1/* Generate from machine description:
2 - prototype declarations for operand predicates (tm-preds.h)
3 - function definitions of operand predicates, if defined new-style
4 (insn-preds.cc)
5 Copyright (C) 2001-2023 Free Software Foundation, Inc.
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 3, or (at your option)
12any later version.
13
14GCC is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
22
23#include "bconfig.h"
24#include "system.h"
25#include "coretypes.h"
26#include "tm.h"
27#include "rtl.h"
28#include "errors.h"
29#include "obstack.h"
30#include "read-md.h"
31#include "gensupport.h"
32
33static char general_mem[] = { TARGET_MEM_CONSTRAINT, 0 };
34
35/* Given a predicate expression EXP, from form NAME at location LOC,
36 verify that it does not contain any RTL constructs which are not
37 valid in predicate definitions. Returns true if EXP is
38 INvalid; issues error messages, caller need not. */
39static bool
40validate_exp (rtx exp, const char *name, file_location loc)
41{
42 if (exp == 0)
43 {
44 message_at (loc, "%s: must give a predicate expression", name);
45 return true;
46 }
47
48 switch (GET_CODE (exp))
49 {
50 /* Ternary, binary, unary expressions: recurse into subexpressions. */
51 case IF_THEN_ELSE:
52 if (validate_exp (XEXP (exp, 2), name, loc))
53 return true;
54 /* fall through */
55 case AND:
56 case IOR:
57 if (validate_exp (XEXP (exp, 1), name, loc))
58 return true;
59 /* fall through */
60 case NOT:
61 return validate_exp (XEXP (exp, 0), name, loc);
62
63 /* MATCH_CODE might have a syntax error in its path expression. */
64 case MATCH_CODE:
65 {
66 const char *p;
67 for (p = XSTR (exp, 1); *p; p++)
68 {
69 if (!ISDIGIT (*p) && !ISLOWER (*p))
70 {
71 error_at (loc, "%s: invalid character in path "
72 "string '%s'", name, XSTR (exp, 1));
73 return true;
74 }
75 }
76 }
77 gcc_fallthrough ();
78
79 /* These need no special checking. */
80 case MATCH_OPERAND:
81 case MATCH_TEST:
82 return false;
83
84 default:
85 error_at (loc, "%s: cannot use '%s' in a predicate expression",
86 name, GET_RTX_NAME (GET_CODE (exp)));
87 return true;
88 }
89}
90
91/* Predicates are defined with (define_predicate) or
92 (define_special_predicate) expressions in the machine description. */
93static void
94process_define_predicate (md_rtx_info *info)
95{
96 validate_exp (XEXP (info->def, 1), XSTR (info->def, 0), loc: info->loc);
97}
98
99/* Given a predicate, if it has an embedded C block, write the block
100 out as a static inline subroutine, and augment the RTL test with a
101 match_test that calls that subroutine. For instance,
102
103 (define_predicate "basereg_operand"
104 (match_operand 0 "register_operand")
105 {
106 if (GET_CODE (op) == SUBREG)
107 op = SUBREG_REG (op);
108 return REG_POINTER (op);
109 })
110
111 becomes
112
113 static inline bool basereg_operand_1(rtx op, machine_mode mode)
114 {
115 if (GET_CODE (op) == SUBREG)
116 op = SUBREG_REG (op);
117 return REG_POINTER (op);
118 }
119
120 (define_predicate "basereg_operand"
121 (and (match_operand 0 "register_operand")
122 (match_test "basereg_operand_1 (op, mode)")))
123
124 The only wart is that there's no way to insist on a { } string in
125 an RTL template, so we have to handle "" strings. */
126
127
128static void
129write_predicate_subfunction (struct pred_data *p)
130{
131 const char *match_test_str;
132 rtx match_test_exp, and_exp;
133
134 if (p->c_block[0] == '\0')
135 return;
136
137 /* Construct the function-call expression. */
138 obstack_grow (rtl_obstack, p->name, strlen (p->name));
139 obstack_grow (rtl_obstack, "_1 (op, mode)",
140 sizeof "_1 (op, mode)");
141 match_test_str = XOBFINISH (rtl_obstack, const char *);
142
143 /* Add the function-call expression to the complete expression to be
144 evaluated. */
145 match_test_exp = rtx_alloc (MATCH_TEST);
146 XSTR (match_test_exp, 0) = match_test_str;
147
148 and_exp = rtx_alloc (AND);
149 XEXP (and_exp, 0) = p->exp;
150 XEXP (and_exp, 1) = match_test_exp;
151
152 p->exp = and_exp;
153
154 printf (format: "static inline bool\n"
155 "%s_1 (rtx op ATTRIBUTE_UNUSED, machine_mode mode ATTRIBUTE_UNUSED)\n",
156 p->name);
157 rtx_reader_ptr->print_md_ptr_loc (ptr: p->c_block);
158 if (p->c_block[0] == '{')
159 fputs (p->c_block, stdout);
160 else
161 printf (format: "{\n %s\n}", p->c_block);
162 fputs ("\n\n", stdout);
163}
164
165/* Given a predicate expression EXP, from form NAME, determine whether
166 it refers to the variable given as VAR. */
167static bool
168needs_variable (rtx exp, const char *var)
169{
170 switch (GET_CODE (exp))
171 {
172 /* Ternary, binary, unary expressions need a variable if
173 any of their subexpressions do. */
174 case IF_THEN_ELSE:
175 if (needs_variable (XEXP (exp, 2), var))
176 return true;
177 /* fall through */
178 case AND:
179 case IOR:
180 if (needs_variable (XEXP (exp, 1), var))
181 return true;
182 /* fall through */
183 case NOT:
184 return needs_variable (XEXP (exp, 0), var);
185
186 /* MATCH_CODE uses "op", but nothing else. */
187 case MATCH_CODE:
188 return !strcmp (s1: var, s2: "op");
189
190 /* MATCH_OPERAND uses "op" and may use "mode". */
191 case MATCH_OPERAND:
192 if (!strcmp (s1: var, s2: "op"))
193 return true;
194 if (!strcmp (s1: var, s2: "mode") && GET_MODE (exp) == VOIDmode)
195 return true;
196 return false;
197
198 /* MATCH_TEST uses var if XSTR (exp, 0) =~ /\b${var}\b/o; */
199 case MATCH_TEST:
200 {
201 const char *p = XSTR (exp, 0);
202 const char *q = strstr (haystack: p, needle: var);
203 if (!q)
204 return false;
205 if (q != p && (ISALNUM (q[-1]) || q[-1] == '_'))
206 return false;
207 q += strlen (s: var);
208 if (ISALNUM (q[0]) || q[0] == '_')
209 return false;
210 }
211 return true;
212
213 default:
214 gcc_unreachable ();
215 }
216}
217
218/* Given an RTL expression EXP, find all subexpressions which we may
219 assume to perform mode tests. Normal MATCH_OPERAND does;
220 MATCH_CODE doesn't as such (although certain codes always have
221 VOIDmode); and we have to assume that MATCH_TEST does not.
222 These combine in almost-boolean fashion - the only exception is
223 that (not X) must be assumed not to perform a mode test, whether
224 or not X does.
225
226 The mark is the RTL /v flag, which is true for subexpressions which
227 do *not* perform mode tests.
