1/* GIMPLE store merging and byte swapping passes.
2 Copyright (C) 2009-2023 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21/* The purpose of the store merging pass is to combine multiple memory stores
22 of constant values, values loaded from memory, bitwise operations on those,
23 or bit-field values, to consecutive locations, into fewer wider stores.
24
25 For example, if we have a sequence peforming four byte stores to
26 consecutive memory locations:
27 [p ] := imm1;
28 [p + 1B] := imm2;
29 [p + 2B] := imm3;
30 [p + 3B] := imm4;
31 we can transform this into a single 4-byte store if the target supports it:
32 [p] := imm1:imm2:imm3:imm4 concatenated according to endianness.
33
34 Or:
35 [p ] := [q ];
36 [p + 1B] := [q + 1B];
37 [p + 2B] := [q + 2B];
38 [p + 3B] := [q + 3B];
39 if there is no overlap can be transformed into a single 4-byte
40 load followed by single 4-byte store.
41
42 Or:
43 [p ] := [q ] ^ imm1;
44 [p + 1B] := [q + 1B] ^ imm2;
45 [p + 2B] := [q + 2B] ^ imm3;
46 [p + 3B] := [q + 3B] ^ imm4;
47 if there is no overlap can be transformed into a single 4-byte
48 load, xored with imm1:imm2:imm3:imm4 and stored using a single 4-byte store.
49
50 Or:
51 [p:1 ] := imm;
52 [p:31] := val & 0x7FFFFFFF;
53 we can transform this into a single 4-byte store if the target supports it:
54 [p] := imm:(val & 0x7FFFFFFF) concatenated according to endianness.
55
56 The algorithm is applied to each basic block in three phases:
57
58 1) Scan through the basic block and record assignments to destinations
59 that can be expressed as a store to memory of a certain size at a certain
60 bit offset from base expressions we can handle. For bit-fields we also
61 record the surrounding bit region, i.e. bits that could be stored in
62 a read-modify-write operation when storing the bit-field. Record store
63 chains to different bases in a hash_map (m_stores) and make sure to
64 terminate such chains when appropriate (for example when the stored
65 values get used subsequently).
66 These stores can be a result of structure element initializers, array stores
67 etc. A store_immediate_info object is recorded for every such store.
68 Record as many such assignments to a single base as possible until a
69 statement that interferes with the store sequence is encountered.
70 Each store has up to 2 operands, which can be a either constant, a memory
71 load or an SSA name, from which the value to be stored can be computed.
72 At most one of the operands can be a constant. The operands are recorded
73 in store_operand_info struct.
74
75 2) Analyze the chains of stores recorded in phase 1) (i.e. the vector of
76 store_immediate_info objects) and coalesce contiguous stores into
77 merged_store_group objects. For bit-field stores, we don't need to
78 require the stores to be contiguous, just their surrounding bit regions
79 have to be contiguous. If the expression being stored is different
80 between adjacent stores, such as one store storing a constant and
81 following storing a value loaded from memory, or if the loaded memory
82 objects are not adjacent, a new merged_store_group is created as well.
83
84 For example, given the stores:
85 [p ] := 0;
86 [p + 1B] := 1;
87 [p + 3B] := 0;
88 [p + 4B] := 1;
89 [p + 5B] := 0;
90 [p + 6B] := 0;
91 This phase would produce two merged_store_group objects, one recording the
92 two bytes stored in the memory region [p : p + 1] and another
93 recording the four bytes stored in the memory region [p + 3 : p + 6].
94
95 3) The merged_store_group objects produced in phase 2) are processed
96 to generate the sequence of wider stores that set the contiguous memory
97 regions to the sequence of bytes that correspond to it. This may emit
98 multiple stores per store group to handle contiguous stores that are not
99 of a size that is a power of 2. For example it can try to emit a 40-bit
100 store as a 32-bit store followed by an 8-bit store.
101 We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT
102 or TARGET_SLOW_UNALIGNED_ACCESS settings.
103
104 Note on endianness and example:
105 Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
106 [p ] := 0x1234;
107 [p + 2B] := 0x5678;
108 [p + 4B] := 0xab;
109 [p + 5B] := 0xcd;
110
111 The memory layout for little-endian (LE) and big-endian (BE) must be:
112 p |LE|BE|
113 ---------
114 0 |34|12|
115 1 |12|34|
116 2 |78|56|
117 3 |56|78|
118 4 |ab|ab|
119 5 |cd|cd|
120
121 To merge these into a single 48-bit merged value 'val' in phase 2)
122 on little-endian we insert stores to higher (consecutive) bitpositions
123 into the most significant bits of the merged value.
124 The final merged value would be: 0xcdab56781234
125
126 For big-endian we insert stores to higher bitpositions into the least
127 significant bits of the merged value.
128 The final merged value would be: 0x12345678abcd
129
130 Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
131 followed by a 16-bit store. Again, we must consider endianness when
132 breaking down the 48-bit value 'val' computed above.
