p (wi::to_wide (t));
475}
476
477/* Determine whether an expression T can be cheaply negated using
478 the function negate_expr without introducing undefined overflow. */
479
480static bool
481negate_expr_p (tree t)
482{
483 tree type;
484
485 if (t == 0)
486 return false;
487
488 type = TREE_TYPE (t);
489
490 STRIP_SIGN_NOPS (t);
491 switch (TREE_CODE (t))
492 {
493 case INTEGER_CST:
494 if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type))
495 return true;
496
497 /* Check that -CST will not overflow type. */
498 return may_negate_without_overflow_p (t);
499 case BIT_NOT_EXPR:
500 return (INTEGRAL_TYPE_P (type)
501 && TYPE_OVERFLOW_WRAPS (type));
502
503 case FIXED_CST:
504 return true;
505
506 case NEGATE_EXPR:
507 return !TYPE_OVERFLOW_SANITIZED (type);
508
509 case REAL_CST:
510 /* We want to canonicalize to positive real constants. Pretend
511 that only negative ones can be easily negated. */
512 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
513
514 case COMPLEX_CST:
515 return negate_expr_p (TREE_REALPART (t))
516 && negate_expr_p (TREE_IMAGPART (t));
517
518 case VECTOR_CST:
519 {
520 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
521 return true;
522
523 /* Steps don't prevent negation. */
524 unsigned int count = vector_cst_encoded_nelts (t);
525 for (unsigned int i = 0; i < count; ++i)
526 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t, i)))
527 return false;
528
529 return true;
530 }
531
532 case COMPLEX_EXPR:
533 return negate_expr_p (TREE_OPERAND (t, 0))
534 && negate_expr_p (TREE_OPERAND (t, 1));
535
536 case CONJ_EXPR:
537 return negate_expr_p (TREE_OPERAND (t, 0));
538
539 case PLUS_EXPR:
540 if (HONOR_SIGN_DEPENDENT_ROUNDING (type)
541 || HONOR_SIGNED_ZEROS (type)
542 || (ANY_INTEGRAL_TYPE_P (type)
543 && ! TYPE_OVERFLOW_WRAPS (type)))
544 return false;
545 /* -(A + B) -> (-B) - A. */
546 if (negate_expr_p (TREE_OPERAND (t, 1)))
547 return true;
548 /* -(A + B) -> (-A) - B. */
549 return negate_expr_p (TREE_OPERAND (t, 0));
550
551 case MINUS_EXPR:
552 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
553 return !HONOR_SIGN_DEPENDENT_ROUNDING (type)
554 && !HONOR_SIGNED_ZEROS (type)
555 && (! ANY_INTEGRAL_TYPE_P (type)
556 || TYPE_OVERFLOW_WRAPS (type));
557
558 case MULT_EXPR:
559 if (TYPE_UNSIGNED (type))
560 break;
561 /* INT_MIN/n * n doesn't overflow while negating one operand it does
562 if n is a (negative) power of two. */
563 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
564 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
565 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
566 && (wi::popcount
567 (wi::abs (x: wi::to_wide (TREE_OPERAND (t, 0))))) != 1)
568 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
569 && (wi::popcount
570 (wi::abs (x: wi::to_wide (TREE_OPERAND (t, 1))))) != 1)))
571 break;
572
573 /* Fall through. */
574
575 case RDIV_EXPR:
576 if (! HONOR_SIGN_DEPENDENT_ROUNDING (t))
577 return negate_expr_p (TREE_OPERAND (t, 1))
578 || negate_expr_p (TREE_OPERAND (t, 0));
579 break;
580
581 case TRUNC_DIV_EXPR:
582 case ROUND_DIV_EXPR:
583 case EXACT_DIV_EXPR:
584 if (TYPE_UNSIGNED (type))
585 break;
586 /* In general we can't negate A in A / B, because if A is INT_MIN and
587 B is not 1 we change the sign of the result. */
588 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
589 && negate_expr_p (TREE_OPERAND (t, 0)))
590 return true;
591 /* In general we can't negate B in A / B, because if A is INT_MIN and
592 B is 1, we may turn this into INT_MIN / -1 which is undefined
593 and actually traps on some architectures. */
594 if (! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t))
595 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
596 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
597 && ! integer_onep (TREE_OPERAND (t, 1))))
598 return negate_expr_p (TREE_OPERAND (t, 1));
599 break;
600
601 case NOP_EXPR:
602 /* Negate -((double)float) as (double)(-float). */
603 if (SCALAR_FLOAT_TYPE_P (type))
604 {
605 tree tem = strip_float_extensions (t);
606 if (tem != t)
607 return negate_expr_p (t: tem);
608 }
609 break;
610
611 case CALL_EXPR:
612 /* Negate -f(x) as f(-x). */
613 if (negate_mathfn_p (fn: get_call_combined_fn (t)))
614 return negate_expr_p (CALL_EXPR_ARG (t, 0));
615 break;
616
617 case RSHIFT_EXPR:
618 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
619 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
620 {
621 tree op1 = TREE_OPERAND (t, 1);
622 if (wi::to_wide (t: op1) == element_precision (type) - 1)
623 return true;
624 }
625 break;
626
627 default:
628 break;
629 }
630 return false;
631}
632
633/* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
634 simplification is possible.
635 If negate_expr_p would return true for T, NULL_TREE will never be
636 returned. */
637
638static tree
639fold_negate_expr_1 (location_t loc, tree t)
640{
641 tree type = TREE_TYPE (t);
642 tree tem;
643
644 switch (TREE_CODE (t))
645 {
646 /* Convert - (~A) to A + 1. */
647 case BIT_NOT_EXPR:
648 if (INTEGRAL_TYPE_P (type))
649 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
650 build_one_cst (type));
651 break;
652
653 case INTEGER_CST:
654 tem = fold_negate_const (t, type);
655 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
656 || (ANY_INTEGRAL_TYPE_P (type)
657 && !TYPE_OVERFLOW_TRAPS (type)
658 && TYPE_OVERFLOW_WRAPS (type))
659 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
660 return tem;
661 break;
662
663 case POLY_INT_CST:
664 case REAL_CST:
665 case FIXED_CST:
666 tem = fold_negate_const (t, type);
667 return tem;
668
669 case COMPLEX_CST:
670 {
671 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
672 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
673 if (rpart && ipart)
674 return build_complex (type, rpart, ipart);
675 }
676 break;
677
678 case VECTOR_CST:
679 {
680 tree_vector_builder elts;
681 elts.new_unary_operation (shape: type, vec: t, allow_stepped_p: true);
682 unsigned int count = elts.encoded_nelts ();
683 for (unsigned int i = 0; i < count; ++i)
684 {
685 tree elt = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
686 if (elt == NULL_TREE)
687 return NULL_TREE;
688 elts.quick_push (obj: elt);
689 }
690
691 return elts.build ();
692 }
693
694 case COMPLEX_EXPR:
695 if (negate_expr_p (t))
696 return fold_build2_loc (loc, COMPLEX_EXPR, type,
697 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
698 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
699 break;
700
701 case CONJ_EXPR:
702 if (negate_expr_p (t))
703 return fold_build1_loc (loc, CONJ_EXPR, type,
704 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
705 break;
706
707 case NEGATE_EXPR:
708 if (!TYPE_OVERFLOW_SANITIZED (type))
709 return TREE_OPERAND (t, 0);
710 break;
711
712 case PLUS_EXPR:
713 if (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
714 && !HONOR_SIGNED_ZEROS (type))
715 {
716 /* -(A + B) -> (-B) - A. */
717 if (negate_expr_p (TREE_OPERAND (t, 1)))
718 {
719 tem = negate_expr (TREE_OPERAND (t, 1));
720 return fold_build2_loc (loc, MINUS_EXPR, type,
721 tem, TREE_OPERAND (t, 0));
722 }
723
724 /* -(A + B) -> (-A) - B. */
725 if (negate_expr_p (TREE_OPERAND (t, 0)))
726 {
727 tem = negate_expr (TREE_OPERAND (t, 0));
728 return fold_build2_loc (loc, MINUS_EXPR, type,
729 tem, TREE_OPERAND (t, 1));
730 }
731 }
732 break;
733
734 case MINUS_EXPR:
735 /* - (A - B) -> B - A */
736 if (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
737 && !HONOR_SIGNED_ZEROS (type))
738 return fold_build2_loc (loc, MINUS_EXPR, type,
739 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
740 break;
741
742 case MULT_EXPR:
743 if (TYPE_UNSIGNED (type))
744 break;
745
746 /* Fall through. */
747
748 case RDIV_EXPR:
749 if (! HONOR_SIGN_DEPENDENT_ROUNDING (type))
750 {
751 tem = TREE_OPERAND (t, 1);
752 if (negate_expr_p (t: tem))
753 return fold_build2_loc (loc, TREE_CODE (t), type,
754 TREE_OPERAND (t, 0), negate_expr (tem));
755 tem = TREE_OPERAND (t, 0);
756 if (negate_expr_p (t: tem))
757 return fold_build2_loc (loc, TREE_CODE (t), type,
758 negate_expr (tem), TREE_OPERAND (t, 1));
759 }
760 break;
761
762 case TRUNC_DIV_EXPR:
763 case ROUND_DIV_EXPR:
764 case EXACT_DIV_EXPR:
765 if (TYPE_UNSIGNED (type))
766 break;
767 /* In general we can't negate A in A / B, because if A is INT_MIN and
768 B is not 1 we change the sign of the result. */
769 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
770 && negate_expr_p (TREE_OPERAND (t, 0)))
771 return fold_build2_loc (loc, TREE_CODE (t), type,
772 negate_expr (TREE_OPERAND (t, 0)),
773 TREE_OPERAND (t, 1));
774 /* In general we can't negate B in A / B, because if A is INT_MIN and
775 B is 1, we may turn this into INT_MIN / -1 which is undefined
776 and actually traps on some architectures. */
777 if ((! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t))
778 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
779 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
780 && ! integer_onep (TREE_OPERAND (t, 1))))
781 && negate_expr_p (TREE_OPERAND (t, 1)))
782 return fold_build2_loc (loc, TREE_CODE (t), type,
783 TREE_OPERAND (t, 0),
784 negate_expr (TREE_OPERAND (t, 1)));
785 break;
786
787 case NOP_EXPR:
788 /* Convert -((double)float) into (double)(-float). */
789 if (SCALAR_FLOAT_TYPE_P (type))
790 {
791 tem = strip_float_extensions (t);
792 if (tem != t && negate_expr_p (t: tem))
793 return fold_convert_loc (loc, type, negate_expr (tem));
794 }
795 break;
796
797 case CALL_EXPR:
798 /* Negate -f(x) as f(-x). */
799 if (negate_mathfn_p (fn: get_call_combined_fn (t))
800 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
801 {
802 tree fndecl, arg;
803
804 fndecl = get_callee_fndecl (t);
805 arg = negate_expr (CALL_EXPR_ARG (t, 0));
806 return build_call_expr_loc (loc, fndecl, 1, arg);
807 }
808 break;
809
810 case RSHIFT_EXPR:
811 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
812 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
813 {
814 tree op1 = TREE_OPERAND (t, 1);
815 if (wi::to_wide (t: op1) == element_precision (type) - 1)
816 {
817 tree ntype = TYPE_UNSIGNED (type)
818 ? signed_type_for (type)
819 : unsigned_type_for (type);
820 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
821 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
822 return fold_convert_loc (loc, type, temp);
823 }
824 }
825 break;
826
827 default:
828 break;
829 }
830
831 return NULL_TREE;
832}
833
834/* A wrapper for fold_negate_expr_1. */
835
836static tree
837fold_negate_expr (location_t loc, tree t)
838{
839 tree type = TREE_TYPE (t);
840 STRIP_SIGN_NOPS (t);
841 tree tem = fold_negate_expr_1 (loc, t);
842 if (tem == NULL_TREE)
843 return NULL_TREE;
844 return fold_convert_loc (loc, type, tem);
845}
846
847/* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T cannot be
848 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
849 return NULL_TREE. */
850
851static tree
852negate_expr (tree t)
853{
854 tree type, tem;
855 location_t loc;
856
857 if (t == NULL_TREE)
858 return NULL_TREE;
859
860 loc = EXPR_LOCATION (t);
861 type = TREE_TYPE (t);
862 STRIP_SIGN_NOPS (t);
863
864 tem = fold_negate_expr (loc, t);
865 if (!tem)
866 tem = build1_loc (loc, code: NEGATE_EXPR, TREE_TYPE (t), arg1: t);
867 return fold_convert_loc (loc, type, tem);
868}
869
870/* Split a tree IN into a constant, literal and variable parts that could be
871 combined with CODE to make IN. "constant" means an expression with
872 TREE_CONSTANT but that isn't an actual constant. CODE must be a
873 commutative arithmetic operation. Store the constant part into *CONP,
874 the literal in *LITP and return the variable part. If a part isn't
875 present, set it to null. If the tree does not decompose in this way,
876 return the entire tree as the variable part and the other parts as null.
877
878 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
879 case, we negate an operand that was subtracted. Except if it is a
880 literal for which we use *MINUS_LITP instead.
881
882 If NEGATE_P is true, we are negating all of IN, again except a literal
883 for which we use *MINUS_LITP instead. If a variable part is of pointer
884 type, it is negated after converting to TYPE. This prevents us from
885 generating illegal MINUS pointer expression. LOC is the location of
886 the converted variable part.
887
888 If IN is itself a literal or constant, return it as appropriate.
889
890 Note that we do not guarantee that any of the three values will be the
891 same type as IN, but they will have the same signedness and mode. */
892
893static tree
894split_tree (tree in, tree type, enum tree_code code,
895 tree *minus_varp, tree *conp, tree *minus_conp,
896 tree *litp, tree *minus_litp, int negate_p)
897{
898 tree var = 0;
899 *minus_varp = 0;
900 *conp = 0;
901 *minus_conp = 0;
902 *litp = 0;
903 *minus_litp = 0;
904
905 /* Strip any conversions that don't change the machine mode or signedness. */
906 STRIP_SIGN_NOPS (in);
907
908 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
909 || TREE_CODE (in) == FIXED_CST)
910 *litp = in;
911 else if (TREE_CODE (in) == code
912 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
913 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
914 /* We can associate addition and subtraction together (even
915 though the C standard doesn't say so) for integers because
916 the value is not affected. For reals, the value might be
917 affected, so we can't. */
918 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR)
919 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
920 || (code == MINUS_EXPR
921 && (TREE_CODE (in) == PLUS_EXPR
922 || TREE_CODE (in) == POINTER_PLUS_EXPR)))))
923 {
924 tree op0 = TREE_OPERAND (in, 0);
925 tree op1 = TREE_OPERAND (in, 1);
926 bool neg1_p = TREE_CODE (in) == MINUS_EXPR;
927 bool neg_litp_p = false, neg_conp_p = false, neg_var_p = false;
928
929 /* First see if either of the operands is a literal, then a constant. */
930 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
931 || TREE_CODE (op0) == FIXED_CST)
932 *litp = op0, op0 = 0;
933 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
934 || TREE_CODE (op1) == FIXED_CST)
935 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
936
937 if (op0 != 0 && TREE_CONSTANT (op0))
938 *conp = op0, op0 = 0;
939 else if (op1 != 0 && TREE_CONSTANT (op1))
940 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
941
942 /* If we haven't dealt with either operand, this is not a case we can
943 decompose. Otherwise, VAR is either of the ones remaining, if any. */
944 if (op0 != 0 && op1 != 0)
945 var = in;
946 else if (op0 != 0)
947 var = op0;
948 else
949 var = op1, neg_var_p = neg1_p;
950
951 /* Now do any needed negations. */
952 if (neg_litp_p)
953 *minus_litp = *litp, *litp = 0;
954 if (neg_conp_p && *conp)
955 *minus_conp = *conp, *conp = 0;
956 if (neg_var_p && var)
957 *minus_varp = var, var = 0;
958 }
959 else if (TREE_CONSTANT (in))
960 *conp = in;
961 else if (TREE_CODE (in) == BIT_NOT_EXPR
962 && code == PLUS_EXPR)
963 {
964 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
965 when IN is constant. */
966 *litp = build_minus_one_cst (type);
967 *minus_varp = TREE_OPERAND (in, 0);
968 }
969 else
970 var = in;
971
972 if (negate_p)
973 {
974 if (*litp)
975 *minus_litp = *litp, *litp = 0;
976 else if (*minus_litp)
977 *litp = *minus_litp, *minus_litp = 0;
978 if (*conp)
979 *minus_conp = *conp, *conp = 0;
980 else if (*minus_conp)
981 *conp = *minus_conp, *minus_conp = 0;
982 if (var)
983 *minus_varp = var, var = 0;
984 else if (*minus_varp)
985 var = *minus_varp, *minus_varp = 0;
986 }
987
988 if (*litp
989 && TREE_OVERFLOW_P (*litp))
990 *litp = drop_tree_overflow (*litp);
991 if (*minus_litp
992 && TREE_OVERFLOW_P (*minus_litp))
993 *minus_litp = drop_tree_overflow (*minus_litp);
994
995 return var;
996}
997
998/* Re-associate trees split by the above function. T1 and T2 are
999 either expressions to associate or null. Return the new
1000 expression, if any. LOC is the location of the new expression. If
1001 we build an operation, do it in TYPE and with CODE. */
1002
1003static tree
1004associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
1005{
1006 if (t1 == 0)
1007 {
1008 gcc_assert (t2 == 0 || code != MINUS_EXPR);
1009 return t2;
1010 }
1011 else if (t2 == 0)
1012 return t1;
1013
1014 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1015 try to fold this since we will have infinite recursion. But do
1016 deal with any NEGATE_EXPRs. */
1017 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1018 || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR
1019 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1020 {
1021 if (code == PLUS_EXPR)
1022 {
1023 if (TREE_CODE (t1) == NEGATE_EXPR)
1024 return build2_loc (loc, code: MINUS_EXPR, type,
1025 arg0: fold_convert_loc (loc, type, t2),
1026 arg1: fold_convert_loc (loc, type,
1027 TREE_OPERAND (t1, 0)));
1028 else if (TREE_CODE (t2) == NEGATE_EXPR)
1029 return build2_loc (loc, code: MINUS_EXPR, type,
1030 arg0: fold_convert_loc (loc, type, t1),
1031 arg1: fold_convert_loc (loc, type,
1032 TREE_OPERAND (t2, 0)));
1033 else if (integer_zerop (t2))
1034 return fold_convert_loc (loc, type, t1);
1035 }
1036 else if (code == MINUS_EXPR)
1037 {
1038 if (integer_zerop (t2))
1039 return fold_convert_loc (loc, type, t1);
1040 }
1041
1042 return build2_loc (loc, code, type, arg0: fold_convert_loc (loc, type, t1),
1043 arg1: fold_convert_loc (loc, type, t2));
1044 }
1045
1046 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
1047 fold_convert_loc (loc, type, t2));
1048}
1049
1050/* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
1051 for use in int_const_binop, size_binop and size_diffop. */
1052
1053static bool
1054int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
1055{
1056 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
1057 return false;
1058 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
1059 return false;
1060
1061 switch (code)
1062 {
1063 case LSHIFT_EXPR:
1064 case RSHIFT_EXPR:
1065 case LROTATE_EXPR:
1066 case RROTATE_EXPR:
1067 return true;
1068
1069 default:
1070 break;
1071 }
1072
1073 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
1074 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
1075 && TYPE_MODE (type1) == TYPE_MODE (type2);
1076}
1077
1078/* Combine two wide ints ARG1 and ARG2 under operation CODE to produce
1079 a new constant in RES. Return FALSE if we don't know how to
1080 evaluate CODE at compile-time. */
1081
1082bool
1083wide_int_binop (wide_int &res,
1084 enum tree_code code, const wide_int &arg1, const wide_int &arg2,
1085 signop sign, wi::overflow_type *overflow)
1086{
1087 wide_int tmp;
1088 *overflow = wi::OVF_NONE;
1089 switch (code)
1090 {
1091 case BIT_IOR_EXPR:
1092 res = wi::bit_or (x: arg1, y: arg2);
1093 break;
1094
1095 case BIT_XOR_EXPR:
1096 res = wi::bit_xor (x: arg1, y: arg2);
1097 break;
1098
1099 case BIT_AND_EXPR:
1100 res = wi::bit_and (x: arg1, y: arg2);
1101 break;
1102
1103 case LSHIFT_EXPR:
1104 if (wi::neg_p (x: arg2))
1105 return false;
1106 res = wi::lshift (x: arg1, y: arg2);
1107 break;
1108
1109 case RSHIFT_EXPR:
1110 if (wi::neg_p (x: arg2))
1111 return false;
1112 /* It's unclear from the C standard whether shifts can overflow.
1113 The following code ignores overflow; perhaps a C standard
1114 interpretation ruling is needed. */
1115 res = wi::rshift (x: arg1, y: arg2, sgn: sign);
1116 break;
1117
1118 case RROTATE_EXPR:
1119 case LROTATE_EXPR:
1120 if (wi::neg_p (x: arg2))
1121 {
1122 tmp = -arg2;
1123 if (code == RROTATE_EXPR)
1124 code = LROTATE_EXPR;
1125 else
1126 code = RROTATE_EXPR;
1127 }
1128 else
1129 tmp = arg2;
1130
1131 if (code == RROTATE_EXPR)
1132 res = wi::rrotate (x: arg1, y: tmp);
1133 else
1134 res = wi::lrotate (x: arg1, y: tmp);
1135 break;
1136
1137 case PLUS_EXPR:
1138 res = wi::add (x: arg1, y: arg2, sgn: sign, overflow);
1139 break;
1140
1141 case MINUS_EXPR:
1142 res = wi::sub (x: arg1, y: arg2, sgn: sign, overflow);
1143 break;
1144
1145 case MULT_EXPR:
1146 res = wi::mul (x: arg1, y: arg2, sgn: sign, overflow);
1147 break;
1148
1149 case MULT_HIGHPART_EXPR:
1150 res = wi::mul_high (x: arg1, y: arg2, sgn: sign);
1151 break;
1152
1153 case TRUNC_DIV_EXPR:
1154 case EXACT_DIV_EXPR:
1155 if (arg2 == 0)
1156 return false;
1157 res = wi::div_trunc (x: arg1, y: arg2, sgn: sign, overflow);
1158 break;
1159
1160 case FLOOR_DIV_EXPR:
1161 if (arg2 == 0)
1162 return false;
1163 res = wi::div_floor (x: arg1, y: arg2, sgn: sign, overflow);
1164 break;
1165
1166 case CEIL_DIV_EXPR:
1167 if (arg2 == 0)
1168 return false;
1169 res = wi::div_ceil (x: arg1, y: arg2, sgn: sign, overflow);
1170 break;
1171
1172 case ROUND_DIV_EXPR:
1173 if (arg2 == 0)
1174 return false;
1175 res = wi::div_round (x: arg1, y: arg2, sgn: sign, overflow);
1176 break;
1177
1178 case TRUNC_MOD_EXPR:
1179 if (arg2 == 0)
1180 return false;
1181 res = wi::mod_trunc (x: arg1, y: arg2, sgn: sign, overflow);
1182 break;
1183
1184 case FLOOR_MOD_EXPR:
1185 if (arg2 == 0)
1186 return false;
1187 res = wi::mod_floor (x: arg1, y: arg2, sgn: sign, overflow);
1188 break;
1189
1190 case CEIL_MOD_EXPR:
1191 if (arg2 == 0)
1192 return false;
1193 res = wi::mod_ceil (x: arg1, y: arg2, sgn: sign, overflow);
1194 break;
1195
1196 case ROUND_MOD_EXPR:
1197 if (arg2 == 0)
1198 return false;
1199 res = wi::mod_round (x: arg1, y: arg2, sgn: sign, overflow);
1200 break;
1201
1202 case MIN_EXPR:
1203 res = wi::min (x: arg1, y: arg2, sgn: sign);
1204 break;
1205
1206 case MAX_EXPR:
1207 res = wi::max (x: arg1, y: arg2, sgn: sign);
1208 break;
1209
1210 default:
1211 return false;
1212 }
1213 return true;
1214}
1215
1216/* Returns true if we know who is smaller or equal, ARG1 or ARG2, and set the
1217 min value to RES. */
1218bool
1219can_min_p (const_tree arg1, const_tree arg2, poly_wide_int &res)
1220{
1221 if (known_le (wi::to_poly_widest (arg1), wi::to_poly_widest (arg2)))
1222 {
1223 res = wi::to_poly_wide (t: arg1);
1224 return true;
1225 }
1226 else if (known_le (wi::to_poly_widest (arg2), wi::to_poly_widest (arg1)))
1227 {
1228 res = wi::to_poly_wide (t: arg2);
1229 return true;
1230 }
1231
1232 return false;
1233}
1234
1235/* Combine two poly int's ARG1 and ARG2 under operation CODE to
1236 produce a new constant in RES. Return FALSE if we don't know how
1237 to evaluate CODE at compile-time. */
1238
1239static bool
1240poly_int_binop (poly_wide_int &res, enum tree_code code,
1241 const_tree arg1, const_tree arg2,
1242 signop sign, wi::overflow_type *overflow)
1243{
1244 gcc_assert (NUM_POLY_INT_COEFFS != 1);
1245 gcc_assert (poly_int_tree_p (arg1) && poly_int_tree_p (arg2));
1246 switch (code)
1247 {
1248 case PLUS_EXPR:
1249 res = wi::add (a: wi::to_poly_wide (t: arg1),
1250 b: wi::to_poly_wide (t: arg2), sgn: sign, overflow);
1251 break;
1252
1253 case MINUS_EXPR:
1254 res = wi::sub (a: wi::to_poly_wide (t: arg1),
1255 b: wi::to_poly_wide (t: arg2), sgn: sign, overflow);
1256 break;
1257
1258 case MULT_EXPR:
1259 if (TREE_CODE (arg2) == INTEGER_CST)
1260 res = wi::mul (a: wi::to_poly_wide (t: arg1),
1261 b: wi::to_wide (t: arg2), sgn: sign, overflow);
1262 else if (TREE_CODE (arg1) == INTEGER_CST)
1263 res = wi::mul (a: wi::to_poly_wide (t: arg2),
1264 b: wi::to_wide (t: arg1), sgn: sign, overflow);
1265 else
1266 return NULL_TREE;
1267 break;
1268
1269 case LSHIFT_EXPR:
1270 if (TREE_CODE (arg2) == INTEGER_CST)
1271 res = wi::to_poly_wide (t: arg1) << wi::to_wide (t: arg2);
1272 else
1273 return false;
1274 break;
1275
1276 case BIT_IOR_EXPR:
1277 if (TREE_CODE (arg2) != INTEGER_CST
1278 || !can_ior_p (a: wi::to_poly_wide (t: arg1), b: wi::to_wide (t: arg2),
1279 result: &res))
1280 return false;
1281 break;
1282
1283 case MIN_EXPR:
1284 if (!can_min_p (arg1, arg2, res))
1285 return false;
1286 break;
1287
1288 default:
1289 return false;
1290 }
1291 return true;
1292}
1293
1294/* Combine two integer constants ARG1 and ARG2 under operation CODE to
1295 produce a new constant. Return NULL_TREE if we don't know how to
1296 evaluate CODE at compile-time. */
1297
1298tree
1299int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2,
1300 int overflowable)
1301{
1302 poly_wide_int poly_res;
1303 tree type = TREE_TYPE (arg1);
1304 signop sign = TYPE_SIGN (type);
1305 wi::overflow_type overflow = wi::OVF_NONE;
1306
1307 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1308 {
1309 wide_int warg1 = wi::to_wide (t: arg1), res;
1310 wide_int warg2 = wi::to_wide (t: arg2, TYPE_PRECISION (type));
1311 if (!wide_int_binop (res, code, arg1: warg1, arg2: warg2, sign, overflow: &overflow))
1312 return NULL_TREE;
1313 poly_res = res;
1314 }
1315 else if (!poly_int_tree_p (t: arg1)
1316 || !poly_int_tree_p (t: arg2)
1317 || !poly_int_binop (res&: poly_res, code, arg1, arg2, sign, overflow: &overflow))
1318 return NULL_TREE;
1319 return force_fit_type (type, poly_res, overflowable,
1320 (((sign == SIGNED || overflowable == -1)
1321 && overflow)
1322 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)));
1323}
1324
1325/* Return true if binary operation OP distributes over addition in operand
1326 OPNO, with the other operand being held constant. OPNO counts from 1. */
1327
1328static bool
1329distributes_over_addition_p (tree_code op, int opno)
1330{
1331 switch (op)
1332 {
1333 case PLUS_EXPR:
1334 case MINUS_EXPR:
1335 case MULT_EXPR:
1336 return true;
1337
1338 case LSHIFT_EXPR:
1339 return opno == 1;
1340
1341 default:
1342 return false;
1343 }
1344}
1345
1346/* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1347 constant. We assume ARG1 and ARG2 have the same data type, or at least
1348 are the same kind of constant and the same machine mode. Return zero if
1349 combining the constants is not allowed in the current operating mode. */
1350
1351static tree
1352const_binop (enum tree_code code, tree arg1, tree arg2)
1353{
1354 /* Sanity check for the recursive cases. */
1355 if (!arg1 || !arg2)
1356 return NULL_TREE;
1357
1358 STRIP_NOPS (arg1);
1359 STRIP_NOPS (arg2);
1360
1361 if (poly_int_tree_p (t: arg1) && poly_int_tree_p (t: arg2))
1362 {
1363 if (code == POINTER_PLUS_EXPR)
1364 return int_const_binop (code: PLUS_EXPR,
1365 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1366
1367 return int_const_binop (code, arg1, arg2);
1368 }
1369
1370 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1371 {
1372 machine_mode mode;
1373 REAL_VALUE_TYPE d1;
1374 REAL_VALUE_TYPE d2;
1375 REAL_VALUE_TYPE value;
1376 REAL_VALUE_TYPE result;
1377 bool inexact;
1378 tree t, type;
1379
1380 /* The following codes are handled by real_arithmetic. */
1381 switch (code)
1382 {
1383 case PLUS_EXPR:
1384 case MINUS_EXPR:
1385 case MULT_EXPR:
1386 case RDIV_EXPR:
1387 case MIN_EXPR:
1388 case MAX_EXPR:
1389 break;
1390
1391 default:
1392 return NULL_TREE;
1393 }
1394
1395 d1 = TREE_REAL_CST (arg1);
1396 d2 = TREE_REAL_CST (arg2);
1397
1398 type = TREE_TYPE (arg1);
1399 mode = TYPE_MODE (type);
1400
1401 /* Don't perform operation if we honor signaling NaNs and
1402 either operand is a signaling NaN. */
1403 if (HONOR_SNANS (mode)
1404 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1405 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1406 return NULL_TREE;
1407
1408 /* Don't perform operation if it would raise a division
1409 by zero exception. */
1410 if (code == RDIV_EXPR
1411 && real_equal (&d2, &dconst0)
1412 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1413 return NULL_TREE;
1414
1415 /* If either operand is a NaN, just return it. Otherwise, set up
1416 for floating-point trap; we return an overflow. */
1417 if (REAL_VALUE_ISNAN (d1))
1418 {
1419 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1420 is off. */
1421 d1.signalling = 0;
1422 t = build_real (type, d1);
1423 return t;
1424 }
1425 else if (REAL_VALUE_ISNAN (d2))
1426 {
1427 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1428 is off. */
1429 d2.signalling = 0;
1430 t = build_real (type, d2);
1431 return t;
1432 }
1433
1434 inexact = real_arithmetic (&value, code, &d1, &d2);
1435 real_convert (&result, mode, &value);
1436
1437 /* Don't constant fold this floating point operation if
1438 both operands are not NaN but the result is NaN, and
1439 flag_trapping_math. Such operations should raise an
1440 invalid operation exception. */
1441 if (flag_trapping_math
1442 && MODE_HAS_NANS (mode)
1443 && REAL_VALUE_ISNAN (result)
1444 && !REAL_VALUE_ISNAN (d1)
1445 && !REAL_VALUE_ISNAN (d2))
1446 return NULL_TREE;
1447
1448 /* Don't constant fold this floating point operation if
1449 the result has overflowed and flag_trapping_math. */
1450 if (flag_trapping_math
1451 && MODE_HAS_INFINITIES (mode)
1452 && REAL_VALUE_ISINF (result)
1453 && !REAL_VALUE_ISINF (d1)
1454 && !REAL_VALUE_ISINF (d2))
1455 return NULL_TREE;
1456
1457 /* Don't constant fold this floating point operation if the
1458 result may dependent upon the run-time rounding mode and
1459 flag_rounding_math is set, or if GCC's software emulation
1460 is unable to accurately represent the result. */
1461 if ((flag_rounding_math
1462 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1463 && (inexact || !real_identical (&result, &value)))
1464 return NULL_TREE;
1465
1466 t = build_real (type, result);
1467
1468 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1469 return t;
1470 }
1471
1472 if (TREE_CODE (arg1) == FIXED_CST)
1473 {
1474 FIXED_VALUE_TYPE f1;
1475 FIXED_VALUE_TYPE f2;
1476 FIXED_VALUE_TYPE result;
1477 tree t, type;
1478 bool sat_p;
1479 bool overflow_p;
1480
1481 /* The following codes are handled by fixed_arithmetic. */
1482 switch (code)
1483 {
1484 case PLUS_EXPR:
1485 case MINUS_EXPR:
1486 case MULT_EXPR:
1487 case TRUNC_DIV_EXPR:
1488 if (TREE_CODE (arg2) != FIXED_CST)
1489 return NULL_TREE;
1490 f2 = TREE_FIXED_CST (arg2);
1491 break;
1492
1493 case LSHIFT_EXPR:
1494 case RSHIFT_EXPR:
1495 {
1496 if (TREE_CODE (arg2) != INTEGER_CST)
1497 return NULL_TREE;
1498 wi::tree_to_wide_ref w2 = wi::to_wide (t: arg2);
1499 f2.data.high = w2.elt (i: 1);
1500 f2.data.low = w2.ulow ();
1501 f2.mode = SImode;
1502 }
1503 break;
1504
1505 default:
1506 return NULL_TREE;
1507 }
1508
1509 f1 = TREE_FIXED_CST (arg1);
1510 type = TREE_TYPE (arg1);
1511 sat_p = TYPE_SATURATING (type);
1512 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1513 t = build_fixed (type, result);
1514 /* Propagate overflow flags. */
1515 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1516 TREE_OVERFLOW (t) = 1;
1517 return t;
1518 }
1519
1520 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1521 {
1522 tree type = TREE_TYPE (arg1);
1523 tree r1 = TREE_REALPART (arg1);
1524 tree i1 = TREE_IMAGPART (arg1);
1525 tree r2 = TREE_REALPART (arg2);
1526 tree i2 = TREE_IMAGPART (arg2);
1527 tree real, imag;
1528
1529 switch (code)
1530 {
1531 case PLUS_EXPR:
1532 case MINUS_EXPR:
1533 real = const_binop (code, arg1: r1, arg2: r2);
1534 imag = const_binop (code, arg1: i1, arg2: i2);
1535 break;
1536
1537 case MULT_EXPR:
1538 if (COMPLEX_FLOAT_TYPE_P (type))
1539 return do_mpc_arg2 (arg1, arg2, type,
1540 /* do_nonfinite= */ folding_initializer,
1541 mpc_mul);
1542
1543 real = const_binop (code: MINUS_EXPR,
1544 arg1: const_binop (code: MULT_EXPR, arg1: r1, arg2: r2),
1545 arg2: const_binop (code: MULT_EXPR, arg1: i1, arg2: i2));
1546 imag = const_binop (code: PLUS_EXPR,
1547 arg1: const_binop (code: MULT_EXPR, arg1: r1, arg2: i2),
1548 arg2: const_binop (code: MULT_EXPR, arg1: i1, arg2: r2));
1549 break;
1550
1551 case RDIV_EXPR:
1552 if (COMPLEX_FLOAT_TYPE_P (type))
1553 return do_mpc_arg2 (arg1, arg2, type,
1554 /* do_nonfinite= */ folding_initializer,
1555 mpc_div);
1556 /* Fallthru. */
1557 case TRUNC_DIV_EXPR:
1558 case CEIL_DIV_EXPR:
1559 case FLOOR_DIV_EXPR:
1560 case ROUND_DIV_EXPR:
1561 if (flag_complex_method == 0)
1562 {
1563 /* Keep this algorithm in sync with
1564 tree-complex.cc:expand_complex_div_straight().
1565
1566 Expand complex division to scalars, straightforward algorithm.
1567 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1568 t = br*br + bi*bi
1569 */
1570 tree magsquared
1571 = const_binop (code: PLUS_EXPR,
1572 arg1: const_binop (code: MULT_EXPR, arg1: r2, arg2: r2),
1573 arg2: const_binop (code: MULT_EXPR, arg1: i2, arg2: i2));
1574 tree t1
1575 = const_binop (code: PLUS_EXPR,
1576 arg1: const_binop (code: MULT_EXPR, arg1: r1, arg2: r2),
1577 arg2: const_binop (code: MULT_EXPR, arg1: i1, arg2: i2));
1578 tree t2
1579 = const_binop (code: MINUS_EXPR,
1580 arg1: const_binop (code: MULT_EXPR, arg1: i1, arg2: r2),
1581 arg2: const_binop (code: MULT_EXPR, arg1: r1, arg2: i2));
1582
1583 real = const_binop (code, arg1: t1, arg2: magsquared);
1584 imag = const_binop (code, arg1: t2, arg2: magsquared);
1585 }
1586 else
1587 {
1588 /* Keep this algorithm in sync with
1589 tree-complex.cc:expand_complex_div_wide().
1590
1591 Expand complex division to scalars, modified algorithm to minimize
1592 overflow with wide input ranges. */
1593 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1594 fold_abs_const (r2, TREE_TYPE (type)),
1595 fold_abs_const (i2, TREE_TYPE (type)));
1596
1597 if (integer_nonzerop (compare))
1598 {
1599 /* In the TRUE branch, we compute
1600 ratio = br/bi;
1601 div = (br * ratio) + bi;
1602 tr = (ar * ratio) + ai;
1603 ti = (ai * ratio) - ar;
1604 tr = tr / div;
1605 ti = ti / div; */
1606 tree ratio = const_binop (code, arg1: r2, arg2: i2);
1607 tree div = const_binop (code: PLUS_EXPR, arg1: i2,
1608 arg2: const_binop (code: MULT_EXPR, arg1: r2, arg2: ratio));
1609 real = const_binop (code: MULT_EXPR, arg1: r1, arg2: ratio);
1610 real = const_binop (code: PLUS_EXPR, arg1: real, arg2: i1);
1611 real = const_binop (code, arg1: real, arg2: div);
1612
1613 imag = const_binop (code: MULT_EXPR, arg1: i1, arg2: ratio);
1614 imag = const_binop (code: MINUS_EXPR, arg1: imag, arg2: r1);
1615 imag = const_binop (code, arg1: imag, arg2: div);
1616 }
1617 else
1618 {
1619 /* In the FALSE branch, we compute
1620 ratio = d/c;
1621 divisor = (d * ratio) + c;
1622 tr = (b * ratio) + a;
1623 ti = b - (a * ratio);
1624 tr = tr / div;
1625 ti = ti / div; */
1626 tree ratio = const_binop (code, arg1: i2, arg2: r2);
1627 tree div = const_binop (code: PLUS_EXPR, arg1: r2,
1628 arg2: const_binop (code: MULT_EXPR, arg1: i2, arg2: ratio));
1629
1630 real = const_binop (code: MULT_EXPR, arg1: i1, arg2: ratio);
1631 real = const_binop (code: PLUS_EXPR, arg1: real, arg2: r1);
1632 real = const_binop (code, arg1: real, arg2: div);
1633
1634 imag = const_binop (code: MULT_EXPR, arg1: r1, arg2: ratio);
1635 imag = const_binop (code: MINUS_EXPR, arg1: i1, arg2: imag);
1636 imag = const_binop (code, arg1: imag, arg2: div);
1637 }
1638 }
1639 break;
1640
1641 default:
1642 return NULL_TREE;
1643 }
1644
1645 if (real && imag)
1646 return build_complex (type, real, imag);
1647 }
1648
1649 if (TREE_CODE (arg1) == VECTOR_CST
1650 && TREE_CODE (arg2) == VECTOR_CST
1651 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)),
1652 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2))))
1653 {
1654 tree type = TREE_TYPE (arg1);
1655 bool step_ok_p;
1656 if (VECTOR_CST_STEPPED_P (arg1)
1657 && VECTOR_CST_STEPPED_P (arg2))
1658 /* We can operate directly on the encoding if:
1659
1660 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1
1661 implies
1662 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1)
1663
1664 Addition and subtraction are the supported operators
1665 for which this is true. */
1666 step_ok_p = (code == PLUS_EXPR || code == MINUS_EXPR);
1667 else if (VECTOR_CST_STEPPED_P (arg1))
1668 /* We can operate directly on stepped encodings if:
1669
1670 a3 - a2 == a2 - a1
1671 implies:
1672 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c)
1673
1674 which is true if (x -> x op c) distributes over addition. */
1675 step_ok_p = distributes_over_addition_p (op: code, opno: 1);
1676 else
1677 /* Similarly in reverse. */
1678 step_ok_p = distributes_over_addition_p (op: code, opno: 2);
1679 tree_vector_builder elts;
1680 if (!elts.new_binary_operation (shape: type, vec1: arg1, vec2: arg2, allow_stepped_p: step_ok_p))
1681 return NULL_TREE;
1682 unsigned int count = elts.encoded_nelts ();
1683 for (unsigned int i = 0; i < count; ++i)
1684 {
1685 tree elem1 = VECTOR_CST_ELT (arg1, i);
1686 tree elem2 = VECTOR_CST_ELT (arg2, i);
1687
1688 tree elt = const_binop (code, arg1: elem1, arg2: elem2);
1689
1690 /* It is possible that const_binop cannot handle the given
1691 code and return NULL_TREE */
1692 if (elt == NULL_TREE)
1693 return NULL_TREE;
1694 elts.quick_push (obj: elt);
1695 }
1696
1697 return elts.build ();
1698 }
1699
1700 /* Shifts allow a scalar offset for a vector. */
1701 if (TREE_CODE (arg1) == VECTOR_CST
1702 && TREE_CODE (arg2) == INTEGER_CST)
1703 {
1704 tree type = TREE_TYPE (arg1);
1705 bool step_ok_p = distributes_over_addition_p (op: code, opno: 1);
1706 tree_vector_builder elts;
1707 if (!elts.new_unary_operation (shape: type, vec: arg1, allow_stepped_p: step_ok_p))
1708 return NULL_TREE;
1709 unsigned int count = elts.encoded_nelts ();
1710 for (unsigned int i = 0; i < count; ++i)
1711 {
1712 tree elem1 = VECTOR_CST_ELT (arg1, i);
1713
1714 tree elt = const_binop (code, arg1: elem1, arg2);
1715
1716 /* It is possible that const_binop cannot handle the given
1717 code and return NULL_TREE. */
1718 if (elt == NULL_TREE)
1719 return NULL_TREE;
1720 elts.quick_push (obj: elt);
1721 }
1722
1723 return elts.build ();
1724 }
1725 return NULL_TREE;
1726}
1727
1728/* Overload that adds a TYPE parameter to be able to dispatch
1729 to fold_relational_const. */
1730
1731tree
1732const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1733{
1734 if (TREE_CODE_CLASS (code) == tcc_comparison)
1735 return fold_relational_const (code, type, arg1, arg2);
1736
1737 /* ??? Until we make the const_binop worker take the type of the
1738 result as argument put those cases that need it here. */
1739 switch (code)
1740 {
1741 case VEC_SERIES_EXPR:
1742 if (CONSTANT_CLASS_P (arg1)
1743 && CONSTANT_CLASS_P (arg2))
1744 return build_vec_series (type, arg1, arg2);
1745 return NULL_TREE;
1746
1747 case COMPLEX_EXPR:
1748 if ((TREE_CODE (arg1) == REAL_CST
1749 && TREE_CODE (arg2) == REAL_CST)
1750 || (TREE_CODE (arg1) == INTEGER_CST
1751 && TREE_CODE (arg2) == INTEGER_CST))
1752 return build_complex (type, arg1, arg2);
1753 return NULL_TREE;
1754
1755 case POINTER_DIFF_EXPR:
1756 if (poly_int_tree_p (t: arg1) && poly_int_tree_p (t: arg2))
1757 {
1758 poly_offset_int res = (wi::to_poly_offset (t: arg1)
1759 - wi::to_poly_offset (t: arg2));
1760 return force_fit_type (type, res, 1,
1761 TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1762 }
1763 return NULL_TREE;
1764
1765 case VEC_PACK_TRUNC_EXPR:
1766 case VEC_PACK_FIX_TRUNC_EXPR:
1767 case VEC_PACK_FLOAT_EXPR:
1768 {
1769 unsigned int HOST_WIDE_INT out_nelts, in_nelts, i;
1770
1771 if (TREE_CODE (arg1) != VECTOR_CST
1772 || TREE_CODE (arg2) != VECTOR_CST)
1773 return NULL_TREE;
1774
1775 if (!VECTOR_CST_NELTS (arg1).is_constant (const_value: &in_nelts))
1776 return NULL_TREE;
1777
1778 out_nelts = in_nelts * 2;
1779 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2))
1780 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1781
1782 tree_vector_builder elts (type, out_nelts, 1);
1783 for (i = 0; i < out_nelts; i++)
1784 {
1785 tree elt = (i < in_nelts
1786 ? VECTOR_CST_ELT (arg1, i)
1787 : VECTOR_CST_ELT (arg2, i - in_nelts));
1788 elt = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1789 ? NOP_EXPR
1790 : code == VEC_PACK_FLOAT_EXPR
1791 ? FLOAT_EXPR : FIX_TRUNC_EXPR,
1792 TREE_TYPE (type), elt);
1793 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1794 return NULL_TREE;
1795 elts.quick_push (obj: elt);
1796 }
1797
1798 return elts.build ();
1799 }
1800
1801 case VEC_WIDEN_MULT_LO_EXPR:
1802 case VEC_WIDEN_MULT_HI_EXPR:
1803 case VEC_WIDEN_MULT_EVEN_EXPR:
1804 case VEC_WIDEN_MULT_ODD_EXPR:
1805 {
1806 unsigned HOST_WIDE_INT out_nelts, in_nelts, out, ofs, scale;
1807
1808 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1809 return NULL_TREE;
1810
1811 if (!VECTOR_CST_NELTS (arg1).is_constant (const_value: &in_nelts))
1812 return NULL_TREE;
1813 out_nelts = in_nelts / 2;
1814 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2))
1815 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1816
1817 if (code == VEC_WIDEN_MULT_LO_EXPR)
1818 scale = 0, ofs = BYTES_BIG_ENDIAN ? out_nelts : 0;
1819 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1820 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : out_nelts;
1821 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1822 scale = 1, ofs = 0;
1823 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1824 scale = 1, ofs = 1;
1825
1826 tree_vector_builder elts (type, out_nelts, 1);
1827 for (out = 0; out < out_nelts; out++)
1828 {
1829 unsigned int in = (out << scale) + ofs;
1830 tree t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1831 VECTOR_CST_ELT (arg1, in));
1832 tree t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1833 VECTOR_CST_ELT (arg2, in));
1834
1835 if (t1 == NULL_TREE || t2 == NULL_TREE)
1836 return NULL_TREE;
1837 tree elt = const_binop (code: MULT_EXPR, arg1: t1, arg2: t2);
1838 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1839 return NULL_TREE;
1840 elts.quick_push (obj: elt);
1841 }
1842
1843 return elts.build ();
1844 }
1845
1846 default:;
1847 }
1848
1849 if (TREE_CODE_CLASS (code) != tcc_binary)
1850 return NULL_TREE;
1851
1852 /* Make sure type and arg0 have the same saturating flag. */
1853 gcc_checking_assert (TYPE_SATURATING (type)
1854 == TYPE_SATURATING (TREE_TYPE (arg1)));
1855
1856 return const_binop (code, arg1, arg2);
1857}
1858
1859/* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1860 Return zero if computing the constants is not possible. */
1861
1862tree
1863const_unop (enum tree_code code, tree type, tree arg0)
1864{
1865 /* Don't perform the operation, other than NEGATE and ABS, if
1866 flag_signaling_nans is on and the operand is a signaling NaN. */
1867 if (TREE_CODE (arg0) == REAL_CST
1868 && HONOR_SNANS (arg0)
1869 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1870 && code != NEGATE_EXPR
1871 && code != ABS_EXPR
1872 && code != ABSU_EXPR)
1873 return NULL_TREE;
1874
1875 switch (code)
1876 {
1877 CASE_CONVERT:
1878 case FLOAT_EXPR:
1879 case FIX_TRUNC_EXPR:
1880 case FIXED_CONVERT_EXPR:
1881 return fold_convert_const (code, type, arg0);
1882
1883 case ADDR_SPACE_CONVERT_EXPR:
1884 /* If the source address is 0, and the source address space
1885 cannot have a valid object at 0, fold to dest type null. */
1886 if (integer_zerop (arg0)
1887 && !(targetm.addr_space.zero_address_valid
1888 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1889 return fold_convert_const (code, type, arg0);
1890 break;
1891
1892 case VIEW_CONVERT_EXPR:
1893 return fold_view_convert_expr (type, arg0);
1894
1895 case NEGATE_EXPR:
1896 {
1897 /* Can't call fold_negate_const directly here as that doesn't
1898 handle all cases and we might not be able to negate some
1899 constants. */
1900 tree tem = fold_negate_expr (UNKNOWN_LOCATION, t: arg0);
1901 if (tem && CONSTANT_CLASS_P (tem))
1902 return tem;
1903 break;
1904 }
1905
1906 case ABS_EXPR:
1907 case ABSU_EXPR:
1908 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1909 return fold_abs_const (arg0, type);
1910 break;
1911
1912 case CONJ_EXPR:
1913 if (TREE_CODE (arg0) == COMPLEX_CST)
1914 {
1915 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1916 TREE_TYPE (type));
1917 return build_complex (type, TREE_REALPART (arg0), ipart);
1918 }
1919 break;
1920
1921 case BIT_NOT_EXPR:
1922 if (TREE_CODE (arg0) == INTEGER_CST)
1923 return fold_not_const (arg0, type);
1924 else if (POLY_INT_CST_P (arg0))
1925 return wide_int_to_tree (type, cst: -poly_int_cst_value (x: arg0));
1926 /* Perform BIT_NOT_EXPR on each element individually. */
1927 else if (TREE_CODE (arg0) == VECTOR_CST)
1928 {
1929 tree elem;
1930
1931 /* This can cope with stepped encodings because ~x == -1 - x. */
1932 tree_vector_builder elements;
1933 elements.new_unary_operation (shape: type, vec: arg0, allow_stepped_p: true);
1934 unsigned int i, count = elements.encoded_nelts ();
1935 for (i = 0; i < count; ++i)
1936 {
1937 elem = VECTOR_CST_ELT (arg0, i);
1938 elem = const_unop (code: BIT_NOT_EXPR, TREE_TYPE (type), arg0: elem);
1939 if (elem == NULL_TREE)
1940 break;
1941 elements.quick_push (obj: elem);
1942 }
1943 if (i == count)
1944 return elements.build ();
1945 }
1946 break;
1947
1948 case TRUTH_NOT_EXPR:
1949 if (TREE_CODE (arg0) == INTEGER_CST)
1950 return constant_boolean_node (integer_zerop (arg0), type);
1951 break;
1952
1953 case REALPART_EXPR:
1954 if (TREE_CODE (arg0) == COMPLEX_CST)
1955 return fold_convert (type, TREE_REALPART (arg0));
1956 break;
1957
1958 case IMAGPART_EXPR:
1959 if (TREE_CODE (arg0) == COMPLEX_CST)
1960 return fold_convert (type, TREE_IMAGPART (arg0));
1961 break;
1962
1963 case VEC_UNPACK_LO_EXPR:
1964 case VEC_UNPACK_HI_EXPR:
1965 case VEC_UNPACK_FLOAT_LO_EXPR:
1966 case VEC_UNPACK_FLOAT_HI_EXPR:
1967 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
1968 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
1969 {
1970 unsigned HOST_WIDE_INT out_nelts, in_nelts, i;
1971 enum tree_code subcode;
1972
1973 if (TREE_CODE (arg0) != VECTOR_CST)
1974 return NULL_TREE;
1975
1976 if (!VECTOR_CST_NELTS (arg0).is_constant (const_value: &in_nelts))
1977 return NULL_TREE;
1978 out_nelts = in_nelts / 2;
1979 gcc_assert (known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1980
1981 unsigned int offset = 0;
1982 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1983 || code == VEC_UNPACK_FLOAT_LO_EXPR
1984 || code == VEC_UNPACK_FIX_TRUNC_LO_EXPR))
1985 offset = out_nelts;
1986
1987 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1988 subcode = NOP_EXPR;
1989 else if (code == VEC_UNPACK_FLOAT_LO_EXPR
1990 || code == VEC_UNPACK_FLOAT_HI_EXPR)
1991 subcode = FLOAT_EXPR;
1992 else
1993 subcode = FIX_TRUNC_EXPR;
1994
1995 tree_vector_builder elts (type, out_nelts, 1);
1996 for (i = 0; i < out_nelts; i++)
1997 {
1998 tree elt = fold_convert_const (subcode, TREE_TYPE (type),
1999 VECTOR_CST_ELT (arg0, i + offset));
2000 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
2001 return NULL_TREE;
2002 elts.quick_push (obj: elt);
2003 }
2004
2005 return elts.build ();
2006 }
2007
2008 case VEC_DUPLICATE_EXPR:
2009 if (CONSTANT_CLASS_P (arg0))
2010 return build_vector_from_val (type, arg0);
2011 return NULL_TREE;
2012
2013 default:
2014 break;
2015 }
2016
2017 return NULL_TREE;
2018}
2019
2020/* Create a sizetype INT_CST node with NUMBER sign extended. KIND
2021 indicates which particular sizetype to create. */
2022
2023tree
2024size_int_kind (poly_int64 number, enum size_type_kind kind)
2025{
2026 return build_int_cst (sizetype_tab[(int) kind], number);
2027}
2028
2029/* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
2030 is a tree code. The type of the result is taken from the operands.
2031 Both must be equivalent integer types, ala int_binop_types_match_p.
2032 If the operands are constant, so is the result. */
2033
2034tree
2035size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
2036{
2037 tree type = TREE_TYPE (arg0);
2038
2039 if (arg0 == error_mark_node || arg1 == error_mark_node)
2040 return error_mark_node;
2041
2042 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
2043 TREE_TYPE (arg1)));
2044
2045 /* Handle the special case of two poly_int constants faster. */
2046 if (poly_int_tree_p (t: arg0) && poly_int_tree_p (t: arg1))
2047 {
2048 /* And some specific cases even faster than that. */
2049 if (code == PLUS_EXPR)
2050 {
2051 if (integer_zerop (arg0)
2052 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0)))
2053 return arg1;
2054 if (integer_zerop (arg1)
2055 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1)))
2056 return arg0;
2057 }
2058 else if (code == MINUS_EXPR)
2059 {
2060 if (integer_zerop (arg1)
2061 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1)))
2062 return arg0;
2063 }
2064 else if (code == MULT_EXPR)
2065 {
2066 if (integer_onep (arg0)
2067 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0)))
2068 return arg1;
2069 }
2070
2071 /* Handle general case of two integer constants. For sizetype
2072 constant calculations we always want to know about overflow,
2073 even in the unsigned case. */
2074 tree res = int_const_binop (code, arg1: arg0, arg2: arg1, overflowable: -1);
2075 if (res != NULL_TREE)
2076 return res;
2077 }
2078
2079 return fold_build2_loc (loc, code, type, arg0, arg1);
2080}
2081
2082/* Given two values, either both of sizetype or both of bitsizetype,
2083 compute the difference between the two values. Return the value
2084 in signed type corresponding to the type of the operands. */
2085
2086tree
2087size_diffop_loc (location_t loc, tree arg0, tree arg1)
2088{
2089 tree type = TREE_TYPE (arg0);
2090 tree ctype;
2091
2092 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
2093 TREE_TYPE (arg1)));
2094
2095 /* If the type is already signed, just do the simple thing. */
2096 if (!TYPE_UNSIGNED (type))
2097 return size_binop_loc (loc, code: MINUS_EXPR, arg0, arg1);
2098
2099 if (type == sizetype)
2100 ctype = ssizetype;
2101 else if (type == bitsizetype)
2102 ctype = sbitsizetype;
2103 else
2104 ctype = signed_type_for (type);
2105
2106 /* If either operand is not a constant, do the conversions to the signed
2107 type and subtract. The hardware will do the right thing with any
2108 overflow in the subtraction. */
2109 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
2110 return size_binop_loc (loc, code: MINUS_EXPR,
2111 arg0: fold_convert_loc (loc, ctype, arg0),
2112 arg1: fold_convert_loc (loc, ctype, arg1));
2113
2114 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
2115 Otherwise, subtract the other way, convert to CTYPE (we know that can't
2116 overflow) and negate (which can't either). Special-case a result
2117 of zero while we're here. */
2118 if (tree_int_cst_equal (arg0, arg1))
2119 return build_int_cst (ctype, 0);
2120 else if (tree_int_cst_lt (t1: arg1, t2: arg0))
2121 return fold_convert_loc (loc, ctype,
2122 size_binop_loc (loc, code: MINUS_EXPR, arg0, arg1));
2123 else
2124 return size_binop_loc (loc, code: MINUS_EXPR, arg0: build_int_cst (ctype, 0),
2125 arg1: fold_convert_loc (loc, ctype,
2126 size_binop_loc (loc,
2127 code: MINUS_EXPR,
2128 arg0: arg1, arg1: arg0)));
2129}
2130
2131/* A subroutine of fold_convert_const handling conversions of an
2132 INTEGER_CST to another integer type. */
2133
2134static tree
2135fold_convert_const_int_from_int (tree type, const_tree arg1)
2136{
2137 /* Given an integer constant, make new constant with new type,
2138 appropriately sign-extended or truncated. Use widest_int
2139 so that any extension is done according ARG1's type. */
2140 tree arg1_type = TREE_TYPE (arg1);
2141 unsigned prec = MAX (TYPE_PRECISION (arg1_type), TYPE_PRECISION (type));
2142 return force_fit_type (type, wide_int::from (x: wi::to_wide (t: arg1), precision: prec,
2143 TYPE_SIGN (arg1_type)),
2144 !POINTER_TYPE_P (TREE_TYPE (arg1)),
2145 TREE_OVERFLOW (arg1));
2146}
2147
2148/* A subroutine of fold_convert_const handling conversions a REAL_CST
2149 to an integer type. */
2150
2151static tree
2152fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
2153{
2154 bool overflow = false;
2155 tree t;
2156
2157 /* The following code implements the floating point to integer
2158 conversion rules required by the Java Language Specification,
2159 that IEEE NaNs are mapped to zero and values that overflow
2160 the target precision saturate, i.e. values greater than
2161 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2162 are mapped to INT_MIN. These semantics are allowed by the
2163 C and C++ standards that simply state that the behavior of
2164 FP-to-integer conversion is unspecified upon overflow. */
2165
2166 wide_int val;
2167 REAL_VALUE_TYPE r;
2168 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
2169
2170 switch (code)
2171 {
2172 case FIX_TRUNC_EXPR:
2173 real_trunc (&r, VOIDmode, &x);
2174 break;
2175
2176 default:
2177 gcc_unreachable ();
2178 }
2179
2180 /* If R is NaN, return zero and show we have an overflow. */
2181 if (REAL_VALUE_ISNAN (r))
2182 {
2183 overflow = true;
2184 val = wi::zero (TYPE_PRECISION (type));
2185 }
2186
2187 /* See if R is less than the lower bound or greater than the
2188 upper bound. */
2189
2190 if (! overflow)
2191 {
2192 tree lt = TYPE_MIN_VALUE (type);
2193 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
2194 if (real_less (&r, &l))
2195 {
2196 overflow = true;
2197 val = wi::to_wide (t: lt);
2198 }
2199 }
2200
2201 if (! overflow)
2202 {
2203 tree ut = TYPE_MAX_VALUE (type);
2204 if (ut)
2205 {
2206 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
2207 if (real_less (&u, &r))
2208 {
2209 overflow = true;
2210 val = wi::to_wide (t: ut);
2211 }
2212 }
2213 }
2214
2215 if (! overflow)
2216 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
2217
2218 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
2219 return t;
2220}
2221
2222/* A subroutine of fold_convert_const handling conversions of a
2223 FIXED_CST to an integer type. */
2224
2225static tree
2226fold_convert_const_int_from_fixed (tree type, const_tree arg1)
2227{
2228 tree t;
2229 double_int temp, temp_trunc;
2230 scalar_mode mode;
2231
2232 /* Right shift FIXED_CST to temp by fbit. */
2233 temp = TREE_FIXED_CST (arg1).data;
2234 mode = TREE_FIXED_CST (arg1).mode;
2235 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
2236 {
2237 temp = temp.rshift (GET_MODE_FBIT (mode),
2238 HOST_BITS_PER_DOUBLE_INT,
2239 SIGNED_FIXED_POINT_MODE_P (mode));
2240
2241 /* Left shift temp to temp_trunc by fbit. */
2242 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
2243 HOST_BITS_PER_DOUBLE_INT,
2244 SIGNED_FIXED_POINT_MODE_P (mode));
2245 }
2246 else
2247 {
2248 temp = double_int_zero;
2249 temp_trunc = double_int_zero;
2250 }
2251
2252 /* If FIXED_CST is negative, we need to round the value toward 0.
2253 By checking if the fractional bits are not zero to add 1 to temp. */
2254 if (SIGNED_FIXED_POINT_MODE_P (mode)
2255 && temp_trunc.is_negative ()
2256 && TREE_FIXED_CST (arg1).data != temp_trunc)
2257 temp += double_int_one;
2258
2259 /* Given a fixed-point constant, make new constant with new type,
2260 appropriately sign-extended or truncated. */
2261 t = force_fit_type (type, temp, -1,
2262 (temp.is_negative ()
2263 && (TYPE_UNSIGNED (type)
2264 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2265 | TREE_OVERFLOW (arg1));
2266
2267 return t;
2268}
2269
2270/* A subroutine of fold_convert_const handling conversions a REAL_CST
2271 to another floating point type. */
2272
2273static tree
2274fold_convert_const_real_from_real (tree type, const_tree arg1)
2275{
2276 REAL_VALUE_TYPE value;
2277 tree t;
2278
2279 /* If the underlying modes are the same, simply treat it as
2280 copy and rebuild with TREE_REAL_CST information and the
2281 given type. */
2282 if (TYPE_MODE (type) == TYPE_MODE (TREE_TYPE (arg1)))
2283 {
2284 t = build_real (type, TREE_REAL_CST (arg1));
2285 return t;
2286 }
2287
2288 /* Don't perform the operation if flag_signaling_nans is on
2289 and the operand is a signaling NaN. */
2290 if (HONOR_SNANS (arg1)
2291 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
2292 return NULL_TREE;
2293
2294 /* With flag_rounding_math we should respect the current rounding mode
2295 unless the conversion is exact. */
2296 if (HONOR_SIGN_DEPENDENT_ROUNDING (arg1)
2297 && !exact_real_truncate (TYPE_MODE (type), &TREE_REAL_CST (arg1)))
2298 return NULL_TREE;
2299
2300 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2301 t = build_real (type, value);
2302
2303 /* If converting an infinity or NAN to a representation that doesn't
2304 have one, set the overflow bit so that we can produce some kind of
2305 error message at the appropriate point if necessary. It's not the
2306 most user-friendly message, but it's better than nothing. */
2307 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
2308 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
2309 TREE_OVERFLOW (t) = 1;
2310 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
2311 && !MODE_HAS_NANS (TYPE_MODE (type)))
2312 TREE_OVERFLOW (t) = 1;
2313 /* Regular overflow, conversion produced an infinity in a mode that
2314 can't represent them. */
2315 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
2316 && REAL_VALUE_ISINF (value)
2317 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2318 TREE_OVERFLOW (t) = 1;
2319 else
2320 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2321 return t;
2322}
2323
2324/* A subroutine of fold_convert_const handling conversions a FIXED_CST
2325 to a floating point type. */
2326
2327static tree
2328fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2329{
2330 REAL_VALUE_TYPE value;
2331 tree t;
2332
2333 real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type),
2334 &TREE_FIXED_CST (arg1));
2335 t = build_real (type, value);
2336
2337 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2338 return t;
2339}
2340
2341/* A subroutine of fold_convert_const handling conversions a FIXED_CST
2342 to another fixed-point type. */
2343
2344static tree
2345fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2346{
2347 FIXED_VALUE_TYPE value;
2348 tree t;
2349 bool overflow_p;
2350
2351 overflow_p = fixed_convert (&value, SCALAR_TYPE_MODE (type),
2352 &TREE_FIXED_CST (arg1), TYPE_SATURATING (type));
2353 t = build_fixed (type, value);
2354
2355 /* Propagate overflow flags. */
2356 if (overflow_p | TREE_OVERFLOW (arg1))
2357 TREE_OVERFLOW (t) = 1;
2358 return t;
2359}
2360
2361/* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2362 to a fixed-point type. */
2363
2364static tree
2365fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2366{
2367 FIXED_VALUE_TYPE value;
2368 tree t;
2369 bool overflow_p;
2370 double_int di;
2371
2372 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2373
2374 di.low = TREE_INT_CST_ELT (arg1, 0);
2375 if (TREE_INT_CST_NUNITS (arg1) == 1)
2376 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2377 else
2378 di.high = TREE_INT_CST_ELT (arg1, 1);
2379
2380 overflow_p = fixed_convert_from_int (&value, SCALAR_TYPE_MODE (type), di,
2381 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2382 TYPE_SATURATING (type));
2383 t = build_fixed (type, value);
2384
2385 /* Propagate overflow flags. */
2386 if (overflow_p | TREE_OVERFLOW (arg1))
2387 TREE_OVERFLOW (t) = 1;
2388 return t;
2389}
2390
2391/* A subroutine of fold_convert_const handling conversions a REAL_CST
2392 to a fixed-point type. */
2393
2394static tree
2395fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2396{
2397 FIXED_VALUE_TYPE value;
2398 tree t;
2399 bool overflow_p;
2400
2401 overflow_p = fixed_convert_from_real (&value, SCALAR_TYPE_MODE (type),
2402 &TREE_REAL_CST (arg1),
2403 TYPE_SATURATING (type));
2404 t = build_fixed (type, value);
2405
2406 /* Propagate overflow flags. */
2407 if (overflow_p | TREE_OVERFLOW (arg1))
2408 TREE_OVERFLOW (t) = 1;
2409 return t;
2410}
2411
2412/* Attempt to fold type conversion operation CODE of expression ARG1 to
2413 type TYPE. If no simplification can be done return NULL_TREE. */
2414
2415static tree
2416fold_convert_const (enum tree_code code, tree type, tree arg1)
2417{
2418 tree arg_type = TREE_TYPE (arg1);
2419 if (arg_type == type)
2420 return arg1;
2421
2422 /* We can't widen types, since the runtime value could overflow the
2423 original type before being extended to the new type. */
2424 if (POLY_INT_CST_P (arg1)
2425 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
2426 && TYPE_PRECISION (type) <= TYPE_PRECISION (arg_type))
2427 return build_poly_int_cst (type,
2428 poly_wide_int::from (a: poly_int_cst_value (x: arg1),
2429 TYPE_PRECISION (type),
2430 TYPE_SIGN (arg_type)));
2431
2432 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2433 || TREE_CODE (type) == OFFSET_TYPE)
2434 {
2435 if (TREE_CODE (arg1) == INTEGER_CST)
2436 return fold_convert_const_int_from_int (type, arg1);
2437 else if (TREE_CODE (arg1) == REAL_CST)
2438 return fold_convert_const_int_from_real (code, type, arg1);
2439 else if (TREE_CODE (arg1) == FIXED_CST)
2440 return fold_convert_const_int_from_fixed (type, arg1);
2441 }
2442 else if (SCALAR_FLOAT_TYPE_P (type))
2443 {
2444 if (TREE_CODE (arg1) == INTEGER_CST)
2445 {
2446 tree res = build_real_from_int_cst (type, arg1);
2447 /* Avoid the folding if flag_rounding_math is on and the
2448 conversion is not exact. */
2449 if (HONOR_SIGN_DEPENDENT_ROUNDING (type))
2450 {
2451 bool fail = false;
2452 wide_int w = real_to_integer (&TREE_REAL_CST (res), &fail,
2453 TYPE_PRECISION (TREE_TYPE (arg1)));
2454 if (fail || wi::ne_p (x: w, y: wi::to_wide (t: arg1)))
2455 return NULL_TREE;
2456 }
2457 return res;
2458 }
2459 else if (TREE_CODE (arg1) == REAL_CST)
2460 return fold_convert_const_real_from_real (type, arg1);
2461 else if (TREE_CODE (arg1) == FIXED_CST)
2462 return fold_convert_const_real_from_fixed (type, arg1);
2463 }
2464 else if (FIXED_POINT_TYPE_P (type))
2465 {
2466 if (TREE_CODE (arg1) == FIXED_CST)
2467 return fold_convert_const_fixed_from_fixed (type, arg1);
2468 else if (TREE_CODE (arg1) == INTEGER_CST)
2469 return fold_convert_const_fixed_from_int (type, arg1);
2470 else if (TREE_CODE (arg1) == REAL_CST)
2471 return fold_convert_const_fixed_from_real (type, arg1);
2472 }
2473 else if (VECTOR_TYPE_P (type))
2474 {
2475 if (TREE_CODE (arg1) == VECTOR_CST
2476 && known_eq (TYPE_VECTOR_SUBPARTS (type), VECTOR_CST_NELTS (arg1)))
2477 {
2478 tree elttype = TREE_TYPE (type);
2479 tree arg1_elttype = TREE_TYPE (TREE_TYPE (arg1));
2480 /* We can't handle steps directly when extending, since the
2481 values need to wrap at the original precision first. */
2482 bool step_ok_p
2483 = (INTEGRAL_TYPE_P (elttype)
2484 && INTEGRAL_TYPE_P (arg1_elttype)
2485 && TYPE_PRECISION (elttype) <= TYPE_PRECISION (arg1_elttype));
2486 tree_vector_builder v;
2487 if (!v.new_unary_operation (shape: type, vec: arg1, allow_stepped_p: step_ok_p))
2488 return NULL_TREE;
2489 unsigned int len = v.encoded_nelts ();
2490 for (unsigned int i = 0; i < len; ++i)
2491 {
2492 tree elt = VECTOR_CST_ELT (arg1, i);
2493 tree cvt = fold_convert_const (code, type: elttype, arg1: elt);
2494 if (cvt == NULL_TREE)
2495 return NULL_TREE;
2496 v.quick_push (obj: cvt);
2497 }
2498 return v.build ();
2499 }
2500 }
2501 return NULL_TREE;
2502}
2503
2504/* Construct a vector of zero elements of vector type TYPE. */
2505
2506static tree
2507build_zero_vector (tree type)
2508{
2509 tree t;
2510
2511 t = fold_convert_const (code: NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2512 return build_vector_from_val (type, t);
2513}
2514
2515/* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2516
2517bool
2518fold_convertible_p (const_tree type, const_tree arg)
2519{
2520 const_tree orig = TREE_TYPE (arg);
2521
2522 if (type == orig)
2523 return true;
2524
2525 if (TREE_CODE (arg) == ERROR_MARK
2526 || TREE_CODE (type) == ERROR_MARK
2527 || TREE_CODE (orig) == ERROR_MARK)
2528 return false;
2529
2530 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2531 return true;
2532
2533 switch (TREE_CODE (type))
2534 {
2535 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2536 case POINTER_TYPE: case REFERENCE_TYPE:
2537 case OFFSET_TYPE:
2538 return (INTEGRAL_TYPE_P (orig)
2539 || (POINTER_TYPE_P (orig)
2540 && TYPE_PRECISION (type) <= TYPE_PRECISION (orig))
2541 || TREE_CODE (orig) == OFFSET_TYPE);
2542
2543 case REAL_TYPE:
2544 case FIXED_POINT_TYPE:
2545 case VOID_TYPE:
2546 return TREE_CODE (type) == TREE_CODE (orig);
2547
2548 case VECTOR_TYPE:
2549 return (VECTOR_TYPE_P (orig)
2550 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2551 TYPE_VECTOR_SUBPARTS (orig))
2552 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2553
2554 default:
2555 return false;
2556 }
2557}
2558
2559/* Convert expression ARG to type TYPE. Used by the middle-end for
2560 simple conversions in preference to calling the front-end's convert. */
2561
2562tree
2563fold_convert_loc (location_t loc, tree type, tree arg)
2564{
2565 tree orig = TREE_TYPE (arg);
2566 tree tem;
2567
2568 if (type == orig)
2569 return arg;
2570
2571 if (TREE_CODE (arg) == ERROR_MARK
2572 || TREE_CODE (type) == ERROR_MARK
2573 || TREE_CODE (orig) == ERROR_MARK)
2574 return error_mark_node;
2575
2576 switch (TREE_CODE (type))
2577 {
2578 case POINTER_TYPE:
2579 case REFERENCE_TYPE:
2580 /* Handle conversions between pointers to different address spaces. */
2581 if (POINTER_TYPE_P (orig)
2582 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2583 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2584 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2585 /* fall through */
2586
2587 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2588 case OFFSET_TYPE: case BITINT_TYPE:
2589 if (TREE_CODE (arg) == INTEGER_CST)
2590 {
2591 tem = fold_convert_const (code: NOP_EXPR, type, arg1: arg);
2592 if (tem != NULL_TREE)
2593 return tem;
2594 }
2595 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2596 || TREE_CODE (orig) == OFFSET_TYPE)
2597 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2598 if (TREE_CODE (orig) == COMPLEX_TYPE)
2599 return fold_convert_loc (loc, type,
2600 arg: fold_build1_loc (loc, REALPART_EXPR,
2601 TREE_TYPE (orig), arg));
2602 gcc_assert (VECTOR_TYPE_P (orig)
2603 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2604 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2605
2606 case REAL_TYPE:
2607 if (TREE_CODE (arg) == INTEGER_CST)
2608 {
2609 tem = fold_convert_const (code: FLOAT_EXPR, type, arg1: arg);
2610 if (tem != NULL_TREE)
2611 return tem;
2612 }
2613 else if (TREE_CODE (arg) == REAL_CST)
2614 {
2615 tem = fold_convert_const (code: NOP_EXPR, type, arg1: arg);
2616 if (tem != NULL_TREE)
2617 return tem;
2618 }
2619 else if (TREE_CODE (arg) == FIXED_CST)
2620 {
2621 tem = fold_convert_const (code: FIXED_CONVERT_EXPR, type, arg1: arg);
2622 if (tem != NULL_TREE)
2623 return tem;
2624 }
2625
2626 switch (TREE_CODE (orig))
2627 {
2628 case INTEGER_TYPE: case BITINT_TYPE:
2629 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2630 case POINTER_TYPE: case REFERENCE_TYPE:
2631 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2632
2633 case REAL_TYPE:
2634 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2635
2636 case FIXED_POINT_TYPE:
2637 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2638
2639 case COMPLEX_TYPE:
2640 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2641 return fold_convert_loc (loc, type, arg: tem);
2642
2643 default:
2644 gcc_unreachable ();
2645 }
2646
2647 case FIXED_POINT_TYPE:
2648 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2649 || TREE_CODE (arg) == REAL_CST)
2650 {
2651 tem = fold_convert_const (code: FIXED_CONVERT_EXPR, type, arg1: arg);
2652 if (tem != NULL_TREE)
2653 goto fold_convert_exit;
2654 }
2655
2656 switch (TREE_CODE (orig))
2657 {
2658 case FIXED_POINT_TYPE:
2659 case INTEGER_TYPE:
2660 case ENUMERAL_TYPE:
2661 case BOOLEAN_TYPE:
2662 case REAL_TYPE:
2663 case BITINT_TYPE:
2664 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2665
2666 case COMPLEX_TYPE:
2667 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2668 return fold_convert_loc (loc, type, arg: tem);
2669
2670 default:
2671 gcc_unreachable ();
2672 }
2673
2674 case COMPLEX_TYPE:
2675 switch (TREE_CODE (orig))
2676 {
2677 case INTEGER_TYPE: case BITINT_TYPE:
2678 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2679 case POINTER_TYPE: case REFERENCE_TYPE:
2680 case REAL_TYPE:
2681 case FIXED_POINT_TYPE:
2682 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2683 fold_convert_loc (loc, TREE_TYPE (type), arg),
2684 fold_convert_loc (loc, TREE_TYPE (type),
2685 integer_zero_node));
2686 case COMPLEX_TYPE:
2687 {
2688 tree rpart, ipart;
2689
2690 if (TREE_CODE (arg) == COMPLEX_EXPR)
2691 {
2692 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2693 TREE_OPERAND (arg, 0));
2694 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2695 TREE_OPERAND (arg, 1));
2696 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2697 }
2698
2699 arg = save_expr (arg);
2700 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2701 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2702 rpart = fold_convert_loc (loc, TREE_TYPE (type), arg: rpart);
2703 ipart = fold_convert_loc (loc, TREE_TYPE (type), arg: ipart);
2704 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2705 }
2706
2707 default:
2708 gcc_unreachable ();
2709 }
2710
2711 case VECTOR_TYPE:
2712 if (integer_zerop (arg))
2713 return build_zero_vector (type);
2714 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2715 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2716 || VECTOR_TYPE_P (orig));
2717 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2718
2719 case VOID_TYPE:
2720 tem = fold_ignored_result (arg);
2721 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2722
2723 default:
2724 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2725 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2726 gcc_unreachable ();
2727 }
2728 fold_convert_exit:
2729 tem = protected_set_expr_location_unshare (x: tem, loc);
2730 return tem;
2731}
2732
2733/* Return false if expr can be assumed not to be an lvalue, true
2734 otherwise. */
2735
2736static bool
2737maybe_lvalue_p (const_tree x)
2738{
2739 /* We only need to wrap lvalue tree codes. */
2740 switch (TREE_CODE (x))
2741 {
2742 case VAR_DECL:
2743 case PARM_DECL:
2744 case RESULT_DECL:
2745 case LABEL_DECL:
2746 case FUNCTION_DECL:
2747 case SSA_NAME:
2748 case COMPOUND_LITERAL_EXPR:
2749
2750 case COMPONENT_REF:
2751 case MEM_REF:
2752 case INDIRECT_REF:
2753 case ARRAY_REF:
2754 case ARRAY_RANGE_REF:
2755 case BIT_FIELD_REF:
2756 case OBJ_TYPE_REF:
2757
2758 case REALPART_EXPR:
2759 case IMAGPART_EXPR:
2760 case PREINCREMENT_EXPR:
2761 case PREDECREMENT_EXPR:
2762 case SAVE_EXPR:
2763 case TRY_CATCH_EXPR:
2764 case WITH_CLEANUP_EXPR:
2765 case COMPOUND_EXPR:
2766 case MODIFY_EXPR:
2767 case TARGET_EXPR:
2768 case COND_EXPR:
2769 case BIND_EXPR:
2770 case VIEW_CONVERT_EXPR:
2771 break;
2772
2773 default:
2774 /* Assume the worst for front-end tree codes. */
2775 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2776 break;
2777 return false;
2778 }
2779
2780 return true;
2781}
2782
2783/* Return an expr equal to X but certainly not valid as an lvalue. */
2784
2785tree
2786non_lvalue_loc (location_t loc, tree x)
2787{
2788 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2789 us. */
2790 if (in_gimple_form)
2791 return x;
2792
2793 if (! maybe_lvalue_p (x))
2794 return x;
2795 return build1_loc (loc, code: NON_LVALUE_EXPR, TREE_TYPE (x), arg1: x);
2796}
2797
2798/* Given a tree comparison code, return the code that is the logical inverse.