228*/
229#define NO_MODE_TEST(EXP) RTX_FLAG (EXP, volatil)
230static void
231mark_mode_tests (rtx exp)
232{
233 switch (GET_CODE (exp))
234 {
235 case MATCH_OPERAND:
236 {
237 struct pred_data *p = lookup_predicate (XSTR (exp, 1));
238 if (!p)
239 error ("reference to undefined predicate '%s'", XSTR (exp, 1));
240 else if (p->special || GET_MODE (exp) != VOIDmode)
241 NO_MODE_TEST (exp) = 1;
242 }
243 break;
244
245 case MATCH_CODE:
246 NO_MODE_TEST (exp) = 1;
247 break;
248
249 case MATCH_TEST:
250 case NOT:
251 NO_MODE_TEST (exp) = 1;
252 break;
253
254 case AND:
255 mark_mode_tests (XEXP (exp, 0));
256 mark_mode_tests (XEXP (exp, 1));
257
258 NO_MODE_TEST (exp) = (NO_MODE_TEST (XEXP (exp, 0))
259 && NO_MODE_TEST (XEXP (exp, 1)));
260 break;
261
262 case IOR:
263 mark_mode_tests (XEXP (exp, 0));
264 mark_mode_tests (XEXP (exp, 1));
265
266 NO_MODE_TEST (exp) = (NO_MODE_TEST (XEXP (exp, 0))
267 || NO_MODE_TEST (XEXP (exp, 1)));
268 break;
269
270 case IF_THEN_ELSE:
271 /* A ? B : C does a mode test if (one of A and B) does a mode
272 test, and C does too. */
273 mark_mode_tests (XEXP (exp, 0));
274 mark_mode_tests (XEXP (exp, 1));
275 mark_mode_tests (XEXP (exp, 2));
276
277 NO_MODE_TEST (exp) = ((NO_MODE_TEST (XEXP (exp, 0))
278 && NO_MODE_TEST (XEXP (exp, 1)))
279 || NO_MODE_TEST (XEXP (exp, 2)));
280 break;
281
282 default:
283 gcc_unreachable ();
284 }
285}
286
287/* Determine whether the expression EXP is a MATCH_CODE that should
288 be written as a switch statement. */
289static bool
290generate_switch_p (rtx exp)
291{
292 return GET_CODE (exp) == MATCH_CODE
293 && strchr (XSTR (exp, 0), c: ',');
294}
295
296/* Given a predicate, work out where in its RTL expression to add
297 tests for proper modes. Special predicates do not get any such
298 tests. We try to avoid adding tests when we don't have to; in
299 particular, other normal predicates can be counted on to do it for
300 us. */
301
302static void
303add_mode_tests (struct pred_data *p)
304{
305 rtx match_test_exp, and_exp;
306 rtx *pos;
307
308 /* Don't touch special predicates. */
309 if (p->special)
310 return;
311
312 /* Check whether the predicate accepts const scalar ints (which always
313 have a stored mode of VOIDmode, but logically have a real mode)
314 and whether it matches anything besides const scalar ints. */
315 bool matches_const_scalar_int_p = false;
316 bool matches_other_p = false;
317 for (int i = 0; i < NUM_RTX_CODE; ++i)
318 if (p->codes[i])
319 switch (i)
320 {
321 case CONST_INT:
322 case CONST_WIDE_INT:
323 /* Special handling for (VOIDmode) LABEL_REFs. */
324 case LABEL_REF:
325 matches_const_scalar_int_p = true;
326 break;
327
328 case CONST_DOUBLE:
329 if (!TARGET_SUPPORTS_WIDE_INT)
330 matches_const_scalar_int_p = true;
331 matches_other_p = true;
332 break;
333
334 default:
335 matches_other_p = true;
336 break;
337 }
338
339 /* There's no need for a mode check if the predicate only accepts
340 constant integers. The code checks in the predicate are enough
341 to establish that the mode is VOIDmode.
342
343 Note that the predicate itself should check whether a scalar
344 integer is in range of the given mode. */
345 if (!matches_other_p)
346 return;
347
348 mark_mode_tests (exp: p->exp);
349
350 /* If the whole expression already tests the mode, we're done. */
351 if (!NO_MODE_TEST (p->exp))
352 return;
353
354 match_test_exp = rtx_alloc (MATCH_TEST);
355 if (matches_const_scalar_int_p)
356 XSTR (match_test_exp, 0) = ("mode == VOIDmode || GET_MODE (op) == mode"
357 " || GET_MODE (op) == VOIDmode");
358 else
359 XSTR (match_test_exp, 0) = "mode == VOIDmode || GET_MODE (op) == mode";
360 and_exp = rtx_alloc (AND);
361 XEXP (and_exp, 1) = match_test_exp;
362
363 /* It is always correct to rewrite p->exp as
364
365 (and (...) (match_test "mode == VOIDmode || GET_MODE (op) == mode"))
366
367 but there are a couple forms where we can do better. If the
368 top-level pattern is an IOR, and one of the two branches does test
369 the mode, we can wrap just the branch that doesn't. Likewise, if
370 we have an IF_THEN_ELSE, and one side of it tests the mode, we can
371 wrap just the side that doesn't. And, of course, we can repeat this
372 descent as many times as it works. */
373
374 pos = &p->exp;
375 for (;;)
376 {
377 rtx subexp = *pos;
378
379 switch (GET_CODE (subexp))
380 {
381 case AND:
382 /* The switch code generation in write_predicate_stmts prefers
383 rtx code tests to be at the top of the expression tree. So
384 push this AND down into the second operand of an existing
385 AND expression. */
386 if (generate_switch_p (XEXP (subexp, 0)))
387 pos = &XEXP (subexp, 1);
388 goto break_loop;
389
390 case IOR:
391 {
392 int test0 = NO_MODE_TEST (XEXP (subexp, 0));
393 int test1 = NO_MODE_TEST (XEXP (subexp, 1));
394
395 gcc_assert (test0 || test1);
396
397 if (test0 && test1)
398 goto break_loop;
399 pos = test0 ? &XEXP (subexp, 0) : &XEXP (subexp, 1);
400 }
401 break;
402
403 case IF_THEN_ELSE:
404 {
405 int test0 = NO_MODE_TEST (XEXP (subexp, 0));
406 int test1 = NO_MODE_TEST (XEXP (subexp, 1));
407 int test2 = NO_MODE_TEST (XEXP (subexp, 2));
408
409 gcc_assert ((test0 && test1) || test2);
410
411 if (test0 && test1 && test2)
412 goto break_loop;
413 if (test0 && test1)
414 /* Must put it on the dependent clause, not the
415 controlling expression, or we change the meaning of
416 the test. */
417 pos = &XEXP (subexp, 1);
418 else
419 pos = &XEXP (subexp, 2);
420 }
421 break;
422
423 default:
424 goto break_loop;
425 }
426 }
427 break_loop:
428 XEXP (and_exp, 0) = *pos;
429 *pos = and_exp;
430}
431
432/* PATH is a string describing a path from the root of an RTL
433 expression to an inner subexpression to be tested. Output
434 code which computes the subexpression from the variable
435 holding the root of the expression. */
436static void
437write_extract_subexp (const char *path)
438{
439 int len = strlen (s: path);
440 int i;
441
442 /* We first write out the operations (XEXP or XVECEXP) in reverse
443 order, then write "op", then the indices in forward order. */
444 for (i = len - 1; i >= 0; i--)
445 {
446 if (ISLOWER (path[i]))
447 fputs ("XVECEXP (", stdout);
448 else if (ISDIGIT (path[i]))
449 fputs ("XEXP (", stdout);
450 else
451 gcc_unreachable ();
452 }
453
454 fputs ("op", stdout);
455
456 for (i = 0; i < len; i++)
457 {
458 if (ISLOWER (path[i]))
459 printf (format: ", 0, %d)", path[i] - 'a');
460 else if (ISDIGIT (path[i]))
461 printf (format: ", %d)", path[i] - '0');
462 else
463 gcc_unreachable ();
464 }
465}
466
467/* CODES is a list of RTX codes. Write out an expression which
468 determines whether the operand has one of those codes. */
469static void
470write_match_code (const char *path, const char *codes)
471{
472 const char *code;
473
474 while ((code = scan_comma_elt (&codes)) != 0)
475 {
476 fputs ("GET_CODE (", stdout);
477 write_extract_subexp (path);
478 fputs (") == ", stdout);
479 while (code < codes)
480 {
481 putchar (TOUPPER (*code));
482 code++;
483 }
484
485 if (*codes == ',')
486 fputs (" || ", stdout);
487 }
488}
489
490/* EXP is an RTL (sub)expression for a predicate. Recursively
491 descend the expression and write out an equivalent C expression. */
492static void
493write_predicate_expr (rtx exp)
494{
495 switch (GET_CODE (exp))
496 {
497 case AND:
498 putchar ('(');
499 write_predicate_expr (XEXP (exp, 0));
500 fputs (") && (", stdout);
501 write_predicate_expr (XEXP (exp, 1));
502 putchar (')');
503 break;
504
505 case IOR:
506 putchar ('(');
507 write_predicate_expr (XEXP (exp, 0));
508 fputs (") || (", stdout);
509 write_predicate_expr (XEXP (exp, 1));
510 putchar (')');
511 break;
512
513 case NOT:
514 fputs ("!(", stdout);