133 For little endian we emit:
134 [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
135 [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
136
137 Whereas for big-endian we emit:
138 [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
139 [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
140
141#include "config.h"
142#include "system.h"
143#include "coretypes.h"
144#include "backend.h"
145#include "tree.h"
146#include "gimple.h"
147#include "builtins.h"
148#include "fold-const.h"
149#include "tree-pass.h"
150#include "ssa.h"
151#include "gimple-pretty-print.h"
152#include "alias.h"
153#include "fold-const.h"
154#include "print-tree.h"
155#include "tree-hash-traits.h"
156#include "gimple-iterator.h"
157#include "gimplify.h"
158#include "gimple-fold.h"
159#include "stor-layout.h"
160#include "timevar.h"
161#include "cfganal.h"
162#include "cfgcleanup.h"
163#include "tree-cfg.h"
164#include "except.h"
165#include "tree-eh.h"
166#include "target.h"
167#include "gimplify-me.h"
168#include "rtl.h"
169#include "expr.h" /* For get_bit_range. */
170#include "optabs-tree.h"
171#include "dbgcnt.h"
172#include "selftest.h"
173
174/* The maximum size (in bits) of the stores this pass should generate. */
175#define MAX_STORE_BITSIZE (BITS_PER_WORD)
176#define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
177
178/* Limit to bound the number of aliasing checks for loads with the same
179 vuse as the corresponding store. */
180#define MAX_STORE_ALIAS_CHECKS 64
181
182namespace {
183
184struct bswap_stat
185{
186 /* Number of hand-written 16-bit nop / bswaps found. */
187 int found_16bit;
188
189 /* Number of hand-written 32-bit nop / bswaps found. */
190 int found_32bit;
191
192 /* Number of hand-written 64-bit nop / bswaps found. */
193 int found_64bit;
194} nop_stats, bswap_stats;
195
196/* A symbolic number structure is used to detect byte permutation and selection
197 patterns of a source. To achieve that, its field N contains an artificial
198 number consisting of BITS_PER_MARKER sized markers tracking where does each
199 byte come from in the source:
200
201 0 - target byte has the value 0
202 FF - target byte has an unknown value (eg. due to sign extension)
203 1..size - marker value is the byte index in the source (0 for lsb).
204
205 To detect permutations on memory sources (arrays and structures), a symbolic
206 number is also associated:
207 - a base address BASE_ADDR and an OFFSET giving the address of the source;
208 - a range which gives the difference between the highest and lowest accessed
209 memory location to make such a symbolic number;
210 - the address SRC of the source element of lowest address as a convenience
211 to easily get BASE_ADDR + offset + lowest bytepos;
212 - number of expressions N_OPS bitwise ored together to represent
213 approximate cost of the computation.
214
215 Note 1: the range is different from size as size reflects the size of the
216 type of the current expression. For instance, for an array char a[],
217 (short) a[0] | (short) a[3] would have a size of 2 but a range of 4 while
218 (short) a[0] | ((short) a[0] << 1) would still have a size of 2 but this
219 time a range of 1.
220
221 Note 2: for non-memory sources, range holds the same value as size.
222
223 Note 3: SRC points to the SSA_NAME in case of non-memory source. */
224
225struct symbolic_number {
226 uint64_t n;
227 tree type;
228 tree base_addr;
229 tree offset;
230 poly_int64 bytepos;
231 tree src;
232 tree alias_set;
233 tree vuse;
234 unsigned HOST_WIDE_INT range;
235 int n_ops;
236};
237
238#define BITS_PER_MARKER 8
239#define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
240#define MARKER_BYTE_UNKNOWN MARKER_MASK
241#define HEAD_MARKER(n, size) \
242 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
243
244/* The number which the find_bswap_or_nop_1 result should match in
245 order to have a nop. The number is masked according to the size of
246 the symbolic number before using it. */
247#define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
248 (uint64_t)0x08070605 << 32 | 0x04030201)
249
250/* The number which the find_bswap_or_nop_1 result should match in
251 order to have a byte swap. The number is masked according to the
252 size of the symbolic number before using it. */
253#define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
254 (uint64_t)0x01020304 << 32 | 0x05060708)
255
256/* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
257 number N. Return false if the requested operation is not permitted
258 on a symbolic number. */
259
260inline bool
261do_shift_rotate (enum tree_code code,
262 struct symbolic_number *n,
263 int count)
264{
265 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
266 uint64_t head_marker;
267
268 if (count < 0
269 || count >= TYPE_PRECISION (n->type)
270 || count % BITS_PER_UNIT != 0)
271 return false;
272 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
273
274 /* Zero out the extra bits of N in order to avoid them being shifted
275 into the significant bits. */
276 if (size < 64 / BITS_PER_MARKER)
277 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
278
279 switch (code)
280 {
281 case LSHIFT_EXPR:
282 n->n <<= count;
283 break;
284 case RSHIFT_EXPR:
285 head_marker = HEAD_MARKER (n->n, size);
286 n->n >>= count;
287 /* Arithmetic shift of signed type: result is dependent on the value. */
288 if (!TYPE_UNSIGNED (n->type) && head_marker)