2799 It is generally not safe to do this for floating-point comparisons, except
2800 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2801 ERROR_MARK in this case. */
2802
2803enum tree_code
2804invert_tree_comparison (enum tree_code code, bool honor_nans)
2805{
2806 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2807 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2808 return ERROR_MARK;
2809
2810 switch (code)
2811 {
2812 case EQ_EXPR:
2813 return NE_EXPR;
2814 case NE_EXPR:
2815 return EQ_EXPR;
2816 case GT_EXPR:
2817 return honor_nans ? UNLE_EXPR : LE_EXPR;
2818 case GE_EXPR:
2819 return honor_nans ? UNLT_EXPR : LT_EXPR;
2820 case LT_EXPR:
2821 return honor_nans ? UNGE_EXPR : GE_EXPR;
2822 case LE_EXPR:
2823 return honor_nans ? UNGT_EXPR : GT_EXPR;
2824 case LTGT_EXPR:
2825 return UNEQ_EXPR;
2826 case UNEQ_EXPR:
2827 return LTGT_EXPR;
2828 case UNGT_EXPR:
2829 return LE_EXPR;
2830 case UNGE_EXPR:
2831 return LT_EXPR;
2832 case UNLT_EXPR:
2833 return GE_EXPR;
2834 case UNLE_EXPR:
2835 return GT_EXPR;
2836 case ORDERED_EXPR:
2837 return UNORDERED_EXPR;
2838 case UNORDERED_EXPR:
2839 return ORDERED_EXPR;
2840 default:
2841 gcc_unreachable ();
2842 }
2843}
2844
2845/* Similar, but return the comparison that results if the operands are
2846 swapped. This is safe for floating-point. */
2847
2848enum tree_code
2849swap_tree_comparison (enum tree_code code)
2850{
2851 switch (code)
2852 {
2853 case EQ_EXPR:
2854 case NE_EXPR:
2855 case ORDERED_EXPR:
2856 case UNORDERED_EXPR:
2857 case LTGT_EXPR:
2858 case UNEQ_EXPR:
2859 return code;
2860 case GT_EXPR:
2861 return LT_EXPR;
2862 case GE_EXPR:
2863 return LE_EXPR;
2864 case LT_EXPR:
2865 return GT_EXPR;
2866 case LE_EXPR:
2867 return GE_EXPR;
2868 case UNGT_EXPR:
2869 return UNLT_EXPR;
2870 case UNGE_EXPR:
2871 return UNLE_EXPR;
2872 case UNLT_EXPR:
2873 return UNGT_EXPR;
2874 case UNLE_EXPR:
2875 return UNGE_EXPR;
2876 default:
2877 gcc_unreachable ();
2878 }
2879}
2880
2881
2882/* Convert a comparison tree code from an enum tree_code representation
2883 into a compcode bit-based encoding. This function is the inverse of
2884 compcode_to_comparison. */
2885
2886static enum comparison_code
2887comparison_to_compcode (enum tree_code code)
2888{
2889 switch (code)
2890 {
2891 case LT_EXPR:
2892 return COMPCODE_LT;
2893 case EQ_EXPR:
2894 return COMPCODE_EQ;
2895 case LE_EXPR:
2896 return COMPCODE_LE;
2897 case GT_EXPR:
2898 return COMPCODE_GT;
2899 case NE_EXPR:
2900 return COMPCODE_NE;
2901 case GE_EXPR:
2902 return COMPCODE_GE;
2903 case ORDERED_EXPR:
2904 return COMPCODE_ORD;
2905 case UNORDERED_EXPR:
2906 return COMPCODE_UNORD;
2907 case UNLT_EXPR:
2908 return COMPCODE_UNLT;
2909 case UNEQ_EXPR:
2910 return COMPCODE_UNEQ;
2911 case UNLE_EXPR:
2912 return COMPCODE_UNLE;
2913 case UNGT_EXPR:
2914 return COMPCODE_UNGT;
2915 case LTGT_EXPR:
2916 return COMPCODE_LTGT;
2917 case UNGE_EXPR:
2918 return COMPCODE_UNGE;
2919 default:
2920 gcc_unreachable ();
2921 }
2922}
2923
2924/* Convert a compcode bit-based encoding of a comparison operator back
2925 to GCC's enum tree_code representation. This function is the
2926 inverse of comparison_to_compcode. */
2927
2928static enum tree_code
2929compcode_to_comparison (enum comparison_code code)
2930{
2931 switch (code)
2932 {
2933 case COMPCODE_LT:
2934 return LT_EXPR;
2935 case COMPCODE_EQ:
2936 return EQ_EXPR;
2937 case COMPCODE_LE:
2938 return LE_EXPR;
2939 case COMPCODE_GT:
2940 return GT_EXPR;
2941 case COMPCODE_NE:
2942 return NE_EXPR;
2943 case COMPCODE_GE:
2944 return GE_EXPR;
2945 case COMPCODE_ORD:
2946 return ORDERED_EXPR;
2947 case COMPCODE_UNORD:
2948 return UNORDERED_EXPR;
2949 case COMPCODE_UNLT:
2950 return UNLT_EXPR;
2951 case COMPCODE_UNEQ:
2952 return UNEQ_EXPR;
2953 case COMPCODE_UNLE:
2954 return UNLE_EXPR;
2955 case COMPCODE_UNGT:
2956 return UNGT_EXPR;
2957 case COMPCODE_LTGT:
2958 return LTGT_EXPR;
2959 case COMPCODE_UNGE:
2960 return UNGE_EXPR;
2961 default:
2962 gcc_unreachable ();
2963 }
2964}
2965
2966/* Return true if COND1 tests the opposite condition of COND2. */
2967
2968bool
2969inverse_conditions_p (const_tree cond1, const_tree cond2)
2970{
2971 return (COMPARISON_CLASS_P (cond1)
2972 && COMPARISON_CLASS_P (cond2)
2973 && (invert_tree_comparison
2974 (TREE_CODE (cond1),
2975 honor_nans: HONOR_NANS (TREE_OPERAND (cond1, 0))) == TREE_CODE (cond2))
2976 && operand_equal_p (TREE_OPERAND (cond1, 0),
2977 TREE_OPERAND (cond2, 0), flags: 0)
2978 && operand_equal_p (TREE_OPERAND (cond1, 1),
2979 TREE_OPERAND (cond2, 1), flags: 0));
2980}
2981
2982/* Return a tree for the comparison which is the combination of
2983 doing the AND or OR (depending on CODE) of the two operations LCODE
2984 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2985 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2986 if this makes the transformation invalid. */
2987
2988tree
2989combine_comparisons (location_t loc,
2990 enum tree_code code, enum tree_code lcode,
2991 enum tree_code rcode, tree truth_type,
2992 tree ll_arg, tree lr_arg)
2993{
2994 bool honor_nans = HONOR_NANS (ll_arg);
2995 enum comparison_code lcompcode = comparison_to_compcode (code: lcode);
2996 enum comparison_code rcompcode = comparison_to_compcode (code: rcode);
2997 int compcode;
2998
2999 switch (code)
3000 {
3001 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
3002 compcode = lcompcode & rcompcode;
3003 break;
3004
3005 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
3006 compcode = lcompcode | rcompcode;
3007 break;
3008
3009 default:
3010 return NULL_TREE;
3011 }
3012
3013 if (!honor_nans)
3014 {
3015 /* Eliminate unordered comparisons, as well as LTGT and ORD
3016 which are not used unless the mode has NaNs. */
3017 compcode &= ~COMPCODE_UNORD;
3018 if (compcode == COMPCODE_LTGT)
3019 compcode = COMPCODE_NE;
3020 else if (compcode == COMPCODE_ORD)
3021 compcode = COMPCODE_TRUE;
3022 }
3023 else if (flag_trapping_math)
3024 {
3025 /* Check that the original operation and the optimized ones will trap
3026 under the same condition. */
3027 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
3028 && (lcompcode != COMPCODE_EQ)
3029 && (lcompcode != COMPCODE_ORD);
3030 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
3031 && (rcompcode != COMPCODE_EQ)
3032 && (rcompcode != COMPCODE_ORD);
3033 bool trap = (compcode & COMPCODE_UNORD) == 0
3034 && (compcode != COMPCODE_EQ)
3035 && (compcode != COMPCODE_ORD);
3036
3037 /* In a short-circuited boolean expression the LHS might be
3038 such that the RHS, if evaluated, will never trap. For
3039 example, in ORD (x, y) && (x < y), we evaluate the RHS only
3040 if neither x nor y is NaN. (This is a mixed blessing: for
3041 example, the expression above will never trap, hence
3042 optimizing it to x < y would be invalid). */
3043 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
3044 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
3045 rtrap = false;
3046
3047 /* If the comparison was short-circuited, and only the RHS
3048 trapped, we may now generate a spurious trap. */
3049 if (rtrap && !ltrap
3050 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3051 return NULL_TREE;
3052
3053 /* If we changed the conditions that cause a trap, we lose. */
3054 if ((ltrap || rtrap) != trap)
3055 return NULL_TREE;
3056 }
3057
3058 if (compcode == COMPCODE_TRUE)
3059 return constant_boolean_node (true, truth_type);
3060 else if (compcode == COMPCODE_FALSE)
3061 return constant_boolean_node (false, truth_type);
3062 else
3063 {
3064 enum tree_code tcode;
3065
3066 tcode = compcode_to_comparison (code: (enum comparison_code) compcode);
3067 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
3068 }
3069}
3070
3071/* Return nonzero if two operands (typically of the same tree node)
3072 are necessarily equal. FLAGS modifies behavior as follows:
3073
3074 If OEP_ONLY_CONST is set, only return nonzero for constants.
3075 This function tests whether the operands are indistinguishable;
3076 it does not test whether they are equal using C's == operation.
3077 The distinction is important for IEEE floating point, because
3078 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
3079 (2) two NaNs may be indistinguishable, but NaN!=NaN.
3080
3081 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
3082 even though it may hold multiple values during a function.
3083 This is because a GCC tree node guarantees that nothing else is
3084 executed between the evaluation of its "operands" (which may often
3085 be evaluated in arbitrary order). Hence if the operands themselves
3086 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
3087 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
3088 unset means assuming isochronic (or instantaneous) tree equivalence.
3089 Unless comparing arbitrary expression trees, such as from different
3090 statements, this flag can usually be left unset.
3091
3092 If OEP_PURE_SAME is set, then pure functions with identical arguments
3093 are considered the same. It is used when the caller has other ways
3094 to ensure that global memory is unchanged in between.
3095
3096 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
3097 not values of expressions.
3098
3099 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
3100 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
3101
3102 If OEP_BITWISE is set, then require the values to be bitwise identical
3103 rather than simply numerically equal. Do not take advantage of things
3104 like math-related flags or undefined behavior; only return true for
3105 values that are provably bitwise identical in all circumstances.
3106
3107 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
3108 any operand with side effect. This is unnecesarily conservative in the
3109 case we know that arg0 and arg1 are in disjoint code paths (such as in
3110 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
3111 addresses with TREE_CONSTANT flag set so we know that &var == &var
3112 even if var is volatile. */
3113
3114bool
3115operand_compare::operand_equal_p (const_tree arg0, const_tree arg1,
3116 unsigned int flags)
3117{
3118 bool r;
3119 if (verify_hash_value (arg0, arg1, flags, ret: &r))
3120 return r;
3121
3122 STRIP_ANY_LOCATION_WRAPPER (arg0);
3123 STRIP_ANY_LOCATION_WRAPPER (arg1);
3124
3125 /* If either is ERROR_MARK, they aren't equal. */
3126 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
3127 || TREE_TYPE (arg0) == error_mark_node
3128 || TREE_TYPE (arg1) == error_mark_node)
3129 return false;
3130
3131 /* Similar, if either does not have a type (like a template id),
3132 they aren't equal. */
3133 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
3134 return false;
3135
3136 /* Bitwise identity makes no sense if the values have different layouts. */
3137 if ((flags & OEP_BITWISE)
3138 && !tree_nop_conversion_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3139 return false;
3140
3141 /* We cannot consider pointers to different address space equal. */
3142 if (POINTER_TYPE_P (TREE_TYPE (arg0))
3143 && POINTER_TYPE_P (TREE_TYPE (arg1))
3144 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
3145 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
3146 return false;
3147
3148 /* Check equality of integer constants before bailing out due to
3149 precision differences. */
3150 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
3151 {
3152 /* Address of INTEGER_CST is not defined; check that we did not forget
3153 to drop the OEP_ADDRESS_OF flags. */
3154 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3155 return tree_int_cst_equal (arg0, arg1);
3156 }
3157
3158 if (!(flags & OEP_ADDRESS_OF))
3159 {
3160 /* If both types don't have the same signedness, then we can't consider
3161 them equal. We must check this before the STRIP_NOPS calls
3162 because they may change the signedness of the arguments. As pointers
3163 strictly don't have a signedness, require either two pointers or
3164 two non-pointers as well. */
3165 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
3166 || POINTER_TYPE_P (TREE_TYPE (arg0))
3167 != POINTER_TYPE_P (TREE_TYPE (arg1)))
3168 return false;
3169
3170 /* If both types don't have the same precision, then it is not safe
3171 to strip NOPs. */
3172 if (element_precision (TREE_TYPE (arg0))
3173 != element_precision (TREE_TYPE (arg1)))
3174 return false;
3175
3176 STRIP_NOPS (arg0);
3177 STRIP_NOPS (arg1);
3178 }
3179#if 0
3180 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
3181 sanity check once the issue is solved. */
3182 else
3183 /* Addresses of conversions and SSA_NAMEs (and many other things)
3184 are not defined. Check that we did not forget to drop the
3185 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
3186 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
3187 && TREE_CODE (arg0) != SSA_NAME);
3188#endif
3189
3190 /* In case both args are comparisons but with different comparison
3191 code, try to swap the comparison operands of one arg to produce
3192 a match and compare that variant. */
3193 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3194 && COMPARISON_CLASS_P (arg0)
3195 && COMPARISON_CLASS_P (arg1))
3196 {
3197 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
3198
3199 if (TREE_CODE (arg0) == swap_code)
3200 return operand_equal_p (TREE_OPERAND (arg0, 0),
3201 TREE_OPERAND (arg1, 1), flags)
3202 && operand_equal_p (TREE_OPERAND (arg0, 1),
3203 TREE_OPERAND (arg1, 0), flags);
3204 }
3205
3206 if (TREE_CODE (arg0) != TREE_CODE (arg1))
3207 {
3208 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
3209 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
3210 ;
3211 else if (flags & OEP_ADDRESS_OF)
3212 {
3213 /* If we are interested in comparing addresses ignore
3214 MEM_REF wrappings of the base that can appear just for
3215 TBAA reasons. */
3216 if (TREE_CODE (arg0) == MEM_REF
3217 && DECL_P (arg1)
3218 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
3219 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
3220 && integer_zerop (TREE_OPERAND (arg0, 1)))
3221 return true;
3222 else if (TREE_CODE (arg1) == MEM_REF
3223 && DECL_P (arg0)
3224 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
3225 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
3226 && integer_zerop (TREE_OPERAND (arg1, 1)))
3227 return true;
3228 return false;
3229 }
3230 else
3231 return false;
3232 }
3233
3234 /* When not checking adddresses, this is needed for conversions and for
3235 COMPONENT_REF. Might as well play it safe and always test this. */
3236 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
3237 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
3238 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
3239 && !(flags & OEP_ADDRESS_OF)))
3240 return false;
3241
3242 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3243 We don't care about side effects in that case because the SAVE_EXPR
3244 takes care of that for us. In all other cases, two expressions are
3245 equal if they have no side effects. If we have two identical
3246 expressions with side effects that should be treated the same due
3247 to the only side effects being identical SAVE_EXPR's, that will
3248 be detected in the recursive calls below.
3249 If we are taking an invariant address of two identical objects
3250 they are necessarily equal as well. */
3251 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
3252 && (TREE_CODE (arg0) == SAVE_EXPR
3253 || (flags & OEP_MATCH_SIDE_EFFECTS)
3254 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
3255 return true;
3256
3257 /* Next handle constant cases, those for which we can return 1 even
3258 if ONLY_CONST is set. */
3259 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
3260 switch (TREE_CODE (arg0))
3261 {
3262 case INTEGER_CST:
3263 return tree_int_cst_equal (arg0, arg1);
3264
3265 case FIXED_CST:
3266 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
3267 TREE_FIXED_CST (arg1));
3268
3269 case REAL_CST:
3270 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
3271 return true;
3272
3273 if (!(flags & OEP_BITWISE) && !HONOR_SIGNED_ZEROS (arg0))
3274 {
3275 /* If we do not distinguish between signed and unsigned zero,
3276 consider them equal. */
3277 if (real_zerop (arg0) && real_zerop (arg1))
3278 return true;
3279 }
3280 return false;
3281
3282 case VECTOR_CST:
3283 {
3284 if (VECTOR_CST_LOG2_NPATTERNS (arg0)
3285 != VECTOR_CST_LOG2_NPATTERNS (arg1))
3286 return false;
3287
3288 if (VECTOR_CST_NELTS_PER_PATTERN (arg0)
3289 != VECTOR_CST_NELTS_PER_PATTERN (arg1))
3290 return false;
3291
3292 unsigned int count = vector_cst_encoded_nelts (t: arg0);
3293 for (unsigned int i = 0; i < count; ++i)
3294 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0, i),
3295 VECTOR_CST_ENCODED_ELT (arg1, i), flags))
3296 return false;
3297 return true;
3298 }
3299
3300 case COMPLEX_CST:
3301 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
3302 flags)
3303 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
3304 flags));
3305
3306 case STRING_CST:
3307 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
3308 && ! memcmp (TREE_STRING_POINTER (arg0),
3309 TREE_STRING_POINTER (arg1),
3310 TREE_STRING_LENGTH (arg0)));
3311
3312 case ADDR_EXPR:
3313 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3314 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
3315 flags: flags | OEP_ADDRESS_OF
3316 | OEP_MATCH_SIDE_EFFECTS);
3317 case CONSTRUCTOR:
3318 /* In GIMPLE empty constructors are allowed in initializers of
3319 aggregates. */
3320 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
3321 default:
3322 break;
3323 }
3324
3325 /* Don't handle more cases for OEP_BITWISE, since we can't guarantee that
3326 two instances of undefined behavior will give identical results. */
3327 if (flags & (OEP_ONLY_CONST | OEP_BITWISE))
3328 return false;
3329
3330/* Define macros to test an operand from arg0 and arg1 for equality and a
3331 variant that allows null and views null as being different from any
3332 non-null value. In the latter case, if either is null, the both
3333 must be; otherwise, do the normal comparison. */
3334#define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3335 TREE_OPERAND (arg1, N), flags)
3336
3337#define OP_SAME_WITH_NULL(N) \
3338 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3339 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3340
3341 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
3342 {
3343 case tcc_unary:
3344 /* Two conversions are equal only if signedness and modes match. */
3345 switch (TREE_CODE (arg0))
3346 {
3347 CASE_CONVERT:
3348 case FIX_TRUNC_EXPR:
3349 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3350 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3351 return false;
3352 break;
3353 default:
3354 break;
3355 }
3356
3357 return OP_SAME (0);
3358
3359
3360 case tcc_comparison:
3361 case tcc_binary:
3362 if (OP_SAME (0) && OP_SAME (1))
3363 return true;
3364
3365 /* For commutative ops, allow the other order. */
3366 return (commutative_tree_code (TREE_CODE (arg0))
3367 && operand_equal_p (TREE_OPERAND (arg0, 0),
3368 TREE_OPERAND (arg1, 1), flags)
3369 && operand_equal_p (TREE_OPERAND (arg0, 1),
3370 TREE_OPERAND (arg1, 0), flags));
3371
3372 case tcc_reference:
3373 /* If either of the pointer (or reference) expressions we are
3374 dereferencing contain a side effect, these cannot be equal,
3375 but their addresses can be. */
3376 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3377 && (TREE_SIDE_EFFECTS (arg0)
3378 || TREE_SIDE_EFFECTS (arg1)))
3379 return false;
3380
3381 switch (TREE_CODE (arg0))
3382 {
3383 case INDIRECT_REF:
3384 if (!(flags & OEP_ADDRESS_OF))
3385 {
3386 if (TYPE_ALIGN (TREE_TYPE (arg0))
3387 != TYPE_ALIGN (TREE_TYPE (arg1)))
3388 return false;
3389 /* Verify that the access types are compatible. */
3390 if (TYPE_MAIN_VARIANT (TREE_TYPE (arg0))
3391 != TYPE_MAIN_VARIANT (TREE_TYPE (arg1)))
3392 return false;
3393 }
3394 flags &= ~OEP_ADDRESS_OF;
3395 return OP_SAME (0);
3396
3397 case IMAGPART_EXPR:
3398 /* Require the same offset. */
3399 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3400 TYPE_SIZE (TREE_TYPE (arg1)),
3401 flags: flags & ~OEP_ADDRESS_OF))
3402 return false;
3403
3404 /* Fallthru. */
3405 case REALPART_EXPR:
3406 case VIEW_CONVERT_EXPR:
3407 return OP_SAME (0);
3408
3409 case TARGET_MEM_REF:
3410 case MEM_REF:
3411 if (!(flags & OEP_ADDRESS_OF))
3412 {
3413 /* Require equal access sizes */
3414 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3415 && (!TYPE_SIZE (TREE_TYPE (arg0))
3416 || !TYPE_SIZE (TREE_TYPE (arg1))
3417 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3418 TYPE_SIZE (TREE_TYPE (arg1)),
3419 flags)))
3420 return false;
3421 /* Verify that access happens in similar types. */
3422 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3423 return false;
3424 /* Verify that accesses are TBAA compatible. */
3425 if (!alias_ptr_types_compatible_p
3426 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3427 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3428 || (MR_DEPENDENCE_CLIQUE (arg0)
3429 != MR_DEPENDENCE_CLIQUE (arg1))
3430 || (MR_DEPENDENCE_BASE (arg0)
3431 != MR_DEPENDENCE_BASE (arg1)))
3432 return false;
3433 /* Verify that alignment is compatible. */
3434 if (TYPE_ALIGN (TREE_TYPE (arg0))
3435 != TYPE_ALIGN (TREE_TYPE (arg1)))
3436 return false;
3437 }
3438 flags &= ~OEP_ADDRESS_OF;
3439 return (OP_SAME (0) && OP_SAME (1)
3440 /* TARGET_MEM_REF require equal extra operands. */
3441 && (TREE_CODE (arg0) != TARGET_MEM_REF
3442 || (OP_SAME_WITH_NULL (2)
3443 && OP_SAME_WITH_NULL (3)
3444 && OP_SAME_WITH_NULL (4))));
3445
3446 case ARRAY_REF:
3447 case ARRAY_RANGE_REF:
3448 if (!OP_SAME (0))
3449 return false;
3450 flags &= ~OEP_ADDRESS_OF;
3451 /* Compare the array index by value if it is constant first as we
3452 may have different types but same value here. */
3453 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3454 TREE_OPERAND (arg1, 1))
3455 || OP_SAME (1))
3456 && OP_SAME_WITH_NULL (2)
3457 && OP_SAME_WITH_NULL (3)
3458 /* Compare low bound and element size as with OEP_ADDRESS_OF
3459 we have to account for the offset of the ref. */
3460 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3461 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3462 || (operand_equal_p (arg0: array_ref_low_bound
3463 (CONST_CAST_TREE (arg0)),
3464 arg1: array_ref_low_bound
3465 (CONST_CAST_TREE (arg1)), flags)
3466 && operand_equal_p (arg0: array_ref_element_size
3467 (CONST_CAST_TREE (arg0)),
3468 arg1: array_ref_element_size
3469 (CONST_CAST_TREE (arg1)),
3470 flags))));
3471
3472 case COMPONENT_REF:
3473 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3474 may be NULL when we're called to compare MEM_EXPRs. */
3475 if (!OP_SAME_WITH_NULL (0))
3476 return false;
3477 {
3478 bool compare_address = flags & OEP_ADDRESS_OF;
3479
3480 /* Most of time we only need to compare FIELD_DECLs for equality.
3481 However when determining address look into actual offsets.
3482 These may match for unions and unshared record types. */
3483 flags &= ~OEP_ADDRESS_OF;
3484 if (!OP_SAME (1))
3485 {
3486 if (compare_address
3487 && (flags & OEP_ADDRESS_OF_SAME_FIELD) == 0)
3488 {
3489 tree field0 = TREE_OPERAND (arg0, 1);
3490 tree field1 = TREE_OPERAND (arg1, 1);
3491
3492 /* Non-FIELD_DECL operands can appear in C++ templates. */
3493 if (TREE_CODE (field0) != FIELD_DECL
3494 || TREE_CODE (field1) != FIELD_DECL
3495 || !operand_equal_p (DECL_FIELD_OFFSET (field0),
3496 DECL_FIELD_OFFSET (field1), flags)
3497 || !operand_equal_p (DECL_FIELD_BIT_OFFSET (field0),
3498 DECL_FIELD_BIT_OFFSET (field1),
3499 flags))
3500 return false;
3501 }
3502 else
3503 return false;
3504 }
3505 }
3506 return OP_SAME_WITH_NULL (2);
3507
3508 case BIT_FIELD_REF:
3509 if (!OP_SAME (0))
3510 return false;
3511 flags &= ~OEP_ADDRESS_OF;
3512 return OP_SAME (1) && OP_SAME (2);
3513
3514 default:
3515 return false;
3516 }
3517
3518 case tcc_expression:
3519 switch (TREE_CODE (arg0))
3520 {
3521 case ADDR_EXPR:
3522 /* Be sure we pass right ADDRESS_OF flag. */
3523 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3524 return operand_equal_p (TREE_OPERAND (arg0, 0),
3525 TREE_OPERAND (arg1, 0),
3526 flags: flags | OEP_ADDRESS_OF);
3527
3528 case TRUTH_NOT_EXPR:
3529 return OP_SAME (0);
3530
3531 case TRUTH_ANDIF_EXPR:
3532 case TRUTH_ORIF_EXPR:
3533 return OP_SAME (0) && OP_SAME (1);
3534
3535 case WIDEN_MULT_PLUS_EXPR:
3536 case WIDEN_MULT_MINUS_EXPR:
3537 if (!OP_SAME (2))
3538 return false;
3539 /* The multiplcation operands are commutative. */
3540 /* FALLTHRU */
3541
3542 case TRUTH_AND_EXPR:
3543 case TRUTH_OR_EXPR:
3544 case TRUTH_XOR_EXPR:
3545 if (OP_SAME (0) && OP_SAME (1))
3546 return true;
3547
3548 /* Otherwise take into account this is a commutative operation. */
3549 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3550 TREE_OPERAND (arg1, 1), flags)
3551 && operand_equal_p (TREE_OPERAND (arg0, 1),
3552 TREE_OPERAND (arg1, 0), flags));
3553
3554 case COND_EXPR:
3555 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3556 return false;
3557 flags &= ~OEP_ADDRESS_OF;
3558 return OP_SAME (0);
3559
3560 case BIT_INSERT_EXPR:
3561 /* BIT_INSERT_EXPR has an implict operand as the type precision
3562 of op1. Need to check to make sure they are the same. */
3563 if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
3564 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
3565 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1)))
3566 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1))))
3567 return false;
3568 /* FALLTHRU */
3569
3570 case VEC_COND_EXPR:
3571 case DOT_PROD_EXPR:
3572 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3573
3574 case MODIFY_EXPR:
3575 case INIT_EXPR:
3576 case COMPOUND_EXPR:
3577 case PREDECREMENT_EXPR:
3578 case PREINCREMENT_EXPR:
3579 case POSTDECREMENT_EXPR:
3580 case POSTINCREMENT_EXPR:
3581 if (flags & OEP_LEXICOGRAPHIC)
3582 return OP_SAME (0) && OP_SAME (1);
3583 return false;
3584
3585 case CLEANUP_POINT_EXPR:
3586 case EXPR_STMT:
3587 case SAVE_EXPR:
3588 if (flags & OEP_LEXICOGRAPHIC)
3589 return OP_SAME (0);
3590 return false;
3591
3592 case OBJ_TYPE_REF:
3593 /* Virtual table reference. */
3594 if (!operand_equal_p (OBJ_TYPE_REF_EXPR (arg0),
3595 OBJ_TYPE_REF_EXPR (arg1), flags))
3596 return false;
3597 flags &= ~OEP_ADDRESS_OF;
3598 if (tree_to_uhwi (OBJ_TYPE_REF_TOKEN (arg0))
3599 != tree_to_uhwi (OBJ_TYPE_REF_TOKEN (arg1)))
3600 return false;
3601 if (!operand_equal_p (OBJ_TYPE_REF_OBJECT (arg0),
3602 OBJ_TYPE_REF_OBJECT (arg1), flags))
3603 return false;
3604 if (virtual_method_call_p (arg0))
3605 {
3606 if (!virtual_method_call_p (arg1))
3607 return false;
3608 return types_same_for_odr (type1: obj_type_ref_class (ref: arg0),
3609 type2: obj_type_ref_class (ref: arg1));
3610 }
3611 return false;
3612
3613 default:
3614 return false;
3615 }
3616
3617 case tcc_vl_exp:
3618 switch (TREE_CODE (arg0))
3619 {
3620 case CALL_EXPR:
3621 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3622 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3623 /* If not both CALL_EXPRs are either internal or normal function
3624 functions, then they are not equal. */
3625 return false;
3626 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3627 {
3628 /* If the CALL_EXPRs call different internal functions, then they
3629 are not equal. */
3630 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3631 return false;
3632 }
3633 else
3634 {
3635 /* If the CALL_EXPRs call different functions, then they are not
3636 equal. */
3637 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3638 flags))
3639 return false;
3640 }
3641
3642 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3643 {
3644 unsigned int cef = call_expr_flags (arg0);
3645 if (flags & OEP_PURE_SAME)
3646 cef &= ECF_CONST | ECF_PURE;
3647 else
3648 cef &= ECF_CONST;
3649 if (!cef && !(flags & OEP_LEXICOGRAPHIC))
3650 return false;
3651 }
3652
3653 /* Now see if all the arguments are the same. */
3654 {
3655 const_call_expr_arg_iterator iter0, iter1;
3656 const_tree a0, a1;
3657 for (a0 = first_const_call_expr_arg (exp: arg0, iter: &iter0),
3658 a1 = first_const_call_expr_arg (exp: arg1, iter: &iter1);
3659 a0 && a1;
3660 a0 = next_const_call_expr_arg (iter: &iter0),
3661 a1 = next_const_call_expr_arg (iter: &iter1))
3662 if (! operand_equal_p (arg0: a0, arg1: a1, flags))
3663 return false;
3664
3665 /* If we get here and both argument lists are exhausted
3666 then the CALL_EXPRs are equal. */
3667 return ! (a0 || a1);
3668 }
3669 default:
3670 return false;
3671 }
3672
3673 case tcc_declaration:
3674 /* Consider __builtin_sqrt equal to sqrt. */
3675 if (TREE_CODE (arg0) == FUNCTION_DECL)
3676 return (fndecl_built_in_p (node: arg0) && fndecl_built_in_p (node: arg1)
3677 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3678 && (DECL_UNCHECKED_FUNCTION_CODE (arg0)
3679 == DECL_UNCHECKED_FUNCTION_CODE (arg1)));
3680
3681 if (DECL_P (arg0)
3682 && (flags & OEP_DECL_NAME)
3683 && (flags & OEP_LEXICOGRAPHIC))
3684 {
3685 /* Consider decls with the same name equal. The caller needs
3686 to make sure they refer to the same entity (such as a function
3687 formal parameter). */
3688 tree a0name = DECL_NAME (arg0);
3689 tree a1name = DECL_NAME (arg1);
3690 const char *a0ns = a0name ? IDENTIFIER_POINTER (a0name) : NULL;
3691 const char *a1ns = a1name ? IDENTIFIER_POINTER (a1name) : NULL;
3692 return a0ns && a1ns && strcmp (s1: a0ns, s2: a1ns) == 0;
3693 }
3694 return false;
3695
3696 case tcc_exceptional:
3697 if (TREE_CODE (arg0) == CONSTRUCTOR)
3698 {
3699 if (CONSTRUCTOR_NO_CLEARING (arg0) != CONSTRUCTOR_NO_CLEARING (arg1))
3700 return false;
3701
3702 /* In GIMPLE constructors are used only to build vectors from
3703 elements. Individual elements in the constructor must be
3704 indexed in increasing order and form an initial sequence.
3705
3706 We make no effort to compare constructors in generic.
3707 (see sem_variable::equals in ipa-icf which can do so for
3708 constants). */
3709 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3710 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3711 return false;
3712
3713 /* Be sure that vectors constructed have the same representation.
3714 We only tested element precision and modes to match.
3715 Vectors may be BLKmode and thus also check that the number of
3716 parts match. */
3717 if (maybe_ne (a: TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)),
3718 b: TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1))))
3719 return false;
3720
3721 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3722 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3723 unsigned int len = vec_safe_length (v: v0);
3724
3725 if (len != vec_safe_length (v: v1))
3726 return false;
3727
3728 for (unsigned int i = 0; i < len; i++)
3729 {
3730 constructor_elt *c0 = &(*v0)[i];
3731 constructor_elt *c1 = &(*v1)[i];
3732
3733 if (!operand_equal_p (arg0: c0->value, arg1: c1->value, flags)
3734 /* In GIMPLE the indexes can be either NULL or matching i.
3735 Double check this so we won't get false
3736 positives for GENERIC. */
3737 || (c0->index
3738 && (TREE_CODE (c0->index) != INTEGER_CST
3739 || compare_tree_int (c0->index, i)))
3740 || (c1->index
3741 && (TREE_CODE (c1->index) != INTEGER_CST
3742 || compare_tree_int (c1->index, i))))
3743 return false;
3744 }
3745 return true;
3746 }
3747 else if (TREE_CODE (arg0) == STATEMENT_LIST
3748 && (flags & OEP_LEXICOGRAPHIC))
3749 {
3750 /* Compare the STATEMENT_LISTs. */
3751 tree_stmt_iterator tsi1, tsi2;
3752 tree body1 = CONST_CAST_TREE (arg0);
3753 tree body2 = CONST_CAST_TREE (arg1);
3754 for (tsi1 = tsi_start (t: body1), tsi2 = tsi_start (t: body2); ;
3755 tsi_next (i: &tsi1), tsi_next (i: &tsi2))
3756 {
3757 /* The lists don't have the same number of statements. */
3758 if (tsi_end_p (i: tsi1) ^ tsi_end_p (i: tsi2))
3759 return false;
3760 if (tsi_end_p (i: tsi1) && tsi_end_p (i: tsi2))
3761 return true;
3762 if (!operand_equal_p (arg0: tsi_stmt (i: tsi1), arg1: tsi_stmt (i: tsi2),
3763 flags: flags & (OEP_LEXICOGRAPHIC
3764 | OEP_NO_HASH_CHECK)))
3765 return false;
3766 }
3767 }
3768 return false;
3769
3770 case tcc_statement:
3771 switch (TREE_CODE (arg0))
3772 {
3773 case RETURN_EXPR:
3774 if (flags & OEP_LEXICOGRAPHIC)
3775 return OP_SAME_WITH_NULL (0);
3776 return false;
3777 case DEBUG_BEGIN_STMT:
3778 if (flags & OEP_LEXICOGRAPHIC)
3779 return true;
3780 return false;
3781 default:
3782 return false;
3783 }
3784
3785 default:
3786 return false;
3787 }
3788
3789#undef OP_SAME
3790#undef OP_SAME_WITH_NULL
3791}
3792
3793/* Generate a hash value for an expression. This can be used iteratively
3794 by passing a previous result as the HSTATE argument. */
3795
3796void
3797operand_compare::hash_operand (const_tree t, inchash::hash &hstate,
3798 unsigned int flags)
3799{
3800 int i;
3801 enum tree_code code;
3802 enum tree_code_class tclass;
3803
3804 if (t == NULL_TREE || t == error_mark_node)
3805 {
3806 hstate.merge_hash (other: 0);
3807 return;
3808 }
3809
3810 STRIP_ANY_LOCATION_WRAPPER (t);
3811
3812 if (!(flags & OEP_ADDRESS_OF))
3813 STRIP_NOPS (t);
3814
3815 code = TREE_CODE (t);
3816
3817 switch (code)
3818 {
3819 /* Alas, constants aren't shared, so we can't rely on pointer
3820 identity. */
3821 case VOID_CST:
3822 hstate.merge_hash (other: 0);
3823 return;
3824 case INTEGER_CST:
3825 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3826 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
3827 hstate.add_hwi (TREE_INT_CST_ELT (t, i));
3828 return;
3829 case REAL_CST:
3830 {
3831 unsigned int val2;
3832 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
3833 val2 = rvc_zero;
3834 else
3835 val2 = real_hash (TREE_REAL_CST_PTR (t));
3836 hstate.merge_hash (other: val2);
3837 return;
3838 }
3839 case FIXED_CST:
3840 {
3841 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
3842 hstate.merge_hash (other: val2);
3843 return;
3844 }
3845 case STRING_CST:
3846 hstate.add (data: (const void *) TREE_STRING_POINTER (t),
3847 TREE_STRING_LENGTH (t));
3848 return;
3849 case COMPLEX_CST:
3850 hash_operand (TREE_REALPART (t), hstate, flags);
3851 hash_operand (TREE_IMAGPART (t), hstate, flags);
3852 return;
3853 case VECTOR_CST:
3854 {
3855 hstate.add_int (VECTOR_CST_NPATTERNS (t));
3856 hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
3857 unsigned int count = vector_cst_encoded_nelts (t);
3858 for (unsigned int i = 0; i < count; ++i)
3859 hash_operand (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
3860 return;
3861 }
3862 case SSA_NAME:
3863 /* We can just compare by pointer. */
3864 hstate.add_hwi (SSA_NAME_VERSION (t));
3865 return;
3866 case PLACEHOLDER_EXPR:
3867 /* The node itself doesn't matter. */
3868 return;
3869 case BLOCK:
3870 case OMP_CLAUSE:
3871 /* Ignore. */
3872 return;
3873 case TREE_LIST:
3874 /* A list of expressions, for a CALL_EXPR or as the elements of a
3875 VECTOR_CST. */
3876 for (; t; t = TREE_CHAIN (t))
3877 hash_operand (TREE_VALUE (t), hstate, flags);
3878 return;
3879 case CONSTRUCTOR:
3880 {
3881 unsigned HOST_WIDE_INT idx;
3882 tree field, value;
3883 flags &= ~OEP_ADDRESS_OF;
3884 hstate.add_int (CONSTRUCTOR_NO_CLEARING (t));
3885 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
3886 {
3887 /* In GIMPLE the indexes can be either NULL or matching i. */
3888 if (field == NULL_TREE)
3889 field = bitsize_int (idx);
3890 hash_operand (t: field, hstate, flags);
3891 hash_operand (t: value, hstate, flags);
3892 }
3893 return;
3894 }
3895 case STATEMENT_LIST:
3896 {
3897 tree_stmt_iterator i;
3898 for (i = tsi_start (CONST_CAST_TREE (t));
3899 !tsi_end_p (i); tsi_next (i: &i))
3900 hash_operand (t: tsi_stmt (i), hstate, flags);
3901 return;
3902 }
3903 case TREE_VEC:
3904 for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
3905 hash_operand (TREE_VEC_ELT (t, i), hstate, flags);
3906 return;
3907 case IDENTIFIER_NODE:
3908 hstate.add_object (IDENTIFIER_HASH_VALUE (t));
3909 return;
3910 case FUNCTION_DECL:
3911 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
3912 Otherwise nodes that compare equal according to operand_equal_p might
3913 get different hash codes. However, don't do this for machine specific
3914 or front end builtins, since the function code is overloaded in those
3915 cases. */
3916 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
3917 && builtin_decl_explicit_p (fncode: DECL_FUNCTION_CODE (decl: t)))
3918 {
3919 t = builtin_decl_explicit (fncode: DECL_FUNCTION_CODE (decl: t));
3920 code = TREE_CODE (t);
3921 }
3922 /* FALL THROUGH */
3923 default:
3924 if (POLY_INT_CST_P (t))
3925 {
3926 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
3927 hstate.add_wide_int (x: wi::to_wide (POLY_INT_CST_COEFF (t, i)));
3928 return;
3929 }
3930 tclass = TREE_CODE_CLASS (code);
3931
3932 if (tclass == tcc_declaration)
3933 {
3934 /* DECL's have a unique ID */
3935 hstate.add_hwi (DECL_UID (t));
3936 }
3937 else if (tclass == tcc_comparison && !commutative_tree_code (code))
3938 {
3939 /* For comparisons that can be swapped, use the lower
3940 tree code. */
3941 enum tree_code ccode = swap_tree_comparison (code);
3942 if (code < ccode)
3943 ccode = code;
3944 hstate.add_object (obj&: ccode);
3945 hash_operand (TREE_OPERAND (t, ccode != code), hstate, flags);
3946 hash_operand (TREE_OPERAND (t, ccode == code), hstate, flags);
3947 }
3948 else if (CONVERT_EXPR_CODE_P (code))
3949 {
3950 /* NOP_EXPR and CONVERT_EXPR are considered equal by
3951 operand_equal_p. */
3952 enum tree_code ccode = NOP_EXPR;
3953 hstate.add_object (obj&: ccode);
3954
3955 /* Don't hash the type, that can lead to having nodes which
3956 compare equal according to operand_equal_p, but which
3957 have different hash codes. Make sure to include signedness
3958 in the hash computation. */
3959 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
3960 hash_operand (TREE_OPERAND (t, 0), hstate, flags);
3961 }
3962 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
3963 else if (code == MEM_REF
3964 && (flags & OEP_ADDRESS_OF) != 0
3965 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
3966 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
3967 && integer_zerop (TREE_OPERAND (t, 1)))
3968 hash_operand (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
3969 hstate, flags);
3970 /* Don't ICE on FE specific trees, or their arguments etc.
3971 during operand_equal_p hash verification. */
3972 else if (!IS_EXPR_CODE_CLASS (tclass))
3973 gcc_assert (flags & OEP_HASH_CHECK);
3974 else
3975 {
3976 unsigned int sflags = flags;
3977
3978 hstate.add_object (obj&: code);
3979
3980 switch (code)
3981 {
3982 case ADDR_EXPR:
3983 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3984 flags |= OEP_ADDRESS_OF;
3985 sflags = flags;
3986 break;
3987
3988 case INDIRECT_REF:
3989 case MEM_REF:
3990 case TARGET_MEM_REF:
3991 flags &= ~OEP_ADDRESS_OF;
3992 sflags = flags;
3993 break;
3994
3995 case COMPONENT_REF:
3996 if (sflags & OEP_ADDRESS_OF)
3997 {
3998 hash_operand (TREE_OPERAND (t, 0), hstate, flags);
3999 hash_operand (DECL_FIELD_OFFSET (TREE_OPERAND (t, 1)),
4000 hstate, flags: flags & ~OEP_ADDRESS_OF);
4001 hash_operand (DECL_FIELD_BIT_OFFSET (TREE_OPERAND (t, 1)),
4002 hstate, flags: flags & ~OEP_ADDRESS_OF);
4003 return;
4004 }
4005 break;
4006 case ARRAY_REF:
4007 case ARRAY_RANGE_REF:
4008 case BIT_FIELD_REF:
4009 sflags &= ~OEP_ADDRESS_OF;
4010 break;
4011
4012 case COND_EXPR:
4013 flags &= ~OEP_ADDRESS_OF;
4014 break;
4015
4016 case WIDEN_MULT_PLUS_EXPR:
4017 case WIDEN_MULT_MINUS_EXPR:
4018 {
4019 /* The multiplication operands are commutative. */
4020 inchash::hash one, two;
4021 hash_operand (TREE_OPERAND (t, 0), hstate&: one, flags);
4022 hash_operand (TREE_OPERAND (t, 1), hstate&: two, flags);
4023 hstate.add_commutative (a&: one, b&: two);
4024 hash_operand (TREE_OPERAND (t, 2), hstate&: two, flags);
4025 return;
4026 }
4027
4028 case CALL_EXPR:
4029 if (CALL_EXPR_FN (t) == NULL_TREE)
4030 hstate.add_int (CALL_EXPR_IFN (t));
4031 break;
4032
4033 case TARGET_EXPR:
4034 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
4035 Usually different TARGET_EXPRs just should use
4036 different temporaries in their slots. */
4037 hash_operand (TARGET_EXPR_SLOT (t), hstate, flags);
4038 return;
4039
4040 case OBJ_TYPE_REF:
4041 /* Virtual table reference. */
4042 inchash::add_expr (OBJ_TYPE_REF_EXPR (t), hstate, flags);
4043 flags &= ~OEP_ADDRESS_OF;
4044 inchash::add_expr (OBJ_TYPE_REF_TOKEN (t), hstate, flags);
4045 inchash::add_expr (OBJ_TYPE_REF_OBJECT (t), hstate, flags);
4046 if (!virtual_method_call_p (t))
4047 return;
4048 if (tree c = obj_type_ref_class (ref: t))
4049 {
4050 c = TYPE_NAME (TYPE_MAIN_VARIANT (c));
4051 /* We compute mangled names only when free_lang_data is run.
4052 In that case we can hash precisely. */
4053 if (TREE_CODE (c) == TYPE_DECL
4054 && DECL_ASSEMBLER_NAME_SET_P (c))
4055 hstate.add_object
4056 (IDENTIFIER_HASH_VALUE
4057 (DECL_ASSEMBLER_NAME (c)));
4058 }
4059 return;
4060 default:
4061 break;
4062 }
4063
4064 /* Don't hash the type, that can lead to having nodes which
4065 compare equal according to operand_equal_p, but which
4066 have different hash codes. */
4067 if (code == NON_LVALUE_EXPR)
4068 {
4069 /* Make sure to include signness in the hash computation. */
4070 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
4071 hash_operand (TREE_OPERAND (t, 0), hstate, flags);
4072 }
4073
4074 else if (commutative_tree_code (code))
4075 {
4076 /* It's a commutative expression. We want to hash it the same
4077 however it appears. We do this by first hashing both operands
4078 and then rehashing based on the order of their independent
4079 hashes. */
4080 inchash::hash one, two;
4081 hash_operand (TREE_OPERAND (t, 0), hstate&: one, flags);
4082 hash_operand (TREE_OPERAND (t, 1), hstate&: two, flags);
4083 hstate.add_commutative (a&: one, b&: two);
4084 }
4085 else
4086 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
4087 hash_operand (TREE_OPERAND (t, i), hstate,
4088 flags: i == 0 ? flags : sflags);
4089 }
4090 return;
4091 }
4092}
4093
4094bool
4095operand_compare::verify_hash_value (const_tree arg0, const_tree arg1,
4096 unsigned int flags, bool *ret)
4097{
4098 /* When checking and unless comparing DECL names, verify that if
4099 the outermost operand_equal_p call returns non-zero then ARG0
4100 and ARG1 have the same hash value. */
4101 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
4102 {
4103 if (operand_equal_p (arg0, arg1, flags: flags | OEP_NO_HASH_CHECK))
4104 {
4105 if (arg0 != arg1 && !(flags & OEP_DECL_NAME))
4106 {
4107 inchash::hash hstate0 (0), hstate1 (0);
4108 hash_operand (t: arg0, hstate&: hstate0, flags: flags | OEP_HASH_CHECK);
4109 hash_operand (t: arg1, hstate&: hstate1, flags: flags | OEP_HASH_CHECK);
4110 hashval_t h0 = hstate0.end ();
4111 hashval_t h1 = hstate1.end ();
4112 gcc_assert (h0 == h1);
4113 }
4114 *ret = true;
4115 }
4116 else
4117 *ret = false;
4118
4119 return true;
4120 }
4121
4122 return false;
4123}
4124
4125
4126static operand_compare default_compare_instance;
4127
4128/* Conveinece wrapper around operand_compare class because usually we do
4129 not need to play with the valueizer. */
4130
4131bool
4132operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
4133{
4134 return default_compare_instance.operand_equal_p (arg0, arg1, flags);
4135}
4136
4137namespace inchash
4138{
4139
4140/* Generate a hash value for an expression. This can be used iteratively
4141 by passing a previous result as the HSTATE argument.
4142
4143 This function is intended to produce the same hash for expressions which
4144 would compare equal using operand_equal_p. */
4145void
4146add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
4147{
4148 default_compare_instance.hash_operand (t, hstate, flags);
4149}
4150
4151}
4152
4153/* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
4154 with a different signedness or a narrower precision. */
4155
4156static bool
4157operand_equal_for_comparison_p (tree arg0, tree arg1)
4158{
4159 if (operand_equal_p (arg0, arg1, flags: 0))
4160 return true;
4161
4162 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
4163 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
4164 return false;
4165
4166 /* Discard any conversions that don't change the modes of ARG0 and ARG1
4167 and see if the inner values are the same. This removes any
4168 signedness comparison, which doesn't matter here. */
4169 tree op0 = arg0;
4170 tree op1 = arg1;
4171 STRIP_NOPS (op0);
4172 STRIP_NOPS (op1);
4173 if (operand_equal_p (arg0: op0, arg1: op1, flags: 0))
4174 return true;
4175
4176 /* Discard a single widening conversion from ARG1 and see if the inner
4177 value is the same as ARG0. */
4178 if (CONVERT_EXPR_P (arg1)
4179 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0)))
4180 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0)))
4181 < TYPE_PRECISION (TREE_TYPE (arg1))
4182 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), flags: 0))
4183 return true;
4184
4185 return false;
4186}
4187
4188/* See if ARG is an expression that is either a comparison or is performing
4189 arithmetic on comparisons. The comparisons must only be comparing
4190 two different values, which will be stored in *CVAL1 and *CVAL2; if
4191 they are nonzero it means that some operands have already been found.
4192 No variables may be used anywhere else in the expression except in the
4193 comparisons.
4194
4195 If this is true, return 1. Otherwise, return zero. */
4196
4197static bool
4198twoval_comparison_p (tree arg, tree *cval1, tree *cval2)
4199{
4200 enum tree_code code = TREE_CODE (arg);
4201 enum tree_code_class tclass = TREE_CODE_CLASS (code);
4202
4203 /* We can handle some of the tcc_expression cases here. */
4204 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
4205 tclass = tcc_unary;
4206 else if (tclass == tcc_expression
4207 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
4208 || code == COMPOUND_EXPR))
4209 tclass = tcc_binary;
4210
4211 switch (tclass)
4212 {
4213 case tcc_unary:
4214 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2);
4215
4216 case tcc_binary:
4217 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2)
4218 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2));
4219
4220 case tcc_constant:
4221 return true;
4222
4223 case tcc_expression:
4224 if (code == COND_EXPR)
4225 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2)
4226 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2)
4227 && twoval_comparison_p (TREE_OPERAND (arg, 2), cval1, cval2));
4228 return false;
4229
4230 case tcc_comparison:
4231 /* First see if we can handle the first operand, then the second. For
4232 the second operand, we know *CVAL1 can't be zero. It must be that
4233 one side of the comparison is each of the values; test for the
4234 case where this isn't true by failing if the two operands
4235 are the same. */
4236
4237 if (operand_equal_p (TREE_OPERAND (arg, 0),
4238 TREE_OPERAND (arg, 1), flags: 0))
4239 return false;
4240
4241 if (*cval1 == 0)
4242 *cval1 = TREE_OPERAND (arg, 0);
4243 else if (operand_equal_p (arg0: *cval1, TREE_OPERAND (arg, 0), flags: 0))
4244 ;
4245 else if (*cval2 == 0)
4246 *cval2 = TREE_OPERAND (arg, 0);
4247 else if (operand_equal_p (arg0: *cval2, TREE_OPERAND (arg, 0), flags: 0))
4248 ;
4249 else
4250 return false;
4251
4252 if (operand_equal_p (arg0: *cval1, TREE_OPERAND (arg, 1), flags: 0))
4253 ;
4254 else if (*cval2 == 0)
4255 *cval2 = TREE_OPERAND (arg, 1);
4256 else if (operand_equal_p (arg0: *cval2, TREE_OPERAND (arg, 1), flags: 0))
4257 ;
4258 else
4259 return false;
4260
4261 return true;
4262
4263 default:
4264 return false;
4265 }
4266}
4267
4268/* ARG is a tree that is known to contain just arithmetic operations and
4269 comparisons. Evaluate the operations in the tree substituting NEW0 for
4270 any occurrence of OLD0 as an operand of a comparison and likewise for
4271 NEW1 and OLD1. */
4272
4273static tree
4274eval_subst (location_t loc, tree arg, tree old0, tree new0,
4275 tree old1, tree new1)
4276{
4277 tree type = TREE_TYPE (arg);
4278 enum tree_code code = TREE_CODE (arg);
4279 enum tree_code_class tclass = TREE_CODE_CLASS (code);
4280
4281 /* We can handle some of the tcc_expression cases here. */
4282 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
4283 tclass = tcc_unary;
4284 else if (tclass == tcc_expression
4285 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
4286 tclass = tcc_binary;
4287
4288 switch (tclass)
4289 {
4290 case tcc_unary:
4291 return fold_build1_loc (loc, code, type,
4292 eval_subst (loc, TREE_OPERAND (arg, 0),
4293 old0, new0, old1, new1));
4294
4295 case tcc_binary:
4296 return fold_build2_loc (loc, code, type,
4297 eval_subst (loc, TREE_OPERAND (arg, 0),
4298 old0, new0, old1, new1),
4299 eval_subst (loc, TREE_OPERAND (arg, 1),
4300 old0, new0, old1, new1));
4301
4302 case tcc_expression:
4303 switch (code)
4304 {
4305 case SAVE_EXPR:
4306 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
4307 old1, new1);
4308
4309 case COMPOUND_EXPR:
4310 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
4311 old1, new1);
4312
4313 case COND_EXPR:
4314 return fold_build3_loc (loc, code, type,
4315 eval_subst (loc, TREE_OPERAND (arg, 0),
4316 old0, new0, old1, new1),
4317 eval_subst (loc, TREE_OPERAND (arg, 1),
4318 old0, new0, old1, new1),
4319 eval_subst (loc, TREE_OPERAND (arg, 2),
4320 old0, new0, old1, new1));
4321 default:
4322 break;
4323 }
4324 /* Fall through - ??? */
4325
4326 case tcc_comparison:
4327 {
4328 tree arg0 = TREE_OPERAND (arg, 0);
4329 tree arg1 = TREE_OPERAND (arg, 1);
4330
4331 /* We need to check both for exact equality and tree equality. The
4332 former will be true if the operand has a side-effect. In that
4333 case, we know the operand occurred exactly once. */
4334
4335 if (arg0 == old0 || operand_equal_p (arg0, arg1: old0, flags: 0))
4336 arg0 = new0;
4337 else if (arg0 == old1 || operand_equal_p (arg0, arg1: old1, flags: 0))
4338 arg0 = new1;
4339
4340 if (arg1 == old0 || operand_equal_p (arg0: arg1, arg1: old0, flags: 0))
4341 arg1 = new0;
4342 else if (arg1 == old1 || operand_equal_p (arg0: arg1, arg1: old1, flags: 0))
4343 arg1 = new1;
4344
4345 return fold_build2_loc (loc, code, type, arg0, arg1);
4346 }
4347
4348 default:
4349 return arg;
4350 }
4351}
4352
4353/* Return a tree for the case when the result of an expression is RESULT
4354 converted to TYPE and OMITTED was previously an operand of the expression
4355 but is now not needed (e.g., we folded OMITTED * 0).
4356
4357 If OMITTED has side effects, we must evaluate it. Otherwise, just do
4358 the conversion of RESULT to TYPE. */
4359
4360tree
4361omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
4362{
4363 tree t = fold_convert_loc (loc, type, arg: result);
4364
4365 /* If the resulting operand is an empty statement, just return the omitted
4366 statement casted to void. */
4367 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
4368 return build1_loc (loc, code: NOP_EXPR, void_type_node,
4369 arg1: fold_ignored_result (omitted));
4370
4371 if (TREE_SIDE_EFFECTS (omitted))
4372 return build2_loc (loc, code: COMPOUND_EXPR, type,
4373 arg0: fold_ignored_result (omitted), arg1: t);
4374
4375 return non_lvalue_loc (loc, x: t);
4376}
4377
4378/* Return a tree for the case when the result of an expression is RESULT
4379 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
4380 of the expression but are now not needed.
4381
4382 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
4383 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
4384 evaluated before OMITTED2. Otherwise, if neither has side effects,
4385 just do the conversion of RESULT to TYPE. */
4386
4387tree
4388omit_two_operands_loc (location_t loc, tree type, tree result,
4389 tree omitted1, tree omitted2)
4390{
4391 tree t = fold_convert_loc (loc, type, arg: result);
4392
4393 if (TREE_SIDE_EFFECTS (omitted2))
4394 t = build2_loc (loc, code: COMPOUND_EXPR, type, arg0: omitted2, arg1: t);
4395 if (TREE_SIDE_EFFECTS (omitted1))
4396 t = build2_loc (loc, code: COMPOUND_EXPR, type, arg0: omitted1, arg1: t);
4397
4398 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, x: t) : t;
4399}
4400
4401
4402/* Return a simplified tree node for the truth-negation of ARG. This
4403 never alters ARG itself. We assume that ARG is an operation that
4404 returns a truth value (0 or 1).
4405
4406 FIXME: one would think we would fold the result, but it causes
4407 problems with the dominator optimizer. */
4408
4409static tree
4410fold_truth_not_expr (location_t loc, tree arg)
4411{
4412 tree type = TREE_TYPE (arg);
4413 enum tree_code code = TREE_CODE (arg);
4414 location_t loc1, loc2;
4415
4416 /* If this is a comparison, we can simply invert it, except for
4417 floating-point non-equality comparisons, in which case we just
4418 enclose a TRUTH_NOT_EXPR around what we have. */
4419
4420 if (TREE_CODE_CLASS (code) == tcc_comparison)
4421 {
4422 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
4423 if (FLOAT_TYPE_P (op_type)
4424 && flag_trapping_math
4425 && code != ORDERED_EXPR && code != UNORDERED_EXPR
4426 && code != NE_EXPR && code != EQ_EXPR)
4427 return NULL_TREE;
4428
4429 code = invert_tree_comparison (code, honor_nans: HONOR_NANS (op_type));
4430 if (code == ERROR_MARK)
4431 return NULL_TREE;
4432
4433 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
4434 TREE_OPERAND (arg, 1));
4435 copy_warning (ret, arg);
4436 return ret;
4437 }
4438
4439 switch (code)
4440 {
4441 case INTEGER_CST:
4442 return constant_boolean_node (integer_zerop (arg), type);
4443
4444 case TRUTH_AND_EXPR:
4445 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4446 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4447 return build2_loc (loc, code: TRUTH_OR_EXPR, type,
4448 arg0: invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4449 arg1: invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4450
4451 case TRUTH_OR_EXPR:
4452 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4453 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4454 return build2_loc (loc, code: TRUTH_AND_EXPR, type,
4455 arg0: invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4456 arg1: invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4457
4458 case TRUTH_XOR_EXPR:
4459 /* Here we can invert either operand. We invert the first operand
4460 unless the second operand is a TRUTH_NOT_EXPR in which case our
4461 result is the XOR of the first operand with the inside of the
4462 negation of the second operand. */
4463
4464 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
4465 return build2_loc (loc, code: TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
4466 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
4467 else
4468 return build2_loc (loc, code: TRUTH_XOR_EXPR, type,
4469 arg0: invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
4470 TREE_OPERAND (arg, 1));
4471
4472 case TRUTH_ANDIF_EXPR:
4473 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4474 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4475 return build2_loc (loc, code: TRUTH_ORIF_EXPR, type,
4476 arg0: invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4477 arg1: invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4478
4479 case TRUTH_ORIF_EXPR:
4480 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4481 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4482 return build2_loc (loc, code: TRUTH_ANDIF_EXPR, type,
4483 arg0: invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4484 arg1: invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4485
4486 case TRUTH_NOT_EXPR:
4487 return TREE_OPERAND (arg, 0);
4488
4489 case COND_EXPR:
4490 {
4491 tree arg1 = TREE_OPERAND (arg, 1);
4492 tree arg2 = TREE_OPERAND (arg, 2);
4493
4494 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4495 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
4496
4497 /* A COND_EXPR may have a throw as one operand, which
4498 then has void type. Just leave void operands
4499 as they are. */
4500 return build3_loc (loc, code: COND_EXPR, type, TREE_OPERAND (arg, 0),
4501 VOID_TYPE_P (TREE_TYPE (arg1))
4502 ? arg1 : invert_truthvalue_loc (loc1, arg1),
4503 VOID_TYPE_P (TREE_TYPE (arg2))
4504 ? arg2 : invert_truthvalue_loc (loc2, arg2));
4505 }
4506
4507 case COMPOUND_EXPR:
4508 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4509 return build2_loc (loc, code: COMPOUND_EXPR, type,
4510 TREE_OPERAND (arg, 0),
4511 arg1: invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
4512
4513 case NON_LVALUE_EXPR:
4514 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4515 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
4516
4517 CASE_CONVERT:
4518 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
4519 return build1_loc (loc, code: TRUTH_NOT_EXPR, type, arg1: arg);
4520
4521 /* fall through */
4522
4523 case FLOAT_EXPR:
4524 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4525 return build1_loc (loc, TREE_CODE (arg), type,
4526 arg1: invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
4527
4528 case BIT_AND_EXPR:
4529 if (!integer_onep (TREE_OPERAND (arg, 1)))
4530 return NULL_TREE;
4531 return build2_loc (loc, code: EQ_EXPR, type, arg0: arg, arg1: build_int_cst (type, 0));
4532
4533 case SAVE_EXPR:
4534 return build1_loc (loc, code: TRUTH_NOT_EXPR, type, arg1: arg);
4535
4536 case CLEANUP_POINT_EXPR:
4537 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4538 return build1_loc (loc, code: CLEANUP_POINT_EXPR, type,
4539 arg1: invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
4540
4541 default:
4542 return NULL_TREE;
4543 }
4544}
4545
4546/* Fold the truth-negation of ARG. This never alters ARG itself. We
4547 assume that ARG is an operation that returns a truth value (0 or 1
4548 for scalars, 0 or -1 for vectors). Return the folded expression if
4549 folding is successful. Otherwise, return NULL_TREE. */
4550
4551static tree
4552fold_invert_truthvalue (location_t loc, tree arg)
4553{
4554 tree type = TREE_TYPE (arg);
4555 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
4556 ? BIT_NOT_EXPR
4557 : TRUTH_NOT_EXPR,
4558 type, arg);
4559}
4560
4561/* Return a simplified tree node for the truth-negation of ARG. This
4562 never alters ARG itself. We assume that ARG is an operation that
4563 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
4564
4565tree
4566invert_truthvalue_loc (location_t loc, tree arg)
4567{
4568 if (TREE_CODE (arg) == ERROR_MARK)
4569 return arg;
4570
4571 tree type = TREE_TYPE (arg);
4572 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
4573 ? BIT_NOT_EXPR
4574 : TRUTH_NOT_EXPR,
4575 type, arg);
4576}
4577
4578/* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
4579 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
4580 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
4581 is the original memory reference used to preserve the alias set of
4582 the access. */
4583
4584static tree
4585make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
4586 HOST_WIDE_INT bitsize, poly_int64 bitpos,
4587 int unsignedp, int reversep)
4588{
4589 tree result, bftype;
4590
4591 /* Attempt not to lose the access path if possible. */
4592 if (TREE_CODE (orig_inner) == COMPONENT_REF)
4593 {
4594 tree ninner = TREE_OPERAND (orig_inner, 0);
4595 machine_mode nmode;
4596 poly_int64 nbitsize, nbitpos;
4597 tree noffset;
4598 int nunsignedp, nreversep, nvolatilep = 0;
4599 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos,
4600 &noffset, &nmode, &nunsignedp,
4601 &nreversep, &nvolatilep);
4602 if (base == inner
4603 && noffset == NULL_TREE
4604 && known_subrange_p (pos1: bitpos, size1: bitsize, pos2: nbitpos, size2: nbitsize)
4605 && !reversep
4606 && !nreversep
4607 && !nvolatilep)
4608 {
4609 inner = ninner;
4610 bitpos -= nbitpos;
4611 }
4612 }
4613
4614 alias_set_type iset = get_alias_set (orig_inner);
4615 if (iset == 0 && get_alias_set (inner) != iset)
4616 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
4617 build_fold_addr_expr (inner),
4618 build_int_cst (ptr_type_node, 0));
4619
4620 if (known_eq (bitpos, 0) && !reversep)
4621 {
4622 tree size = TYPE_SIZE (TREE_TYPE (inner));
4623 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
4624 || POINTER_TYPE_P (TREE_TYPE (inner)))
4625 && tree_fits_shwi_p (size)
4626 && tree_to_shwi (size) == bitsize)
4627 return fold_convert_loc (loc, type, arg: inner);
4628 }
4629
4630 bftype = type;
4631 if (TYPE_PRECISION (bftype) != bitsize
4632 || TYPE_UNSIGNED (bftype) == !unsignedp)
4633 bftype = build_nonstandard_integer_type (bitsize, 0);
4634
4635 result = build3_loc (loc, code: BIT_FIELD_REF, type: bftype, arg0: inner,
4636 bitsize_int (bitsize), bitsize_int (bitpos));
4637 REF_REVERSE_STORAGE_ORDER (result) = reversep;
4638
4639 if (bftype != type)
4640 result = fold_convert_loc (loc, type, arg: result);
4641
4642 return result;
4643}
4644
4645/* Optimize a bit-field compare.
4646
4647 There are two cases: First is a compare against a constant and the
4648 second is a comparison of two items where the fields are at the same
4649 bit position relative to the start of a chunk (byte, halfword, word)
4650 large enough to contain it. In these cases we can avoid the shift
4651 implicit in bitfield extractions.
4652
4653 For constants, we emit a compare of the shifted constant with the
4654 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
4655 compared. For two fields at the same position, we do the ANDs with the
4656 similar mask and compare the result of the ANDs.
4657
4658 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
4659 COMPARE_TYPE is the type of the comparison, and LHS and RHS
4660 are the left and right operands of the comparison, respectively.
4661
4662 If the optimization described above can be done, we return the resulting
4663 tree. Otherwise we return zero. */
4664
4665static tree
4666optimize_bit_field_compare (location_t loc, enum tree_code code,
4667 tree compare_type, tree lhs, tree rhs)
4668{
4669 poly_int64 plbitpos, plbitsize, rbitpos, rbitsize;
4670 HOST_WIDE_INT lbitpos, lbitsize, nbitpos, nbitsize;
4671 tree type = TREE_TYPE (lhs);
4672 tree unsigned_type;
4673 int const_p = TREE_CODE (rhs) == INTEGER_CST;
4674 machine_mode lmode, rmode;
4675 scalar_int_mode nmode;
4676 int lunsignedp, runsignedp;
4677 int lreversep, rreversep;
4678 int lvolatilep = 0, rvolatilep = 0;
4679 tree linner, rinner = NULL_TREE;
4680 tree mask;
4681 tree offset;
4682
4683 /* Get all the information about the extractions being done. If the bit size
4684 is the same as the size of the underlying object, we aren't doing an
4685 extraction at all and so can do nothing. We also don't want to
4686 do anything if the inner expression is a PLACEHOLDER_EXPR since we
4687 then will no longer be able to replace it. */
4688 linner = get_inner_reference (lhs, &plbitsize, &plbitpos, &offset, &lmode,
4689 &lunsignedp, &lreversep, &lvolatilep);
4690 if (linner == lhs
4691 || !known_size_p (a: plbitsize)
4692 || !plbitsize.is_constant (const_value: &lbitsize)
4693 || !plbitpos.is_constant (const_value: &lbitpos)
4694 || known_eq (lbitsize, GET_MODE_BITSIZE (lmode))
4695 || offset != 0
4696 || TREE_CODE (linner) == PLACEHOLDER_EXPR
4697 || lvolatilep)
4698 return 0;
4699
4700 if (const_p)
4701 rreversep = lreversep;
4702 else
4703 {
4704 /* If this is not a constant, we can only do something if bit positions,
4705 sizes, signedness and storage order are the same. */
4706 rinner
4707 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
4708 &runsignedp, &rreversep, &rvolatilep);
4709
4710 if (rinner == rhs
4711 || maybe_ne (a: lbitpos, b: rbitpos)
4712 || maybe_ne (a: lbitsize, b: rbitsize)
4713 || lunsignedp != runsignedp
4714 || lreversep != rreversep
4715 || offset != 0
4716 || TREE_CODE (rinner) == PLACEHOLDER_EXPR
4717 || rvolatilep)
4718 return 0;
4719 }
4720
4721 /* Honor the C++ memory model and mimic what RTL expansion does. */
4722 poly_uint64 bitstart = 0;
4723 poly_uint64 bitend = 0;
4724 if (TREE_CODE (lhs) == COMPONENT_REF)
4725 {
4726 get_bit_range (&bitstart, &bitend, lhs, &plbitpos, &offset);
4727 if (!plbitpos.is_constant (const_value: &lbitpos) || offset != NULL_TREE)
4728 return 0;
4729 }
4730
4731 /* See if we can find a mode to refer to this field. We should be able to,
4732 but fail if we can't. */
4733 if (!get_best_mode (lbitsize, lbitpos, bitstart, bitend,
4734 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
4735 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
4736 TYPE_ALIGN (TREE_TYPE (rinner))),
4737 BITS_PER_WORD, false, &nmode))
4738 return 0;
4739
4740 /* Set signed and unsigned types of the precision of this mode for the
4741 shifts below. */
4742 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
4743
4744 /* Compute the bit position and size for the new reference and our offset
4745 within it. If the new reference is the same size as the original, we
4746 won't optimize anything, so return zero. */
4747 nbitsize = GET_MODE_BITSIZE (mode: nmode);
4748 nbitpos = lbitpos & ~ (nbitsize - 1);
4749 lbitpos -= nbitpos;
4750 if (nbitsize == lbitsize)
4751 return 0;
4752
4753 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4754 lbitpos = nbitsize - lbitsize - lbitpos;
4755
4756 /* Make the mask to be used against the extracted field. */
4757 mask = build_int_cst_type (unsigned_type, -1);
4758 mask = const_binop (code: LSHIFT_EXPR, arg1: mask, size_int (nbitsize - lbitsize));
4759 mask = const_binop (code: RSHIFT_EXPR, arg1: mask,
4760 size_int (nbitsize - lbitsize - lbitpos));
4761
4762 if (! const_p)
4763 {
4764 if (nbitpos < 0)
4765 return 0;
4766
4767 /* If not comparing with constant, just rework the comparison
4768 and return. */
4769 tree t1 = make_bit_field_ref (loc, inner: linner, orig_inner: lhs, type: unsigned_type,
4770 bitsize: nbitsize, bitpos: nbitpos, unsignedp: 1, reversep: lreversep);
4771 t1 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t1, mask);
4772 tree t2 = make_bit_field_ref (loc, inner: rinner, orig_inner: rhs, type: unsigned_type,
4773 bitsize: nbitsize, bitpos: nbitpos, unsignedp: 1, reversep: rreversep);
4774 t2 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t2, mask);
4775 return fold_build2_loc (loc, code, compare_type, t1, t2);
4776 }
4777
4778 /* Otherwise, we are handling the constant case. See if the constant is too
4779 big for the field. Warn and return a tree for 0 (false) if so. We do
4780 this not only for its own sake, but to avoid having to test for this
4781 error case below. If we didn't, we might generate wrong code.
4782
4783 For unsigned fields, the constant shifted right by the field length should
4784 be all zero. For signed fields, the high-order bits should agree with
4785 the sign bit. */
4786
4787 if (lunsignedp)
4788 {
4789 if (wi::lrshift (x: wi::to_wide (t: rhs), y: lbitsize) != 0)
4790 {
4791 warning (0, "comparison is always %d due to width of bit-field",
4792 code == NE_EXPR);
4793 return constant_boolean_node (code == NE_EXPR, compare_type);
4794 }
4795 }
4796 else
4797 {
4798 wide_int tem = wi::arshift (x: wi::to_wide (t: rhs), y: lbitsize - 1);
4799 if (tem != 0 && tem != -1)
4800 {
4801 warning (0, "comparison is always %d due to width of bit-field",
4802 code == NE_EXPR);
4803 return constant_boolean_node (code == NE_EXPR, compare_type);
4804 }
4805 }
4806
4807 if (nbitpos < 0)
4808 return 0;
4809
4810 /* Single-bit compares should always be against zero. */
4811 if (lbitsize == 1 && ! integer_zerop (rhs))
4812 {
4813 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4814 rhs = build_int_cst (type, 0);
4815 }
4816
4817 /* Make a new bitfield reference, shift the constant over the
4818 appropriate number of bits and mask it with the computed mask
4819 (in case this was a signed field). If we changed it, make a new one. */
4820 lhs = make_bit_field_ref (loc, inner: linner, orig_inner: lhs, type: unsigned_type,
4821 bitsize: nbitsize, bitpos: nbitpos, unsignedp: 1, reversep: lreversep);
4822
4823 rhs = const_binop (code: BIT_AND_EXPR,
4824 arg1: const_binop (code: LSHIFT_EXPR,
4825 arg1: fold_convert_loc (loc, type: unsigned_type, arg: rhs),
4826 size_int (lbitpos)),
4827 arg2: mask);
4828
4829 lhs = build2_loc (loc, code, type: compare_type,
4830 arg0: build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), arg1: rhs);
4831 return lhs;
4832}
4833
4834/* Subroutine for fold_truth_andor_1: decode a field reference.
4835
4836 If EXP is a comparison reference, we return the innermost reference.
4837
4838 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4839 set to the starting bit number.
4840
4841 If the innermost field can be completely contained in a mode-sized
4842 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4843
4844 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4845 otherwise it is not changed.
4846
4847 *PUNSIGNEDP is set to the signedness of the field.
4848
4849 *PREVERSEP is set to the storage order of the field.
4850
4851 *PMASK is set to the mask used. This is either contained in a
4852 BIT_AND_EXPR or derived from the width of the field.
4853
4854 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4855
4856 Return 0 if this is not a component reference or is one that we can't
4857 do anything with. */
4858
4859static tree
4860decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4861 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4862 int *punsignedp, int *preversep, int *pvolatilep,
4863 tree *pmask, tree *pand_mask)
4864{
4865 tree exp = *exp_;
4866 tree outer_type = 0;
4867 tree and_mask = 0;
4868 tree mask, inner, offset;
4869 tree unsigned_type;
4870 unsigned int precision;
4871
4872 /* All the optimizations using this function assume integer fields.
4873 There are problems with FP fields since the type_for_size call
4874 below can fail for, e.g., XFmode. */
4875 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4876 return NULL_TREE;
4877
4878 /* We are interested in the bare arrangement of bits, so strip everything
4879 that doesn't affect the machine mode. However, record the type of the
4880 outermost expression if it may matter below. */
4881 if (CONVERT_EXPR_P (exp)
4882 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4883 outer_type = TREE_TYPE (exp);
4884 STRIP_NOPS (exp);
4885
4886 if (TREE_CODE (exp) == BIT_AND_EXPR)
4887 {
4888 and_mask = TREE_OPERAND (exp, 1);
4889 exp = TREE_OPERAND (exp, 0);
4890 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4891 if (TREE_CODE (and_mask) != INTEGER_CST)
4892 return NULL_TREE;
4893 }
4894
4895 poly_int64 poly_bitsize, poly_bitpos;
4896 inner = get_inner_reference (exp, &poly_bitsize, &poly_bitpos, &offset,
4897 pmode, punsignedp, preversep, pvolatilep);
4898 if ((inner == exp && and_mask == 0)
4899 || !poly_bitsize.is_constant (const_value: pbitsize)
4900 || !poly_bitpos.is_constant (const_value: pbitpos)
4901 || *pbitsize < 0
4902 || offset != 0
4903 || TREE_CODE (inner) == PLACEHOLDER_EXPR
4904 /* Reject out-of-bound accesses (PR79731). */
4905 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner))
4906 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)),
4907 *pbitpos + *pbitsize) < 0))
4908 return NULL_TREE;
4909
4910 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4911 if (unsigned_type == NULL_TREE)
4912 return NULL_TREE;
4913
4914 *exp_ = exp;
4915
4916 /* If the number of bits in the reference is the same as the bitsize of
4917 the outer type, then the outer type gives the signedness. Otherwise
4918 (in case of a small bitfield) the signedness is unchanged. */
4919 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4920 *punsignedp = TYPE_UNSIGNED (outer_type);
4921
4922 /* Compute the mask to access the bitfield. */
4923 precision = TYPE_PRECISION (unsigned_type);
4924
4925 mask = build_int_cst_type (unsigned_type, -1);
4926
4927 mask = const_binop (code: LSHIFT_EXPR, arg1: mask, size_int (precision - *pbitsize));
4928 mask = const_binop (code: RSHIFT_EXPR, arg1: mask, size_int (precision - *pbitsize));
4929
4930 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4931 if (and_mask != 0)
4932 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4933 fold_convert_loc (loc, type: unsigned_type, arg: and_mask), mask);
4934
4935 *pmask = mask;
4936 *pand_mask = and_mask;
4937 return inner;
4938}
4939
4940/* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4941 bit positions and MASK is SIGNED. */
4942
4943static bool
4944all_ones_mask_p (const_tree mask, unsigned int size)
4945{
4946 tree type = TREE_TYPE (mask);
4947 unsigned int precision = TYPE_PRECISION (type);
4948
4949 /* If this function returns true when the type of the mask is
4950 UNSIGNED, then there will be errors. In particular see
4951 gcc.c-torture/execute/990326-1.c. There does not appear to be
4952 any documentation paper trail as to why this is so. But the pre
4953 wide-int worked with that restriction and it has been preserved
4954 here. */
4955 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4956 return false;
4957
4958 return wi::mask (width: size, negate_p: false, precision) == wi::to_wide (t: mask);
4959}
4960
4961/* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4962 represents the sign bit of EXP's type. If EXP represents a sign
4963 or zero extension, also test VAL against the unextended type.
4964 The return value is the (sub)expression whose sign bit is VAL,
4965 or NULL_TREE otherwise. */
4966
4967tree
4968sign_bit_p (tree exp, const_tree val)
4969{
4970 int width;
4971 tree t;
4972
4973 /* Tree EXP must have an integral type. */
4974 t = TREE_TYPE (exp);
4975 if (! INTEGRAL_TYPE_P (t))
4976 return NULL_TREE;
4977
4978 /* Tree VAL must be an integer constant. */
4979 if (TREE_CODE (val) != INTEGER_CST
4980 || TREE_OVERFLOW (val))
4981 return NULL_TREE;
4982
4983 width = TYPE_PRECISION (t);
4984 if (wi::only_sign_bit_p (wi::to_wide (t: val), width))
4985 return exp;
4986
4987 /* Handle extension from a narrower type. */
4988 if (TREE_CODE (exp) == NOP_EXPR
4989 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4990 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4991
4992 return NULL_TREE;
4993}
4994
4995/* Subroutine for fold_truth_andor_1 and simple_condition_p: determine if an
4996 operand is simple enough to be evaluated unconditionally. */
4997
4998static bool
4999simple_operand_p (const_tree exp)
5000{
5001 /* Strip any conversions that don't change the machine mode. */
5002 STRIP_NOPS (exp);
5003
5004 return (CONSTANT_CLASS_P (exp)
5005 || TREE_CODE (exp) == SSA_NAME
5006 || (DECL_P (exp)
5007 && ! TREE_ADDRESSABLE (exp)
5008 && ! TREE_THIS_VOLATILE (exp)
5009 && ! DECL_NONLOCAL (exp)
5010 /* Don't regard global variables as simple. They may be
5011 allocated in ways unknown to the compiler (shared memory,
5012 #pragma weak, etc). */
5013 && ! TREE_PUBLIC (exp)
5014 && ! DECL_EXTERNAL (exp)
5015 /* Weakrefs are not safe to be read, since they can be NULL.
5016 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
5017 have DECL_WEAK flag set. */
5018 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
5019 /* Loading a static variable is unduly expensive, but global
5020 registers aren't expensive. */
5021 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
5022}
5023
5024/* Determine if an operand is simple enough to be evaluated unconditionally.