515 write_predicate_expr (XEXP (exp, 0));
516 putchar (')');
517 break;
518
519 case IF_THEN_ELSE:
520 putchar ('(');
521 write_predicate_expr (XEXP (exp, 0));
522 fputs (") ? (", stdout);
523 write_predicate_expr (XEXP (exp, 1));
524 fputs (") : (", stdout);
525 write_predicate_expr (XEXP (exp, 2));
526 putchar (')');
527 break;
528
529 case MATCH_OPERAND:
530 if (GET_MODE (exp) == VOIDmode)
531 printf (format: "%s (op, mode)", XSTR (exp, 1));
532 else
533 printf (format: "%s (op, %smode)", XSTR (exp, 1), mode_name[GET_MODE (exp)]);
534 break;
535
536 case MATCH_CODE:
537 write_match_code (XSTR (exp, 1), XSTR (exp, 0));
538 break;
539
540 case MATCH_TEST:
541 rtx_reader_ptr->print_c_condition (XSTR (exp, 0));
542 break;
543
544 default:
545 gcc_unreachable ();
546 }
547}
548
549/* Write the MATCH_CODE expression EXP as a switch statement. */
550
551static void
552write_match_code_switch (rtx exp)
553{
554 const char *codes = XSTR (exp, 0);
555 const char *path = XSTR (exp, 1);
556 const char *code;
557
558 fputs (" switch (GET_CODE (", stdout);
559 write_extract_subexp (path);
560 fputs ("))\n {\n", stdout);
561
562 while ((code = scan_comma_elt (&codes)) != 0)
563 {
564 fputs (" case ", stdout);
565 while (code < codes)
566 {
567 putchar (TOUPPER (*code));
568 code++;
569 }
570 fputs (":\n", stdout);
571 }
572}
573
574/* Given a predicate expression EXP, write out a sequence of stmts
575 to evaluate it. This is similar to write_predicate_expr but can
576 generate efficient switch statements. */
577
578static void
579write_predicate_stmts (rtx exp)
580{
581 switch (GET_CODE (exp))
582 {
583 case MATCH_CODE:
584 if (generate_switch_p (exp))
585 {
586 write_match_code_switch (exp);
587 puts (s: " return true;\n"
588 " default:\n"
589 " break;\n"
590 " }\n"
591 " return false;");
592 return;
593 }
594 break;
595
596 case AND:
597 if (generate_switch_p (XEXP (exp, 0)))
598 {
599 write_match_code_switch (XEXP (exp, 0));
600 puts (s: " break;\n"
601 " default:\n"
602 " return false;\n"
603 " }");
604 exp = XEXP (exp, 1);
605 }
606 break;
607
608 case IOR:
609 if (generate_switch_p (XEXP (exp, 0)))
610 {
611 write_match_code_switch (XEXP (exp, 0));
612 puts (s: " return true;\n"
613 " default:\n"
614 " break;\n"
615 " }");
616 exp = XEXP (exp, 1);
617 }
618 break;
619
620 case NOT:
621 if (generate_switch_p (XEXP (exp, 0)))
622 {
623 write_match_code_switch (XEXP (exp, 0));
624 puts (s: " return false;\n"
625 " default:\n"
626 " break;\n"
627 " }\n"
628 " return true;");
629 return;
630 }
631 break;
632
633 default:
634 break;
635 }
636
637 fputs (" return ",stdout);
638 write_predicate_expr (exp);
639 fputs (";\n", stdout);
640}
641
642/* Given a predicate, write out a complete C function to compute it. */
643static void
644write_one_predicate_function (struct pred_data *p)
645{
646 if (!p->exp)
647 return;
648
649 write_predicate_subfunction (p);
650 add_mode_tests (p);
651
652 /* A normal predicate can legitimately not look at machine_mode
653 if it accepts only CONST_INTs and/or CONST_WIDE_INT and/or CONST_DOUBLEs. */
654 printf (format: "bool\n%s (rtx op, machine_mode mode ATTRIBUTE_UNUSED)\n{\n",
655 p->name);
656 write_predicate_stmts (exp: p->exp);
657 fputs ("}\n\n", stdout);
658}
659
660/* Constraints fall into two categories: register constraints
661 (define_register_constraint), and others (define_constraint,
662 define_memory_constraint, define_special_memory_constraint,
663 define_relaxed_memory_constraint, define_address_constraint). We work out
664 automatically which of the various old-style macros they correspond to, and
665 produce appropriate code. They all go in the same hash table so we can
666 verify that there are no duplicate names. */
667
668/* All data from one constraint definition. */
669class constraint_data
670{
671public:
672 class constraint_data *next_this_letter;
673 class constraint_data *next_textual;
674 const char *name;
675 const char *c_name; /* same as .name unless mangling is necessary */
676 file_location loc; /* location of definition */
677 size_t namelen;
678 const char *regclass; /* for register constraints */
679 rtx exp; /* for other constraints */
680 unsigned int is_register : 1;
681 unsigned int is_const_int : 1;
682 unsigned int is_const_dbl : 1;
683 unsigned int is_extra : 1;
684 unsigned int is_memory : 1;
685 unsigned int is_special_memory: 1;
686 unsigned int is_relaxed_memory: 1;
687 unsigned int is_address : 1;
688 unsigned int maybe_allows_reg : 1;
689 unsigned int maybe_allows_mem : 1;
690};
691
692/* Overview of all constraints beginning with a given letter. */
693
694static class constraint_data *
695constraints_by_letter_table[1<<CHAR_BIT];
696
697/* For looking up all the constraints in the order that they appeared
698 in the machine description. */
699static class constraint_data *first_constraint;
700static class constraint_data **last_constraint_ptr = &first_constraint;
701
702#define FOR_ALL_CONSTRAINTS(iter_) \
703 for (iter_ = first_constraint; iter_; iter_ = iter_->next_textual)
704
705/* Contraint letters that have a special meaning and that cannot be used
706 in define*_constraints. */
707static const char generic_constraint_letters[] = "g";
708
709/* Machine-independent code expects that constraints with these
710 (initial) letters will allow only (a subset of all) CONST_INTs. */
711
712static const char const_int_constraints[] = "IJKLMNOP";
713
714/* Machine-independent code expects that constraints with these
715 (initial) letters will allow only (a subset of all) CONST_DOUBLEs. */
716
717static const char const_dbl_constraints[] = "GH";
718
719/* Summary data used to decide whether to output various functions and
720 macro definitions. */
721static unsigned int constraint_max_namelen;
722static bool have_register_constraints;
723static bool have_memory_constraints;
724static bool have_special_memory_constraints;
725static bool have_relaxed_memory_constraints;
726static bool have_address_constraints;
727static bool have_extra_constraints;
728static bool have_const_int_constraints;
729static unsigned int num_constraints;
730
731static const constraint_data **enum_order;
732static unsigned int register_start, register_end;
733static unsigned int satisfied_start;
734static unsigned int const_int_start, const_int_end;
735static unsigned int memory_start, memory_end;
736static unsigned int special_memory_start, special_memory_end;
737static unsigned int relaxed_memory_start, relaxed_memory_end;
738static unsigned int address_start, address_end;
739static unsigned int maybe_allows_none_start, maybe_allows_none_end;
740static unsigned int maybe_allows_reg_start, maybe_allows_reg_end;
741static unsigned int maybe_allows_mem_start, maybe_allows_mem_end;
742
743/* Convert NAME, which contains angle brackets and/or underscores, to
744 a string that can be used as part of a C identifier. The string
745 comes from the rtl_obstack. */
746static const char *
747mangle (const char *name)
748{
749 for (; *name; name++)
750 switch (*name)
751 {
752 case '_': obstack_grow (rtl_obstack, "__", 2); break;
753 case '<': obstack_grow (rtl_obstack, "_l", 2); break;
754 case '>': obstack_grow (rtl_obstack, "_g", 2); break;
755 default: obstack_1grow (rtl_obstack, *name); break;
756 }
757
758 obstack_1grow (rtl_obstack, '\0');
759 return XOBFINISH (rtl_obstack, const char *);
760}
761
762/* Add one constraint, of any sort, to the tables. NAME is its name; REGCLASS
763 is the register class, if any; EXP is the expression to test, if any;
764 IS_MEMORY, IS_SPECIAL_MEMORY, IS_RELAXED_MEMORY and IS_ADDRESS indicate
765 memory, special memory, and address constraints, respectively; LOC is the .md
766 file location.