289 for (i = 0; i < count / BITS_PER_MARKER; i++)
290 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
291 << ((size - 1 - i) * BITS_PER_MARKER);
292 break;
293 case LROTATE_EXPR:
294 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
295 break;
296 case RROTATE_EXPR:
297 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
298 break;
299 default:
300 return false;
301 }
302 /* Zero unused bits for size. */
303 if (size < 64 / BITS_PER_MARKER)
304 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
305 return true;
306}
307
308/* Perform sanity checking for the symbolic number N and the gimple
309 statement STMT. */
310
311inline bool
312verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
313{
314 tree lhs_type;
315
316 lhs_type = TREE_TYPE (gimple_get_lhs (stmt));
317
318 if (TREE_CODE (lhs_type) != INTEGER_TYPE
319 && TREE_CODE (lhs_type) != ENUMERAL_TYPE)
320 return false;
321
322 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
323 return false;
324
325 return true;
326}
327
328/* Initialize the symbolic number N for the bswap pass from the base element
329 SRC manipulated by the bitwise OR expression. */
330
331bool
332init_symbolic_number (struct symbolic_number *n, tree src)
333{
334 int size;
335
336 if (!INTEGRAL_TYPE_P (TREE_TYPE (src)) && !POINTER_TYPE_P (TREE_TYPE (src)))
337 return false;
338
339 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
340 n->src = src;
341
342 /* Set up the symbolic number N by setting each byte to a value between 1 and
343 the byte size of rhs1. The highest order byte is set to n->size and the
344 lowest order byte to 1. */
345 n->type = TREE_TYPE (src);
346 size = TYPE_PRECISION (n->type);
347 if (size % BITS_PER_UNIT != 0)
348 return false;
349 size /= BITS_PER_UNIT;
350 if (size > 64 / BITS_PER_MARKER)
351 return false;
352 n->range = size;
353 n->n = CMPNOP;
354 n->n_ops = 1;
355
356 if (size < 64 / BITS_PER_MARKER)
357 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
358
359 return true;
360}
361
362/* Check if STMT might be a byte swap or a nop from a memory source and returns
363 the answer. If so, REF is that memory source and the base of the memory area
364 accessed and the offset of the access from that base are recorded in N. */
365
366bool
367find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
368{
369 /* Leaf node is an array or component ref. Memorize its base and
370 offset from base to compare to other such leaf node. */
371 poly_int64 bitsize, bitpos, bytepos;
372 machine_mode mode;
373 int unsignedp, reversep, volatilep;
374 tree offset, base_addr;
375
376 /* Not prepared to handle PDP endian. */
377 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
378 return false;
379
380 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
381 return false;
382
383 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
384 &unsignedp, &reversep, &volatilep);
385
386 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
387 /* Do not rewrite TARGET_MEM_REF. */
388 return false;
389 else if (TREE_CODE (base_addr) == MEM_REF)
390 {
391 poly_offset_int bit_offset = 0;
392 tree off = TREE_OPERAND (base_addr, 1);
393
394 if (!integer_zerop (off))
395 {
396 poly_offset_int boff = mem_ref_offset (base_addr);
397 boff <<= LOG2_BITS_PER_UNIT;
398 bit_offset += boff;
399 }
400
401 base_addr = TREE_OPERAND (base_addr, 0);
402
403 /* Avoid returning a negative bitpos as this may wreak havoc later. */
404 if (maybe_lt (a: bit_offset, b: 0))
405 {
406 tree byte_offset = wide_int_to_tree
407 (sizetype, bits_to_bytes_round_down (bit_offset));
408 bit_offset = num_trailing_bits (bit_offset);
409 if (offset)
410 offset = size_binop (PLUS_EXPR, offset, byte_offset);
411 else
412 offset = byte_offset;
413 }
414
415 bitpos += bit_offset.force_shwi ();
416 }
417 else
418 base_addr = build_fold_addr_expr (base_addr);
419
420 if (!multiple_p (a: bitpos, BITS_PER_UNIT, multiple: &bytepos))
421 return false;
422 if (!multiple_p (a: bitsize, BITS_PER_UNIT))
423 return false;
424 if (reversep)
425 return false;
426
427 if (!init_symbolic_number (n, src: ref))
428 return false;
429 n->base_addr = base_addr;
430 n->offset = offset;
431 n->bytepos = bytepos;
432 n->alias_set = reference_alias_ptr_type (ref);
433 n->vuse = gimple_vuse (g: stmt);
434 return true;
435}
436
437/* Compute the symbolic number N representing the result of a bitwise OR,
438 bitwise XOR or plus on 2 symbolic number N1 and N2 whose source statements
439 are respectively SOURCE_STMT1 and SOURCE_STMT2. CODE is the operation. */
440
441gimple *
442perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
443 gimple *source_stmt2, struct symbolic_number *n2,
444 struct symbolic_number *n, enum tree_code code)
445{
446 int i, size;
447 uint64_t mask;
448 gimple *source_stmt;
449 struct symbolic_number *n_start;
450
451 tree rhs1 = gimple_assign_rhs1 (gs: source_stmt1);
452 if (TREE_CODE (rhs1) == BIT_FIELD_REF
453 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
454 rhs1 = TREE_OPERAND (rhs1, 0);
455 tree rhs2 = gimple_assign_rhs1 (gs: source_stmt2);
456 if (TREE_CODE (rhs2) == BIT_FIELD_REF
457 && TREE_CODE (TREE_OPERAND (rhs2, 0)) == SSA_NAME)
458 rhs2 = TREE_OPERAND (rhs2, 0);
459
460 /* Sources are different, cancel bswap if they are not memory location with
461 the same base (array, structure, ...). */
462 if (rhs1 != rhs2)
463 {
464 uint64_t inc;