5025 In addition to simple_operand_p, we assume that comparisons, conversions,
5026 and logic-not operations are simple, if their operands are simple, too. */
5027
5028bool
5029simple_condition_p (tree exp)
5030{
5031 enum tree_code code;
5032
5033 if (TREE_SIDE_EFFECTS (exp) || generic_expr_could_trap_p (expr: exp))
5034 return false;
5035
5036 while (CONVERT_EXPR_P (exp))
5037 exp = TREE_OPERAND (exp, 0);
5038
5039 code = TREE_CODE (exp);
5040
5041 if (TREE_CODE_CLASS (code) == tcc_comparison)
5042 return (simple_operand_p (TREE_OPERAND (exp, 0))
5043 && simple_operand_p (TREE_OPERAND (exp, 1)));
5044
5045 if (code == TRUTH_NOT_EXPR)
5046 return simple_condition_p (TREE_OPERAND (exp, 0));
5047
5048 return simple_operand_p (exp);
5049}
5050
5051
5052/* The following functions are subroutines to fold_range_test and allow it to
5053 try to change a logical combination of comparisons into a range test.
5054
5055 For example, both
5056 X == 2 || X == 3 || X == 4 || X == 5
5057 and
5058 X >= 2 && X <= 5
5059 are converted to
5060 (unsigned) (X - 2) <= 3
5061
5062 We describe each set of comparisons as being either inside or outside
5063 a range, using a variable named like IN_P, and then describe the
5064 range with a lower and upper bound. If one of the bounds is omitted,
5065 it represents either the highest or lowest value of the type.
5066
5067 In the comments below, we represent a range by two numbers in brackets
5068 preceded by a "+" to designate being inside that range, or a "-" to
5069 designate being outside that range, so the condition can be inverted by
5070 flipping the prefix. An omitted bound is represented by a "-". For
5071 example, "- [-, 10]" means being outside the range starting at the lowest
5072 possible value and ending at 10, in other words, being greater than 10.
5073 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
5074 always false.
5075
5076 We set up things so that the missing bounds are handled in a consistent
5077 manner so neither a missing bound nor "true" and "false" need to be
5078 handled using a special case. */
5079
5080/* Return the result of applying CODE to ARG0 and ARG1, but handle the case
5081 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
5082 and UPPER1_P are nonzero if the respective argument is an upper bound
5083 and zero for a lower. TYPE, if nonzero, is the type of the result; it
5084 must be specified for a comparison. ARG1 will be converted to ARG0's
5085 type if both are specified. */
5086
5087static tree
5088range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
5089 tree arg1, int upper1_p)
5090{
5091 tree tem;
5092 int result;
5093 int sgn0, sgn1;
5094
5095 /* If neither arg represents infinity, do the normal operation.
5096 Else, if not a comparison, return infinity. Else handle the special
5097 comparison rules. Note that most of the cases below won't occur, but
5098 are handled for consistency. */
5099
5100 if (arg0 != 0 && arg1 != 0)
5101 {
5102 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
5103 arg0, fold_convert (TREE_TYPE (arg0), arg1));
5104 STRIP_NOPS (tem);
5105 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
5106 }
5107
5108 if (TREE_CODE_CLASS (code) != tcc_comparison)
5109 return 0;
5110
5111 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
5112 for neither. In real maths, we cannot assume open ended ranges are
5113 the same. But, this is computer arithmetic, where numbers are finite.
5114 We can therefore make the transformation of any unbounded range with
5115 the value Z, Z being greater than any representable number. This permits
5116 us to treat unbounded ranges as equal. */
5117 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
5118 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
5119 switch (code)
5120 {
5121 case EQ_EXPR:
5122 result = sgn0 == sgn1;
5123 break;
5124 case NE_EXPR:
5125 result = sgn0 != sgn1;
5126 break;
5127 case LT_EXPR:
5128 result = sgn0 < sgn1;
5129 break;
5130 case LE_EXPR:
5131 result = sgn0 <= sgn1;
5132 break;
5133 case GT_EXPR:
5134 result = sgn0 > sgn1;
5135 break;
5136 case GE_EXPR:
5137 result = sgn0 >= sgn1;
5138 break;
5139 default:
5140 gcc_unreachable ();
5141 }
5142
5143 return constant_boolean_node (result, type);
5144}
5145
5146/* Helper routine for make_range. Perform one step for it, return
5147 new expression if the loop should continue or NULL_TREE if it should
5148 stop. */
5149
5150tree
5151make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
5152 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
5153 bool *strict_overflow_p)
5154{
5155 tree arg0_type = TREE_TYPE (arg0);
5156 tree n_low, n_high, low = *p_low, high = *p_high;
5157 int in_p = *p_in_p, n_in_p;
5158
5159 switch (code)
5160 {
5161 case TRUTH_NOT_EXPR:
5162 /* We can only do something if the range is testing for zero. */
5163 if (low == NULL_TREE || high == NULL_TREE
5164 || ! integer_zerop (low) || ! integer_zerop (high))
5165 return NULL_TREE;
5166 *p_in_p = ! in_p;
5167 return arg0;
5168
5169 case EQ_EXPR: case NE_EXPR:
5170 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
5171 /* We can only do something if the range is testing for zero
5172 and if the second operand is an integer constant. Note that
5173 saying something is "in" the range we make is done by
5174 complementing IN_P since it will set in the initial case of
5175 being not equal to zero; "out" is leaving it alone. */
5176 if (low == NULL_TREE || high == NULL_TREE
5177 || ! integer_zerop (low) || ! integer_zerop (high)
5178 || TREE_CODE (arg1) != INTEGER_CST)
5179 return NULL_TREE;
5180
5181 switch (code)
5182 {
5183 case NE_EXPR: /* - [c, c] */
5184 low = high = arg1;
5185 break;
5186 case EQ_EXPR: /* + [c, c] */
5187 in_p = ! in_p, low = high = arg1;
5188 break;
5189 case GT_EXPR: /* - [-, c] */
5190 low = 0, high = arg1;
5191 break;
5192 case GE_EXPR: /* + [c, -] */
5193 in_p = ! in_p, low = arg1, high = 0;
5194 break;
5195 case LT_EXPR: /* - [c, -] */
5196 low = arg1, high = 0;
5197 break;
5198 case LE_EXPR: /* + [-, c] */
5199 in_p = ! in_p, low = 0, high = arg1;
5200 break;
5201 default:
5202 gcc_unreachable ();
5203 }
5204
5205 /* If this is an unsigned comparison, we also know that EXP is
5206 greater than or equal to zero. We base the range tests we make
5207 on that fact, so we record it here so we can parse existing
5208 range tests. We test arg0_type since often the return type
5209 of, e.g. EQ_EXPR, is boolean. */
5210 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
5211 {
5212 if (! merge_ranges (&n_in_p, &n_low, &n_high,
5213 in_p, low, high, 1,
5214 build_int_cst (arg0_type, 0),
5215 NULL_TREE))
5216 return NULL_TREE;
5217
5218 in_p = n_in_p, low = n_low, high = n_high;
5219
5220 /* If the high bound is missing, but we have a nonzero low
5221 bound, reverse the range so it goes from zero to the low bound
5222 minus 1. */
5223 if (high == 0 && low && ! integer_zerop (low))
5224 {
5225 in_p = ! in_p;
5226 high = range_binop (code: MINUS_EXPR, NULL_TREE, arg0: low, upper0_p: 0,
5227 arg1: build_int_cst (TREE_TYPE (low), 1), upper1_p: 0);
5228 low = build_int_cst (arg0_type, 0);
5229 }
5230 }
5231
5232 *p_low = low;
5233 *p_high = high;
5234 *p_in_p = in_p;
5235 return arg0;
5236
5237 case NEGATE_EXPR:
5238 /* If flag_wrapv and ARG0_TYPE is signed, make sure
5239 low and high are non-NULL, then normalize will DTRT. */
5240 if (!TYPE_UNSIGNED (arg0_type)
5241 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
5242 {
5243 if (low == NULL_TREE)
5244 low = TYPE_MIN_VALUE (arg0_type);
5245 if (high == NULL_TREE)
5246 high = TYPE_MAX_VALUE (arg0_type);
5247 }
5248
5249 /* (-x) IN [a,b] -> x in [-b, -a] */
5250 n_low = range_binop (code: MINUS_EXPR, type: exp_type,
5251 arg0: build_int_cst (exp_type, 0),
5252 upper0_p: 0, arg1: high, upper1_p: 1);
5253 n_high = range_binop (code: MINUS_EXPR, type: exp_type,
5254 arg0: build_int_cst (exp_type, 0),
5255 upper0_p: 0, arg1: low, upper1_p: 0);
5256 if (n_high != 0 && TREE_OVERFLOW (n_high))
5257 return NULL_TREE;
5258 goto normalize;
5259
5260 case BIT_NOT_EXPR:
5261 /* ~ X -> -X - 1 */
5262 return build2_loc (loc, code: MINUS_EXPR, type: exp_type, arg0: negate_expr (t: arg0),
5263 arg1: build_int_cst (exp_type, 1));
5264
5265 case PLUS_EXPR:
5266 case MINUS_EXPR:
5267 if (TREE_CODE (arg1) != INTEGER_CST)
5268 return NULL_TREE;
5269
5270 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
5271 move a constant to the other side. */
5272 if (!TYPE_UNSIGNED (arg0_type)
5273 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
5274 return NULL_TREE;
5275
5276 /* If EXP is signed, any overflow in the computation is undefined,
5277 so we don't worry about it so long as our computations on
5278 the bounds don't overflow. For unsigned, overflow is defined
5279 and this is exactly the right thing. */
5280 n_low = range_binop (code: code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
5281 type: arg0_type, arg0: low, upper0_p: 0, arg1, upper1_p: 0);
5282 n_high = range_binop (code: code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
5283 type: arg0_type, arg0: high, upper0_p: 1, arg1, upper1_p: 0);
5284 if ((n_low != 0 && TREE_OVERFLOW (n_low))
5285 || (n_high != 0 && TREE_OVERFLOW (n_high)))
5286 return NULL_TREE;
5287
5288 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
5289 *strict_overflow_p = true;
5290
5291 normalize:
5292 /* Check for an unsigned range which has wrapped around the maximum
5293 value thus making n_high < n_low, and normalize it. */
5294 if (n_low && n_high && tree_int_cst_lt (t1: n_high, t2: n_low))
5295 {
5296 low = range_binop (code: PLUS_EXPR, type: arg0_type, arg0: n_high, upper0_p: 0,
5297 arg1: build_int_cst (TREE_TYPE (n_high), 1), upper1_p: 0);
5298 high = range_binop (code: MINUS_EXPR, type: arg0_type, arg0: n_low, upper0_p: 0,
5299 arg1: build_int_cst (TREE_TYPE (n_low), 1), upper1_p: 0);
5300
5301 /* If the range is of the form +/- [ x+1, x ], we won't
5302 be able to normalize it. But then, it represents the
5303 whole range or the empty set, so make it
5304 +/- [ -, - ]. */
5305 if (tree_int_cst_equal (n_low, low)
5306 && tree_int_cst_equal (n_high, high))
5307 low = high = 0;
5308 else
5309 in_p = ! in_p;
5310 }
5311 else
5312 low = n_low, high = n_high;
5313
5314 *p_low = low;
5315 *p_high = high;
5316 *p_in_p = in_p;
5317 return arg0;
5318
5319 CASE_CONVERT:
5320 case NON_LVALUE_EXPR:
5321 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
5322 return NULL_TREE;
5323
5324 if (! INTEGRAL_TYPE_P (arg0_type)
5325 || (low != 0 && ! int_fits_type_p (low, arg0_type))
5326 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
5327 return NULL_TREE;
5328
5329 n_low = low, n_high = high;
5330
5331 if (n_low != 0)
5332 n_low = fold_convert_loc (loc, type: arg0_type, arg: n_low);
5333
5334 if (n_high != 0)
5335 n_high = fold_convert_loc (loc, type: arg0_type, arg: n_high);
5336
5337 /* If we're converting arg0 from an unsigned type, to exp,
5338 a signed type, we will be doing the comparison as unsigned.
5339 The tests above have already verified that LOW and HIGH
5340 are both positive.
5341
5342 So we have to ensure that we will handle large unsigned
5343 values the same way that the current signed bounds treat
5344 negative values. */
5345
5346 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
5347 {
5348 tree high_positive;
5349 tree equiv_type;
5350 /* For fixed-point modes, we need to pass the saturating flag
5351 as the 2nd parameter. */
5352 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
5353 equiv_type
5354 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
5355 TYPE_SATURATING (arg0_type));
5356 else if (TREE_CODE (arg0_type) == BITINT_TYPE)
5357 equiv_type = arg0_type;
5358 else
5359 equiv_type
5360 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
5361
5362 /* A range without an upper bound is, naturally, unbounded.
5363 Since convert would have cropped a very large value, use
5364 the max value for the destination type. */
5365 high_positive
5366 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
5367 : TYPE_MAX_VALUE (arg0_type);
5368
5369 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
5370 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
5371 fold_convert_loc (loc, type: arg0_type,
5372 arg: high_positive),
5373 build_int_cst (arg0_type, 1));
5374
5375 /* If the low bound is specified, "and" the range with the
5376 range for which the original unsigned value will be
5377 positive. */
5378 if (low != 0)
5379 {
5380 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
5381 1, fold_convert_loc (loc, type: arg0_type,
5382 integer_zero_node),
5383 high_positive))
5384 return NULL_TREE;
5385
5386 in_p = (n_in_p == in_p);
5387 }
5388 else
5389 {
5390 /* Otherwise, "or" the range with the range of the input
5391 that will be interpreted as negative. */
5392 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
5393 1, fold_convert_loc (loc, type: arg0_type,
5394 integer_zero_node),
5395 high_positive))
5396 return NULL_TREE;
5397
5398 in_p = (in_p != n_in_p);
5399 }
5400 }
5401
5402 /* Otherwise, if we are converting arg0 from signed type, to exp,
5403 an unsigned type, we will do the comparison as signed. If
5404 high is non-NULL, we punt above if it doesn't fit in the signed
5405 type, so if we get through here, +[-, high] or +[low, high] are
5406 equivalent to +[-, n_high] or +[n_low, n_high]. Similarly,
5407 +[-, -] or -[-, -] are equivalent too. But if low is specified and
5408 high is not, the +[low, -] range is equivalent to union of
5409 +[n_low, -] and +[-, -1] ranges, so +[low, -] is equivalent to
5410 -[0, n_low-1] and similarly -[low, -] to +[0, n_low-1], except for
5411 low being 0, which should be treated as [-, -]. */
5412 else if (TYPE_UNSIGNED (exp_type)
5413 && !TYPE_UNSIGNED (arg0_type)
5414 && low
5415 && !high)
5416 {
5417 if (integer_zerop (low))
5418 n_low = NULL_TREE;
5419 else
5420 {
5421 n_high = fold_build2_loc (loc, PLUS_EXPR, arg0_type,
5422 n_low, build_int_cst (arg0_type, -1));
5423 n_low = build_zero_cst (arg0_type);
5424 in_p = !in_p;
5425 }
5426 }
5427
5428 *p_low = n_low;
5429 *p_high = n_high;
5430 *p_in_p = in_p;
5431 return arg0;
5432
5433 default:
5434 return NULL_TREE;
5435 }
5436}
5437
5438/* Given EXP, a logical expression, set the range it is testing into
5439 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
5440 actually being tested. *PLOW and *PHIGH will be made of the same
5441 type as the returned expression. If EXP is not a comparison, we
5442 will most likely not be returning a useful value and range. Set
5443 *STRICT_OVERFLOW_P to true if the return value is only valid
5444 because signed overflow is undefined; otherwise, do not change
5445 *STRICT_OVERFLOW_P. */
5446
5447tree
5448make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
5449 bool *strict_overflow_p)
5450{
5451 enum tree_code code;
5452 tree arg0, arg1 = NULL_TREE;
5453 tree exp_type, nexp;
5454 int in_p;
5455 tree low, high;
5456 location_t loc = EXPR_LOCATION (exp);
5457
5458 /* Start with simply saying "EXP != 0" and then look at the code of EXP
5459 and see if we can refine the range. Some of the cases below may not
5460 happen, but it doesn't seem worth worrying about this. We "continue"
5461 the outer loop when we've changed something; otherwise we "break"
5462 the switch, which will "break" the while. */
5463
5464 in_p = 0;
5465 low = high = build_int_cst (TREE_TYPE (exp), 0);
5466
5467 while (1)
5468 {
5469 code = TREE_CODE (exp);
5470 exp_type = TREE_TYPE (exp);
5471 arg0 = NULL_TREE;
5472
5473 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
5474 {
5475 if (TREE_OPERAND_LENGTH (exp) > 0)
5476 arg0 = TREE_OPERAND (exp, 0);
5477 if (TREE_CODE_CLASS (code) == tcc_binary
5478 || TREE_CODE_CLASS (code) == tcc_comparison
5479 || (TREE_CODE_CLASS (code) == tcc_expression
5480 && TREE_OPERAND_LENGTH (exp) > 1))
5481 arg1 = TREE_OPERAND (exp, 1);
5482 }
5483 if (arg0 == NULL_TREE)
5484 break;
5485
5486 nexp = make_range_step (loc, code, arg0, arg1, exp_type, p_low: &low,
5487 p_high: &high, p_in_p: &in_p, strict_overflow_p);
5488 if (nexp == NULL_TREE)
5489 break;
5490 exp = nexp;
5491 }
5492
5493 /* If EXP is a constant, we can evaluate whether this is true or false. */
5494 if (TREE_CODE (exp) == INTEGER_CST)
5495 {
5496 in_p = in_p == (integer_onep (range_binop (code: GE_EXPR, integer_type_node,
5497 arg0: exp, upper0_p: 0, arg1: low, upper1_p: 0))
5498 && integer_onep (range_binop (code: LE_EXPR, integer_type_node,
5499 arg0: exp, upper0_p: 1, arg1: high, upper1_p: 1)));
5500 low = high = 0;
5501 exp = 0;
5502 }
5503
5504 *pin_p = in_p, *plow = low, *phigh = high;
5505 return exp;
5506}
5507
5508/* Returns TRUE if [LOW, HIGH] range check can be optimized to
5509 a bitwise check i.e. when
5510 LOW == 0xXX...X00...0
5511 HIGH == 0xXX...X11...1
5512 Return corresponding mask in MASK and stem in VALUE. */
5513
5514static bool
5515maskable_range_p (const_tree low, const_tree high, tree type, tree *mask,
5516 tree *value)
5517{
5518 if (TREE_CODE (low) != INTEGER_CST
5519 || TREE_CODE (high) != INTEGER_CST)
5520 return false;
5521
5522 unsigned prec = TYPE_PRECISION (type);
5523 wide_int lo = wi::to_wide (t: low, prec);
5524 wide_int hi = wi::to_wide (t: high, prec);
5525
5526 wide_int end_mask = lo ^ hi;
5527 if ((end_mask & (end_mask + 1)) != 0
5528 || (lo & end_mask) != 0)
5529 return false;
5530
5531 wide_int stem_mask = ~end_mask;
5532 wide_int stem = lo & stem_mask;
5533 if (stem != (hi & stem_mask))
5534 return false;
5535
5536 *mask = wide_int_to_tree (type, cst: stem_mask);
5537 *value = wide_int_to_tree (type, cst: stem);
5538
5539 return true;
5540}
5541
5542/* Helper routine for build_range_check and match.pd. Return the type to
5543 perform the check or NULL if it shouldn't be optimized. */
5544
5545tree
5546range_check_type (tree etype)
5547{
5548 /* First make sure that arithmetics in this type is valid, then make sure
5549 that it wraps around. */
5550 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
5551 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype), 1);
5552
5553 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_UNSIGNED (etype))
5554 {
5555 tree utype, minv, maxv;
5556
5557 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
5558 for the type in question, as we rely on this here. */
5559 utype = unsigned_type_for (etype);
5560 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
5561 maxv = range_binop (code: PLUS_EXPR, NULL_TREE, arg0: maxv, upper0_p: 1,
5562 arg1: build_int_cst (TREE_TYPE (maxv), 1), upper1_p: 1);
5563 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
5564
5565 if (integer_zerop (range_binop (code: NE_EXPR, integer_type_node,
5566 arg0: minv, upper0_p: 1, arg1: maxv, upper1_p: 1)))
5567 etype = utype;
5568 else
5569 return NULL_TREE;
5570 }
5571 else if (POINTER_TYPE_P (etype)
5572 || TREE_CODE (etype) == OFFSET_TYPE
5573 /* Right now all BITINT_TYPEs satisfy
5574 (unsigned) max + 1 == (unsigned) min, so no need to verify
5575 that like for INTEGER_TYPEs. */
5576 || TREE_CODE (etype) == BITINT_TYPE)
5577 etype = unsigned_type_for (etype);
5578 return etype;
5579}
5580
5581/* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
5582 type, TYPE, return an expression to test if EXP is in (or out of, depending
5583 on IN_P) the range. Return 0 if the test couldn't be created. */
5584
5585tree
5586build_range_check (location_t loc, tree type, tree exp, int in_p,
5587 tree low, tree high)
5588{
5589 tree etype = TREE_TYPE (exp), mask, value;
5590
5591 /* Disable this optimization for function pointer expressions
5592 on targets that require function pointer canonicalization. */
5593 if (targetm.have_canonicalize_funcptr_for_compare ()
5594 && POINTER_TYPE_P (etype)
5595 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (etype)))
5596 return NULL_TREE;
5597
5598 if (! in_p)
5599 {
5600 value = build_range_check (loc, type, exp, in_p: 1, low, high);
5601 if (value != 0)
5602 return invert_truthvalue_loc (loc, arg: value);
5603
5604 return 0;
5605 }
5606
5607 if (low == 0 && high == 0)
5608 return omit_one_operand_loc (loc, type, result: build_int_cst (type, 1), omitted: exp);
5609
5610 if (low == 0)
5611 return fold_build2_loc (loc, LE_EXPR, type, exp,
5612 fold_convert_loc (loc, type: etype, arg: high));
5613
5614 if (high == 0)
5615 return fold_build2_loc (loc, GE_EXPR, type, exp,
5616 fold_convert_loc (loc, type: etype, arg: low));
5617
5618 if (operand_equal_p (arg0: low, arg1: high, flags: 0))
5619 return fold_build2_loc (loc, EQ_EXPR, type, exp,
5620 fold_convert_loc (loc, type: etype, arg: low));
5621
5622 if (TREE_CODE (exp) == BIT_AND_EXPR
5623 && maskable_range_p (low, high, type: etype, mask: &mask, value: &value))
5624 return fold_build2_loc (loc, EQ_EXPR, type,
5625 fold_build2_loc (loc, BIT_AND_EXPR, etype,
5626 exp, mask),
5627 value);
5628
5629 if (integer_zerop (low))
5630 {
5631 if (! TYPE_UNSIGNED (etype))
5632 {
5633 etype = unsigned_type_for (etype);
5634 high = fold_convert_loc (loc, type: etype, arg: high);
5635 exp = fold_convert_loc (loc, type: etype, arg: exp);
5636 }
5637 return build_range_check (loc, type, exp, in_p: 1, low: 0, high);
5638 }
5639
5640 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
5641 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
5642 {
5643 int prec = TYPE_PRECISION (etype);
5644
5645 if (wi::mask <widest_int> (width: prec - 1, negate_p: false) == wi::to_widest (t: high))
5646 {
5647 if (TYPE_UNSIGNED (etype))
5648 {
5649 tree signed_etype = signed_type_for (etype);
5650 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
5651 etype
5652 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
5653 else
5654 etype = signed_etype;
5655 exp = fold_convert_loc (loc, type: etype, arg: exp);
5656 }
5657 return fold_build2_loc (loc, GT_EXPR, type, exp,
5658 build_int_cst (etype, 0));
5659 }
5660 }
5661
5662 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
5663 This requires wrap-around arithmetics for the type of the expression. */
5664 etype = range_check_type (etype);
5665 if (etype == NULL_TREE)
5666 return NULL_TREE;
5667
5668 high = fold_convert_loc (loc, type: etype, arg: high);
5669 low = fold_convert_loc (loc, type: etype, arg: low);
5670 exp = fold_convert_loc (loc, type: etype, arg: exp);
5671
5672 value = const_binop (code: MINUS_EXPR, arg1: high, arg2: low);
5673
5674 if (value != 0 && !TREE_OVERFLOW (value))
5675 return build_range_check (loc, type,
5676 exp: fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
5677 in_p: 1, low: build_int_cst (etype, 0), high: value);
5678
5679 return 0;
5680}
5681
5682/* Return the predecessor of VAL in its type, handling the infinite case. */
5683
5684static tree
5685range_predecessor (tree val)
5686{
5687 tree type = TREE_TYPE (val);
5688
5689 if (INTEGRAL_TYPE_P (type)
5690 && operand_equal_p (arg0: val, TYPE_MIN_VALUE (type), flags: 0))
5691 return 0;
5692 else
5693 return range_binop (code: MINUS_EXPR, NULL_TREE, arg0: val, upper0_p: 0,
5694 arg1: build_int_cst (TREE_TYPE (val), 1), upper1_p: 0);
5695}
5696
5697/* Return the successor of VAL in its type, handling the infinite case. */
5698
5699static tree
5700range_successor (tree val)
5701{
5702 tree type = TREE_TYPE (val);
5703
5704 if (INTEGRAL_TYPE_P (type)
5705 && operand_equal_p (arg0: val, TYPE_MAX_VALUE (type), flags: 0))
5706 return 0;
5707 else
5708 return range_binop (code: PLUS_EXPR, NULL_TREE, arg0: val, upper0_p: 0,
5709 arg1: build_int_cst (TREE_TYPE (val), 1), upper1_p: 0);
5710}
5711
5712/* Given two ranges, see if we can merge them into one. Return 1 if we
5713 can, 0 if we can't. Set the output range into the specified parameters. */
5714
5715bool
5716merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
5717 tree high0, int in1_p, tree low1, tree high1)
5718{
5719 bool no_overlap;
5720 int subset;
5721 int temp;
5722 tree tem;
5723 int in_p;
5724 tree low, high;
5725 int lowequal = ((low0 == 0 && low1 == 0)
5726 || integer_onep (range_binop (code: EQ_EXPR, integer_type_node,
5727 arg0: low0, upper0_p: 0, arg1: low1, upper1_p: 0)));
5728 int highequal = ((high0 == 0 && high1 == 0)
5729 || integer_onep (range_binop (code: EQ_EXPR, integer_type_node,
5730 arg0: high0, upper0_p: 1, arg1: high1, upper1_p: 1)));
5731
5732 /* Make range 0 be the range that starts first, or ends last if they
5733 start at the same value. Swap them if it isn't. */
5734 if (integer_onep (range_binop (code: GT_EXPR, integer_type_node,
5735 arg0: low0, upper0_p: 0, arg1: low1, upper1_p: 0))
5736 || (lowequal
5737 && integer_onep (range_binop (code: GT_EXPR, integer_type_node,
5738 arg0: high1, upper0_p: 1, arg1: high0, upper1_p: 1))))
5739 {
5740 temp = in0_p, in0_p = in1_p, in1_p = temp;
5741 tem = low0, low0 = low1, low1 = tem;
5742 tem = high0, high0 = high1, high1 = tem;
5743 }
5744
5745 /* If the second range is != high1 where high1 is the type maximum of
5746 the type, try first merging with < high1 range. */
5747 if (low1
5748 && high1
5749 && TREE_CODE (low1) == INTEGER_CST
5750 && (TREE_CODE (TREE_TYPE (low1)) == INTEGER_TYPE
5751 || (TREE_CODE (TREE_TYPE (low1)) == ENUMERAL_TYPE
5752 && known_eq (TYPE_PRECISION (TREE_TYPE (low1)),
5753 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low1))))))
5754 && operand_equal_p (arg0: low1, arg1: high1, flags: 0))
5755 {
5756 if (tree_int_cst_equal (low1, TYPE_MAX_VALUE (TREE_TYPE (low1)))
5757 && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0,
5758 in1_p: !in1_p, NULL_TREE, high1: range_predecessor (val: low1)))
5759 return true;
5760 /* Similarly for the second range != low1 where low1 is the type minimum
5761 of the type, try first merging with > low1 range. */
5762 if (tree_int_cst_equal (low1, TYPE_MIN_VALUE (TREE_TYPE (low1)))
5763 && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0,
5764 in1_p: !in1_p, low1: range_successor (val: low1), NULL_TREE))
5765 return true;
5766 }
5767
5768 /* Now flag two cases, whether the ranges are disjoint or whether the
5769 second range is totally subsumed in the first. Note that the tests
5770 below are simplified by the ones above. */
5771 no_overlap = integer_onep (range_binop (code: LT_EXPR, integer_type_node,
5772 arg0: high0, upper0_p: 1, arg1: low1, upper1_p: 0));
5773 subset = integer_onep (range_binop (code: LE_EXPR, integer_type_node,
5774 arg0: high1, upper0_p: 1, arg1: high0, upper1_p: 1));
5775
5776 /* We now have four cases, depending on whether we are including or
5777 excluding the two ranges. */
5778 if (in0_p && in1_p)
5779 {
5780 /* If they don't overlap, the result is false. If the second range
5781 is a subset it is the result. Otherwise, the range is from the start
5782 of the second to the end of the first. */
5783 if (no_overlap)
5784 in_p = 0, low = high = 0;
5785 else if (subset)
5786 in_p = 1, low = low1, high = high1;
5787 else
5788 in_p = 1, low = low1, high = high0;
5789 }
5790
5791 else if (in0_p && ! in1_p)
5792 {
5793 /* If they don't overlap, the result is the first range. If they are
5794 equal, the result is false. If the second range is a subset of the
5795 first, and the ranges begin at the same place, we go from just after
5796 the end of the second range to the end of the first. If the second
5797 range is not a subset of the first, or if it is a subset and both
5798 ranges end at the same place, the range starts at the start of the
5799 first range and ends just before the second range.
5800 Otherwise, we can't describe this as a single range. */
5801 if (no_overlap)
5802 in_p = 1, low = low0, high = high0;
5803 else if (lowequal && highequal)
5804 in_p = 0, low = high = 0;
5805 else if (subset && lowequal)
5806 {
5807 low = range_successor (val: high1);
5808 high = high0;
5809 in_p = 1;
5810 if (low == 0)
5811 {
5812 /* We are in the weird situation where high0 > high1 but
5813 high1 has no successor. Punt. */
5814 return 0;
5815 }
5816 }
5817 else if (! subset || highequal)
5818 {
5819 low = low0;
5820 high = range_predecessor (val: low1);
5821 in_p = 1;
5822 if (high == 0)
5823 {
5824 /* low0 < low1 but low1 has no predecessor. Punt. */
5825 return 0;
5826 }
5827 }
5828 else
5829 return 0;
5830 }
5831
5832 else if (! in0_p && in1_p)
5833 {
5834 /* If they don't overlap, the result is the second range. If the second
5835 is a subset of the first, the result is false. Otherwise,
5836 the range starts just after the first range and ends at the
5837 end of the second. */
5838 if (no_overlap)
5839 in_p = 1, low = low1, high = high1;
5840 else if (subset || highequal)
5841 in_p = 0, low = high = 0;
5842 else
5843 {
5844 low = range_successor (val: high0);
5845 high = high1;
5846 in_p = 1;
5847 if (low == 0)
5848 {
5849 /* high1 > high0 but high0 has no successor. Punt. */
5850 return 0;
5851 }
5852 }
5853 }
5854
5855 else
5856 {
5857 /* The case where we are excluding both ranges. Here the complex case
5858 is if they don't overlap. In that case, the only time we have a
5859 range is if they are adjacent. If the second is a subset of the
5860 first, the result is the first. Otherwise, the range to exclude
5861 starts at the beginning of the first range and ends at the end of the
5862 second. */
5863 if (no_overlap)
5864 {
5865 if (integer_onep (range_binop (code: EQ_EXPR, integer_type_node,
5866 arg0: range_successor (val: high0),
5867 upper0_p: 1, arg1: low1, upper1_p: 0)))
5868 in_p = 0, low = low0, high = high1;
5869 else
5870 {
5871 /* Canonicalize - [min, x] into - [-, x]. */
5872 if (low0 && TREE_CODE (low0) == INTEGER_CST)
5873 switch (TREE_CODE (TREE_TYPE (low0)))
5874 {
5875 case ENUMERAL_TYPE:
5876 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0)),
5877 b: GET_MODE_BITSIZE
5878 (TYPE_MODE (TREE_TYPE (low0)))))
5879 break;
5880 /* FALLTHROUGH */
5881 case INTEGER_TYPE:
5882 if (tree_int_cst_equal (low0,
5883 TYPE_MIN_VALUE (TREE_TYPE (low0))))
5884 low0 = 0;
5885 break;
5886 case POINTER_TYPE:
5887 if (TYPE_UNSIGNED (TREE_TYPE (low0))
5888 && integer_zerop (low0))
5889 low0 = 0;
5890 break;
5891 default:
5892 break;
5893 }
5894
5895 /* Canonicalize - [x, max] into - [x, -]. */
5896 if (high1 && TREE_CODE (high1) == INTEGER_CST)
5897 switch (TREE_CODE (TREE_TYPE (high1)))
5898 {
5899 case ENUMERAL_TYPE:
5900 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1)),
5901 b: GET_MODE_BITSIZE
5902 (TYPE_MODE (TREE_TYPE (high1)))))
5903 break;
5904 /* FALLTHROUGH */
5905 case INTEGER_TYPE:
5906 if (tree_int_cst_equal (high1,
5907 TYPE_MAX_VALUE (TREE_TYPE (high1))))
5908 high1 = 0;
5909 break;
5910 case POINTER_TYPE:
5911 if (TYPE_UNSIGNED (TREE_TYPE (high1))
5912 && integer_zerop (range_binop (code: PLUS_EXPR, NULL_TREE,
5913 arg0: high1, upper0_p: 1,
5914 arg1: build_int_cst (TREE_TYPE (high1), 1),
5915 upper1_p: 1)))
5916 high1 = 0;
5917 break;
5918 default:
5919 break;
5920 }
5921
5922 /* The ranges might be also adjacent between the maximum and
5923 minimum values of the given type. For
5924 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5925 return + [x + 1, y - 1]. */
5926 if (low0 == 0 && high1 == 0)
5927 {
5928 low = range_successor (val: high0);
5929 high = range_predecessor (val: low1);
5930 if (low == 0 || high == 0)
5931 return 0;
5932
5933 in_p = 1;
5934 }
5935 else
5936 return 0;
5937 }
5938 }
5939 else if (subset)
5940 in_p = 0, low = low0, high = high0;
5941 else
5942 in_p = 0, low = low0, high = high1;
5943 }
5944
5945 *pin_p = in_p, *plow = low, *phigh = high;
5946 return 1;
5947}
5948
5949
5950/* Subroutine of fold, looking inside expressions of the form
5951 A op B ? A : C, where (ARG00, COMP_CODE, ARG01), ARG1 and ARG2
5952 are the three operands of the COND_EXPR. This function is
5953 being used also to optimize A op B ? C : A, by reversing the
5954 comparison first.
5955
5956 Return a folded expression whose code is not a COND_EXPR
5957 anymore, or NULL_TREE if no folding opportunity is found. */
5958
5959static tree
5960fold_cond_expr_with_comparison (location_t loc, tree type,
5961 enum tree_code comp_code,
5962 tree arg00, tree arg01, tree arg1, tree arg2)
5963{
5964 tree arg1_type = TREE_TYPE (arg1);
5965 tree tem;
5966
5967 STRIP_NOPS (arg1);
5968 STRIP_NOPS (arg2);
5969
5970 /* If we have A op 0 ? A : -A, consider applying the following
5971 transformations:
5972
5973 A == 0? A : -A same as -A
5974 A != 0? A : -A same as A
5975 A >= 0? A : -A same as abs (A)
5976 A > 0? A : -A same as abs (A)
5977 A <= 0? A : -A same as -abs (A)
5978 A < 0? A : -A same as -abs (A)
5979
5980 None of these transformations work for modes with signed
5981 zeros. If A is +/-0, the first two transformations will
5982 change the sign of the result (from +0 to -0, or vice
5983 versa). The last four will fix the sign of the result,
5984 even though the original expressions could be positive or
5985 negative, depending on the sign of A.
5986
5987 Note that all these transformations are correct if A is
5988 NaN, since the two alternatives (A and -A) are also NaNs. */
5989 if (!HONOR_SIGNED_ZEROS (type)
5990 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5991 ? real_zerop (arg01)
5992 : integer_zerop (arg01))
5993 && ((TREE_CODE (arg2) == NEGATE_EXPR
5994 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, flags: 0))
5995 /* In the case that A is of the form X-Y, '-A' (arg2) may
5996 have already been folded to Y-X, check for that. */
5997 || (TREE_CODE (arg1) == MINUS_EXPR
5998 && TREE_CODE (arg2) == MINUS_EXPR
5999 && operand_equal_p (TREE_OPERAND (arg1, 0),
6000 TREE_OPERAND (arg2, 1), flags: 0)
6001 && operand_equal_p (TREE_OPERAND (arg1, 1),
6002 TREE_OPERAND (arg2, 0), flags: 0))))
6003 switch (comp_code)
6004 {
6005 case EQ_EXPR:
6006 case UNEQ_EXPR:
6007 tem = fold_convert_loc (loc, type: arg1_type, arg: arg1);
6008 return fold_convert_loc (loc, type, arg: negate_expr (t: tem));
6009 case NE_EXPR:
6010 case LTGT_EXPR:
6011 return fold_convert_loc (loc, type, arg: arg1);
6012 case UNGE_EXPR:
6013 case UNGT_EXPR:
6014 if (flag_trapping_math)
6015 break;
6016 /* Fall through. */
6017 case GE_EXPR:
6018 case GT_EXPR:
6019 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
6020 break;
6021 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
6022 return fold_convert_loc (loc, type, arg: tem);
6023 case UNLE_EXPR:
6024 case UNLT_EXPR:
6025 if (flag_trapping_math)
6026 break;
6027 /* FALLTHRU */
6028 case LE_EXPR:
6029 case LT_EXPR:
6030 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
6031 break;
6032 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg1))
6033 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
6034 {
6035 /* A <= 0 ? A : -A for A INT_MIN is valid, but -abs(INT_MIN)
6036 is not, invokes UB both in abs and in the negation of it.
6037 So, use ABSU_EXPR instead. */
6038 tree utype = unsigned_type_for (TREE_TYPE (arg1));
6039 tem = fold_build1_loc (loc, ABSU_EXPR, utype, arg1);
6040 tem = negate_expr (t: tem);
6041 return fold_convert_loc (loc, type, arg: tem);
6042 }
6043 else
6044 {
6045 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
6046 return negate_expr (t: fold_convert_loc (loc, type, arg: tem));
6047 }
6048 default:
6049 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
6050 break;
6051 }
6052
6053 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
6054 A == 0 ? A : 0 is always 0 unless A is -0. Note that
6055 both transformations are correct when A is NaN: A != 0
6056 is then true, and A == 0 is false. */
6057
6058 if (!HONOR_SIGNED_ZEROS (type)
6059 && integer_zerop (arg01) && integer_zerop (arg2))
6060 {
6061 if (comp_code == NE_EXPR)
6062 return fold_convert_loc (loc, type, arg: arg1);
6063 else if (comp_code == EQ_EXPR)
6064 return build_zero_cst (type);
6065 }
6066
6067 /* Try some transformations of A op B ? A : B.
6068
6069 A == B? A : B same as B
6070 A != B? A : B same as A
6071 A >= B? A : B same as max (A, B)
6072 A > B? A : B same as max (B, A)
6073 A <= B? A : B same as min (A, B)
6074 A < B? A : B same as min (B, A)
6075
6076 As above, these transformations don't work in the presence
6077 of signed zeros. For example, if A and B are zeros of
6078 opposite sign, the first two transformations will change
6079 the sign of the result. In the last four, the original
6080 expressions give different results for (A=+0, B=-0) and
6081 (A=-0, B=+0), but the transformed expressions do not.
6082
6083 The first two transformations are correct if either A or B
6084 is a NaN. In the first transformation, the condition will
6085 be false, and B will indeed be chosen. In the case of the
6086 second transformation, the condition A != B will be true,
6087 and A will be chosen.
6088
6089 The conversions to max() and min() are not correct if B is
6090 a number and A is not. The conditions in the original
6091 expressions will be false, so all four give B. The min()
6092 and max() versions would give a NaN instead. */
6093 if (!HONOR_SIGNED_ZEROS (type)
6094 && operand_equal_for_comparison_p (arg0: arg01, arg1: arg2)
6095 /* Avoid these transformations if the COND_EXPR may be used
6096 as an lvalue in the C++ front-end. PR c++/19199. */
6097 && (in_gimple_form
6098 || VECTOR_TYPE_P (type)
6099 || (! lang_GNU_CXX ()
6100 && strcmp (s1: lang_hooks.name, s2: "GNU Objective-C++") != 0)
6101 || ! maybe_lvalue_p (x: arg1)
6102 || ! maybe_lvalue_p (x: arg2)))
6103 {
6104 tree comp_op0 = arg00;
6105 tree comp_op1 = arg01;
6106 tree comp_type = TREE_TYPE (comp_op0);
6107
6108 switch (comp_code)
6109 {
6110 case EQ_EXPR:
6111 return fold_convert_loc (loc, type, arg: arg2);
6112 case NE_EXPR:
6113 return fold_convert_loc (loc, type, arg: arg1);
6114 case LE_EXPR:
6115 case LT_EXPR:
6116 case UNLE_EXPR:
6117 case UNLT_EXPR:
6118 /* In C++ a ?: expression can be an lvalue, so put the
6119 operand which will be used if they are equal first
6120 so that we can convert this back to the
6121 corresponding COND_EXPR. */
6122 if (!HONOR_NANS (arg1))
6123 {
6124 comp_op0 = fold_convert_loc (loc, type: comp_type, arg: comp_op0);
6125 comp_op1 = fold_convert_loc (loc, type: comp_type, arg: comp_op1);
6126 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
6127 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
6128 : fold_build2_loc (loc, MIN_EXPR, comp_type,
6129 comp_op1, comp_op0);
6130 return fold_convert_loc (loc, type, arg: tem);
6131 }
6132 break;
6133 case GE_EXPR:
6134 case GT_EXPR:
6135 case UNGE_EXPR:
6136 case UNGT_EXPR:
6137 if (!HONOR_NANS (arg1))
6138 {
6139 comp_op0 = fold_convert_loc (loc, type: comp_type, arg: comp_op0);
6140 comp_op1 = fold_convert_loc (loc, type: comp_type, arg: comp_op1);
6141 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
6142 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
6143 : fold_build2_loc (loc, MAX_EXPR, comp_type,
6144 comp_op1, comp_op0);
6145 return fold_convert_loc (loc, type, arg: tem);
6146 }
6147 break;
6148 case UNEQ_EXPR:
6149 if (!HONOR_NANS (arg1))
6150 return fold_convert_loc (loc, type, arg: arg2);
6151 break;
6152 case LTGT_EXPR:
6153 if (!HONOR_NANS (arg1))
6154 return fold_convert_loc (loc, type, arg: arg1);
6155 break;
6156 default:
6157 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
6158 break;
6159 }
6160 }
6161
6162 return NULL_TREE;
6163}
6164
6165
6166
6167#ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
6168#define LOGICAL_OP_NON_SHORT_CIRCUIT \
6169 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
6170 false) >= 2)
6171#endif
6172
6173/* EXP is some logical combination of boolean tests. See if we can
6174 merge it into some range test. Return the new tree if so. */
6175
6176static tree
6177fold_range_test (location_t loc, enum tree_code code, tree type,
6178 tree op0, tree op1)
6179{
6180 int or_op = (code == TRUTH_ORIF_EXPR
6181 || code == TRUTH_OR_EXPR);
6182 int in0_p, in1_p, in_p;
6183 tree low0, low1, low, high0, high1, high;
6184 bool strict_overflow_p = false;
6185 tree tem, lhs, rhs;
6186 const char * const warnmsg = G_("assuming signed overflow does not occur "
6187 "when simplifying range test");
6188
6189 if (!INTEGRAL_TYPE_P (type))
6190 return 0;
6191
6192 lhs = make_range (exp: op0, pin_p: &in0_p, plow: &low0, phigh: &high0, strict_overflow_p: &strict_overflow_p);
6193 /* If op0 is known true or false and this is a short-circuiting
6194 operation we must not merge with op1 since that makes side-effects
6195 unconditional. So special-case this. */
6196 if (!lhs
6197 && ((code == TRUTH_ORIF_EXPR && in0_p)
6198 || (code == TRUTH_ANDIF_EXPR && !in0_p)))
6199 return op0;
6200 rhs = make_range (exp: op1, pin_p: &in1_p, plow: &low1, phigh: &high1, strict_overflow_p: &strict_overflow_p);
6201
6202 /* If this is an OR operation, invert both sides; we will invert
6203 again at the end. */
6204 if (or_op)
6205 in0_p = ! in0_p, in1_p = ! in1_p;
6206
6207 /* If both expressions are the same, if we can merge the ranges, and we
6208 can build the range test, return it or it inverted. If one of the
6209 ranges is always true or always false, consider it to be the same
6210 expression as the other. */
6211 if ((lhs == 0 || rhs == 0 || operand_equal_p (arg0: lhs, arg1: rhs, flags: 0))
6212 && merge_ranges (pin_p: &in_p, plow: &low, phigh: &high, in0_p, low0, high0,
6213 in1_p, low1, high1)
6214 && (tem = (build_range_check (loc, type,
6215 exp: lhs != 0 ? lhs
6216 : rhs != 0 ? rhs : integer_zero_node,
6217 in_p, low, high))) != 0)
6218 {
6219 if (strict_overflow_p)
6220 fold_overflow_warning (gmsgid: warnmsg, wc: WARN_STRICT_OVERFLOW_COMPARISON);
6221 return or_op ? invert_truthvalue_loc (loc, arg: tem) : tem;
6222 }
6223
6224 /* On machines where the branch cost is expensive, if this is a
6225 short-circuited branch and the underlying object on both sides
6226 is the same, make a non-short-circuit operation. */
6227 bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT;
6228 if (param_logical_op_non_short_circuit != -1)
6229 logical_op_non_short_circuit
6230 = param_logical_op_non_short_circuit;
6231 if (logical_op_non_short_circuit
6232 && !sanitize_coverage_p ()
6233 && lhs != 0 && rhs != 0
6234 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
6235 && operand_equal_p (arg0: lhs, arg1: rhs, flags: 0))
6236 {
6237 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
6238 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
6239 which cases we can't do this. */
6240 if (simple_operand_p (exp: lhs))
6241 return build2_loc (loc, code: code == TRUTH_ANDIF_EXPR
6242 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
6243 type, arg0: op0, arg1: op1);
6244
6245 else if (!lang_hooks.decls.global_bindings_p ()
6246 && !CONTAINS_PLACEHOLDER_P (lhs))
6247 {
6248 tree common = save_expr (lhs);
6249
6250 if ((lhs = build_range_check (loc, type, exp: common,
6251 in_p: or_op ? ! in0_p : in0_p,
6252 low: low0, high: high0)) != 0
6253 && (rhs = build_range_check (loc, type, exp: common,
6254 in_p: or_op ? ! in1_p : in1_p,
6255 low: low1, high: high1)) != 0)
6256 {
6257 if (strict_overflow_p)
6258 fold_overflow_warning (gmsgid: warnmsg,
6259 wc: WARN_STRICT_OVERFLOW_COMPARISON);
6260 return build2_loc (loc, code: code == TRUTH_ANDIF_EXPR
6261 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
6262 type, arg0: lhs, arg1: rhs);
6263 }
6264 }
6265 }
6266
6267 return 0;
6268}
6269
6270/* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
6271 bit value. Arrange things so the extra bits will be set to zero if and
6272 only if C is signed-extended to its full width. If MASK is nonzero,
6273 it is an INTEGER_CST that should be AND'ed with the extra bits. */
6274
6275static tree
6276unextend (tree c, int p, int unsignedp, tree mask)
6277{
6278 tree type = TREE_TYPE (c);
6279 int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type));
6280 tree temp;
6281
6282 if (p == modesize || unsignedp)
6283 return c;
6284
6285 /* We work by getting just the sign bit into the low-order bit, then
6286 into the high-order bit, then sign-extend. We then XOR that value
6287 with C. */
6288 temp = build_int_cst (TREE_TYPE (c),
6289 wi::extract_uhwi (x: wi::to_wide (t: c), bitpos: p - 1, width: 1));
6290
6291 /* We must use a signed type in order to get an arithmetic right shift.
6292 However, we must also avoid introducing accidental overflows, so that
6293 a subsequent call to integer_zerop will work. Hence we must
6294 do the type conversion here. At this point, the constant is either
6295 zero or one, and the conversion to a signed type can never overflow.
6296 We could get an overflow if this conversion is done anywhere else. */
6297 if (TYPE_UNSIGNED (type))
6298 temp = fold_convert (signed_type_for (type), temp);
6299
6300 temp = const_binop (code: LSHIFT_EXPR, arg1: temp, size_int (modesize - 1));
6301 temp = const_binop (code: RSHIFT_EXPR, arg1: temp, size_int (modesize - p - 1));
6302 if (mask != 0)
6303 temp = const_binop (code: BIT_AND_EXPR, arg1: temp,
6304 fold_convert (TREE_TYPE (c), mask));
6305 /* If necessary, convert the type back to match the type of C. */
6306 if (TYPE_UNSIGNED (type))
6307 temp = fold_convert (type, temp);
6308
6309 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
6310}
6311
6312/* For an expression that has the form
6313 (A && B) || ~B
6314 or
6315 (A || B) && ~B,
6316 we can drop one of the inner expressions and simplify to
6317 A || ~B
6318 or
6319 A && ~B
6320 LOC is the location of the resulting expression. OP is the inner
6321 logical operation; the left-hand side in the examples above, while CMPOP
6322 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
6323 removing a condition that guards another, as in
6324 (A != NULL && A->...) || A == NULL
6325 which we must not transform. If RHS_ONLY is true, only eliminate the
6326 right-most operand of the inner logical operation. */
6327
6328static tree
6329merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
6330 bool rhs_only)
6331{
6332 tree type = TREE_TYPE (cmpop);
6333 enum tree_code code = TREE_CODE (cmpop);
6334 enum tree_code truthop_code = TREE_CODE (op);
6335 tree lhs = TREE_OPERAND (op, 0);
6336 tree rhs = TREE_OPERAND (op, 1);
6337 tree orig_lhs = lhs, orig_rhs = rhs;
6338 enum tree_code rhs_code = TREE_CODE (rhs);
6339 enum tree_code lhs_code = TREE_CODE (lhs);
6340 enum tree_code inv_code;
6341
6342 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
6343 return NULL_TREE;
6344
6345 if (TREE_CODE_CLASS (code) != tcc_comparison)
6346 return NULL_TREE;
6347
6348 if (rhs_code == truthop_code)
6349 {
6350 tree newrhs = merge_truthop_with_opposite_arm (loc, op: rhs, cmpop, rhs_only);
6351 if (newrhs != NULL_TREE)
6352 {
6353 rhs = newrhs;
6354 rhs_code = TREE_CODE (rhs);
6355 }
6356 }
6357 if (lhs_code == truthop_code && !rhs_only)
6358 {
6359 tree newlhs = merge_truthop_with_opposite_arm (loc, op: lhs, cmpop, rhs_only: false);
6360 if (newlhs != NULL_TREE)
6361 {
6362 lhs = newlhs;
6363 lhs_code = TREE_CODE (lhs);
6364 }
6365 }
6366
6367 inv_code = invert_tree_comparison (code, honor_nans: HONOR_NANS (type));
6368 if (inv_code == rhs_code
6369 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), flags: 0)
6370 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), flags: 0))
6371 return lhs;
6372 if (!rhs_only && inv_code == lhs_code
6373 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), flags: 0)
6374 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), flags: 0))
6375 return rhs;
6376 if (rhs != orig_rhs || lhs != orig_lhs)
6377 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
6378 lhs, rhs);
6379 return NULL_TREE;
6380}
6381
6382/* Find ways of folding logical expressions of LHS and RHS:
6383 Try to merge two comparisons to the same innermost item.
6384 Look for range tests like "ch >= '0' && ch <= '9'".
6385 Look for combinations of simple terms on machines with expensive branches
6386 and evaluate the RHS unconditionally.
6387
6388 For example, if we have p->a == 2 && p->b == 4 and we can make an
6389 object large enough to span both A and B, we can do this with a comparison
6390 against the object ANDed with the a mask.
6391
6392 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
6393 operations to do this with one comparison.
6394
6395 We check for both normal comparisons and the BIT_AND_EXPRs made this by
6396 function and the one above.
6397
6398 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
6399 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
6400
6401 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
6402 two operands.
6403
6404 We return the simplified tree or 0 if no optimization is possible. */
6405
6406static tree
6407fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
6408 tree lhs, tree rhs)
6409{
6410 /* If this is the "or" of two comparisons, we can do something if
6411 the comparisons are NE_EXPR. If this is the "and", we can do something
6412 if the comparisons are EQ_EXPR. I.e.,
6413 (a->b == 2 && a->c == 4) can become (a->new == NEW).
6414
6415 WANTED_CODE is this operation code. For single bit fields, we can
6416 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
6417 comparison for one-bit fields. */
6418
6419 enum tree_code wanted_code;
6420 enum tree_code lcode, rcode;
6421 tree ll_arg, lr_arg, rl_arg, rr_arg;
6422 tree ll_inner, lr_inner, rl_inner, rr_inner;
6423 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
6424 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
6425 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
6426 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
6427 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
6428 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
6429 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
6430 scalar_int_mode lnmode, rnmode;
6431 tree ll_mask, lr_mask, rl_mask, rr_mask;
6432 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
6433 tree l_const, r_const;
6434 tree lntype, rntype, result;
6435 HOST_WIDE_INT first_bit, end_bit;
6436 int volatilep;
6437
6438 /* Start by getting the comparison codes. Fail if anything is volatile.
6439 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
6440 it were surrounded with a NE_EXPR. */
6441
6442 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
6443 return 0;
6444
6445 lcode = TREE_CODE (lhs);
6446 rcode = TREE_CODE (rhs);
6447
6448 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
6449 {
6450 lhs = build2 (NE_EXPR, truth_type, lhs,
6451 build_int_cst (TREE_TYPE (lhs), 0));
6452 lcode = NE_EXPR;
6453 }
6454
6455 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
6456 {
6457 rhs = build2 (NE_EXPR, truth_type, rhs,
6458 build_int_cst (TREE_TYPE (rhs), 0));
6459 rcode = NE_EXPR;
6460 }
6461
6462 if (TREE_CODE_CLASS (lcode) != tcc_comparison
6463 || TREE_CODE_CLASS (rcode) != tcc_comparison)
6464 return 0;
6465
6466 ll_arg = TREE_OPERAND (lhs, 0);
6467 lr_arg = TREE_OPERAND (lhs, 1);
6468 rl_arg = TREE_OPERAND (rhs, 0);
6469 rr_arg = TREE_OPERAND (rhs, 1);
6470
6471 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
6472 if (simple_operand_p (exp: ll_arg)
6473 && simple_operand_p (exp: lr_arg))
6474 {
6475 if (operand_equal_p (arg0: ll_arg, arg1: rl_arg, flags: 0)
6476 && operand_equal_p (arg0: lr_arg, arg1: rr_arg, flags: 0))
6477 {
6478 result = combine_comparisons (loc, code, lcode, rcode,
6479 truth_type, ll_arg, lr_arg);
6480 if (result)
6481 return result;
6482 }
6483 else if (operand_equal_p (arg0: ll_arg, arg1: rr_arg, flags: 0)
6484 && operand_equal_p (arg0: lr_arg, arg1: rl_arg, flags: 0))
6485 {
6486 result = combine_comparisons (loc, code, lcode,
6487 rcode: swap_tree_comparison (code: rcode),
6488 truth_type, ll_arg, lr_arg);
6489 if (result)
6490 return result;
6491 }
6492 }
6493
6494 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
6495 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
6496
6497 /* If the RHS can be evaluated unconditionally and its operands are
6498 simple, it wins to evaluate the RHS unconditionally on machines
6499 with expensive branches. In this case, this isn't a comparison
6500 that can be merged. */
6501
6502 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
6503 false) >= 2
6504 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
6505 && simple_operand_p (exp: rl_arg)
6506 && simple_operand_p (exp: rr_arg))
6507 {
6508 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
6509 if (code == TRUTH_OR_EXPR
6510 && lcode == NE_EXPR && integer_zerop (lr_arg)
6511 && rcode == NE_EXPR && integer_zerop (rr_arg)
6512 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
6513 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
6514 return build2_loc (loc, code: NE_EXPR, type: truth_type,
6515 arg0: build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
6516 ll_arg, rl_arg),
6517 arg1: build_int_cst (TREE_TYPE (ll_arg), 0));
6518
6519 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
6520 if (code == TRUTH_AND_EXPR
6521 && lcode == EQ_EXPR && integer_zerop (lr_arg)
6522 && rcode == EQ_EXPR && integer_zerop (rr_arg)
6523 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
6524 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
6525 return build2_loc (loc, code: EQ_EXPR, type: truth_type,
6526 arg0: build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
6527 ll_arg, rl_arg),
6528 arg1: build_int_cst (TREE_TYPE (ll_arg), 0));
6529 }
6530
6531 /* See if the comparisons can be merged. Then get all the parameters for
6532 each side. */
6533
6534 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
6535 || (rcode != EQ_EXPR && rcode != NE_EXPR))
6536 return 0;
6537
6538 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
6539 volatilep = 0;
6540 ll_inner = decode_field_reference (loc, exp_: &ll_arg,
6541 pbitsize: &ll_bitsize, pbitpos: &ll_bitpos, pmode: &ll_mode,
6542 punsignedp: &ll_unsignedp, preversep: &ll_reversep, pvolatilep: &volatilep,
6543 pmask: &ll_mask, pand_mask: &ll_and_mask);
6544 lr_inner = decode_field_reference (loc, exp_: &lr_arg,
6545 pbitsize: &lr_bitsize, pbitpos: &lr_bitpos, pmode: &lr_mode,
6546 punsignedp: &lr_unsignedp, preversep: &lr_reversep, pvolatilep: &volatilep,
6547 pmask: &lr_mask, pand_mask: &lr_and_mask);
6548 rl_inner = decode_field_reference (loc, exp_: &rl_arg,
6549 pbitsize: &rl_bitsize, pbitpos: &rl_bitpos, pmode: &rl_mode,
6550 punsignedp: &rl_unsignedp, preversep: &rl_reversep, pvolatilep: &volatilep,
6551 pmask: &rl_mask, pand_mask: &rl_and_mask);
6552 rr_inner = decode_field_reference (loc, exp_: &rr_arg,
6553 pbitsize: &rr_bitsize, pbitpos: &rr_bitpos, pmode: &rr_mode,
6554 punsignedp: &rr_unsignedp, preversep: &rr_reversep, pvolatilep: &volatilep,
6555 pmask: &rr_mask, pand_mask: &rr_and_mask);
6556
6557 /* It must be true that the inner operation on the lhs of each
6558 comparison must be the same if we are to be able to do anything.
6559 Then see if we have constants. If not, the same must be true for
6560 the rhs's. */
6561 if (volatilep
6562 || ll_reversep != rl_reversep
6563 || ll_inner == 0 || rl_inner == 0
6564 || ! operand_equal_p (arg0: ll_inner, arg1: rl_inner, flags: 0))
6565 return 0;
6566
6567 if (TREE_CODE (lr_arg) == INTEGER_CST
6568 && TREE_CODE (rr_arg) == INTEGER_CST)
6569 {
6570 l_const = lr_arg, r_const = rr_arg;
6571 lr_reversep = ll_reversep;
6572 }
6573 else if (lr_reversep != rr_reversep
6574 || lr_inner == 0 || rr_inner == 0
6575 || ! operand_equal_p (arg0: lr_inner, arg1: rr_inner, flags: 0))
6576 return 0;
6577 else
6578 l_const = r_const = 0;
6579
6580 /* If either comparison code is not correct for our logical operation,
6581 fail. However, we can convert a one-bit comparison against zero into
6582 the opposite comparison against that bit being set in the field. */
6583
6584 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
6585 if (lcode != wanted_code)
6586 {
6587 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
6588 {
6589 /* Make the left operand unsigned, since we are only interested
6590 in the value of one bit. Otherwise we are doing the wrong
6591 thing below. */
6592 ll_unsignedp = 1;
6593 l_const = ll_mask;
6594 }
6595 else
6596 return 0;
6597 }
6598
6599 /* This is analogous to the code for l_const above. */
6600 if (rcode != wanted_code)
6601 {
6602 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
6603 {
6604 rl_unsignedp = 1;
6605 r_const = rl_mask;
6606 }
6607 else
6608 return 0;
6609 }
6610
6611 /* See if we can find a mode that contains both fields being compared on
6612 the left. If we can't, fail. Otherwise, update all constants and masks
6613 to be relative to a field of that size. */
6614 first_bit = MIN (ll_bitpos, rl_bitpos);
6615 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
6616 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
6617 TYPE_ALIGN (TREE_TYPE (ll_inner)), BITS_PER_WORD,
6618 volatilep, &lnmode))
6619 return 0;
6620
6621 lnbitsize = GET_MODE_BITSIZE (mode: lnmode);
6622 lnbitpos = first_bit & ~ (lnbitsize - 1);
6623 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
6624 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
6625
6626 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
6627 {
6628 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
6629 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
6630 }
6631
6632 ll_mask = const_binop (code: LSHIFT_EXPR, arg1: fold_convert_loc (loc, type: lntype, arg: ll_mask),
6633 size_int (xll_bitpos));
6634 rl_mask = const_binop (code: LSHIFT_EXPR, arg1: fold_convert_loc (loc, type: lntype, arg: rl_mask),
6635 size_int (xrl_bitpos));
6636 if (ll_mask == NULL_TREE || rl_mask == NULL_TREE)
6637 return 0;
6638
6639 if (l_const)
6640 {
6641 l_const = fold_convert_loc (loc, type: lntype, arg: l_const);
6642 l_const = unextend (c: l_const, p: ll_bitsize, unsignedp: ll_unsignedp, mask: ll_and_mask);
6643 l_const = const_binop (code: LSHIFT_EXPR, arg1: l_const, size_int (xll_bitpos));
6644 if (l_const == NULL_TREE)
6645 return 0;
6646 if (! integer_zerop (const_binop (code: BIT_AND_EXPR, arg1: l_const,
6647 arg2: fold_build1_loc (loc, BIT_NOT_EXPR,
6648 lntype, ll_mask))))
6649 {
6650 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
6651
6652 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
6653 }
6654 }
6655 if (r_const)
6656 {
6657 r_const = fold_convert_loc (loc, type: lntype, arg: r_const);
6658 r_const = unextend (c: r_const, p: rl_bitsize, unsignedp: rl_unsignedp, mask: rl_and_mask);
6659 r_const = const_binop (code: LSHIFT_EXPR, arg1: r_const, size_int (xrl_bitpos));
6660 if (r_const == NULL_TREE)
6661 return 0;
6662 if (! integer_zerop (const_binop (code: BIT_AND_EXPR, arg1: r_const,
6663 arg2: fold_build1_loc (loc, BIT_NOT_EXPR,
6664 lntype, rl_mask))))
6665 {
6666 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
6667
6668 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
6669 }
6670 }
6671
6672 /* If the right sides are not constant, do the same for it. Also,
6673 disallow this optimization if a size, signedness or storage order
6674 mismatch occurs between the left and right sides. */
6675 if (l_const == 0)
6676 {
6677 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
6678 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
6679 || ll_reversep != lr_reversep
6680 /* Make sure the two fields on the right
6681 correspond to the left without being swapped. */
6682 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
6683 return 0;
6684
6685 first_bit = MIN (lr_bitpos, rr_bitpos);
6686 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
6687 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
6688 TYPE_ALIGN (TREE_TYPE (lr_inner)), BITS_PER_WORD,
6689 volatilep, &rnmode))
6690 return 0;
6691
6692 rnbitsize = GET_MODE_BITSIZE (mode: rnmode);
6693 rnbitpos = first_bit & ~ (rnbitsize - 1);
6694 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
6695 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
6696
6697 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
6698 {
6699 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
6700 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
6701 }
6702
6703 lr_mask = const_binop (code: LSHIFT_EXPR, arg1: fold_convert_loc (loc,
6704 type: rntype, arg: lr_mask),
6705 size_int (xlr_bitpos));
6706 rr_mask = const_binop (code: LSHIFT_EXPR, arg1: fold_convert_loc (loc,
6707 type: rntype, arg: rr_mask),
6708 size_int (xrr_bitpos));
6709 if (lr_mask == NULL_TREE || rr_mask == NULL_TREE)
6710 return 0;
6711
6712 /* Make a mask that corresponds to both fields being compared.
6713 Do this for both items being compared. If the operands are the
6714 same size and the bits being compared are in the same position
6715 then we can do this by masking both and comparing the masked
6716 results. */
6717 ll_mask = const_binop (code: BIT_IOR_EXPR, arg1: ll_mask, arg2: rl_mask);
6718 lr_mask = const_binop (code: BIT_IOR_EXPR, arg1: lr_mask, arg2: rr_mask);
6719 if (lnbitsize == rnbitsize
6720 && xll_bitpos == xlr_bitpos
6721 && lnbitpos >= 0
6722 && rnbitpos >= 0)
6723 {
6724 lhs = make_bit_field_ref (loc, inner: ll_inner, orig_inner: ll_arg,
6725 type: lntype, bitsize: lnbitsize, bitpos: lnbitpos,
6726 unsignedp: ll_unsignedp || rl_unsignedp, reversep: ll_reversep);
6727 if (! all_ones_mask_p (mask: ll_mask, size: lnbitsize))
6728 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
6729
6730 rhs = make_bit_field_ref (loc, inner: lr_inner, orig_inner: lr_arg,
6731 type: rntype, bitsize: rnbitsize, bitpos: rnbitpos,
6732 unsignedp: lr_unsignedp || rr_unsignedp, reversep: lr_reversep);
6733 if (! all_ones_mask_p (mask: lr_mask, size: rnbitsize))
6734 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
6735
6736 return build2_loc (loc, code: wanted_code, type: truth_type, arg0: lhs, arg1: rhs);
6737 }
6738
6739 /* There is still another way we can do something: If both pairs of
6740 fields being compared are adjacent, we may be able to make a wider
6741 field containing them both.
6742
6743 Note that we still must mask the lhs/rhs expressions. Furthermore,
6744 the mask must be shifted to account for the shift done by
6745 make_bit_field_ref. */
6746 if (((ll_bitsize + ll_bitpos == rl_bitpos
6747 && lr_bitsize + lr_bitpos == rr_bitpos)
6748 || (ll_bitpos == rl_bitpos + rl_bitsize
6749 && lr_bitpos == rr_bitpos + rr_bitsize))
6750 && ll_bitpos >= 0
6751 && rl_bitpos >= 0
6752 && lr_bitpos >= 0
6753 && rr_bitpos >= 0)
6754 {
6755 tree type;
6756
6757 lhs = make_bit_field_ref (loc, inner: ll_inner, orig_inner: ll_arg, type: lntype,
6758 bitsize: ll_bitsize + rl_bitsize,
6759 MIN (ll_bitpos, rl_bitpos),
6760 unsignedp: ll_unsignedp, reversep: ll_reversep);
6761 rhs = make_bit_field_ref (loc, inner: lr_inner, orig_inner: lr_arg, type: rntype,
6762 bitsize: lr_bitsize + rr_bitsize,
6763 MIN (lr_bitpos, rr_bitpos),
6764 unsignedp: lr_unsignedp, reversep: lr_reversep);
6765
6766 ll_mask = const_binop (code: RSHIFT_EXPR, arg1: ll_mask,
6767 size_int (MIN (xll_bitpos, xrl_bitpos)));
6768 lr_mask = const_binop (code: RSHIFT_EXPR, arg1: lr_mask,
6769 size_int (MIN (xlr_bitpos, xrr_bitpos)));
6770 if (ll_mask == NULL_TREE || lr_mask == NULL_TREE)
6771 return 0;
6772
6773 /* Convert to the smaller type before masking out unwanted bits. */
6774 type = lntype;
6775 if (lntype != rntype)
6776 {
6777 if (lnbitsize > rnbitsize)
6778 {
6779 lhs = fold_convert_loc (loc, type: rntype, arg: lhs);
6780 ll_mask = fold_convert_loc (loc, type: rntype, arg: ll_mask);
6781 type = rntype;
6782 }
6783 else if (lnbitsize < rnbitsize)
6784 {
6785 rhs = fold_convert_loc (loc, type: lntype, arg: rhs);
6786 lr_mask = fold_convert_loc (loc, type: lntype, arg: lr_mask);
6787 type = lntype;
6788 }
6789 }
6790
6791 if (! all_ones_mask_p (mask: ll_mask, size: ll_bitsize + rl_bitsize))
6792 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
6793
6794 if (! all_ones_mask_p (mask: lr_mask, size: lr_bitsize + rr_bitsize))
6795 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
6796
6797 return build2_loc (loc, code: wanted_code, type: truth_type, arg0: lhs, arg1: rhs);
6798 }
6799
6800 return 0;
6801 }
6802
6803 /* Handle the case of comparisons with constants. If there is something in
6804 common between the masks, those bits of the constants must be the same.
6805 If not, the condition is always false. Test for this to avoid generating
6806 incorrect code below. */
6807 result = const_binop (code: BIT_AND_EXPR, arg1: ll_mask, arg2: rl_mask);
6808 if (! integer_zerop (result)
6809 && simple_cst_equal (const_binop (code: BIT_AND_EXPR, arg1: result, arg2: l_const),
6810 const_binop (code: BIT_AND_EXPR, arg1: result, arg2: r_const)) != 1)
6811 {
6812 if (wanted_code == NE_EXPR)
6813 {
6814 warning (0, "%<or%> of unmatched not-equal tests is always 1");
6815 return constant_boolean_node (true, truth_type);
6816 }
6817 else
6818 {
6819 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
6820 return constant_boolean_node (false, truth_type);
6821 }
6822 }
6823
6824 if (lnbitpos < 0)
6825 return 0;
6826
6827 /* Construct the expression we will return. First get the component
6828 reference we will make. Unless the mask is all ones the width of
6829 that field, perform the mask operation. Then compare with the
6830 merged constant. */
6831 result = make_bit_field_ref (loc, inner: ll_inner, orig_inner: ll_arg,
6832 type: lntype, bitsize: lnbitsize, bitpos: lnbitpos,
6833 unsignedp: ll_unsignedp || rl_unsignedp, reversep: ll_reversep);
6834
6835 ll_mask = const_binop (code: BIT_IOR_EXPR, arg1: ll_mask, arg2: rl_mask);
6836 if (! all_ones_mask_p (mask: ll_mask, size: lnbitsize))
6837 result = build2_loc (loc, code: BIT_AND_EXPR, type: lntype, arg0: result, arg1: ll_mask);
6838
6839 return build2_loc (loc, code: wanted_code, type: truth_type, arg0: result,
6840 arg1: const_binop (code: BIT_IOR_EXPR, arg1: l_const, arg2: r_const));
6841}
6842
6843/* T is an integer expression that is being multiplied, divided, or taken a
6844 modulus (CODE says which and what kind of divide or modulus) by a
6845 constant C. See if we can eliminate that operation by folding it with
6846 other operations already in T. WIDE_TYPE, if non-null, is a type that
6847 should be used for the computation if wider than our type.
6848
6849 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6850 (X * 2) + (Y * 4). We must, however, be assured that either the original
6851 expression would not overflow or that overflow is undefined for the type
6852 in the language in question.
6853
6854 If we return a non-null expression, it is an equivalent form of the
6855 original computation, but need not be in the original type.
6856
6857 We set *STRICT_OVERFLOW_P to true if the return values depends on
6858 signed overflow being undefined. Otherwise we do not change
6859 *STRICT_OVERFLOW_P. */
6860
6861static tree
6862extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
6863 bool *strict_overflow_p)
6864{
6865 /* To avoid exponential search depth, refuse to allow recursion past
6866 three levels. Beyond that (1) it's highly unlikely that we'll find
6867 something interesting and (2) we've probably processed it before
6868 when we built the inner expression. */
6869
6870 static int depth;
6871 tree ret;
6872
6873 if (depth > 3)
6874 return NULL;
6875
6876 depth++;
6877 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6878 depth--;
6879
6880 return ret;
6881}
6882
6883static tree
6884extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6885 bool *strict_overflow_p)
6886{
6887 tree type = TREE_TYPE (t);
6888 enum tree_code tcode = TREE_CODE (t);
6889 tree ctype = type;
6890 if (wide_type)
6891 {
6892 if (TREE_CODE (type) == BITINT_TYPE
6893 || TREE_CODE (wide_type) == BITINT_TYPE)
6894 {
6895 if (TYPE_PRECISION (wide_type) > TYPE_PRECISION (type))
6896 ctype = wide_type;
6897 }
6898 else if (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type))
6899 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)))
6900 ctype = wide_type;
6901 }
6902 tree t1, t2;
6903 bool same_p = tcode == code;
6904 tree op0 = NULL_TREE, op1 = NULL_TREE;
6905 bool sub_strict_overflow_p;
6906
6907 /* Don't deal with constants of zero here; they confuse the code below. */
6908 if (integer_zerop (c))
6909 return NULL_TREE;
6910
6911 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6912 op0 = TREE_OPERAND (t, 0);
6913
6914 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6915 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6916
6917 /* Note that we need not handle conditional operations here since fold
6918 already handles those cases. So just do arithmetic here. */
6919 switch (tcode)
6920 {
6921 case INTEGER_CST:
6922 /* For a constant, we can always simplify if we are a multiply
6923 or (for divide and modulus) if it is a multiple of our constant. */
6924 if (code == MULT_EXPR
6925 || wi::multiple_of_p (x: wi::to_wide (t), y: wi::to_wide (t: c),
6926 TYPE_SIGN (type)))
6927 {
6928 tree tem = const_binop (code, fold_convert (ctype, t),
6929 fold_convert (ctype, c));
6930 /* If the multiplication overflowed, we lost information on it.
6931 See PR68142 and PR69845. */
6932 if (TREE_OVERFLOW (tem))
6933 return NULL_TREE;
6934 return tem;
6935 }
6936 break;
6937
6938 CASE_CONVERT: case NON_LVALUE_EXPR:
6939 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0)))
6940 break;
6941 /* If op0 is an expression ... */
6942 if ((COMPARISON_CLASS_P (op0)
6943 || UNARY_CLASS_P (op0)
6944 || BINARY_CLASS_P (op0)
6945 || VL_EXP_CLASS_P (op0)
6946 || EXPRESSION_CLASS_P (op0))
6947 /* ... and has wrapping overflow, and its type is smaller
6948 than ctype, then we cannot pass through as widening. */
6949 && ((TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0))
6950 && (TYPE_PRECISION (ctype)
6951 > TYPE_PRECISION (TREE_TYPE (op0))))
6952 /* ... or this is a truncation (t is narrower than op0),
6953 then we cannot pass through this narrowing. */
6954 || (TYPE_PRECISION (type)
6955 < TYPE_PRECISION (TREE_TYPE (op0)))
6956 /* ... or signedness changes for division or modulus,
6957 then we cannot pass through this conversion. */
6958 || (code != MULT_EXPR
6959 && (TYPE_UNSIGNED (ctype)
6960 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6961 /* ... or has undefined overflow while the converted to
6962 type has not, we cannot do the operation in the inner type
6963 as that would introduce undefined overflow. */
6964 || (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))
6965 && !TYPE_OVERFLOW_UNDEFINED (type))))
6966 break;
6967
6968 /* Pass the constant down and see if we can make a simplification. If
6969 we can, replace this expression with the inner simplification for
6970 possible later conversion to our or some other type. */
6971 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6972 && TREE_CODE (t2) == INTEGER_CST
6973 && !TREE_OVERFLOW (t2)
6974 && (t1 = extract_muldiv (t: op0, c: t2, code,
6975 wide_type: code == MULT_EXPR ? ctype : NULL_TREE,
6976 strict_overflow_p)) != 0)
6977 return t1;
6978 break;
6979
6980 case ABS_EXPR:
6981 /* If widening the type changes it from signed to unsigned, then we
6982 must avoid building ABS_EXPR itself as unsigned. */
6983 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6984 {
6985 tree cstype = (*signed_type_for) (ctype);
6986 if ((t1 = extract_muldiv (t: op0, c, code, wide_type: cstype, strict_overflow_p))
6987 != 0)
6988 {
6989 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6990 return fold_convert (ctype, t1);
6991 }
6992 break;
6993 }
6994 /* If the constant is negative, we cannot simplify this. */
6995 if (tree_int_cst_sgn (c) == -1)
6996 break;
6997 /* FALLTHROUGH */
6998 case NEGATE_EXPR:
6999 /* For division and modulus, type can't be unsigned, as e.g.
7000 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
7001 For signed types, even with wrapping overflow, this is fine. */
7002 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
7003 break;
7004 if ((t1 = extract_muldiv (t: op0, c, code, wide_type, strict_overflow_p))
7005 != 0)
7006 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
7007 break;
7008
7009 case MIN_EXPR: case MAX_EXPR:
7010 /* If widening the type changes the signedness, then we can't perform
7011 this optimization as that changes the result. */
7012 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
7013 break;
7014
7015 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
7016 sub_strict_overflow_p = false;
7017 if ((t1 = extract_muldiv (t: op0, c, code, wide_type,
7018 strict_overflow_p: &sub_strict_overflow_p)) != 0
7019 && (t2 = extract_muldiv (t: op1, c, code, wide_type,
7020 strict_overflow_p: &sub_strict_overflow_p)) != 0)
7021 {
7022 if (tree_int_cst_sgn (c) < 0)
7023 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
7024 if (sub_strict_overflow_p)
7025 *strict_overflow_p = true;
7026 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
7027 fold_convert (ctype, t2));
7028 }
7029 break;
7030
7031 case LSHIFT_EXPR: case RSHIFT_EXPR:
7032 /* If the second operand is constant, this is a multiplication
7033 or floor division, by a power of two, so we can treat it that
7034 way unless the multiplier or divisor overflows. Signed
7035 left-shift overflow is implementation-defined rather than
7036 undefined in C90, so do not convert signed left shift into
7037 multiplication. */
7038 if (TREE_CODE (op1) == INTEGER_CST
7039 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
7040 /* const_binop may not detect overflow correctly,
7041 so check for it explicitly here. */
7042 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)),
7043 y: wi::to_wide (t: op1))
7044 && (t1 = fold_convert (ctype,
7045 const_binop (LSHIFT_EXPR, size_one_node,
7046 op1))) != 0
7047 && !TREE_OVERFLOW (t1))
7048 return extract_muldiv (t: build2 (tcode == LSHIFT_EXPR
7049 ? MULT_EXPR : FLOOR_DIV_EXPR,
7050 ctype,
7051 fold_convert (ctype, op0),
7052 t1),
7053 c, code, wide_type, strict_overflow_p);
7054 break;
7055
7056 case PLUS_EXPR: case MINUS_EXPR:
7057 /* See if we can eliminate the operation on both sides. If we can, we
7058 can return a new PLUS or MINUS. If we can't, the only remaining
7059 cases where we can do anything are if the second operand is a
7060 constant. */
7061 sub_strict_overflow_p = false;
7062 t1 = extract_muldiv (t: op0, c, code, wide_type, strict_overflow_p: &sub_strict_overflow_p);
7063 t2 = extract_muldiv (t: op1, c, code, wide_type, strict_overflow_p: &sub_strict_overflow_p);
7064 if (t1 != 0 && t2 != 0
7065 && TYPE_OVERFLOW_WRAPS (ctype)
7066 && (code == MULT_EXPR
7067 /* If not multiplication, we can only do this if both operands
7068 are divisible by c. */
7069 || (multiple_of_p (ctype, op0, c)
7070 && multiple_of_p (ctype, op1, c))))
7071 {
7072 if (sub_strict_overflow_p)
7073 *strict_overflow_p = true;
7074 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
7075 fold_convert (ctype, t2));
7076 }
7077
7078 /* If this was a subtraction, negate OP1 and set it to be an addition.