767
768 Not all combinations of arguments are valid; most importantly, REGCLASS is
769 mutually exclusive with EXP, and
770 IS_MEMORY/IS_SPECIAL_MEMORY/IS_RELAXED_MEMORY/IS_ADDRESS are only meaningful
771 for constraints with EXP.
772
773 This function enforces all syntactic and semantic rules about what
774 constraints can be defined. */
775
776static void
777add_constraint (const char *name, const char *regclass,
778 rtx exp, bool is_memory, bool is_special_memory,
779 bool is_relaxed_memory, bool is_address, file_location loc)
780{
781 class constraint_data *c, **iter, **slot;
782 const char *p;
783 bool need_mangled_name = false;
784 bool is_const_int;
785 bool is_const_dbl;
786 size_t namelen;
787
788 if (strcmp (s1: name, s2: "TARGET_MEM_CONSTRAINT") == 0)
789 name = general_mem;
790
791 if (exp && validate_exp (exp, name, loc))
792 return;
793
794 for (p = name; *p; p++)
795 if (!ISALNUM (*p))
796 {
797 if (*p == '<' || *p == '>' || *p == '_')
798 need_mangled_name = true;
799 else
800 {
801 error_at (loc, "constraint name '%s' must be composed of letters,"
802 " digits, underscores, and angle brackets", name);
803 return;
804 }
805 }
806
807 if (strchr (s: generic_constraint_letters, c: name[0]))
808 {
809 if (name[1] == '\0')
810 error_at (loc, "constraint letter '%s' cannot be "
811 "redefined by the machine description", name);
812 else
813 error_at (loc, "constraint name '%s' cannot be defined by the machine"
814 " description, as it begins with '%c'", name, name[0]);
815 return;
816 }
817
818
819 namelen = strlen (s: name);
820 slot = &constraints_by_letter_table[(unsigned int)name[0]];
821 for (iter = slot; *iter; iter = &(*iter)->next_this_letter)
822 {
823 /* This causes slot to end up pointing to the
824 next_this_letter field of the last constraint with a name
825 of equal or greater length than the new constraint; hence
826 the new constraint will be inserted after all previous
827 constraints with names of the same length. */
828 if ((*iter)->namelen >= namelen)
829 slot = iter;
830
831 if (!strcmp (s1: (*iter)->name, s2: name))
832 {
833 error_at (loc, "redefinition of constraint '%s'", name);
834 message_at ((*iter)->loc, "previous definition is here");
835 return;
836 }
837 else if (!strncmp (s1: (*iter)->name, s2: name, n: (*iter)->namelen))
838 {
839 error_at (loc, "defining constraint '%s' here", name);
840 message_at ((*iter)->loc, "renders constraint '%s' "
841 "(defined here) a prefix", (*iter)->name);
842 return;
843 }
844 else if (!strncmp (s1: (*iter)->name, s2: name, n: namelen))
845 {
846 error_at (loc, "constraint '%s' is a prefix", name);
847 message_at ((*iter)->loc, "of constraint '%s' (defined here)",
848 (*iter)->name);
849 return;
850 }
851 }
852
853 is_const_int = strchr (s: const_int_constraints, c: name[0]) != 0;
854 is_const_dbl = strchr (s: const_dbl_constraints, c: name[0]) != 0;
855
856 if (is_const_int || is_const_dbl)
857 {
858 enum rtx_code appropriate_code
859 = is_const_int ? CONST_INT : CONST_DOUBLE;
860
861 /* Consider relaxing this requirement in the future. */
862 if (regclass
863 || GET_CODE (exp) != AND
864 || GET_CODE (XEXP (exp, 0)) != MATCH_CODE
865 || strcmp (XSTR (XEXP (exp, 0), 0),
866 GET_RTX_NAME (appropriate_code)))
867 {
868 if (name[1] == '\0')
869 error_at (loc, "constraint letter '%c' is reserved "
870 "for %s constraints", name[0],
871 GET_RTX_NAME (appropriate_code));
872 else
873 error_at (loc, "constraint names beginning with '%c' "
874 "(%s) are reserved for %s constraints",
875 name[0], name, GET_RTX_NAME (appropriate_code));
876 return;
877 }
878
879 if (is_memory || is_special_memory || is_relaxed_memory)
880 {
881 if (name[1] == '\0')
882 error_at (loc, "constraint letter '%c' cannot be a "
883 "memory constraint", name[0]);
884 else
885 error_at (loc, "constraint name '%s' begins with '%c', "
886 "and therefore cannot be a memory constraint",
887 name, name[0]);
888 return;
889 }
890 else if (is_address)
891 {
892 if (name[1] == '\0')
893 error_at (loc, "constraint letter '%c' cannot be an "
894 "address constraint", name[0]);
895 else
896 error_at (loc, "constraint name '%s' begins with '%c', "
897 "and therefore cannot be an address constraint",
898 name, name[0]);
899 return;
900 }
901 }
902
903
904 c = XOBNEW (rtl_obstack, class constraint_data);
905 c->name = name;
906 c->c_name = need_mangled_name ? mangle (name) : name;
907 c->loc = loc;
908 c->namelen = namelen;
909 c->regclass = regclass;
910 c->exp = exp;
911 c->is_register = regclass != 0;
912 c->is_const_int = is_const_int;
913 c->is_const_dbl = is_const_dbl;
914 c->is_extra = !(regclass || is_const_int || is_const_dbl);
915 c->is_memory = is_memory;
916 c->is_special_memory = is_special_memory;
917 c->is_relaxed_memory = is_relaxed_memory;
918 c->is_address = is_address;
919 c->maybe_allows_reg = true;
920 c->maybe_allows_mem = true;
921 if (exp)
922 {
923 char codes[NUM_RTX_CODE];
924 compute_test_codes (exp, loc, codes);
925 if (!codes[REG] && !codes[SUBREG])
926 c->maybe_allows_reg = false;
927 if (!codes[MEM])
928 c->maybe_allows_mem = false;
929 }
930 c->next_this_letter = *slot;
931 *slot = c;
932
933 /* Insert this constraint in the list of all constraints in textual
934 order. */
935 c->next_textual = 0;
936 *last_constraint_ptr = c;
937 last_constraint_ptr = &c->next_textual;
938
939 constraint_max_namelen = MAX (constraint_max_namelen, strlen (name));
940 have_register_constraints |= c->is_register;
941 have_const_int_constraints |= c->is_const_int;
942 have_extra_constraints |= c->is_extra;
943 have_memory_constraints |= c->is_memory;
944 have_special_memory_constraints |= c->is_special_memory;
945 have_relaxed_memory_constraints |= c->is_relaxed_memory;
946 have_address_constraints |= c->is_address;
947 num_constraints += 1;
948}
949
950/* Process a DEFINE_CONSTRAINT, DEFINE_MEMORY_CONSTRAINT,