465 HOST_WIDE_INT start1, start2, start_sub, end_sub, end1, end2, end;
466 struct symbolic_number *toinc_n_ptr, *n_end;
467 basic_block bb1, bb2;
468
469 if (!n1->base_addr || !n2->base_addr
470 || !operand_equal_p (n1->base_addr, n2->base_addr, flags: 0))
471 return NULL;
472
473 if (!n1->offset != !n2->offset
474 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, flags: 0)))
475 return NULL;
476
477 start1 = 0;
478 if (!(n2->bytepos - n1->bytepos).is_constant (const_value: &start2))
479 return NULL;
480
481 if (start1 < start2)
482 {
483 n_start = n1;
484 start_sub = start2 - start1;
485 }
486 else
487 {
488 n_start = n2;
489 start_sub = start1 - start2;
490 }
491
492 bb1 = gimple_bb (g: source_stmt1);
493 bb2 = gimple_bb (g: source_stmt2);
494 if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
495 source_stmt = source_stmt1;
496 else
497 source_stmt = source_stmt2;
498
499 /* Find the highest address at which a load is performed and
500 compute related info. */
501 end1 = start1 + (n1->range - 1);
502 end2 = start2 + (n2->range - 1);
503 if (end1 < end2)
504 {
505 end = end2;
506 end_sub = end2 - end1;
507 }
508 else
509 {
510 end = end1;
511 end_sub = end1 - end2;
512 }
513 n_end = (end2 > end1) ? n2 : n1;
514
515 /* Find symbolic number whose lsb is the most significant. */
516 if (BYTES_BIG_ENDIAN)
517 toinc_n_ptr = (n_end == n1) ? n2 : n1;
518 else
519 toinc_n_ptr = (n_start == n1) ? n2 : n1;
520
521 n->range = end - MIN (start1, start2) + 1;
522
523 /* Check that the range of memory covered can be represented by
524 a symbolic number. */
525 if (n->range > 64 / BITS_PER_MARKER)
526 return NULL;
527
528 /* Reinterpret byte marks in symbolic number holding the value of
529 bigger weight according to target endianness. */
530 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
531 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
532 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
533 {
534 unsigned marker
535 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
536 if (marker && marker != MARKER_BYTE_UNKNOWN)
537 toinc_n_ptr->n += inc;
538 }
539 }
540 else
541 {
542 n->range = n1->range;
543 n_start = n1;
544 source_stmt = source_stmt1;
545 }
546
547 if (!n1->alias_set
548 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
549 n->alias_set = n1->alias_set;
550 else
551 n->alias_set = ptr_type_node;
552 n->vuse = n_start->vuse;
553 n->base_addr = n_start->base_addr;
554 n->offset = n_start->offset;
555 n->src = n_start->src;
556 n->bytepos = n_start->bytepos;
557 n->type = n_start->type;
558 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
559 uint64_t res_n = n1->n | n2->n;
560
561 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
562 {
563 uint64_t masked1, masked2;
564
565 masked1 = n1->n & mask;
566 masked2 = n2->n & mask;
567 /* If at least one byte is 0, all of 0 | x == 0 ^ x == 0 + x == x. */
568 if (masked1 && masked2)
569 {
570 /* + can carry into upper bits, just punt. */
571 if (code == PLUS_EXPR)
572 return NULL;
573 /* x | x is still x. */
574 if (code == BIT_IOR_EXPR && masked1 == masked2)
575 continue;
576 if (code == BIT_XOR_EXPR)
577 {
578 /* x ^ x is 0, but MARKER_BYTE_UNKNOWN stands for
579 unknown values and unknown ^ unknown is unknown. */
580 if (masked1 == masked2
581 && masked1 != ((uint64_t) MARKER_BYTE_UNKNOWN
582 << i * BITS_PER_MARKER))
583 {
584 res_n &= ~mask;
585 continue;
586 }
587 }
588 /* Otherwise set the byte to unknown, it might still be
589 later masked off. */
590 res_n |= mask;
591 }
592 }
593 n->n = res_n;
594 n->n_ops = n1->n_ops + n2->n_ops;
595
596 return source_stmt;
597}
598
599/* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
600 the operation given by the rhs of STMT on the result. If the operation
601 could successfully be executed the function returns a gimple stmt whose
602 rhs's first tree is the expression of the source operand and NULL
603 otherwise. */
604
605gimple *
606find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
607{
608 enum tree_code code;
609 tree rhs1, rhs2 = NULL;
610 gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
611 enum gimple_rhs_class rhs_class;
612
613 if (!limit || !is_gimple_assign (gs: stmt))
614 return NULL;
615
616 rhs1 = gimple_assign_rhs1 (gs: stmt);
617
618 if (find_bswap_or_nop_load (stmt, ref: rhs1, n))
619 return stmt;
620
621 /* Handle BIT_FIELD_REF. */
622 if (TREE_CODE (rhs1) == BIT_FIELD_REF
623 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
624 {
625 if (!tree_fits_uhwi_p (TREE_OPERAND (rhs1, 1))
626 || !tree_fits_uhwi_p (TREE_OPERAND (rhs1, 2)))
627 return NULL;
628
629 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs1, 1));
630 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs1, 2));
631 if (bitpos % BITS_PER_UNIT == 0
632 && bitsize % BITS_PER_UNIT == 0
633 && init_symbolic_number (n, TREE_OPERAND (rhs1, 0)))
634 {
635 /* Handle big-endian bit numbering in BIT_FIELD_REF. */
636 if (BYTES_BIG_ENDIAN)
637 bitpos = TYPE_PRECISION (n->type) - bitpos - bitsize;
638
639 /* Shift. */
640 if (!do_shift_rotate (code: RSHIFT_EXPR, n, count: bitpos))
641 return NULL;
642
643 /* Mask. */
644 uint64_t mask = 0;
645 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
646 for (unsigned i = 0; i < bitsize / BITS_PER_UNIT;
647 i++, tmp <<= BITS_PER_UNIT)
648 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
649 n->n &= mask;
650
651 /* Convert. */