7079 This simplifies the logic below. */
7080 if (tcode == MINUS_EXPR)
7081 {
7082 tcode = PLUS_EXPR, op1 = negate_expr (t: op1);
7083 /* If OP1 was not easily negatable, the constant may be OP0. */
7084 if (TREE_CODE (op0) == INTEGER_CST)
7085 {
7086 std::swap (a&: op0, b&: op1);
7087 std::swap (a&: t1, b&: t2);
7088 }
7089 }
7090
7091 if (TREE_CODE (op1) != INTEGER_CST)
7092 break;
7093
7094 /* If either OP1 or C are negative, this optimization is not safe for
7095 some of the division and remainder types while for others we need
7096 to change the code. */
7097 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
7098 {
7099 if (code == CEIL_DIV_EXPR)
7100 code = FLOOR_DIV_EXPR;
7101 else if (code == FLOOR_DIV_EXPR)
7102 code = CEIL_DIV_EXPR;
7103 else if (code != MULT_EXPR
7104 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
7105 break;
7106 }
7107
7108 /* If it's a multiply or a division/modulus operation of a multiple
7109 of our constant, do the operation and verify it doesn't overflow. */
7110 if (code == MULT_EXPR
7111 || wi::multiple_of_p (x: wi::to_wide (t: op1), y: wi::to_wide (t: c),
7112 TYPE_SIGN (type)))
7113 {
7114 op1 = const_binop (code, fold_convert (ctype, op1),
7115 fold_convert (ctype, c));
7116 /* We allow the constant to overflow with wrapping semantics. */
7117 if (op1 == 0
7118 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
7119 break;
7120 }
7121 else
7122 break;
7123
7124 /* If we have an unsigned type, we cannot widen the operation since it
7125 will change the result if the original computation overflowed. */
7126 if (TYPE_UNSIGNED (ctype) && ctype != type)
7127 break;
7128
7129 /* The last case is if we are a multiply. In that case, we can
7130 apply the distributive law to commute the multiply and addition
7131 if the multiplication of the constants doesn't overflow
7132 and overflow is defined. With undefined overflow
7133 op0 * c might overflow, while (op0 + orig_op1) * c doesn't.
7134 But fold_plusminus_mult_expr would factor back any power-of-two
7135 value so do not distribute in the first place in this case. */
7136 if (code == MULT_EXPR
7137 && TYPE_OVERFLOW_WRAPS (ctype)
7138 && !(tree_fits_shwi_p (c) && pow2p_hwi (x: absu_hwi (x: tree_to_shwi (c)))))
7139 return fold_build2 (tcode, ctype,
7140 fold_build2 (code, ctype,
7141 fold_convert (ctype, op0),
7142 fold_convert (ctype, c)),
7143 op1);
7144
7145 break;
7146
7147 case MULT_EXPR:
7148 /* We have a special case here if we are doing something like
7149 (C * 8) % 4 since we know that's zero. */
7150 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
7151 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
7152 /* If the multiplication can overflow we cannot optimize this. */
7153 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
7154 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
7155 && wi::multiple_of_p (x: wi::to_wide (t: op1), y: wi::to_wide (t: c),
7156 TYPE_SIGN (type)))
7157 {
7158 *strict_overflow_p = true;
7159 return omit_one_operand (type, integer_zero_node, op0);
7160 }
7161
7162 /* ... fall through ... */
7163
7164 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
7165 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
7166 /* If we can extract our operation from the LHS, do so and return a
7167 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
7168 do something only if the second operand is a constant. */
7169 if (same_p
7170 && TYPE_OVERFLOW_WRAPS (ctype)
7171 && (t1 = extract_muldiv (t: op0, c, code, wide_type,
7172 strict_overflow_p)) != 0)
7173 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
7174 fold_convert (ctype, op1));
7175 else if (tcode == MULT_EXPR && code == MULT_EXPR
7176 && TYPE_OVERFLOW_WRAPS (ctype)
7177 && (t1 = extract_muldiv (t: op1, c, code, wide_type,
7178 strict_overflow_p)) != 0)
7179 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
7180 fold_convert (ctype, t1));
7181 else if (TREE_CODE (op1) != INTEGER_CST)
7182 return 0;
7183
7184 /* If these are the same operation types, we can associate them
7185 assuming no overflow. */
7186 if (tcode == code)
7187 {
7188 bool overflow_p = false;
7189 wi::overflow_type overflow_mul;
7190 signop sign = TYPE_SIGN (ctype);
7191 unsigned prec = TYPE_PRECISION (ctype);
7192 wide_int mul = wi::mul (x: wi::to_wide (t: op1, prec),
7193 y: wi::to_wide (t: c, prec),
7194 sgn: sign, overflow: &overflow_mul);
7195 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
7196 if (overflow_mul
7197 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
7198 overflow_p = true;
7199 if (!overflow_p)
7200 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
7201 wide_int_to_tree (ctype, mul));
7202 }
7203
7204 /* If these operations "cancel" each other, we have the main
7205 optimizations of this pass, which occur when either constant is a
7206 multiple of the other, in which case we replace this with either an
7207 operation or CODE or TCODE.
7208
7209 If we have an unsigned type, we cannot do this since it will change
7210 the result if the original computation overflowed. */
7211 if (TYPE_OVERFLOW_UNDEFINED (ctype)
7212 && !TYPE_OVERFLOW_SANITIZED (ctype)
7213 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
7214 || (tcode == MULT_EXPR
7215 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
7216 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
7217 && code != MULT_EXPR)))
7218 {
7219 if (wi::multiple_of_p (x: wi::to_wide (t: op1), y: wi::to_wide (t: c),
7220 TYPE_SIGN (type)))
7221 {
7222 *strict_overflow_p = true;
7223 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
7224 fold_convert (ctype,
7225 const_binop (TRUNC_DIV_EXPR,
7226 op1, c)));
7227 }
7228 else if (wi::multiple_of_p (x: wi::to_wide (t: c), y: wi::to_wide (t: op1),
7229 TYPE_SIGN (type)))
7230 {
7231 *strict_overflow_p = true;
7232 return fold_build2 (code, ctype, fold_convert (ctype, op0),
7233 fold_convert (ctype,
7234 const_binop (TRUNC_DIV_EXPR,
7235 c, op1)));
7236 }
7237 }
7238 break;
7239
7240 default:
7241 break;
7242 }
7243
7244 return 0;
7245}
7246
7247/* Return a node which has the indicated constant VALUE (either 0 or
7248 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
7249 and is of the indicated TYPE. */
7250
7251tree
7252constant_boolean_node (bool value, tree type)
7253{
7254 if (type == integer_type_node)
7255 return value ? integer_one_node : integer_zero_node;
7256 else if (type == boolean_type_node)
7257 return value ? boolean_true_node : boolean_false_node;
7258 else if (VECTOR_TYPE_P (type))
7259 return build_vector_from_val (type,
7260 build_int_cst (TREE_TYPE (type),
7261 value ? -1 : 0));
7262 else
7263 return fold_convert (type, value ? integer_one_node : integer_zero_node);
7264}
7265
7266
7267/* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
7268 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
7269 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
7270 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
7271 COND is the first argument to CODE; otherwise (as in the example
7272 given here), it is the second argument. TYPE is the type of the
7273 original expression. Return NULL_TREE if no simplification is
7274 possible. */
7275
7276static tree
7277fold_binary_op_with_conditional_arg (location_t loc,
7278 enum tree_code code,
7279 tree type, tree op0, tree op1,
7280 tree cond, tree arg, int cond_first_p)
7281{
7282 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
7283 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
7284 tree test, true_value, false_value;
7285 tree lhs = NULL_TREE;
7286 tree rhs = NULL_TREE;
7287 enum tree_code cond_code = COND_EXPR;
7288
7289 /* Do not move possibly trapping operations into the conditional as this
7290 pessimizes code and causes gimplification issues when applied late. */
7291 if (operation_could_trap_p (code, FLOAT_TYPE_P (type),
7292 ANY_INTEGRAL_TYPE_P (type)
7293 && TYPE_OVERFLOW_TRAPS (type), op1))
7294 return NULL_TREE;
7295
7296 if (TREE_CODE (cond) == COND_EXPR
7297 || TREE_CODE (cond) == VEC_COND_EXPR)
7298 {
7299 test = TREE_OPERAND (cond, 0);
7300 true_value = TREE_OPERAND (cond, 1);
7301 false_value = TREE_OPERAND (cond, 2);
7302 /* If this operand throws an expression, then it does not make
7303 sense to try to perform a logical or arithmetic operation
7304 involving it. */
7305 if (VOID_TYPE_P (TREE_TYPE (true_value)))
7306 lhs = true_value;
7307 if (VOID_TYPE_P (TREE_TYPE (false_value)))
7308 rhs = false_value;
7309 }
7310 else if (!(TREE_CODE (type) != VECTOR_TYPE
7311 && VECTOR_TYPE_P (TREE_TYPE (cond))))
7312 {
7313 tree testtype = TREE_TYPE (cond);
7314 test = cond;
7315 true_value = constant_boolean_node (value: true, type: testtype);
7316 false_value = constant_boolean_node (value: false, type: testtype);
7317 }
7318 else
7319 /* Detect the case of mixing vector and scalar types - bail out. */
7320 return NULL_TREE;
7321
7322 if (VECTOR_TYPE_P (TREE_TYPE (test)))
7323 cond_code = VEC_COND_EXPR;
7324
7325 /* This transformation is only worthwhile if we don't have to wrap ARG
7326 in a SAVE_EXPR and the operation can be simplified without recursing
7327 on at least one of the branches once its pushed inside the COND_EXPR. */
7328 if (!TREE_CONSTANT (arg)
7329 && (TREE_SIDE_EFFECTS (arg)
7330 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
7331 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
7332 return NULL_TREE;
7333
7334 arg = fold_convert_loc (loc, type: arg_type, arg);
7335 if (lhs == 0)
7336 {
7337 true_value = fold_convert_loc (loc, type: cond_type, arg: true_value);
7338 if (cond_first_p)
7339 lhs = fold_build2_loc (loc, code, type, true_value, arg);
7340 else
7341 lhs = fold_build2_loc (loc, code, type, arg, true_value);
7342 }
7343 if (rhs == 0)
7344 {
7345 false_value = fold_convert_loc (loc, type: cond_type, arg: false_value);
7346 if (cond_first_p)
7347 rhs = fold_build2_loc (loc, code, type, false_value, arg);
7348 else
7349 rhs = fold_build2_loc (loc, code, type, arg, false_value);
7350 }
7351
7352 /* Check that we have simplified at least one of the branches. */
7353 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
7354 return NULL_TREE;
7355
7356 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
7357}
7358
7359
7360/* Subroutine of fold() that checks for the addition of ARG +/- 0.0.
7361
7362 If !NEGATE, return true if ZERO_ARG is +/-0.0 and, for all ARG of
7363 type TYPE, ARG + ZERO_ARG is the same as ARG. If NEGATE, return true
7364 if ARG - ZERO_ARG is the same as X.
7365
7366 If ARG is NULL, check for any value of type TYPE.
7367
7368 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
7369 and finite. The problematic cases are when X is zero, and its mode
7370 has signed zeros. In the case of rounding towards -infinity,
7371 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
7372 modes, X + 0 is not the same as X because -0 + 0 is 0. */
7373
7374bool
7375fold_real_zero_addition_p (const_tree type, const_tree arg,
7376 const_tree zero_arg, int negate)
7377{
7378 if (!real_zerop (zero_arg))
7379 return false;
7380
7381 /* Don't allow the fold with -fsignaling-nans. */
7382 if (arg ? tree_expr_maybe_signaling_nan_p (arg) : HONOR_SNANS (type))
7383 return false;
7384
7385 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
7386 if (!HONOR_SIGNED_ZEROS (type))
7387 return true;
7388
7389 /* There is no case that is safe for all rounding modes. */
7390 if (HONOR_SIGN_DEPENDENT_ROUNDING (type))
7391 return false;
7392
7393 /* In a vector or complex, we would need to check the sign of all zeros. */
7394 if (TREE_CODE (zero_arg) == VECTOR_CST)
7395 zero_arg = uniform_vector_p (zero_arg);
7396 if (!zero_arg || TREE_CODE (zero_arg) != REAL_CST)
7397 return false;
7398
7399 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
7400 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (zero_arg)))
7401 negate = !negate;
7402
7403 /* The mode has signed zeros, and we have to honor their sign.
7404 In this situation, there are only two cases we can return true for.
7405 (i) X - 0 is the same as X with default rounding.
7406 (ii) X + 0 is X when X can't possibly be -0.0. */
7407 return negate || (arg && !tree_expr_maybe_real_minus_zero_p (arg));
7408}
7409
7410/* Subroutine of match.pd that optimizes comparisons of a division by
7411 a nonzero integer constant against an integer constant, i.e.
7412 X/C1 op C2.
7413
7414 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
7415 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
7416
7417enum tree_code
7418fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo,
7419 tree *hi, bool *neg_overflow)
7420{
7421 tree prod, tmp, type = TREE_TYPE (c1);
7422 signop sign = TYPE_SIGN (type);
7423 wi::overflow_type overflow;
7424
7425 /* We have to do this the hard way to detect unsigned overflow.
7426 prod = int_const_binop (MULT_EXPR, c1, c2); */
7427 wide_int val = wi::mul (x: wi::to_wide (t: c1), y: wi::to_wide (t: c2), sgn: sign, overflow: &overflow);
7428 prod = force_fit_type (type, val, -1, overflow);
7429 *neg_overflow = false;
7430
7431 if (sign == UNSIGNED)
7432 {
7433 tmp = int_const_binop (code: MINUS_EXPR, arg1: c1, arg2: build_int_cst (type, 1));
7434 *lo = prod;
7435
7436 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
7437 val = wi::add (x: wi::to_wide (t: prod), y: wi::to_wide (t: tmp), sgn: sign, overflow: &overflow);
7438 *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod));
7439 }
7440 else if (tree_int_cst_sgn (c1) >= 0)
7441 {
7442 tmp = int_const_binop (code: MINUS_EXPR, arg1: c1, arg2: build_int_cst (type, 1));
7443 switch (tree_int_cst_sgn (c2))
7444 {
7445 case -1:
7446 *neg_overflow = true;
7447 *lo = int_const_binop (code: MINUS_EXPR, arg1: prod, arg2: tmp);
7448 *hi = prod;
7449 break;
7450
7451 case 0:
7452 *lo = fold_negate_const (tmp, type);
7453 *hi = tmp;
7454 break;
7455
7456 case 1:
7457 *hi = int_const_binop (code: PLUS_EXPR, arg1: prod, arg2: tmp);
7458 *lo = prod;
7459 break;
7460
7461 default:
7462 gcc_unreachable ();
7463 }
7464 }
7465 else
7466 {
7467 /* A negative divisor reverses the relational operators. */
7468 code = swap_tree_comparison (code);
7469
7470 tmp = int_const_binop (code: PLUS_EXPR, arg1: c1, arg2: build_int_cst (type, 1));
7471 switch (tree_int_cst_sgn (c2))
7472 {
7473 case -1:
7474 *hi = int_const_binop (code: MINUS_EXPR, arg1: prod, arg2: tmp);
7475 *lo = prod;
7476 break;
7477
7478 case 0:
7479 *hi = fold_negate_const (tmp, type);
7480 *lo = tmp;
7481 break;
7482
7483 case 1:
7484 *neg_overflow = true;
7485 *lo = int_const_binop (code: PLUS_EXPR, arg1: prod, arg2: tmp);
7486 *hi = prod;
7487 break;
7488
7489 default:
7490 gcc_unreachable ();
7491 }
7492 }
7493
7494 if (code != EQ_EXPR && code != NE_EXPR)
7495 return code;
7496
7497 if (TREE_OVERFLOW (*lo)
7498 || operand_equal_p (arg0: *lo, TYPE_MIN_VALUE (type), flags: 0))
7499 *lo = NULL_TREE;
7500 if (TREE_OVERFLOW (*hi)
7501 || operand_equal_p (arg0: *hi, TYPE_MAX_VALUE (type), flags: 0))
7502 *hi = NULL_TREE;
7503
7504 return code;
7505}
7506
7507/* Test whether it is preferable to swap two operands, ARG0 and
7508 ARG1, for example because ARG0 is an integer constant and ARG1
7509 isn't. */
7510
7511bool
7512tree_swap_operands_p (const_tree arg0, const_tree arg1)
7513{
7514 if (CONSTANT_CLASS_P (arg1))
7515 return false;
7516 if (CONSTANT_CLASS_P (arg0))
7517 return true;
7518
7519 STRIP_NOPS (arg0);
7520 STRIP_NOPS (arg1);
7521
7522 if (TREE_CONSTANT (arg1))
7523 return false;
7524 if (TREE_CONSTANT (arg0))
7525 return true;
7526
7527 /* It is preferable to swap two SSA_NAME to ensure a canonical form
7528 for commutative and comparison operators. Ensuring a canonical
7529 form allows the optimizers to find additional redundancies without
7530 having to explicitly check for both orderings. */
7531 if (TREE_CODE (arg0) == SSA_NAME
7532 && TREE_CODE (arg1) == SSA_NAME
7533 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
7534 return true;
7535
7536 /* Put SSA_NAMEs last. */
7537 if (TREE_CODE (arg1) == SSA_NAME)
7538 return false;
7539 if (TREE_CODE (arg0) == SSA_NAME)
7540 return true;
7541
7542 /* Put variables last. */
7543 if (DECL_P (arg1))
7544 return false;
7545 if (DECL_P (arg0))
7546 return true;
7547
7548 return false;
7549}
7550
7551
7552/* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7553 means A >= Y && A != MAX, but in this case we know that
7554 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7555
7556static tree
7557fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
7558{
7559 tree a, typea, type = TREE_TYPE (bound), a1, diff, y;
7560
7561 if (TREE_CODE (bound) == LT_EXPR)
7562 a = TREE_OPERAND (bound, 0);
7563 else if (TREE_CODE (bound) == GT_EXPR)
7564 a = TREE_OPERAND (bound, 1);
7565 else
7566 return NULL_TREE;
7567
7568 typea = TREE_TYPE (a);
7569 if (!INTEGRAL_TYPE_P (typea)
7570 && !POINTER_TYPE_P (typea))
7571 return NULL_TREE;
7572
7573 if (TREE_CODE (ineq) == LT_EXPR)
7574 {
7575 a1 = TREE_OPERAND (ineq, 1);
7576 y = TREE_OPERAND (ineq, 0);
7577 }
7578 else if (TREE_CODE (ineq) == GT_EXPR)
7579 {
7580 a1 = TREE_OPERAND (ineq, 0);
7581 y = TREE_OPERAND (ineq, 1);
7582 }
7583 else
7584 return NULL_TREE;
7585
7586 if (TREE_TYPE (a1) != typea)
7587 return NULL_TREE;
7588
7589 if (POINTER_TYPE_P (typea))
7590 {
7591 /* Convert the pointer types into integer before taking the difference. */
7592 tree ta = fold_convert_loc (loc, ssizetype, arg: a);
7593 tree ta1 = fold_convert_loc (loc, ssizetype, arg: a1);
7594 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
7595 }
7596 else
7597 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
7598
7599 if (!diff || !integer_onep (diff))
7600 return NULL_TREE;
7601
7602 return fold_build2_loc (loc, GE_EXPR, type, a, y);
7603}
7604
7605/* Fold a sum or difference of at least one multiplication.
7606 Returns the folded tree or NULL if no simplification could be made. */
7607
7608static tree
7609fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
7610 tree arg0, tree arg1)
7611{
7612 tree arg00, arg01, arg10, arg11;
7613 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7614
7615 /* (A * C) +- (B * C) -> (A+-B) * C.
7616 (A * C) +- A -> A * (C+-1).
7617 We are most concerned about the case where C is a constant,
7618 but other combinations show up during loop reduction. Since
7619 it is not difficult, try all four possibilities. */
7620
7621 if (TREE_CODE (arg0) == MULT_EXPR)
7622 {
7623 arg00 = TREE_OPERAND (arg0, 0);
7624 arg01 = TREE_OPERAND (arg0, 1);
7625 }
7626 else if (TREE_CODE (arg0) == INTEGER_CST)
7627 {
7628 arg00 = build_one_cst (type);
7629 arg01 = arg0;
7630 }
7631 else
7632 {
7633 /* We cannot generate constant 1 for fract. */
7634 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7635 return NULL_TREE;
7636 arg00 = arg0;
7637 arg01 = build_one_cst (type);
7638 }
7639 if (TREE_CODE (arg1) == MULT_EXPR)
7640 {
7641 arg10 = TREE_OPERAND (arg1, 0);
7642 arg11 = TREE_OPERAND (arg1, 1);
7643 }
7644 else if (TREE_CODE (arg1) == INTEGER_CST)
7645 {
7646 arg10 = build_one_cst (type);
7647 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7648 the purpose of this canonicalization. */
7649 if (wi::neg_p (x: wi::to_wide (t: arg1), TYPE_SIGN (TREE_TYPE (arg1)))
7650 && negate_expr_p (t: arg1)
7651 && code == PLUS_EXPR)
7652 {
7653 arg11 = negate_expr (t: arg1);
7654 code = MINUS_EXPR;
7655 }
7656 else
7657 arg11 = arg1;
7658 }
7659 else
7660 {
7661 /* We cannot generate constant 1 for fract. */
7662 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7663 return NULL_TREE;
7664 arg10 = arg1;
7665 arg11 = build_one_cst (type);
7666 }
7667 same = NULL_TREE;
7668
7669 /* Prefer factoring a common non-constant. */
7670 if (operand_equal_p (arg0: arg00, arg1: arg10, flags: 0))
7671 same = arg00, alt0 = arg01, alt1 = arg11;
7672 else if (operand_equal_p (arg0: arg01, arg1: arg11, flags: 0))
7673 same = arg01, alt0 = arg00, alt1 = arg10;
7674 else if (operand_equal_p (arg0: arg00, arg1: arg11, flags: 0))
7675 same = arg00, alt0 = arg01, alt1 = arg10;
7676 else if (operand_equal_p (arg0: arg01, arg1: arg10, flags: 0))
7677 same = arg01, alt0 = arg00, alt1 = arg11;
7678
7679 /* No identical multiplicands; see if we can find a common
7680 power-of-two factor in non-power-of-two multiplies. This
7681 can help in multi-dimensional array access. */
7682 else if (tree_fits_shwi_p (arg01) && tree_fits_shwi_p (arg11))
7683 {
7684 HOST_WIDE_INT int01 = tree_to_shwi (arg01);
7685 HOST_WIDE_INT int11 = tree_to_shwi (arg11);
7686 HOST_WIDE_INT tmp;
7687 bool swap = false;
7688 tree maybe_same;
7689
7690 /* Move min of absolute values to int11. */
7691 if (absu_hwi (x: int01) < absu_hwi (x: int11))
7692 {
7693 tmp = int01, int01 = int11, int11 = tmp;
7694 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7695 maybe_same = arg01;
7696 swap = true;
7697 }
7698 else
7699 maybe_same = arg11;
7700
7701 const unsigned HOST_WIDE_INT factor = absu_hwi (x: int11);
7702 if (factor > 1
7703 && pow2p_hwi (x: factor)
7704 && (int01 & (factor - 1)) == 0
7705 /* The remainder should not be a constant, otherwise we
7706 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7707 increased the number of multiplications necessary. */
7708 && TREE_CODE (arg10) != INTEGER_CST)
7709 {
7710 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7711 build_int_cst (TREE_TYPE (arg00),
7712 int01 / int11));
7713 alt1 = arg10;
7714 same = maybe_same;
7715 if (swap)
7716 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7717 }
7718 }
7719
7720 if (!same)
7721 return NULL_TREE;
7722
7723 if (! ANY_INTEGRAL_TYPE_P (type)
7724 || TYPE_OVERFLOW_WRAPS (type)
7725 /* We are neither factoring zero nor minus one. */
7726 || TREE_CODE (same) == INTEGER_CST)
7727 return fold_build2_loc (loc, MULT_EXPR, type,
7728 fold_build2_loc (loc, code, type,
7729 fold_convert_loc (loc, type, arg: alt0),
7730 fold_convert_loc (loc, type, arg: alt1)),
7731 fold_convert_loc (loc, type, arg: same));
7732
7733 /* Same may be zero and thus the operation 'code' may overflow. Likewise
7734 same may be minus one and thus the multiplication may overflow. Perform
7735 the sum operation in an unsigned type. */
7736 tree utype = unsigned_type_for (type);
7737 tree tem = fold_build2_loc (loc, code, utype,
7738 fold_convert_loc (loc, type: utype, arg: alt0),
7739 fold_convert_loc (loc, type: utype, arg: alt1));
7740 /* If the sum evaluated to a constant that is not -INF the multiplication
7741 cannot overflow. */
7742 if (TREE_CODE (tem) == INTEGER_CST
7743 && (wi::to_wide (t: tem)
7744 != wi::min_value (TYPE_PRECISION (utype), SIGNED)))
7745 return fold_build2_loc (loc, MULT_EXPR, type,
7746 fold_convert (type, tem), same);
7747
7748 /* Do not resort to unsigned multiplication because
7749 we lose the no-overflow property of the expression. */
7750 return NULL_TREE;
7751}
7752
7753/* Subroutine of native_encode_expr. Encode the INTEGER_CST
7754 specified by EXPR into the buffer PTR of length LEN bytes.
7755 Return the number of bytes placed in the buffer, or zero
7756 upon failure. */
7757
7758static int
7759native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
7760{
7761 tree type = TREE_TYPE (expr);
7762 int total_bytes;
7763 if (TREE_CODE (type) == BITINT_TYPE)
7764 {
7765 struct bitint_info info;
7766 bool ok = targetm.c.bitint_type_info (TYPE_PRECISION (type), &info);
7767 gcc_assert (ok);
7768 scalar_int_mode limb_mode = as_a <scalar_int_mode> (m: info.limb_mode);
7769 if (TYPE_PRECISION (type) > GET_MODE_PRECISION (mode: limb_mode))
7770 {
7771 total_bytes = tree_to_uhwi (TYPE_SIZE_UNIT (type));
7772 /* More work is needed when adding _BitInt support to PDP endian
7773 if limb is smaller than word, or if _BitInt limb ordering doesn't
7774 match target endianity here. */
7775 gcc_checking_assert (info.big_endian == WORDS_BIG_ENDIAN
7776 && (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
7777 || (GET_MODE_SIZE (limb_mode)
7778 >= UNITS_PER_WORD)));
7779 }
7780 else
7781 total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7782 }
7783 else
7784 total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7785 int byte, offset, word, words;
7786 unsigned char value;
7787
7788 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7789 return 0;
7790 if (off == -1)
7791 off = 0;
7792
7793 if (ptr == NULL)
7794 /* Dry run. */
7795 return MIN (len, total_bytes - off);
7796
7797 words = total_bytes / UNITS_PER_WORD;
7798
7799 for (byte = 0; byte < total_bytes; byte++)
7800 {
7801 int bitpos = byte * BITS_PER_UNIT;
7802 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7803 number of bytes. */
7804 value = wi::extract_uhwi (x: wi::to_widest (t: expr), bitpos, BITS_PER_UNIT);
7805
7806 if (total_bytes > UNITS_PER_WORD)
7807 {
7808 word = byte / UNITS_PER_WORD;
7809 if (WORDS_BIG_ENDIAN)
7810 word = (words - 1) - word;
7811 offset = word * UNITS_PER_WORD;
7812 if (BYTES_BIG_ENDIAN)
7813 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7814 else
7815 offset += byte % UNITS_PER_WORD;
7816 }
7817 else
7818 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7819 if (offset >= off && offset - off < len)
7820 ptr[offset - off] = value;
7821 }
7822 return MIN (len, total_bytes - off);
7823}
7824
7825
7826/* Subroutine of native_encode_expr. Encode the FIXED_CST
7827 specified by EXPR into the buffer PTR of length LEN bytes.
7828 Return the number of bytes placed in the buffer, or zero
7829 upon failure. */
7830
7831static int
7832native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7833{
7834 tree type = TREE_TYPE (expr);
7835 scalar_mode mode = SCALAR_TYPE_MODE (type);
7836 int total_bytes = GET_MODE_SIZE (mode);
7837 FIXED_VALUE_TYPE value;
7838 tree i_value, i_type;
7839
7840 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7841 return 0;
7842
7843 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7844
7845 if (NULL_TREE == i_type || TYPE_PRECISION (i_type) != total_bytes)
7846 return 0;
7847
7848 value = TREE_FIXED_CST (expr);
7849 i_value = double_int_to_tree (i_type, value.data);
7850
7851 return native_encode_int (expr: i_value, ptr, len, off);
7852}
7853
7854
7855/* Subroutine of native_encode_expr. Encode the REAL_CST
7856 specified by EXPR into the buffer PTR of length LEN bytes.
7857 Return the number of bytes placed in the buffer, or zero
7858 upon failure. */
7859
7860static int
7861native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7862{
7863 tree type = TREE_TYPE (expr);
7864 int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type));
7865 int byte, offset, word, words, bitpos;
7866 unsigned char value;
7867
7868 /* There are always 32 bits in each long, no matter the size of
7869 the hosts long. We handle floating point representations with
7870 up to 192 bits. */
7871 long tmp[6];
7872
7873 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7874 return 0;
7875 if (off == -1)
7876 off = 0;
7877
7878 if (ptr == NULL)
7879 /* Dry run. */
7880 return MIN (len, total_bytes - off);
7881
7882 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7883
7884 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7885
7886 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7887 bitpos += BITS_PER_UNIT)
7888 {
7889 byte = (bitpos / BITS_PER_UNIT) & 3;
7890 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7891
7892 if (UNITS_PER_WORD < 4)
7893 {
7894 word = byte / UNITS_PER_WORD;
7895 if (WORDS_BIG_ENDIAN)
7896 word = (words - 1) - word;
7897 offset = word * UNITS_PER_WORD;
7898 if (BYTES_BIG_ENDIAN)
7899 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7900 else
7901 offset += byte % UNITS_PER_WORD;
7902 }
7903 else
7904 {
7905 offset = byte;
7906 if (BYTES_BIG_ENDIAN)
7907 {
7908 /* Reverse bytes within each long, or within the entire float
7909 if it's smaller than a long (for HFmode). */
7910 offset = MIN (3, total_bytes - 1) - offset;
7911 gcc_assert (offset >= 0);
7912 }
7913 }
7914 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7915 if (offset >= off
7916 && offset - off < len)
7917 ptr[offset - off] = value;
7918 }
7919 return MIN (len, total_bytes - off);
7920}
7921
7922/* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7923 specified by EXPR into the buffer PTR of length LEN bytes.
7924 Return the number of bytes placed in the buffer, or zero
7925 upon failure. */
7926
7927static int
7928native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7929{
7930 int rsize, isize;
7931 tree part;
7932
7933 part = TREE_REALPART (expr);
7934 rsize = native_encode_expr (part, ptr, len, off);
7935 if (off == -1 && rsize == 0)
7936 return 0;
7937 part = TREE_IMAGPART (expr);
7938 if (off != -1)
7939 off = MAX (0, off - GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part))));
7940 isize = native_encode_expr (part, ptr ? ptr + rsize : NULL,
7941 len - rsize, off);
7942 if (off == -1 && isize != rsize)
7943 return 0;
7944 return rsize + isize;
7945}
7946
7947/* Like native_encode_vector, but only encode the first COUNT elements.
7948 The other arguments are as for native_encode_vector. */
7949
7950static int
7951native_encode_vector_part (const_tree expr, unsigned char *ptr, int len,
7952 int off, unsigned HOST_WIDE_INT count)
7953{
7954 tree itype = TREE_TYPE (TREE_TYPE (expr));
7955 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (expr))
7956 && TYPE_PRECISION (itype) <= BITS_PER_UNIT)
7957 {
7958 /* This is the only case in which elements can be smaller than a byte.
7959 Element 0 is always in the lsb of the containing byte. */
7960 unsigned int elt_bits = TYPE_PRECISION (itype);
7961 int total_bytes = CEIL (elt_bits * count, BITS_PER_UNIT);
7962 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7963 return 0;
7964
7965 if (off == -1)
7966 off = 0;
7967
7968 /* Zero the buffer and then set bits later where necessary. */
7969 int extract_bytes = MIN (len, total_bytes - off);
7970 if (ptr)
7971 memset (s: ptr, c: 0, n: extract_bytes);
7972
7973 unsigned int elts_per_byte = BITS_PER_UNIT / elt_bits;
7974 unsigned int first_elt = off * elts_per_byte;
7975 unsigned int extract_elts = extract_bytes * elts_per_byte;
7976 for (unsigned int i = 0; i < extract_elts; ++i)
7977 {
7978 tree elt = VECTOR_CST_ELT (expr, first_elt + i);
7979 if (TREE_CODE (elt) != INTEGER_CST)
7980 return 0;
7981
7982 if (ptr && wi::extract_uhwi (x: wi::to_wide (t: elt), bitpos: 0, width: 1))
7983 {
7984 unsigned int bit = i * elt_bits;
7985 ptr[bit / BITS_PER_UNIT] |= 1 << (bit % BITS_PER_UNIT);
7986 }
7987 }
7988 return extract_bytes;
7989 }
7990
7991 int offset = 0;
7992 int size = GET_MODE_SIZE (SCALAR_TYPE_MODE (itype));
7993 for (unsigned HOST_WIDE_INT i = 0; i < count; i++)
7994 {
7995 if (off >= size)
7996 {
7997 off -= size;
7998 continue;
7999 }
8000 tree elem = VECTOR_CST_ELT (expr, i);
8001 int res = native_encode_expr (elem, ptr ? ptr + offset : NULL,
8002 len - offset, off);
8003 if ((off == -1 && res != size) || res == 0)
8004 return 0;
8005 offset += res;
8006 if (offset >= len)
8007 return (off == -1 && i < count - 1) ? 0 : offset;
8008 if (off != -1)
8009 off = 0;
8010 }
8011 return offset;
8012}
8013
8014/* Subroutine of native_encode_expr. Encode the VECTOR_CST
8015 specified by EXPR into the buffer PTR of length LEN bytes.
8016 Return the number of bytes placed in the buffer, or zero
8017 upon failure. */
8018
8019static int
8020native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
8021{
8022 unsigned HOST_WIDE_INT count;
8023 if (!VECTOR_CST_NELTS (expr).is_constant (const_value: &count))
8024 return 0;
8025 return native_encode_vector_part (expr, ptr, len, off, count);
8026}
8027
8028
8029/* Subroutine of native_encode_expr. Encode the STRING_CST
8030 specified by EXPR into the buffer PTR of length LEN bytes.
8031 Return the number of bytes placed in the buffer, or zero
8032 upon failure. */
8033
8034static int
8035native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
8036{
8037 tree type = TREE_TYPE (expr);
8038
8039 /* Wide-char strings are encoded in target byte-order so native
8040 encoding them is trivial. */
8041 if (BITS_PER_UNIT != CHAR_BIT
8042 || TREE_CODE (type) != ARRAY_TYPE
8043 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
8044 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
8045 return 0;
8046
8047 HOST_WIDE_INT total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
8048 if ((off == -1 && total_bytes > len) || off >= total_bytes)
8049 return 0;
8050 if (off == -1)
8051 off = 0;
8052 len = MIN (total_bytes - off, len);
8053 if (ptr == NULL)
8054 /* Dry run. */;
8055 else
8056 {
8057 int written = 0;
8058 if (off < TREE_STRING_LENGTH (expr))
8059 {
8060 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
8061 memcpy (dest: ptr, TREE_STRING_POINTER (expr) + off, n: written);
8062 }
8063 memset (s: ptr + written, c: 0, n: len - written);
8064 }
8065 return len;
8066}
8067
8068
8069/* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST, REAL_CST,
8070 FIXED_CST, COMPLEX_CST, STRING_CST, or VECTOR_CST specified by EXPR into
8071 the buffer PTR of size LEN bytes. If PTR is NULL, don't actually store
8072 anything, just do a dry run. Fail either if OFF is -1 and LEN isn't
8073 sufficient to encode the entire EXPR, or if OFF is out of bounds.
8074 Otherwise, start at byte offset OFF and encode at most LEN bytes.
8075 Return the number of bytes placed in the buffer, or zero upon failure. */
8076
8077int
8078native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
8079{
8080 /* We don't support starting at negative offset and -1 is special. */
8081 if (off < -1)
8082 return 0;
8083
8084 switch (TREE_CODE (expr))
8085 {
8086 case INTEGER_CST:
8087 return native_encode_int (expr, ptr, len, off);
8088
8089 case REAL_CST:
8090 return native_encode_real (expr, ptr, len, off);
8091
8092 case FIXED_CST:
8093 return native_encode_fixed (expr, ptr, len, off);
8094
8095 case COMPLEX_CST:
8096 return native_encode_complex (expr, ptr, len, off);
8097
8098 case VECTOR_CST:
8099 return native_encode_vector (expr, ptr, len, off);
8100
8101 case STRING_CST:
8102 return native_encode_string (expr, ptr, len, off);
8103
8104 default:
8105 return 0;
8106 }
8107}
8108
8109/* Try to find a type whose byte size is smaller or equal to LEN bytes larger
8110 or equal to FIELDSIZE bytes, with underlying mode precision/size multiple
8111 of BITS_PER_UNIT. As native_{interpret,encode}_int works in term of
8112 machine modes, we can't just use build_nonstandard_integer_type. */
8113
8114tree
8115find_bitfield_repr_type (int fieldsize, int len)
8116{
8117 machine_mode mode;
8118 for (int pass = 0; pass < 2; pass++)
8119 {
8120 enum mode_class mclass = pass ? MODE_PARTIAL_INT : MODE_INT;
8121 FOR_EACH_MODE_IN_CLASS (mode, mclass)
8122 if (known_ge (GET_MODE_SIZE (mode), fieldsize)
8123 && known_eq (GET_MODE_PRECISION (mode),
8124 GET_MODE_BITSIZE (mode))
8125 && known_le (GET_MODE_SIZE (mode), len))
8126 {
8127 tree ret = lang_hooks.types.type_for_mode (mode, 1);
8128 if (ret && TYPE_MODE (ret) == mode)
8129 return ret;
8130 }
8131 }
8132
8133 for (int i = 0; i < NUM_INT_N_ENTS; i ++)
8134 if (int_n_enabled_p[i]
8135 && int_n_data[i].bitsize >= (unsigned) (BITS_PER_UNIT * fieldsize)
8136 && int_n_trees[i].unsigned_type)
8137 {
8138 tree ret = int_n_trees[i].unsigned_type;
8139 mode = TYPE_MODE (ret);
8140 if (known_ge (GET_MODE_SIZE (mode), fieldsize)
8141 && known_eq (GET_MODE_PRECISION (mode),
8142 GET_MODE_BITSIZE (mode))
8143 && known_le (GET_MODE_SIZE (mode), len))
8144 return ret;
8145 }
8146
8147 return NULL_TREE;
8148}
8149
8150/* Similar to native_encode_expr, but also handle CONSTRUCTORs, VCEs,
8151 NON_LVALUE_EXPRs and nops. If MASK is non-NULL (then PTR has
8152 to be non-NULL and OFF zero), then in addition to filling the
8153 bytes pointed by PTR with the value also clear any bits pointed
8154 by MASK that are known to be initialized, keep them as is for
8155 e.g. uninitialized padding bits or uninitialized fields. */
8156
8157int
8158native_encode_initializer (tree init, unsigned char *ptr, int len,
8159 int off, unsigned char *mask)
8160{
8161 int r;
8162
8163 /* We don't support starting at negative offset and -1 is special. */
8164 if (off < -1 || init == NULL_TREE)
8165 return 0;
8166
8167 gcc_assert (mask == NULL || (off == 0 && ptr));
8168
8169 STRIP_NOPS (init);
8170 switch (TREE_CODE (init))
8171 {
8172 case VIEW_CONVERT_EXPR:
8173 case NON_LVALUE_EXPR:
8174 return native_encode_initializer (TREE_OPERAND (init, 0), ptr, len, off,
8175 mask);
8176 default:
8177 r = native_encode_expr (expr: init, ptr, len, off);
8178 if (mask)
8179 memset (s: mask, c: 0, n: r);
8180 return r;
8181 case CONSTRUCTOR:
8182 tree type = TREE_TYPE (init);
8183 HOST_WIDE_INT total_bytes = int_size_in_bytes (type);
8184 if (total_bytes < 0)
8185 return 0;
8186 if ((off == -1 && total_bytes > len) || off >= total_bytes)
8187 return 0;
8188 int o = off == -1 ? 0 : off;
8189 if (TREE_CODE (type) == ARRAY_TYPE)
8190 {
8191 tree min_index;
8192 unsigned HOST_WIDE_INT cnt;
8193 HOST_WIDE_INT curpos = 0, fieldsize, valueinit = -1;
8194 constructor_elt *ce;
8195
8196 if (!TYPE_DOMAIN (type)
8197 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
8198 return 0;
8199
8200 fieldsize = int_size_in_bytes (TREE_TYPE (type));
8201 if (fieldsize <= 0)
8202 return 0;
8203
8204 min_index = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
8205 if (ptr)
8206 memset (s: ptr, c: '\0', MIN (total_bytes - off, len));
8207
8208 for (cnt = 0; ; cnt++)
8209 {
8210 tree val = NULL_TREE, index = NULL_TREE;
8211 HOST_WIDE_INT pos = curpos, count = 0;
8212 bool full = false;
8213 if (vec_safe_iterate (CONSTRUCTOR_ELTS (init), ix: cnt, ptr: &ce))
8214 {
8215 val = ce->value;
8216 index = ce->index;
8217 }
8218 else if (mask == NULL
8219 || CONSTRUCTOR_NO_CLEARING (init)
8220 || curpos >= total_bytes)
8221 break;
8222 else
8223 pos = total_bytes;
8224
8225 if (index && TREE_CODE (index) == RANGE_EXPR)
8226 {
8227 if (TREE_CODE (TREE_OPERAND (index, 0)) != INTEGER_CST
8228 || TREE_CODE (TREE_OPERAND (index, 1)) != INTEGER_CST)
8229 return 0;
8230 offset_int wpos
8231 = wi::sext (x: wi::to_offset (TREE_OPERAND (index, 0))
8232 - wi::to_offset (t: min_index),
8233 TYPE_PRECISION (sizetype));
8234 wpos *= fieldsize;
8235 if (!wi::fits_shwi_p (x: pos))
8236 return 0;
8237 pos = wpos.to_shwi ();
8238 offset_int wcount
8239 = wi::sext (x: wi::to_offset (TREE_OPERAND (index, 1))
8240 - wi::to_offset (TREE_OPERAND (index, 0)),
8241 TYPE_PRECISION (sizetype));
8242 if (!wi::fits_shwi_p (x: wcount))
8243 return 0;
8244 count = wcount.to_shwi ();
8245 }
8246 else if (index)
8247 {
8248 if (TREE_CODE (index) != INTEGER_CST)
8249 return 0;
8250 offset_int wpos
8251 = wi::sext (x: wi::to_offset (t: index)
8252 - wi::to_offset (t: min_index),
8253 TYPE_PRECISION (sizetype));
8254 wpos *= fieldsize;
8255 if (!wi::fits_shwi_p (x: wpos))
8256 return 0;
8257 pos = wpos.to_shwi ();
8258 }
8259
8260 if (mask && !CONSTRUCTOR_NO_CLEARING (init) && curpos != pos)
8261 {
8262 if (valueinit == -1)
8263 {
8264 tree zero = build_zero_cst (TREE_TYPE (type));
8265 r = native_encode_initializer (init: zero, ptr: ptr + curpos,
8266 len: fieldsize, off: 0,
8267 mask: mask + curpos);
8268 if (TREE_CODE (zero) == CONSTRUCTOR)
8269 ggc_free (zero);
8270 if (!r)
8271 return 0;
8272 valueinit = curpos;
8273 curpos += fieldsize;
8274 }
8275 while (curpos != pos)
8276 {
8277 memcpy (dest: ptr + curpos, src: ptr + valueinit, n: fieldsize);
8278 memcpy (dest: mask + curpos, src: mask + valueinit, n: fieldsize);
8279 curpos += fieldsize;
8280 }
8281 }
8282
8283 curpos = pos;
8284 if (val)
8285 do
8286 {
8287 if (off == -1
8288 || (curpos >= off
8289 && (curpos + fieldsize
8290 <= (HOST_WIDE_INT) off + len)))
8291 {
8292 if (full)
8293 {
8294 if (ptr)
8295 memcpy (dest: ptr + (curpos - o), src: ptr + (pos - o),
8296 n: fieldsize);
8297 if (mask)
8298 memcpy (dest: mask + curpos, src: mask + pos, n: fieldsize);
8299 }
8300 else if (!native_encode_initializer (init: val,
8301 ptr: ptr
8302 ? ptr + curpos - o
8303 : NULL,
8304 len: fieldsize,
8305 off: off == -1 ? -1
8306 : 0,
8307 mask: mask
8308 ? mask + curpos
8309 : NULL))
8310 return 0;
8311 else
8312 {
8313 full = true;
8314 pos = curpos;
8315 }
8316 }
8317 else if (curpos + fieldsize > off
8318 && curpos < (HOST_WIDE_INT) off + len)
8319 {
8320 /* Partial overlap. */
8321 unsigned char *p = NULL;
8322 int no = 0;
8323 int l;
8324 gcc_assert (mask == NULL);
8325 if (curpos >= off)
8326 {
8327 if (ptr)
8328 p = ptr + curpos - off;
8329 l = MIN ((HOST_WIDE_INT) off + len - curpos,
8330 fieldsize);
8331 }
8332 else
8333 {
8334 p = ptr;
8335 no = off - curpos;
8336 l = len;
8337 }
8338 if (!native_encode_initializer (init: val, ptr: p, len: l, off: no, NULL))
8339 return 0;
8340 }
8341 curpos += fieldsize;
8342 }
8343 while (count-- != 0);
8344 }
8345 return MIN (total_bytes - off, len);
8346 }
8347 else if (TREE_CODE (type) == RECORD_TYPE
8348 || TREE_CODE (type) == UNION_TYPE)
8349 {
8350 unsigned HOST_WIDE_INT cnt;
8351 constructor_elt *ce;
8352 tree fld_base = TYPE_FIELDS (type);
8353 tree to_free = NULL_TREE;
8354
8355 gcc_assert (TREE_CODE (type) == RECORD_TYPE || mask == NULL);
8356 if (ptr != NULL)
8357 memset (s: ptr, c: '\0', MIN (total_bytes - o, len));
8358 for (cnt = 0; ; cnt++)
8359 {
8360 tree val = NULL_TREE, field = NULL_TREE;
8361 HOST_WIDE_INT pos = 0, fieldsize;
8362 unsigned HOST_WIDE_INT bpos = 0, epos = 0;
8363
8364 if (to_free)
8365 {
8366 ggc_free (to_free);
8367 to_free = NULL_TREE;
8368 }
8369
8370 if (vec_safe_iterate (CONSTRUCTOR_ELTS (init), ix: cnt, ptr: &ce))
8371 {
8372 val = ce->value;
8373 field = ce->index;
8374 if (field == NULL_TREE)
8375 return 0;
8376
8377 pos = int_byte_position (field);
8378 if (off != -1 && (HOST_WIDE_INT) off + len <= pos)
8379 continue;
8380 }
8381 else if (mask == NULL
8382 || CONSTRUCTOR_NO_CLEARING (init))
8383 break;
8384 else
8385 pos = total_bytes;
8386
8387 if (mask && !CONSTRUCTOR_NO_CLEARING (init))
8388 {
8389 tree fld;
8390 for (fld = fld_base; fld; fld = DECL_CHAIN (fld))
8391 {
8392 if (TREE_CODE (fld) != FIELD_DECL)
8393 continue;
8394 if (fld == field)
8395 break;
8396 if (DECL_PADDING_P (fld))
8397 continue;
8398 if (DECL_SIZE_UNIT (fld) == NULL_TREE
8399 || !tree_fits_shwi_p (DECL_SIZE_UNIT (fld)))
8400 return 0;
8401 if (integer_zerop (DECL_SIZE_UNIT (fld)))
8402 continue;
8403 break;
8404 }
8405 if (fld == NULL_TREE)
8406 {
8407 if (ce == NULL)
8408 break;
8409 return 0;
8410 }
8411 fld_base = DECL_CHAIN (fld);
8412 if (fld != field)
8413 {
8414 cnt--;
8415 field = fld;
8416 pos = int_byte_position (field);
8417 val = build_zero_cst (TREE_TYPE (fld));
8418 if (TREE_CODE (val) == CONSTRUCTOR)
8419 to_free = val;
8420 }
8421 }
8422
8423 if (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
8424 && TYPE_DOMAIN (TREE_TYPE (field))
8425 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (field))))
8426 {
8427 if (mask || off != -1)
8428 return 0;
8429 if (val == NULL_TREE)
8430 continue;
8431 if (TREE_CODE (TREE_TYPE (val)) != ARRAY_TYPE)
8432 return 0;
8433 fieldsize = int_size_in_bytes (TREE_TYPE (val));
8434 if (fieldsize < 0
8435 || (int) fieldsize != fieldsize
8436 || (pos + fieldsize) > INT_MAX)
8437 return 0;
8438 if (pos + fieldsize > total_bytes)
8439 {
8440 if (ptr != NULL && total_bytes < len)
8441 memset (s: ptr + total_bytes, c: '\0',
8442 MIN (pos + fieldsize, len) - total_bytes);
8443 total_bytes = pos + fieldsize;
8444 }
8445 }
8446 else
8447 {
8448 if (DECL_SIZE_UNIT (field) == NULL_TREE
8449 || !tree_fits_shwi_p (DECL_SIZE_UNIT (field)))
8450 return 0;
8451 fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field));
8452 }
8453 if (fieldsize == 0)
8454 continue;
8455
8456 /* Prepare to deal with integral bit-fields and filter out other
8457 bit-fields that do not start and end on a byte boundary. */
8458 if (DECL_BIT_FIELD (field))
8459 {
8460 if (!tree_fits_uhwi_p (DECL_FIELD_BIT_OFFSET (field)))
8461 return 0;
8462 bpos = tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field));
8463 if (INTEGRAL_TYPE_P (TREE_TYPE (field)))
8464 {
8465 bpos %= BITS_PER_UNIT;
8466 fieldsize = TYPE_PRECISION (TREE_TYPE (field)) + bpos;
8467 epos = fieldsize % BITS_PER_UNIT;
8468 fieldsize += BITS_PER_UNIT - 1;
8469 fieldsize /= BITS_PER_UNIT;
8470 }
8471 else if (bpos % BITS_PER_UNIT
8472 || DECL_SIZE (field) == NULL_TREE
8473 || !tree_fits_shwi_p (DECL_SIZE (field))
8474 || tree_to_shwi (DECL_SIZE (field)) % BITS_PER_UNIT)
8475 return 0;
8476 }
8477
8478 if (off != -1 && pos + fieldsize <= off)
8479 continue;
8480
8481 if (val == NULL_TREE)
8482 continue;
8483
8484 if (DECL_BIT_FIELD (field)
8485 && INTEGRAL_TYPE_P (TREE_TYPE (field)))
8486 {
8487 /* FIXME: Handle PDP endian. */
8488 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
8489 return 0;
8490
8491 if (TREE_CODE (val) != INTEGER_CST)
8492 return 0;
8493
8494 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
8495 tree repr_type = NULL_TREE;
8496 HOST_WIDE_INT rpos = 0;
8497 if (repr && INTEGRAL_TYPE_P (TREE_TYPE (repr)))
8498 {
8499 rpos = int_byte_position (repr);
8500 repr_type = TREE_TYPE (repr);
8501 }
8502 else
8503 {
8504 repr_type = find_bitfield_repr_type (fieldsize, len);
8505 if (repr_type == NULL_TREE)
8506 return 0;
8507 HOST_WIDE_INT repr_size = int_size_in_bytes (repr_type);
8508 gcc_assert (repr_size > 0 && repr_size <= len);
8509 if (pos + repr_size <= o + len)
8510 rpos = pos;
8511 else
8512 {
8513 rpos = o + len - repr_size;
8514 gcc_assert (rpos <= pos);
8515 }
8516 }
8517
8518 if (rpos > pos)
8519 return 0;
8520 wide_int w = wi::to_wide (t: val, TYPE_PRECISION (repr_type));
8521 int diff = (TYPE_PRECISION (repr_type)
8522 - TYPE_PRECISION (TREE_TYPE (field)));
8523 HOST_WIDE_INT bitoff = (pos - rpos) * BITS_PER_UNIT + bpos;
8524 if (!BYTES_BIG_ENDIAN)
8525 w = wi::lshift (x: w, y: bitoff);
8526 else
8527 w = wi::lshift (x: w, y: diff - bitoff);
8528 val = wide_int_to_tree (type: repr_type, cst: w);
8529
8530 unsigned char buf[MAX_BITSIZE_MODE_ANY_INT
8531 / BITS_PER_UNIT + 1];
8532 int l = native_encode_int (expr: val, ptr: buf, len: sizeof buf, off: 0);
8533 if (l * BITS_PER_UNIT != TYPE_PRECISION (repr_type))
8534 return 0;
8535
8536 if (ptr == NULL)
8537 continue;
8538
8539 /* If the bitfield does not start at byte boundary, handle
8540 the partial byte at the start. */
8541 if (bpos
8542 && (off == -1 || (pos >= off && len >= 1)))
8543 {
8544 if (!BYTES_BIG_ENDIAN)
8545 {
8546 int msk = (1 << bpos) - 1;
8547 buf[pos - rpos] &= ~msk;
8548 buf[pos - rpos] |= ptr[pos - o] & msk;
8549 if (mask)
8550 {
8551 if (fieldsize > 1 || epos == 0)
8552 mask[pos] &= msk;
8553 else
8554 mask[pos] &= (msk | ~((1 << epos) - 1));
8555 }
8556 }
8557 else
8558 {
8559 int msk = (1 << (BITS_PER_UNIT - bpos)) - 1;
8560 buf[pos - rpos] &= msk;
8561 buf[pos - rpos] |= ptr[pos - o] & ~msk;
8562 if (mask)
8563 {
8564 if (fieldsize > 1 || epos == 0)
8565 mask[pos] &= ~msk;
8566 else
8567 mask[pos] &= (~msk
8568 | ((1 << (BITS_PER_UNIT - epos))
8569 - 1));
8570 }
8571 }
8572 }
8573 /* If the bitfield does not end at byte boundary, handle
8574 the partial byte at the end. */
8575 if (epos
8576 && (off == -1
8577 || pos + fieldsize <= (HOST_WIDE_INT) off + len))
8578 {
8579 if (!BYTES_BIG_ENDIAN)
8580 {
8581 int msk = (1 << epos) - 1;
8582 buf[pos - rpos + fieldsize - 1] &= msk;
8583 buf[pos - rpos + fieldsize - 1]
8584 |= ptr[pos + fieldsize - 1 - o] & ~msk;
8585 if (mask && (fieldsize > 1 || bpos == 0))
8586 mask[pos + fieldsize - 1] &= ~msk;
8587 }
8588 else
8589 {
8590 int msk = (1 << (BITS_PER_UNIT - epos)) - 1;
8591 buf[pos - rpos + fieldsize - 1] &= ~msk;
8592 buf[pos - rpos + fieldsize - 1]
8593 |= ptr[pos + fieldsize - 1 - o] & msk;
8594 if (mask && (fieldsize > 1 || bpos == 0))
8595 mask[pos + fieldsize - 1] &= msk;
8596 }
8597 }
8598 if (off == -1
8599 || (pos >= off
8600 && (pos + fieldsize <= (HOST_WIDE_INT) off + len)))
8601 {
8602 memcpy (dest: ptr + pos - o, src: buf + (pos - rpos), n: fieldsize);
8603 if (mask && (fieldsize > (bpos != 0) + (epos != 0)))
8604 memset (s: mask + pos + (bpos != 0), c: 0,
8605 n: fieldsize - (bpos != 0) - (epos != 0));
8606 }
8607 else
8608 {
8609 /* Partial overlap. */
8610 HOST_WIDE_INT fsz = fieldsize;
8611 gcc_assert (mask == NULL);
8612 if (pos < off)
8613 {
8614 fsz -= (off - pos);
8615 pos = off;
8616 }
8617 if (pos + fsz > (HOST_WIDE_INT) off + len)
8618 fsz = (HOST_WIDE_INT) off + len - pos;
8619 memcpy (dest: ptr + pos - off, src: buf + (pos - rpos), n: fsz);
8620 }
8621 continue;
8622 }
8623
8624 if (off == -1
8625 || (pos >= off
8626 && (pos + fieldsize <= (HOST_WIDE_INT) off + len)))
8627 {
8628 int fldsize = fieldsize;
8629 if (off == -1)
8630 {
8631 tree fld = DECL_CHAIN (field);
8632 while (fld)
8633 {
8634 if (TREE_CODE (fld) == FIELD_DECL)
8635 break;
8636 fld = DECL_CHAIN (fld);
8637 }
8638 if (fld == NULL_TREE)
8639 fldsize = len - pos;
8640 }
8641 r = native_encode_initializer (init: val, ptr: ptr ? ptr + pos - o
8642 : NULL,
8643 len: fldsize,
8644 off: off == -1 ? -1 : 0,
8645 mask: mask ? mask + pos : NULL);
8646 if (!r)
8647 return 0;
8648 if (off == -1
8649 && fldsize != fieldsize
8650 && r > fieldsize
8651 && pos + r > total_bytes)
8652 total_bytes = pos + r;
8653 }
8654 else
8655 {
8656 /* Partial overlap. */
8657 unsigned char *p = NULL;
8658 int no = 0;
8659 int l;
8660 gcc_assert (mask == NULL);
8661 if (pos >= off)
8662 {
8663 if (ptr)
8664 p = ptr + pos - off;
8665 l = MIN ((HOST_WIDE_INT) off + len - pos,
8666 fieldsize);
8667 }
8668 else
8669 {
8670 p = ptr;
8671 no = off - pos;
8672 l = len;
8673 }
8674 if (!native_encode_initializer (init: val, ptr: p, len: l, off: no, NULL))
8675 return 0;
8676 }
8677 }
8678 return MIN (total_bytes - off, len);
8679 }
8680 return 0;
8681 }
8682}
8683
8684
8685/* Subroutine of native_interpret_expr. Interpret the contents of
8686 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
8687 If the buffer cannot be interpreted, return NULL_TREE. */
8688
8689static tree
8690native_interpret_int (tree type, const unsigned char *ptr, int len)
8691{
8692 int total_bytes;
8693 if (TREE_CODE (type) == BITINT_TYPE)
8694 {
8695 struct bitint_info info;
8696 bool ok = targetm.c.bitint_type_info (TYPE_PRECISION (type), &info);
8697 gcc_assert (ok);
8698 scalar_int_mode limb_mode = as_a <scalar_int_mode> (m: info.limb_mode);
8699 if (TYPE_PRECISION (type) > GET_MODE_PRECISION (mode: limb_mode))
8700 {
8701 total_bytes = tree_to_uhwi (TYPE_SIZE_UNIT (type));
8702 /* More work is needed when adding _BitInt support to PDP endian
8703 if limb is smaller than word, or if _BitInt limb ordering doesn't
8704 match target endianity here. */
8705 gcc_checking_assert (info.big_endian == WORDS_BIG_ENDIAN
8706 && (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
8707 || (GET_MODE_SIZE (limb_mode)
8708 >= UNITS_PER_WORD)));
8709 }
8710 else
8711 total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
8712 }
8713 else
8714 total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
8715
8716 if (total_bytes > len
8717 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
8718 return NULL_TREE;
8719
8720 wide_int result = wi::from_buffer (ptr, total_bytes);
8721
8722 return wide_int_to_tree (type, cst: result);
8723}
8724
8725
8726/* Subroutine of native_interpret_expr. Interpret the contents of
8727 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
8728 If the buffer cannot be interpreted, return NULL_TREE. */
8729
8730static tree
8731native_interpret_fixed (tree type, const unsigned char *ptr, int len)
8732{
8733 scalar_mode mode = SCALAR_TYPE_MODE (type);
8734 int total_bytes = GET_MODE_SIZE (mode);
8735 double_int result;
8736 FIXED_VALUE_TYPE fixed_value;
8737
8738 if (total_bytes > len
8739 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
8740 return NULL_TREE;
8741
8742 result = double_int::from_buffer (buffer: ptr, len: total_bytes);
8743 fixed_value = fixed_from_double_int (result, mode);
8744
8745 return build_fixed (type, fixed_value);
8746}
8747
8748
8749/* Subroutine of native_interpret_expr. Interpret the contents of
8750 the buffer PTR of length LEN as a REAL_CST of type TYPE.
8751 If the buffer cannot be interpreted, return NULL_TREE. */
8752
8753tree
8754native_interpret_real (tree type, const unsigned char *ptr, int len)
8755{
8756 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type);
8757 int total_bytes = GET_MODE_SIZE (mode);
8758 unsigned char value;
8759 /* There are always 32 bits in each long, no matter the size of
8760 the hosts long. We handle floating point representations with
8761 up to 192 bits. */
8762 REAL_VALUE_TYPE r;
8763 long tmp[6];
8764
8765 if (total_bytes > len || total_bytes > 24)
8766 return NULL_TREE;
8767 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
8768
8769 memset (s: tmp, c: 0, n: sizeof (tmp));
8770 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
8771 bitpos += BITS_PER_UNIT)
8772 {
8773 /* Both OFFSET and BYTE index within a long;
8774 bitpos indexes the whole float. */
8775 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
8776 if (UNITS_PER_WORD < 4)
8777 {
8778 int word = byte / UNITS_PER_WORD;
8779 if (WORDS_BIG_ENDIAN)
8780 word = (words - 1) - word;
8781 offset = word * UNITS_PER_WORD;
8782 if (BYTES_BIG_ENDIAN)
8783 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
8784 else
8785 offset += byte % UNITS_PER_WORD;
8786 }
8787 else
8788 {
8789 offset = byte;
8790 if (BYTES_BIG_ENDIAN)
8791 {
8792 /* Reverse bytes within each long, or within the entire float
8793 if it's smaller than a long (for HFmode). */
8794 offset = MIN (3, total_bytes - 1) - offset;
8795 gcc_assert (offset >= 0);
8796 }
8797 }
8798 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
8799
8800 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
8801 }
8802
8803 real_from_target (&r, tmp, mode);
8804 return build_real (type, r);
8805}
8806
8807
8808/* Subroutine of native_interpret_expr. Interpret the contents of
8809 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
8810 If the buffer cannot be interpreted, return NULL_TREE. */
8811
8812static tree
8813native_interpret_complex (tree type, const unsigned char *ptr, int len)
8814{
8815 tree etype, rpart, ipart;
8816 int size;
8817
8818 etype = TREE_TYPE (type);
8819 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
8820 if (size * 2 > len)
8821 return NULL_TREE;
8822 rpart = native_interpret_expr (etype, ptr, size);
8823 if (!rpart)
8824 return NULL_TREE;
8825 ipart = native_interpret_expr (etype, ptr+size, size);
8826 if (!ipart)
8827 return NULL_TREE;
8828 return build_complex (type, rpart, ipart);
8829}
8830
8831/* Read a vector of type TYPE from the target memory image given by BYTES,
8832 which contains LEN bytes. The vector is known to be encodable using
8833 NPATTERNS interleaved patterns with NELTS_PER_PATTERN elements each.
8834
8835 Return the vector on success, otherwise return null. */
8836
8837static tree
8838native_interpret_vector_part (tree type, const unsigned char *bytes,
8839 unsigned int len, unsigned int npatterns,
8840 unsigned int nelts_per_pattern)
8841{
8842 tree elt_type = TREE_TYPE (type);
8843 if (VECTOR_BOOLEAN_TYPE_P (type)
8844 && TYPE_PRECISION (elt_type) <= BITS_PER_UNIT)
8845 {
8846 /* This is the only case in which elements can be smaller than a byte.
8847 Element 0 is always in the lsb of the containing byte. */
8848 unsigned int elt_bits = TYPE_PRECISION (elt_type);
8849 if (elt_bits * npatterns * nelts_per_pattern > len * BITS_PER_UNIT)
8850 return NULL_TREE;
8851
8852 tree_vector_builder builder (type, npatterns, nelts_per_pattern);
8853 for (unsigned int i = 0; i < builder.encoded_nelts (); ++i)
8854 {
8855 unsigned int bit_index = i * elt_bits;
8856 unsigned int byte_index = bit_index / BITS_PER_UNIT;
8857 unsigned int lsb = bit_index % BITS_PER_UNIT;
8858 builder.quick_push (obj: bytes[byte_index] & (1 << lsb)
8859 ? build_all_ones_cst (elt_type)
8860 : build_zero_cst (elt_type));
8861 }
8862 return builder.build ();
8863 }
8864
8865 unsigned int elt_bytes = tree_to_uhwi (TYPE_SIZE_UNIT (elt_type));
8866 if (elt_bytes * npatterns * nelts_per_pattern > len)
8867 return NULL_TREE;
8868
8869 tree_vector_builder builder (type, npatterns, nelts_per_pattern);
8870 for (unsigned int i = 0; i < builder.encoded_nelts (); ++i)
8871 {
8872 tree elt = native_interpret_expr (elt_type, bytes, elt_bytes);
8873 if (!elt)
8874 return NULL_TREE;
8875 builder.quick_push (obj: elt);
8876 bytes += elt_bytes;
8877 }
8878 return builder.build ();
8879}
8880
8881/* Subroutine of native_interpret_expr. Interpret the contents of
8882 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
8883 If the buffer cannot be interpreted, return NULL_TREE. */
8884
8885static tree
8886native_interpret_vector (tree type, const unsigned char *ptr, unsigned int len)
8887{
8888 unsigned HOST_WIDE_INT size;
8889
8890 if (!tree_to_poly_uint64 (TYPE_SIZE_UNIT (type)).is_constant (const_value: &size)
8891 || size > len)
8892 return NULL_TREE;
8893
8894 unsigned HOST_WIDE_INT count = TYPE_VECTOR_SUBPARTS (node: type).to_constant ();
8895 return native_interpret_vector_part (type, bytes: ptr, len, npatterns: count, nelts_per_pattern: 1);
8896}
8897
8898
8899/* Subroutine of fold_view_convert_expr. Interpret the contents of
8900 the buffer PTR of length LEN as a constant of type TYPE. For
8901 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
8902 we return a REAL_CST, etc... If the buffer cannot be interpreted,
8903 return NULL_TREE. */
8904
8905tree
8906native_interpret_expr (tree type, const unsigned char *ptr, int len)
8907{
8908 switch (TREE_CODE (type))
8909 {
8910 case INTEGER_TYPE:
8911 case ENUMERAL_TYPE:
8912 case BOOLEAN_TYPE:
8913 case POINTER_TYPE:
8914 case REFERENCE_TYPE:
8915 case OFFSET_TYPE:
8916 case BITINT_TYPE:
8917 return native_interpret_int (type, ptr, len);
8918
8919 case REAL_TYPE:
8920 if (tree ret = native_interpret_real (type, ptr, len))
8921 {
8922 /* For floating point values in composite modes, punt if this
8923 folding doesn't preserve bit representation. As the mode doesn't
8924 have fixed precision while GCC pretends it does, there could be
8925 valid values that GCC can't really represent accurately.
8926 See PR95450. Even for other modes, e.g. x86 XFmode can have some
8927 bit combinationations which GCC doesn't preserve. */
8928 unsigned char buf[24 * 2];
8929 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type);
8930 int total_bytes = GET_MODE_SIZE (mode);
8931 memcpy (dest: buf + 24, src: ptr, n: total_bytes);
8932 clear_type_padding_in_mask (type, buf + 24);
8933 if (native_encode_expr (expr: ret, ptr: buf, len: total_bytes, off: 0) != total_bytes
8934 || memcmp (s1: buf + 24, s2: buf, n: total_bytes) != 0)
8935 return NULL_TREE;
8936 return ret;
8937 }
8938 return NULL_TREE;
8939
8940 case FIXED_POINT_TYPE:
8941 return native_interpret_fixed (type, ptr, len);
8942
8943 case COMPLEX_TYPE:
8944 return native_interpret_complex (type, ptr, len);
8945
8946 case VECTOR_TYPE:
8947 return native_interpret_vector (type, ptr, len);
8948
8949 default:
8950 return NULL_TREE;
8951 }
8952}
8953
8954/* Returns true if we can interpret the contents of a native encoding
8955 as TYPE. */
8956
8957bool
8958can_native_interpret_type_p (tree type)
8959{
8960 switch (TREE_CODE (type))
8961 {
8962 case INTEGER_TYPE:
8963 case ENUMERAL_TYPE:
8964 case BOOLEAN_TYPE:
8965 case POINTER_TYPE:
8966 case REFERENCE_TYPE:
8967 case FIXED_POINT_TYPE:
8968 case REAL_TYPE:
8969 case COMPLEX_TYPE:
8970 case VECTOR_TYPE:
8971 case OFFSET_TYPE:
8972 return true;
8973 default:
8974 return false;
8975 }
8976}
8977
8978/* Attempt to interpret aggregate of TYPE from bytes encoded in target
8979 byte order at PTR + OFF with LEN bytes. Does not handle unions. */
8980
8981tree
8982native_interpret_aggregate (tree type, const unsigned char *ptr, int off,
8983 int len)
8984{
8985 vec<constructor_elt, va_gc> *elts = NULL;
8986 if (TREE_CODE (type) == ARRAY_TYPE)
8987 {
8988 HOST_WIDE_INT eltsz = int_size_in_bytes (TREE_TYPE (type));
8989 if (eltsz < 0 || eltsz > len || TYPE_DOMAIN (type) == NULL_TREE)
8990 return NULL_TREE;
8991
8992 HOST_WIDE_INT cnt = 0;
8993 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
8994 {
8995 if (!tree_fits_shwi_p (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
8996 return NULL_TREE;
8997 cnt = tree_to_shwi (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) + 1;
8998 }
8999 if (eltsz == 0)
9000 cnt = 0;
9001 HOST_WIDE_INT pos = 0;
9002 for (HOST_WIDE_INT i = 0; i < cnt; i++, pos += eltsz)
9003 {
9004 tree v = NULL_TREE;
9005 if (pos >= len || pos + eltsz > len)
9006 return NULL_TREE;
9007 if (can_native_interpret_type_p (TREE_TYPE (type)))
9008 {
9009 v = native_interpret_expr (TREE_TYPE (type),
9010 ptr: ptr + off + pos, len: eltsz);
9011 if (v == NULL_TREE)
9012 return NULL_TREE;
9013 }
9014 else if (TREE_CODE (TREE_TYPE (type)) == RECORD_TYPE
9015 || TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE)
9016 v = native_interpret_aggregate (TREE_TYPE (type), ptr, off: off + pos,
9017 len: eltsz);
9018 if (v == NULL_TREE)
9019 return NULL_TREE;
9020 CONSTRUCTOR_APPEND_ELT (elts, size_int (i), v);
9021 }
9022 return build_constructor (type, elts);
9023 }
9024 if (TREE_CODE (type) != RECORD_TYPE)
9025 return NULL_TREE;
9026 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
9027 {
9028 if (TREE_CODE (field) != FIELD_DECL || DECL_PADDING_P (field)
9029 || is_empty_type (TREE_TYPE (field)))
9030 continue;
9031 tree fld = field;
9032 HOST_WIDE_INT bitoff = 0, pos = 0, sz = 0;
9033 int diff = 0;
9034 tree v = NULL_TREE;
9035 if (DECL_BIT_FIELD (field))
9036 {
9037 fld = DECL_BIT_FIELD_REPRESENTATIVE (field);
9038 if (fld && INTEGRAL_TYPE_P (TREE_TYPE (fld)))
9039 {
9040 poly_int64 bitoffset;
9041 poly_uint64 field_offset, fld_offset;
9042 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), value: &field_offset)
9043 && poly_int_tree_p (DECL_FIELD_OFFSET (fld), value: &fld_offset))
9044 bitoffset = (field_offset - fld_offset) * BITS_PER_UNIT;
9045 else
9046 bitoffset = 0;
9047 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
9048 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (fld)));
9049 diff = (TYPE_PRECISION (TREE_TYPE (fld))
9050 - TYPE_PRECISION (TREE_TYPE (field)));
9051 if (!bitoffset.is_constant (const_value: &bitoff)
9052 || bitoff < 0
9053 || bitoff > diff)
9054 return NULL_TREE;
9055 }
9056 else
9057 {
9058 if (!tree_fits_uhwi_p (DECL_FIELD_BIT_OFFSET (field)))
9059 return NULL_TREE;
9060 int fieldsize = TYPE_PRECISION (TREE_TYPE (field));
9061 int bpos = tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field));
9062 bpos %= BITS_PER_UNIT;
9063 fieldsize += bpos;
9064 fieldsize += BITS_PER_UNIT - 1;
9065 fieldsize /= BITS_PER_UNIT;
9066 tree repr_type = find_bitfield_repr_type (fieldsize, len);
9067 if (repr_type == NULL_TREE)
9068 return NULL_TREE;
9069 sz = int_size_in_bytes (repr_type);
9070 if (sz < 0 || sz > len)
9071 return NULL_TREE;
9072 pos = int_byte_position (field);
9073 if (pos < 0 || pos > len || pos + fieldsize > len)
9074 return NULL_TREE;
9075 HOST_WIDE_INT rpos;
9076 if (pos + sz <= len)
9077 rpos = pos;
9078 else
9079 {
9080 rpos = len - sz;
9081 gcc_assert (rpos <= pos);
9082 }
9083 bitoff = (HOST_WIDE_INT) (pos - rpos) * BITS_PER_UNIT + bpos;
9084 pos = rpos;
9085 diff = (TYPE_PRECISION (repr_type)
9086 - TYPE_PRECISION (TREE_TYPE (field)));
9087 v = native_interpret_expr (type: repr_type, ptr: ptr + off + pos, len: sz);
9088 if (v == NULL_TREE)
9089 return NULL_TREE;
9090 fld = NULL_TREE;
9091 }
9092 }
9093
9094 if (fld)
9095 {
9096 sz = int_size_in_bytes (TREE_TYPE (fld));
9097 if (sz < 0 || sz > len)
9098 return NULL_TREE;
9099 tree byte_pos = byte_position (fld);
9100 if (!tree_fits_shwi_p (byte_pos))
9101 return NULL_TREE;
9102 pos = tree_to_shwi (byte_pos);
9103 if (pos < 0 || pos > len || pos + sz > len)
9104 return NULL_TREE;
9105 }
9106 if (fld == NULL_TREE)
9107 /* Already handled above. */;
9108 else if (can_native_interpret_type_p (TREE_TYPE (fld)))
9109 {
9110 v = native_interpret_expr (TREE_TYPE (fld),
9111 ptr: ptr + off + pos, len: sz);
9112 if (v == NULL_TREE)
9113 return NULL_TREE;
9114 }
9115 else if (TREE_CODE (TREE_TYPE (fld)) == RECORD_TYPE
9116 || TREE_CODE (TREE_TYPE (fld)) == ARRAY_TYPE)
9117 v = native_interpret_aggregate (TREE_TYPE (fld), ptr, off: off + pos, len: sz);
9118 if (v == NULL_TREE)
9119 return NULL_TREE;
9120 if (fld != field)
9121 {
9122 if (TREE_CODE (v) != INTEGER_CST)
9123 return NULL_TREE;
9124
9125 /* FIXME: Figure out how to handle PDP endian bitfields. */
9126 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9127 return NULL_TREE;
9128 if (!BYTES_BIG_ENDIAN)
9129 v = wide_int_to_tree (TREE_TYPE (field),
9130 cst: wi::lrshift (x: wi::to_wide (t: v), y: bitoff));
9131 else
9132 v = wide_int_to_tree (TREE_TYPE (field),
9133 cst: wi::lrshift (x: wi::to_wide (t: v),
9134 y: diff - bitoff));
9135 }
9136 CONSTRUCTOR_APPEND_ELT (elts, field, v);
9137 }
9138 return build_constructor (type, elts);
9139}
9140
9141/* Routines for manipulation of native_encode_expr encoded data if the encoded
9142 or extracted constant positions and/or sizes aren't byte aligned. */
9143
9144/* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the
9145 bits between adjacent elements. AMNT should be within
9146 [0, BITS_PER_UNIT).
9147 Example, AMNT = 2:
9148 00011111|11100000 << 2 = 01111111|10000000
9149 PTR[1] | PTR[0] PTR[1] | PTR[0]. */
9150
9151void
9152shift_bytes_in_array_left (unsigned char *ptr, unsigned int sz,
9153 unsigned int amnt)
9154{
9155 if (amnt == 0)
9156 return;
9157
9158 unsigned char carry_over = 0U;
9159 unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt);
9160 unsigned char clear_mask = (~0U) << amnt;
9161
9162 for (unsigned int i = 0; i < sz; i++)
9163 {
9164 unsigned prev_carry_over = carry_over;
9165 carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt);
9166
9167 ptr[i] <<= amnt;
9168 if (i != 0)
9169 {
9170 ptr[i] &= clear_mask;
9171 ptr[i] |= prev_carry_over;
9172 }
9173 }
9174}
9175
9176/* Like shift_bytes_in_array_left but for big-endian.
9177 Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the
9178 bits between adjacent elements. AMNT should be within
9179 [0, BITS_PER_UNIT).
9180 Example, AMNT = 2:
9181 00011111|11100000 >> 2 = 00000111|11111000
9182 PTR[0] | PTR[1] PTR[0] | PTR[1]. */
9183
9184void
9185shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz,
9186 unsigned int amnt)
9187{
9188 if (amnt == 0)
9189 return;
9190
9191 unsigned char carry_over = 0U;
9192 unsigned char carry_mask = ~(~0U << amnt);
9193
9194 for (unsigned int i = 0; i < sz; i++)
9195 {
9196 unsigned prev_carry_over = carry_over;
9197 carry_over = ptr[i] & carry_mask;
9198
9199 carry_over <<= (unsigned char) BITS_PER_UNIT - amnt;
9200 ptr[i] >>= amnt;
9201 ptr[i] |= prev_carry_over;
9202 }
9203}
9204
9205/* Try to view-convert VECTOR_CST EXPR to VECTOR_TYPE TYPE by operating
9206 directly on the VECTOR_CST encoding, in a way that works for variable-
9207 length vectors. Return the resulting VECTOR_CST on success or null
9208 on failure. */
9209
9210static tree
9211fold_view_convert_vector_encoding (tree type, tree expr)
9212{
9213 tree expr_type = TREE_TYPE (expr);
9214 poly_uint64 type_bits, expr_bits;
9215 if (!poly_int_tree_p (TYPE_SIZE (type), value: &type_bits)
9216 || !poly_int_tree_p (TYPE_SIZE (expr_type), value: &expr_bits))
9217 return NULL_TREE;
9218
9219 poly_uint64 type_units = TYPE_VECTOR_SUBPARTS (node: type);
9220 poly_uint64 expr_units = TYPE_VECTOR_SUBPARTS (node: expr_type);
9221 unsigned int type_elt_bits = vector_element_size (type_bits, type_units);
9222 unsigned int expr_elt_bits = vector_element_size (expr_bits, expr_units);
9223
9224 /* We can only preserve the semantics of a stepped pattern if the new
9225 vector element is an integer of the same size. */
9226 if (VECTOR_CST_STEPPED_P (expr)
9227 && (!INTEGRAL_TYPE_P (type) || type_elt_bits != expr_elt_bits))
9228 return NULL_TREE;
9229
9230 /* The number of bits needed to encode one element from every pattern
9231 of the original vector. */
9232 unsigned int expr_sequence_bits
9233 = VECTOR_CST_NPATTERNS (expr) * expr_elt_bits;
9234
9235 /* The number of bits needed to encode one element from every pattern
9236 of the result. */
9237 unsigned int type_sequence_bits
9238 = least_common_multiple (expr_sequence_bits, type_elt_bits);
9239
9240 /* Don't try to read more bytes than are available, which can happen
9241 for constant-sized vectors if TYPE has larger elements than EXPR_TYPE.