951 DEFINE_SPECIAL_MEMORY_CONSTRAINT, DEFINE_RELAXED_MEMORY_CONSTRAINT, or
952 DEFINE_ADDRESS_CONSTRAINT expression, C. */
953static void
954process_define_constraint (md_rtx_info *info)
955{
956 add_constraint (XSTR (info->def, 0), regclass: 0, XEXP (info->def, 2),
957 GET_CODE (info->def) == DEFINE_MEMORY_CONSTRAINT,
958 GET_CODE (info->def) == DEFINE_SPECIAL_MEMORY_CONSTRAINT,
959 GET_CODE (info->def) == DEFINE_RELAXED_MEMORY_CONSTRAINT,
960 GET_CODE (info->def) == DEFINE_ADDRESS_CONSTRAINT,
961 loc: info->loc);
962}
963
964/* Process a DEFINE_REGISTER_CONSTRAINT expression, C. */
965static void
966process_define_register_constraint (md_rtx_info *info)
967{
968 add_constraint (XSTR (info->def, 0), XSTR (info->def, 1),
969 exp: 0, is_memory: false, is_special_memory: false, is_relaxed_memory: false, is_address: false, loc: info->loc);
970}
971
972/* Put the constraints into enum order. We want to keep constraints
973 of the same type together so that query functions can be simple
974 range checks. */
975static void
976choose_enum_order (void)
977{
978 class constraint_data *c;
979
980 enum_order = XNEWVEC (const constraint_data *, num_constraints);
981 unsigned int next = 0;
982
983 register_start = next;
984 FOR_ALL_CONSTRAINTS (c)
985 if (c->is_register)
986 enum_order[next++] = c;
987 register_end = next;
988
989 satisfied_start = next;
990
991 const_int_start = next;
992 FOR_ALL_CONSTRAINTS (c)
993 if (c->is_const_int)
994 enum_order[next++] = c;
995 const_int_end = next;
996
997 memory_start = next;
998 FOR_ALL_CONSTRAINTS (c)
999 if (c->is_memory)
1000 enum_order[next++] = c;
1001 memory_end = next;
1002
1003 special_memory_start = next;
1004 FOR_ALL_CONSTRAINTS (c)
1005 if (c->is_special_memory)
1006 enum_order[next++] = c;
1007 special_memory_end = next;
1008
1009 relaxed_memory_start = next;
1010 FOR_ALL_CONSTRAINTS (c)
1011 if (c->is_relaxed_memory)
1012 enum_order[next++] = c;
1013 relaxed_memory_end = next;
1014
1015 address_start = next;
1016 FOR_ALL_CONSTRAINTS (c)
1017 if (c->is_address)
1018 enum_order[next++] = c;
1019 address_end = next;
1020
1021 maybe_allows_none_start = next;
1022 FOR_ALL_CONSTRAINTS (c)
1023 if (!c->is_register && !c->is_const_int && !c->is_memory
1024 && !c->is_special_memory && !c->is_relaxed_memory && !c->is_address
1025 && !c->maybe_allows_reg && !c->maybe_allows_mem)
1026 enum_order[next++] = c;
1027 maybe_allows_none_end = next;
1028
1029 maybe_allows_reg_start = next;
1030 FOR_ALL_CONSTRAINTS (c)
1031 if (!c->is_register && !c->is_const_int && !c->is_memory
1032 && !c->is_special_memory && !c->is_relaxed_memory && !c->is_address
1033 && c->maybe_allows_reg && !c->maybe_allows_mem)
1034 enum_order[next++] = c;
1035 maybe_allows_reg_end = next;
1036
1037 maybe_allows_mem_start = next;
1038 FOR_ALL_CONSTRAINTS (c)
1039 if (!c->is_register && !c->is_const_int && !c->is_memory
1040 && !c->is_special_memory && !c->is_relaxed_memory && !c->is_address
1041 && !c->maybe_allows_reg && c->maybe_allows_mem)
1042 enum_order[next++] = c;
1043 maybe_allows_mem_end = next;
1044
1045 FOR_ALL_CONSTRAINTS (c)
1046 if (!c->is_register && !c->is_const_int && !c->is_memory
1047 && !c->is_special_memory && !c->is_relaxed_memory && !c->is_address
1048 && c->maybe_allows_reg && c->maybe_allows_mem)
1049 enum_order[next++] = c;
1050 gcc_assert (next == num_constraints);
1051}
1052
1053/* Write out an enumeration with one entry per machine-specific
1054 constraint. */
1055static void
1056write_enum_constraint_num (void)
1057{
1058 fputs ("#define CONSTRAINT_NUM_DEFINED_P 1\n", stdout);
1059 fputs ("enum constraint_num\n"
1060 "{\n"
1061 " CONSTRAINT__UNKNOWN = 0", stdout);
1062 for (unsigned int i = 0; i < num_constraints; ++i)
1063 printf (format: ",\n CONSTRAINT_%s", enum_order[i]->c_name);
1064 puts (s: ",\n CONSTRAINT__LIMIT\n};\n");
1065}
1066
1067/* Write out a function which looks at a string and determines what
1068 constraint name, if any, it begins with. */
1069static void
1070write_lookup_constraint_1 (void)
1071{
1072 unsigned int i;
1073 puts (s: "enum constraint_num\n"
1074 "lookup_constraint_1 (const char *str)\n"
1075 "{\n"
1076 " switch (str[0])\n"
1077 " {");
1078
1079 for (i = 0; i < ARRAY_SIZE (constraints_by_letter_table); i++)
1080 {
1081 class constraint_data *c = constraints_by_letter_table[i];
1082 if (!c)
1083 continue;
1084
1085 printf (format: " case '%c':\n", i);
1086 if (c->namelen == 1)
1087 printf (format: " return CONSTRAINT_%s;\n", c->c_name);
1088 else
1089 {
1090 do
1091 {
1092 if (c->namelen > 2)
1093 printf (format: " if (!strncmp (str + 1, \"%s\", %lu))\n"
1094 " return CONSTRAINT_%s;\n",
1095 c->name + 1, (unsigned long int) c->namelen - 1,
1096 c->c_name);
1097 else
1098 printf (format: " if (str[1] == '%c')\n"
1099 " return CONSTRAINT_%s;\n",
1100 c->name[1], c->c_name);
1101 c = c->next_this_letter;
1102 }
1103 while (c);
1104 puts (s: " break;");
1105 }
1106 }
1107
1108 puts (s: " default: break;\n"
1109 " }\n"
1110 " return CONSTRAINT__UNKNOWN;\n"
1111 "}\n");
1112}
1113
1114/* Write out an array that maps single-letter characters to their
1115 constraints (if that fits in a character) or 255 if lookup_constraint_1
1116 must be called. */
1117static void
1118write_lookup_constraint_array (void)
1119{
1120 unsigned int i;
1121 printf (format: "const unsigned char lookup_constraint_array[] = {\n ");
1122 for (i = 0; i < ARRAY_SIZE (constraints_by_letter_table); i++)
1123 {
1124 if (i != 0)
1125 printf (format: ",\n ");
1126 class constraint_data *c = constraints_by_letter_table[i];
1127 if (!c)
1128 printf (format: "CONSTRAINT__UNKNOWN");
1129 else if (c->namelen == 1)
1130 printf (format: "MIN ((int) CONSTRAINT_%s, (int) UCHAR_MAX)", c->c_name);
1131 else
1132 printf (format: "UCHAR_MAX");
1133 }
1134 printf (format: "\n};\n\n");
1135}
1136