652 n->type = TREE_TYPE (rhs1);
653 if (!verify_symbolic_number_p (n, stmt))
654 return NULL;
655
656 if (!n->base_addr)
657 n->range = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
658
659 return stmt;
660 }
661
662 return NULL;
663 }
664
665 if (TREE_CODE (rhs1) != SSA_NAME)
666 return NULL;
667
668 code = gimple_assign_rhs_code (gs: stmt);
669 rhs_class = gimple_assign_rhs_class (gs: stmt);
670 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
671
672 if (rhs_class == GIMPLE_BINARY_RHS)
673 rhs2 = gimple_assign_rhs2 (gs: stmt);
674
675 /* Handle unary rhs and binary rhs with integer constants as second
676 operand. */
677
678 if (rhs_class == GIMPLE_UNARY_RHS
679 || (rhs_class == GIMPLE_BINARY_RHS
680 && TREE_CODE (rhs2) == INTEGER_CST))
681 {
682 if (code != BIT_AND_EXPR
683 && code != LSHIFT_EXPR
684 && code != RSHIFT_EXPR
685 && code != LROTATE_EXPR
686 && code != RROTATE_EXPR
687 && !CONVERT_EXPR_CODE_P (code))
688 return NULL;
689
690 source_stmt1 = find_bswap_or_nop_1 (stmt: rhs1_stmt, n, limit: limit - 1);
691
692 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
693 we have to initialize the symbolic number. */
694 if (!source_stmt1)
695 {
696 if (gimple_assign_load_p (stmt)
697 || !init_symbolic_number (n, src: rhs1))
698 return NULL;
699 source_stmt1 = stmt;
700 }
701
702 switch (code)
703 {
704 case BIT_AND_EXPR:
705 {
706 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
707 uint64_t val = int_cst_value (rhs2), mask = 0;
708 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
709
710 /* Only constants masking full bytes are allowed. */
711 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
712 if ((val & tmp) != 0 && (val & tmp) != tmp)
713 return NULL;
714 else if (val & tmp)
715 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
716
717 n->n &= mask;
718 }
719 break;
720 case LSHIFT_EXPR:
721 case RSHIFT_EXPR:
722 case LROTATE_EXPR:
723 case RROTATE_EXPR:
724 if (!do_shift_rotate (code, n, count: (int) TREE_INT_CST_LOW (rhs2)))
725 return NULL;
726 break;
727 CASE_CONVERT:
728 {
729 int i, type_size, old_type_size;
730 tree type;
731
732 type = TREE_TYPE (gimple_assign_lhs (stmt));
733 type_size = TYPE_PRECISION (type);
734 if (type_size % BITS_PER_UNIT != 0)
735 return NULL;
736 type_size /= BITS_PER_UNIT;
737 if (type_size > 64 / BITS_PER_MARKER)
738 return NULL;
739
740 /* Sign extension: result is dependent on the value. */
741 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
742 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
743 && HEAD_MARKER (n->n, old_type_size))
744 for (i = 0; i < type_size - old_type_size; i++)
745 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
746 << ((type_size - 1 - i) * BITS_PER_MARKER);
747
748 if (type_size < 64 / BITS_PER_MARKER)
749 {
750 /* If STMT casts to a smaller type mask out the bits not
751 belonging to the target type. */
752 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
753 }
754 n->type = type;
755 if (!n->base_addr)
756 n->range = type_size;
757 }
758 break;
759 default:
760 return NULL;
761 };
762 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
763 }
764
765 /* Handle binary rhs. */
766
767 if (rhs_class == GIMPLE_BINARY_RHS)
768 {
769 struct symbolic_number n1, n2;
770 gimple *source_stmt, *source_stmt2;
771
772 if (!rhs2 || TREE_CODE (rhs2) != SSA_NAME)
773 return NULL;
774
775 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
776
777 switch (code)
778 {
779 case BIT_IOR_EXPR:
780 case BIT_XOR_EXPR:
781 case PLUS_EXPR:
782 source_stmt1 = find_bswap_or_nop_1 (stmt: rhs1_stmt, n: &n1, limit: limit - 1);
783
784 if (!source_stmt1)
785 return NULL;
786
787 source_stmt2 = find_bswap_or_nop_1 (stmt: rhs2_stmt, n: &n2, limit: limit - 1);
788
789 if (!source_stmt2)
790 return NULL;
791
792 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
793 return NULL;
794
795 if (n1.vuse != n2.vuse)
796 return NULL;
797
798 source_stmt
799 = perform_symbolic_merge (source_stmt1, n1: &n1, source_stmt2, n2: &n2, n,
800 code);
801
802 if (!source_stmt)
803 return NULL;
804
805 if (!verify_symbolic_number_p (n, stmt))
806 return NULL;
807
808 break;
809 default:
810 return NULL;
811 }
812 return source_stmt;
813 }
814 return NULL;
815}
816
817/* Helper for find_bswap_or_nop and try_coalesce_bswap to compute
818 *CMPXCHG, *CMPNOP and adjust *N. */
819
820void
821find_bswap_or_nop_finalize (struct symbolic_number *n, uint64_t *cmpxchg,
822 uint64_t *cmpnop, bool *cast64_to_32)
823{
824 unsigned rsize;
825 uint64_t tmpn, mask;
826
827 /* The number which the find_bswap_or_nop_1 result should match in order
828 to have a full byte swap. The number is shifted to the right
829 according to the size of the symbolic number before using it. */
830 *cmpxchg = CMPXCHG;
831 *cmpnop = CMPNOP;
832 *cast64_to_32 = false;
833
834 /* Find real size of result (highest non-zero byte). */
835 if (n->base_addr)
836 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
837 else
838 rsize = n->range;
839
840 /* Zero out the bits corresponding to untouched bytes in original gimple
841 expression. */
842 if (n->range < (int) sizeof (int64_t))
843 {
844 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
845 if (n->base_addr == NULL
846 && n->range == 4
847 && int_size_in_bytes (TREE_TYPE (n->src)) == 8)
848 {
849 /* If all bytes in n->n are either 0 or in [5..8] range, this
850 might be a candidate for (unsigned) __builtin_bswap64 (src).