9242 The general VIEW_CONVERT handling can cope with that case, so there's
9243 no point complicating things here. */
9244 unsigned int nelts_per_pattern = VECTOR_CST_NELTS_PER_PATTERN (expr);
9245 unsigned int buffer_bytes = CEIL (nelts_per_pattern * type_sequence_bits,
9246 BITS_PER_UNIT);
9247 unsigned int buffer_bits = buffer_bytes * BITS_PER_UNIT;
9248 if (known_gt (buffer_bits, expr_bits))
9249 return NULL_TREE;
9250
9251 /* Get enough bytes of EXPR to form the new encoding. */
9252 auto_vec<unsigned char, 128> buffer (buffer_bytes);
9253 buffer.quick_grow (len: buffer_bytes);
9254 if (native_encode_vector_part (expr, ptr: buffer.address (), len: buffer_bytes, off: 0,
9255 count: buffer_bits / expr_elt_bits)
9256 != (int) buffer_bytes)
9257 return NULL_TREE;
9258
9259 /* Reencode the bytes as TYPE. */
9260 unsigned int type_npatterns = type_sequence_bits / type_elt_bits;
9261 return native_interpret_vector_part (type, bytes: &buffer[0], len: buffer.length (),
9262 npatterns: type_npatterns, nelts_per_pattern);
9263}
9264
9265/* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
9266 TYPE at compile-time. If we're unable to perform the conversion
9267 return NULL_TREE. */
9268
9269static tree
9270fold_view_convert_expr (tree type, tree expr)
9271{
9272 /* We support up to 1024-bit values (for GCN/RISC-V V128QImode). */
9273 unsigned char buffer[128];
9274 int len;
9275
9276 /* Check that the host and target are sane. */
9277 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
9278 return NULL_TREE;
9279
9280 if (VECTOR_TYPE_P (type) && TREE_CODE (expr) == VECTOR_CST)
9281 if (tree res = fold_view_convert_vector_encoding (type, expr))
9282 return res;
9283
9284 len = native_encode_expr (expr, ptr: buffer, len: sizeof (buffer));
9285 if (len == 0)
9286 return NULL_TREE;
9287
9288 return native_interpret_expr (type, ptr: buffer, len);
9289}
9290
9291/* Build an expression for the address of T. Folds away INDIRECT_REF
9292 to avoid confusing the gimplify process. */
9293
9294tree
9295build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
9296{
9297 /* The size of the object is not relevant when talking about its address. */
9298 if (TREE_CODE (t) == WITH_SIZE_EXPR)
9299 t = TREE_OPERAND (t, 0);
9300
9301 if (INDIRECT_REF_P (t))
9302 {
9303 t = TREE_OPERAND (t, 0);
9304
9305 if (TREE_TYPE (t) != ptrtype)
9306 t = build1_loc (loc, code: NOP_EXPR, type: ptrtype, arg1: t);
9307 }
9308 else if (TREE_CODE (t) == MEM_REF
9309 && integer_zerop (TREE_OPERAND (t, 1)))
9310 {
9311 t = TREE_OPERAND (t, 0);
9312
9313 if (TREE_TYPE (t) != ptrtype)
9314 t = fold_convert_loc (loc, type: ptrtype, arg: t);
9315 }
9316 else if (TREE_CODE (t) == MEM_REF
9317 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
9318 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
9319 TREE_OPERAND (t, 0),
9320 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
9321 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
9322 {
9323 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
9324
9325 if (TREE_TYPE (t) != ptrtype)
9326 t = fold_convert_loc (loc, type: ptrtype, arg: t);
9327 }
9328 else
9329 t = build1_loc (loc, code: ADDR_EXPR, type: ptrtype, arg1: t);
9330
9331 return t;
9332}
9333
9334/* Build an expression for the address of T. */
9335
9336tree
9337build_fold_addr_expr_loc (location_t loc, tree t)
9338{
9339 tree ptrtype = build_pointer_type (TREE_TYPE (t));
9340
9341 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
9342}
9343
9344/* Fold a unary expression of code CODE and type TYPE with operand
9345 OP0. Return the folded expression if folding is successful.
9346 Otherwise, return NULL_TREE. */
9347
9348tree
9349fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
9350{
9351 tree tem;
9352 tree arg0;
9353 enum tree_code_class kind = TREE_CODE_CLASS (code);
9354
9355 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9356 && TREE_CODE_LENGTH (code) == 1);
9357
9358 arg0 = op0;
9359 if (arg0)
9360 {
9361 if (CONVERT_EXPR_CODE_P (code)
9362 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
9363 {
9364 /* Don't use STRIP_NOPS, because signedness of argument type
9365 matters. */
9366 STRIP_SIGN_NOPS (arg0);
9367 }
9368 else
9369 {
9370 /* Strip any conversions that don't change the mode. This
9371 is safe for every expression, except for a comparison
9372 expression because its signedness is derived from its
9373 operands.
9374
9375 Note that this is done as an internal manipulation within
9376 the constant folder, in order to find the simplest
9377 representation of the arguments so that their form can be
9378 studied. In any cases, the appropriate type conversions
9379 should be put back in the tree that will get out of the
9380 constant folder. */
9381 STRIP_NOPS (arg0);
9382 }
9383
9384 if (CONSTANT_CLASS_P (arg0))
9385 {
9386 tree tem = const_unop (code, type, arg0);
9387 if (tem)
9388 {
9389 if (TREE_TYPE (tem) != type)
9390 tem = fold_convert_loc (loc, type, arg: tem);
9391 return tem;
9392 }
9393 }
9394 }
9395
9396 tem = generic_simplify (loc, code, type, op0);
9397 if (tem)
9398 return tem;
9399
9400 if (TREE_CODE_CLASS (code) == tcc_unary)
9401 {
9402 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9403 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9404 fold_build1_loc (loc, code, type,
9405 fold_convert_loc (loc, TREE_TYPE (op0),
9406 TREE_OPERAND (arg0, 1))));
9407 else if (TREE_CODE (arg0) == COND_EXPR)
9408 {
9409 tree arg01 = TREE_OPERAND (arg0, 1);
9410 tree arg02 = TREE_OPERAND (arg0, 2);
9411 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
9412 arg01 = fold_build1_loc (loc, code, type,
9413 fold_convert_loc (loc,
9414 TREE_TYPE (op0), arg: arg01));
9415 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
9416 arg02 = fold_build1_loc (loc, code, type,
9417 fold_convert_loc (loc,
9418 TREE_TYPE (op0), arg: arg02));
9419 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
9420 arg01, arg02);
9421
9422 /* If this was a conversion, and all we did was to move into
9423 inside the COND_EXPR, bring it back out. But leave it if
9424 it is a conversion from integer to integer and the
9425 result precision is no wider than a word since such a
9426 conversion is cheap and may be optimized away by combine,
9427 while it couldn't if it were outside the COND_EXPR. Then return
9428 so we don't get into an infinite recursion loop taking the
9429 conversion out and then back in. */
9430
9431 if ((CONVERT_EXPR_CODE_P (code)
9432 || code == NON_LVALUE_EXPR)
9433 && TREE_CODE (tem) == COND_EXPR
9434 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
9435 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
9436 && ! VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (tem, 1)))
9437 && ! VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (tem, 2)))
9438 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
9439 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
9440 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
9441 && (INTEGRAL_TYPE_P
9442 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
9443 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
9444 || flag_syntax_only))
9445 tem = build1_loc (loc, code, type,
9446 arg1: build3 (COND_EXPR,
9447 TREE_TYPE (TREE_OPERAND
9448 (TREE_OPERAND (tem, 1), 0)),
9449 TREE_OPERAND (tem, 0),
9450 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
9451 TREE_OPERAND (TREE_OPERAND (tem, 2),
9452 0)));
9453 return tem;
9454 }
9455 }
9456
9457 switch (code)
9458 {
9459 case NON_LVALUE_EXPR:
9460 if (!maybe_lvalue_p (x: op0))
9461 return fold_convert_loc (loc, type, arg: op0);
9462 return NULL_TREE;
9463
9464 CASE_CONVERT:
9465 case FLOAT_EXPR:
9466 case FIX_TRUNC_EXPR:
9467 if (COMPARISON_CLASS_P (op0))
9468 {
9469 /* If we have (type) (a CMP b) and type is an integral type, return
9470 new expression involving the new type. Canonicalize
9471 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
9472 non-integral type.
9473 Do not fold the result as that would not simplify further, also
9474 folding again results in recursions. */
9475 if (TREE_CODE (type) == BOOLEAN_TYPE)
9476 return build2_loc (loc, TREE_CODE (op0), type,
9477 TREE_OPERAND (op0, 0),
9478 TREE_OPERAND (op0, 1));
9479 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
9480 && TREE_CODE (type) != VECTOR_TYPE)
9481 return build3_loc (loc, code: COND_EXPR, type, arg0: op0,
9482 arg1: constant_boolean_node (value: true, type),
9483 arg2: constant_boolean_node (value: false, type));
9484 }
9485
9486 /* Handle (T *)&A.B.C for A being of type T and B and C
9487 living at offset zero. This occurs frequently in
9488 C++ upcasting and then accessing the base. */
9489 if (TREE_CODE (op0) == ADDR_EXPR
9490 && POINTER_TYPE_P (type)
9491 && handled_component_p (TREE_OPERAND (op0, 0)))
9492 {
9493 poly_int64 bitsize, bitpos;
9494 tree offset;
9495 machine_mode mode;
9496 int unsignedp, reversep, volatilep;
9497 tree base
9498 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
9499 &offset, &mode, &unsignedp, &reversep,
9500 &volatilep);
9501 /* If the reference was to a (constant) zero offset, we can use
9502 the address of the base if it has the same base type
9503 as the result type and the pointer type is unqualified. */
9504 if (!offset
9505 && known_eq (bitpos, 0)
9506 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
9507 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
9508 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
9509 return fold_convert_loc (loc, type,
9510 arg: build_fold_addr_expr_loc (loc, t: base));
9511 }
9512
9513 if (TREE_CODE (op0) == MODIFY_EXPR
9514 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
9515 /* Detect assigning a bitfield. */
9516 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
9517 && DECL_BIT_FIELD
9518 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
9519 {
9520 /* Don't leave an assignment inside a conversion
9521 unless assigning a bitfield. */
9522 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
9523 /* First do the assignment, then return converted constant. */
9524 tem = build2_loc (loc, code: COMPOUND_EXPR, TREE_TYPE (tem), arg0: op0, arg1: tem);
9525 suppress_warning (tem /* What warning? */);
9526 TREE_USED (tem) = 1;
9527 return tem;
9528 }
9529
9530 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
9531 constants (if x has signed type, the sign bit cannot be set
9532 in c). This folds extension into the BIT_AND_EXPR.
9533 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
9534 very likely don't have maximal range for their precision and this
9535 transformation effectively doesn't preserve non-maximal ranges. */
9536 if (TREE_CODE (type) == INTEGER_TYPE
9537 && TREE_CODE (op0) == BIT_AND_EXPR
9538 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
9539 {
9540 tree and_expr = op0;
9541 tree and0 = TREE_OPERAND (and_expr, 0);
9542 tree and1 = TREE_OPERAND (and_expr, 1);
9543 int change = 0;
9544
9545 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
9546 || (TYPE_PRECISION (type)
9547 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
9548 change = 1;
9549 else if (TYPE_PRECISION (TREE_TYPE (and1))
9550 <= HOST_BITS_PER_WIDE_INT
9551 && tree_fits_uhwi_p (and1))
9552 {
9553 unsigned HOST_WIDE_INT cst;
9554
9555 cst = tree_to_uhwi (and1);
9556 cst &= HOST_WIDE_INT_M1U
9557 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
9558 change = (cst == 0);
9559 if (change
9560 && !flag_syntax_only
9561 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0)))
9562 == ZERO_EXTEND))
9563 {
9564 tree uns = unsigned_type_for (TREE_TYPE (and0));
9565 and0 = fold_convert_loc (loc, type: uns, arg: and0);
9566 and1 = fold_convert_loc (loc, type: uns, arg: and1);
9567 }
9568 }
9569 if (change)
9570 {
9571 tree and1_type = TREE_TYPE (and1);
9572 unsigned prec = MAX (TYPE_PRECISION (and1_type),
9573 TYPE_PRECISION (type));
9574 tem = force_fit_type (type,
9575 wide_int::from (x: wi::to_wide (t: and1), precision: prec,
9576 TYPE_SIGN (and1_type)),
9577 0, TREE_OVERFLOW (and1));
9578 return fold_build2_loc (loc, BIT_AND_EXPR, type,
9579 fold_convert_loc (loc, type, arg: and0), tem);
9580 }
9581 }
9582
9583 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
9584 cast (T1)X will fold away. We assume that this happens when X itself
9585 is a cast. */
9586 if (POINTER_TYPE_P (type)
9587 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
9588 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
9589 {
9590 tree arg00 = TREE_OPERAND (arg0, 0);
9591 tree arg01 = TREE_OPERAND (arg0, 1);
9592
9593 /* If -fsanitize=alignment, avoid this optimization in GENERIC
9594 when the pointed type needs higher alignment than
9595 the p+ first operand's pointed type. */
9596 if (!in_gimple_form
9597 && sanitize_flags_p (flag: SANITIZE_ALIGNMENT)
9598 && (min_align_of_type (TREE_TYPE (type))
9599 > min_align_of_type (TREE_TYPE (TREE_TYPE (arg00)))))
9600 return NULL_TREE;
9601
9602 /* Similarly, avoid this optimization in GENERIC for -fsanitize=null
9603 when type is a reference type and arg00's type is not,
9604 because arg00 could be validly nullptr and if arg01 doesn't return,
9605 we don't want false positive binding of reference to nullptr. */
9606 if (TREE_CODE (type) == REFERENCE_TYPE
9607 && !in_gimple_form
9608 && sanitize_flags_p (flag: SANITIZE_NULL)
9609 && TREE_CODE (TREE_TYPE (arg00)) != REFERENCE_TYPE)
9610 return NULL_TREE;
9611
9612 arg00 = fold_convert_loc (loc, type, arg: arg00);
9613 return fold_build_pointer_plus_loc (loc, ptr: arg00, off: arg01);
9614 }
9615
9616 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
9617 of the same precision, and X is an integer type not narrower than
9618 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
9619 if (INTEGRAL_TYPE_P (type)
9620 && TREE_CODE (op0) == BIT_NOT_EXPR
9621 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9622 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
9623 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
9624 {
9625 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
9626 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
9627 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
9628 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
9629 fold_convert_loc (loc, type, arg: tem));
9630 }
9631
9632 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
9633 type of X and Y (integer types only). */
9634 if (INTEGRAL_TYPE_P (type)
9635 && TREE_CODE (op0) == MULT_EXPR
9636 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9637 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0))
9638 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0))
9639 || !sanitize_flags_p (flag: SANITIZE_SI_OVERFLOW)))
9640 {
9641 /* Be careful not to introduce new overflows. */
9642 tree mult_type;
9643 if (TYPE_OVERFLOW_WRAPS (type))
9644 mult_type = type;
9645 else
9646 mult_type = unsigned_type_for (type);
9647
9648 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
9649 {
9650 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
9651 fold_convert_loc (loc, type: mult_type,
9652 TREE_OPERAND (op0, 0)),
9653 fold_convert_loc (loc, type: mult_type,
9654 TREE_OPERAND (op0, 1)));
9655 return fold_convert_loc (loc, type, arg: tem);
9656 }
9657 }
9658
9659 return NULL_TREE;
9660
9661 case VIEW_CONVERT_EXPR:
9662 if (TREE_CODE (op0) == MEM_REF)
9663 {
9664 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
9665 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
9666 tem = fold_build2_loc (loc, MEM_REF, type,
9667 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
9668 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
9669 return tem;
9670 }
9671
9672 return NULL_TREE;
9673
9674 case NEGATE_EXPR:
9675 tem = fold_negate_expr (loc, t: arg0);
9676 if (tem)
9677 return fold_convert_loc (loc, type, arg: tem);
9678 return NULL_TREE;
9679
9680 case ABS_EXPR:
9681 /* Convert fabs((double)float) into (double)fabsf(float). */
9682 if (TREE_CODE (arg0) == NOP_EXPR
9683 && TREE_CODE (type) == REAL_TYPE)
9684 {
9685 tree targ0 = strip_float_extensions (arg0);
9686 if (targ0 != arg0)
9687 return fold_convert_loc (loc, type,
9688 arg: fold_build1_loc (loc, ABS_EXPR,
9689 TREE_TYPE (targ0),
9690 targ0));
9691 }
9692 return NULL_TREE;
9693
9694 case BIT_NOT_EXPR:
9695 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
9696 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9697 && (tem = fold_unary_loc (loc, code: BIT_NOT_EXPR, type,
9698 op0: fold_convert_loc (loc, type,
9699 TREE_OPERAND (arg0, 0)))))
9700 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
9701 fold_convert_loc (loc, type,
9702 TREE_OPERAND (arg0, 1)));
9703 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
9704 && (tem = fold_unary_loc (loc, code: BIT_NOT_EXPR, type,
9705 op0: fold_convert_loc (loc, type,
9706 TREE_OPERAND (arg0, 1)))))
9707 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
9708 fold_convert_loc (loc, type,
9709 TREE_OPERAND (arg0, 0)), tem);
9710
9711 return NULL_TREE;
9712
9713 case TRUTH_NOT_EXPR:
9714 /* Note that the operand of this must be an int
9715 and its values must be 0 or 1.
9716 ("true" is a fixed value perhaps depending on the language,
9717 but we don't handle values other than 1 correctly yet.) */
9718 tem = fold_truth_not_expr (loc, arg: arg0);
9719 if (!tem)
9720 return NULL_TREE;
9721 return fold_convert_loc (loc, type, arg: tem);
9722
9723 case INDIRECT_REF:
9724 /* Fold *&X to X if X is an lvalue. */
9725 if (TREE_CODE (op0) == ADDR_EXPR)
9726 {
9727 tree op00 = TREE_OPERAND (op0, 0);
9728 if ((VAR_P (op00)
9729 || TREE_CODE (op00) == PARM_DECL
9730 || TREE_CODE (op00) == RESULT_DECL)
9731 && !TREE_READONLY (op00))
9732 return op00;
9733 }
9734 return NULL_TREE;
9735
9736 default:
9737 return NULL_TREE;
9738 } /* switch (code) */
9739}
9740
9741
9742/* If the operation was a conversion do _not_ mark a resulting constant
9743 with TREE_OVERFLOW if the original constant was not. These conversions
9744 have implementation defined behavior and retaining the TREE_OVERFLOW
9745 flag here would confuse later passes such as VRP. */
9746tree
9747fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
9748 tree type, tree op0)
9749{
9750 tree res = fold_unary_loc (loc, code, type, op0);
9751 if (res
9752 && TREE_CODE (res) == INTEGER_CST
9753 && TREE_CODE (op0) == INTEGER_CST
9754 && CONVERT_EXPR_CODE_P (code))
9755 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
9756
9757 return res;
9758}
9759
9760/* Fold a binary bitwise/truth expression of code CODE and type TYPE with
9761 operands OP0 and OP1. LOC is the location of the resulting expression.
9762 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
9763 Return the folded expression if folding is successful. Otherwise,
9764 return NULL_TREE. */
9765static tree
9766fold_truth_andor (location_t loc, enum tree_code code, tree type,
9767 tree arg0, tree arg1, tree op0, tree op1)
9768{
9769 tree tem;
9770
9771 /* We only do these simplifications if we are optimizing. */
9772 if (!optimize)
9773 return NULL_TREE;
9774
9775 /* Check for things like (A || B) && (A || C). We can convert this
9776 to A || (B && C). Note that either operator can be any of the four
9777 truth and/or operations and the transformation will still be
9778 valid. Also note that we only care about order for the
9779 ANDIF and ORIF operators. If B contains side effects, this
9780 might change the truth-value of A. */
9781 if (TREE_CODE (arg0) == TREE_CODE (arg1)
9782 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
9783 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
9784 || TREE_CODE (arg0) == TRUTH_AND_EXPR
9785 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
9786 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
9787 {
9788 tree a00 = TREE_OPERAND (arg0, 0);
9789 tree a01 = TREE_OPERAND (arg0, 1);
9790 tree a10 = TREE_OPERAND (arg1, 0);
9791 tree a11 = TREE_OPERAND (arg1, 1);
9792 bool commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
9793 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
9794 && (code == TRUTH_AND_EXPR
9795 || code == TRUTH_OR_EXPR));
9796
9797 if (operand_equal_p (arg0: a00, arg1: a10, flags: 0))
9798 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
9799 fold_build2_loc (loc, code, type, a01, a11));
9800 else if (commutative && operand_equal_p (arg0: a00, arg1: a11, flags: 0))
9801 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
9802 fold_build2_loc (loc, code, type, a01, a10));
9803 else if (commutative && operand_equal_p (arg0: a01, arg1: a10, flags: 0))
9804 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
9805 fold_build2_loc (loc, code, type, a00, a11));
9806
9807 /* This case if tricky because we must either have commutative
9808 operators or else A10 must not have side-effects. */
9809
9810 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
9811 && operand_equal_p (arg0: a01, arg1: a11, flags: 0))
9812 return fold_build2_loc (loc, TREE_CODE (arg0), type,
9813 fold_build2_loc (loc, code, type, a00, a10),
9814 a01);
9815 }
9816
9817 /* See if we can build a range comparison. */
9818 if ((tem = fold_range_test (loc, code, type, op0, op1)) != 0)
9819 return tem;
9820
9821 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
9822 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
9823 {
9824 tem = merge_truthop_with_opposite_arm (loc, op: arg0, cmpop: arg1, rhs_only: true);
9825 if (tem)
9826 return fold_build2_loc (loc, code, type, tem, arg1);
9827 }
9828
9829 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
9830 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
9831 {
9832 tem = merge_truthop_with_opposite_arm (loc, op: arg1, cmpop: arg0, rhs_only: false);
9833 if (tem)
9834 return fold_build2_loc (loc, code, type, arg0, tem);
9835 }
9836
9837 /* Check for the possibility of merging component references. If our
9838 lhs is another similar operation, try to merge its rhs with our
9839 rhs. Then try to merge our lhs and rhs. */
9840 if (TREE_CODE (arg0) == code
9841 && (tem = fold_truth_andor_1 (loc, code, truth_type: type,
9842 TREE_OPERAND (arg0, 1), rhs: arg1)) != 0)
9843 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
9844
9845 if ((tem = fold_truth_andor_1 (loc, code, truth_type: type, lhs: arg0, rhs: arg1)) != 0)
9846 return tem;
9847
9848 bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT;
9849 if (param_logical_op_non_short_circuit != -1)
9850 logical_op_non_short_circuit
9851 = param_logical_op_non_short_circuit;
9852 if (logical_op_non_short_circuit
9853 && !sanitize_coverage_p ()
9854 && (code == TRUTH_AND_EXPR
9855 || code == TRUTH_ANDIF_EXPR
9856 || code == TRUTH_OR_EXPR
9857 || code == TRUTH_ORIF_EXPR))
9858 {
9859 enum tree_code ncode, icode;
9860
9861 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
9862 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
9863 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
9864
9865 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
9866 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
9867 We don't want to pack more than two leafs to a non-IF AND/OR
9868 expression.
9869 If tree-code of left-hand operand isn't an AND/OR-IF code and not
9870 equal to IF-CODE, then we don't want to add right-hand operand.
9871 If the inner right-hand side of left-hand operand has
9872 side-effects, or isn't simple, then we can't add to it,
9873 as otherwise we might destroy if-sequence. */
9874 if (TREE_CODE (arg0) == icode
9875 && simple_condition_p (exp: arg1)
9876 /* Needed for sequence points to handle trappings, and
9877 side-effects. */
9878 && simple_condition_p (TREE_OPERAND (arg0, 1)))
9879 {
9880 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
9881 arg1);
9882 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
9883 tem);
9884 }
9885 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
9886 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
9887 else if (TREE_CODE (arg1) == icode
9888 && simple_condition_p (exp: arg0)
9889 /* Needed for sequence points to handle trappings, and
9890 side-effects. */
9891 && simple_condition_p (TREE_OPERAND (arg1, 0)))
9892 {
9893 tem = fold_build2_loc (loc, ncode, type,
9894 arg0, TREE_OPERAND (arg1, 0));
9895 return fold_build2_loc (loc, icode, type, tem,
9896 TREE_OPERAND (arg1, 1));
9897 }
9898 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
9899 into (A OR B).
9900 For sequence point consistancy, we need to check for trapping,
9901 and side-effects. */
9902 else if (code == icode && simple_condition_p (exp: arg0)
9903 && simple_condition_p (exp: arg1))
9904 return fold_build2_loc (loc, ncode, type, arg0, arg1);
9905 }
9906
9907 return NULL_TREE;
9908}
9909
9910/* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
9911 by changing CODE to reduce the magnitude of constants involved in
9912 ARG0 of the comparison.
9913 Returns a canonicalized comparison tree if a simplification was
9914 possible, otherwise returns NULL_TREE.
9915 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
9916 valid if signed overflow is undefined. */
9917
9918static tree
9919maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
9920 tree arg0, tree arg1,
9921 bool *strict_overflow_p)
9922{
9923 enum tree_code code0 = TREE_CODE (arg0);
9924 tree t, cst0 = NULL_TREE;
9925 int sgn0;
9926
9927 /* Match A +- CST code arg1. We can change this only if overflow
9928 is undefined. */
9929 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9930 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
9931 /* In principle pointers also have undefined overflow behavior,
9932 but that causes problems elsewhere. */
9933 && !POINTER_TYPE_P (TREE_TYPE (arg0))
9934 && (code0 == MINUS_EXPR
9935 || code0 == PLUS_EXPR)
9936 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
9937 return NULL_TREE;
9938
9939 /* Identify the constant in arg0 and its sign. */
9940 cst0 = TREE_OPERAND (arg0, 1);
9941 sgn0 = tree_int_cst_sgn (cst0);
9942
9943 /* Overflowed constants and zero will cause problems. */
9944 if (integer_zerop (cst0)
9945 || TREE_OVERFLOW (cst0))
9946 return NULL_TREE;
9947
9948 /* See if we can reduce the magnitude of the constant in
9949 arg0 by changing the comparison code. */
9950 /* A - CST < arg1 -> A - CST-1 <= arg1. */
9951 if (code == LT_EXPR
9952 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
9953 code = LE_EXPR;
9954 /* A + CST > arg1 -> A + CST-1 >= arg1. */
9955 else if (code == GT_EXPR
9956 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
9957 code = GE_EXPR;
9958 /* A + CST <= arg1 -> A + CST-1 < arg1. */
9959 else if (code == LE_EXPR
9960 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
9961 code = LT_EXPR;
9962 /* A - CST >= arg1 -> A - CST-1 > arg1. */
9963 else if (code == GE_EXPR
9964 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
9965 code = GT_EXPR;
9966 else
9967 return NULL_TREE;
9968 *strict_overflow_p = true;
9969
9970 /* Now build the constant reduced in magnitude. But not if that
9971 would produce one outside of its types range. */
9972 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
9973 && ((sgn0 == 1
9974 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
9975 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
9976 || (sgn0 == -1
9977 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
9978 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
9979 return NULL_TREE;
9980
9981 t = int_const_binop (code: sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
9982 arg1: cst0, arg2: build_int_cst (TREE_TYPE (cst0), 1));
9983 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
9984 t = fold_convert (TREE_TYPE (arg1), t);
9985
9986 return fold_build2_loc (loc, code, type, t, arg1);
9987}
9988
9989/* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
9990 overflow further. Try to decrease the magnitude of constants involved
9991 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
9992 and put sole constants at the second argument position.
9993 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
9994
9995static tree
9996maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
9997 tree arg0, tree arg1)
9998{
9999 tree t;
10000 bool strict_overflow_p;
10001 const char * const warnmsg = G_("assuming signed overflow does not occur "
10002 "when reducing constant in comparison");
10003
10004 /* Try canonicalization by simplifying arg0. */
10005 strict_overflow_p = false;
10006 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
10007 strict_overflow_p: &strict_overflow_p);
10008 if (t)
10009 {
10010 if (strict_overflow_p)
10011 fold_overflow_warning (gmsgid: warnmsg, wc: WARN_STRICT_OVERFLOW_MAGNITUDE);
10012 return t;
10013 }
10014
10015 /* Try canonicalization by simplifying arg1 using the swapped
10016 comparison. */
10017 code = swap_tree_comparison (code);
10018 strict_overflow_p = false;
10019 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0: arg1, arg1: arg0,
10020 strict_overflow_p: &strict_overflow_p);
10021 if (t && strict_overflow_p)
10022 fold_overflow_warning (gmsgid: warnmsg, wc: WARN_STRICT_OVERFLOW_MAGNITUDE);
10023 return t;
10024}
10025
10026/* Return whether BASE + OFFSET + BITPOS may wrap around the address
10027 space. This is used to avoid issuing overflow warnings for
10028 expressions like &p->x which cannot wrap. */
10029
10030static bool
10031pointer_may_wrap_p (tree base, tree offset, poly_int64 bitpos)
10032{
10033 if (!POINTER_TYPE_P (TREE_TYPE (base)))
10034 return true;
10035
10036 if (maybe_lt (a: bitpos, b: 0))
10037 return true;
10038
10039 poly_wide_int wi_offset;
10040 int precision = TYPE_PRECISION (TREE_TYPE (base));
10041 if (offset == NULL_TREE)
10042 wi_offset = wi::zero (precision);
10043 else if (!poly_int_tree_p (t: offset) || TREE_OVERFLOW (offset))
10044 return true;
10045 else
10046 wi_offset = wi::to_poly_wide (t: offset);
10047
10048 wi::overflow_type overflow;
10049 poly_wide_int units = wi::shwi (bits_to_bytes_round_down (bitpos),
10050 precision);
10051 poly_wide_int total = wi::add (a: wi_offset, b: units, sgn: UNSIGNED, overflow: &overflow);
10052 if (overflow)
10053 return true;
10054
10055 poly_uint64 total_hwi, size;
10056 if (!total.to_uhwi (r: &total_hwi)
10057 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base))),
10058 value: &size)
10059 || known_eq (size, 0U))
10060 return true;
10061
10062 if (known_le (total_hwi, size))
10063 return false;
10064
10065 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
10066 array. */
10067 if (TREE_CODE (base) == ADDR_EXPR
10068 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base, 0))),
10069 value: &size)
10070 && maybe_ne (a: size, b: 0U)
10071 && known_le (total_hwi, size))
10072 return false;
10073
10074 return true;
10075}
10076
10077/* Return a positive integer when the symbol DECL is known to have
10078 a nonzero address, zero when it's known not to (e.g., it's a weak
10079 symbol), and a negative integer when the symbol is not yet in the
10080 symbol table and so whether or not its address is zero is unknown.
10081 For function local objects always return positive integer. */
10082static int
10083maybe_nonzero_address (tree decl)
10084{
10085 /* Normally, don't do anything for variables and functions before symtab is
10086 built; it is quite possible that DECL will be declared weak later.
10087 But if folding_initializer, we need a constant answer now, so create
10088 the symtab entry and prevent later weak declaration. */
10089 if (DECL_P (decl) && decl_in_symtab_p (decl))
10090 if (struct symtab_node *symbol
10091 = (folding_initializer
10092 ? symtab_node::get_create (node: decl)
10093 : symtab_node::get (decl)))
10094 return symbol->nonzero_address ();
10095
10096 /* Function local objects are never NULL. */
10097 if (DECL_P (decl)
10098 && (DECL_CONTEXT (decl)
10099 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
10100 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl))))
10101 return 1;
10102
10103 return -1;
10104}
10105
10106/* Subroutine of fold_binary. This routine performs all of the
10107 transformations that are common to the equality/inequality
10108 operators (EQ_EXPR and NE_EXPR) and the ordering operators
10109 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
10110 fold_binary should call fold_binary. Fold a comparison with
10111 tree code CODE and type TYPE with operands OP0 and OP1. Return
10112 the folded comparison or NULL_TREE. */
10113
10114static tree
10115fold_comparison (location_t loc, enum tree_code code, tree type,
10116 tree op0, tree op1)
10117{
10118 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
10119 tree arg0, arg1, tem;
10120
10121 arg0 = op0;
10122 arg1 = op1;
10123
10124 STRIP_SIGN_NOPS (arg0);
10125 STRIP_SIGN_NOPS (arg1);
10126
10127 /* For comparisons of pointers we can decompose it to a compile time
10128 comparison of the base objects and the offsets into the object.
10129 This requires at least one operand being an ADDR_EXPR or a
10130 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
10131 if (POINTER_TYPE_P (TREE_TYPE (arg0))
10132 && (TREE_CODE (arg0) == ADDR_EXPR
10133 || TREE_CODE (arg1) == ADDR_EXPR
10134 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
10135 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
10136 {
10137 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
10138 poly_int64 bitsize, bitpos0 = 0, bitpos1 = 0;
10139 machine_mode mode;
10140 int volatilep, reversep, unsignedp;
10141 bool indirect_base0 = false, indirect_base1 = false;
10142
10143 /* Get base and offset for the access. Strip ADDR_EXPR for
10144 get_inner_reference, but put it back by stripping INDIRECT_REF
10145 off the base object if possible. indirect_baseN will be true
10146 if baseN is not an address but refers to the object itself. */
10147 base0 = arg0;
10148 if (TREE_CODE (arg0) == ADDR_EXPR)
10149 {
10150 base0
10151 = get_inner_reference (TREE_OPERAND (arg0, 0),
10152 &bitsize, &bitpos0, &offset0, &mode,
10153 &unsignedp, &reversep, &volatilep);
10154 if (INDIRECT_REF_P (base0))
10155 base0 = TREE_OPERAND (base0, 0);
10156 else
10157 indirect_base0 = true;
10158 }
10159 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
10160 {
10161 base0 = TREE_OPERAND (arg0, 0);
10162 STRIP_SIGN_NOPS (base0);
10163 if (TREE_CODE (base0) == ADDR_EXPR)
10164 {
10165 base0
10166 = get_inner_reference (TREE_OPERAND (base0, 0),
10167 &bitsize, &bitpos0, &offset0, &mode,
10168 &unsignedp, &reversep, &volatilep);
10169 if (INDIRECT_REF_P (base0))
10170 base0 = TREE_OPERAND (base0, 0);
10171 else
10172 indirect_base0 = true;
10173 }
10174 if (offset0 == NULL_TREE || integer_zerop (offset0))
10175 offset0 = TREE_OPERAND (arg0, 1);
10176 else
10177 offset0 = size_binop (PLUS_EXPR, offset0,
10178 TREE_OPERAND (arg0, 1));
10179 if (poly_int_tree_p (t: offset0))
10180 {
10181 poly_offset_int tem = wi::sext (a: wi::to_poly_offset (t: offset0),
10182 TYPE_PRECISION (sizetype));
10183 tem <<= LOG2_BITS_PER_UNIT;
10184 tem += bitpos0;
10185 if (tem.to_shwi (r: &bitpos0))
10186 offset0 = NULL_TREE;
10187 }
10188 }
10189
10190 base1 = arg1;
10191 if (TREE_CODE (arg1) == ADDR_EXPR)
10192 {
10193 base1
10194 = get_inner_reference (TREE_OPERAND (arg1, 0),
10195 &bitsize, &bitpos1, &offset1, &mode,
10196 &unsignedp, &reversep, &volatilep);
10197 if (INDIRECT_REF_P (base1))
10198 base1 = TREE_OPERAND (base1, 0);
10199 else
10200 indirect_base1 = true;
10201 }
10202 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
10203 {
10204 base1 = TREE_OPERAND (arg1, 0);
10205 STRIP_SIGN_NOPS (base1);
10206 if (TREE_CODE (base1) == ADDR_EXPR)
10207 {
10208 base1
10209 = get_inner_reference (TREE_OPERAND (base1, 0),
10210 &bitsize, &bitpos1, &offset1, &mode,
10211 &unsignedp, &reversep, &volatilep);
10212 if (INDIRECT_REF_P (base1))
10213 base1 = TREE_OPERAND (base1, 0);
10214 else
10215 indirect_base1 = true;
10216 }
10217 if (offset1 == NULL_TREE || integer_zerop (offset1))
10218 offset1 = TREE_OPERAND (arg1, 1);
10219 else
10220 offset1 = size_binop (PLUS_EXPR, offset1,
10221 TREE_OPERAND (arg1, 1));
10222 if (poly_int_tree_p (t: offset1))
10223 {
10224 poly_offset_int tem = wi::sext (a: wi::to_poly_offset (t: offset1),
10225 TYPE_PRECISION (sizetype));
10226 tem <<= LOG2_BITS_PER_UNIT;
10227 tem += bitpos1;
10228 if (tem.to_shwi (r: &bitpos1))
10229 offset1 = NULL_TREE;
10230 }
10231 }
10232
10233 /* If we have equivalent bases we might be able to simplify. */
10234 if (indirect_base0 == indirect_base1
10235 && operand_equal_p (arg0: base0, arg1: base1,
10236 flags: indirect_base0 ? OEP_ADDRESS_OF : 0))
10237 {
10238 /* We can fold this expression to a constant if the non-constant
10239 offset parts are equal. */
10240 if ((offset0 == offset1
10241 || (offset0 && offset1
10242 && operand_equal_p (arg0: offset0, arg1: offset1, flags: 0)))
10243 && (equality_code
10244 || (indirect_base0
10245 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
10246 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
10247 {
10248 if (!equality_code
10249 && maybe_ne (a: bitpos0, b: bitpos1)
10250 && (pointer_may_wrap_p (base: base0, offset: offset0, bitpos: bitpos0)
10251 || pointer_may_wrap_p (base: base1, offset: offset1, bitpos: bitpos1)))
10252 fold_overflow_warning (gmsgid: ("assuming pointer wraparound does not "
10253 "occur when comparing P +- C1 with "
10254 "P +- C2"),
10255 wc: WARN_STRICT_OVERFLOW_CONDITIONAL);
10256
10257 switch (code)
10258 {
10259 case EQ_EXPR:
10260 if (known_eq (bitpos0, bitpos1))
10261 return constant_boolean_node (value: true, type);
10262 if (known_ne (bitpos0, bitpos1))
10263 return constant_boolean_node (value: false, type);
10264 break;
10265 case NE_EXPR:
10266 if (known_ne (bitpos0, bitpos1))
10267 return constant_boolean_node (value: true, type);
10268 if (known_eq (bitpos0, bitpos1))
10269 return constant_boolean_node (value: false, type);
10270 break;
10271 case LT_EXPR:
10272 if (known_lt (bitpos0, bitpos1))
10273 return constant_boolean_node (value: true, type);
10274 if (known_ge (bitpos0, bitpos1))
10275 return constant_boolean_node (value: false, type);
10276 break;
10277 case LE_EXPR:
10278 if (known_le (bitpos0, bitpos1))
10279 return constant_boolean_node (value: true, type);
10280 if (known_gt (bitpos0, bitpos1))
10281 return constant_boolean_node (value: false, type);
10282 break;
10283 case GE_EXPR:
10284 if (known_ge (bitpos0, bitpos1))
10285 return constant_boolean_node (value: true, type);
10286 if (known_lt (bitpos0, bitpos1))
10287 return constant_boolean_node (value: false, type);
10288 break;
10289 case GT_EXPR:
10290 if (known_gt (bitpos0, bitpos1))
10291 return constant_boolean_node (value: true, type);
10292 if (known_le (bitpos0, bitpos1))
10293 return constant_boolean_node (value: false, type);
10294 break;
10295 default:;
10296 }
10297 }
10298 /* We can simplify the comparison to a comparison of the variable
10299 offset parts if the constant offset parts are equal.
10300 Be careful to use signed sizetype here because otherwise we
10301 mess with array offsets in the wrong way. This is possible
10302 because pointer arithmetic is restricted to retain within an
10303 object and overflow on pointer differences is undefined as of
10304 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
10305 else if (known_eq (bitpos0, bitpos1)
10306 && (equality_code
10307 || (indirect_base0
10308 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
10309 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
10310 {
10311 /* By converting to signed sizetype we cover middle-end pointer
10312 arithmetic which operates on unsigned pointer types of size
10313 type size and ARRAY_REF offsets which are properly sign or
10314 zero extended from their type in case it is narrower than
10315 sizetype. */
10316 if (offset0 == NULL_TREE)
10317 offset0 = build_int_cst (ssizetype, 0);
10318 else
10319 offset0 = fold_convert_loc (loc, ssizetype, arg: offset0);
10320 if (offset1 == NULL_TREE)
10321 offset1 = build_int_cst (ssizetype, 0);
10322 else
10323 offset1 = fold_convert_loc (loc, ssizetype, arg: offset1);
10324
10325 if (!equality_code
10326 && (pointer_may_wrap_p (base: base0, offset: offset0, bitpos: bitpos0)
10327 || pointer_may_wrap_p (base: base1, offset: offset1, bitpos: bitpos1)))
10328 fold_overflow_warning (gmsgid: ("assuming pointer wraparound does not "
10329 "occur when comparing P +- C1 with "
10330 "P +- C2"),
10331 wc: WARN_STRICT_OVERFLOW_COMPARISON);
10332
10333 return fold_build2_loc (loc, code, type, offset0, offset1);
10334 }
10335 }
10336 /* For equal offsets we can simplify to a comparison of the
10337 base addresses. */
10338 else if (known_eq (bitpos0, bitpos1)
10339 && (indirect_base0
10340 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
10341 && (indirect_base1
10342 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
10343 && ((offset0 == offset1)
10344 || (offset0 && offset1
10345 && operand_equal_p (arg0: offset0, arg1: offset1, flags: 0))))
10346 {
10347 if (indirect_base0)
10348 base0 = build_fold_addr_expr_loc (loc, t: base0);
10349 if (indirect_base1)
10350 base1 = build_fold_addr_expr_loc (loc, t: base1);
10351 return fold_build2_loc (loc, code, type, base0, base1);
10352 }
10353 /* Comparison between an ordinary (non-weak) symbol and a null
10354 pointer can be eliminated since such symbols must have a non
10355 null address. In C, relational expressions between pointers
10356 to objects and null pointers are undefined. The results
10357 below follow the C++ rules with the additional property that
10358 every object pointer compares greater than a null pointer.
10359 */
10360 else if (((DECL_P (base0)
10361 && maybe_nonzero_address (decl: base0) > 0
10362 /* Avoid folding references to struct members at offset 0 to
10363 prevent tests like '&ptr->firstmember == 0' from getting
10364 eliminated. When ptr is null, although the -> expression
10365 is strictly speaking invalid, GCC retains it as a matter
10366 of QoI. See PR c/44555. */
10367 && (offset0 == NULL_TREE && known_ne (bitpos0, 0)))
10368 || CONSTANT_CLASS_P (base0))
10369 && indirect_base0
10370 /* The caller guarantees that when one of the arguments is
10371 constant (i.e., null in this case) it is second. */
10372 && integer_zerop (arg1))
10373 {
10374 switch (code)
10375 {
10376 case EQ_EXPR:
10377 case LE_EXPR:
10378 case LT_EXPR:
10379 return constant_boolean_node (value: false, type);
10380 case GE_EXPR:
10381 case GT_EXPR:
10382 case NE_EXPR:
10383 return constant_boolean_node (value: true, type);
10384 default:
10385 gcc_unreachable ();
10386 }
10387 }
10388 }
10389
10390 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
10391 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
10392 the resulting offset is smaller in absolute value than the
10393 original one and has the same sign. */
10394 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10395 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
10396 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
10397 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10398 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
10399 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
10400 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
10401 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
10402 {
10403 tree const1 = TREE_OPERAND (arg0, 1);
10404 tree const2 = TREE_OPERAND (arg1, 1);
10405 tree variable1 = TREE_OPERAND (arg0, 0);
10406 tree variable2 = TREE_OPERAND (arg1, 0);
10407 tree cst;
10408 const char * const warnmsg = G_("assuming signed overflow does not "
10409 "occur when combining constants around "
10410 "a comparison");
10411
10412 /* Put the constant on the side where it doesn't overflow and is
10413 of lower absolute value and of same sign than before. */
10414 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
10415 ? MINUS_EXPR : PLUS_EXPR,
10416 arg1: const2, arg2: const1);
10417 if (!TREE_OVERFLOW (cst)
10418 && tree_int_cst_compare (t1: const2, t2: cst) == tree_int_cst_sgn (const2)
10419 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
10420 {
10421 fold_overflow_warning (gmsgid: warnmsg, wc: WARN_STRICT_OVERFLOW_COMPARISON);
10422 return fold_build2_loc (loc, code, type,
10423 variable1,
10424 fold_build2_loc (loc, TREE_CODE (arg1),
10425 TREE_TYPE (arg1),
10426 variable2, cst));
10427 }
10428
10429 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
10430 ? MINUS_EXPR : PLUS_EXPR,
10431 arg1: const1, arg2: const2);
10432 if (!TREE_OVERFLOW (cst)
10433 && tree_int_cst_compare (t1: const1, t2: cst) == tree_int_cst_sgn (const1)
10434 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
10435 {
10436 fold_overflow_warning (gmsgid: warnmsg, wc: WARN_STRICT_OVERFLOW_COMPARISON);
10437 return fold_build2_loc (loc, code, type,
10438 fold_build2_loc (loc, TREE_CODE (arg0),
10439 TREE_TYPE (arg0),
10440 variable1, cst),
10441 variable2);
10442 }
10443 }
10444
10445 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
10446 if (tem)
10447 return tem;
10448
10449 /* If we are comparing an expression that just has comparisons
10450 of two integer values, arithmetic expressions of those comparisons,
10451 and constants, we can simplify it. There are only three cases
10452 to check: the two values can either be equal, the first can be
10453 greater, or the second can be greater. Fold the expression for
10454 those three values. Since each value must be 0 or 1, we have
10455 eight possibilities, each of which corresponds to the constant 0
10456 or 1 or one of the six possible comparisons.
10457
10458 This handles common cases like (a > b) == 0 but also handles
10459 expressions like ((x > y) - (y > x)) > 0, which supposedly
10460 occur in macroized code. */
10461
10462 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
10463 {
10464 tree cval1 = 0, cval2 = 0;
10465
10466 if (twoval_comparison_p (arg: arg0, cval1: &cval1, cval2: &cval2)
10467 /* Don't handle degenerate cases here; they should already
10468 have been handled anyway. */
10469 && cval1 != 0 && cval2 != 0
10470 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
10471 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
10472 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
10473 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
10474 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
10475 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
10476 TYPE_MAX_VALUE (TREE_TYPE (cval2)), flags: 0))
10477 {
10478 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
10479 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
10480
10481 /* We can't just pass T to eval_subst in case cval1 or cval2
10482 was the same as ARG1. */
10483
10484 tree high_result
10485 = fold_build2_loc (loc, code, type,
10486 eval_subst (loc, arg: arg0, old0: cval1, new0: maxval,
10487 old1: cval2, new1: minval),
10488 arg1);
10489 tree equal_result
10490 = fold_build2_loc (loc, code, type,
10491 eval_subst (loc, arg: arg0, old0: cval1, new0: maxval,
10492 old1: cval2, new1: maxval),
10493 arg1);
10494 tree low_result
10495 = fold_build2_loc (loc, code, type,
10496 eval_subst (loc, arg: arg0, old0: cval1, new0: minval,
10497 old1: cval2, new1: maxval),
10498 arg1);
10499
10500 /* All three of these results should be 0 or 1. Confirm they are.
10501 Then use those values to select the proper code to use. */
10502
10503 if (TREE_CODE (high_result) == INTEGER_CST
10504 && TREE_CODE (equal_result) == INTEGER_CST
10505 && TREE_CODE (low_result) == INTEGER_CST)
10506 {
10507 /* Make a 3-bit mask with the high-order bit being the
10508 value for `>', the next for '=', and the low for '<'. */
10509 switch ((integer_onep (high_result) * 4)
10510 + (integer_onep (equal_result) * 2)
10511 + integer_onep (low_result))
10512 {
10513 case 0:
10514 /* Always false. */
10515 return omit_one_operand_loc (loc, type, integer_zero_node, omitted: arg0);
10516 case 1:
10517 code = LT_EXPR;
10518 break;
10519 case 2:
10520 code = EQ_EXPR;
10521 break;
10522 case 3:
10523 code = LE_EXPR;
10524 break;
10525 case 4:
10526 code = GT_EXPR;
10527 break;
10528 case 5:
10529 code = NE_EXPR;
10530 break;
10531 case 6:
10532 code = GE_EXPR;
10533 break;
10534 case 7:
10535 /* Always true. */
10536 return omit_one_operand_loc (loc, type, integer_one_node, omitted: arg0);
10537 }
10538
10539 return fold_build2_loc (loc, code, type, cval1, cval2);
10540 }
10541 }
10542 }
10543
10544 return NULL_TREE;
10545}
10546
10547
10548/* Subroutine of fold_binary. Optimize complex multiplications of the
10549 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
10550 argument EXPR represents the expression "z" of type TYPE. */
10551
10552static tree
10553fold_mult_zconjz (location_t loc, tree type, tree expr)
10554{
10555 tree itype = TREE_TYPE (type);
10556 tree rpart, ipart, tem;
10557
10558 if (TREE_CODE (expr) == COMPLEX_EXPR)
10559 {
10560 rpart = TREE_OPERAND (expr, 0);
10561 ipart = TREE_OPERAND (expr, 1);
10562 }
10563 else if (TREE_CODE (expr) == COMPLEX_CST)
10564 {
10565 rpart = TREE_REALPART (expr);
10566 ipart = TREE_IMAGPART (expr);
10567 }
10568 else
10569 {
10570 expr = save_expr (expr);
10571 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
10572 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
10573 }
10574
10575 rpart = save_expr (rpart);
10576 ipart = save_expr (ipart);
10577 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
10578 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
10579 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
10580 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
10581 build_zero_cst (itype));
10582}
10583
10584
10585/* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
10586 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
10587 true if successful. */
10588
10589static bool
10590vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts)
10591{
10592 unsigned HOST_WIDE_INT i, nunits;
10593
10594 if (TREE_CODE (arg) == VECTOR_CST
10595 && VECTOR_CST_NELTS (arg).is_constant (const_value: &nunits))
10596 {
10597 for (i = 0; i < nunits; ++i)
10598 elts[i] = VECTOR_CST_ELT (arg, i);
10599 }
10600 else if (TREE_CODE (arg) == CONSTRUCTOR)
10601 {
10602 constructor_elt *elt;
10603
10604 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
10605 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
10606 return false;
10607 else
10608 elts[i] = elt->value;
10609 }
10610 else
10611 return false;
10612 for (; i < nelts; i++)
10613 elts[i]
10614 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
10615 return true;
10616}
10617
10618/* Helper routine for fold_vec_perm_cst to check if SEL is a suitable
10619 mask for VLA vec_perm folding.
10620 REASON if specified, will contain the reason why SEL is not suitable.
10621 Used only for debugging and unit-testing. */
10622
10623static bool
10624valid_mask_for_fold_vec_perm_cst_p (tree arg0, tree arg1,
10625 const vec_perm_indices &sel,
10626 const char **reason = NULL)
10627{
10628 unsigned sel_npatterns = sel.encoding ().npatterns ();
10629 unsigned sel_nelts_per_pattern = sel.encoding ().nelts_per_pattern ();
10630
10631 if (!(pow2p_hwi (x: sel_npatterns)
10632 && pow2p_hwi (VECTOR_CST_NPATTERNS (arg0))
10633 && pow2p_hwi (VECTOR_CST_NPATTERNS (arg1))))
10634 {
10635 if (reason)
10636 *reason = "npatterns is not power of 2";
10637 return false;
10638 }
10639
10640 /* We want to avoid cases where sel.length is not a multiple of npatterns.
10641 For eg: sel.length = 2 + 2x, and sel npatterns = 4. */
10642 poly_uint64 esel;
10643 if (!multiple_p (a: sel.length (), b: sel_npatterns, multiple: &esel))
10644 {
10645 if (reason)
10646 *reason = "sel.length is not multiple of sel_npatterns";
10647 return false;
10648 }
10649
10650 if (sel_nelts_per_pattern < 3)
10651 return true;
10652
10653 for (unsigned pattern = 0; pattern < sel_npatterns; pattern++)
10654 {
10655 poly_uint64 a1 = sel[pattern + sel_npatterns];
10656 poly_uint64 a2 = sel[pattern + 2 * sel_npatterns];
10657 HOST_WIDE_INT step;
10658 if (!poly_int64 (a2 - a1).is_constant (const_value: &step))
10659 {
10660 if (reason)
10661 *reason = "step is not constant";
10662 return false;
10663 }
10664 // FIXME: Punt on step < 0 for now, revisit later.
10665 if (step < 0)
10666 return false;
10667 if (step == 0)
10668 continue;
10669
10670 if (!pow2p_hwi (x: step))
10671 {
10672 if (reason)
10673 *reason = "step is not power of 2";
10674 return false;
10675 }
10676
10677 /* Ensure that stepped sequence of the pattern selects elements
10678 only from the same input vector. */
10679 uint64_t q1, qe;
10680 poly_uint64 r1, re;
10681 poly_uint64 ae = a1 + (esel - 2) * step;
10682 poly_uint64 arg_len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
10683
10684 if (!(can_div_trunc_p (a: a1, b: arg_len, quotient: &q1, remainder: &r1)
10685 && can_div_trunc_p (a: ae, b: arg_len, quotient: &qe, remainder: &re)
10686 && q1 == qe))
10687 {
10688 if (reason)
10689 *reason = "crossed input vectors";
10690 return false;
10691 }
10692
10693 /* Ensure that the stepped sequence always selects from the same
10694 input pattern. */
10695 tree arg = ((q1 & 1) == 0) ? arg0 : arg1;
10696 unsigned arg_npatterns = VECTOR_CST_NPATTERNS (arg);
10697
10698 if (!multiple_p (a: step, b: arg_npatterns))
10699 {
10700 if (reason)
10701 *reason = "step is not multiple of npatterns";
10702 return false;
10703 }
10704
10705 /* If a1 chooses base element from arg, ensure that it's a natural
10706 stepped sequence, ie, (arg[2] - arg[1]) == (arg[1] - arg[0])
10707 to preserve arg's encoding. */
10708
10709 if (maybe_lt (a: r1, b: arg_npatterns))
10710 {
10711 unsigned HOST_WIDE_INT index;
10712 if (!r1.is_constant (const_value: &index))
10713 return false;
10714
10715 tree arg_elem0 = vector_cst_elt (arg, index);
10716 tree arg_elem1 = vector_cst_elt (arg, index + arg_npatterns);
10717 tree arg_elem2 = vector_cst_elt (arg, index + arg_npatterns * 2);
10718
10719 tree step1, step2;
10720 if (!(step1 = const_binop (code: MINUS_EXPR, arg1: arg_elem1, arg2: arg_elem0))
10721 || !(step2 = const_binop (code: MINUS_EXPR, arg1: arg_elem2, arg2: arg_elem1))
10722 || !operand_equal_p (arg0: step1, arg1: step2, flags: 0))
10723 {
10724 if (reason)
10725 *reason = "not a natural stepped sequence";
10726 return false;
10727 }
10728 }
10729 }
10730
10731 return true;
10732}
10733
10734/* Try to fold permutation of ARG0 and ARG1 with SEL selector when
10735 the input vectors are VECTOR_CST. Return NULL_TREE otherwise.
10736 REASON has same purpose as described in
10737 valid_mask_for_fold_vec_perm_cst_p. */
10738
10739static tree
10740fold_vec_perm_cst (tree type, tree arg0, tree arg1, const vec_perm_indices &sel,
10741 const char **reason = NULL)
10742{
10743 unsigned res_npatterns, res_nelts_per_pattern;
10744 unsigned HOST_WIDE_INT res_nelts;
10745
10746 /* (1) If SEL is a suitable mask as determined by
10747 valid_mask_for_fold_vec_perm_cst_p, then:
10748 res_npatterns = max of npatterns between ARG0, ARG1, and SEL
10749 res_nelts_per_pattern = max of nelts_per_pattern between
10750 ARG0, ARG1 and SEL.
10751 (2) If SEL is not a suitable mask, and TYPE is VLS then:
10752 res_npatterns = nelts in result vector.
10753 res_nelts_per_pattern = 1.
10754 This exception is made so that VLS ARG0, ARG1 and SEL work as before. */
10755 if (valid_mask_for_fold_vec_perm_cst_p (arg0, arg1, sel, reason))
10756 {
10757 res_npatterns
10758 = std::max (VECTOR_CST_NPATTERNS (arg0),
10759 b: std::max (VECTOR_CST_NPATTERNS (arg1),
10760 b: sel.encoding ().npatterns ()));
10761
10762 res_nelts_per_pattern
10763 = std::max (VECTOR_CST_NELTS_PER_PATTERN (arg0),
10764 b: std::max (VECTOR_CST_NELTS_PER_PATTERN (arg1),
10765 b: sel.encoding ().nelts_per_pattern ()));
10766
10767 res_nelts = res_npatterns * res_nelts_per_pattern;
10768 }
10769 else if (TYPE_VECTOR_SUBPARTS (node: type).is_constant (const_value: &res_nelts))
10770 {
10771 res_npatterns = res_nelts;
10772 res_nelts_per_pattern = 1;
10773 }
10774 else
10775 return NULL_TREE;
10776
10777 tree_vector_builder out_elts (type, res_npatterns, res_nelts_per_pattern);
10778 for (unsigned i = 0; i < res_nelts; i++)
10779 {
10780 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
10781 uint64_t q;
10782 poly_uint64 r;
10783 unsigned HOST_WIDE_INT index;
10784
10785 /* Punt if sel[i] /trunc_div len cannot be determined,
10786 because the input vector to be chosen will depend on
10787 runtime vector length.
10788 For example if len == 4 + 4x, and sel[i] == 4,
10789 If len at runtime equals 4, we choose arg1[0].
10790 For any other value of len > 4 at runtime, we choose arg0[4].
10791 which makes the element choice dependent on runtime vector length. */
10792 if (!can_div_trunc_p (a: sel[i], b: len, quotient: &q, remainder: &r))
10793 {
10794 if (reason)
10795 *reason = "cannot divide selector element by arg len";
10796 return NULL_TREE;
10797 }
10798
10799 /* sel[i] % len will give the index of element in the chosen input
10800 vector. For example if sel[i] == 5 + 4x and len == 4 + 4x,
10801 we will choose arg1[1] since (5 + 4x) % (4 + 4x) == 1. */
10802 if (!r.is_constant (const_value: &index))
10803 {
10804 if (reason)
10805 *reason = "remainder is not constant";
10806 return NULL_TREE;
10807 }
10808
10809 tree arg = ((q & 1) == 0) ? arg0 : arg1;
10810 tree elem = vector_cst_elt (arg, index);
10811 out_elts.quick_push (obj: elem);
10812 }
10813
10814 return out_elts.build ();
10815}
10816
10817/* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
10818 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
10819 NULL_TREE otherwise. */
10820
10821tree
10822fold_vec_perm (tree type, tree arg0, tree arg1, const vec_perm_indices &sel)
10823{
10824 unsigned int i;
10825 unsigned HOST_WIDE_INT nelts;
10826
10827 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), sel.length ())
10828 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)),
10829 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1))));
10830
10831 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
10832 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
10833 return NULL_TREE;
10834
10835 if (TREE_CODE (arg0) == VECTOR_CST
10836 && TREE_CODE (arg1) == VECTOR_CST)
10837 return fold_vec_perm_cst (type, arg0, arg1, sel);
10838
10839 /* For fall back case, we want to ensure we have VLS vectors
10840 with equal length. */
10841 if (!sel.length ().is_constant (const_value: &nelts))
10842 return NULL_TREE;
10843
10844 gcc_assert (known_eq (sel.length (),
10845 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))));
10846 tree *in_elts = XALLOCAVEC (tree, nelts * 2);
10847 if (!vec_cst_ctor_to_array (arg: arg0, nelts, elts: in_elts)
10848 || !vec_cst_ctor_to_array (arg: arg1, nelts, elts: in_elts + nelts))
10849 return NULL_TREE;
10850
10851 vec<constructor_elt, va_gc> *v;
10852 vec_alloc (v, nelems: nelts);
10853 for (i = 0; i < nelts; i++)
10854 {
10855 HOST_WIDE_INT index;
10856 if (!sel[i].is_constant (const_value: &index))
10857 return NULL_TREE;
10858 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, in_elts[index]);
10859 }
10860 return build_constructor (type, v);
10861}
10862
10863/* Try to fold a pointer difference of type TYPE two address expressions of
10864 array references AREF0 and AREF1 using location LOC. Return a
10865 simplified expression for the difference or NULL_TREE. */
10866
10867static tree
10868fold_addr_of_array_ref_difference (location_t loc, tree type,
10869 tree aref0, tree aref1,
10870 bool use_pointer_diff)
10871{
10872 tree base0 = TREE_OPERAND (aref0, 0);
10873 tree base1 = TREE_OPERAND (aref1, 0);
10874 tree base_offset = build_int_cst (type, 0);
10875
10876 /* If the bases are array references as well, recurse. If the bases
10877 are pointer indirections compute the difference of the pointers.
10878 If the bases are equal, we are set. */
10879 if ((TREE_CODE (base0) == ARRAY_REF
10880 && TREE_CODE (base1) == ARRAY_REF
10881 && (base_offset
10882 = fold_addr_of_array_ref_difference (loc, type, aref0: base0, aref1: base1,
10883 use_pointer_diff)))
10884 || (INDIRECT_REF_P (base0)
10885 && INDIRECT_REF_P (base1)
10886 && (base_offset
10887 = use_pointer_diff
10888 ? fold_binary_loc (loc, POINTER_DIFF_EXPR, type,
10889 TREE_OPERAND (base0, 0),
10890 TREE_OPERAND (base1, 0))
10891 : fold_binary_loc (loc, MINUS_EXPR, type,
10892 fold_convert (type,
10893 TREE_OPERAND (base0, 0)),
10894 fold_convert (type,
10895 TREE_OPERAND (base1, 0)))))
10896 || operand_equal_p (arg0: base0, arg1: base1, flags: OEP_ADDRESS_OF))
10897 {
10898 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
10899 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
10900 tree esz = fold_convert_loc (loc, type, arg: array_ref_element_size (aref0));
10901 tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1);
10902 return fold_build2_loc (loc, PLUS_EXPR, type,
10903 base_offset,
10904 fold_build2_loc (loc, MULT_EXPR, type,
10905 diff, esz));
10906 }
10907 return NULL_TREE;
10908}
10909
10910/* If the real or vector real constant CST of type TYPE has an exact
10911 inverse, return it, else return NULL. */
10912
10913tree
10914exact_inverse (tree type, tree cst)
10915{
10916 REAL_VALUE_TYPE r;
10917 tree unit_type;
10918 machine_mode mode;
10919
10920 switch (TREE_CODE (cst))
10921 {
10922 case REAL_CST:
10923 r = TREE_REAL_CST (cst);
10924
10925 if (exact_real_inverse (TYPE_MODE (type), &r))
10926 return build_real (type, r);
10927
10928 return NULL_TREE;
10929
10930 case VECTOR_CST:
10931 {
10932 unit_type = TREE_TYPE (type);
10933 mode = TYPE_MODE (unit_type);
10934
10935 tree_vector_builder elts;
10936 if (!elts.new_unary_operation (shape: type, vec: cst, allow_stepped_p: false))
10937 return NULL_TREE;
10938 unsigned int count = elts.encoded_nelts ();
10939 for (unsigned int i = 0; i < count; ++i)
10940 {
10941 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
10942 if (!exact_real_inverse (mode, &r))
10943 return NULL_TREE;
10944 elts.quick_push (obj: build_real (unit_type, r));
10945 }
10946
10947 return elts.build ();
10948 }
10949
10950 default:
10951 return NULL_TREE;
10952 }
10953}
10954
10955/* Mask out the tz least significant bits of X of type TYPE where
10956 tz is the number of trailing zeroes in Y. */
10957static wide_int
10958mask_with_tz (tree type, const wide_int &x, const wide_int &y)
10959{
10960 int tz = wi::ctz (y);
10961 if (tz > 0)
10962 return wi::mask (width: tz, negate_p: true, TYPE_PRECISION (type)) & x;
10963 return x;
10964}
10965
10966/* Return true when T is an address and is known to be nonzero.
10967 For floating point we further ensure that T is not denormal.
10968 Similar logic is present in nonzero_address in rtlanal.h.
10969
10970 If the return value is based on the assumption that signed overflow
10971 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
10972 change *STRICT_OVERFLOW_P. */
10973
10974static bool
10975tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
10976{
10977 tree type = TREE_TYPE (t);
10978 enum tree_code code;
10979
10980 /* Doing something useful for floating point would need more work. */
10981 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
10982 return false;
10983
10984 code = TREE_CODE (t);
10985 switch (TREE_CODE_CLASS (code))
10986 {
10987 case tcc_unary:
10988 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
10989 strict_overflow_p);
10990 case tcc_binary:
10991 case tcc_comparison:
10992 return tree_binary_nonzero_warnv_p (code, type,
10993 TREE_OPERAND (t, 0),
10994 TREE_OPERAND (t, 1),
10995 strict_overflow_p);
10996 case tcc_constant:
10997 case tcc_declaration:
10998 case tcc_reference:
10999 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
11000
11001 default:
11002 break;
11003 }
11004
11005 switch (code)
11006 {
11007 case TRUTH_NOT_EXPR:
11008 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
11009 strict_overflow_p);
11010
11011 case TRUTH_AND_EXPR:
11012 case TRUTH_OR_EXPR:
11013 case TRUTH_XOR_EXPR:
11014 return tree_binary_nonzero_warnv_p (code, type,
11015 TREE_OPERAND (t, 0),
11016 TREE_OPERAND (t, 1),
11017 strict_overflow_p);
11018
11019 case COND_EXPR:
11020 case CONSTRUCTOR:
11021 case OBJ_TYPE_REF:
11022 case ADDR_EXPR:
11023 case WITH_SIZE_EXPR:
11024 case SSA_NAME:
11025 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
11026
11027 case COMPOUND_EXPR:
11028 case MODIFY_EXPR:
11029 case BIND_EXPR:
11030 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
11031 strict_overflow_p);
11032
11033 case SAVE_EXPR:
11034 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
11035 strict_overflow_p);
11036
11037 case CALL_EXPR:
11038 {
11039 tree fndecl = get_callee_fndecl (t);
11040 if (!fndecl) return false;
11041 if (flag_delete_null_pointer_checks && !flag_check_new
11042 && DECL_IS_OPERATOR_NEW_P (fndecl)
11043 && !TREE_NOTHROW (fndecl))
11044 return true;
11045 if (flag_delete_null_pointer_checks
11046 && lookup_attribute (attr_name: "returns_nonnull",
11047 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
11048 return true;
11049 return alloca_call_p (t);
11050 }
11051
11052 default:
11053 break;
11054 }
11055 return false;
11056}
11057
11058/* Return true when T is an address and is known to be nonzero.
11059 Handle warnings about undefined signed overflow. */
11060
11061bool
11062tree_expr_nonzero_p (tree t)
11063{
11064 bool ret, strict_overflow_p;
11065
11066 strict_overflow_p = false;
11067 ret = tree_expr_nonzero_warnv_p (t, strict_overflow_p: &strict_overflow_p);
11068 if (strict_overflow_p)
11069 fold_overflow_warning (gmsgid: ("assuming signed overflow does not occur when "
11070 "determining that expression is always "
11071 "non-zero"),
11072 wc: WARN_STRICT_OVERFLOW_MISC);
11073 return ret;
11074}
11075
11076/* Return true if T is known not to be equal to an integer W. */
11077
11078bool
11079expr_not_equal_to (tree t, const wide_int &w)
11080{
11081 int_range_max vr;
11082 switch (TREE_CODE (t))
11083 {
11084 case INTEGER_CST:
11085 return wi::to_wide (t) != w;
11086
11087 case SSA_NAME:
11088 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
11089 return false;
11090
11091 get_range_query (cfun)->range_of_expr (r&: vr, expr: t);
11092 if (!vr.undefined_p () && !vr.contains_p (w))
11093 return true;
11094 /* If T has some known zero bits and W has any of those bits set,
11095 then T is known not to be equal to W. */
11096 if (wi::ne_p (x: wi::zext (x: wi::bit_and_not (x: w, y: get_nonzero_bits (t)),
11097 TYPE_PRECISION (TREE_TYPE (t))), y: 0))
11098 return true;
11099 return false;
11100
11101 default:
11102 return false;
11103 }
11104}
11105
11106/* Fold a binary expression of code CODE and type TYPE with operands
11107 OP0 and OP1. LOC is the location of the resulting expression.
11108 Return the folded expression if folding is successful. Otherwise,
11109 return NULL_TREE. */
11110
11111tree
11112fold_binary_loc (location_t loc, enum tree_code code, tree type,
11113 tree op0, tree op1)
11114{
11115 enum tree_code_class kind = TREE_CODE_CLASS (code);
11116 tree arg0, arg1, tem;
11117 tree t1 = NULL_TREE;
11118 bool strict_overflow_p;
11119 unsigned int prec;
11120
11121 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11122 && TREE_CODE_LENGTH (code) == 2
11123 && op0 != NULL_TREE
11124 && op1 != NULL_TREE);
11125
11126 arg0 = op0;
11127 arg1 = op1;
11128
11129 /* Strip any conversions that don't change the mode. This is
11130 safe for every expression, except for a comparison expression
11131 because its signedness is derived from its operands. So, in
11132 the latter case, only strip conversions that don't change the
11133 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
11134 preserved.
11135
11136 Note that this is done as an internal manipulation within the
11137 constant folder, in order to find the simplest representation
11138 of the arguments so that their form can be studied. In any
11139 cases, the appropriate type conversions should be put back in
11140 the tree that will get out of the constant folder. */
11141
11142 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
11143 {
11144 STRIP_SIGN_NOPS (arg0);
11145 STRIP_SIGN_NOPS (arg1);
11146 }
11147 else
11148 {
11149 STRIP_NOPS (arg0);
11150 STRIP_NOPS (arg1);
11151 }
11152
11153 /* Note that TREE_CONSTANT isn't enough: static var addresses are
11154 constant but we can't do arithmetic on them. */
11155 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
11156 {
11157 tem = const_binop (code, type, arg1: arg0, arg2: arg1);
11158 if (tem != NULL_TREE)
11159 {
11160 if (TREE_TYPE (tem) != type)
11161 tem = fold_convert_loc (loc, type, arg: tem);
11162 return tem;
11163 }
11164 }
11165
11166 /* If this is a commutative operation, and ARG0 is a constant, move it
11167 to ARG1 to reduce the number of tests below. */
11168 if (commutative_tree_code (code)
11169 && tree_swap_operands_p (arg0, arg1))
11170 return fold_build2_loc (loc, code, type, op1, op0);
11171
11172 /* Likewise if this is a comparison, and ARG0 is a constant, move it
11173 to ARG1 to reduce the number of tests below. */
11174 if (kind == tcc_comparison
11175 && tree_swap_operands_p (arg0, arg1))
11176 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
11177
11178 tem = generic_simplify (loc, code, type, op0, op1);
11179 if (tem)
11180 return tem;
11181
11182 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
11183
11184 First check for cases where an arithmetic operation is applied to a
11185 compound, conditional, or comparison operation. Push the arithmetic
11186 operation inside the compound or conditional to see if any folding
11187 can then be done. Convert comparison to conditional for this purpose.
11188 The also optimizes non-constant cases that used to be done in
11189 expand_expr.
11190
11191 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
11192 one of the operands is a comparison and the other is a comparison, a
11193 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
11194 code below would make the expression more complex. Change it to a
11195 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
11196 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
11197
11198 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
11199 || code == EQ_EXPR || code == NE_EXPR)
11200 && !VECTOR_TYPE_P (TREE_TYPE (arg0))
11201 && ((truth_value_p (TREE_CODE (arg0))
11202 && (truth_value_p (TREE_CODE (arg1))
11203 || (TREE_CODE (arg1) == BIT_AND_EXPR
11204 && integer_onep (TREE_OPERAND (arg1, 1)))))
11205 || (truth_value_p (TREE_CODE (arg1))
11206 && (truth_value_p (TREE_CODE (arg0))
11207 || (TREE_CODE (arg0) == BIT_AND_EXPR
11208 && integer_onep (TREE_OPERAND (arg0, 1)))))))
11209 {
11210 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
11211 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
11212 : TRUTH_XOR_EXPR,
11213 boolean_type_node,
11214 fold_convert_loc (loc, boolean_type_node, arg: arg0),
11215 fold_convert_loc (loc, boolean_type_node, arg: arg1));
11216
11217 if (code == EQ_EXPR)
11218 tem = invert_truthvalue_loc (loc, arg: tem);
11219
11220 return fold_convert_loc (loc, type, arg: tem);
11221 }
11222
11223 if (TREE_CODE_CLASS (code) == tcc_binary
11224 || TREE_CODE_CLASS (code) == tcc_comparison)
11225 {
11226 if (TREE_CODE (arg0) == COMPOUND_EXPR)
11227 {
11228 tem = fold_build2_loc (loc, code, type,
11229 fold_convert_loc (loc, TREE_TYPE (op0),
11230 TREE_OPERAND (arg0, 1)), op1);
11231 return build2_loc (loc, code: COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
11232 arg1: tem);
11233 }
11234 if (TREE_CODE (arg1) == COMPOUND_EXPR)
11235 {
11236 tem = fold_build2_loc (loc, code, type, op0,
11237 fold_convert_loc (loc, TREE_TYPE (op1),
11238 TREE_OPERAND (arg1, 1)));
11239 return build2_loc (loc, code: COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
11240 arg1: tem);
11241 }
11242
11243 if (TREE_CODE (arg0) == COND_EXPR
11244 || TREE_CODE (arg0) == VEC_COND_EXPR
11245 || COMPARISON_CLASS_P (arg0))
11246 {
11247 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
11248 cond: arg0, arg: arg1,
11249 /*cond_first_p=*/1);
11250 if (tem != NULL_TREE)
11251 return tem;
11252 }
11253
11254 if (TREE_CODE (arg1) == COND_EXPR
11255 || TREE_CODE (arg1) == VEC_COND_EXPR
11256 || COMPARISON_CLASS_P (arg1))
11257 {
11258 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
11259 cond: arg1, arg: arg0,
11260 /*cond_first_p=*/0);
11261 if (tem != NULL_TREE)
11262 return tem;
11263 }
11264 }
11265
11266 switch (code)
11267 {
11268 case MEM_REF:
11269 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
11270 if (TREE_CODE (arg0) == ADDR_EXPR
11271 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
11272 {
11273 tree iref = TREE_OPERAND (arg0, 0);
11274 return fold_build2 (MEM_REF, type,
11275 TREE_OPERAND (iref, 0),
11276 int_const_binop (PLUS_EXPR, arg1,
11277 TREE_OPERAND (iref, 1)));
11278 }
11279
11280 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
11281 if (TREE_CODE (arg0) == ADDR_EXPR
11282 && handled_component_p (TREE_OPERAND (arg0, 0)))
11283 {
11284 tree base;
11285 poly_int64 coffset;
11286 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
11287 &coffset);
11288 if (!base)
11289 return NULL_TREE;
11290 return fold_build2 (MEM_REF, type,
11291 build1 (ADDR_EXPR, TREE_TYPE (arg0), base),
11292 int_const_binop (PLUS_EXPR, arg1,
11293 size_int (coffset)));
11294 }
11295
11296 return NULL_TREE;
11297
11298 case POINTER_PLUS_EXPR:
11299 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
11300 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
11301 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
11302 return fold_convert_loc (loc, type,
11303 arg: fold_build2_loc (loc, PLUS_EXPR, sizetype,
11304 fold_convert_loc (loc, sizetype,
11305 arg: arg1),
11306 fold_convert_loc (loc, sizetype,
11307 arg: arg0)));
11308
11309 return NULL_TREE;
11310
11311 case PLUS_EXPR:
11312 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
11313 {
11314 /* X + (X / CST) * -CST is X % CST. */
11315 if (TREE_CODE (arg1) == MULT_EXPR
11316 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
11317 && operand_equal_p (arg0,
11318 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), flags: 0))
11319 {
11320 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
11321 tree cst1 = TREE_OPERAND (arg1, 1);
11322 tree sum = fold_binary_loc (loc, code: PLUS_EXPR, TREE_TYPE (cst1),
11323 op0: cst1, op1: cst0);
11324 if (sum && integer_zerop (sum))
11325 return fold_convert_loc (loc, type,
11326 arg: fold_build2_loc (loc, TRUNC_MOD_EXPR,
11327 TREE_TYPE (arg0), arg0,
11328 cst0));
11329 }
11330 }
11331
11332 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
11333 one. Make sure the type is not saturating and has the signedness of
11334 the stripped operands, as fold_plusminus_mult_expr will re-associate.
11335 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
11336 if ((TREE_CODE (arg0) == MULT_EXPR
11337 || TREE_CODE (arg1) == MULT_EXPR)
11338 && !TYPE_SATURATING (type)
11339 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
11340 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
11341 && (!FLOAT_TYPE_P (type) || flag_associative_math))
11342 {
11343 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
11344 if (tem)
11345 return tem;
11346 }
11347
11348 if (! FLOAT_TYPE_P (type))
11349 {
11350 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
11351 (plus (plus (mult) (mult)) (foo)) so that we can
11352 take advantage of the factoring cases below. */
11353 if (ANY_INTEGRAL_TYPE_P (type)
11354 && TYPE_OVERFLOW_WRAPS (type)
11355 && (((TREE_CODE (arg0) == PLUS_EXPR
11356 || TREE_CODE (arg0) == MINUS_EXPR)
11357 && TREE_CODE (arg1) == MULT_EXPR)
11358 || ((TREE_CODE (arg1) == PLUS_EXPR
11359 || TREE_CODE (arg1) == MINUS_EXPR)
11360 && TREE_CODE (arg0) == MULT_EXPR)))
11361 {
11362 tree parg0, parg1, parg, marg;
11363 enum tree_code pcode;
11364
11365 if (TREE_CODE (arg1) == MULT_EXPR)
11366 parg = arg0, marg = arg1;
11367 else
11368 parg = arg1, marg = arg0;
11369 pcode = TREE_CODE (parg);
11370 parg0 = TREE_OPERAND (parg, 0);
11371 parg1 = TREE_OPERAND (parg, 1);
11372 STRIP_NOPS (parg0);
11373 STRIP_NOPS (parg1);
11374
11375 if (TREE_CODE (parg0) == MULT_EXPR
11376 && TREE_CODE (parg1) != MULT_EXPR)
11377 return fold_build2_loc (loc, pcode, type,
11378 fold_build2_loc (loc, PLUS_EXPR, type,
11379 fold_convert_loc (loc, type,
11380 arg: parg0),
11381 fold_convert_loc (loc, type,
11382 arg: marg)),
11383 fold_convert_loc (loc, type, arg: parg1));
11384 if (TREE_CODE (parg0) != MULT_EXPR
11385 && TREE_CODE (parg1) == MULT_EXPR)
11386 return
11387 fold_build2_loc (loc, PLUS_EXPR, type,
11388 fold_convert_loc (loc, type, arg: parg0),
11389 fold_build2_loc (loc, pcode, type,
11390 fold_convert_loc (loc, type, arg: marg),
11391 fold_convert_loc (loc, type,
11392 arg: parg1)));
11393 }
11394 }
11395 else
11396 {
11397 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
11398 to __complex__ ( x, y ). This is not the same for SNaNs or
11399 if signed zeros are involved. */
11400 if (!HONOR_SNANS (arg0)
11401 && !HONOR_SIGNED_ZEROS (arg0)
11402 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
11403 {
11404 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
11405 tree arg0r = fold_unary_loc (loc, code: REALPART_EXPR, type: rtype, op0: arg0);
11406 tree arg0i = fold_unary_loc (loc, code: IMAGPART_EXPR, type: rtype, op0: arg0);
11407 bool arg0rz = false, arg0iz = false;
11408 if ((arg0r && (arg0rz = real_zerop (arg0r)))
11409 || (arg0i && (arg0iz = real_zerop (arg0i))))
11410 {
11411 tree arg1r = fold_unary_loc (loc, code: REALPART_EXPR, type: rtype, op0: arg1);
11412 tree arg1i = fold_unary_loc (loc, code: IMAGPART_EXPR, type: rtype, op0: arg1);
11413 if (arg0rz && arg1i && real_zerop (arg1i))
11414 {
11415 tree rp = arg1r ? arg1r
11416 : build1 (REALPART_EXPR, rtype, arg1);
11417 tree ip = arg0i ? arg0i
11418 : build1 (IMAGPART_EXPR, rtype, arg0);
11419 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
11420 }
11421 else if (arg0iz && arg1r && real_zerop (arg1r))
11422 {
11423 tree rp = arg0r ? arg0r
11424 : build1 (REALPART_EXPR, rtype, arg0);
11425 tree ip = arg1i ? arg1i
11426 : build1 (IMAGPART_EXPR, rtype, arg1);
11427 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
11428 }
11429 }
11430 }
11431
11432 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
11433 We associate floats only if the user has specified
11434 -fassociative-math. */
11435 if (flag_associative_math
11436 && TREE_CODE (arg1) == PLUS_EXPR
11437 && TREE_CODE (arg0) != MULT_EXPR)
11438 {
11439 tree tree10 = TREE_OPERAND (arg1, 0);
11440 tree tree11 = TREE_OPERAND (arg1, 1);
11441 if (TREE_CODE (tree11) == MULT_EXPR
11442 && TREE_CODE (tree10) == MULT_EXPR)
11443 {
11444 tree tree0;
11445 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
11446 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
11447 }
11448 }
11449 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
11450 We associate floats only if the user has specified
11451 -fassociative-math. */
11452 if (flag_associative_math
11453 && TREE_CODE (arg0) == PLUS_EXPR
11454 && TREE_CODE (arg1) != MULT_EXPR)
11455 {
11456 tree tree00 = TREE_OPERAND (arg0, 0);
11457 tree tree01 = TREE_OPERAND (arg0, 1);
11458 if (TREE_CODE (tree01) == MULT_EXPR
11459 && TREE_CODE (tree00) == MULT_EXPR)
11460 {
11461 tree tree0;
11462 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
11463 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
11464 }
11465 }
11466 }
11467
11468 bit_rotate:
11469 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
11470 is a rotate of A by C1 bits. */
11471 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
11472 is a rotate of A by B bits.