1137/* Write out a function which looks at a string and determines what
1138 the constraint name length is. */
1139static void
1140write_insn_constraint_len (void)
1141{
1142 unsigned int i;
1143
1144 puts (s: "static inline size_t\n"
1145 "insn_constraint_len (char fc, const char *str ATTRIBUTE_UNUSED)\n"
1146 "{\n"
1147 " switch (fc)\n"
1148 " {");
1149
1150 for (i = 0; i < ARRAY_SIZE (constraints_by_letter_table); i++)
1151 {
1152 class constraint_data *c = constraints_by_letter_table[i];
1153
1154 if (!c
1155 || c->namelen == 1)
1156 continue;
1157
1158 /* Constraints with multiple characters should have the same
1159 length. */
1160 {
1161 class constraint_data *c2 = c->next_this_letter;
1162 size_t len = c->namelen;
1163 while (c2)
1164 {
1165 if (c2->namelen != len)
1166 error ("Multi-letter constraints with first letter '%c' "
1167 "should have same length", i);
1168 c2 = c2->next_this_letter;
1169 }
1170 }
1171
1172 printf (format: " case '%c': return %lu;\n",
1173 i, (unsigned long int) c->namelen);
1174 }
1175
1176 puts (s: " default: break;\n"
1177 " }\n"
1178 " return 1;\n"
1179 "}\n");
1180}
1181
1182/* Write out the function which computes the register class corresponding
1183 to a register constraint. */
1184static void
1185write_reg_class_for_constraint_1 (void)
1186{
1187 class constraint_data *c;
1188
1189 puts (s: "enum reg_class\n"
1190 "reg_class_for_constraint_1 (enum constraint_num c)\n"
1191 "{\n"
1192 " switch (c)\n"
1193 " {");
1194
1195 FOR_ALL_CONSTRAINTS (c)
1196 if (c->is_register)
1197 printf (format: " case CONSTRAINT_%s: return %s;\n", c->c_name, c->regclass);
1198
1199 puts (s: " default: break;\n"
1200 " }\n"
1201 " return NO_REGS;\n"
1202 "}\n");
1203}
1204
1205/* Write out the functions which compute whether a given value matches
1206 a given non-register constraint. */
1207static void
1208write_tm_constrs_h (void)
1209{
1210 class constraint_data *c;
1211
1212 printf (format: "\
1213/* Generated automatically by the program '%s'\n\
1214 from the machine description file '%s'. */\n\n", progname,
1215 md_reader_ptr->get_top_level_filename ());
1216
1217 puts (s: "\
1218#ifndef GCC_TM_CONSTRS_H\n\
1219#define GCC_TM_CONSTRS_H\n");
1220
1221 FOR_ALL_CONSTRAINTS (c)
1222 if (!c->is_register)
1223 {
1224 bool needs_ival = needs_variable (exp: c->exp, var: "ival");
1225 bool needs_hval = needs_variable (exp: c->exp, var: "hval");
1226 bool needs_lval = needs_variable (exp: c->exp, var: "lval");
1227 bool needs_rval = needs_variable (exp: c->exp, var: "rval");
1228 bool needs_mode = (needs_variable (exp: c->exp, var: "mode")
1229 || needs_hval || needs_lval || needs_rval);
1230 bool needs_op = (needs_variable (exp: c->exp, var: "op")
1231 || needs_ival || needs_mode);
1232
1233 printf (format: "static inline bool\n"
1234 "satisfies_constraint_%s (rtx %s)\n"
1235 "{\n", c->c_name,
1236 needs_op ? "op" : "ARG_UNUSED (op)");
1237 if (needs_mode)
1238 puts (s: " machine_mode mode = GET_MODE (op);");
1239 if (needs_ival)
1240 puts (s: " HOST_WIDE_INT ival = 0;");
1241 if (needs_hval)
1242 puts (s: " HOST_WIDE_INT hval = 0;");
1243 if (needs_lval)
1244 puts (s: " unsigned HOST_WIDE_INT lval = 0;");
1245 if (needs_rval)
1246 puts (s: " const REAL_VALUE_TYPE *rval = 0;");
1247
1248 if (needs_ival)
1249 puts (s: " if (CONST_INT_P (op))\n"
1250 " ival = INTVAL (op);");
1251#if TARGET_SUPPORTS_WIDE_INT
1252 if (needs_lval || needs_hval)
1253 error ("you can't use lval or hval");
1254#else
1255 if (needs_hval)
1256 puts (" if (GET_CODE (op) == CONST_DOUBLE && mode == VOIDmode)"
1257 " hval = CONST_DOUBLE_HIGH (op);");
1258 if (needs_lval)
1259 puts (" if (GET_CODE (op) == CONST_DOUBLE && mode == VOIDmode)"
1260 " lval = CONST_DOUBLE_LOW (op);");
1261#endif
1262 if (needs_rval)
1263 puts (s: " if (GET_CODE (op) == CONST_DOUBLE && mode != VOIDmode)"
1264 " rval = CONST_DOUBLE_REAL_VALUE (op);");
1265
1266 write_predicate_stmts (exp: c->exp);
1267 fputs ("}\n", stdout);
1268 }
1269 puts (s: "#endif /* tm-constrs.h */");
1270}
1271
1272/* Write out the wrapper function, constraint_satisfied_p, that maps
1273 a CONSTRAINT_xxx constant to one of the predicate functions generated
1274 above. */
1275static void
1276write_constraint_satisfied_p_array (void)
1277{
1278 if (satisfied_start == num_constraints)
1279 return;
1280
1281 printf (format: "bool (*constraint_satisfied_p_array[]) (rtx) = {\n ");
1282 for (unsigned int i = satisfied_start; i < num_constraints; ++i)
1283 {
1284 if (i != satisfied_start)
1285 printf (format: ",\n ");
1286 printf (format: "satisfies_constraint_%s", enum_order[i]->c_name);
1287 }
1288 printf (format: "\n};\n\n");
1289}
1290
1291/* Write out the function which computes whether a given value matches
1292 a given CONST_INT constraint. This doesn't just forward to
1293 constraint_satisfied_p because caller passes the INTVAL, not the RTX. */
1294static void
1295write_insn_const_int_ok_for_constraint (void)
1296{
1297 class constraint_data *c;
1298
1299 puts (s: "bool\n"
1300 "insn_const_int_ok_for_constraint (HOST_WIDE_INT ival, "
1301 "enum constraint_num c)\n"
1302 "{\n"
1303 " switch (c)\n"
1304 " {");
1305
1306 FOR_ALL_CONSTRAINTS (c)
1307 if (c->is_const_int)
1308 {
1309 printf (format: " case CONSTRAINT_%s:\n return ", c->c_name);
1310 /* c->exp is guaranteed to be (and (match_code "const_int") (...));
1311 we know at this point that we have a const_int, so we need not
1312 bother with that part of the test. */
1313 write_predicate_expr (XEXP (c->exp, 1));
1314 fputs (";\n\n", stdout);
1315 }
1316
1317 puts (s: " default: break;\n"
1318 " }\n"
1319 " return false;\n"
1320 "}\n");
1321}
1322
1323/* Write a definition for a function NAME that returns true if a given
1324 constraint_num is in the range [START, END). */
1325static void
1326write_range_function (const char *name, unsigned int start, unsigned int end)
1327{