851 It is not worth it for (unsigned short) __builtin_bswap64 (src)
852 or (unsigned short) __builtin_bswap32 (src). */
853 *cast64_to_32 = true;
854 for (tmpn = n->n; tmpn; tmpn >>= BITS_PER_MARKER)
855 if ((tmpn & MARKER_MASK)
856 && ((tmpn & MARKER_MASK) <= 4 || (tmpn & MARKER_MASK) > 8))
857 {
858 *cast64_to_32 = false;
859 break;
860 }
861 }
862 if (*cast64_to_32)
863 *cmpxchg &= mask;
864 else
865 *cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
866 *cmpnop &= mask;
867 }
868
869 /* Zero out the bits corresponding to unused bytes in the result of the
870 gimple expression. */
871 if (rsize < n->range)
872 {
873 if (BYTES_BIG_ENDIAN)
874 {
875 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
876 *cmpxchg &= mask;
877 if (n->range - rsize == sizeof (int64_t))
878 *cmpnop = 0;
879 else
880 *cmpnop >>= (n->range - rsize) * BITS_PER_MARKER;
881 }
882 else
883 {
884 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
885 if (n->range - rsize == sizeof (int64_t))
886 *cmpxchg = 0;
887 else
888 *cmpxchg >>= (n->range - rsize) * BITS_PER_MARKER;
889 *cmpnop &= mask;
890 }
891 n->range = rsize;
892 }
893
894 if (*cast64_to_32)
895 n->range = 8;
896 n->range *= BITS_PER_UNIT;
897}
898
899/* Helper function for find_bswap_or_nop,
900 Return true if N is a swap or nop with MASK. */
901static bool
902is_bswap_or_nop_p (uint64_t n, uint64_t cmpxchg,
903 uint64_t cmpnop, uint64_t* mask,
904 bool* bswap)
905{
906 *mask = ~(uint64_t) 0;
907 if (n == cmpnop)
908 *bswap = false;
909 else if (n == cmpxchg)
910 *bswap = true;
911 else
912 {
913 int set = 0;
914 for (uint64_t msk = MARKER_MASK; msk; msk <<= BITS_PER_MARKER)
915 if ((n & msk) == 0)
916 *mask &= ~msk;
917 else if ((n & msk) == (cmpxchg & msk))
918 set++;
919 else
920 return false;
921
922 if (set < 2)
923 return false;
924 *bswap = true;
925 }
926 return true;
927}
928
929
930/* Check if STMT completes a bswap implementation or a read in a given
931 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
932 accordingly. It also sets N to represent the kind of operations
933 performed: size of the resulting expression and whether it works on
934 a memory source, and if so alias-set and vuse. At last, the
935 function returns a stmt whose rhs's first tree is the source
936 expression. */
937
938gimple *
939find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap,
940 bool *cast64_to_32, uint64_t *mask, uint64_t* l_rotate)
941{
942 tree type_size = TYPE_SIZE_UNIT (TREE_TYPE (gimple_get_lhs (stmt)));
943 if (!tree_fits_uhwi_p (type_size))
944 return NULL;
945
946 /* The last parameter determines the depth search limit. It usually
947 correlates directly to the number n of bytes to be touched. We
948 increase that number by 2 * (log2(n) + 1) here in order to also
949 cover signed -> unsigned conversions of the src operand as can be seen
950 in libgcc, and for initial shift/and operation of the src operand. */
951 int limit = tree_to_uhwi (type_size);
952 limit += 2 * (1 + (int) ceil_log2 (x: (unsigned HOST_WIDE_INT) limit));
953 gimple *ins_stmt = find_bswap_or_nop_1 (stmt, n, limit);
954
955 if (!ins_stmt)
956 {
957 if (gimple_assign_rhs_code (gs: stmt) != CONSTRUCTOR
958 || BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
959 return NULL;
960 unsigned HOST_WIDE_INT sz = tree_to_uhwi (type_size) * BITS_PER_UNIT;
961 if (sz != 16 && sz != 32 && sz != 64)
962 return NULL;
963 tree rhs = gimple_assign_rhs1 (gs: stmt);
964 if (CONSTRUCTOR_NELTS (rhs) == 0)
965 return NULL;
966 tree eltype = TREE_TYPE (TREE_TYPE (rhs));
967 unsigned HOST_WIDE_INT eltsz
968 = int_size_in_bytes (eltype) * BITS_PER_UNIT;
969 if (TYPE_PRECISION (eltype) != eltsz)
970 return NULL;
971 constructor_elt *elt;
972 unsigned int i;
973 tree type = build_nonstandard_integer_type (sz, 1);
974 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (rhs), i, elt)
975 {
976 if (TREE_CODE (elt->value) != SSA_NAME
977 || !INTEGRAL_TYPE_P (TREE_TYPE (elt->value)))
978 return NULL;
979 struct symbolic_number n1;
980 gimple *source_stmt
981 = find_bswap_or_nop_1 (SSA_NAME_DEF_STMT (elt->value), n: &n1,
982 limit: limit - 1);
983
984 if (!source_stmt)
985 return NULL;
986
987 n1.type = type;
988 if (!n1.base_addr)
989 n1.range = sz / BITS_PER_UNIT;
990
991 if (i == 0)
992 {
993 ins_stmt = source_stmt;
994 *n = n1;
995 }
996 else
997 {
998 if (n->vuse != n1.vuse)
999 return NULL;
1000
1001 struct symbolic_number n0 = *n;
1002
1003 if (!BYTES_BIG_ENDIAN)
1004 {
1005 if (!do_shift_rotate (code: LSHIFT_EXPR, n: &n1, count: i * eltsz))
1006 return NULL;
1007 }
1008 else if (!do_shift_rotate (code: LSHIFT_EXPR, n: &n0, count: eltsz))
1009 return NULL;
1010 ins_stmt
1011 = perform_symbolic_merge (source_stmt1: ins_stmt, n1: &n0, source_stmt2: source_stmt, n2: &n1, n,
1012 code: BIT_IOR_EXPR);
1013
1014 if (!ins_stmt)
1015 return NULL;
1016 }
1017 }
1018 }
1019
1020 uint64_t cmpxchg, cmpnop;
1021 uint64_t orig_range = n->range * BITS_PER_UNIT;