11473 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
11474 though in this case CODE must be | and not + or ^, otherwise
11475 it doesn't return A when B is 0. */
11476 {
11477 enum tree_code code0, code1;
11478 tree rtype;
11479 code0 = TREE_CODE (arg0);
11480 code1 = TREE_CODE (arg1);
11481 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
11482 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
11483 && operand_equal_p (TREE_OPERAND (arg0, 0),
11484 TREE_OPERAND (arg1, 0), flags: 0)
11485 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
11486 TYPE_UNSIGNED (rtype))
11487 /* Only create rotates in complete modes. Other cases are not
11488 expanded properly. */
11489 && (element_precision (rtype)
11490 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
11491 {
11492 tree tree01, tree11;
11493 tree orig_tree01, orig_tree11;
11494 enum tree_code code01, code11;
11495
11496 tree01 = orig_tree01 = TREE_OPERAND (arg0, 1);
11497 tree11 = orig_tree11 = TREE_OPERAND (arg1, 1);
11498 STRIP_NOPS (tree01);
11499 STRIP_NOPS (tree11);
11500 code01 = TREE_CODE (tree01);
11501 code11 = TREE_CODE (tree11);
11502 if (code11 != MINUS_EXPR
11503 && (code01 == MINUS_EXPR || code01 == BIT_AND_EXPR))
11504 {
11505 std::swap (a&: code0, b&: code1);
11506 std::swap (a&: code01, b&: code11);
11507 std::swap (a&: tree01, b&: tree11);
11508 std::swap (a&: orig_tree01, b&: orig_tree11);
11509 }
11510 if (code01 == INTEGER_CST
11511 && code11 == INTEGER_CST
11512 && (wi::to_widest (t: tree01) + wi::to_widest (t: tree11)
11513 == element_precision (rtype)))
11514 {
11515 tem = build2_loc (loc, code: LROTATE_EXPR,
11516 type: rtype, TREE_OPERAND (arg0, 0),
11517 arg1: code0 == LSHIFT_EXPR
11518 ? orig_tree01 : orig_tree11);
11519 return fold_convert_loc (loc, type, arg: tem);
11520 }
11521 else if (code11 == MINUS_EXPR)
11522 {
11523 tree tree110, tree111;
11524 tree110 = TREE_OPERAND (tree11, 0);
11525 tree111 = TREE_OPERAND (tree11, 1);
11526 STRIP_NOPS (tree110);
11527 STRIP_NOPS (tree111);
11528 if (TREE_CODE (tree110) == INTEGER_CST
11529 && compare_tree_int (tree110,
11530 element_precision (rtype)) == 0
11531 && operand_equal_p (arg0: tree01, arg1: tree111, flags: 0))
11532 {
11533 tem = build2_loc (loc, code: (code0 == LSHIFT_EXPR
11534 ? LROTATE_EXPR : RROTATE_EXPR),
11535 type: rtype, TREE_OPERAND (arg0, 0),
11536 arg1: orig_tree01);
11537 return fold_convert_loc (loc, type, arg: tem);
11538 }
11539 }
11540 else if (code == BIT_IOR_EXPR
11541 && code11 == BIT_AND_EXPR
11542 && pow2p_hwi (x: element_precision (rtype)))
11543 {
11544 tree tree110, tree111;
11545 tree110 = TREE_OPERAND (tree11, 0);
11546 tree111 = TREE_OPERAND (tree11, 1);
11547 STRIP_NOPS (tree110);
11548 STRIP_NOPS (tree111);
11549 if (TREE_CODE (tree110) == NEGATE_EXPR
11550 && TREE_CODE (tree111) == INTEGER_CST
11551 && compare_tree_int (tree111,
11552 element_precision (rtype) - 1) == 0
11553 && operand_equal_p (arg0: tree01, TREE_OPERAND (tree110, 0), flags: 0))
11554 {
11555 tem = build2_loc (loc, code: (code0 == LSHIFT_EXPR
11556 ? LROTATE_EXPR : RROTATE_EXPR),
11557 type: rtype, TREE_OPERAND (arg0, 0),
11558 arg1: orig_tree01);
11559 return fold_convert_loc (loc, type, arg: tem);
11560 }
11561 }
11562 }
11563 }
11564
11565 associate:
11566 /* In most languages, can't associate operations on floats through
11567 parentheses. Rather than remember where the parentheses were, we
11568 don't associate floats at all, unless the user has specified
11569 -fassociative-math.
11570 And, we need to make sure type is not saturating. */
11571
11572 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
11573 && !TYPE_SATURATING (type)
11574 && !TYPE_OVERFLOW_SANITIZED (type))
11575 {
11576 tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0;
11577 tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1;
11578 tree atype = type;
11579 bool ok = true;
11580
11581 /* Split both trees into variables, constants, and literals. Then
11582 associate each group together, the constants with literals,
11583 then the result with variables. This increases the chances of
11584 literals being recombined later and of generating relocatable
11585 expressions for the sum of a constant and literal. */
11586 var0 = split_tree (in: arg0, type, code,
11587 minus_varp: &minus_var0, conp: &con0, minus_conp: &minus_con0,
11588 litp: &lit0, minus_litp: &minus_lit0, negate_p: 0);
11589 var1 = split_tree (in: arg1, type, code,
11590 minus_varp: &minus_var1, conp: &con1, minus_conp: &minus_con1,
11591 litp: &lit1, minus_litp: &minus_lit1, negate_p: code == MINUS_EXPR);
11592
11593 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
11594 if (code == MINUS_EXPR)
11595 code = PLUS_EXPR;
11596
11597 /* With undefined overflow prefer doing association in a type
11598 which wraps on overflow, if that is one of the operand types. */
11599 if ((POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
11600 && !TYPE_OVERFLOW_WRAPS (type))
11601 {
11602 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11603 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
11604 atype = TREE_TYPE (arg0);
11605 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
11606 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
11607 atype = TREE_TYPE (arg1);
11608 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
11609 }
11610
11611 /* With undefined overflow we can only associate constants with one
11612 variable, and constants whose association doesn't overflow. */
11613 if ((POINTER_TYPE_P (atype) || INTEGRAL_TYPE_P (atype))
11614 && !TYPE_OVERFLOW_WRAPS (atype))
11615 {
11616 if ((var0 && var1) || (minus_var0 && minus_var1))
11617 {
11618 /* ??? If split_tree would handle NEGATE_EXPR we could
11619 simply reject these cases and the allowed cases would
11620 be the var0/minus_var1 ones. */
11621 tree tmp0 = var0 ? var0 : minus_var0;
11622 tree tmp1 = var1 ? var1 : minus_var1;
11623 bool one_neg = false;
11624
11625 if (TREE_CODE (tmp0) == NEGATE_EXPR)
11626 {
11627 tmp0 = TREE_OPERAND (tmp0, 0);
11628 one_neg = !one_neg;
11629 }
11630 if (CONVERT_EXPR_P (tmp0)
11631 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
11632 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
11633 <= TYPE_PRECISION (atype)))
11634 tmp0 = TREE_OPERAND (tmp0, 0);
11635 if (TREE_CODE (tmp1) == NEGATE_EXPR)
11636 {
11637 tmp1 = TREE_OPERAND (tmp1, 0);
11638 one_neg = !one_neg;
11639 }
11640 if (CONVERT_EXPR_P (tmp1)
11641 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
11642 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
11643 <= TYPE_PRECISION (atype)))
11644 tmp1 = TREE_OPERAND (tmp1, 0);
11645 /* The only case we can still associate with two variables
11646 is if they cancel out. */
11647 if (!one_neg
11648 || !operand_equal_p (arg0: tmp0, arg1: tmp1, flags: 0))
11649 ok = false;
11650 }
11651 else if ((var0 && minus_var1
11652 && ! operand_equal_p (arg0: var0, arg1: minus_var1, flags: 0))
11653 || (minus_var0 && var1
11654 && ! operand_equal_p (arg0: minus_var0, arg1: var1, flags: 0)))
11655 ok = false;
11656 }
11657
11658 /* Only do something if we found more than two objects. Otherwise,
11659 nothing has changed and we risk infinite recursion. */
11660 if (ok
11661 && ((var0 != 0) + (var1 != 0)
11662 + (minus_var0 != 0) + (minus_var1 != 0)
11663 + (con0 != 0) + (con1 != 0)
11664 + (minus_con0 != 0) + (minus_con1 != 0)
11665 + (lit0 != 0) + (lit1 != 0)
11666 + (minus_lit0 != 0) + (minus_lit1 != 0)) > 2)
11667 {
11668 var0 = associate_trees (loc, t1: var0, t2: var1, code, type: atype);
11669 minus_var0 = associate_trees (loc, t1: minus_var0, t2: minus_var1,
11670 code, type: atype);
11671 con0 = associate_trees (loc, t1: con0, t2: con1, code, type: atype);
11672 minus_con0 = associate_trees (loc, t1: minus_con0, t2: minus_con1,
11673 code, type: atype);
11674 lit0 = associate_trees (loc, t1: lit0, t2: lit1, code, type: atype);
11675 minus_lit0 = associate_trees (loc, t1: minus_lit0, t2: minus_lit1,
11676 code, type: atype);
11677
11678 if (minus_var0 && var0)
11679 {
11680 var0 = associate_trees (loc, t1: var0, t2: minus_var0,
11681 code: MINUS_EXPR, type: atype);
11682 minus_var0 = 0;
11683 }
11684 if (minus_con0 && con0)
11685 {
11686 con0 = associate_trees (loc, t1: con0, t2: minus_con0,
11687 code: MINUS_EXPR, type: atype);
11688 minus_con0 = 0;
11689 }
11690
11691 /* Preserve the MINUS_EXPR if the negative part of the literal is
11692 greater than the positive part. Otherwise, the multiplicative
11693 folding code (i.e extract_muldiv) may be fooled in case
11694 unsigned constants are subtracted, like in the following
11695 example: ((X*2 + 4) - 8U)/2. */
11696 if (minus_lit0 && lit0)
11697 {
11698 if (TREE_CODE (lit0) == INTEGER_CST
11699 && TREE_CODE (minus_lit0) == INTEGER_CST
11700 && tree_int_cst_lt (t1: lit0, t2: minus_lit0)
11701 /* But avoid ending up with only negated parts. */
11702 && (var0 || con0))
11703 {
11704 minus_lit0 = associate_trees (loc, t1: minus_lit0, t2: lit0,
11705 code: MINUS_EXPR, type: atype);
11706 lit0 = 0;
11707 }
11708 else
11709 {
11710 lit0 = associate_trees (loc, t1: lit0, t2: minus_lit0,
11711 code: MINUS_EXPR, type: atype);
11712 minus_lit0 = 0;
11713 }
11714 }
11715
11716 /* Don't introduce overflows through reassociation. */
11717 if ((lit0 && TREE_OVERFLOW_P (lit0))
11718 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0)))
11719 return NULL_TREE;
11720
11721 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
11722 con0 = associate_trees (loc, t1: con0, t2: lit0, code, type: atype);
11723 lit0 = 0;
11724 minus_con0 = associate_trees (loc, t1: minus_con0, t2: minus_lit0,
11725 code, type: atype);
11726 minus_lit0 = 0;
11727
11728 /* Eliminate minus_con0. */
11729 if (minus_con0)
11730 {
11731 if (con0)
11732 con0 = associate_trees (loc, t1: con0, t2: minus_con0,
11733 code: MINUS_EXPR, type: atype);
11734 else if (var0)
11735 var0 = associate_trees (loc, t1: var0, t2: minus_con0,
11736 code: MINUS_EXPR, type: atype);
11737 else
11738 gcc_unreachable ();
11739 minus_con0 = 0;
11740 }
11741
11742 /* Eliminate minus_var0. */
11743 if (minus_var0)
11744 {
11745 if (con0)
11746 con0 = associate_trees (loc, t1: con0, t2: minus_var0,
11747 code: MINUS_EXPR, type: atype);
11748 else
11749 gcc_unreachable ();
11750 minus_var0 = 0;
11751 }
11752
11753 return
11754 fold_convert_loc (loc, type, arg: associate_trees (loc, t1: var0, t2: con0,
11755 code, type: atype));
11756 }
11757 }
11758
11759 return NULL_TREE;
11760
11761 case POINTER_DIFF_EXPR:
11762 case MINUS_EXPR:
11763 /* Fold &a[i] - &a[j] to i-j. */
11764 if (TREE_CODE (arg0) == ADDR_EXPR
11765 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
11766 && TREE_CODE (arg1) == ADDR_EXPR
11767 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
11768 {
11769 tree tem = fold_addr_of_array_ref_difference (loc, type,
11770 TREE_OPERAND (arg0, 0),
11771 TREE_OPERAND (arg1, 0),
11772 use_pointer_diff: code
11773 == POINTER_DIFF_EXPR);
11774 if (tem)
11775 return tem;
11776 }
11777
11778 /* Further transformations are not for pointers. */
11779 if (code == POINTER_DIFF_EXPR)
11780 return NULL_TREE;
11781
11782 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
11783 if (TREE_CODE (arg0) == NEGATE_EXPR
11784 && negate_expr_p (t: op1)
11785 /* If arg0 is e.g. unsigned int and type is int, then this could
11786 introduce UB, because if A is INT_MIN at runtime, the original
11787 expression can be well defined while the latter is not.
11788 See PR83269. */
11789 && !(ANY_INTEGRAL_TYPE_P (type)
11790 && TYPE_OVERFLOW_UNDEFINED (type)
11791 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11792 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
11793 return fold_build2_loc (loc, MINUS_EXPR, type, negate_expr (t: op1),
11794 fold_convert_loc (loc, type,
11795 TREE_OPERAND (arg0, 0)));
11796
11797 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
11798 __complex__ ( x, -y ). This is not the same for SNaNs or if
11799 signed zeros are involved. */
11800 if (!HONOR_SNANS (arg0)
11801 && !HONOR_SIGNED_ZEROS (arg0)
11802 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
11803 {
11804 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
11805 tree arg0r = fold_unary_loc (loc, code: REALPART_EXPR, type: rtype, op0: arg0);
11806 tree arg0i = fold_unary_loc (loc, code: IMAGPART_EXPR, type: rtype, op0: arg0);
11807 bool arg0rz = false, arg0iz = false;
11808 if ((arg0r && (arg0rz = real_zerop (arg0r)))
11809 || (arg0i && (arg0iz = real_zerop (arg0i))))
11810 {
11811 tree arg1r = fold_unary_loc (loc, code: REALPART_EXPR, type: rtype, op0: arg1);
11812 tree arg1i = fold_unary_loc (loc, code: IMAGPART_EXPR, type: rtype, op0: arg1);
11813 if (arg0rz && arg1i && real_zerop (arg1i))
11814 {
11815 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
11816 arg1r ? arg1r
11817 : build1 (REALPART_EXPR, rtype, arg1));
11818 tree ip = arg0i ? arg0i
11819 : build1 (IMAGPART_EXPR, rtype, arg0);
11820 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
11821 }
11822 else if (arg0iz && arg1r && real_zerop (arg1r))
11823 {
11824 tree rp = arg0r ? arg0r
11825 : build1 (REALPART_EXPR, rtype, arg0);
11826 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
11827 arg1i ? arg1i
11828 : build1 (IMAGPART_EXPR, rtype, arg1));
11829 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
11830 }
11831 }
11832 }
11833
11834 /* A - B -> A + (-B) if B is easily negatable. */
11835 if (negate_expr_p (t: op1)
11836 && ! TYPE_OVERFLOW_SANITIZED (type)
11837 && ((FLOAT_TYPE_P (type)
11838 /* Avoid this transformation if B is a positive REAL_CST. */
11839 && (TREE_CODE (op1) != REAL_CST
11840 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
11841 || INTEGRAL_TYPE_P (type)))
11842 return fold_build2_loc (loc, PLUS_EXPR, type,
11843 fold_convert_loc (loc, type, arg: arg0),
11844 negate_expr (t: op1));
11845
11846 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
11847 one. Make sure the type is not saturating and has the signedness of
11848 the stripped operands, as fold_plusminus_mult_expr will re-associate.
11849 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
11850 if ((TREE_CODE (arg0) == MULT_EXPR
11851 || TREE_CODE (arg1) == MULT_EXPR)
11852 && !TYPE_SATURATING (type)
11853 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
11854 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
11855 && (!FLOAT_TYPE_P (type) || flag_associative_math))
11856 {
11857 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
11858 if (tem)
11859 return tem;
11860 }
11861
11862 goto associate;
11863
11864 case MULT_EXPR:
11865 if (! FLOAT_TYPE_P (type))
11866 {
11867 /* Transform x * -C into -x * C if x is easily negatable. */
11868 if (TREE_CODE (op1) == INTEGER_CST
11869 && tree_int_cst_sgn (op1) == -1
11870 && negate_expr_p (t: op0)
11871 && negate_expr_p (t: op1)
11872 && (tem = negate_expr (t: op1)) != op1
11873 && ! TREE_OVERFLOW (tem))
11874 return fold_build2_loc (loc, MULT_EXPR, type,
11875 fold_convert_loc (loc, type,
11876 arg: negate_expr (t: op0)), tem);
11877
11878 strict_overflow_p = false;
11879 if (TREE_CODE (arg1) == INTEGER_CST
11880 && (tem = extract_muldiv (t: op0, c: arg1, code, NULL_TREE,
11881 strict_overflow_p: &strict_overflow_p)) != 0)
11882 {
11883 if (strict_overflow_p)
11884 fold_overflow_warning (gmsgid: ("assuming signed overflow does not "
11885 "occur when simplifying "
11886 "multiplication"),
11887 wc: WARN_STRICT_OVERFLOW_MISC);
11888 return fold_convert_loc (loc, type, arg: tem);
11889 }
11890
11891 /* Optimize z * conj(z) for integer complex numbers. */
11892 if (TREE_CODE (arg0) == CONJ_EXPR
11893 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, flags: 0))
11894 return fold_mult_zconjz (loc, type, expr: arg1);
11895 if (TREE_CODE (arg1) == CONJ_EXPR
11896 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), flags: 0))
11897 return fold_mult_zconjz (loc, type, expr: arg0);
11898 }
11899 else
11900 {
11901 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
11902 This is not the same for NaNs or if signed zeros are
11903 involved. */
11904 if (!HONOR_NANS (arg0)
11905 && !HONOR_SIGNED_ZEROS (arg0)
11906 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
11907 && TREE_CODE (arg1) == COMPLEX_CST
11908 && real_zerop (TREE_REALPART (arg1)))
11909 {
11910 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
11911 if (real_onep (TREE_IMAGPART (arg1)))
11912 return
11913 fold_build2_loc (loc, COMPLEX_EXPR, type,
11914 negate_expr (t: fold_build1_loc (loc, IMAGPART_EXPR,
11915 rtype, arg0)),
11916 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
11917 else if (real_minus_onep (TREE_IMAGPART (arg1)))
11918 return
11919 fold_build2_loc (loc, COMPLEX_EXPR, type,
11920 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
11921 negate_expr (t: fold_build1_loc (loc, REALPART_EXPR,
11922 rtype, arg0)));
11923 }
11924
11925 /* Optimize z * conj(z) for floating point complex numbers.
11926 Guarded by flag_unsafe_math_optimizations as non-finite
11927 imaginary components don't produce scalar results. */
11928 if (flag_unsafe_math_optimizations
11929 && TREE_CODE (arg0) == CONJ_EXPR
11930 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, flags: 0))
11931 return fold_mult_zconjz (loc, type, expr: arg1);
11932 if (flag_unsafe_math_optimizations
11933 && TREE_CODE (arg1) == CONJ_EXPR
11934 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), flags: 0))
11935 return fold_mult_zconjz (loc, type, expr: arg0);
11936 }
11937 goto associate;
11938
11939 case BIT_IOR_EXPR:
11940 /* Canonicalize (X & C1) | C2. */
11941 if (TREE_CODE (arg0) == BIT_AND_EXPR
11942 && TREE_CODE (arg1) == INTEGER_CST
11943 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11944 {
11945 int width = TYPE_PRECISION (type), w;
11946 wide_int c1 = wi::to_wide (TREE_OPERAND (arg0, 1));
11947 wide_int c2 = wi::to_wide (t: arg1);
11948
11949 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
11950 if ((c1 & c2) == c1)
11951 return omit_one_operand_loc (loc, type, result: arg1,
11952 TREE_OPERAND (arg0, 0));
11953
11954 wide_int msk = wi::mask (width, negate_p: false,
11955 TYPE_PRECISION (TREE_TYPE (arg1)));
11956
11957 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
11958 if (wi::bit_and_not (x: msk, y: c1 | c2) == 0)
11959 {
11960 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11961 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
11962 }
11963
11964 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
11965 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
11966 mode which allows further optimizations. */
11967 c1 &= msk;
11968 c2 &= msk;
11969 wide_int c3 = wi::bit_and_not (x: c1, y: c2);
11970 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
11971 {
11972 wide_int mask = wi::mask (width: w, negate_p: false,
11973 TYPE_PRECISION (type));
11974 if (((c1 | c2) & mask) == mask
11975 && wi::bit_and_not (x: c1, y: mask) == 0)
11976 {
11977 c3 = mask;
11978 break;
11979 }
11980 }
11981
11982 if (c3 != c1)
11983 {
11984 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11985 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem,
11986 wide_int_to_tree (type, cst: c3));
11987 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
11988 }
11989 }
11990
11991 /* See if this can be simplified into a rotate first. If that
11992 is unsuccessful continue in the association code. */
11993 goto bit_rotate;
11994
11995 case BIT_XOR_EXPR:
11996 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
11997 if (TREE_CODE (arg0) == BIT_AND_EXPR
11998 && INTEGRAL_TYPE_P (type)
11999 && integer_onep (TREE_OPERAND (arg0, 1))
12000 && integer_onep (arg1))
12001 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
12002 build_zero_cst (TREE_TYPE (arg0)));
12003
12004 /* See if this can be simplified into a rotate first. If that
12005 is unsuccessful continue in the association code. */
12006 goto bit_rotate;
12007
12008 case BIT_AND_EXPR:
12009 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
12010 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12011 && INTEGRAL_TYPE_P (type)
12012 && integer_onep (TREE_OPERAND (arg0, 1))
12013 && integer_onep (arg1))
12014 {
12015 tree tem2;
12016 tem = TREE_OPERAND (arg0, 0);
12017 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg: arg1);
12018 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
12019 tem, tem2);
12020 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
12021 build_zero_cst (TREE_TYPE (tem)));
12022 }
12023 /* Fold ~X & 1 as (X & 1) == 0. */
12024 if (TREE_CODE (arg0) == BIT_NOT_EXPR
12025 && INTEGRAL_TYPE_P (type)
12026 && integer_onep (arg1))
12027 {
12028 tree tem2;
12029 tem = TREE_OPERAND (arg0, 0);
12030 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg: arg1);
12031 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
12032 tem, tem2);
12033 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
12034 build_zero_cst (TREE_TYPE (tem)));
12035 }
12036 /* Fold !X & 1 as X == 0. */
12037 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12038 && integer_onep (arg1))
12039 {
12040 tem = TREE_OPERAND (arg0, 0);
12041 return fold_build2_loc (loc, EQ_EXPR, type, tem,
12042 build_zero_cst (TREE_TYPE (tem)));
12043 }
12044
12045 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
12046 multiple of 1 << CST. */
12047 if (TREE_CODE (arg1) == INTEGER_CST)
12048 {
12049 wi::tree_to_wide_ref cst1 = wi::to_wide (t: arg1);
12050 wide_int ncst1 = -cst1;
12051 if ((cst1 & ncst1) == ncst1
12052 && multiple_of_p (type, arg0,
12053 wide_int_to_tree (TREE_TYPE (arg1), cst: ncst1)))
12054 return fold_convert_loc (loc, type, arg: arg0);
12055 }
12056
12057 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
12058 bits from CST2. */
12059 if (TREE_CODE (arg1) == INTEGER_CST
12060 && TREE_CODE (arg0) == MULT_EXPR
12061 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12062 {
12063 wi::tree_to_wide_ref warg1 = wi::to_wide (t: arg1);
12064 wide_int masked
12065 = mask_with_tz (type, x: warg1, y: wi::to_wide (TREE_OPERAND (arg0, 1)));
12066
12067 if (masked == 0)
12068 return omit_two_operands_loc (loc, type, result: build_zero_cst (type),
12069 omitted1: arg0, omitted2: arg1);
12070 else if (masked != warg1)
12071 {
12072 /* Avoid the transform if arg1 is a mask of some
12073 mode which allows further optimizations. */
12074 int pop = wi::popcount (warg1);
12075 if (!(pop >= BITS_PER_UNIT
12076 && pow2p_hwi (x: pop)
12077 && wi::mask (width: pop, negate_p: false, precision: warg1.get_precision ()) == warg1))
12078 return fold_build2_loc (loc, code, type, op0,
12079 wide_int_to_tree (type, cst: masked));
12080 }
12081 }
12082
12083 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
12084 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
12085 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
12086 {
12087 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
12088
12089 wide_int mask = wide_int::from (x: wi::to_wide (t: arg1), precision: prec, sgn: UNSIGNED);
12090 if (mask == -1)
12091 return
12092 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
12093 }
12094
12095 goto associate;
12096
12097 case RDIV_EXPR:
12098 /* Don't touch a floating-point divide by zero unless the mode
12099 of the constant can represent infinity. */
12100 if (TREE_CODE (arg1) == REAL_CST
12101 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
12102 && real_zerop (arg1))
12103 return NULL_TREE;
12104
12105 /* (-A) / (-B) -> A / B */
12106 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (t: arg1))
12107 return fold_build2_loc (loc, RDIV_EXPR, type,
12108 TREE_OPERAND (arg0, 0),
12109 negate_expr (t: arg1));
12110 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (t: arg0))
12111 return fold_build2_loc (loc, RDIV_EXPR, type,
12112 negate_expr (t: arg0),
12113 TREE_OPERAND (arg1, 0));
12114 return NULL_TREE;
12115
12116 case TRUNC_DIV_EXPR:
12117 /* Fall through */
12118
12119 case FLOOR_DIV_EXPR:
12120 /* Simplify A / (B << N) where A and B are positive and B is
12121 a power of 2, to A >> (N + log2(B)). */
12122 strict_overflow_p = false;
12123 if (TREE_CODE (arg1) == LSHIFT_EXPR
12124 && (TYPE_UNSIGNED (type)
12125 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
12126 {
12127 tree sval = TREE_OPERAND (arg1, 0);
12128 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
12129 {
12130 tree sh_cnt = TREE_OPERAND (arg1, 1);
12131 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
12132 wi::exact_log2 (wi::to_wide (t: sval)));
12133
12134 if (strict_overflow_p)
12135 fold_overflow_warning (gmsgid: ("assuming signed overflow does not "
12136 "occur when simplifying A / (B << N)"),
12137 wc: WARN_STRICT_OVERFLOW_MISC);
12138
12139 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
12140 sh_cnt, pow2);
12141 return fold_build2_loc (loc, RSHIFT_EXPR, type,
12142 fold_convert_loc (loc, type, arg: arg0), sh_cnt);
12143 }
12144 }
12145
12146 /* Fall through */
12147
12148 case ROUND_DIV_EXPR:
12149 case CEIL_DIV_EXPR:
12150 case EXACT_DIV_EXPR:
12151 if (integer_zerop (arg1))
12152 return NULL_TREE;
12153
12154 /* Convert -A / -B to A / B when the type is signed and overflow is
12155 undefined. */
12156 if ((!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12157 && TREE_CODE (op0) == NEGATE_EXPR
12158 && negate_expr_p (t: op1))
12159 {
12160 if (ANY_INTEGRAL_TYPE_P (type))
12161 fold_overflow_warning (gmsgid: ("assuming signed overflow does not occur "
12162 "when distributing negation across "
12163 "division"),
12164 wc: WARN_STRICT_OVERFLOW_MISC);
12165 return fold_build2_loc (loc, code, type,
12166 fold_convert_loc (loc, type,
12167 TREE_OPERAND (arg0, 0)),
12168 negate_expr (t: op1));
12169 }
12170 if ((!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12171 && TREE_CODE (arg1) == NEGATE_EXPR
12172 && negate_expr_p (t: op0))
12173 {
12174 if (ANY_INTEGRAL_TYPE_P (type))
12175 fold_overflow_warning (gmsgid: ("assuming signed overflow does not occur "
12176 "when distributing negation across "
12177 "division"),
12178 wc: WARN_STRICT_OVERFLOW_MISC);
12179 return fold_build2_loc (loc, code, type,
12180 negate_expr (t: op0),
12181 fold_convert_loc (loc, type,
12182 TREE_OPERAND (arg1, 0)));
12183 }
12184
12185 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
12186 operation, EXACT_DIV_EXPR.
12187
12188 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
12189 At one time others generated faster code, it's not clear if they do
12190 after the last round to changes to the DIV code in expmed.cc. */
12191 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
12192 && multiple_of_p (type, arg0, arg1))
12193 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
12194 fold_convert (type, arg0),
12195 fold_convert (type, arg1));
12196
12197 strict_overflow_p = false;
12198 if (TREE_CODE (arg1) == INTEGER_CST
12199 && (tem = extract_muldiv (t: op0, c: arg1, code, NULL_TREE,
12200 strict_overflow_p: &strict_overflow_p)) != 0)
12201 {
12202 if (strict_overflow_p)
12203 fold_overflow_warning (gmsgid: ("assuming signed overflow does not occur "
12204 "when simplifying division"),
12205 wc: WARN_STRICT_OVERFLOW_MISC);
12206 return fold_convert_loc (loc, type, arg: tem);
12207 }
12208
12209 return NULL_TREE;
12210
12211 case CEIL_MOD_EXPR:
12212 case FLOOR_MOD_EXPR:
12213 case ROUND_MOD_EXPR:
12214 case TRUNC_MOD_EXPR:
12215 strict_overflow_p = false;
12216 if (TREE_CODE (arg1) == INTEGER_CST
12217 && (tem = extract_muldiv (t: op0, c: arg1, code, NULL_TREE,
12218 strict_overflow_p: &strict_overflow_p)) != 0)
12219 {
12220 if (strict_overflow_p)
12221 fold_overflow_warning (gmsgid: ("assuming signed overflow does not occur "
12222 "when simplifying modulus"),
12223 wc: WARN_STRICT_OVERFLOW_MISC);
12224 return fold_convert_loc (loc, type, arg: tem);
12225 }
12226
12227 return NULL_TREE;
12228
12229 case LROTATE_EXPR:
12230 case RROTATE_EXPR:
12231 case RSHIFT_EXPR:
12232 case LSHIFT_EXPR:
12233 /* Since negative shift count is not well-defined,
12234 don't try to compute it in the compiler. */
12235 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
12236 return NULL_TREE;
12237
12238 prec = element_precision (type);
12239
12240 /* If we have a rotate of a bit operation with the rotate count and
12241 the second operand of the bit operation both constant,
12242 permute the two operations. */
12243 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
12244 && (TREE_CODE (arg0) == BIT_AND_EXPR
12245 || TREE_CODE (arg0) == BIT_IOR_EXPR
12246 || TREE_CODE (arg0) == BIT_XOR_EXPR)
12247 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12248 {
12249 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
12250 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
12251 return fold_build2_loc (loc, TREE_CODE (arg0), type,
12252 fold_build2_loc (loc, code, type,
12253 arg00, arg1),
12254 fold_build2_loc (loc, code, type,
12255 arg01, arg1));
12256 }
12257
12258 /* Two consecutive rotates adding up to the some integer
12259 multiple of the precision of the type can be ignored. */
12260 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
12261 && TREE_CODE (arg0) == RROTATE_EXPR
12262 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12263 && wi::umod_trunc (x: wi::to_wide (t: arg1)
12264 + wi::to_wide (TREE_OPERAND (arg0, 1)),
12265 y: prec) == 0)
12266 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
12267
12268 return NULL_TREE;
12269
12270 case MIN_EXPR:
12271 case MAX_EXPR:
12272 goto associate;
12273
12274 case TRUTH_ANDIF_EXPR:
12275 /* Note that the operands of this must be ints
12276 and their values must be 0 or 1.
12277 ("true" is a fixed value perhaps depending on the language.) */
12278 /* If first arg is constant zero, return it. */
12279 if (integer_zerop (arg0))
12280 return fold_convert_loc (loc, type, arg: arg0);
12281 /* FALLTHRU */
12282 case TRUTH_AND_EXPR:
12283 /* If either arg is constant true, drop it. */
12284 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12285 return non_lvalue_loc (loc, x: fold_convert_loc (loc, type, arg: arg1));
12286 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
12287 /* Preserve sequence points. */
12288 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12289 return non_lvalue_loc (loc, x: fold_convert_loc (loc, type, arg: arg0));
12290 /* If second arg is constant zero, result is zero, but first arg
12291 must be evaluated. */
12292 if (integer_zerop (arg1))
12293 return omit_one_operand_loc (loc, type, result: arg1, omitted: arg0);
12294 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
12295 case will be handled here. */
12296 if (integer_zerop (arg0))
12297 return omit_one_operand_loc (loc, type, result: arg0, omitted: arg1);
12298
12299 /* !X && X is always false. */
12300 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12301 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, flags: 0))
12302 return omit_one_operand_loc (loc, type, integer_zero_node, omitted: arg1);
12303 /* X && !X is always false. */
12304 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12305 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), flags: 0))
12306 return omit_one_operand_loc (loc, type, integer_zero_node, omitted: arg0);
12307
12308 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
12309 means A >= Y && A != MAX, but in this case we know that
12310 A < X <= MAX. */
12311
12312 if (!TREE_SIDE_EFFECTS (arg0)
12313 && !TREE_SIDE_EFFECTS (arg1))
12314 {
12315 tem = fold_to_nonsharp_ineq_using_bound (loc, ineq: arg0, bound: arg1);
12316 if (tem && !operand_equal_p (arg0: tem, arg1: arg0, flags: 0))
12317 return fold_convert (type,
12318 fold_build2_loc (loc, code, TREE_TYPE (arg1),
12319 tem, arg1));
12320
12321 tem = fold_to_nonsharp_ineq_using_bound (loc, ineq: arg1, bound: arg0);
12322 if (tem && !operand_equal_p (arg0: tem, arg1, flags: 0))
12323 return fold_convert (type,
12324 fold_build2_loc (loc, code, TREE_TYPE (arg0),
12325 arg0, tem));
12326 }
12327
12328 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
12329 != NULL_TREE)
12330 return tem;
12331
12332 return NULL_TREE;
12333
12334 case TRUTH_ORIF_EXPR:
12335 /* Note that the operands of this must be ints
12336 and their values must be 0 or true.
12337 ("true" is a fixed value perhaps depending on the language.) */
12338 /* If first arg is constant true, return it. */
12339 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12340 return fold_convert_loc (loc, type, arg: arg0);
12341 /* FALLTHRU */
12342 case TRUTH_OR_EXPR:
12343 /* If either arg is constant zero, drop it. */
12344 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
12345 return non_lvalue_loc (loc, x: fold_convert_loc (loc, type, arg: arg1));
12346 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
12347 /* Preserve sequence points. */
12348 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12349 return non_lvalue_loc (loc, x: fold_convert_loc (loc, type, arg: arg0));
12350 /* If second arg is constant true, result is true, but we must
12351 evaluate first arg. */
12352 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
12353 return omit_one_operand_loc (loc, type, result: arg1, omitted: arg0);
12354 /* Likewise for first arg, but note this only occurs here for
12355 TRUTH_OR_EXPR. */
12356 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12357 return omit_one_operand_loc (loc, type, result: arg0, omitted: arg1);
12358
12359 /* !X || X is always true. */
12360 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12361 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, flags: 0))
12362 return omit_one_operand_loc (loc, type, integer_one_node, omitted: arg1);
12363 /* X || !X is always true. */
12364 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12365 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), flags: 0))
12366 return omit_one_operand_loc (loc, type, integer_one_node, omitted: arg0);
12367
12368 /* (X && !Y) || (!X && Y) is X ^ Y */
12369 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
12370 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
12371 {
12372 tree a0, a1, l0, l1, n0, n1;
12373
12374 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
12375 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
12376
12377 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
12378 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
12379
12380 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
12381 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
12382
12383 if ((operand_equal_p (arg0: n0, arg1: a0, flags: 0)
12384 && operand_equal_p (arg0: n1, arg1: a1, flags: 0))
12385 || (operand_equal_p (arg0: n0, arg1: a1, flags: 0)
12386 && operand_equal_p (arg0: n1, arg1: a0, flags: 0)))
12387 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
12388 }
12389
12390 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
12391 != NULL_TREE)
12392 return tem;
12393
12394 return NULL_TREE;
12395
12396 case TRUTH_XOR_EXPR:
12397 /* If the second arg is constant zero, drop it. */
12398 if (integer_zerop (arg1))
12399 return non_lvalue_loc (loc, x: fold_convert_loc (loc, type, arg: arg0));
12400 /* If the second arg is constant true, this is a logical inversion. */
12401 if (integer_onep (arg1))
12402 {
12403 tem = invert_truthvalue_loc (loc, arg: arg0);
12404 return non_lvalue_loc (loc, x: fold_convert_loc (loc, type, arg: tem));
12405 }
12406 /* Identical arguments cancel to zero. */
12407 if (operand_equal_p (arg0, arg1, flags: 0))
12408 return omit_one_operand_loc (loc, type, integer_zero_node, omitted: arg0);
12409
12410 /* !X ^ X is always true. */
12411 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12412 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, flags: 0))
12413 return omit_one_operand_loc (loc, type, integer_one_node, omitted: arg1);
12414
12415 /* X ^ !X is always true. */
12416 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12417 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), flags: 0))
12418 return omit_one_operand_loc (loc, type, integer_one_node, omitted: arg0);
12419
12420 return NULL_TREE;
12421
12422 case EQ_EXPR:
12423 case NE_EXPR:
12424 STRIP_NOPS (arg0);
12425 STRIP_NOPS (arg1);
12426
12427 tem = fold_comparison (loc, code, type, op0, op1);
12428 if (tem != NULL_TREE)
12429 return tem;
12430
12431 /* bool_var != 1 becomes !bool_var. */
12432 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12433 && code == NE_EXPR)
12434 return fold_convert_loc (loc, type,
12435 arg: fold_build1_loc (loc, TRUTH_NOT_EXPR,
12436 TREE_TYPE (arg0), arg0));
12437
12438 /* bool_var == 0 becomes !bool_var. */
12439 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12440 && code == EQ_EXPR)
12441 return fold_convert_loc (loc, type,
12442 arg: fold_build1_loc (loc, TRUTH_NOT_EXPR,
12443 TREE_TYPE (arg0), arg0));
12444
12445 /* !exp != 0 becomes !exp */
12446 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
12447 && code == NE_EXPR)
12448 return non_lvalue_loc (loc, x: fold_convert_loc (loc, type, arg: arg0));
12449
12450 /* If this is an EQ or NE comparison with zero and ARG0 is
12451 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
12452 two operations, but the latter can be done in one less insn
12453 on machines that have only two-operand insns or on which a
12454 constant cannot be the first operand. */
12455 if (TREE_CODE (arg0) == BIT_AND_EXPR
12456 && integer_zerop (arg1))
12457 {
12458 tree arg00 = TREE_OPERAND (arg0, 0);
12459 tree arg01 = TREE_OPERAND (arg0, 1);
12460 if (TREE_CODE (arg00) == LSHIFT_EXPR
12461 && integer_onep (TREE_OPERAND (arg00, 0)))
12462 {
12463 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
12464 arg01, TREE_OPERAND (arg00, 1));
12465 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12466 build_one_cst (TREE_TYPE (arg0)));
12467 return fold_build2_loc (loc, code, type,
12468 fold_convert_loc (loc, TREE_TYPE (arg1),
12469 arg: tem), arg1);
12470 }
12471 else if (TREE_CODE (arg01) == LSHIFT_EXPR
12472 && integer_onep (TREE_OPERAND (arg01, 0)))
12473 {
12474 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
12475 arg00, TREE_OPERAND (arg01, 1));
12476 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12477 build_one_cst (TREE_TYPE (arg0)));
12478 return fold_build2_loc (loc, code, type,
12479 fold_convert_loc (loc, TREE_TYPE (arg1),
12480 arg: tem), arg1);
12481 }
12482 }
12483
12484 /* If this is a comparison of a field, we may be able to simplify it. */
12485 if ((TREE_CODE (arg0) == COMPONENT_REF
12486 || TREE_CODE (arg0) == BIT_FIELD_REF)
12487 /* Handle the constant case even without -O
12488 to make sure the warnings are given. */
12489 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
12490 {
12491 t1 = optimize_bit_field_compare (loc, code, compare_type: type, lhs: arg0, rhs: arg1);
12492 if (t1)
12493 return t1;
12494 }
12495
12496 /* Optimize comparisons of strlen vs zero to a compare of the
12497 first character of the string vs zero. To wit,
12498 strlen(ptr) == 0 => *ptr == 0
12499 strlen(ptr) != 0 => *ptr != 0
12500 Other cases should reduce to one of these two (or a constant)
12501 due to the return value of strlen being unsigned. */
12502 if (TREE_CODE (arg0) == CALL_EXPR && integer_zerop (arg1))
12503 {
12504 tree fndecl = get_callee_fndecl (arg0);
12505
12506 if (fndecl
12507 && fndecl_built_in_p (node: fndecl, name1: BUILT_IN_STRLEN)
12508 && call_expr_nargs (arg0) == 1
12509 && (TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0)))
12510 == POINTER_TYPE))
12511 {
12512 tree ptrtype
12513 = build_pointer_type (build_qualified_type (char_type_node,
12514 TYPE_QUAL_CONST));
12515 tree ptr = fold_convert_loc (loc, type: ptrtype,
12516 CALL_EXPR_ARG (arg0, 0));
12517 tree iref = build_fold_indirect_ref_loc (loc, ptr);
12518 return fold_build2_loc (loc, code, type, iref,
12519 build_int_cst (TREE_TYPE (iref), 0));
12520 }
12521 }
12522
12523 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
12524 of X. Similarly fold (X >> C) == 0 into X >= 0. */
12525 if (TREE_CODE (arg0) == RSHIFT_EXPR
12526 && integer_zerop (arg1)
12527 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12528 {
12529 tree arg00 = TREE_OPERAND (arg0, 0);
12530 tree arg01 = TREE_OPERAND (arg0, 1);
12531 tree itype = TREE_TYPE (arg00);
12532 if (wi::to_wide (t: arg01) == element_precision (itype) - 1)
12533 {
12534 if (TYPE_UNSIGNED (itype))
12535 {
12536 itype = signed_type_for (itype);
12537 arg00 = fold_convert_loc (loc, type: itype, arg: arg00);
12538 }
12539 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
12540 type, arg00, build_zero_cst (itype));
12541 }
12542 }
12543
12544 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
12545 (X & C) == 0 when C is a single bit. */
12546 if (TREE_CODE (arg0) == BIT_AND_EXPR
12547 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
12548 && integer_zerop (arg1)
12549 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12550 {
12551 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12552 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
12553 TREE_OPERAND (arg0, 1));
12554 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
12555 type, tem,
12556 fold_convert_loc (loc, TREE_TYPE (arg0),
12557 arg: arg1));
12558 }
12559
12560 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
12561 constant C is a power of two, i.e. a single bit. */
12562 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12563 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12564 && integer_zerop (arg1)
12565 && integer_pow2p (TREE_OPERAND (arg0, 1))
12566 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12567 TREE_OPERAND (arg0, 1), flags: OEP_ONLY_CONST))
12568 {
12569 tree arg00 = TREE_OPERAND (arg0, 0);
12570 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12571 arg00, build_int_cst (TREE_TYPE (arg00), 0));
12572 }
12573
12574 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
12575 when is C is a power of two, i.e. a single bit. */
12576 if (TREE_CODE (arg0) == BIT_AND_EXPR
12577 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
12578 && integer_zerop (arg1)
12579 && integer_pow2p (TREE_OPERAND (arg0, 1))
12580 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12581 TREE_OPERAND (arg0, 1), flags: OEP_ONLY_CONST))
12582 {
12583 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12584 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
12585 arg000, TREE_OPERAND (arg0, 1));
12586 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12587 tem, build_int_cst (TREE_TYPE (tem), 0));
12588 }
12589
12590 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12591 && TREE_CODE (arg1) == BIT_XOR_EXPR)
12592 {
12593 tree arg00 = TREE_OPERAND (arg0, 0);
12594 tree arg01 = TREE_OPERAND (arg0, 1);
12595 tree arg10 = TREE_OPERAND (arg1, 0);
12596 tree arg11 = TREE_OPERAND (arg1, 1);
12597 tree itype = TREE_TYPE (arg0);
12598
12599 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
12600 operand_equal_p guarantees no side-effects so we don't need
12601 to use omit_one_operand on Z. */
12602 if (operand_equal_p (arg0: arg01, arg1: arg11, flags: 0))
12603 return fold_build2_loc (loc, code, type, arg00,
12604 fold_convert_loc (loc, TREE_TYPE (arg00),
12605 arg: arg10));
12606 if (operand_equal_p (arg0: arg01, arg1: arg10, flags: 0))
12607 return fold_build2_loc (loc, code, type, arg00,
12608 fold_convert_loc (loc, TREE_TYPE (arg00),
12609 arg: arg11));
12610 if (operand_equal_p (arg0: arg00, arg1: arg11, flags: 0))
12611 return fold_build2_loc (loc, code, type, arg01,
12612 fold_convert_loc (loc, TREE_TYPE (arg01),
12613 arg: arg10));
12614 if (operand_equal_p (arg0: arg00, arg1: arg10, flags: 0))
12615 return fold_build2_loc (loc, code, type, arg01,
12616 fold_convert_loc (loc, TREE_TYPE (arg01),
12617 arg: arg11));
12618
12619 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
12620 if (TREE_CODE (arg01) == INTEGER_CST
12621 && TREE_CODE (arg11) == INTEGER_CST)
12622 {
12623 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
12624 fold_convert_loc (loc, type: itype, arg: arg11));
12625 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
12626 return fold_build2_loc (loc, code, type, tem,
12627 fold_convert_loc (loc, type: itype, arg: arg10));
12628 }
12629 }
12630
12631 /* Attempt to simplify equality/inequality comparisons of complex
12632 values. Only lower the comparison if the result is known or
12633 can be simplified to a single scalar comparison. */
12634 if ((TREE_CODE (arg0) == COMPLEX_EXPR
12635 || TREE_CODE (arg0) == COMPLEX_CST)
12636 && (TREE_CODE (arg1) == COMPLEX_EXPR
12637 || TREE_CODE (arg1) == COMPLEX_CST))
12638 {
12639 tree real0, imag0, real1, imag1;
12640 tree rcond, icond;
12641
12642 if (TREE_CODE (arg0) == COMPLEX_EXPR)
12643 {
12644 real0 = TREE_OPERAND (arg0, 0);
12645 imag0 = TREE_OPERAND (arg0, 1);
12646 }
12647 else
12648 {
12649 real0 = TREE_REALPART (arg0);
12650 imag0 = TREE_IMAGPART (arg0);
12651 }
12652
12653 if (TREE_CODE (arg1) == COMPLEX_EXPR)
12654 {
12655 real1 = TREE_OPERAND (arg1, 0);
12656 imag1 = TREE_OPERAND (arg1, 1);
12657 }
12658 else
12659 {
12660 real1 = TREE_REALPART (arg1);
12661 imag1 = TREE_IMAGPART (arg1);
12662 }
12663
12664 rcond = fold_binary_loc (loc, code, type, op0: real0, op1: real1);
12665 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
12666 {
12667 if (integer_zerop (rcond))
12668 {
12669 if (code == EQ_EXPR)
12670 return omit_two_operands_loc (loc, type, boolean_false_node,
12671 omitted1: imag0, omitted2: imag1);
12672 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
12673 }
12674 else
12675 {
12676 if (code == NE_EXPR)
12677 return omit_two_operands_loc (loc, type, boolean_true_node,
12678 omitted1: imag0, omitted2: imag1);
12679 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
12680 }
12681 }
12682
12683 icond = fold_binary_loc (loc, code, type, op0: imag0, op1: imag1);
12684 if (icond && TREE_CODE (icond) == INTEGER_CST)
12685 {
12686 if (integer_zerop (icond))
12687 {
12688 if (code == EQ_EXPR)
12689 return omit_two_operands_loc (loc, type, boolean_false_node,
12690 omitted1: real0, omitted2: real1);
12691 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
12692 }
12693 else
12694 {
12695 if (code == NE_EXPR)
12696 return omit_two_operands_loc (loc, type, boolean_true_node,
12697 omitted1: real0, omitted2: real1);
12698 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
12699 }
12700 }
12701 }
12702
12703 return NULL_TREE;
12704
12705 case LT_EXPR:
12706 case GT_EXPR:
12707 case LE_EXPR:
12708 case GE_EXPR:
12709 tem = fold_comparison (loc, code, type, op0, op1);
12710 if (tem != NULL_TREE)
12711 return tem;
12712
12713 /* Transform comparisons of the form X +- C CMP X. */
12714 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
12715 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, flags: 0)
12716 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
12717 && !HONOR_SNANS (arg0))
12718 {
12719 tree arg01 = TREE_OPERAND (arg0, 1);
12720 enum tree_code code0 = TREE_CODE (arg0);
12721 int is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
12722
12723 /* (X - c) > X becomes false. */
12724 if (code == GT_EXPR
12725 && ((code0 == MINUS_EXPR && is_positive >= 0)
12726 || (code0 == PLUS_EXPR && is_positive <= 0)))
12727 return constant_boolean_node (value: 0, type);
12728
12729 /* Likewise (X + c) < X becomes false. */
12730 if (code == LT_EXPR
12731 && ((code0 == PLUS_EXPR && is_positive >= 0)
12732 || (code0 == MINUS_EXPR && is_positive <= 0)))
12733 return constant_boolean_node (value: 0, type);
12734
12735 /* Convert (X - c) <= X to true. */
12736 if (!HONOR_NANS (arg1)
12737 && code == LE_EXPR
12738 && ((code0 == MINUS_EXPR && is_positive >= 0)
12739 || (code0 == PLUS_EXPR && is_positive <= 0)))
12740 return constant_boolean_node (value: 1, type);
12741
12742 /* Convert (X + c) >= X to true. */
12743 if (!HONOR_NANS (arg1)
12744 && code == GE_EXPR
12745 && ((code0 == PLUS_EXPR && is_positive >= 0)
12746 || (code0 == MINUS_EXPR && is_positive <= 0)))
12747 return constant_boolean_node (value: 1, type);
12748 }
12749
12750 /* If we are comparing an ABS_EXPR with a constant, we can
12751 convert all the cases into explicit comparisons, but they may
12752 well not be faster than doing the ABS and one comparison.
12753 But ABS (X) <= C is a range comparison, which becomes a subtraction
12754 and a comparison, and is probably faster. */
12755 if (code == LE_EXPR
12756 && TREE_CODE (arg1) == INTEGER_CST
12757 && TREE_CODE (arg0) == ABS_EXPR
12758 && ! TREE_SIDE_EFFECTS (arg0)
12759 && (tem = negate_expr (t: arg1)) != 0
12760 && TREE_CODE (tem) == INTEGER_CST
12761 && !TREE_OVERFLOW (tem))
12762 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
12763 build2 (GE_EXPR, type,
12764 TREE_OPERAND (arg0, 0), tem),
12765 build2 (LE_EXPR, type,
12766 TREE_OPERAND (arg0, 0), arg1));
12767
12768 /* Convert ABS_EXPR<x> >= 0 to true. */
12769 strict_overflow_p = false;
12770 if (code == GE_EXPR
12771 && (integer_zerop (arg1)
12772 || (! HONOR_NANS (arg0)
12773 && real_zerop (arg1)))
12774 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
12775 {
12776 if (strict_overflow_p)
12777 fold_overflow_warning (gmsgid: ("assuming signed overflow does not occur "
12778 "when simplifying comparison of "
12779 "absolute value and zero"),
12780 wc: WARN_STRICT_OVERFLOW_CONDITIONAL);
12781 return omit_one_operand_loc (loc, type,
12782 result: constant_boolean_node (value: true, type),
12783 omitted: arg0);
12784 }
12785
12786 /* Convert ABS_EXPR<x> < 0 to false. */
12787 strict_overflow_p = false;
12788 if (code == LT_EXPR
12789 && (integer_zerop (arg1) || real_zerop (arg1))
12790 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
12791 {
12792 if (strict_overflow_p)
12793 fold_overflow_warning (gmsgid: ("assuming signed overflow does not occur "
12794 "when simplifying comparison of "
12795 "absolute value and zero"),
12796 wc: WARN_STRICT_OVERFLOW_CONDITIONAL);
12797 return omit_one_operand_loc (loc, type,
12798 result: constant_boolean_node (value: false, type),
12799 omitted: arg0);
12800 }
12801
12802 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
12803 and similarly for >= into !=. */
12804 if ((code == LT_EXPR || code == GE_EXPR)
12805 && TYPE_UNSIGNED (TREE_TYPE (arg0))
12806 && TREE_CODE (arg1) == LSHIFT_EXPR
12807 && integer_onep (TREE_OPERAND (arg1, 0)))
12808 return build2_loc (loc, code: code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
12809 arg0: build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
12810 TREE_OPERAND (arg1, 1)),
12811 arg1: build_zero_cst (TREE_TYPE (arg0)));
12812
12813 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
12814 otherwise Y might be >= # of bits in X's type and thus e.g.
12815 (unsigned char) (1 << Y) for Y 15 might be 0.
12816 If the cast is widening, then 1 << Y should have unsigned type,
12817 otherwise if Y is number of bits in the signed shift type minus 1,
12818 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
12819 31 might be 0xffffffff80000000. */
12820 if ((code == LT_EXPR || code == GE_EXPR)
12821 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
12822 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (arg0)))
12823 && TYPE_UNSIGNED (TREE_TYPE (arg0))
12824 && CONVERT_EXPR_P (arg1)
12825 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
12826 && (element_precision (TREE_TYPE (arg1))
12827 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
12828 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
12829 || (element_precision (TREE_TYPE (arg1))
12830 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
12831 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
12832 {
12833 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
12834 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
12835 return build2_loc (loc, code: code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
12836 arg0: fold_convert_loc (loc, TREE_TYPE (arg0), arg: tem),
12837 arg1: build_zero_cst (TREE_TYPE (arg0)));
12838 }
12839
12840 return NULL_TREE;
12841
12842 case UNORDERED_EXPR:
12843 case ORDERED_EXPR:
12844 case UNLT_EXPR:
12845 case UNLE_EXPR:
12846 case UNGT_EXPR:
12847 case UNGE_EXPR:
12848 case UNEQ_EXPR:
12849 case LTGT_EXPR:
12850 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
12851 {
12852 tree targ0 = strip_float_extensions (arg0);
12853 tree targ1 = strip_float_extensions (arg1);
12854 tree newtype = TREE_TYPE (targ0);
12855
12856 if (element_precision (TREE_TYPE (targ1)) > element_precision (newtype))
12857 newtype = TREE_TYPE (targ1);
12858
12859 if (element_precision (newtype) < element_precision (TREE_TYPE (arg0)))
12860 return fold_build2_loc (loc, code, type,
12861 fold_convert_loc (loc, type: newtype, arg: targ0),
12862 fold_convert_loc (loc, type: newtype, arg: targ1));
12863 }
12864
12865 return NULL_TREE;
12866
12867 case COMPOUND_EXPR:
12868 /* When pedantic, a compound expression can be neither an lvalue
12869 nor an integer constant expression. */
12870 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
12871 return NULL_TREE;
12872 /* Don't let (0, 0) be null pointer constant. */
12873 tem = integer_zerop (arg1) ? build1_loc (loc, code: NOP_EXPR, type, arg1)
12874 : fold_convert_loc (loc, type, arg: arg1);
12875 return tem;
12876
12877 default:
12878 return NULL_TREE;
12879 } /* switch (code) */
12880}
12881
12882/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
12883 ((A & N) + B) & M -> (A + B) & M
12884 Similarly if (N & M) == 0,
12885 ((A | N) + B) & M -> (A + B) & M
12886 and for - instead of + (or unary - instead of +)
12887 and/or ^ instead of |.
12888 If B is constant and (B & M) == 0, fold into A & M.
12889
12890 This function is a helper for match.pd patterns. Return non-NULL
12891 type in which the simplified operation should be performed only
12892 if any optimization is possible.
12893
12894 ARG1 is M above, ARG00 is left operand of +/-, if CODE00 is BIT_*_EXPR,
12895 then ARG00{0,1} are operands of that bitop, otherwise CODE00 is ERROR_MARK.
12896 Similarly for ARG01, CODE01 and ARG01{0,1}, just for the right operand of
12897 +/-. */
12898tree
12899fold_bit_and_mask (tree type, tree arg1, enum tree_code code,
12900 tree arg00, enum tree_code code00, tree arg000, tree arg001,
12901 tree arg01, enum tree_code code01, tree arg010, tree arg011,
12902 tree *pmop)
12903{
12904 gcc_assert (TREE_CODE (arg1) == INTEGER_CST);
12905 gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR || code == NEGATE_EXPR);
12906 wi::tree_to_wide_ref cst1 = wi::to_wide (t: arg1);
12907 if (~cst1 == 0
12908 || (cst1 & (cst1 + 1)) != 0
12909 || !INTEGRAL_TYPE_P (type)
12910 || (!TYPE_OVERFLOW_WRAPS (type)
12911 && TREE_CODE (type) != INTEGER_TYPE)
12912 || (wi::max_value (type) & cst1) != cst1)
12913 return NULL_TREE;
12914
12915 enum tree_code codes[2] = { code00, code01 };
12916 tree arg0xx[4] = { arg000, arg001, arg010, arg011 };
12917 int which = 0;
12918 wide_int cst0;
12919
12920 /* Now we know that arg0 is (C + D) or (C - D) or -C and
12921 arg1 (M) is == (1LL << cst) - 1.
12922 Store C into PMOP[0] and D into PMOP[1]. */
12923 pmop[0] = arg00;
12924 pmop[1] = arg01;
12925 which = code != NEGATE_EXPR;
12926
12927 for (; which >= 0; which--)
12928 switch (codes[which])
12929 {
12930 case BIT_AND_EXPR:
12931 case BIT_IOR_EXPR:
12932 case BIT_XOR_EXPR:
12933 gcc_assert (TREE_CODE (arg0xx[2 * which + 1]) == INTEGER_CST);
12934 cst0 = wi::to_wide (t: arg0xx[2 * which + 1]) & cst1;
12935 if (codes[which] == BIT_AND_EXPR)
12936 {
12937 if (cst0 != cst1)
12938 break;
12939 }
12940 else if (cst0 != 0)
12941 break;
12942 /* If C or D is of the form (A & N) where
12943 (N & M) == M, or of the form (A | N) or
12944 (A ^ N) where (N & M) == 0, replace it with A. */
12945 pmop[which] = arg0xx[2 * which];
12946 break;
12947 case ERROR_MARK:
12948 if (TREE_CODE (pmop[which]) != INTEGER_CST)
12949 break;
12950 /* If C or D is a N where (N & M) == 0, it can be
12951 omitted (replaced with 0). */
12952 if ((code == PLUS_EXPR
12953 || (code == MINUS_EXPR && which == 0))
12954 && (cst1 & wi::to_wide (t: pmop[which])) == 0)
12955 pmop[which] = build_int_cst (type, 0);
12956 /* Similarly, with C - N where (-N & M) == 0. */
12957 if (code == MINUS_EXPR
12958 && which == 1
12959 && (cst1 & -wi::to_wide (t: pmop[which])) == 0)
12960 pmop[which] = build_int_cst (type, 0);
12961 break;
12962 default:
12963 gcc_unreachable ();
12964 }
12965
12966 /* Only build anything new if we optimized one or both arguments above. */
12967 if (pmop[0] == arg00 && pmop[1] == arg01)
12968 return NULL_TREE;
12969
12970 if (TYPE_OVERFLOW_WRAPS (type))
12971 return type;
12972 else
12973 return unsigned_type_for (type);
12974}
12975
12976/* Used by contains_label_[p1]. */
12977
12978struct contains_label_data
12979{
12980 hash_set<tree> *pset;
12981 bool inside_switch_p;
12982};
12983
12984/* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
12985 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise
12986 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */
12987
12988static tree
12989contains_label_1 (tree *tp, int *walk_subtrees, void *data)
12990{
12991 contains_label_data *d = (contains_label_data *) data;
12992 switch (TREE_CODE (*tp))
12993 {
12994 case LABEL_EXPR:
12995 return *tp;
12996
12997 case CASE_LABEL_EXPR:
12998 if (!d->inside_switch_p)
12999 return *tp;
13000 return NULL_TREE;
13001
13002 case SWITCH_EXPR:
13003 if (!d->inside_switch_p)
13004 {
13005 if (walk_tree (&SWITCH_COND (*tp), contains_label_1, data, d->pset))
13006 return *tp;
13007 d->inside_switch_p = true;
13008 if (walk_tree (&SWITCH_BODY (*tp), contains_label_1, data, d->pset))
13009 return *tp;
13010 d->inside_switch_p = false;
13011 *walk_subtrees = 0;
13012 }
13013 return NULL_TREE;
13014
13015 case GOTO_EXPR:
13016 *walk_subtrees = 0;
13017 return NULL_TREE;
13018
13019 default:
13020 return NULL_TREE;
13021 }
13022}
13023
13024/* Return whether the sub-tree ST contains a label which is accessible from
13025 outside the sub-tree. */
13026
13027static bool
13028contains_label_p (tree st)
13029{
13030 hash_set<tree> pset;
13031 contains_label_data data = { .pset: &pset, .inside_switch_p: false };
13032 return walk_tree (&st, contains_label_1, &data, &pset) != NULL_TREE;
13033}
13034
13035/* Fold a ternary expression of code CODE and type TYPE with operands
13036 OP0, OP1, and OP2. Return the folded expression if folding is
13037 successful. Otherwise, return NULL_TREE. */
13038
13039tree
13040fold_ternary_loc (location_t loc, enum tree_code code, tree type,
13041 tree op0, tree op1, tree op2)
13042{
13043 tree tem;
13044 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
13045 enum tree_code_class kind = TREE_CODE_CLASS (code);
13046
13047 gcc_assert (IS_EXPR_CODE_CLASS (kind)
13048 && TREE_CODE_LENGTH (code) == 3);
13049
13050 /* If this is a commutative operation, and OP0 is a constant, move it
13051 to OP1 to reduce the number of tests below. */
13052 if (commutative_ternary_tree_code (code)
13053 && tree_swap_operands_p (arg0: op0, arg1: op1))
13054 return fold_build3_loc (loc, code, type, op1, op0, op2);
13055
13056 tem = generic_simplify (loc, code, type, op0, op1, op2);
13057 if (tem)
13058 return tem;
13059
13060 /* Strip any conversions that don't change the mode. This is safe
13061 for every expression, except for a comparison expression because
13062 its signedness is derived from its operands. So, in the latter
13063 case, only strip conversions that don't change the signedness.
13064
13065 Note that this is done as an internal manipulation within the
13066 constant folder, in order to find the simplest representation of
13067 the arguments so that their form can be studied. In any cases,
13068 the appropriate type conversions should be put back in the tree
13069 that will get out of the constant folder. */
13070 if (op0)
13071 {
13072 arg0 = op0;
13073 STRIP_NOPS (arg0);
13074 }
13075
13076 if (op1)
13077 {
13078 arg1 = op1;
13079 STRIP_NOPS (arg1);
13080 }
13081
13082 if (op2)
13083 {
13084 arg2 = op2;
13085 STRIP_NOPS (arg2);
13086 }
13087
13088 switch (code)
13089 {
13090 case COMPONENT_REF:
13091 if (TREE_CODE (arg0) == CONSTRUCTOR
13092 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
13093 {
13094 unsigned HOST_WIDE_INT idx;
13095 tree field, value;
13096 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
13097 if (field == arg1)
13098 return value;
13099 }
13100 return NULL_TREE;
13101
13102 case COND_EXPR:
13103 case VEC_COND_EXPR:
13104 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
13105 so all simple results must be passed through pedantic_non_lvalue. */
13106 if (TREE_CODE (arg0) == INTEGER_CST)
13107 {
13108 tree unused_op = integer_zerop (arg0) ? op1 : op2;
13109 tem = integer_zerop (arg0) ? op2 : op1;
13110 /* Only optimize constant conditions when the selected branch
13111 has the same type as the COND_EXPR. This avoids optimizing
13112 away "c ? x : throw", where the throw has a void type.
13113 Avoid throwing away that operand which contains label. */
13114 if ((!TREE_SIDE_EFFECTS (unused_op)
13115 || !contains_label_p (st: unused_op))
13116 && (! VOID_TYPE_P (TREE_TYPE (tem))
13117 || VOID_TYPE_P (type)))
13118 return protected_set_expr_location_unshare (x: tem, loc);
13119 return NULL_TREE;
13120 }
13121 else if (TREE_CODE (arg0) == VECTOR_CST)
13122 {
13123 unsigned HOST_WIDE_INT nelts;
13124 if ((TREE_CODE (arg1) == VECTOR_CST
13125 || TREE_CODE (arg1) == CONSTRUCTOR)
13126 && (TREE_CODE (arg2) == VECTOR_CST
13127 || TREE_CODE (arg2) == CONSTRUCTOR)
13128 && TYPE_VECTOR_SUBPARTS (node: type).is_constant (const_value: &nelts))
13129 {
13130 vec_perm_builder sel (nelts, nelts, 1);
13131 for (unsigned int i = 0; i < nelts; i++)
13132 {
13133 tree val = VECTOR_CST_ELT (arg0, i);
13134 if (integer_all_onesp (val))
13135 sel.quick_push (obj: i);
13136 else if (integer_zerop (val))
13137 sel.quick_push (obj: nelts + i);
13138 else /* Currently unreachable. */
13139 return NULL_TREE;
13140 }
13141 vec_perm_indices indices (sel, 2, nelts);
13142 tree t = fold_vec_perm (type, arg0: arg1, arg1: arg2, sel: indices);
13143 if (t != NULL_TREE)
13144 return t;
13145 }
13146 }
13147
13148 /* If we have A op B ? A : C, we may be able to convert this to a
13149 simpler expression, depending on the operation and the values
13150 of B and C. Signed zeros prevent all of these transformations,
13151 for reasons given above each one.
13152
13153 Also try swapping the arguments and inverting the conditional. */
13154 if (COMPARISON_CLASS_P (arg0)
13155 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), arg1: op1)
13156 && !HONOR_SIGNED_ZEROS (op1))
13157 {
13158 tem = fold_cond_expr_with_comparison (loc, type, TREE_CODE (arg0),
13159 TREE_OPERAND (arg0, 0),
13160 TREE_OPERAND (arg0, 1),
13161 arg1: op1, arg2: op2);
13162 if (tem)
13163 return tem;
13164 }
13165
13166 if (COMPARISON_CLASS_P (arg0)
13167 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), arg1: op2)
13168 && !HONOR_SIGNED_ZEROS (op2))
13169 {
13170 enum tree_code comp_code = TREE_CODE (arg0);
13171 tree arg00 = TREE_OPERAND (arg0, 0);
13172 tree arg01 = TREE_OPERAND (arg0, 1);
13173 comp_code = invert_tree_comparison (code: comp_code, honor_nans: HONOR_NANS (arg00));
13174 if (comp_code != ERROR_MARK)
13175 tem = fold_cond_expr_with_comparison (loc, type, comp_code,
13176 arg00,
13177 arg01,
13178 arg1: op2, arg2: op1);
13179 if (tem)
13180 return tem;
13181 }
13182
13183 /* If the second operand is simpler than the third, swap them
13184 since that produces better jump optimization results. */
13185 if (truth_value_p (TREE_CODE (arg0))
13186 && tree_swap_operands_p (arg0: op1, arg1: op2))
13187 {
13188 location_t loc0 = expr_location_or (t: arg0, loc);
13189 /* See if this can be inverted. If it can't, possibly because
13190 it was a floating-point inequality comparison, don't do
13191 anything. */
13192 tem = fold_invert_truthvalue (loc: loc0, arg: arg0);
13193 if (tem)
13194 return fold_build3_loc (loc, code, type, tem, op2, op1);
13195 }
13196
13197 /* Convert A ? 1 : 0 to simply A. */
13198 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
13199 : (integer_onep (op1)
13200 && !VECTOR_TYPE_P (type)))
13201 && integer_zerop (op2)
13202 /* If we try to convert OP0 to our type, the
13203 call to fold will try to move the conversion inside
13204 a COND, which will recurse. In that case, the COND_EXPR
13205 is probably the best choice, so leave it alone. */
13206 && type == TREE_TYPE (arg0))
13207 return protected_set_expr_location_unshare (x: arg0, loc);
13208
13209 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
13210 over COND_EXPR in cases such as floating point comparisons. */
13211 if (integer_zerop (op1)
13212 && code == COND_EXPR
13213 && integer_onep (op2)
13214 && !VECTOR_TYPE_P (type)
13215 && truth_value_p (TREE_CODE (arg0)))
13216 return fold_convert_loc (loc, type,
13217 arg: invert_truthvalue_loc (loc, arg: arg0));
13218
13219 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
13220 if (TREE_CODE (arg0) == LT_EXPR
13221 && integer_zerop (TREE_OPERAND (arg0, 1))
13222 && integer_zerop (op2)
13223 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), val: arg1)))
13224 {
13225 /* sign_bit_p looks through both zero and sign extensions,
13226 but for this optimization only sign extensions are
13227 usable. */
13228 tree tem2 = TREE_OPERAND (arg0, 0);
13229 while (tem != tem2)
13230 {
13231 if (TREE_CODE (tem2) != NOP_EXPR
13232 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
13233 {
13234 tem = NULL_TREE;
13235 break;
13236 }
13237 tem2 = TREE_OPERAND (tem2, 0);
13238 }
13239 /* sign_bit_p only checks ARG1 bits within A's precision.
13240 If <sign bit of A> has wider type than A, bits outside
13241 of A's precision in <sign bit of A> need to be checked.
13242 If they are all 0, this optimization needs to be done
13243 in unsigned A's type, if they are all 1 in signed A's type,
13244 otherwise this can't be done. */
13245 if (tem
13246 && TYPE_PRECISION (TREE_TYPE (tem))
13247 < TYPE_PRECISION (TREE_TYPE (arg1))
13248 && TYPE_PRECISION (TREE_TYPE (tem))
13249 < TYPE_PRECISION (type))
13250 {
13251 int inner_width, outer_width;
13252 tree tem_type;
13253
13254 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
13255 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
13256 if (outer_width > TYPE_PRECISION (type))
13257 outer_width = TYPE_PRECISION (type);
13258
13259 wide_int mask = wi::shifted_mask
13260 (start: inner_width, width: outer_width - inner_width, negate_p: false,
13261 TYPE_PRECISION (TREE_TYPE (arg1)));
13262
13263 wide_int common = mask & wi::to_wide (t: arg1);
13264 if (common == mask)
13265 {
13266 tem_type = signed_type_for (TREE_TYPE (tem));
13267 tem = fold_convert_loc (loc, type: tem_type, arg: tem);
13268 }
13269 else if (common == 0)
13270 {
13271 tem_type = unsigned_type_for (TREE_TYPE (tem));
13272 tem = fold_convert_loc (loc, type: tem_type, arg: tem);
13273 }
13274 else
13275 tem = NULL;
13276 }
13277
13278 if (tem)
13279 return
13280 fold_convert_loc (loc, type,
13281 arg: fold_build2_loc (loc, BIT_AND_EXPR,
13282 TREE_TYPE (tem), tem,
13283 fold_convert_loc (loc,
13284 TREE_TYPE (tem),
13285 arg: arg1)));
13286 }
13287
13288 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
13289 already handled above. */
13290 if (TREE_CODE (arg0) == BIT_AND_EXPR
13291 && integer_onep (TREE_OPERAND (arg0, 1))
13292 && integer_zerop (op2)
13293 && integer_pow2p (arg1))
13294 {
13295 tree tem = TREE_OPERAND (arg0, 0);
13296 STRIP_NOPS (tem);
13297 if (TREE_CODE (tem) == RSHIFT_EXPR
13298 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
13299 && (unsigned HOST_WIDE_INT) tree_log2 (arg1)
13300 == tree_to_uhwi (TREE_OPERAND (tem, 1)))
13301 return fold_build2_loc (loc, BIT_AND_EXPR, type,
13302 fold_convert_loc (loc, type,
13303 TREE_OPERAND (tem, 0)),
13304 op1);
13305 }
13306
13307 /* A & N ? N : 0 is simply A & N if N is a power of two. This
13308 is probably obsolete because the first operand should be a
13309 truth value (that's why we have the two cases above), but let's
13310 leave it in until we can confirm this for all front-ends. */
13311 if (integer_zerop (op2)
13312 && TREE_CODE (arg0) == NE_EXPR
13313 && integer_zerop (TREE_OPERAND (arg0, 1))
13314 && integer_pow2p (arg1)
13315 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
13316 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
13317 arg1, flags: OEP_ONLY_CONST)
13318 /* operand_equal_p compares just value, not precision, so e.g.