1328 printf (format: "static inline bool\n");
1329 if (start != end)
1330 printf (format: "%s (enum constraint_num c)\n"
1331 "{\n"
1332 " return c >= CONSTRAINT_%s && c <= CONSTRAINT_%s;\n"
1333 "}\n\n",
1334 name, enum_order[start]->c_name, enum_order[end - 1]->c_name);
1335 else
1336 printf (format: "%s (enum constraint_num)\n"
1337 "{\n"
1338 " return false;\n"
1339 "}\n\n", name);
1340}
1341
1342/* Write a definition for insn_extra_constraint_allows_reg_mem function. */
1343static void
1344write_allows_reg_mem_function (void)
1345{
1346 printf (format: "static inline void\n"
1347 "insn_extra_constraint_allows_reg_mem (enum constraint_num c,\n"
1348 "\t\t\t\t bool *allows_reg, bool *allows_mem)\n"
1349 "{\n");
1350 if (maybe_allows_none_start != maybe_allows_none_end)
1351 printf (format: " if (c >= CONSTRAINT_%s && c <= CONSTRAINT_%s)\n"
1352 " return;\n",
1353 enum_order[maybe_allows_none_start]->c_name,
1354 enum_order[maybe_allows_none_end - 1]->c_name);
1355 if (maybe_allows_reg_start != maybe_allows_reg_end)
1356 printf (format: " if (c >= CONSTRAINT_%s && c <= CONSTRAINT_%s)\n"
1357 " {\n"
1358 " *allows_reg = true;\n"
1359 " return;\n"
1360 " }\n",
1361 enum_order[maybe_allows_reg_start]->c_name,
1362 enum_order[maybe_allows_reg_end - 1]->c_name);
1363 if (maybe_allows_mem_start != maybe_allows_mem_end)
1364 printf (format: " if (c >= CONSTRAINT_%s && c <= CONSTRAINT_%s)\n"
1365 " {\n"
1366 " *allows_mem = true;\n"
1367 " return;\n"
1368 " }\n",
1369 enum_order[maybe_allows_mem_start]->c_name,
1370 enum_order[maybe_allows_mem_end - 1]->c_name);
1371 printf (format: " (void) c;\n"
1372 " *allows_reg = true;\n"
1373 " *allows_mem = true;\n"
1374 "}\n\n");
1375}
1376
1377/* VEC is a list of key/value pairs, with the keys being lower bounds
1378 of a range. Output a decision tree that handles the keys covered by
1379 [VEC[START], VEC[END]), returning FALLBACK for keys lower then VEC[START]'s.
1380 INDENT is the number of spaces to indent the code. */
1381static void
1382print_type_tree (const vec <std::pair <unsigned int, const char *> > &vec,
1383 unsigned int start, unsigned int end, const char *fallback,
1384 unsigned int indent)
1385{
1386 while (start < end)
1387 {
1388 unsigned int mid = (start + end) / 2;
1389 printf (format: "%*sif (c >= CONSTRAINT_%s)\n",
1390 indent, "", enum_order[vec[mid].first]->c_name);
1391 if (mid + 1 == end)
1392 print_type_tree (vec, start: mid + 1, end, fallback: vec[mid].second, indent: indent + 2);
1393 else
1394 {
1395 printf (format: "%*s{\n", indent + 2, "");
1396 print_type_tree (vec, start: mid + 1, end, fallback: vec[mid].second, indent: indent + 4);
1397 printf (format: "%*s}\n", indent + 2, "");
1398 }
1399 end = mid;
1400 }
1401 printf (format: "%*sreturn %s;\n", indent, "", fallback);
1402}
1403
1404/* Write tm-preds.h. Unfortunately, it is impossible to forward-declare
1405 an enumeration in portable C, so we have to condition all these
1406 prototypes on HAVE_MACHINE_MODES. */
1407static void
1408write_tm_preds_h (void)
1409{
1410 struct pred_data *p;
1411
1412 printf (format: "\
1413/* Generated automatically by the program '%s'\n\
1414 from the machine description file '%s'. */\n\n", progname,
1415 md_reader_ptr->get_top_level_filename ());
1416
1417 puts (s: "\
1418#ifndef GCC_TM_PREDS_H\n\
1419#define GCC_TM_PREDS_H\n\
1420\n\
1421#ifdef HAVE_MACHINE_MODES");
1422
1423 FOR_ALL_PREDICATES (p)
1424 printf (format: "extern bool %s (rtx, machine_mode);\n", p->name);
1425
1426 puts (s: "#endif /* HAVE_MACHINE_MODES */\n");
1427
1428 if (constraint_max_namelen > 0)
1429 {
1430 write_enum_constraint_num ();
1431 puts (s: "extern enum constraint_num lookup_constraint_1 (const char *);\n"
1432 "extern const unsigned char lookup_constraint_array[];\n"
1433 "\n"
1434 "/* Return the constraint at the beginning of P, or"
1435 " CONSTRAINT__UNKNOWN if it\n"
1436 " isn't recognized. */\n"
1437 "\n"
1438 "static inline enum constraint_num\n"
1439 "lookup_constraint (const char *p)\n"
1440 "{\n"
1441 " unsigned int index = lookup_constraint_array"
1442 "[(unsigned char) *p];\n"
1443 " return (index == UCHAR_MAX\n"
1444 " ? lookup_constraint_1 (p)\n"
1445 " : (enum constraint_num) index);\n"
1446 "}\n");
1447 if (satisfied_start == num_constraints)
1448 puts (s: "/* Return true if X satisfies constraint C. */\n"
1449 "\n"
1450 "static inline bool\n"
1451 "constraint_satisfied_p (rtx, enum constraint_num)\n"
1452 "{\n"
1453 " return false;\n"
1454 "}\n");
1455 else
1456 printf (format: "extern bool (*constraint_satisfied_p_array[]) (rtx);\n"
1457 "\n"
1458 "/* Return true if X satisfies constraint C. */\n"
1459 "\n"
1460 "static inline bool\n"
1461 "constraint_satisfied_p (rtx x, enum constraint_num c)\n"
1462 "{\n"
1463 " int i = (int) c - (int) CONSTRAINT_%s;\n"
1464 " return i >= 0 && constraint_satisfied_p_array[i] (x);\n"
1465 "}\n"
1466 "\n",
1467 enum_order[satisfied_start]->name);
1468
1469 write_range_function (name: "insn_extra_register_constraint",
1470 start: register_start, end: register_end);
1471 write_range_function (name: "insn_extra_memory_constraint",
1472 start: memory_start, end: memory_end);
1473 write_range_function (name: "insn_extra_special_memory_constraint",
1474 start: special_memory_start, end: special_memory_end);
1475 write_range_function (name: "insn_extra_relaxed_memory_constraint",
1476 start: relaxed_memory_start, end: relaxed_memory_end);
1477 write_range_function (name: "insn_extra_address_constraint",
1478 start: address_start, end: address_end);
1479 write_allows_reg_mem_function ();
1480
1481 if (constraint_max_namelen > 1)
1482 {
1483 write_insn_constraint_len ();
1484 puts (s: "#define CONSTRAINT_LEN(c_,s_) "
1485 "insn_constraint_len (c_,s_)\n");
1486 }
1487 else
1488 puts (s: "#define CONSTRAINT_LEN(c_,s_) 1\n");
1489 if (have_register_constraints)