1022 find_bswap_or_nop_finalize (n, cmpxchg: &cmpxchg, cmpnop: &cmpnop, cast64_to_32);
1023
1024 /* A complete byte swap should make the symbolic number to start with
1025 the largest digit in the highest order byte. Unchanged symbolic
1026 number indicates a read with same endianness as target architecture. */
1027 *l_rotate = 0;
1028 uint64_t tmp_n = n->n;
1029 if (!is_bswap_or_nop_p (n: tmp_n, cmpxchg, cmpnop, mask, bswap))
1030 {
1031 /* Try bswap + lrotate. */
1032 /* TODO, handle cast64_to_32 and big/litte_endian memory
1033 source when rsize < range. */
1034 if (n->range == orig_range
1035 /* There're case like 0x300000200 for uint32->uint64 cast,
1036 Don't hanlde this. */
1037 && n->range == TYPE_PRECISION (n->type)
1038 && ((orig_range == 32
1039 && optab_handler (op: rotl_optab, SImode) != CODE_FOR_nothing)
1040 || (orig_range == 64
1041 && optab_handler (op: rotl_optab, DImode) != CODE_FOR_nothing))
1042 && (tmp_n & MARKER_MASK) < orig_range / BITS_PER_UNIT)
1043 {
1044 uint64_t range = (orig_range / BITS_PER_UNIT) * BITS_PER_MARKER;
1045 uint64_t count = (tmp_n & MARKER_MASK) * BITS_PER_MARKER;
1046 /* .i.e. hanlde 0x203040506070800 when lower byte is zero. */
1047 if (!count)
1048 {
1049 for (uint64_t i = 1; i != range / BITS_PER_MARKER; i++)
1050 {
1051 count = (tmp_n >> i * BITS_PER_MARKER) & MARKER_MASK;
1052 if (count)
1053 {
1054 /* Count should be meaningful not 0xff. */
1055 if (count <= range / BITS_PER_MARKER)
1056 {
1057 count = (count + i) * BITS_PER_MARKER % range;
1058 break;
1059 }
1060 else
1061 return NULL;
1062 }
1063 }
1064 }
1065 tmp_n = tmp_n >> count | tmp_n << (range - count);
1066 if (orig_range == 32)
1067 tmp_n &= (1ULL << 32) - 1;
1068 if (!is_bswap_or_nop_p (n: tmp_n, cmpxchg, cmpnop, mask, bswap))
1069 return NULL;
1070 *l_rotate = count / BITS_PER_MARKER * BITS_PER_UNIT;
1071 gcc_assert (*bswap);
1072 }
1073 else
1074 return NULL;
1075 }
1076
1077 /* Useless bit manipulation performed by code. */
1078 if (!n->base_addr && n->n == cmpnop && n->n_ops == 1)
1079 return NULL;
1080
1081 return ins_stmt;
1082}
1083
1084const pass_data pass_data_optimize_bswap =
1085{
1086 .type: GIMPLE_PASS, /* type */
1087 .name: "bswap", /* name */
1088 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
1089 .tv_id: TV_NONE, /* tv_id */
1090 PROP_ssa, /* properties_required */
1091 .properties_provided: 0, /* properties_provided */
1092 .properties_destroyed: 0, /* properties_destroyed */
1093 .todo_flags_start: 0, /* todo_flags_start */
1094 .todo_flags_finish: 0, /* todo_flags_finish */
1095};
1096
1097class pass_optimize_bswap : public gimple_opt_pass
1098{
1099public:
1100 pass_optimize_bswap (gcc::context *ctxt)
1101 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
1102 {}
1103
1104 /* opt_pass methods: */
1105 bool gate (function *) final override
1106 {
1107 return flag_expensive_optimizations && optimize && BITS_PER_UNIT == 8;
1108 }
1109
1110 unsigned int execute (function *) final override;
1111
1112}; // class pass_optimize_bswap
1113
1114/* Helper function for bswap_replace. Build VIEW_CONVERT_EXPR from
1115 VAL to TYPE. If VAL has different type size, emit a NOP_EXPR cast
1116 first. */
1117
1118static tree
1119bswap_view_convert (gimple_stmt_iterator *gsi, tree type, tree val,
1120 bool before)
1121{
1122 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (val))
1123 || POINTER_TYPE_P (TREE_TYPE (val)));
1124 if (TYPE_SIZE (type) != TYPE_SIZE (TREE_TYPE (val)))
1125 {
1126 HOST_WIDE_INT prec = TREE_INT_CST_LOW (TYPE_SIZE (type));
1127 if (POINTER_TYPE_P (TREE_TYPE (val)))
1128 {
1129 gimple *g
1130 = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
1131 NOP_EXPR, val);
1132 if (before)
1133 gsi_insert_before (gsi, g, GSI_SAME_STMT);
1134 else
1135 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1136 val = gimple_assign_lhs (gs: g);
1137 }
1138 tree itype = build_nonstandard_integer_type (prec, 1);
1139 gimple *g = gimple_build_assign (make_ssa_name (var: itype), NOP_EXPR, val);
1140 if (before)
1141 gsi_insert_before (gsi, g, GSI_SAME_STMT);
1142 else
1143 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1144 val = gimple_assign_lhs (gs: g);
1145 }
1146 return build1 (VIEW_CONVERT_EXPR, type, val);
1147}
1148
1149/* Perform the bswap optimization: replace the expression computed in the rhs
1150 of gsi_stmt (GSI) (or if NULL add instead of replace) by an equivalent
1151 bswap, load or load + bswap expression.
1152 Which of these alternatives replace the rhs is given by N->base_addr (non
1153 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
1154 load to perform are also given in N while the builtin bswap invoke is given
1155 in FNDEL. Finally, if a load is involved, INS_STMT refers to one of the
1156 load statements involved to construct the rhs in gsi_stmt (GSI) and
1157 N->range gives the size of the rhs expression for maintaining some
1158 statistics.