13319 arg1 could be 8-bit -128 and be power of two, but BIT_AND_EXPR
13320 second operand 32-bit -128, which is not a power of two (or vice
13321 versa. */
13322 && integer_pow2p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)))
13323 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
13324
13325 /* Disable the transformations below for vectors, since
13326 fold_binary_op_with_conditional_arg may undo them immediately,
13327 yielding an infinite loop. */
13328 if (code == VEC_COND_EXPR)
13329 return NULL_TREE;
13330
13331 /* Convert A ? B : 0 into A && B if A and B are truth values. */
13332 if (integer_zerop (op2)
13333 && truth_value_p (TREE_CODE (arg0))
13334 && truth_value_p (TREE_CODE (arg1))
13335 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13336 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
13337 : TRUTH_ANDIF_EXPR,
13338 type, fold_convert_loc (loc, type, arg: arg0), op1);
13339
13340 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
13341 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
13342 && truth_value_p (TREE_CODE (arg0))
13343 && truth_value_p (TREE_CODE (arg1))
13344 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13345 {
13346 location_t loc0 = expr_location_or (t: arg0, loc);
13347 /* Only perform transformation if ARG0 is easily inverted. */
13348 tem = fold_invert_truthvalue (loc: loc0, arg: arg0);
13349 if (tem)
13350 return fold_build2_loc (loc, code == VEC_COND_EXPR
13351 ? BIT_IOR_EXPR
13352 : TRUTH_ORIF_EXPR,
13353 type, fold_convert_loc (loc, type, arg: tem),
13354 op1);
13355 }
13356
13357 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
13358 if (integer_zerop (arg1)
13359 && truth_value_p (TREE_CODE (arg0))
13360 && truth_value_p (TREE_CODE (op2))
13361 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13362 {
13363 location_t loc0 = expr_location_or (t: arg0, loc);
13364 /* Only perform transformation if ARG0 is easily inverted. */
13365 tem = fold_invert_truthvalue (loc: loc0, arg: arg0);
13366 if (tem)
13367 return fold_build2_loc (loc, code == VEC_COND_EXPR
13368 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
13369 type, fold_convert_loc (loc, type, arg: tem),
13370 op2);
13371 }
13372
13373 /* Convert A ? 1 : B into A || B if A and B are truth values. */
13374 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
13375 && truth_value_p (TREE_CODE (arg0))
13376 && truth_value_p (TREE_CODE (op2))
13377 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13378 return fold_build2_loc (loc, code == VEC_COND_EXPR
13379 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
13380 type, fold_convert_loc (loc, type, arg: arg0), op2);
13381
13382 return NULL_TREE;
13383
13384 case CALL_EXPR:
13385 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
13386 of fold_ternary on them. */
13387 gcc_unreachable ();
13388
13389 case BIT_FIELD_REF:
13390 if (TREE_CODE (arg0) == VECTOR_CST
13391 && (type == TREE_TYPE (TREE_TYPE (arg0))
13392 || (VECTOR_TYPE_P (type)
13393 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0))))
13394 && tree_fits_uhwi_p (op1)
13395 && tree_fits_uhwi_p (op2))
13396 {
13397 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
13398 unsigned HOST_WIDE_INT width
13399 = (TREE_CODE (eltype) == BOOLEAN_TYPE
13400 ? TYPE_PRECISION (eltype) : tree_to_uhwi (TYPE_SIZE (eltype)));
13401 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
13402 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
13403
13404 if (n != 0
13405 && (idx % width) == 0
13406 && (n % width) == 0
13407 && known_le ((idx + n) / width,
13408 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))))
13409 {
13410 idx = idx / width;
13411 n = n / width;
13412
13413 if (TREE_CODE (arg0) == VECTOR_CST)
13414 {
13415 if (n == 1)
13416 {
13417 tem = VECTOR_CST_ELT (arg0, idx);
13418 if (VECTOR_TYPE_P (type))
13419 tem = fold_build1 (VIEW_CONVERT_EXPR, type, tem);
13420 return tem;
13421 }
13422
13423 tree_vector_builder vals (type, n, 1);
13424 for (unsigned i = 0; i < n; ++i)
13425 vals.quick_push (VECTOR_CST_ELT (arg0, idx + i));
13426 return vals.build ();
13427 }
13428 }
13429 }
13430
13431 /* On constants we can use native encode/interpret to constant
13432 fold (nearly) all BIT_FIELD_REFs. */
13433 if (CONSTANT_CLASS_P (arg0)
13434 && can_native_interpret_type_p (type)
13435 && BITS_PER_UNIT == 8
13436 && tree_fits_uhwi_p (op1)
13437 && tree_fits_uhwi_p (op2))
13438 {
13439 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
13440 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
13441 /* Limit us to a reasonable amount of work. To relax the
13442 other limitations we need bit-shifting of the buffer
13443 and rounding up the size. */
13444 if (bitpos % BITS_PER_UNIT == 0
13445 && bitsize % BITS_PER_UNIT == 0
13446 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
13447 {
13448 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
13449 unsigned HOST_WIDE_INT len
13450 = native_encode_expr (expr: arg0, ptr: b, len: bitsize / BITS_PER_UNIT,
13451 off: bitpos / BITS_PER_UNIT);
13452 if (len > 0
13453 && len * BITS_PER_UNIT >= bitsize)
13454 {
13455 tree v = native_interpret_expr (type, ptr: b,
13456 len: bitsize / BITS_PER_UNIT);
13457 if (v)
13458 return v;
13459 }
13460 }
13461 }
13462
13463 return NULL_TREE;
13464
13465 case VEC_PERM_EXPR:
13466 /* Perform constant folding of BIT_INSERT_EXPR. */
13467 if (TREE_CODE (arg2) == VECTOR_CST
13468 && TREE_CODE (op0) == VECTOR_CST
13469 && TREE_CODE (op1) == VECTOR_CST)
13470 {
13471 /* Build a vector of integers from the tree mask. */
13472 vec_perm_builder builder;
13473 if (!tree_to_vec_perm_builder (&builder, arg2))
13474 return NULL_TREE;
13475
13476 /* Create a vec_perm_indices for the integer vector. */
13477 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (node: type);
13478 bool single_arg = (op0 == op1);
13479 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
13480 return fold_vec_perm (type, arg0: op0, arg1: op1, sel);
13481 }
13482 return NULL_TREE;
13483
13484 case BIT_INSERT_EXPR:
13485 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
13486 if (TREE_CODE (arg0) == INTEGER_CST
13487 && TREE_CODE (arg1) == INTEGER_CST)
13488 {
13489 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
13490 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
13491 wide_int tem = (wi::to_wide (t: arg0)
13492 & wi::shifted_mask (start: bitpos, width: bitsize, negate_p: true,
13493 TYPE_PRECISION (type)));
13494 wide_int tem2
13495 = wi::lshift (x: wi::zext (x: wi::to_wide (t: arg1, TYPE_PRECISION (type)),
13496 offset: bitsize), y: bitpos);
13497 return wide_int_to_tree (type, cst: wi::bit_or (x: tem, y: tem2));
13498 }
13499 else if (TREE_CODE (arg0) == VECTOR_CST
13500 && CONSTANT_CLASS_P (arg1)
13501 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
13502 TREE_TYPE (arg1)))
13503 {
13504 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
13505 unsigned HOST_WIDE_INT elsize
13506 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
13507 if (bitpos % elsize == 0)
13508 {
13509 unsigned k = bitpos / elsize;
13510 unsigned HOST_WIDE_INT nelts;
13511 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, flags: 0))
13512 return arg0;
13513 else if (VECTOR_CST_NELTS (arg0).is_constant (const_value: &nelts))
13514 {
13515 tree_vector_builder elts (type, nelts, 1);
13516 elts.quick_grow (len: nelts);
13517 for (unsigned HOST_WIDE_INT i = 0; i < nelts; ++i)
13518 elts[i] = (i == k ? arg1 : VECTOR_CST_ELT (arg0, i));
13519 return elts.build ();
13520 }
13521 }
13522 }
13523 return NULL_TREE;
13524
13525 default:
13526 return NULL_TREE;
13527 } /* switch (code) */
13528}
13529
13530/* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
13531 of an array (or vector). *CTOR_IDX if non-NULL is updated with the
13532 constructor element index of the value returned. If the element is
13533 not found NULL_TREE is returned and *CTOR_IDX is updated to
13534 the index of the element after the ACCESS_INDEX position (which
13535 may be outside of the CTOR array). */
13536
13537tree
13538get_array_ctor_element_at_index (tree ctor, offset_int access_index,
13539 unsigned *ctor_idx)
13540{
13541 tree index_type = NULL_TREE;
13542 signop index_sgn = UNSIGNED;
13543 offset_int low_bound = 0;
13544
13545 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
13546 {
13547 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
13548 if (domain_type && TYPE_MIN_VALUE (domain_type))
13549 {
13550 /* Static constructors for variably sized objects makes no sense. */
13551 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
13552 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
13553 /* ??? When it is obvious that the range is signed, treat it so. */
13554 if (TYPE_UNSIGNED (index_type)
13555 && TYPE_MAX_VALUE (domain_type)
13556 && tree_int_cst_lt (TYPE_MAX_VALUE (domain_type),
13557 TYPE_MIN_VALUE (domain_type)))
13558 {
13559 index_sgn = SIGNED;
13560 low_bound
13561 = offset_int::from (x: wi::to_wide (TYPE_MIN_VALUE (domain_type)),
13562 sgn: SIGNED);
13563 }
13564 else
13565 {
13566 index_sgn = TYPE_SIGN (index_type);
13567 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
13568 }
13569 }
13570 }
13571
13572 if (index_type)
13573 access_index = wi::ext (x: access_index, TYPE_PRECISION (index_type),
13574 sgn: index_sgn);
13575
13576 offset_int index = low_bound;
13577 if (index_type)
13578 index = wi::ext (x: index, TYPE_PRECISION (index_type), sgn: index_sgn);
13579
13580 offset_int max_index = index;
13581 unsigned cnt;
13582 tree cfield, cval;
13583 bool first_p = true;
13584
13585 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
13586 {
13587 /* Array constructor might explicitly set index, or specify a range,
13588 or leave index NULL meaning that it is next index after previous
13589 one. */
13590 if (cfield)
13591 {
13592 if (TREE_CODE (cfield) == INTEGER_CST)
13593 max_index = index
13594 = offset_int::from (x: wi::to_wide (t: cfield), sgn: index_sgn);
13595 else
13596 {
13597 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
13598 index = offset_int::from (x: wi::to_wide (TREE_OPERAND (cfield, 0)),
13599 sgn: index_sgn);
13600 max_index
13601 = offset_int::from (x: wi::to_wide (TREE_OPERAND (cfield, 1)),
13602 sgn: index_sgn);
13603 gcc_checking_assert (wi::le_p (index, max_index, index_sgn));
13604 }
13605 }
13606 else if (!first_p)
13607 {
13608 index = max_index + 1;
13609 if (index_type)
13610 index = wi::ext (x: index, TYPE_PRECISION (index_type), sgn: index_sgn);
13611 gcc_checking_assert (wi::gt_p (index, max_index, index_sgn));
13612 max_index = index;
13613 }
13614 else
13615 first_p = false;
13616
13617 /* Do we have match? */
13618 if (wi::cmp (x: access_index, y: index, sgn: index_sgn) >= 0)
13619 {
13620 if (wi::cmp (x: access_index, y: max_index, sgn: index_sgn) <= 0)
13621 {
13622 if (ctor_idx)
13623 *ctor_idx = cnt;
13624 return cval;
13625 }
13626 }
13627 else if (in_gimple_form)
13628 /* We're past the element we search for. Note during parsing
13629 the elements might not be sorted.
13630 ??? We should use a binary search and a flag on the
13631 CONSTRUCTOR as to whether elements are sorted in declaration
13632 order. */
13633 break;
13634 }
13635 if (ctor_idx)
13636 *ctor_idx = cnt;
13637 return NULL_TREE;
13638}
13639
13640/* Perform constant folding and related simplification of EXPR.
13641 The related simplifications include x*1 => x, x*0 => 0, etc.,
13642 and application of the associative law.
13643 NOP_EXPR conversions may be removed freely (as long as we
13644 are careful not to change the type of the overall expression).
13645 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
13646 but we can constant-fold them if they have constant operands. */
13647
13648#ifdef ENABLE_FOLD_CHECKING
13649# define fold(x) fold_1 (x)
13650static tree fold_1 (tree);
13651static
13652#endif
13653tree
13654fold (tree expr)
13655{
13656 const tree t = expr;
13657 enum tree_code code = TREE_CODE (t);
13658 enum tree_code_class kind = TREE_CODE_CLASS (code);
13659 tree tem;
13660 location_t loc = EXPR_LOCATION (expr);
13661
13662 /* Return right away if a constant. */
13663 if (kind == tcc_constant)
13664 return t;
13665
13666 /* CALL_EXPR-like objects with variable numbers of operands are
13667 treated specially. */
13668 if (kind == tcc_vl_exp)
13669 {
13670 if (code == CALL_EXPR)
13671 {
13672 tem = fold_call_expr (loc, expr, false);
13673 return tem ? tem : expr;
13674 }
13675 return expr;
13676 }
13677
13678 if (IS_EXPR_CODE_CLASS (kind))
13679 {
13680 tree type = TREE_TYPE (t);
13681 tree op0, op1, op2;
13682
13683 switch (TREE_CODE_LENGTH (code))
13684 {
13685 case 1:
13686 op0 = TREE_OPERAND (t, 0);
13687 tem = fold_unary_loc (loc, code, type, op0);
13688 return tem ? tem : expr;
13689 case 2:
13690 op0 = TREE_OPERAND (t, 0);
13691 op1 = TREE_OPERAND (t, 1);
13692 tem = fold_binary_loc (loc, code, type, op0, op1);
13693 return tem ? tem : expr;
13694 case 3:
13695 op0 = TREE_OPERAND (t, 0);
13696 op1 = TREE_OPERAND (t, 1);
13697 op2 = TREE_OPERAND (t, 2);
13698 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
13699 return tem ? tem : expr;
13700 default:
13701 break;
13702 }
13703 }
13704
13705 switch (code)
13706 {
13707 case ARRAY_REF:
13708 {
13709 tree op0 = TREE_OPERAND (t, 0);
13710 tree op1 = TREE_OPERAND (t, 1);
13711
13712 if (TREE_CODE (op1) == INTEGER_CST
13713 && TREE_CODE (op0) == CONSTRUCTOR
13714 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
13715 {
13716 tree val = get_array_ctor_element_at_index (ctor: op0,
13717 access_index: wi::to_offset (t: op1));
13718 if (val)
13719 return val;
13720 }
13721
13722 return t;
13723 }
13724
13725 /* Return a VECTOR_CST if possible. */
13726 case CONSTRUCTOR:
13727 {
13728 tree type = TREE_TYPE (t);
13729 if (TREE_CODE (type) != VECTOR_TYPE)
13730 return t;
13731
13732 unsigned i;
13733 tree val;
13734 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
13735 if (! CONSTANT_CLASS_P (val))
13736 return t;
13737
13738 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
13739 }
13740
13741 case CONST_DECL:
13742 return fold (DECL_INITIAL (t));
13743
13744 default:
13745 return t;
13746 } /* switch (code) */
13747}
13748
13749#ifdef ENABLE_FOLD_CHECKING
13750#undef fold
13751
13752static void fold_checksum_tree (const_tree, struct md5_ctx *,
13753 hash_table<nofree_ptr_hash<const tree_node> > *);
13754static void fold_check_failed (const_tree, const_tree);
13755void print_fold_checksum (const_tree);
13756
13757/* When --enable-checking=fold, compute a digest of expr before
13758 and after actual fold call to see if fold did not accidentally
13759 change original expr. */
13760
13761tree
13762fold (tree expr)
13763{
13764 tree ret;
13765 struct md5_ctx ctx;
13766 unsigned char checksum_before[16], checksum_after[16];
13767 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13768
13769 md5_init_ctx (&ctx);
13770 fold_checksum_tree (expr, &ctx, &ht);
13771 md5_finish_ctx (&ctx, checksum_before);
13772 ht.empty ();
13773
13774 ret = fold_1 (expr);
13775
13776 md5_init_ctx (&ctx);
13777 fold_checksum_tree (expr, &ctx, &ht);
13778 md5_finish_ctx (&ctx, checksum_after);
13779
13780 if (memcmp (checksum_before, checksum_after, 16))
13781 fold_check_failed (expr, ret);
13782
13783 return ret;
13784}
13785
13786void
13787print_fold_checksum (const_tree expr)
13788{
13789 struct md5_ctx ctx;
13790 unsigned char checksum[16], cnt;
13791 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13792
13793 md5_init_ctx (&ctx);
13794 fold_checksum_tree (expr, &ctx, &ht);
13795 md5_finish_ctx (&ctx, checksum);
13796 for (cnt = 0; cnt < 16; ++cnt)
13797 fprintf (stderr, "%02x", checksum[cnt]);
13798 putc ('\n', stderr);
13799}
13800
13801static void
13802fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
13803{
13804 internal_error ("fold check: original tree changed by fold");
13805}
13806
13807static void
13808fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
13809 hash_table<nofree_ptr_hash <const tree_node> > *ht)
13810{
13811 const tree_node **slot;
13812 enum tree_code code;
13813 union tree_node *buf;
13814 int i, len;
13815
13816 recursive_label:
13817 if (expr == NULL)
13818 return;
13819 slot = ht->find_slot (expr, INSERT);
13820 if (*slot != NULL)
13821 return;
13822 *slot = expr;
13823 code = TREE_CODE (expr);
13824 if (TREE_CODE_CLASS (code) == tcc_declaration
13825 && HAS_DECL_ASSEMBLER_NAME_P (expr))
13826 {
13827 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
13828 size_t sz = tree_size (expr);
13829 buf = XALLOCAVAR (union tree_node, sz);
13830 memcpy ((char *) buf, expr, sz);
13831 SET_DECL_ASSEMBLER_NAME ((tree) buf, NULL);
13832 buf->decl_with_vis.symtab_node = NULL;
13833 buf->base.nowarning_flag = 0;
13834 expr = (tree) buf;
13835 }
13836 else if (TREE_CODE_CLASS (code) == tcc_type
13837 && (TYPE_POINTER_TO (expr)
13838 || TYPE_REFERENCE_TO (expr)
13839 || TYPE_CACHED_VALUES_P (expr)
13840 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
13841 || TYPE_NEXT_VARIANT (expr)
13842 || TYPE_ALIAS_SET_KNOWN_P (expr)))
13843 {
13844 /* Allow these fields to be modified. */
13845 tree tmp;
13846 size_t sz = tree_size (expr);
13847 buf = XALLOCAVAR (union tree_node, sz);
13848 memcpy ((char *) buf, expr, sz);
13849 expr = tmp = (tree) buf;
13850 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
13851 TYPE_POINTER_TO (tmp) = NULL;
13852 TYPE_REFERENCE_TO (tmp) = NULL;
13853 TYPE_NEXT_VARIANT (tmp) = NULL;
13854 TYPE_ALIAS_SET (tmp) = -1;
13855 if (TYPE_CACHED_VALUES_P (tmp))
13856 {
13857 TYPE_CACHED_VALUES_P (tmp) = 0;
13858 TYPE_CACHED_VALUES (tmp) = NULL;
13859 }
13860 }
13861 else if (warning_suppressed_p (expr) && (DECL_P (expr) || EXPR_P (expr)))
13862 {
13863 /* Allow the no-warning bit to be set. Perhaps we shouldn't allow
13864 that and change builtins.cc etc. instead - see PR89543. */
13865 size_t sz = tree_size (expr);
13866 buf = XALLOCAVAR (union tree_node, sz);
13867 memcpy ((char *) buf, expr, sz);
13868 buf->base.nowarning_flag = 0;
13869 expr = (tree) buf;
13870 }
13871 md5_process_bytes (expr, tree_size (expr), ctx);
13872 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
13873 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
13874 if (TREE_CODE_CLASS (code) != tcc_type
13875 && TREE_CODE_CLASS (code) != tcc_declaration
13876 && code != TREE_LIST
13877 && code != SSA_NAME
13878 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
13879 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
13880 switch (TREE_CODE_CLASS (code))
13881 {
13882 case tcc_constant:
13883 switch (code)
13884 {
13885 case STRING_CST:
13886 md5_process_bytes (TREE_STRING_POINTER (expr),
13887 TREE_STRING_LENGTH (expr), ctx);
13888 break;
13889 case COMPLEX_CST:
13890 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
13891 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
13892 break;
13893 case VECTOR_CST:
13894 len = vector_cst_encoded_nelts (expr);
13895 for (i = 0; i < len; ++i)
13896 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr, i), ctx, ht);
13897 break;
13898 default:
13899 break;
13900 }
13901 break;
13902 case tcc_exceptional:
13903 switch (code)
13904 {
13905 case TREE_LIST:
13906 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
13907 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
13908 expr = TREE_CHAIN (expr);
13909 goto recursive_label;
13910 break;
13911 case TREE_VEC:
13912 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
13913 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
13914 break;
13915 default:
13916 break;
13917 }
13918 break;
13919 case tcc_expression:
13920 case tcc_reference:
13921 case tcc_comparison:
13922 case tcc_unary:
13923 case tcc_binary:
13924 case tcc_statement:
13925 case tcc_vl_exp:
13926 len = TREE_OPERAND_LENGTH (expr);
13927 for (i = 0; i < len; ++i)
13928 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
13929 break;
13930 case tcc_declaration:
13931 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
13932 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
13933 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
13934 {
13935 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
13936 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
13937 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
13938 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
13939 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
13940 }
13941
13942 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
13943 {
13944 if (TREE_CODE (expr) == FUNCTION_DECL)
13945 {
13946 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
13947 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
13948 }
13949 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
13950 }
13951 break;
13952 case tcc_type:
13953 if (TREE_CODE (expr) == ENUMERAL_TYPE)
13954 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
13955 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
13956 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
13957 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
13958 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
13959 if (INTEGRAL_TYPE_P (expr)
13960 || SCALAR_FLOAT_TYPE_P (expr))
13961 {
13962 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
13963 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
13964 }
13965 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
13966 if (RECORD_OR_UNION_TYPE_P (expr))
13967 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
13968 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
13969 break;
13970 default:
13971 break;
13972 }
13973}
13974
13975/* Helper function for outputting the checksum of a tree T. When
13976 debugging with gdb, you can "define mynext" to be "next" followed
13977 by "call debug_fold_checksum (op0)", then just trace down till the
13978 outputs differ. */
13979
13980DEBUG_FUNCTION void
13981debug_fold_checksum (const_tree t)
13982{
13983 int i;
13984 unsigned char checksum[16];
13985 struct md5_ctx ctx;
13986 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13987
13988 md5_init_ctx (&ctx);
13989 fold_checksum_tree (t, &ctx, &ht);
13990 md5_finish_ctx (&ctx, checksum);
13991 ht.empty ();
13992
13993 for (i = 0; i < 16; i++)
13994 fprintf (stderr, "%d ", checksum[i]);
13995
13996 fprintf (stderr, "\n");
13997}
13998
13999#endif
14000
14001/* Fold a unary tree expression with code CODE of type TYPE with an
14002 operand OP0. LOC is the location of the resulting expression.
14003 Return a folded expression if successful. Otherwise, return a tree
14004 expression with code CODE of type TYPE with an operand OP0. */
14005
14006tree
14007fold_build1_loc (location_t loc,
14008 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
14009{
14010 tree tem;
14011#ifdef ENABLE_FOLD_CHECKING
14012 unsigned char checksum_before[16], checksum_after[16];
14013 struct md5_ctx ctx;
14014 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
14015
14016 md5_init_ctx (&ctx);
14017 fold_checksum_tree (op0, &ctx, &ht);
14018 md5_finish_ctx (&ctx, checksum_before);
14019 ht.empty ();
14020#endif
14021
14022 tem = fold_unary_loc (loc, code, type, op0);
14023 if (!tem)
14024 tem = build1_loc (loc, code, type, arg1: op0 PASS_MEM_STAT);
14025
14026#ifdef ENABLE_FOLD_CHECKING
14027 md5_init_ctx (&ctx);
14028 fold_checksum_tree (op0, &ctx, &ht);
14029 md5_finish_ctx (&ctx, checksum_after);
14030
14031 if (memcmp (checksum_before, checksum_after, 16))
14032 fold_check_failed (op0, tem);
14033#endif
14034 return tem;
14035}
14036
14037/* Fold a binary tree expression with code CODE of type TYPE with
14038 operands OP0 and OP1. LOC is the location of the resulting
14039 expression. Return a folded expression if successful. Otherwise,
14040 return a tree expression with code CODE of type TYPE with operands
14041 OP0 and OP1. */
14042
14043tree
14044fold_build2_loc (location_t loc,
14045 enum tree_code code, tree type, tree op0, tree op1
14046 MEM_STAT_DECL)
14047{
14048 tree tem;
14049#ifdef ENABLE_FOLD_CHECKING
14050 unsigned char checksum_before_op0[16],
14051 checksum_before_op1[16],
14052 checksum_after_op0[16],
14053 checksum_after_op1[16];
14054 struct md5_ctx ctx;
14055 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
14056
14057 md5_init_ctx (&ctx);
14058 fold_checksum_tree (op0, &ctx, &ht);
14059 md5_finish_ctx (&ctx, checksum_before_op0);
14060 ht.empty ();
14061
14062 md5_init_ctx (&ctx);
14063 fold_checksum_tree (op1, &ctx, &ht);
14064 md5_finish_ctx (&ctx, checksum_before_op1);
14065 ht.empty ();
14066#endif
14067
14068 tem = fold_binary_loc (loc, code, type, op0, op1);
14069 if (!tem)
14070 tem = build2_loc (loc, code, type, arg0: op0, arg1: op1 PASS_MEM_STAT);
14071
14072#ifdef ENABLE_FOLD_CHECKING
14073 md5_init_ctx (&ctx);
14074 fold_checksum_tree (op0, &ctx, &ht);
14075 md5_finish_ctx (&ctx, checksum_after_op0);
14076 ht.empty ();
14077
14078 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14079 fold_check_failed (op0, tem);
14080
14081 md5_init_ctx (&ctx);
14082 fold_checksum_tree (op1, &ctx, &ht);
14083 md5_finish_ctx (&ctx, checksum_after_op1);
14084
14085 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14086 fold_check_failed (op1, tem);
14087#endif
14088 return tem;
14089}
14090
14091/* Fold a ternary tree expression with code CODE of type TYPE with
14092 operands OP0, OP1, and OP2. Return a folded expression if
14093 successful. Otherwise, return a tree expression with code CODE of
14094 type TYPE with operands OP0, OP1, and OP2. */
14095
14096tree
14097fold_build3_loc (location_t loc, enum tree_code code, tree type,
14098 tree op0, tree op1, tree op2 MEM_STAT_DECL)
14099{
14100 tree tem;
14101#ifdef ENABLE_FOLD_CHECKING
14102 unsigned char checksum_before_op0[16],
14103 checksum_before_op1[16],
14104 checksum_before_op2[16],
14105 checksum_after_op0[16],
14106 checksum_after_op1[16],
14107 checksum_after_op2[16];
14108 struct md5_ctx ctx;
14109 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
14110
14111 md5_init_ctx (&ctx);
14112 fold_checksum_tree (op0, &ctx, &ht);
14113 md5_finish_ctx (&ctx, checksum_before_op0);
14114 ht.empty ();
14115
14116 md5_init_ctx (&ctx);
14117 fold_checksum_tree (op1, &ctx, &ht);
14118 md5_finish_ctx (&ctx, checksum_before_op1);
14119 ht.empty ();
14120
14121 md5_init_ctx (&ctx);
14122 fold_checksum_tree (op2, &ctx, &ht);
14123 md5_finish_ctx (&ctx, checksum_before_op2);
14124 ht.empty ();
14125#endif
14126
14127 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
14128 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
14129 if (!tem)
14130 tem = build3_loc (loc, code, type, arg0: op0, arg1: op1, arg2: op2 PASS_MEM_STAT);
14131
14132#ifdef ENABLE_FOLD_CHECKING
14133 md5_init_ctx (&ctx);
14134 fold_checksum_tree (op0, &ctx, &ht);
14135 md5_finish_ctx (&ctx, checksum_after_op0);
14136 ht.empty ();
14137
14138 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14139 fold_check_failed (op0, tem);
14140
14141 md5_init_ctx (&ctx);
14142 fold_checksum_tree (op1, &ctx, &ht);
14143 md5_finish_ctx (&ctx, checksum_after_op1);
14144 ht.empty ();
14145
14146 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14147 fold_check_failed (op1, tem);
14148
14149 md5_init_ctx (&ctx);
14150 fold_checksum_tree (op2, &ctx, &ht);
14151 md5_finish_ctx (&ctx, checksum_after_op2);
14152
14153 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
14154 fold_check_failed (op2, tem);
14155#endif
14156 return tem;
14157}
14158
14159/* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
14160 arguments in ARGARRAY, and a null static chain.
14161 Return a folded expression if successful. Otherwise, return a CALL_EXPR
14162 of type TYPE from the given operands as constructed by build_call_array. */
14163
14164tree
14165fold_build_call_array_loc (location_t loc, tree type, tree fn,
14166 int nargs, tree *argarray)
14167{
14168 tree tem;
14169#ifdef ENABLE_FOLD_CHECKING
14170 unsigned char checksum_before_fn[16],
14171 checksum_before_arglist[16],
14172 checksum_after_fn[16],
14173 checksum_after_arglist[16];
14174 struct md5_ctx ctx;
14175 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
14176 int i;
14177
14178 md5_init_ctx (&ctx);
14179 fold_checksum_tree (fn, &ctx, &ht);
14180 md5_finish_ctx (&ctx, checksum_before_fn);
14181 ht.empty ();
14182
14183 md5_init_ctx (&ctx);
14184 for (i = 0; i < nargs; i++)
14185 fold_checksum_tree (argarray[i], &ctx, &ht);
14186 md5_finish_ctx (&ctx, checksum_before_arglist);
14187 ht.empty ();
14188#endif
14189
14190 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
14191 if (!tem)
14192 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
14193
14194#ifdef ENABLE_FOLD_CHECKING
14195 md5_init_ctx (&ctx);
14196 fold_checksum_tree (fn, &ctx, &ht);
14197 md5_finish_ctx (&ctx, checksum_after_fn);
14198 ht.empty ();
14199
14200 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
14201 fold_check_failed (fn, tem);
14202
14203 md5_init_ctx (&ctx);
14204 for (i = 0; i < nargs; i++)
14205 fold_checksum_tree (argarray[i], &ctx, &ht);
14206 md5_finish_ctx (&ctx, checksum_after_arglist);
14207
14208 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
14209 fold_check_failed (NULL_TREE, tem);
14210#endif
14211 return tem;
14212}
14213
14214/* Perform constant folding and related simplification of initializer
14215 expression EXPR. These behave identically to "fold_buildN" but ignore
14216 potential run-time traps and exceptions that fold must preserve. */
14217
14218#define START_FOLD_INIT \
14219 int saved_signaling_nans = flag_signaling_nans;\
14220 int saved_trapping_math = flag_trapping_math;\
14221 int saved_rounding_math = flag_rounding_math;\
14222 int saved_trapv = flag_trapv;\
14223 int saved_folding_initializer = folding_initializer;\
14224 flag_signaling_nans = 0;\
14225 flag_trapping_math = 0;\
14226 flag_rounding_math = 0;\
14227 flag_trapv = 0;\
14228 folding_initializer = 1;
14229
14230#define END_FOLD_INIT \
14231 flag_signaling_nans = saved_signaling_nans;\
14232 flag_trapping_math = saved_trapping_math;\
14233 flag_rounding_math = saved_rounding_math;\
14234 flag_trapv = saved_trapv;\
14235 folding_initializer = saved_folding_initializer;
14236
14237tree
14238fold_init (tree expr)
14239{
14240 tree result;
14241 START_FOLD_INIT;
14242
14243 result = fold (expr);
14244
14245 END_FOLD_INIT;
14246 return result;
14247}
14248
14249tree
14250fold_build1_initializer_loc (location_t loc, enum tree_code code,
14251 tree type, tree op)
14252{
14253 tree result;
14254 START_FOLD_INIT;
14255
14256 result = fold_build1_loc (loc, code, type, op0: op);
14257
14258 END_FOLD_INIT;
14259 return result;
14260}
14261
14262tree
14263fold_build2_initializer_loc (location_t loc, enum tree_code code,
14264 tree type, tree op0, tree op1)
14265{
14266 tree result;
14267 START_FOLD_INIT;
14268
14269 result = fold_build2_loc (loc, code, type, op0, op1);
14270
14271 END_FOLD_INIT;
14272 return result;
14273}
14274
14275tree
14276fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
14277 int nargs, tree *argarray)
14278{
14279 tree result;
14280 START_FOLD_INIT;
14281
14282 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
14283
14284 END_FOLD_INIT;
14285 return result;
14286}
14287
14288tree
14289fold_binary_initializer_loc (location_t loc, tree_code code, tree type,
14290 tree lhs, tree rhs)
14291{
14292 tree result;
14293 START_FOLD_INIT;
14294
14295 result = fold_binary_loc (loc, code, type, op0: lhs, op1: rhs);
14296
14297 END_FOLD_INIT;
14298 return result;
14299}
14300
14301#undef START_FOLD_INIT
14302#undef END_FOLD_INIT
14303
14304/* Determine if first argument is a multiple of second argument. Return
14305 false if it is not, or we cannot easily determined it to be.
14306
14307 An example of the sort of thing we care about (at this point; this routine
14308 could surely be made more general, and expanded to do what the *_DIV_EXPR's
14309 fold cases do now) is discovering that
14310
14311 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14312
14313 is a multiple of
14314
14315 SAVE_EXPR (J * 8)
14316
14317 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
14318
14319 This code also handles discovering that
14320
14321 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14322
14323 is a multiple of 8 so we don't have to worry about dealing with a
14324 possible remainder.
14325
14326 Note that we *look* inside a SAVE_EXPR only to determine how it was
14327 calculated; it is not safe for fold to do much of anything else with the
14328 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
14329 at run time. For example, the latter example above *cannot* be implemented
14330 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
14331 evaluation time of the original SAVE_EXPR is not necessarily the same at
14332 the time the new expression is evaluated. The only optimization of this
14333 sort that would be valid is changing
14334
14335 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
14336
14337 divided by 8 to
14338
14339 SAVE_EXPR (I) * SAVE_EXPR (J)
14340
14341 (where the same SAVE_EXPR (J) is used in the original and the
14342 transformed version).
14343
14344 NOWRAP specifies whether all outer operations in TYPE should
14345 be considered not wrapping. Any type conversion within TOP acts
14346 as a barrier and we will fall back to NOWRAP being false.
14347 NOWRAP is mostly used to treat expressions in TYPE_SIZE and friends
14348 as not wrapping even though they are generally using unsigned arithmetic. */
14349
14350bool
14351multiple_of_p (tree type, const_tree top, const_tree bottom, bool nowrap)
14352{
14353 gimple *stmt;
14354 tree op1, op2;
14355
14356 if (operand_equal_p (arg0: top, arg1: bottom, flags: 0))
14357 return true;
14358
14359 if (TREE_CODE (type) != INTEGER_TYPE)
14360 return false;
14361
14362 switch (TREE_CODE (top))
14363 {
14364 case BIT_AND_EXPR:
14365 /* Bitwise and provides a power of two multiple. If the mask is
14366 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
14367 if (!integer_pow2p (bottom))
14368 return false;
14369 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom, nowrap)
14370 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom, nowrap));
14371
14372 case MULT_EXPR:
14373 /* If the multiplication can wrap we cannot recurse further unless
14374 the bottom is a power of two which is where wrapping does not
14375 matter. */
14376 if (!nowrap
14377 && !TYPE_OVERFLOW_UNDEFINED (type)
14378 && !integer_pow2p (bottom))
14379 return false;
14380 if (TREE_CODE (bottom) == INTEGER_CST)
14381 {
14382 op1 = TREE_OPERAND (top, 0);
14383 op2 = TREE_OPERAND (top, 1);
14384 if (TREE_CODE (op1) == INTEGER_CST)
14385 std::swap (a&: op1, b&: op2);
14386 if (TREE_CODE (op2) == INTEGER_CST)
14387 {
14388 if (multiple_of_p (type, top: op2, bottom, nowrap))
14389 return true;
14390 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */
14391 if (multiple_of_p (type, top: bottom, bottom: op2, nowrap))
14392 {
14393 widest_int w = wi::sdiv_trunc (x: wi::to_widest (t: bottom),
14394 y: wi::to_widest (t: op2));
14395 if (wi::fits_to_tree_p (x: w, TREE_TYPE (bottom)))
14396 {
14397 op2 = wide_int_to_tree (TREE_TYPE (bottom), cst: w);
14398 return multiple_of_p (type, top: op1, bottom: op2, nowrap);
14399 }
14400 }
14401 return multiple_of_p (type, top: op1, bottom, nowrap);
14402 }
14403 }
14404 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom, nowrap)
14405 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom, nowrap));
14406
14407 case LSHIFT_EXPR:
14408 /* Handle X << CST as X * (1 << CST) and only process the constant. */
14409 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
14410 {
14411 op1 = TREE_OPERAND (top, 1);
14412 if (wi::to_widest (t: op1) < TYPE_PRECISION (type))
14413 {
14414 wide_int mul_op
14415 = wi::one (TYPE_PRECISION (type)) << wi::to_wide (t: op1);
14416 return multiple_of_p (type,
14417 top: wide_int_to_tree (type, cst: mul_op), bottom,
14418 nowrap);
14419 }
14420 }
14421 return false;
14422
14423 case MINUS_EXPR:
14424 case PLUS_EXPR:
14425 /* If the addition or subtraction can wrap we cannot recurse further
14426 unless bottom is a power of two which is where wrapping does not
14427 matter. */
14428 if (!nowrap
14429 && !TYPE_OVERFLOW_UNDEFINED (type)
14430 && !integer_pow2p (bottom))
14431 return false;
14432
14433 /* Handle cases like op0 + 0xfffffffd as op0 - 3 if the expression has
14434 unsigned type. For example, (X / 3) + 0xfffffffd is multiple of 3,
14435 but 0xfffffffd is not. */
14436 op1 = TREE_OPERAND (top, 1);
14437 if (TREE_CODE (top) == PLUS_EXPR
14438 && nowrap
14439 && TYPE_UNSIGNED (type)
14440 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
14441 op1 = fold_build1 (NEGATE_EXPR, type, op1);
14442
14443 /* It is impossible to prove if op0 +- op1 is multiple of bottom
14444 precisely, so be conservative here checking if both op0 and op1
14445 are multiple of bottom. Note we check the second operand first
14446 since it's usually simpler. */
14447 return (multiple_of_p (type, top: op1, bottom, nowrap)
14448 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom, nowrap));
14449
14450 CASE_CONVERT:
14451 /* Can't handle conversions from non-integral or wider integral type. */
14452 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
14453 || (TYPE_PRECISION (type)
14454 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
14455 return false;
14456 /* NOWRAP only extends to operations in the outermost type so
14457 make sure to strip it off here. */
14458 return multiple_of_p (TREE_TYPE (TREE_OPERAND (top, 0)),
14459 TREE_OPERAND (top, 0), bottom, nowrap: false);
14460
14461 case SAVE_EXPR:
14462 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom, nowrap);
14463
14464 case COND_EXPR:
14465 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom, nowrap)
14466 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom, nowrap));
14467
14468 case INTEGER_CST:
14469 if (TREE_CODE (bottom) != INTEGER_CST || integer_zerop (bottom))
14470 return false;
14471 return wi::multiple_of_p (x: wi::to_widest (t: top), y: wi::to_widest (t: bottom),
14472 sgn: SIGNED);
14473
14474 case SSA_NAME:
14475 if (TREE_CODE (bottom) == INTEGER_CST
14476 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
14477 && gimple_code (g: stmt) == GIMPLE_ASSIGN)
14478 {
14479 enum tree_code code = gimple_assign_rhs_code (gs: stmt);
14480
14481 /* Check for special cases to see if top is defined as multiple
14482 of bottom:
14483
14484 top = (X & ~(bottom - 1) ; bottom is power of 2
14485
14486 or
14487
14488 Y = X % bottom
14489 top = X - Y. */
14490 if (code == BIT_AND_EXPR
14491 && (op2 = gimple_assign_rhs2 (gs: stmt)) != NULL_TREE
14492 && TREE_CODE (op2) == INTEGER_CST
14493 && integer_pow2p (bottom)
14494 && wi::multiple_of_p (x: wi::to_widest (t: op2),
14495 y: wi::to_widest (t: bottom), sgn: UNSIGNED))
14496 return true;
14497
14498 op1 = gimple_assign_rhs1 (gs: stmt);
14499 if (code == MINUS_EXPR
14500 && (op2 = gimple_assign_rhs2 (gs: stmt)) != NULL_TREE
14501 && TREE_CODE (op2) == SSA_NAME
14502 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
14503 && gimple_code (g: stmt) == GIMPLE_ASSIGN
14504 && (code = gimple_assign_rhs_code (gs: stmt)) == TRUNC_MOD_EXPR
14505 && operand_equal_p (arg0: op1, arg1: gimple_assign_rhs1 (gs: stmt), flags: 0)
14506 && operand_equal_p (arg0: bottom, arg1: gimple_assign_rhs2 (gs: stmt), flags: 0))
14507 return true;
14508 }
14509
14510 /* fall through */
14511
14512 default:
14513 if (POLY_INT_CST_P (top) && poly_int_tree_p (t: bottom))
14514 return multiple_p (a: wi::to_poly_widest (t: top),
14515 b: wi::to_poly_widest (t: bottom));
14516
14517 return false;
14518 }
14519}
14520
14521/* Return true if expression X cannot be (or contain) a NaN or infinity.
14522 This function returns true for integer expressions, and returns
14523 false if uncertain. */
14524
14525bool
14526tree_expr_finite_p (const_tree x)
14527{
14528 machine_mode mode = element_mode (x);
14529 if (!HONOR_NANS (mode) && !HONOR_INFINITIES (mode))
14530 return true;
14531 switch (TREE_CODE (x))
14532 {
14533 case REAL_CST:
14534 return real_isfinite (TREE_REAL_CST_PTR (x));
14535 case COMPLEX_CST:
14536 return tree_expr_finite_p (TREE_REALPART (x))
14537 && tree_expr_finite_p (TREE_IMAGPART (x));
14538 case FLOAT_EXPR:
14539 return true;
14540 case ABS_EXPR:
14541 case CONVERT_EXPR:
14542 case NON_LVALUE_EXPR:
14543 case NEGATE_EXPR:
14544 case SAVE_EXPR:
14545 return tree_expr_finite_p (TREE_OPERAND (x, 0));
14546 case MIN_EXPR:
14547 case MAX_EXPR:
14548 return tree_expr_finite_p (TREE_OPERAND (x, 0))
14549 && tree_expr_finite_p (TREE_OPERAND (x, 1));
14550 case COND_EXPR:
14551 return tree_expr_finite_p (TREE_OPERAND (x, 1))
14552 && tree_expr_finite_p (TREE_OPERAND (x, 2));
14553 case CALL_EXPR:
14554 switch (get_call_combined_fn (x))
14555 {
14556 CASE_CFN_FABS:
14557 CASE_CFN_FABS_FN:
14558 return tree_expr_finite_p (CALL_EXPR_ARG (x, 0));
14559 CASE_CFN_FMAX:
14560 CASE_CFN_FMAX_FN:
14561 CASE_CFN_FMIN:
14562 CASE_CFN_FMIN_FN:
14563 return tree_expr_finite_p (CALL_EXPR_ARG (x, 0))
14564 && tree_expr_finite_p (CALL_EXPR_ARG (x, 1));
14565 default:
14566 return false;
14567 }
14568
14569 default:
14570 return false;
14571 }
14572}
14573
14574/* Return true if expression X evaluates to an infinity.
14575 This function returns false for integer expressions. */
14576
14577bool
14578tree_expr_infinite_p (const_tree x)
14579{
14580 if (!HONOR_INFINITIES (x))
14581 return false;
14582 switch (TREE_CODE (x))
14583 {
14584 case REAL_CST:
14585 return real_isinf (TREE_REAL_CST_PTR (x));
14586 case ABS_EXPR:
14587 case NEGATE_EXPR:
14588 case NON_LVALUE_EXPR:
14589 case SAVE_EXPR:
14590 return tree_expr_infinite_p (TREE_OPERAND (x, 0));
14591 case COND_EXPR:
14592 return tree_expr_infinite_p (TREE_OPERAND (x, 1))
14593 && tree_expr_infinite_p (TREE_OPERAND (x, 2));
14594 default:
14595 return false;
14596 }
14597}
14598
14599/* Return true if expression X could evaluate to an infinity.
14600 This function returns false for integer expressions, and returns
14601 true if uncertain. */
14602
14603bool
14604tree_expr_maybe_infinite_p (const_tree x)
14605{
14606 if (!HONOR_INFINITIES (x))
14607 return false;
14608 switch (TREE_CODE (x))
14609 {
14610 case REAL_CST:
14611 return real_isinf (TREE_REAL_CST_PTR (x));
14612 case FLOAT_EXPR:
14613 return false;
14614 case ABS_EXPR:
14615 case NEGATE_EXPR:
14616 return tree_expr_maybe_infinite_p (TREE_OPERAND (x, 0));
14617 case COND_EXPR:
14618 return tree_expr_maybe_infinite_p (TREE_OPERAND (x, 1))
14619 || tree_expr_maybe_infinite_p (TREE_OPERAND (x, 2));
14620 default:
14621 return true;
14622 }
14623}
14624
14625/* Return true if expression X evaluates to a signaling NaN.
14626 This function returns false for integer expressions. */
14627
14628bool
14629tree_expr_signaling_nan_p (const_tree x)
14630{
14631 if (!HONOR_SNANS (x))
14632 return false;
14633 switch (TREE_CODE (x))
14634 {
14635 case REAL_CST:
14636 return real_issignaling_nan (TREE_REAL_CST_PTR (x));
14637 case NON_LVALUE_EXPR:
14638 case SAVE_EXPR:
14639 return tree_expr_signaling_nan_p (TREE_OPERAND (x, 0));
14640 case COND_EXPR:
14641 return tree_expr_signaling_nan_p (TREE_OPERAND (x, 1))
14642 && tree_expr_signaling_nan_p (TREE_OPERAND (x, 2));
14643 default:
14644 return false;
14645 }
14646}
14647
14648/* Return true if expression X could evaluate to a signaling NaN.
14649 This function returns false for integer expressions, and returns
14650 true if uncertain. */
14651
14652bool
14653tree_expr_maybe_signaling_nan_p (const_tree x)
14654{
14655 if (!HONOR_SNANS (x))
14656 return false;
14657 switch (TREE_CODE (x))
14658 {
14659 case REAL_CST:
14660 return real_issignaling_nan (TREE_REAL_CST_PTR (x));
14661 case FLOAT_EXPR:
14662 return false;
14663 case ABS_EXPR:
14664 case CONVERT_EXPR:
14665 case NEGATE_EXPR:
14666 case NON_LVALUE_EXPR:
14667 case SAVE_EXPR:
14668 return tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 0));
14669 case MIN_EXPR:
14670 case MAX_EXPR:
14671 return tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 0))
14672 || tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 1));
14673 case COND_EXPR:
14674 return tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 1))
14675 || tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 2));
14676 case CALL_EXPR:
14677 switch (get_call_combined_fn (x))
14678 {
14679 CASE_CFN_FABS:
14680 CASE_CFN_FABS_FN:
14681 return tree_expr_maybe_signaling_nan_p (CALL_EXPR_ARG (x, 0));
14682 CASE_CFN_FMAX:
14683 CASE_CFN_FMAX_FN:
14684 CASE_CFN_FMIN:
14685 CASE_CFN_FMIN_FN:
14686 return tree_expr_maybe_signaling_nan_p (CALL_EXPR_ARG (x, 0))
14687 || tree_expr_maybe_signaling_nan_p (CALL_EXPR_ARG (x, 1));
14688 default:
14689 return true;
14690 }
14691 default:
14692 return true;
14693 }
14694}
14695
14696/* Return true if expression X evaluates to a NaN.
14697 This function returns false for integer expressions. */
14698
14699bool
14700tree_expr_nan_p (const_tree x)
14701{
14702 if (!HONOR_NANS (x))
14703 return false;
14704 switch (TREE_CODE (x))
14705 {
14706 case REAL_CST:
14707 return real_isnan (TREE_REAL_CST_PTR (x));
14708 case NON_LVALUE_EXPR:
14709 case SAVE_EXPR:
14710 return tree_expr_nan_p (TREE_OPERAND (x, 0));
14711 case COND_EXPR:
14712 return tree_expr_nan_p (TREE_OPERAND (x, 1))
14713 && tree_expr_nan_p (TREE_OPERAND (x, 2));
14714 default:
14715 return false;
14716 }
14717}
14718
14719/* Return true if expression X could evaluate to a NaN.
14720 This function returns false for integer expressions, and returns
14721 true if uncertain. */
14722
14723bool
14724tree_expr_maybe_nan_p (const_tree x)
14725{
14726 if (!HONOR_NANS (x))
14727 return false;
14728 switch (TREE_CODE (x))
14729 {
14730 case REAL_CST:
14731 return real_isnan (TREE_REAL_CST_PTR (x));
14732 case FLOAT_EXPR:
14733 return false;
14734 case PLUS_EXPR:
14735 case MINUS_EXPR:
14736 case MULT_EXPR:
14737 return !tree_expr_finite_p (TREE_OPERAND (x, 0))
14738 || !tree_expr_finite_p (TREE_OPERAND (x, 1));
14739 case ABS_EXPR:
14740 case CONVERT_EXPR:
14741 case NEGATE_EXPR:
14742 case NON_LVALUE_EXPR:
14743 case SAVE_EXPR:
14744 return tree_expr_maybe_nan_p (TREE_OPERAND (x, 0));
14745 case MIN_EXPR:
14746 case MAX_EXPR:
14747 return tree_expr_maybe_nan_p (TREE_OPERAND (x, 0))
14748 || tree_expr_maybe_nan_p (TREE_OPERAND (x, 1));
14749 case COND_EXPR:
14750 return tree_expr_maybe_nan_p (TREE_OPERAND (x, 1))
14751 || tree_expr_maybe_nan_p (TREE_OPERAND (x, 2));
14752 case CALL_EXPR:
14753 switch (get_call_combined_fn (x))
14754 {
14755 CASE_CFN_FABS:
14756 CASE_CFN_FABS_FN:
14757 return tree_expr_maybe_nan_p (CALL_EXPR_ARG (x, 0));
14758 CASE_CFN_FMAX:
14759 CASE_CFN_FMAX_FN:
14760 CASE_CFN_FMIN:
14761 CASE_CFN_FMIN_FN:
14762 return tree_expr_maybe_nan_p (CALL_EXPR_ARG (x, 0))
14763 || tree_expr_maybe_nan_p (CALL_EXPR_ARG (x, 1));
14764 default:
14765 return true;
14766 }
14767 default:
14768 return true;
14769 }
14770}
14771
14772/* Return true if expression X could evaluate to -0.0.
14773 This function returns true if uncertain. */
14774
14775bool
14776tree_expr_maybe_real_minus_zero_p (const_tree x)
14777{
14778 if (!HONOR_SIGNED_ZEROS (x))
14779 return false;
14780 switch (TREE_CODE (x))
14781 {
14782 case REAL_CST:
14783 return REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (x));
14784 case INTEGER_CST:
14785 case FLOAT_EXPR:
14786 case ABS_EXPR:
14787 return false;
14788 case NON_LVALUE_EXPR:
14789 case SAVE_EXPR:
14790 return tree_expr_maybe_real_minus_zero_p (TREE_OPERAND (x, 0));
14791 case COND_EXPR:
14792 return tree_expr_maybe_real_minus_zero_p (TREE_OPERAND (x, 1))
14793 || tree_expr_maybe_real_minus_zero_p (TREE_OPERAND (x, 2));
14794 case CALL_EXPR:
14795 switch (get_call_combined_fn (x))
14796 {
14797 CASE_CFN_FABS:
14798 CASE_CFN_FABS_FN:
14799 return false;
14800 default:
14801 break;
14802 }
14803 default:
14804 break;
14805 }
14806 /* Ideally !(tree_expr_nonzero_p (X) || tree_expr_nonnegative_p (X))
14807 * but currently those predicates require tree and not const_tree. */
14808 return true;
14809}
14810
14811#define tree_expr_nonnegative_warnv_p(X, Y) \
14812 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
14813
14814#define RECURSE(X) \
14815 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
14816
14817/* Return true if CODE or TYPE is known to be non-negative. */
14818
14819static bool
14820tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
14821{
14822 if (!VECTOR_TYPE_P (type)
14823 && (TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
14824 && truth_value_p (code))
14825 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
14826 have a signed:1 type (where the value is -1 and 0). */
14827 return true;
14828 return false;
14829}
14830
14831/* Return true if (CODE OP0) is known to be non-negative. If the return
14832 value is based on the assumption that signed overflow is undefined,
14833 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14834 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
14835
14836bool
14837tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14838 bool *strict_overflow_p, int depth)
14839{
14840 if (TYPE_UNSIGNED (type))
14841 return true;
14842
14843 switch (code)
14844 {
14845 case ABS_EXPR:
14846 /* We can't return 1 if flag_wrapv is set because
14847 ABS_EXPR<INT_MIN> = INT_MIN. */
14848 if (!ANY_INTEGRAL_TYPE_P (type))
14849 return true;
14850 if (TYPE_OVERFLOW_UNDEFINED (type))
14851 {
14852 *strict_overflow_p = true;
14853 return true;
14854 }
14855 break;
14856
14857 case NON_LVALUE_EXPR:
14858 case FLOAT_EXPR:
14859 case FIX_TRUNC_EXPR:
14860 return RECURSE (op0);
14861
14862 CASE_CONVERT:
14863 {
14864 tree inner_type = TREE_TYPE (op0);
14865 tree outer_type = type;
14866
14867 if (SCALAR_FLOAT_TYPE_P (outer_type))
14868 {
14869 if (SCALAR_FLOAT_TYPE_P (inner_type))
14870 return RECURSE (op0);
14871 if (INTEGRAL_TYPE_P (inner_type))
14872 {
14873 if (TYPE_UNSIGNED (inner_type))
14874 return true;
14875 return RECURSE (op0);
14876 }
14877 }
14878 else if (INTEGRAL_TYPE_P (outer_type))
14879 {
14880 if (SCALAR_FLOAT_TYPE_P (inner_type))
14881 return RECURSE (op0);
14882 if (INTEGRAL_TYPE_P (inner_type))
14883 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
14884 && TYPE_UNSIGNED (inner_type);
14885 }
14886 }
14887 break;
14888
14889 default:
14890 return tree_simple_nonnegative_warnv_p (code, type);
14891 }
14892
14893 /* We don't know sign of `t', so be conservative and return false. */
14894 return false;
14895}
14896
14897/* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
14898 value is based on the assumption that signed overflow is undefined,
14899 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14900 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
14901
14902bool
14903tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14904 tree op1, bool *strict_overflow_p,
14905 int depth)
14906{
14907 if (TYPE_UNSIGNED (type))
14908 return true;
14909
14910 switch (code)
14911 {
14912 case POINTER_PLUS_EXPR:
14913 case PLUS_EXPR:
14914 if (FLOAT_TYPE_P (type))
14915 return RECURSE (op0) && RECURSE (op1);
14916
14917 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
14918 both unsigned and at least 2 bits shorter than the result. */
14919 if (TREE_CODE (type) == INTEGER_TYPE
14920 && TREE_CODE (op0) == NOP_EXPR
14921 && TREE_CODE (op1) == NOP_EXPR)
14922 {
14923 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
14924 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
14925 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
14926 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
14927 {
14928 unsigned int prec = MAX (TYPE_PRECISION (inner1),
14929 TYPE_PRECISION (inner2)) + 1;
14930 return prec < TYPE_PRECISION (type);
14931 }
14932 }
14933 break;
14934
14935 case MULT_EXPR:
14936 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
14937 {
14938 /* x * x is always non-negative for floating point x
14939 or without overflow. */
14940 if (operand_equal_p (arg0: op0, arg1: op1, flags: 0)
14941 || (RECURSE (op0) && RECURSE (op1)))
14942 {
14943 if (ANY_INTEGRAL_TYPE_P (type)
14944 && TYPE_OVERFLOW_UNDEFINED (type))
14945 *strict_overflow_p = true;
14946 return true;
14947 }
14948 }
14949
14950 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
14951 both unsigned and their total bits is shorter than the result. */
14952 if (TREE_CODE (type) == INTEGER_TYPE
14953 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
14954 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
14955 {
14956 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
14957 ? TREE_TYPE (TREE_OPERAND (op0, 0))
14958 : TREE_TYPE (op0);
14959 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
14960 ? TREE_TYPE (TREE_OPERAND (op1, 0))
14961 : TREE_TYPE (op1);
14962
14963 bool unsigned0 = TYPE_UNSIGNED (inner0);
14964 bool unsigned1 = TYPE_UNSIGNED (inner1);
14965
14966 if (TREE_CODE (op0) == INTEGER_CST)
14967 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
14968
14969 if (TREE_CODE (op1) == INTEGER_CST)
14970 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
14971
14972 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
14973 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
14974 {
14975 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
14976 ? tree_int_cst_min_precision (op0, UNSIGNED)
14977 : TYPE_PRECISION (inner0);
14978
14979 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
14980 ? tree_int_cst_min_precision (op1, UNSIGNED)
14981 : TYPE_PRECISION (inner1);
14982
14983 return precision0 + precision1 < TYPE_PRECISION (type);
14984 }
14985 }
14986 return false;
14987
14988 case BIT_AND_EXPR:
14989 return RECURSE (op0) || RECURSE (op1);
14990
14991 case MAX_EXPR:
14992 /* Usually RECURSE (op0) || RECURSE (op1) but NaNs complicate
14993 things. */
14994 if (tree_expr_maybe_nan_p (x: op0) || tree_expr_maybe_nan_p (x: op1))
14995 return RECURSE (op0) && RECURSE (op1);
14996 return RECURSE (op0) || RECURSE (op1);
14997
14998 case BIT_IOR_EXPR:
14999 case BIT_XOR_EXPR:
15000 case MIN_EXPR:
15001 case RDIV_EXPR:
15002 case TRUNC_DIV_EXPR:
15003 case CEIL_DIV_EXPR:
15004 case FLOOR_DIV_EXPR:
15005 case ROUND_DIV_EXPR:
15006 return RECURSE (op0) && RECURSE (op1);
15007
15008 case TRUNC_MOD_EXPR:
15009 return RECURSE (op0);
15010
15011 case FLOOR_MOD_EXPR:
15012 return RECURSE (op1);
15013
15014 case CEIL_MOD_EXPR:
15015 case ROUND_MOD_EXPR:
15016 default:
15017 return tree_simple_nonnegative_warnv_p (code, type);
15018 }
15019
15020 /* We don't know sign of `t', so be conservative and return false. */
15021 return false;
15022}
15023
15024/* Return true if T is known to be non-negative. If the return
15025 value is based on the assumption that signed overflow is undefined,
15026 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15027 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
15028
15029bool
15030tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
15031{
15032 if (TYPE_UNSIGNED (TREE_TYPE (t)))
15033 return true;
15034
15035 switch (TREE_CODE (t))
15036 {
15037 case INTEGER_CST:
15038 return tree_int_cst_sgn (t) >= 0;
15039
15040 case REAL_CST:
15041 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
15042
15043 case FIXED_CST:
15044 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
15045
15046 case COND_EXPR:
15047 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
15048
15049 case SSA_NAME:
15050 /* Limit the depth of recursion to avoid quadratic behavior.
15051 This is expected to catch almost all occurrences in practice.
15052 If this code misses important cases that unbounded recursion
15053 would not, passes that need this information could be revised
15054 to provide it through dataflow propagation. */
15055 return (!name_registered_for_update_p (t)
15056 && depth < param_max_ssa_name_query_depth
15057 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
15058 strict_overflow_p, depth));
15059
15060 default:
15061 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
15062 }
15063}
15064
15065/* Return true if T is known to be non-negative. If the return
15066 value is based on the assumption that signed overflow is undefined,
15067 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15068 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
15069
15070bool
15071tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
15072 bool *strict_overflow_p, int depth)
15073{
15074 switch (fn)
15075 {
15076 CASE_CFN_ACOS:
15077 CASE_CFN_ACOS_FN:
15078 CASE_CFN_ACOSH:
15079 CASE_CFN_ACOSH_FN:
15080 CASE_CFN_CABS:
15081 CASE_CFN_CABS_FN:
15082 CASE_CFN_COSH:
15083 CASE_CFN_COSH_FN:
15084 CASE_CFN_ERFC:
15085 CASE_CFN_ERFC_FN:
15086 CASE_CFN_EXP:
15087 CASE_CFN_EXP_FN:
15088 CASE_CFN_EXP10:
15089 CASE_CFN_EXP2:
15090 CASE_CFN_EXP2_FN:
15091 CASE_CFN_FABS:
15092 CASE_CFN_FABS_FN:
15093 CASE_CFN_FDIM:
15094 CASE_CFN_FDIM_FN:
15095 CASE_CFN_HYPOT:
15096 CASE_CFN_HYPOT_FN:
15097 CASE_CFN_POW10:
15098 CASE_CFN_FFS:
15099 CASE_CFN_PARITY:
15100 CASE_CFN_POPCOUNT:
15101 CASE_CFN_CLZ:
15102 CASE_CFN_CLRSB:
15103 case CFN_BUILT_IN_BSWAP16:
15104 case CFN_BUILT_IN_BSWAP32:
15105 case CFN_BUILT_IN_BSWAP64:
15106 case CFN_BUILT_IN_BSWAP128:
15107 /* Always true. */
15108 return true;
15109
15110 CASE_CFN_SQRT:
15111 CASE_CFN_SQRT_FN:
15112 /* sqrt(-0.0) is -0.0. */
15113 if (!HONOR_SIGNED_ZEROS (type))
15114 return true;
15115 return RECURSE (arg0);
15116
15117 CASE_CFN_ASINH:
15118 CASE_CFN_ASINH_FN:
15119 CASE_CFN_ATAN:
15120 CASE_CFN_ATAN_FN:
15121 CASE_CFN_ATANH:
15122 CASE_CFN_ATANH_FN:
15123 CASE_CFN_CBRT:
15124 CASE_CFN_CBRT_FN:
15125 CASE_CFN_CEIL:
15126 CASE_CFN_CEIL_FN:
15127 CASE_CFN_ERF:
15128 CASE_CFN_ERF_FN:
15129 CASE_CFN_EXPM1:
15130 CASE_CFN_EXPM1_FN:
15131 CASE_CFN_FLOOR:
15132 CASE_CFN_FLOOR_FN:
15133 CASE_CFN_FMOD:
15134 CASE_CFN_FMOD_FN:
15135 CASE_CFN_FREXP:
15136 CASE_CFN_FREXP_FN:
15137 CASE_CFN_ICEIL:
15138 CASE_CFN_IFLOOR:
15139 CASE_CFN_IRINT:
15140 CASE_CFN_IROUND:
15141 CASE_CFN_LCEIL:
15142 CASE_CFN_LDEXP:
15143 CASE_CFN_LFLOOR:
15144 CASE_CFN_LLCEIL:
15145 CASE_CFN_LLFLOOR:
15146 CASE_CFN_LLRINT:
15147 CASE_CFN_LLRINT_FN:
15148 CASE_CFN_LLROUND:
15149 CASE_CFN_LLROUND_FN:
15150 CASE_CFN_LRINT:
15151 CASE_CFN_LRINT_FN:
15152 CASE_CFN_LROUND:
15153 CASE_CFN_LROUND_FN:
15154 CASE_CFN_MODF:
15155 CASE_CFN_MODF_FN:
15156 CASE_CFN_NEARBYINT:
15157 CASE_CFN_NEARBYINT_FN:
15158 CASE_CFN_RINT:
15159 CASE_CFN_RINT_FN:
15160 CASE_CFN_ROUND:
15161 CASE_CFN_ROUND_FN:
15162 CASE_CFN_ROUNDEVEN:
15163 CASE_CFN_ROUNDEVEN_FN:
15164 CASE_CFN_SCALB:
15165 CASE_CFN_SCALBLN:
15166 CASE_CFN_SCALBLN_FN:
15167 CASE_CFN_SCALBN:
15168 CASE_CFN_SCALBN_FN:
15169 CASE_CFN_SIGNBIT:
15170 CASE_CFN_SIGNIFICAND:
15171 CASE_CFN_SINH:
15172 CASE_CFN_SINH_FN:
15173 CASE_CFN_TANH:
15174 CASE_CFN_TANH_FN:
15175 CASE_CFN_TRUNC:
15176 CASE_CFN_TRUNC_FN:
15177 /* True if the 1st argument is nonnegative. */
15178 return RECURSE (arg0);
15179
15180 CASE_CFN_FMAX:
15181 CASE_CFN_FMAX_FN:
15182 /* Usually RECURSE (arg0) || RECURSE (arg1) but NaNs complicate
15183 things. In the presence of sNaNs, we're only guaranteed to be
15184 non-negative if both operands are non-negative. In the presence
15185 of qNaNs, we're non-negative if either operand is non-negative
15186 and can't be a qNaN, or if both operands are non-negative. */
15187 if (tree_expr_maybe_signaling_nan_p (x: arg0) ||
15188 tree_expr_maybe_signaling_nan_p (x: arg1))
15189 return RECURSE (arg0) && RECURSE (arg1);
15190 return RECURSE (arg0) ? (!tree_expr_maybe_nan_p (x: arg0)
15191 || RECURSE (arg1))
15192 : (RECURSE (arg1)
15193 && !tree_expr_maybe_nan_p (x: arg1));
15194
15195 CASE_CFN_FMIN:
15196 CASE_CFN_FMIN_FN:
15197 /* True if the 1st AND 2nd arguments are nonnegative. */
15198 return RECURSE (arg0) && RECURSE (arg1);
15199
15200 CASE_CFN_COPYSIGN:
15201 CASE_CFN_COPYSIGN_FN:
15202 /* True if the 2nd argument is nonnegative. */
15203 return RECURSE (arg1);
15204
15205 CASE_CFN_POWI:
15206 /* True if the 1st argument is nonnegative or the second
15207 argument is an even integer. */
15208 if (TREE_CODE (arg1) == INTEGER_CST
15209 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
15210 return true;
15211 return RECURSE (arg0);
15212
15213 CASE_CFN_POW:
15214 CASE_CFN_POW_FN:
15215 /* True if the 1st argument is nonnegative or the second
15216 argument is an even integer valued real. */
15217 if (TREE_CODE (arg1) == REAL_CST)
15218 {
15219 REAL_VALUE_TYPE c;
15220 HOST_WIDE_INT n;
15221
15222 c = TREE_REAL_CST (arg1);
15223 n = real_to_integer (&c);
15224 if ((n & 1) == 0)
15225 {
15226 REAL_VALUE_TYPE cint;
15227 real_from_integer (&cint, VOIDmode, n, SIGNED);
15228 if (real_identical (&c, &cint))
15229 return true;
15230 }
15231 }
15232 return RECURSE (arg0);
15233
15234 default:
15235 break;
15236 }
15237 return tree_simple_nonnegative_warnv_p (code: CALL_EXPR, type);
15238}
15239
15240/* Return true if T is known to be non-negative. If the return
15241 value is based on the assumption that signed overflow is undefined,
15242 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15243 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
15244
15245static bool
15246tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
15247{
15248 enum tree_code code = TREE_CODE (t);
15249 if (TYPE_UNSIGNED (TREE_TYPE (t)))
15250 return true;
15251
15252 switch (code)
15253 {
15254 case TARGET_EXPR:
15255 {
15256 tree temp = TARGET_EXPR_SLOT (t);
15257 t = TARGET_EXPR_INITIAL (t);
15258
15259 /* If the initializer is non-void, then it's a normal expression
15260 that will be assigned to the slot. */
15261 if (!VOID_TYPE_P (TREE_TYPE (t)))
15262 return RECURSE (t);
15263
15264 /* Otherwise, the initializer sets the slot in some way. One common
15265 way is an assignment statement at the end of the initializer. */
15266 while (1)
15267 {
15268 if (TREE_CODE (t) == BIND_EXPR)
15269 t = expr_last (BIND_EXPR_BODY (t));
15270 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
15271 || TREE_CODE (t) == TRY_CATCH_EXPR)
15272 t = expr_last (TREE_OPERAND (t, 0));
15273 else if (TREE_CODE (t) == STATEMENT_LIST)
15274 t = expr_last (t);
15275 else
15276 break;
15277 }
15278 if (TREE_CODE (t) == MODIFY_EXPR
15279 && TREE_OPERAND (t, 0) == temp)
15280 return RECURSE (TREE_OPERAND (t, 1));
15281
15282 return false;
15283 }
15284
15285 case CALL_EXPR:
15286 {
15287 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
15288 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
15289
15290 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
15291 fn: get_call_combined_fn (t),
15292 arg0,
15293 arg1,
15294 strict_overflow_p, depth);
15295 }
15296 case COMPOUND_EXPR:
15297 case MODIFY_EXPR:
15298 return RECURSE (TREE_OPERAND (t, 1));
15299
15300 case BIND_EXPR:
15301 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
15302
15303 case SAVE_EXPR:
15304 return RECURSE (TREE_OPERAND (t, 0));
15305
15306 default:
15307 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
15308 }
15309}
15310
15311#undef RECURSE
15312#undef tree_expr_nonnegative_warnv_p
15313
15314/* Return true if T is known to be non-negative. If the return
15315 value is based on the assumption that signed overflow is undefined,
15316 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15317 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
15318
15319bool
15320tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
15321{
15322 enum tree_code code;
15323 if (t == error_mark_node)
15324 return false;
15325
15326 code = TREE_CODE (t);
15327 switch (TREE_CODE_CLASS (code))
15328 {
15329 case tcc_binary:
15330 case tcc_comparison:
15331 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
15332 TREE_TYPE (t),
15333 TREE_OPERAND (t, 0),
15334 TREE_OPERAND (t, 1),
15335 strict_overflow_p, depth);
15336
15337 case tcc_unary:
15338 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
15339 TREE_TYPE (t),
15340 TREE_OPERAND (t, 0),
15341 strict_overflow_p, depth);
15342
15343 case tcc_constant:
15344 case tcc_declaration:
15345 case tcc_reference:
15346 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
15347
15348 default:
15349 break;
15350 }
15351
15352 switch (code)
15353 {
15354 case TRUTH_AND_EXPR:
15355 case TRUTH_OR_EXPR:
15356 case TRUTH_XOR_EXPR:
15357 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
15358 TREE_TYPE (t),
15359 TREE_OPERAND (t, 0),
15360 TREE_OPERAND (t, 1),
15361 strict_overflow_p, depth);
15362 case TRUTH_NOT_EXPR:
15363 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
15364 TREE_TYPE (t),
15365 TREE_OPERAND (t, 0),
15366 strict_overflow_p, depth);
15367
15368 case COND_EXPR:
15369 case CONSTRUCTOR:
15370 case OBJ_TYPE_REF:
15371 case ADDR_EXPR:
15372 case WITH_SIZE_EXPR:
15373 case SSA_NAME:
15374 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
15375
15376 default:
15377 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
15378 }
15379}
15380
15381/* Return true if `t' is known to be non-negative. Handle warnings
15382 about undefined signed overflow. */
15383
15384bool
15385tree_expr_nonnegative_p (tree t)
15386{
15387 bool ret, strict_overflow_p;
15388
15389 strict_overflow_p = false;
15390 ret = tree_expr_nonnegative_warnv_p (t, strict_overflow_p: &strict_overflow_p);
15391 if (strict_overflow_p)
15392 fold_overflow_warning (gmsgid: ("assuming signed overflow does not occur when "
15393 "determining that expression is always "
15394 "non-negative"),
15395 wc: WARN_STRICT_OVERFLOW_MISC);
15396 return ret;
15397}
15398
15399
15400/* Return true when (CODE OP0) is an address and is known to be nonzero.
15401 For floating point we further ensure that T is not denormal.
15402 Similar logic is present in nonzero_address in rtlanal.h.
15403
15404 If the return value is based on the assumption that signed overflow
15405 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15406 change *STRICT_OVERFLOW_P. */
15407
15408bool
15409tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
15410 bool *strict_overflow_p)
15411{
15412 switch (code)
15413 {
15414 case ABS_EXPR:
15415 return tree_expr_nonzero_warnv_p (t: op0,
15416 strict_overflow_p);
15417
15418 case NOP_EXPR:
15419 {
15420 tree inner_type = TREE_TYPE (op0);
15421 tree outer_type = type;
15422
15423 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
15424 && tree_expr_nonzero_warnv_p (t: op0,
15425 strict_overflow_p));
15426 }
15427 break;
15428
15429 case NON_LVALUE_EXPR:
15430 return tree_expr_nonzero_warnv_p (t: op0,
15431 strict_overflow_p);
15432
15433 default:
15434 break;
15435 }
15436
15437 return false;
15438}
15439
15440/* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
15441 For floating point we further ensure that T is not denormal.
15442 Similar logic is present in nonzero_address in rtlanal.h.
15443
15444 If the return value is based on the assumption that signed overflow
15445 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15446 change *STRICT_OVERFLOW_P. */
15447
15448bool
15449tree_binary_nonzero_warnv_p (enum tree_code code,
15450 tree type,
15451 tree op0,
15452 tree op1, bool *strict_overflow_p)
15453{
15454 bool sub_strict_overflow_p;
15455 switch (code)
15456 {
15457 case POINTER_PLUS_EXPR:
15458 case PLUS_EXPR:
15459 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
15460 {
15461 /* With the presence of negative values it is hard
15462 to say something. */
15463 sub_strict_overflow_p = false;
15464 if (!tree_expr_nonnegative_warnv_p (t: op0,
15465 strict_overflow_p: &sub_strict_overflow_p)
15466 || !tree_expr_nonnegative_warnv_p (t: op1,
15467 strict_overflow_p: &sub_strict_overflow_p))
15468 return false;
15469 /* One of operands must be positive and the other non-negative. */
15470 /* We don't set *STRICT_OVERFLOW_P here: even if this value
15471 overflows, on a twos-complement machine the sum of two
15472 nonnegative numbers can never be zero. */
15473 return (tree_expr_nonzero_warnv_p (t: op0,
15474 strict_overflow_p)
15475 || tree_expr_nonzero_warnv_p (t: op1,
15476 strict_overflow_p));
15477 }
15478 break;
15479
15480 case MULT_EXPR:
15481 if (TYPE_OVERFLOW_UNDEFINED (type))
15482 {
15483 if (tree_expr_nonzero_warnv_p (t: op0,
15484 strict_overflow_p)
15485 && tree_expr_nonzero_warnv_p (t: op1,
15486 strict_overflow_p))
15487 {
15488 *strict_overflow_p = true;
15489 return true;
15490 }
15491 }
15492 break;
15493
15494 case MIN_EXPR:
15495 sub_strict_overflow_p = false;
15496 if (tree_expr_nonzero_warnv_p (t: op0,
15497 strict_overflow_p: &sub_strict_overflow_p)
15498 && tree_expr_nonzero_warnv_p (t: op1,
15499 strict_overflow_p: &sub_strict_overflow_p))
15500 {
15501 if (sub_strict_overflow_p)
15502 *strict_overflow_p = true;
15503 }
15504 break;
15505
15506 case MAX_EXPR:
15507 sub_strict_overflow_p = false;
15508 if (tree_expr_nonzero_warnv_p (t: op0,
15509 strict_overflow_p: &sub_strict_overflow_p))
15510 {
15511 if (sub_strict_overflow_p)
15512 *strict_overflow_p = true;
15513
15514 /* When both operands are nonzero, then MAX must be too. */
15515 if (tree_expr_nonzero_warnv_p (t: op1,
15516 strict_overflow_p))
15517 return true;
15518
15519 /* MAX where operand 0 is positive is positive. */
15520 return tree_expr_nonnegative_warnv_p (t: op0,
15521 strict_overflow_p);
15522 }
15523 /* MAX where operand 1 is positive is positive. */
15524 else if (tree_expr_nonzero_warnv_p (t: op1,
15525 strict_overflow_p: &sub_strict_overflow_p)
15526 && tree_expr_nonnegative_warnv_p (t: op1,
15527 strict_overflow_p: &sub_strict_overflow_p))
15528 {
15529 if (sub_strict_overflow_p)
15530 *strict_overflow_p = true;
15531 return true;
15532 }
15533 break;
15534
15535 case BIT_IOR_EXPR:
15536 return (tree_expr_nonzero_warnv_p (t: op1,
15537 strict_overflow_p)
15538 || tree_expr_nonzero_warnv_p (t: op0,
15539 strict_overflow_p));
15540
15541 default:
15542 break;
15543 }
15544
15545 return false;
15546}
15547
15548/* Return true when T is an address and is known to be nonzero.
15549 For floating point we further ensure that T is not denormal.
15550 Similar logic is present in nonzero_address in rtlanal.h.
15551
15552 If the return value is based on the assumption that signed overflow
15553 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15554 change *STRICT_OVERFLOW_P. */
15555
15556bool
15557tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
15558{
15559 bool sub_strict_overflow_p;
15560 switch (TREE_CODE (t))
15561 {
15562 case INTEGER_CST:
15563 return !integer_zerop (t);
15564
15565 case ADDR_EXPR:
15566 {
15567 tree base = TREE_OPERAND (t, 0);
15568
15569 if (!DECL_P (base))
15570 base = get_base_address (t: base);
15571
15572 if (base && TREE_CODE (base) == TARGET_EXPR)
15573 base = TARGET_EXPR_SLOT (base);
15574
15575 if (!base)
15576 return false;
15577
15578 /* For objects in symbol table check if we know they are non-zero.
15579 Don't do anything for variables and functions before symtab is built;
15580 it is quite possible that they will be declared weak later. */
15581 int nonzero_addr = maybe_nonzero_address (decl: base);
15582 if (nonzero_addr >= 0)
15583 return nonzero_addr;
15584
15585 /* Constants are never weak. */
15586 if (CONSTANT_CLASS_P (base))
15587 return true;
15588
15589 return false;
15590 }
15591
15592 case COND_EXPR:
15593 sub_strict_overflow_p = false;
15594 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
15595 strict_overflow_p: &sub_strict_overflow_p)
15596 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
15597 strict_overflow_p: &sub_strict_overflow_p))
15598 {
15599 if (sub_strict_overflow_p)
15600 *strict_overflow_p = true;
15601 return true;
15602 }
15603 break;
15604
15605 case SSA_NAME:
15606 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
15607 break;
15608 return expr_not_equal_to (t, w: wi::zero (TYPE_PRECISION (TREE_TYPE (t))));
15609
15610 default:
15611 break;
15612 }
15613 return false;
15614}
15615
15616#define integer_valued_real_p(X) \
15617 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
15618
15619#define RECURSE(X) \
15620 ((integer_valued_real_p) (X, depth + 1))
15621
15622/* Return true if the floating point result of (CODE OP0) has an
15623 integer value. We also allow +Inf, -Inf and NaN to be considered
15624 integer values. Return false for signaling NaN.
15625
15626 DEPTH is the current nesting depth of the query. */
15627
15628bool
15629integer_valued_real_unary_p (tree_code code, tree op0, int depth)
15630{
15631 switch (code)
15632 {
15633 case FLOAT_EXPR:
15634 return true;
15635
15636 case ABS_EXPR:
15637 return RECURSE (op0);
15638
15639 CASE_CONVERT:
15640 {
15641 tree type = TREE_TYPE (op0);
15642 if (TREE_CODE (type) == INTEGER_TYPE)
15643 return true;
15644 if (SCALAR_FLOAT_TYPE_P (type))
15645 return RECURSE (op0);
15646 break;
15647 }
15648
15649 default:
15650 break;
15651 }
15652 return false;
15653}
15654
15655/* Return true if the floating point result of (CODE OP0 OP1) has an
15656 integer value. We also allow +Inf, -Inf and NaN to be considered
15657 integer values. Return false for signaling NaN.
15658
15659 DEPTH is the current nesting depth of the query. */
15660
15661bool
15662integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
15663{
15664 switch (code)
15665 {
15666 case PLUS_EXPR:
15667 case MINUS_EXPR:
15668 case MULT_EXPR:
15669 case MIN_EXPR:
15670 case MAX_EXPR:
15671 return RECURSE (op0) && RECURSE (op1);
15672
15673 default:
15674 break;
15675 }
15676 return false;
15677}
15678
15679/* Return true if the floating point result of calling FNDECL with arguments
15680 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
15681 considered integer values. Return false for signaling NaN. If FNDECL
15682 takes fewer than 2 arguments, the remaining ARGn are null.
15683
15684 DEPTH is the current nesting depth of the query. */
15685
15686bool
15687integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
15688{
15689 switch (fn)
15690 {
15691 CASE_CFN_CEIL:
15692 CASE_CFN_CEIL_FN:
15693 CASE_CFN_FLOOR:
15694 CASE_CFN_FLOOR_FN:
15695 CASE_CFN_NEARBYINT:
15696 CASE_CFN_NEARBYINT_FN:
15697 CASE_CFN_RINT:
15698 CASE_CFN_RINT_FN:
15699 CASE_CFN_ROUND:
15700 CASE_CFN_ROUND_FN:
15701 CASE_CFN_ROUNDEVEN:
15702 CASE_CFN_ROUNDEVEN_FN:
15703 CASE_CFN_TRUNC:
15704 CASE_CFN_TRUNC_FN:
15705 return true;
15706
15707 CASE_CFN_FMIN:
15708 CASE_CFN_FMIN_FN:
15709 CASE_CFN_FMAX:
15710 CASE_CFN_FMAX_FN:
15711 return RECURSE (arg0) && RECURSE (arg1);
15712
15713 default:
15714 break;
15715 }
15716 return false;
15717}
15718
15719/* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
15720 has an integer value. We also allow +Inf, -Inf and NaN to be
15721 considered integer values. Return false for signaling NaN.
15722
15723 DEPTH is the current nesting depth of the query. */
15724
15725bool
15726integer_valued_real_single_p (tree t, int depth)
15727{
15728 switch (TREE_CODE (t))
15729 {
15730 case REAL_CST:
15731 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
15732
15733 case COND_EXPR:
15734 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
15735
15736 case SSA_NAME:
15737 /* Limit the depth of recursion to avoid quadratic behavior.
15738 This is expected to catch almost all occurrences in practice.
15739 If this code misses important cases that unbounded recursion
15740 would not, passes that need this information could be revised
15741 to provide it through dataflow propagation. */
15742 return (!name_registered_for_update_p (t)
15743 && depth < param_max_ssa_name_query_depth
15744 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
15745 depth));
15746
15747 default:
15748 break;
15749 }
15750 return false;
15751}
15752
15753/* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
15754 has an integer value. We also allow +Inf, -Inf and NaN to be
15755 considered integer values. Return false for signaling NaN.
15756
15757 DEPTH is the current nesting depth of the query. */
15758
15759static bool
15760integer_valued_real_invalid_p (tree t, int depth)
15761{
15762 switch (TREE_CODE (t))
15763 {
15764 case COMPOUND_EXPR:
15765 case MODIFY_EXPR:
15766 case BIND_EXPR:
15767 return RECURSE (TREE_OPERAND (t, 1));
15768
15769 case SAVE_EXPR:
15770 return RECURSE (TREE_OPERAND (t, 0));
15771
15772 default:
15773 break;
15774 }
15775 return false;
15776}
15777
15778#undef RECURSE
15779#undef integer_valued_real_p
15780
15781/* Return true if the floating point expression T has an integer value.
15782 We also allow +Inf, -Inf and NaN to be considered integer values.
15783 Return false for signaling NaN.
15784
15785 DEPTH is the current nesting depth of the query. */
15786
15787bool
15788integer_valued_real_p (tree t, int depth)
15789{
15790 if (t == error_mark_node)
15791 return false;
15792
15793 STRIP_ANY_LOCATION_WRAPPER (t);
15794
15795 tree_code code = TREE_CODE (t);
15796 switch (TREE_CODE_CLASS (code))
15797 {
15798 case tcc_binary:
15799 case tcc_comparison:
15800 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
15801 TREE_OPERAND (t, 1), depth);
15802
15803 case tcc_unary:
15804 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
15805
15806 case tcc_constant:
15807 case tcc_declaration:
15808 case tcc_reference:
15809 return integer_valued_real_single_p (t, depth);
15810
15811 default:
15812 break;
15813 }
15814
15815 switch (code)
15816 {
15817 case COND_EXPR:
15818 case SSA_NAME:
15819 return integer_valued_real_single_p (t, depth);
15820
15821 case CALL_EXPR:
15822 {
15823 tree arg0 = (call_expr_nargs (t) > 0
15824 ? CALL_EXPR_ARG (t, 0)
15825 : NULL_TREE);
15826 tree arg1 = (call_expr_nargs (t) > 1
15827 ? CALL_EXPR_ARG (t, 1)
15828 : NULL_TREE);
15829 return integer_valued_real_call_p (fn: get_call_combined_fn (t),
15830 arg0, arg1, depth);
15831 }
15832
15833 default:
15834 return integer_valued_real_invalid_p (t, depth);
15835 }
15836}
15837
15838/* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
15839 attempt to fold the expression to a constant without modifying TYPE,
15840 OP0 or OP1.
15841
15842 If the expression could be simplified to a constant, then return
15843 the constant. If the expression would not be simplified to a
15844 constant, then return NULL_TREE. */
15845
15846tree
15847fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
15848{
15849 tree tem = fold_binary (code, type, op0, op1);
15850 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15851}
15852
15853/* Given the components of a unary expression CODE, TYPE and OP0,
15854 attempt to fold the expression to a constant without modifying
15855 TYPE or OP0.
15856
15857 If the expression could be simplified to a constant, then return
15858 the constant. If the expression would not be simplified to a
15859 constant, then return NULL_TREE. */
15860
15861tree
15862fold_unary_to_constant (enum tree_code code, tree type, tree op0)
15863{
15864 tree tem = fold_unary (code, type, op0);
15865 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15866}
15867
15868/* If EXP represents referencing an element in a constant string
15869 (either via pointer arithmetic or array indexing), return the
15870 tree representing the value accessed, otherwise return NULL. */
15871
15872tree
15873fold_read_from_constant_string (tree exp)
15874{
15875 if ((INDIRECT_REF_P (exp)
15876 || TREE_CODE (exp) == ARRAY_REF)
15877 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
15878 {
15879 tree exp1 = TREE_OPERAND (exp, 0);
15880 tree index;
15881 tree string;
15882 location_t loc = EXPR_LOCATION (exp);
15883
15884 if (INDIRECT_REF_P (exp))
15885 string = string_constant (exp1, &index, NULL, NULL);
15886 else
15887 {
15888 tree low_bound = array_ref_low_bound (exp);
15889 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
15890
15891 /* Optimize the special-case of a zero lower bound.