1490 puts (s: "extern enum reg_class reg_class_for_constraint_1 "
1491 "(enum constraint_num);\n"
1492 "\n"
1493 "static inline enum reg_class\n"
1494 "reg_class_for_constraint (enum constraint_num c)\n"
1495 "{\n"
1496 " if (insn_extra_register_constraint (c))\n"
1497 " return reg_class_for_constraint_1 (c);\n"
1498 " return NO_REGS;\n"
1499 "}\n");
1500 else
1501 puts (s: "static inline enum reg_class\n"
1502 "reg_class_for_constraint (enum constraint_num)\n"
1503 "{\n"
1504 " return NO_REGS;\n"
1505 "}\n");
1506 if (have_const_int_constraints)
1507 puts (s: "extern bool insn_const_int_ok_for_constraint "
1508 "(HOST_WIDE_INT, enum constraint_num);\n"
1509 "#define CONST_OK_FOR_CONSTRAINT_P(v_,c_,s_) \\\n"
1510 " insn_const_int_ok_for_constraint (v_, "
1511 "lookup_constraint (s_))\n");
1512 else
1513 puts (s: "static inline bool\n"
1514 "insn_const_int_ok_for_constraint (HOST_WIDE_INT,"
1515 " enum constraint_num)\n"
1516 "{\n"
1517 " return false;\n"
1518 "}\n");
1519
1520 puts (s: "enum constraint_type\n"
1521 "{\n"
1522 " CT_REGISTER,\n"
1523 " CT_CONST_INT,\n"
1524 " CT_MEMORY,\n"
1525 " CT_SPECIAL_MEMORY,\n"
1526 " CT_RELAXED_MEMORY,\n"
1527 " CT_ADDRESS,\n"
1528 " CT_FIXED_FORM\n"
1529 "};\n"
1530 "\n"
1531 "static inline enum constraint_type\n"
1532 "get_constraint_type (enum constraint_num c)\n"
1533 "{");
1534 auto_vec <std::pair <unsigned int, const char *>, 4> values;
1535 if (const_int_start != const_int_end)
1536 values.safe_push (obj: std::make_pair (x&: const_int_start, y: "CT_CONST_INT"));
1537 if (memory_start != memory_end)
1538 values.safe_push (obj: std::make_pair (x&: memory_start, y: "CT_MEMORY"));
1539 if (special_memory_start != special_memory_end)
1540 values.safe_push (obj: std::make_pair (x&: special_memory_start,
1541 y: "CT_SPECIAL_MEMORY"));
1542 if (relaxed_memory_start != relaxed_memory_end)
1543 values.safe_push (obj: std::make_pair (x&: relaxed_memory_start,
1544 y: "CT_RELAXED_MEMORY"));
1545 if (address_start != address_end)
1546 values.safe_push (obj: std::make_pair (x&: address_start, y: "CT_ADDRESS"));
1547 if (address_end != num_constraints)
1548 values.safe_push (obj: std::make_pair (x&: address_end, y: "CT_FIXED_FORM"));
1549 print_type_tree (vec: values, start: 0, end: values.length (), fallback: "CT_REGISTER", indent: 2);
1550 puts (s: "}");
1551 }
1552
1553 puts (s: "#endif /* tm-preds.h */");
1554}
1555
1556/* Write insn-preds.cc.
1557 N.B. the list of headers to include was copied from genrecog; it
1558 may not be ideal.
1559
1560 FUTURE: Write #line markers referring back to the machine
1561 description. (Can't practically do this now since we don't know
1562 the line number of the C block - just the line number of the enclosing
1563 expression.) */
1564static void
1565write_insn_preds_c (void)
1566{
1567 struct pred_data *p;
1568
1569 printf (format: "\
1570/* Generated automatically by the program '%s'\n\
1571 from the machine description file '%s'. */\n\n", progname,
1572 md_reader_ptr->get_top_level_filename ());
1573
1574 puts (s: "\
1575#define IN_TARGET_CODE 1\n\
1576#include \"config.h\"\n\
1577#include \"system.h\"\n\
1578#include \"coretypes.h\"\n\
1579#include \"backend.h\"\n\
1580#include \"predict.h\"\n\
1581#include \"tree.h\"\n\
1582#include \"rtl.h\"\n\
1583#include \"alias.h\"\n\
1584#include \"varasm.h\"\n\
1585#include \"stor-layout.h\"\n\
1586#include \"calls.h\"\n\
1587#include \"memmodel.h\"\n\
1588#include \"tm_p.h\"\n\
1589#include \"insn-config.h\"\n\
1590#include \"recog.h\"\n\
1591#include \"output.h\"\n\
1592#include \"flags.h\"\n\
1593#include \"df.h\"\n\
1594#include \"resource.h\"\n\
1595#include \"diagnostic-core.h\"\n\
1596#include \"reload.h\"\n\
1597#include \"regs.h\"\n\
1598#include \"emit-rtl.h\"\n\
1599#include \"tm-constrs.h\"\n\
1600#include \"target.h\"\n");
1601
1602 FOR_ALL_PREDICATES (p)
1603 write_one_predicate_function (p);
1604
1605 if (constraint_max_namelen > 0)
1606 {
1607 write_lookup_constraint_1 ();
1608 write_lookup_constraint_array ();
1609 if (have_register_constraints)
1610 write_reg_class_for_constraint_1 ();
1611 write_constraint_satisfied_p_array ();
1612
1613 if (have_const_int_constraints)
1614 write_insn_const_int_ok_for_constraint ();
1615 }
1616}
1617
1618/* Argument parsing. */
1619static bool gen_header;
1620static bool gen_constrs;
1621
1622static bool
1623parse_option (const char *opt)
1624{
1625 if (!strcmp (s1: opt, s2: "-h"))
1626 {
1627 gen_header = true;
1628 return 1;
1629 }
1630 else if (!strcmp (s1: opt, s2: "-c"))
1631 {
1632 gen_constrs = true;
1633 return 1;
1634 }
1635 else
1636 return 0;
1637}
1638
1639/* Master control. */
1640int
1641main (int argc, const char **argv)
1642{
1643 progname = argv[0];
1644 if (argc <= 1)
1645 fatal ("no input file name");
1646 if (!init_rtx_reader_args_cb (argc, argv, parse_option))
1647 return FATAL_EXIT_CODE;
1648
1649 md_rtx_info info;
1650 while (read_md_rtx (&info))
1651 switch (GET_CODE (info.def))
1652 {
1653 case DEFINE_PREDICATE:
1654 case DEFINE_SPECIAL_PREDICATE:
1655 process_define_predicate (info: &info);
1656 break;
1657
1658 case DEFINE_CONSTRAINT:
1659 case DEFINE_MEMORY_CONSTRAINT:
1660 case DEFINE_SPECIAL_MEMORY_CONSTRAINT:
1661 case DEFINE_RELAXED_MEMORY_CONSTRAINT:
1662 case DEFINE_ADDRESS_CONSTRAINT:
1663 process_define_constraint (info: &info);
1664 break;
1665
1666 case DEFINE_REGISTER_CONSTRAINT:
1667 process_define_register_constraint (info: &info);
1668 break;
1669
1670 default:
1671 break;
1672 }
1673
1674 choose_enum_order ();
1675
1676 if (gen_header)
1677 write_tm_preds_h ();
1678 else if (gen_constrs)
1679 write_tm_constrs_h ();
1680 else
1681 write_insn_preds_c ();
1682
1683 if (have_error || ferror (stdout) || fflush (stdout) || fclose (stdout))
1684 return FATAL_EXIT_CODE;
1685
1686 return SUCCESS_EXIT_CODE;
1687}
1688

source code of gcc/genpreds.cc