15892
15893 We convert the low_bound to sizetype to avoid some problems
15894 with constant folding. (E.g. suppose the lower bound is 1,
15895 and its mode is QI. Without the conversion,l (ARRAY
15896 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
15897 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
15898 if (! integer_zerop (low_bound))
15899 index = size_diffop_loc (loc, arg0: index,
15900 arg1: fold_convert_loc (loc, sizetype, arg: low_bound));
15901
15902 string = exp1;
15903 }
15904
15905 scalar_int_mode char_mode;
15906 if (string
15907 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
15908 && TREE_CODE (string) == STRING_CST
15909 && tree_fits_uhwi_p (index)
15910 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
15911 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))),
15912 int_mode: &char_mode)
15913 && GET_MODE_SIZE (mode: char_mode) == 1)
15914 return build_int_cst_type (TREE_TYPE (exp),
15915 (TREE_STRING_POINTER (string)
15916 [TREE_INT_CST_LOW (index)]));
15917 }
15918 return NULL;
15919}
15920
15921/* Folds a read from vector element at IDX of vector ARG. */
15922
15923tree
15924fold_read_from_vector (tree arg, poly_uint64 idx)
15925{
15926 unsigned HOST_WIDE_INT i;
15927 if (known_lt (idx, TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)))
15928 && known_ge (idx, 0u)
15929 && idx.is_constant (const_value: &i))
15930 {
15931 if (TREE_CODE (arg) == VECTOR_CST)
15932 return VECTOR_CST_ELT (arg, i);
15933 else if (TREE_CODE (arg) == CONSTRUCTOR)
15934 {
15935 if (CONSTRUCTOR_NELTS (arg)
15936 && VECTOR_TYPE_P (TREE_TYPE (CONSTRUCTOR_ELT (arg, 0)->value)))
15937 return NULL_TREE;
15938 if (i >= CONSTRUCTOR_NELTS (arg))
15939 return build_zero_cst (TREE_TYPE (TREE_TYPE (arg)));
15940 return CONSTRUCTOR_ELT (arg, i)->value;
15941 }
15942 }
15943 return NULL_TREE;
15944}
15945
15946/* Return the tree for neg (ARG0) when ARG0 is known to be either
15947 an integer constant, real, or fixed-point constant.
15948
15949 TYPE is the type of the result. */
15950
15951static tree
15952fold_negate_const (tree arg0, tree type)
15953{
15954 tree t = NULL_TREE;
15955
15956 switch (TREE_CODE (arg0))
15957 {
15958 case REAL_CST:
15959 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
15960 break;
15961
15962 case FIXED_CST:
15963 {
15964 FIXED_VALUE_TYPE f;
15965 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
15966 &(TREE_FIXED_CST (arg0)), NULL,
15967 TYPE_SATURATING (type));
15968 t = build_fixed (type, f);
15969 /* Propagate overflow flags. */
15970 if (overflow_p | TREE_OVERFLOW (arg0))
15971 TREE_OVERFLOW (t) = 1;
15972 break;
15973 }
15974
15975 default:
15976 if (poly_int_tree_p (t: arg0))
15977 {
15978 wi::overflow_type overflow;
15979 poly_wide_int res = wi::neg (a: wi::to_poly_wide (t: arg0), overflow: &overflow);
15980 t = force_fit_type (type, res, 1,
15981 (overflow && ! TYPE_UNSIGNED (type))
15982 || TREE_OVERFLOW (arg0));
15983 break;
15984 }
15985
15986 gcc_unreachable ();
15987 }
15988
15989 return t;
15990}
15991
15992/* Return the tree for abs (ARG0) when ARG0 is known to be either
15993 an integer constant or real constant.
15994
15995 TYPE is the type of the result. */
15996
15997tree
15998fold_abs_const (tree arg0, tree type)
15999{
16000 tree t = NULL_TREE;
16001
16002 switch (TREE_CODE (arg0))
16003 {
16004 case INTEGER_CST:
16005 {
16006 /* If the value is unsigned or non-negative, then the absolute value
16007 is the same as the ordinary value. */
16008 wide_int val = wi::to_wide (t: arg0);
16009 wi::overflow_type overflow = wi::OVF_NONE;
16010 if (!wi::neg_p (x: val, TYPE_SIGN (TREE_TYPE (arg0))))
16011 ;
16012
16013 /* If the value is negative, then the absolute value is
16014 its negation. */
16015 else
16016 val = wi::neg (x: val, overflow: &overflow);
16017
16018 /* Force to the destination type, set TREE_OVERFLOW for signed
16019 TYPE only. */
16020 t = force_fit_type (type, val, 1, overflow | TREE_OVERFLOW (arg0));
16021 }
16022 break;
16023
16024 case REAL_CST:
16025 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
16026 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
16027 else
16028 t = arg0;
16029 break;
16030
16031 default:
16032 gcc_unreachable ();
16033 }
16034
16035 return t;
16036}
16037
16038/* Return the tree for not (ARG0) when ARG0 is known to be an integer
16039 constant. TYPE is the type of the result. */
16040
16041static tree
16042fold_not_const (const_tree arg0, tree type)
16043{
16044 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
16045
16046 return force_fit_type (type, ~wi::to_wide (t: arg0), 0, TREE_OVERFLOW (arg0));
16047}
16048
16049/* Given CODE, a relational operator, the target type, TYPE and two
16050 constant operands OP0 and OP1, return the result of the
16051 relational operation. If the result is not a compile time
16052 constant, then return NULL_TREE. */
16053
16054static tree
16055fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
16056{
16057 int result, invert;
16058
16059 /* From here on, the only cases we handle are when the result is
16060 known to be a constant. */
16061
16062 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
16063 {
16064 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
16065 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
16066
16067 /* Handle the cases where either operand is a NaN. */
16068 if (real_isnan (c0) || real_isnan (c1))
16069 {
16070 switch (code)
16071 {
16072 case EQ_EXPR:
16073 case ORDERED_EXPR:
16074 result = 0;
16075 break;
16076
16077 case NE_EXPR:
16078 case UNORDERED_EXPR:
16079 case UNLT_EXPR:
16080 case UNLE_EXPR:
16081 case UNGT_EXPR:
16082 case UNGE_EXPR:
16083 case UNEQ_EXPR:
16084 result = 1;
16085 break;
16086
16087 case LT_EXPR:
16088 case LE_EXPR:
16089 case GT_EXPR:
16090 case GE_EXPR:
16091 case LTGT_EXPR:
16092 if (flag_trapping_math)
16093 return NULL_TREE;
16094 result = 0;
16095 break;
16096
16097 default:
16098 gcc_unreachable ();
16099 }
16100
16101 return constant_boolean_node (value: result, type);
16102 }
16103
16104 return constant_boolean_node (value: real_compare (code, c0, c1), type);
16105 }
16106
16107 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
16108 {
16109 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
16110 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
16111 return constant_boolean_node (value: fixed_compare (code, c0, c1), type);
16112 }
16113
16114 /* Handle equality/inequality of complex constants. */
16115 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
16116 {
16117 tree rcond = fold_relational_const (code, type,
16118 TREE_REALPART (op0),
16119 TREE_REALPART (op1));
16120 tree icond = fold_relational_const (code, type,
16121 TREE_IMAGPART (op0),
16122 TREE_IMAGPART (op1));
16123 if (code == EQ_EXPR)
16124 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
16125 else if (code == NE_EXPR)
16126 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
16127 else
16128 return NULL_TREE;
16129 }
16130
16131 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
16132 {
16133 if (!VECTOR_TYPE_P (type))
16134 {
16135 /* Have vector comparison with scalar boolean result. */
16136 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
16137 && known_eq (VECTOR_CST_NELTS (op0),
16138 VECTOR_CST_NELTS (op1)));
16139 unsigned HOST_WIDE_INT nunits;
16140 if (!VECTOR_CST_NELTS (op0).is_constant (const_value: &nunits))
16141 return NULL_TREE;
16142 for (unsigned i = 0; i < nunits; i++)
16143 {
16144 tree elem0 = VECTOR_CST_ELT (op0, i);
16145 tree elem1 = VECTOR_CST_ELT (op1, i);
16146 tree tmp = fold_relational_const (code: EQ_EXPR, type, op0: elem0, op1: elem1);
16147 if (tmp == NULL_TREE)
16148 return NULL_TREE;
16149 if (integer_zerop (tmp))
16150 return constant_boolean_node (value: code == NE_EXPR, type);
16151 }
16152 return constant_boolean_node (value: code == EQ_EXPR, type);
16153 }
16154 tree_vector_builder elts;
16155 if (!elts.new_binary_operation (shape: type, vec1: op0, vec2: op1, allow_stepped_p: false))
16156 return NULL_TREE;
16157 unsigned int count = elts.encoded_nelts ();
16158 for (unsigned i = 0; i < count; i++)
16159 {
16160 tree elem_type = TREE_TYPE (type);
16161 tree elem0 = VECTOR_CST_ELT (op0, i);
16162 tree elem1 = VECTOR_CST_ELT (op1, i);
16163
16164 tree tem = fold_relational_const (code, type: elem_type,
16165 op0: elem0, op1: elem1);
16166
16167 if (tem == NULL_TREE)
16168 return NULL_TREE;
16169
16170 elts.quick_push (obj: build_int_cst (elem_type,
16171 integer_zerop (tem) ? 0 : -1));
16172 }
16173
16174 return elts.build ();
16175 }
16176
16177 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
16178
16179 To compute GT, swap the arguments and do LT.
16180 To compute GE, do LT and invert the result.
16181 To compute LE, swap the arguments, do LT and invert the result.
16182 To compute NE, do EQ and invert the result.
16183
16184 Therefore, the code below must handle only EQ and LT. */
16185
16186 if (code == LE_EXPR || code == GT_EXPR)
16187 {
16188 std::swap (a&: op0, b&: op1);
16189 code = swap_tree_comparison (code);
16190 }
16191
16192 /* Note that it is safe to invert for real values here because we
16193 have already handled the one case that it matters. */
16194
16195 invert = 0;
16196 if (code == NE_EXPR || code == GE_EXPR)
16197 {
16198 invert = 1;
16199 code = invert_tree_comparison (code, honor_nans: false);
16200 }
16201
16202 /* Compute a result for LT or EQ if args permit;
16203 Otherwise return T. */
16204 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
16205 {
16206 if (code == EQ_EXPR)
16207 result = tree_int_cst_equal (op0, op1);
16208 else
16209 result = tree_int_cst_lt (t1: op0, t2: op1);
16210 }
16211 else
16212 return NULL_TREE;
16213
16214 if (invert)
16215 result ^= 1;
16216 return constant_boolean_node (value: result, type);
16217}
16218
16219/* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
16220 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
16221 itself. */
16222
16223tree
16224fold_build_cleanup_point_expr (tree type, tree expr)
16225{
16226 /* If the expression does not have side effects then we don't have to wrap
16227 it with a cleanup point expression. */
16228 if (!TREE_SIDE_EFFECTS (expr))
16229 return expr;
16230
16231 /* If the expression is a return, check to see if the expression inside the
16232 return has no side effects or the right hand side of the modify expression
16233 inside the return. If either don't have side effects set we don't need to
16234 wrap the expression in a cleanup point expression. Note we don't check the
16235 left hand side of the modify because it should always be a return decl. */
16236 if (TREE_CODE (expr) == RETURN_EXPR)
16237 {
16238 tree op = TREE_OPERAND (expr, 0);
16239 if (!op || !TREE_SIDE_EFFECTS (op))
16240 return expr;
16241 op = TREE_OPERAND (op, 1);
16242 if (!TREE_SIDE_EFFECTS (op))
16243 return expr;
16244 }
16245
16246 return build1_loc (EXPR_LOCATION (expr), code: CLEANUP_POINT_EXPR, type, arg1: expr);
16247}
16248
16249/* Given a pointer value OP0 and a type TYPE, return a simplified version
16250 of an indirection through OP0, or NULL_TREE if no simplification is
16251 possible. */
16252
16253tree
16254fold_indirect_ref_1 (location_t loc, tree type, tree op0)
16255{
16256 tree sub = op0;
16257 tree subtype;
16258 poly_uint64 const_op01;
16259
16260 STRIP_NOPS (sub);
16261 subtype = TREE_TYPE (sub);
16262 if (!POINTER_TYPE_P (subtype)
16263 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0)))
16264 return NULL_TREE;
16265
16266 if (TREE_CODE (sub) == ADDR_EXPR)
16267 {
16268 tree op = TREE_OPERAND (sub, 0);
16269 tree optype = TREE_TYPE (op);
16270
16271 /* *&CONST_DECL -> to the value of the const decl. */
16272 if (TREE_CODE (op) == CONST_DECL)
16273 return DECL_INITIAL (op);
16274 /* *&p => p; make sure to handle *&"str"[cst] here. */
16275 if (type == optype)
16276 {
16277 tree fop = fold_read_from_constant_string (exp: op);
16278 if (fop)
16279 return fop;
16280 else
16281 return op;
16282 }
16283 /* *(foo *)&fooarray => fooarray[0] */
16284 else if (TREE_CODE (optype) == ARRAY_TYPE
16285 && type == TREE_TYPE (optype)
16286 && (!in_gimple_form
16287 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
16288 {
16289 tree type_domain = TYPE_DOMAIN (optype);
16290 tree min_val = size_zero_node;
16291 if (type_domain && TYPE_MIN_VALUE (type_domain))
16292 min_val = TYPE_MIN_VALUE (type_domain);
16293 if (in_gimple_form
16294 && TREE_CODE (min_val) != INTEGER_CST)
16295 return NULL_TREE;
16296 return build4_loc (loc, code: ARRAY_REF, type, arg0: op, arg1: min_val,
16297 NULL_TREE, NULL_TREE);
16298 }
16299 /* *(foo *)&complexfoo => __real__ complexfoo */
16300 else if (TREE_CODE (optype) == COMPLEX_TYPE
16301 && type == TREE_TYPE (optype))
16302 return fold_build1_loc (loc, code: REALPART_EXPR, type, op0: op);
16303 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
16304 else if (VECTOR_TYPE_P (optype)
16305 && type == TREE_TYPE (optype))
16306 {
16307 tree part_width = TYPE_SIZE (type);
16308 tree index = bitsize_int (0);
16309 return fold_build3_loc (loc, code: BIT_FIELD_REF, type, op0: op, op1: part_width,
16310 op2: index);
16311 }
16312 }
16313
16314 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
16315 && poly_int_tree_p (TREE_OPERAND (sub, 1), value: &const_op01))
16316 {
16317 tree op00 = TREE_OPERAND (sub, 0);
16318 tree op01 = TREE_OPERAND (sub, 1);
16319
16320 STRIP_NOPS (op00);
16321 if (TREE_CODE (op00) == ADDR_EXPR)
16322 {
16323 tree op00type;
16324 op00 = TREE_OPERAND (op00, 0);
16325 op00type = TREE_TYPE (op00);
16326
16327 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
16328 if (VECTOR_TYPE_P (op00type)
16329 && type == TREE_TYPE (op00type)
16330 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned,
16331 but we want to treat offsets with MSB set as negative.
16332 For the code below negative offsets are invalid and
16333 TYPE_SIZE of the element is something unsigned, so
16334 check whether op01 fits into poly_int64, which implies
16335 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and
16336 then just use poly_uint64 because we want to treat the
16337 value as unsigned. */
16338 && tree_fits_poly_int64_p (op01))
16339 {
16340 tree part_width = TYPE_SIZE (type);
16341 poly_uint64 max_offset
16342 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
16343 * TYPE_VECTOR_SUBPARTS (node: op00type));
16344 if (known_lt (const_op01, max_offset))
16345 {
16346 tree index = bitsize_int (const_op01 * BITS_PER_UNIT);
16347 return fold_build3_loc (loc,
16348 code: BIT_FIELD_REF, type, op0: op00,
16349 op1: part_width, op2: index);
16350 }
16351 }
16352 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
16353 else if (TREE_CODE (op00type) == COMPLEX_TYPE
16354 && type == TREE_TYPE (op00type))
16355 {
16356 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type)),
16357 const_op01))
16358 return fold_build1_loc (loc, code: IMAGPART_EXPR, type, op0: op00);
16359 }
16360 /* ((foo *)&fooarray)[1] => fooarray[1] */
16361 else if (TREE_CODE (op00type) == ARRAY_TYPE
16362 && type == TREE_TYPE (op00type))
16363 {
16364 tree type_domain = TYPE_DOMAIN (op00type);
16365 tree min_val = size_zero_node;
16366 if (type_domain && TYPE_MIN_VALUE (type_domain))
16367 min_val = TYPE_MIN_VALUE (type_domain);
16368 poly_uint64 type_size, index;
16369 if (poly_int_tree_p (t: min_val)
16370 && poly_int_tree_p (TYPE_SIZE_UNIT (type), value: &type_size)
16371 && multiple_p (a: const_op01, b: type_size, multiple: &index))
16372 {
16373 poly_offset_int off = index + wi::to_poly_offset (t: min_val);
16374 op01 = wide_int_to_tree (sizetype, cst: off);
16375 return build4_loc (loc, code: ARRAY_REF, type, arg0: op00, arg1: op01,
16376 NULL_TREE, NULL_TREE);
16377 }
16378 }
16379 }
16380 }
16381
16382 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
16383 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
16384 && type == TREE_TYPE (TREE_TYPE (subtype))
16385 && (!in_gimple_form
16386 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
16387 {
16388 tree type_domain;
16389 tree min_val = size_zero_node;
16390 sub = build_fold_indirect_ref_loc (loc, sub);
16391 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
16392 if (type_domain && TYPE_MIN_VALUE (type_domain))
16393 min_val = TYPE_MIN_VALUE (type_domain);
16394 if (in_gimple_form
16395 && TREE_CODE (min_val) != INTEGER_CST)
16396 return NULL_TREE;
16397 return build4_loc (loc, code: ARRAY_REF, type, arg0: sub, arg1: min_val, NULL_TREE,
16398 NULL_TREE);
16399 }
16400
16401 return NULL_TREE;
16402}
16403
16404/* Builds an expression for an indirection through T, simplifying some
16405 cases. */
16406
16407tree
16408build_fold_indirect_ref_loc (location_t loc, tree t)
16409{
16410 tree type = TREE_TYPE (TREE_TYPE (t));
16411 tree sub = fold_indirect_ref_1 (loc, type, op0: t);
16412
16413 if (sub)
16414 return sub;
16415
16416 return build1_loc (loc, code: INDIRECT_REF, type, arg1: t);
16417}
16418
16419/* Given an INDIRECT_REF T, return either T or a simplified version. */
16420
16421tree
16422fold_indirect_ref_loc (location_t loc, tree t)
16423{
16424 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
16425
16426 if (sub)
16427 return sub;
16428 else
16429 return t;
16430}
16431
16432/* Strip non-trapping, non-side-effecting tree nodes from an expression
16433 whose result is ignored. The type of the returned tree need not be
16434 the same as the original expression. */
16435
16436tree
16437fold_ignored_result (tree t)
16438{
16439 if (!TREE_SIDE_EFFECTS (t))
16440 return integer_zero_node;
16441
16442 for (;;)
16443 switch (TREE_CODE_CLASS (TREE_CODE (t)))
16444 {
16445 case tcc_unary:
16446 t = TREE_OPERAND (t, 0);
16447 break;
16448
16449 case tcc_binary:
16450 case tcc_comparison:
16451 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
16452 t = TREE_OPERAND (t, 0);
16453 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
16454 t = TREE_OPERAND (t, 1);
16455 else
16456 return t;
16457 break;
16458
16459 case tcc_expression:
16460 switch (TREE_CODE (t))
16461 {
16462 case COMPOUND_EXPR:
16463 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
16464 return t;
16465 t = TREE_OPERAND (t, 0);
16466 break;
16467
16468 case COND_EXPR:
16469 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
16470 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
16471 return t;
16472 t = TREE_OPERAND (t, 0);
16473 break;
16474
16475 default:
16476 return t;
16477 }
16478 break;
16479
16480 default:
16481 return t;
16482 }
16483}
16484
16485/* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
16486
16487tree
16488round_up_loc (location_t loc, tree value, unsigned int divisor)
16489{
16490 tree div = NULL_TREE;
16491
16492 if (divisor == 1)
16493 return value;
16494
16495 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
16496 have to do anything. Only do this when we are not given a const,
16497 because in that case, this check is more expensive than just
16498 doing it. */
16499 if (TREE_CODE (value) != INTEGER_CST)
16500 {
16501 div = build_int_cst (TREE_TYPE (value), divisor);
16502
16503 if (multiple_of_p (TREE_TYPE (value), top: value, bottom: div))
16504 return value;
16505 }
16506
16507 /* If divisor is a power of two, simplify this to bit manipulation. */
16508 if (pow2_or_zerop (x: divisor))
16509 {
16510 if (TREE_CODE (value) == INTEGER_CST)
16511 {
16512 wide_int val = wi::to_wide (t: value);
16513 bool overflow_p;
16514
16515 if ((val & (divisor - 1)) == 0)
16516 return value;
16517
16518 overflow_p = TREE_OVERFLOW (value);
16519 val += divisor - 1;
16520 val &= (int) -divisor;
16521 if (val == 0)
16522 overflow_p = true;
16523
16524 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
16525 }
16526 else
16527 {
16528 tree t;
16529
16530 t = build_int_cst (TREE_TYPE (value), divisor - 1);
16531 value = size_binop_loc (loc, code: PLUS_EXPR, arg0: value, arg1: t);
16532 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
16533 value = size_binop_loc (loc, code: BIT_AND_EXPR, arg0: value, arg1: t);
16534 }
16535 }
16536 else
16537 {
16538 if (!div)
16539 div = build_int_cst (TREE_TYPE (value), divisor);
16540 value = size_binop_loc (loc, code: CEIL_DIV_EXPR, arg0: value, arg1: div);
16541 value = size_binop_loc (loc, code: MULT_EXPR, arg0: value, arg1: div);
16542 }
16543
16544 return value;
16545}
16546
16547/* Likewise, but round down. */
16548
16549tree
16550round_down_loc (location_t loc, tree value, int divisor)
16551{
16552 tree div = NULL_TREE;
16553
16554 gcc_assert (divisor > 0);
16555 if (divisor == 1)
16556 return value;
16557
16558 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
16559 have to do anything. Only do this when we are not given a const,
16560 because in that case, this check is more expensive than just
16561 doing it. */
16562 if (TREE_CODE (value) != INTEGER_CST)
16563 {
16564 div = build_int_cst (TREE_TYPE (value), divisor);
16565
16566 if (multiple_of_p (TREE_TYPE (value), top: value, bottom: div))
16567 return value;
16568 }
16569
16570 /* If divisor is a power of two, simplify this to bit manipulation. */
16571 if (pow2_or_zerop (x: divisor))
16572 {
16573 tree t;
16574
16575 t = build_int_cst (TREE_TYPE (value), -divisor);
16576 value = size_binop_loc (loc, code: BIT_AND_EXPR, arg0: value, arg1: t);
16577 }
16578 else
16579 {
16580 if (!div)
16581 div = build_int_cst (TREE_TYPE (value), divisor);
16582 value = size_binop_loc (loc, code: FLOOR_DIV_EXPR, arg0: value, arg1: div);
16583 value = size_binop_loc (loc, code: MULT_EXPR, arg0: value, arg1: div);
16584 }
16585
16586 return value;
16587}
16588
16589/* Returns the pointer to the base of the object addressed by EXP and
16590 extracts the information about the offset of the access, storing it
16591 to PBITPOS and POFFSET. */
16592
16593static tree
16594split_address_to_core_and_offset (tree exp,
16595 poly_int64 *pbitpos, tree *poffset)
16596{
16597 tree core;
16598 machine_mode mode;
16599 int unsignedp, reversep, volatilep;
16600 poly_int64 bitsize;
16601 location_t loc = EXPR_LOCATION (exp);
16602
16603 if (TREE_CODE (exp) == SSA_NAME)
16604 if (gassign *def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (exp)))
16605 if (gimple_assign_rhs_code (gs: def) == ADDR_EXPR)
16606 exp = gimple_assign_rhs1 (gs: def);
16607
16608 if (TREE_CODE (exp) == ADDR_EXPR)
16609 {
16610 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
16611 poffset, &mode, &unsignedp, &reversep,
16612 &volatilep);
16613 core = build_fold_addr_expr_loc (loc, t: core);
16614 }
16615 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR)
16616 {
16617 core = TREE_OPERAND (exp, 0);
16618 STRIP_NOPS (core);
16619 *pbitpos = 0;
16620 *poffset = TREE_OPERAND (exp, 1);
16621 if (poly_int_tree_p (t: *poffset))
16622 {
16623 poly_offset_int tem
16624 = wi::sext (a: wi::to_poly_offset (t: *poffset),
16625 TYPE_PRECISION (TREE_TYPE (*poffset)));
16626 tem <<= LOG2_BITS_PER_UNIT;
16627 if (tem.to_shwi (r: pbitpos))
16628 *poffset = NULL_TREE;
16629 }
16630 }
16631 else
16632 {
16633 core = exp;
16634 *pbitpos = 0;
16635 *poffset = NULL_TREE;
16636 }
16637
16638 return core;
16639}
16640
16641/* Returns true if addresses of E1 and E2 differ by a constant, false
16642 otherwise. If they do, E1 - E2 is stored in *DIFF. */
16643
16644bool
16645ptr_difference_const (tree e1, tree e2, poly_int64 *diff)
16646{
16647 tree core1, core2;
16648 poly_int64 bitpos1, bitpos2;
16649 tree toffset1, toffset2, tdiff, type;
16650
16651 core1 = split_address_to_core_and_offset (exp: e1, pbitpos: &bitpos1, poffset: &toffset1);
16652 core2 = split_address_to_core_and_offset (exp: e2, pbitpos: &bitpos2, poffset: &toffset2);
16653
16654 poly_int64 bytepos1, bytepos2;
16655 if (!multiple_p (a: bitpos1, BITS_PER_UNIT, multiple: &bytepos1)
16656 || !multiple_p (a: bitpos2, BITS_PER_UNIT, multiple: &bytepos2)
16657 || !operand_equal_p (arg0: core1, arg1: core2, flags: 0))
16658 return false;
16659
16660 if (toffset1 && toffset2)
16661 {
16662 type = TREE_TYPE (toffset1);
16663 if (type != TREE_TYPE (toffset2))
16664 toffset2 = fold_convert (type, toffset2);
16665
16666 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
16667 if (!cst_and_fits_in_hwi (tdiff))
16668 return false;
16669
16670 *diff = int_cst_value (tdiff);
16671 }
16672 else if (toffset1 || toffset2)
16673 {
16674 /* If only one of the offsets is non-constant, the difference cannot
16675 be a constant. */
16676 return false;
16677 }
16678 else
16679 *diff = 0;
16680
16681 *diff += bytepos1 - bytepos2;
16682 return true;
16683}
16684
16685/* Return OFF converted to a pointer offset type suitable as offset for
16686 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
16687tree
16688convert_to_ptrofftype_loc (location_t loc, tree off)
16689{
16690 if (ptrofftype_p (TREE_TYPE (off)))
16691 return off;
16692 return fold_convert_loc (loc, sizetype, arg: off);
16693}
16694
16695/* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
16696tree
16697fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
16698{
16699 return fold_build2_loc (loc, code: POINTER_PLUS_EXPR, TREE_TYPE (ptr),
16700 op0: ptr, op1: convert_to_ptrofftype_loc (loc, off));
16701}
16702
16703/* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
16704tree
16705fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
16706{
16707 return fold_build2_loc (loc, code: POINTER_PLUS_EXPR, TREE_TYPE (ptr),
16708 op0: ptr, size_int (off));
16709}
16710
16711/* Return a pointer to a NUL-terminated string containing the sequence
16712 of bytes corresponding to the representation of the object referred to
16713 by SRC (or a subsequence of such bytes within it if SRC is a reference
16714 to an initialized constant array plus some constant offset).
16715 Set *STRSIZE the number of bytes in the constant sequence including
16716 the terminating NUL byte. *STRSIZE is equal to sizeof(A) - OFFSET
16717 where A is the array that stores the constant sequence that SRC points
16718 to and OFFSET is the byte offset of SRC from the beginning of A. SRC
16719 need not point to a string or even an array of characters but may point
16720 to an object of any type. */
16721
16722const char *
16723getbyterep (tree src, unsigned HOST_WIDE_INT *strsize)
16724{
16725 /* The offset into the array A storing the string, and A's byte size. */
16726 tree offset_node;
16727 tree mem_size;
16728
16729 if (strsize)
16730 *strsize = 0;
16731
16732 if (strsize)
16733 src = byte_representation (src, &offset_node, &mem_size, NULL);
16734 else
16735 src = string_constant (src, &offset_node, &mem_size, NULL);
16736 if (!src)
16737 return NULL;
16738
16739 unsigned HOST_WIDE_INT offset = 0;
16740 if (offset_node != NULL_TREE)
16741 {
16742 if (!tree_fits_uhwi_p (offset_node))
16743 return NULL;
16744 else
16745 offset = tree_to_uhwi (offset_node);
16746 }
16747
16748 if (!tree_fits_uhwi_p (mem_size))
16749 return NULL;
16750
16751 /* ARRAY_SIZE is the byte size of the array the constant sequence
16752 is stored in and equal to sizeof A. INIT_BYTES is the number
16753 of bytes in the constant sequence used to initialize the array,
16754 including any embedded NULs as well as the terminating NUL (for
16755 strings), but not including any trailing zeros/NULs past
16756 the terminating one appended implicitly to a string literal to
16757 zero out the remainder of the array it's stored in. For example,
16758 given:
16759 const char a[7] = "abc\0d";
16760 n = strlen (a + 1);
16761 ARRAY_SIZE is 7, INIT_BYTES is 6, and OFFSET is 1. For a valid
16762 (i.e., nul-terminated) string with no embedded nuls, INIT_BYTES
16763 is equal to strlen (A) + 1. */
16764 const unsigned HOST_WIDE_INT array_size = tree_to_uhwi (mem_size);
16765 unsigned HOST_WIDE_INT init_bytes = TREE_STRING_LENGTH (src);
16766 const char *string = TREE_STRING_POINTER (src);
16767
16768 /* Ideally this would turn into a gcc_checking_assert over time. */
16769 if (init_bytes > array_size)
16770 init_bytes = array_size;
16771
16772 if (init_bytes == 0 || offset >= array_size)
16773 return NULL;
16774
16775 if (strsize)
16776 {
16777 /* Compute and store the number of characters from the beginning
16778 of the substring at OFFSET to the end, including the terminating
16779 nul. Offsets past the initial length refer to null strings. */
16780 if (offset < init_bytes)
16781 *strsize = init_bytes - offset;
16782 else
16783 *strsize = 1;
16784 }
16785 else
16786 {
16787 tree eltype = TREE_TYPE (TREE_TYPE (src));
16788 /* Support only properly NUL-terminated single byte strings. */
16789 if (tree_to_uhwi (TYPE_SIZE_UNIT (eltype)) != 1)
16790 return NULL;
16791 if (string[init_bytes - 1] != '\0')
16792 return NULL;
16793 }
16794
16795 return offset < init_bytes ? string + offset : "";
16796}
16797
16798/* Return a pointer to a NUL-terminated string corresponding to
16799 the expression STR referencing a constant string, possibly
16800 involving a constant offset. Return null if STR either doesn't
16801 reference a constant string or if it involves a nonconstant
16802 offset. */
16803
16804const char *
16805c_getstr (tree str)
16806{
16807 return getbyterep (src: str, NULL);
16808}
16809
16810/* Given a tree T, compute which bits in T may be nonzero. */
16811
16812wide_int
16813tree_nonzero_bits (const_tree t)
16814{
16815 switch (TREE_CODE (t))
16816 {
16817 case INTEGER_CST:
16818 return wi::to_wide (t);
16819 case SSA_NAME:
16820 return get_nonzero_bits (t);
16821 case NON_LVALUE_EXPR:
16822 case SAVE_EXPR:
16823 return tree_nonzero_bits (TREE_OPERAND (t, 0));
16824 case BIT_AND_EXPR:
16825 return wi::bit_and (x: tree_nonzero_bits (TREE_OPERAND (t, 0)),
16826 y: tree_nonzero_bits (TREE_OPERAND (t, 1)));
16827 case BIT_IOR_EXPR:
16828 case BIT_XOR_EXPR:
16829 return wi::bit_or (x: tree_nonzero_bits (TREE_OPERAND (t, 0)),
16830 y: tree_nonzero_bits (TREE_OPERAND (t, 1)));
16831 case COND_EXPR:
16832 return wi::bit_or (x: tree_nonzero_bits (TREE_OPERAND (t, 1)),
16833 y: tree_nonzero_bits (TREE_OPERAND (t, 2)));
16834 CASE_CONVERT:
16835 return wide_int::from (x: tree_nonzero_bits (TREE_OPERAND (t, 0)),
16836 TYPE_PRECISION (TREE_TYPE (t)),
16837 TYPE_SIGN (TREE_TYPE (TREE_OPERAND (t, 0))));
16838 case PLUS_EXPR:
16839 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
16840 {
16841 wide_int nzbits1 = tree_nonzero_bits (TREE_OPERAND (t, 0));
16842 wide_int nzbits2 = tree_nonzero_bits (TREE_OPERAND (t, 1));
16843 if (wi::bit_and (x: nzbits1, y: nzbits2) == 0)
16844 return wi::bit_or (x: nzbits1, y: nzbits2);
16845 }
16846 break;
16847 case LSHIFT_EXPR:
16848 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
16849 {
16850 tree type = TREE_TYPE (t);
16851 wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0));
16852 wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1),
16853 TYPE_PRECISION (type));
16854 return wi::neg_p (x: arg1)
16855 ? wi::rshift (x: nzbits, y: -arg1, TYPE_SIGN (type))
16856 : wi::lshift (x: nzbits, y: arg1);
16857 }
16858 break;
16859 case RSHIFT_EXPR:
16860 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
16861 {
16862 tree type = TREE_TYPE (t);
16863 wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0));
16864 wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1),
16865 TYPE_PRECISION (type));
16866 return wi::neg_p (x: arg1)
16867 ? wi::lshift (x: nzbits, y: -arg1)
16868 : wi::rshift (x: nzbits, y: arg1, TYPE_SIGN (type));
16869 }
16870 break;
16871 default:
16872 break;
16873 }
16874
16875 return wi::shwi (val: -1, TYPE_PRECISION (TREE_TYPE (t)));
16876}
16877
16878/* Helper function for address compare simplifications in match.pd.
16879 OP0 and OP1 are ADDR_EXPR operands being compared by CODE.
16880 TYPE is the type of comparison operands.
16881 BASE0, BASE1, OFF0 and OFF1 are set by the function.
16882 GENERIC is true if GENERIC folding and false for GIMPLE folding.
16883 Returns 0 if OP0 is known to be unequal to OP1 regardless of OFF{0,1},
16884 1 if bases are known to be equal and OP0 cmp OP1 depends on OFF0 cmp OFF1,
16885 and 2 if unknown. */
16886
16887int
16888address_compare (tree_code code, tree type, tree op0, tree op1,
16889 tree &base0, tree &base1, poly_int64 &off0, poly_int64 &off1,
16890 bool generic)
16891{
16892 if (TREE_CODE (op0) == SSA_NAME)
16893 op0 = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op0));
16894 if (TREE_CODE (op1) == SSA_NAME)
16895 op1 = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op1));
16896 gcc_checking_assert (TREE_CODE (op0) == ADDR_EXPR);
16897 gcc_checking_assert (TREE_CODE (op1) == ADDR_EXPR);
16898 base0 = get_addr_base_and_unit_offset (TREE_OPERAND (op0, 0), &off0);
16899 base1 = get_addr_base_and_unit_offset (TREE_OPERAND (op1, 0), &off1);
16900 if (base0 && TREE_CODE (base0) == MEM_REF)
16901 {
16902 off0 += mem_ref_offset (base0).force_shwi ();
16903 base0 = TREE_OPERAND (base0, 0);
16904 }
16905 if (base1 && TREE_CODE (base1) == MEM_REF)
16906 {
16907 off1 += mem_ref_offset (base1).force_shwi ();
16908 base1 = TREE_OPERAND (base1, 0);
16909 }
16910 if (base0 == NULL_TREE || base1 == NULL_TREE)
16911 return 2;
16912
16913 int equal = 2;
16914 /* Punt in GENERIC on variables with value expressions;
16915 the value expressions might point to fields/elements
16916 of other vars etc. */
16917 if (generic
16918 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
16919 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
16920 return 2;
16921 else if (decl_in_symtab_p (decl: base0) && decl_in_symtab_p (decl: base1))
16922 {
16923 symtab_node *node0 = symtab_node::get_create (node: base0);
16924 symtab_node *node1 = symtab_node::get_create (node: base1);
16925 equal = node0->equal_address_to (s2: node1);
16926 }
16927 else if ((DECL_P (base0)
16928 || TREE_CODE (base0) == SSA_NAME
16929 || TREE_CODE (base0) == STRING_CST)
16930 && (DECL_P (base1)
16931 || TREE_CODE (base1) == SSA_NAME
16932 || TREE_CODE (base1) == STRING_CST))
16933 equal = (base0 == base1);
16934 /* Assume different STRING_CSTs with the same content will be
16935 merged. */
16936 if (equal == 0
16937 && TREE_CODE (base0) == STRING_CST
16938 && TREE_CODE (base1) == STRING_CST
16939 && TREE_STRING_LENGTH (base0) == TREE_STRING_LENGTH (base1)
16940 && memcmp (TREE_STRING_POINTER (base0), TREE_STRING_POINTER (base1),
16941 TREE_STRING_LENGTH (base0)) == 0)
16942 equal = 1;
16943 if (equal == 1)
16944 {
16945 if (code == EQ_EXPR
16946 || code == NE_EXPR
16947 /* If the offsets are equal we can ignore overflow. */
16948 || known_eq (off0, off1)
16949 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))
16950 /* Or if we compare using pointers to decls or strings. */
16951 || (POINTER_TYPE_P (type)
16952 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST)))
16953 return 1;
16954 return 2;
16955 }
16956 if (equal != 0)
16957 return equal;
16958 if (code != EQ_EXPR && code != NE_EXPR)
16959 return 2;
16960
16961 /* At this point we know (or assume) the two pointers point at
16962 different objects. */
16963 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
16964 off0.is_constant (const_value: &ioff0);
16965 off1.is_constant (const_value: &ioff1);
16966 /* Punt on non-zero offsets from functions. */
16967 if ((TREE_CODE (base0) == FUNCTION_DECL && ioff0)
16968 || (TREE_CODE (base1) == FUNCTION_DECL && ioff1))
16969 return 2;
16970 /* Or if the bases are neither decls nor string literals. */
16971 if (!DECL_P (base0) && TREE_CODE (base0) != STRING_CST)
16972 return 2;
16973 if (!DECL_P (base1) && TREE_CODE (base1) != STRING_CST)
16974 return 2;
16975 /* For initializers, assume addresses of different functions are
16976 different. */
16977 if (folding_initializer
16978 && TREE_CODE (base0) == FUNCTION_DECL
16979 && TREE_CODE (base1) == FUNCTION_DECL)
16980 return 0;
16981
16982 /* Compute whether one address points to the start of one
16983 object and another one to the end of another one. */
16984 poly_int64 size0 = 0, size1 = 0;
16985 if (TREE_CODE (base0) == STRING_CST)
16986 {
16987 if (ioff0 < 0 || ioff0 > TREE_STRING_LENGTH (base0))
16988 equal = 2;
16989 else
16990 size0 = TREE_STRING_LENGTH (base0);
16991 }
16992 else if (TREE_CODE (base0) == FUNCTION_DECL)
16993 size0 = 1;
16994 else
16995 {
16996 tree sz0 = DECL_SIZE_UNIT (base0);
16997 if (!tree_fits_poly_int64_p (sz0))
16998 equal = 2;
16999 else
17000 size0 = tree_to_poly_int64 (sz0);
17001 }
17002 if (TREE_CODE (base1) == STRING_CST)
17003 {
17004 if (ioff1 < 0 || ioff1 > TREE_STRING_LENGTH (base1))
17005 equal = 2;
17006 else
17007 size1 = TREE_STRING_LENGTH (base1);
17008 }
17009 else if (TREE_CODE (base1) == FUNCTION_DECL)
17010 size1 = 1;
17011 else
17012 {
17013 tree sz1 = DECL_SIZE_UNIT (base1);
17014 if (!tree_fits_poly_int64_p (sz1))
17015 equal = 2;
17016 else
17017 size1 = tree_to_poly_int64 (sz1);
17018 }
17019 if (equal == 0)
17020 {
17021 /* If one offset is pointing (or could be) to the beginning of one
17022 object and the other is pointing to one past the last byte of the
17023 other object, punt. */
17024 if (maybe_eq (a: off0, b: 0) && maybe_eq (a: off1, b: size1))
17025 equal = 2;
17026 else if (maybe_eq (a: off1, b: 0) && maybe_eq (a: off0, b: size0))
17027 equal = 2;
17028 /* If both offsets are the same, there are some cases we know that are
17029 ok. Either if we know they aren't zero, or if we know both sizes
17030 are no zero. */
17031 if (equal == 2
17032 && known_eq (off0, off1)
17033 && (known_ne (off0, 0)
17034 || (known_ne (size0, 0) && known_ne (size1, 0))))
17035 equal = 0;
17036 }
17037
17038 /* At this point, equal is 2 if either one or both pointers are out of
17039 bounds of their object, or one points to start of its object and the
17040 other points to end of its object. This is unspecified behavior
17041 e.g. in C++. Otherwise equal is 0. */
17042 if (folding_cxx_constexpr && equal)
17043 return equal;
17044
17045 /* When both pointers point to string literals, even when equal is 0,
17046 due to tail merging of string literals the pointers might be the same. */
17047 if (TREE_CODE (base0) == STRING_CST && TREE_CODE (base1) == STRING_CST)
17048 {
17049 if (ioff0 < 0
17050 || ioff1 < 0
17051 || ioff0 > TREE_STRING_LENGTH (base0)
17052 || ioff1 > TREE_STRING_LENGTH (base1))
17053 return 2;
17054
17055 /* If the bytes in the string literals starting at the pointers
17056 differ, the pointers need to be different. */
17057 if (memcmp (TREE_STRING_POINTER (base0) + ioff0,
17058 TREE_STRING_POINTER (base1) + ioff1,
17059 MIN (TREE_STRING_LENGTH (base0) - ioff0,
17060 TREE_STRING_LENGTH (base1) - ioff1)) == 0)
17061 {
17062 HOST_WIDE_INT ioffmin = MIN (ioff0, ioff1);
17063 if (memcmp (TREE_STRING_POINTER (base0) + ioff0 - ioffmin,
17064 TREE_STRING_POINTER (base1) + ioff1 - ioffmin,
17065 n: ioffmin) == 0)
17066 /* If even the bytes in the string literal before the
17067 pointers are the same, the string literals could be
17068 tail merged. */
17069 return 2;
17070 }
17071 return 0;
17072 }
17073
17074 if (folding_cxx_constexpr)
17075 return 0;
17076
17077 /* If this is a pointer comparison, ignore for now even
17078 valid equalities where one pointer is the offset zero
17079 of one object and the other to one past end of another one. */
17080 if (!INTEGRAL_TYPE_P (type))
17081 return 0;
17082
17083 /* Assume that string literals can't be adjacent to variables
17084 (automatic or global). */
17085 if (TREE_CODE (base0) == STRING_CST || TREE_CODE (base1) == STRING_CST)
17086 return 0;
17087
17088 /* Assume that automatic variables can't be adjacent to global
17089 variables. */
17090 if (is_global_var (t: base0) != is_global_var (t: base1))
17091 return 0;
17092
17093 return equal;
17094}
17095
17096/* Return the single non-zero element of a CONSTRUCTOR or NULL_TREE. */
17097tree
17098ctor_single_nonzero_element (const_tree t)
17099{
17100 unsigned HOST_WIDE_INT idx;
17101 constructor_elt *ce;
17102 tree elt = NULL_TREE;
17103
17104 if (TREE_CODE (t) != CONSTRUCTOR)
17105 return NULL_TREE;
17106 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (t), ix: idx, ptr: &ce); idx++)
17107 if (!integer_zerop (ce->value) && !real_zerop (ce->value))
17108 {
17109 if (elt)
17110 return NULL_TREE;
17111 elt = ce->value;
17112 }
17113 return elt;
17114}
17115
17116#if CHECKING_P
17117
17118namespace selftest {
17119
17120/* Helper functions for writing tests of folding trees. */
17121
17122/* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
17123
17124static void
17125assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
17126 tree constant)
17127{
17128 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
17129}
17130
17131/* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
17132 wrapping WRAPPED_EXPR. */
17133
17134static void
17135assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
17136 tree wrapped_expr)
17137{
17138 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
17139 ASSERT_NE (wrapped_expr, result);
17140 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
17141 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
17142}
17143
17144/* Verify that various arithmetic binary operations are folded
17145 correctly. */
17146
17147static void
17148test_arithmetic_folding ()
17149{
17150 tree type = integer_type_node;
17151 tree x = create_tmp_var_raw (type, "x");
17152 tree zero = build_zero_cst (type);
17153 tree one = build_int_cst (type, 1);
17154
17155 /* Addition. */
17156 /* 1 <-- (0 + 1) */
17157 assert_binop_folds_to_const (lhs: zero, code: PLUS_EXPR, rhs: one,
17158 constant: one);
17159 assert_binop_folds_to_const (lhs: one, code: PLUS_EXPR, rhs: zero,
17160 constant: one);
17161
17162 /* (nonlvalue)x <-- (x + 0) */
17163 assert_binop_folds_to_nonlvalue (lhs: x, code: PLUS_EXPR, rhs: zero,
17164 wrapped_expr: x);
17165
17166 /* Subtraction. */
17167 /* 0 <-- (x - x) */
17168 assert_binop_folds_to_const (lhs: x, code: MINUS_EXPR, rhs: x,
17169 constant: zero);
17170 assert_binop_folds_to_nonlvalue (lhs: x, code: MINUS_EXPR, rhs: zero,
17171 wrapped_expr: x);
17172
17173 /* Multiplication. */
17174 /* 0 <-- (x * 0) */
17175 assert_binop_folds_to_const (lhs: x, code: MULT_EXPR, rhs: zero,
17176 constant: zero);
17177
17178 /* (nonlvalue)x <-- (x * 1) */
17179 assert_binop_folds_to_nonlvalue (lhs: x, code: MULT_EXPR, rhs: one,
17180 wrapped_expr: x);
17181}
17182
17183namespace test_fold_vec_perm_cst {
17184
17185/* Build a VECTOR_CST corresponding to VMODE, and has
17186 encoding given by NPATTERNS, NELTS_PER_PATTERN and STEP.
17187 Fill it with randomized elements, using rand() % THRESHOLD. */
17188
17189static tree
17190build_vec_cst_rand (machine_mode vmode, unsigned npatterns,
17191 unsigned nelts_per_pattern,
17192 int step = 0, bool natural_stepped = false,
17193 int threshold = 100)
17194{
17195 tree inner_type = lang_hooks.types.type_for_mode (GET_MODE_INNER (vmode), 1);
17196 tree vectype = build_vector_type_for_mode (inner_type, vmode);
17197 tree_vector_builder builder (vectype, npatterns, nelts_per_pattern);
17198
17199 // Fill a0 for each pattern
17200 for (unsigned i = 0; i < npatterns; i++)
17201 builder.quick_push (obj: build_int_cst (inner_type, rand () % threshold));
17202
17203 if (nelts_per_pattern == 1)
17204 return builder.build ();
17205
17206 // Fill a1 for each pattern
17207 for (unsigned i = 0; i < npatterns; i++)
17208 {
17209 tree a1;
17210 if (natural_stepped)
17211 {
17212 tree a0 = builder[i];
17213 wide_int a0_val = wi::to_wide (t: a0);
17214 wide_int a1_val = a0_val + step;
17215 a1 = wide_int_to_tree (type: inner_type, cst: a1_val);
17216 }
17217 else
17218 a1 = build_int_cst (inner_type, rand () % threshold);
17219 builder.quick_push (obj: a1);
17220 }
17221 if (nelts_per_pattern == 2)
17222 return builder.build ();
17223
17224 for (unsigned i = npatterns * 2; i < npatterns * nelts_per_pattern; i++)
17225 {
17226 tree prev_elem = builder[i - npatterns];
17227 wide_int prev_elem_val = wi::to_wide (t: prev_elem);
17228 wide_int val = prev_elem_val + step;
17229 builder.quick_push (obj: wide_int_to_tree (type: inner_type, cst: val));
17230 }
17231
17232 return builder.build ();
17233}
17234
17235/* Validate result of VEC_PERM_EXPR folding for the unit-tests below,
17236 when result is VLA. */
17237
17238static void
17239validate_res (unsigned npatterns, unsigned nelts_per_pattern,
17240 tree res, tree *expected_res)
17241{
17242 /* Actual npatterns and encoded_elts in res may be less than expected due
17243 to canonicalization. */
17244 ASSERT_TRUE (res != NULL_TREE);
17245 ASSERT_TRUE (VECTOR_CST_NPATTERNS (res) <= npatterns);
17246 ASSERT_TRUE (vector_cst_encoded_nelts (res) <= npatterns * nelts_per_pattern);
17247
17248 for (unsigned i = 0; i < npatterns * nelts_per_pattern; i++)
17249 ASSERT_TRUE (operand_equal_p (VECTOR_CST_ELT (res, i), expected_res[i], 0));
17250}
17251
17252/* Validate result of VEC_PERM_EXPR folding for the unit-tests below,
17253 when the result is VLS. */
17254
17255static void
17256validate_res_vls (tree res, tree *expected_res, unsigned expected_nelts)
17257{
17258 ASSERT_TRUE (known_eq (VECTOR_CST_NELTS (res), expected_nelts));
17259 for (unsigned i = 0; i < expected_nelts; i++)
17260 ASSERT_TRUE (operand_equal_p (VECTOR_CST_ELT (res, i), expected_res[i], 0));
17261}
17262
17263/* Helper routine to push multiple elements into BUILDER. */
17264template<unsigned N>
17265static void builder_push_elems (vec_perm_builder& builder,
17266 poly_uint64 (&elems)[N])
17267{
17268 for (unsigned i = 0; i < N; i++)
17269 builder.quick_push (obj: elems[i]);
17270}
17271
17272#define ARG0(index) vector_cst_elt (arg0, index)
17273#define ARG1(index) vector_cst_elt (arg1, index)
17274
17275/* Test cases where result is VNx4SI and input vectors are V4SI. */
17276
17277static void
17278test_vnx4si_v4si (machine_mode vnx4si_mode, machine_mode v4si_mode)
17279{
17280 for (int i = 0; i < 10; i++)
17281 {
17282 /* Case 1:
17283 sel = { 0, 4, 1, 5, ... }
17284 res = { arg[0], arg1[0], arg0[1], arg1[1], ...} // (4, 1) */
17285 {
17286 tree arg0 = build_vec_cst_rand (vmode: v4si_mode, npatterns: 4, nelts_per_pattern: 1, step: 0);
17287 tree arg1 = build_vec_cst_rand (vmode: v4si_mode, npatterns: 4, nelts_per_pattern: 1, step: 0);
17288
17289 tree inner_type
17290 = lang_hooks.types.type_for_mode (GET_MODE_INNER (vnx4si_mode), 1);
17291 tree res_type = build_vector_type_for_mode (inner_type, vnx4si_mode);
17292
17293 poly_uint64 res_len = TYPE_VECTOR_SUBPARTS (node: res_type);
17294 vec_perm_builder builder (res_len, 4, 1);
17295 poly_uint64 mask_elems[] = { 0, 4, 1, 5 };
17296 builder_push_elems (builder, elems&: mask_elems);
17297
17298 vec_perm_indices sel (builder, 2, res_len);
17299 tree res = fold_vec_perm_cst (type: res_type, arg0, arg1, sel);
17300
17301 tree expected_res[] = { ARG0(0), ARG1(0), ARG0(1), ARG1(1) };
17302 validate_res (npatterns: 4, nelts_per_pattern: 1, res, expected_res);
17303 }
17304
17305 /* Case 2: Same as case 1, but contains an out of bounds access which
17306 should wrap around.
17307 sel = {0, 8, 4, 12, ...} (4, 1)
17308 res = { arg0[0], arg0[0], arg1[0], arg1[0], ... } (4, 1). */
17309 {
17310 tree arg0 = build_vec_cst_rand (vmode: v4si_mode, npatterns: 4, nelts_per_pattern: 1, step: 0);
17311 tree arg1 = build_vec_cst_rand (vmode: v4si_mode, npatterns: 4, nelts_per_pattern: 1, step: 0);
17312
17313 tree inner_type
17314 = lang_hooks.types.type_for_mode (GET_MODE_INNER (vnx4si_mode), 1);
17315 tree res_type = build_vector_type_for_mode (inner_type, vnx4si_mode);
17316
17317 poly_uint64 res_len = TYPE_VECTOR_SUBPARTS (node: res_type);
17318 vec_perm_builder builder (res_len, 4, 1);
17319 poly_uint64 mask_elems[] = { 0, 8, 4, 12 };
17320 builder_push_elems (builder, elems&: mask_elems);
17321
17322 vec_perm_indices sel (builder, 2, res_len);
17323 tree res = fold_vec_perm_cst (type: res_type, arg0, arg1, sel);
17324
17325 tree expected_res[] = { ARG0(0), ARG0(0), ARG1(0), ARG1(0) };
17326 validate_res (npatterns: 4, nelts_per_pattern: 1, res, expected_res);
17327 }
17328 }
17329}
17330
17331/* Test cases where result is V4SI and input vectors are VNx4SI. */
17332
17333static void
17334test_v4si_vnx4si (machine_mode v4si_mode, machine_mode vnx4si_mode)
17335{
17336 for (int i = 0; i < 10; i++)
17337 {
17338 /* Case 1:
17339 sel = { 0, 1, 2, 3}
17340 res = { arg0[0], arg0[1], arg0[2], arg0[3] }. */
17341 {
17342 tree arg0 = build_vec_cst_rand (vmode: vnx4si_mode, npatterns: 4, nelts_per_pattern: 1);
17343 tree arg1 = build_vec_cst_rand (vmode: vnx4si_mode, npatterns: 4, nelts_per_pattern: 1);
17344
17345 tree inner_type
17346 = lang_hooks.types.type_for_mode (GET_MODE_INNER (v4si_mode), 1);
17347 tree res_type = build_vector_type_for_mode (inner_type, v4si_mode);
17348
17349 poly_uint64 res_len = TYPE_VECTOR_SUBPARTS (node: res_type);
17350 vec_perm_builder builder (res_len, 4, 1);
17351 poly_uint64 mask_elems[] = {0, 1, 2, 3};
17352 builder_push_elems (builder, elems&: mask_elems);
17353
17354 vec_perm_indices sel (builder, 2, res_len);
17355 tree res = fold_vec_perm_cst (type: res_type, arg0, arg1, sel);
17356
17357 tree expected_res[] = { ARG0(0), ARG0(1), ARG0(2), ARG0(3) };
17358 validate_res_vls (res, expected_res, expected_nelts: 4);
17359 }
17360
17361 /* Case 2: Same as Case 1, but crossing input vector.
17362 sel = {0, 2, 4, 6}
17363 In this case,the index 4 is ambiguous since len = 4 + 4x.
17364 Since we cannot determine, which vector to choose from during
17365 compile time, should return NULL_TREE. */
17366 {
17367 tree arg0 = build_vec_cst_rand (vmode: vnx4si_mode, npatterns: 4, nelts_per_pattern: 1);
17368 tree arg1 = build_vec_cst_rand (vmode: vnx4si_mode, npatterns: 4, nelts_per_pattern: 1);
17369
17370 tree inner_type
17371 = lang_hooks.types.type_for_mode (GET_MODE_INNER (v4si_mode), 1);
17372 tree res_type = build_vector_type_for_mode (inner_type, v4si_mode);
17373
17374 poly_uint64 res_len = TYPE_VECTOR_SUBPARTS (node: res_type);
17375 vec_perm_builder builder (res_len, 4, 1);
17376 poly_uint64 mask_elems[] = {0, 2, 4, 6};
17377 builder_push_elems (builder, elems&: mask_elems);
17378
17379 vec_perm_indices sel (builder, 2, res_len);
17380 const char *reason;
17381 tree res = fold_vec_perm_cst (type: res_type, arg0, arg1, sel, reason: &reason);
17382
17383 ASSERT_TRUE (res == NULL_TREE);
17384 ASSERT_TRUE (!strcmp (reason, "cannot divide selector element by arg len"));
17385 }
17386 }
17387}
17388
17389/* Test all input vectors. */
17390
17391static void
17392test_all_nunits (machine_mode vmode)
17393{
17394 /* Test with 10 different inputs. */
17395 for (int i = 0; i < 10; i++)
17396 {
17397 tree arg0 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17398 tree arg1 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17399 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17400
17401 /* Case 1: mask = {0, ...} // (1, 1)
17402 res = { arg0[0], ... } // (1, 1) */
17403 {
17404 vec_perm_builder builder (len, 1, 1);
17405 builder.quick_push (obj: 0);
17406 vec_perm_indices sel (builder, 2, len);
17407 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel);
17408 tree expected_res[] = { ARG0(0) };
17409 validate_res (npatterns: 1, nelts_per_pattern: 1, res, expected_res);
17410 }
17411
17412 /* Case 2: mask = {len, ...} // (1, 1)
17413 res = { arg1[0], ... } // (1, 1) */
17414 {
17415 vec_perm_builder builder (len, 1, 1);
17416 builder.quick_push (obj: len);
17417 vec_perm_indices sel (builder, 2, len);
17418 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel);
17419
17420 tree expected_res[] = { ARG1(0) };
17421 validate_res (npatterns: 1, nelts_per_pattern: 1, res, expected_res);
17422 }
17423 }
17424}
17425
17426/* Test all vectors which contain at-least 2 elements. */
17427
17428static void
17429test_nunits_min_2 (machine_mode vmode)
17430{
17431 for (int i = 0; i < 10; i++)
17432 {
17433 /* Case 1: mask = { 0, len, ... } // (2, 1)
17434 res = { arg0[0], arg1[0], ... } // (2, 1) */
17435 {
17436 tree arg0 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17437 tree arg1 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17438 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17439
17440 vec_perm_builder builder (len, 2, 1);
17441 poly_uint64 mask_elems[] = { 0, len };
17442 builder_push_elems (builder, elems&: mask_elems);
17443
17444 vec_perm_indices sel (builder, 2, len);
17445 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel);
17446
17447 tree expected_res[] = { ARG0(0), ARG1(0) };
17448 validate_res (npatterns: 2, nelts_per_pattern: 1, res, expected_res);
17449 }
17450
17451 /* Case 2: mask = { 0, len, 1, len+1, ... } // (2, 2)
17452 res = { arg0[0], arg1[0], arg0[1], arg1[1], ... } // (2, 2) */
17453 {
17454 tree arg0 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17455 tree arg1 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17456 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17457
17458 vec_perm_builder builder (len, 2, 2);
17459 poly_uint64 mask_elems[] = { 0, len, 1, len + 1 };
17460 builder_push_elems (builder, elems&: mask_elems);
17461
17462 vec_perm_indices sel (builder, 2, len);
17463 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel);
17464
17465 tree expected_res[] = { ARG0(0), ARG1(0), ARG0(1), ARG1(1) };
17466 validate_res (npatterns: 2, nelts_per_pattern: 2, res, expected_res);
17467 }
17468
17469 /* Case 4: mask = {0, 0, 1, ...} // (1, 3)
17470 Test that the stepped sequence of the pattern selects from
17471 same input pattern. Since input vectors have npatterns = 2,
17472 and step (a2 - a1) = 1, step is not a multiple of npatterns
17473 in input vector. So return NULL_TREE. */
17474 {
17475 tree arg0 = build_vec_cst_rand (vmode, npatterns: 2, nelts_per_pattern: 3, step: 1, natural_stepped: true);
17476 tree arg1 = build_vec_cst_rand (vmode, npatterns: 2, nelts_per_pattern: 3, step: 1);
17477 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17478
17479 vec_perm_builder builder (len, 1, 3);
17480 poly_uint64 mask_elems[] = { 0, 0, 1 };
17481 builder_push_elems (builder, elems&: mask_elems);
17482
17483 vec_perm_indices sel (builder, 2, len);
17484 const char *reason;
17485 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel,
17486 reason: &reason);
17487 ASSERT_TRUE (res == NULL_TREE);
17488 ASSERT_TRUE (!strcmp (reason, "step is not multiple of npatterns"));
17489 }
17490
17491 /* Case 5: mask = {len, 0, 1, ...} // (1, 3)
17492 Test that stepped sequence of the pattern selects from arg0.
17493 res = { arg1[0], arg0[0], arg0[1], ... } // (1, 3) */
17494 {
17495 tree arg0 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1, natural_stepped: true);
17496 tree arg1 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17497 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17498
17499 vec_perm_builder builder (len, 1, 3);
17500 poly_uint64 mask_elems[] = { len, 0, 1 };
17501 builder_push_elems (builder, elems&: mask_elems);
17502
17503 vec_perm_indices sel (builder, 2, len);
17504 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel);
17505
17506 tree expected_res[] = { ARG1(0), ARG0(0), ARG0(1) };
17507 validate_res (npatterns: 1, nelts_per_pattern: 3, res, expected_res);
17508 }
17509
17510 /* Case 6: PR111648 - a1 chooses base element from input vector arg.
17511 In this case ensure that arg has a natural stepped sequence
17512 to preserve arg's encoding.
17513
17514 As a concrete example, consider:
17515 arg0: { -16, -9, -10, ... } // (1, 3)
17516 arg1: { -12, -5, -6, ... } // (1, 3)
17517 sel = { 0, len, len + 1, ... } // (1, 3)
17518
17519 This will create res with following encoding:
17520 res = { arg0[0], arg1[0], arg1[1], ... } // (1, 3)
17521 = { -16, -12, -5, ... }
17522
17523 The step in above encoding would be: (-5) - (-12) = 7
17524 And hence res[3] would be computed as -5 + 7 = 2.
17525 instead of arg1[2], ie, -6.
17526 Ensure that valid_mask_for_fold_vec_perm_cst returns false
17527 for this case. */
17528 {
17529 tree arg0 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17530 tree arg1 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17531 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17532
17533 vec_perm_builder builder (len, 1, 3);
17534 poly_uint64 mask_elems[] = { 0, len, len+1 };
17535 builder_push_elems (builder, elems&: mask_elems);
17536
17537 vec_perm_indices sel (builder, 2, len);
17538 const char *reason;
17539 /* FIXME: It may happen that build_vec_cst_rand may build a natural
17540 stepped pattern, even if we didn't explicitly tell it to. So folding
17541 may not always fail, but if it does, ensure that's because arg1 does
17542 not have a natural stepped sequence (and not due to other reason) */
17543 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel, reason: &reason);
17544 if (res == NULL_TREE)
17545 ASSERT_TRUE (!strcmp (reason, "not a natural stepped sequence"));
17546 }
17547
17548 /* Case 7: Same as Case 6, except that arg1 contains natural stepped
17549 sequence and thus folding should be valid for this case. */
17550 {
17551 tree arg0 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17552 tree arg1 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1, natural_stepped: true);
17553 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17554
17555 vec_perm_builder builder (len, 1, 3);
17556 poly_uint64 mask_elems[] = { 0, len, len+1 };
17557 builder_push_elems (builder, elems&: mask_elems);
17558
17559 vec_perm_indices sel (builder, 2, len);
17560 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel);
17561
17562 tree expected_res[] = { ARG0(0), ARG1(0), ARG1(1) };
17563 validate_res (npatterns: 1, nelts_per_pattern: 3, res, expected_res);
17564 }
17565 }
17566}
17567
17568/* Test all vectors which contain at-least 4 elements. */
17569
17570static void
17571test_nunits_min_4 (machine_mode vmode)
17572{
17573 for (int i = 0; i < 10; i++)
17574 {
17575 /* Case 1: mask = { 0, len, 1, len+1, ... } // (4, 1)
17576 res: { arg0[0], arg1[0], arg0[1], arg1[1], ... } // (4, 1) */
17577 {
17578 tree arg0 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17579 tree arg1 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17580 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17581
17582 vec_perm_builder builder (len, 4, 1);
17583 poly_uint64 mask_elems[] = { 0, len, 1, len + 1 };
17584 builder_push_elems (builder, elems&: mask_elems);
17585
17586 vec_perm_indices sel (builder, 2, len);
17587 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel);
17588
17589 tree expected_res[] = { ARG0(0), ARG1(0), ARG0(1), ARG1(1) };
17590 validate_res (npatterns: 4, nelts_per_pattern: 1, res, expected_res);
17591 }
17592
17593 /* Case 2: sel = {0, 1, 2, ...} // (1, 3)
17594 res: { arg0[0], arg0[1], arg0[2], ... } // (1, 3) */
17595 {
17596 tree arg0 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 2);
17597 tree arg1 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 2);
17598 poly_uint64 arg0_len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17599
17600 vec_perm_builder builder (arg0_len, 1, 3);
17601 poly_uint64 mask_elems[] = {0, 1, 2};
17602 builder_push_elems (builder, elems&: mask_elems);
17603
17604 vec_perm_indices sel (builder, 2, arg0_len);
17605 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel);
17606 tree expected_res[] = { ARG0(0), ARG0(1), ARG0(2) };
17607 validate_res (npatterns: 1, nelts_per_pattern: 3, res, expected_res);
17608 }
17609
17610 /* Case 3: sel = {len, len+1, len+2, ...} // (1, 3)
17611 res: { arg1[0], arg1[1], arg1[2], ... } // (1, 3) */
17612 {
17613 tree arg0 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 2);
17614 tree arg1 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 2);
17615 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17616
17617 vec_perm_builder builder (len, 1, 3);
17618 poly_uint64 mask_elems[] = {len, len + 1, len + 2};
17619 builder_push_elems (builder, elems&: mask_elems);
17620
17621 vec_perm_indices sel (builder, 2, len);
17622 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel);
17623 tree expected_res[] = { ARG1(0), ARG1(1), ARG1(2) };
17624 validate_res (npatterns: 1, nelts_per_pattern: 3, res, expected_res);
17625 }
17626
17627 /* Case 4:
17628 sel = { len, 0, 2, ... } // (1, 3)
17629 This should return NULL because we cross the input vectors.
17630 Because,
17631 Let's assume len = C + Cx
17632 a1 = 0
17633 S = 2
17634 esel = arg0_len / sel_npatterns = C + Cx
17635 ae = 0 + (esel - 2) * S
17636 = 0 + (C + Cx - 2) * 2
17637 = 2(C-2) + 2Cx
17638
17639 For C >= 4:
17640 Let q1 = a1 / arg0_len = 0 / (C + Cx) = 0
17641 Let qe = ae / arg0_len = (2(C-2) + 2Cx) / (C + Cx) = 1
17642 Since q1 != qe, we cross input vectors.
17643 So return NULL_TREE. */
17644 {
17645 tree arg0 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 2);
17646 tree arg1 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 2);
17647 poly_uint64 arg0_len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17648
17649 vec_perm_builder builder (arg0_len, 1, 3);
17650 poly_uint64 mask_elems[] = { arg0_len, 0, 2 };
17651 builder_push_elems (builder, elems&: mask_elems);
17652
17653 vec_perm_indices sel (builder, 2, arg0_len);
17654 const char *reason;
17655 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel, reason: &reason);
17656 ASSERT_TRUE (res == NULL_TREE);
17657 ASSERT_TRUE (!strcmp (reason, "crossed input vectors"));
17658 }
17659
17660 /* Case 5: npatterns(arg0) = 4 > npatterns(sel) = 2
17661 mask = { 0, len, 1, len + 1, ...} // (2, 2)
17662 res = { arg0[0], arg1[0], arg0[1], arg1[1], ... } // (2, 2)
17663
17664 Note that fold_vec_perm_cst will set
17665 res_npatterns = max(4, max(4, 2)) = 4
17666 However after canonicalizing, we will end up with shape (2, 2). */
17667 {
17668 tree arg0 = build_vec_cst_rand (vmode, npatterns: 4, nelts_per_pattern: 1);
17669 tree arg1 = build_vec_cst_rand (vmode, npatterns: 4, nelts_per_pattern: 1);
17670 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17671
17672 vec_perm_builder builder (len, 2, 2);
17673 poly_uint64 mask_elems[] = { 0, len, 1, len + 1 };
17674 builder_push_elems (builder, elems&: mask_elems);
17675
17676 vec_perm_indices sel (builder, 2, len);
17677 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel);
17678 tree expected_res[] = { ARG0(0), ARG1(0), ARG0(1), ARG1(1) };
17679 validate_res (npatterns: 2, nelts_per_pattern: 2, res, expected_res);
17680 }
17681
17682 /* Case 6: Test combination in sel, where one pattern is dup and other
17683 is stepped sequence.
17684 sel = { 0, 0, 0, 1, 0, 2, ... } // (2, 3)
17685 res = { arg0[0], arg0[0], arg0[0],
17686 arg0[1], arg0[0], arg0[2], ... } // (2, 3) */
17687 {
17688 tree arg0 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17689 tree arg1 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17690 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17691
17692 vec_perm_builder builder (len, 2, 3);
17693 poly_uint64 mask_elems[] = { 0, 0, 0, 1, 0, 2 };
17694 builder_push_elems (builder, elems&: mask_elems);
17695
17696 vec_perm_indices sel (builder, 2, len);
17697 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel);
17698
17699 tree expected_res[] = { ARG0(0), ARG0(0), ARG0(0),
17700 ARG0(1), ARG0(0), ARG0(2) };
17701 validate_res (npatterns: 2, nelts_per_pattern: 3, res, expected_res);
17702 }
17703
17704 /* Case 7: PR111048: Check that we set arg_npatterns correctly,
17705 when arg0, arg1 and sel have different number of patterns.
17706 arg0 is of shape (1, 1)
17707 arg1 is of shape (4, 1)
17708 sel is of shape (2, 3) = {1, len, 2, len+1, 3, len+2, ...}
17709
17710 In this case the pattern: {len, len+1, len+2, ...} chooses arg1.
17711 However,
17712 step = (len+2) - (len+1) = 1
17713 arg_npatterns = VECTOR_CST_NPATTERNS (arg1) = 4
17714 Since step is not a multiple of arg_npatterns,
17715 valid_mask_for_fold_vec_perm_cst should return false,
17716 and thus fold_vec_perm_cst should return NULL_TREE. */
17717 {
17718 tree arg0 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 1);
17719 tree arg1 = build_vec_cst_rand (vmode, npatterns: 4, nelts_per_pattern: 1);
17720 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17721
17722 vec_perm_builder builder (len, 2, 3);
17723 poly_uint64 mask_elems[] = { 0, len, 1, len + 1, 2, len + 2 };
17724 builder_push_elems (builder, elems&: mask_elems);
17725
17726 vec_perm_indices sel (builder, 2, len);
17727 const char *reason;
17728 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel, reason: &reason);
17729
17730 ASSERT_TRUE (res == NULL_TREE);
17731 ASSERT_TRUE (!strcmp (reason, "step is not multiple of npatterns"));
17732 }
17733 }
17734}
17735
17736/* Test all vectors which contain at-least 8 elements. */
17737
17738static void
17739test_nunits_min_8 (machine_mode vmode)
17740{
17741 for (int i = 0; i < 10; i++)
17742 {
17743 /* Case 1: sel_npatterns (4) > input npatterns (2)
17744 sel: { 0, 0, 1, len, 2, 0, 3, len, 4, 0, 5, len, ...} // (4, 3)
17745 res: { arg0[0], arg0[0], arg0[0], arg1[0],
17746 arg0[2], arg0[0], arg0[3], arg1[0],
17747 arg0[4], arg0[0], arg0[5], arg1[0], ... } // (4, 3) */
17748 {
17749 tree arg0 = build_vec_cst_rand (vmode, npatterns: 2, nelts_per_pattern: 3, step: 2);
17750 tree arg1 = build_vec_cst_rand (vmode, npatterns: 2, nelts_per_pattern: 3, step: 2);
17751 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17752
17753 vec_perm_builder builder(len, 4, 3);
17754 poly_uint64 mask_elems[] = { 0, 0, 1, len, 2, 0, 3, len,
17755 4, 0, 5, len };
17756 builder_push_elems (builder, elems&: mask_elems);
17757
17758 vec_perm_indices sel (builder, 2, len);
17759 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel);
17760
17761 tree expected_res[] = { ARG0(0), ARG0(0), ARG0(1), ARG1(0),
17762 ARG0(2), ARG0(0), ARG0(3), ARG1(0),
17763 ARG0(4), ARG0(0), ARG0(5), ARG1(0) };
17764 validate_res (npatterns: 4, nelts_per_pattern: 3, res, expected_res);
17765 }
17766 }
17767}
17768
17769/* Test vectors for which nunits[0] <= 4. */
17770
17771static void
17772test_nunits_max_4 (machine_mode vmode)
17773{
17774 /* Case 1: mask = {0, 4, ...} // (1, 2)
17775 This should return NULL_TREE because the index 4 may choose
17776 from either arg0 or arg1 depending on vector length. */
17777 {
17778 tree arg0 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17779 tree arg1 = build_vec_cst_rand (vmode, npatterns: 1, nelts_per_pattern: 3, step: 1);
17780 poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
17781
17782 vec_perm_builder builder (len, 1, 2);
17783 poly_uint64 mask_elems[] = {0, 4};
17784 builder_push_elems (builder, elems&: mask_elems);
17785
17786 vec_perm_indices sel (builder, 2, len);
17787 const char *reason;
17788 tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel, reason: &reason);
17789 ASSERT_TRUE (res == NULL_TREE);
17790 ASSERT_TRUE (reason != NULL);
17791 ASSERT_TRUE (!strcmp (reason, "cannot divide selector element by arg len"));
17792 }
17793}
17794
17795#undef ARG0
17796#undef ARG1
17797
17798/* Return true if SIZE is of the form C + Cx and C is power of 2. */
17799
17800static bool
17801is_simple_vla_size (poly_uint64 size)
17802{
17803 if (size.is_constant ()
17804 || !pow2p_hwi (x: size.coeffs[0]))
17805 return false;
17806 for (unsigned i = 1; i < ARRAY_SIZE (size.coeffs); ++i)
17807 if (size.coeffs[i] != (i <= 1 ? size.coeffs[0] : 0))
17808 return false;
17809 return true;
17810}
17811
17812/* Execute fold_vec_perm_cst unit tests. */
17813
17814static void
17815test ()
17816{
17817 machine_mode vnx4si_mode = E_VOIDmode;
17818 machine_mode v4si_mode = E_VOIDmode;
17819
17820 machine_mode vmode;
17821 FOR_EACH_MODE_IN_CLASS (vmode, MODE_VECTOR_INT)
17822 {
17823 /* Obtain modes corresponding to VNx4SI and V4SI,
17824 to call mixed mode tests below.
17825 FIXME: Is there a better way to do this ? */
17826 if (GET_MODE_INNER (vmode) == SImode)
17827 {
17828 poly_uint64 nunits = GET_MODE_NUNITS (mode: vmode);
17829 if (is_simple_vla_size (size: nunits)
17830 && nunits.coeffs[0] == 4)
17831 vnx4si_mode = vmode;
17832 else if (known_eq (nunits, poly_uint64 (4)))
17833 v4si_mode = vmode;
17834 }
17835
17836 if (!is_simple_vla_size (size: GET_MODE_NUNITS (mode: vmode))
17837 || !targetm.vector_mode_supported_p (vmode))
17838 continue;
17839
17840 poly_uint64 nunits = GET_MODE_NUNITS (mode: vmode);
17841 test_all_nunits (vmode);
17842 if (nunits.coeffs[0] >= 2)
17843 test_nunits_min_2 (vmode);
17844 if (nunits.coeffs[0] >= 4)
17845 test_nunits_min_4 (vmode);
17846 if (nunits.coeffs[0] >= 8)
17847 test_nunits_min_8 (vmode);
17848
17849 if (nunits.coeffs[0] <= 4)
17850 test_nunits_max_4 (vmode);
17851 }
17852
17853 if (vnx4si_mode != E_VOIDmode && v4si_mode != E_VOIDmode
17854 && targetm.vector_mode_supported_p (vnx4si_mode)
17855 && targetm.vector_mode_supported_p (v4si_mode))
17856 {
17857 test_vnx4si_v4si (vnx4si_mode, v4si_mode);
17858 test_v4si_vnx4si (v4si_mode, vnx4si_mode);
17859 }
17860}
17861} // end of test_fold_vec_perm_cst namespace
17862
17863/* Verify that various binary operations on vectors are folded
17864 correctly. */
17865
17866static void
17867test_vector_folding ()
17868{
17869 tree inner_type = integer_type_node;
17870 tree type = build_vector_type (inner_type, 4);
17871 tree zero = build_zero_cst (type);
17872 tree one = build_one_cst (type);
17873 tree index = build_index_vector (type, 0, 1);
17874
17875 /* Verify equality tests that return a scalar boolean result. */
17876 tree res_type = boolean_type_node;
17877 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
17878 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
17879 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
17880 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
17881 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, index, one)));
17882 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type,
17883 index, one)));
17884 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type,
17885 index, index)));
17886 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type,
17887 index, index)));
17888}
17889
17890/* Verify folding of VEC_DUPLICATE_EXPRs. */
17891
17892static void
17893test_vec_duplicate_folding ()
17894{
17895 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (ssizetype);
17896 machine_mode vec_mode = targetm.vectorize.preferred_simd_mode (int_mode);
17897 /* This will be 1 if VEC_MODE isn't a vector mode. */
17898 poly_uint64 nunits = GET_MODE_NUNITS (mode: vec_mode);
17899
17900 tree type = build_vector_type (ssizetype, nunits);
17901 tree dup5_expr = fold_unary (VEC_DUPLICATE_EXPR, type, ssize_int (5));
17902 tree dup5_cst = build_vector_from_val (type, ssize_int (5));
17903 ASSERT_TRUE (operand_equal_p (dup5_expr, dup5_cst, 0));
17904}
17905
17906/* Run all of the selftests within this file. */
17907
17908void
17909fold_const_cc_tests ()
17910{
17911 test_arithmetic_folding ();
17912 test_vector_folding ();
17913 test_vec_duplicate_folding ();
17914 test_fold_vec_perm_cst::test ();
17915}
17916
17917} // namespace selftest
17918
17919#endif /* CHECKING_P */
17920

source code of gcc/fold-const.cc