1159
1160 Note that if the replacement involve a load and if gsi_stmt (GSI) is
1161 non-NULL, that stmt is moved just after INS_STMT to do the load with the
1162 same VUSE which can lead to gsi_stmt (GSI) changing of basic block. */
1163
1164tree
1165bswap_replace (gimple_stmt_iterator gsi, gimple *ins_stmt, tree fndecl,
1166 tree bswap_type, tree load_type, struct symbolic_number *n,
1167 bool bswap, uint64_t mask, uint64_t l_rotate)
1168{
1169 tree src, tmp, tgt = NULL_TREE;
1170 gimple *bswap_stmt, *mask_stmt = NULL, *rotl_stmt = NULL;
1171 tree_code conv_code = NOP_EXPR;
1172
1173 gimple *cur_stmt = gsi_stmt (i: gsi);
1174 src = n->src;
1175 if (cur_stmt)
1176 {
1177 tgt = gimple_assign_lhs (gs: cur_stmt);
1178 if (gimple_assign_rhs_code (gs: cur_stmt) == CONSTRUCTOR
1179 && tgt
1180 && VECTOR_TYPE_P (TREE_TYPE (tgt)))
1181 conv_code = VIEW_CONVERT_EXPR;
1182 }
1183
1184 /* Need to load the value from memory first. */
1185 if (n->base_addr)
1186 {
1187 gimple_stmt_iterator gsi_ins = gsi;
1188 if (ins_stmt)
1189 gsi_ins = gsi_for_stmt (ins_stmt);
1190 tree addr_expr, addr_tmp, val_expr, val_tmp;
1191 tree load_offset_ptr, aligned_load_type;
1192 gimple *load_stmt;
1193 unsigned align = get_object_alignment (src);
1194 poly_int64 load_offset = 0;
1195
1196 if (cur_stmt)
1197 {
1198 basic_block ins_bb = gimple_bb (g: ins_stmt);
1199 basic_block cur_bb = gimple_bb (g: cur_stmt);
1200 if (!dominated_by_p (CDI_DOMINATORS, cur_bb, ins_bb))
1201 return NULL_TREE;
1202
1203 /* Move cur_stmt just before one of the load of the original
1204 to ensure it has the same VUSE. See PR61517 for what could
1205 go wrong. */
1206 if (gimple_bb (g: cur_stmt) != gimple_bb (g: ins_stmt))
1207 reset_flow_sensitive_info (gimple_assign_lhs (gs: cur_stmt));
1208 gsi_move_before (&gsi, &gsi_ins);
1209 gsi = gsi_for_stmt (cur_stmt);
1210 }
1211 else
1212 gsi = gsi_ins;
1213
1214 /* Compute address to load from and cast according to the size
1215 of the load. */
1216 addr_expr = build_fold_addr_expr (src);
1217 if (is_gimple_mem_ref_addr (addr_expr))
1218 addr_tmp = unshare_expr (addr_expr);
1219 else
1220 {
1221 addr_tmp = unshare_expr (n->base_addr);
1222 if (!is_gimple_mem_ref_addr (addr_tmp))
1223 addr_tmp = force_gimple_operand_gsi_1 (&gsi, addr_tmp,
1224 is_gimple_mem_ref_addr,
1225 NULL_TREE, true,
1226 GSI_SAME_STMT);
1227 load_offset = n->bytepos;
1228 if (n->offset)
1229 {
1230 tree off
1231 = force_gimple_operand_gsi (&gsi, unshare_expr (n->offset),
1232 true, NULL_TREE, true,
1233 GSI_SAME_STMT);
1234 gimple *stmt
1235 = gimple_build_assign (make_ssa_name (TREE_TYPE (addr_tmp)),
1236 POINTER_PLUS_EXPR, addr_tmp, off);
1237 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1238 addr_tmp = gimple_assign_lhs (gs: stmt);
1239 }
1240 }
1241
1242 /* Perform the load. */
1243 aligned_load_type = load_type;
1244 if (align < TYPE_ALIGN (load_type))
1245 aligned_load_type = build_aligned_type (load_type, align);
1246 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
1247 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
1248 load_offset_ptr);
1249
1250 if (!bswap)
1251 {
1252 if (n->range == 16)
1253 nop_stats.found_16bit++;
1254 else if (n->range == 32)
1255 nop_stats.found_32bit++;
1256 else
1257 {
1258 gcc_assert (n->range == 64);
1259 nop_stats.found_64bit++;
1260 }
1261
1262 /* Convert the result of load if necessary. */
1263 if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), load_type))
1264 {
1265 val_tmp = make_temp_ssa_name (type: aligned_load_type, NULL,
1266 name: "load_dst");
1267 load_stmt = gimple_build_assign (val_tmp, val_expr);
1268 gimple_set_vuse (g: load_stmt, vuse: n->vuse);
1269 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1270 if (conv_code == VIEW_CONVERT_EXPR)
1271 val_tmp = bswap_view_convert (gsi: &gsi, TREE_TYPE (tgt), val: val_tmp,
1272 before: true);
1273 gimple_assign_set_rhs_with_ops (gsi: &gsi, code: conv_code, op1: val_tmp);
1274 update_stmt (s: cur_stmt);
1275 }
1276 else if (cur_stmt)
1277 {
1278 gimple_assign_set_rhs_with_ops (gsi: &gsi, code: MEM_REF, op1: val_expr);
1279 gimple_set_vuse (g: cur_stmt, vuse: n->vuse);
1280 update_stmt (s: cur_stmt);
1281 }
1282 else
1283 {
1284 tgt = make_ssa_name (var: load_type);
1285 cur_stmt = gimple_build_assign (tgt, MEM_REF, val_expr);
1286 gimple_set_vuse (g: cur_stmt, vuse: n->vuse);
1287 gsi_insert_before (&gsi, cur_stmt, GSI_SAME_STMT);
1288 }
1289
1290 if (dump_file)
1291 {
1292 fprintf (stream: dump_file,
1293 format: "%d bit load in target endianness found at: ",
1294 (int) n->range);
1295 print_gimple_stmt (dump_file, cur_stmt, 0);
1296 }
1297 return tgt;
1298 }
1299 else
1300 {
1301 val_tmp = make_temp_ssa_name (type: aligned_load_type, NULL, name: "load_dst");
1302 load_stmt = gimple_build_assign (val_tmp, val_expr);
1303 gimple_set_vuse (g: load_stmt, vuse: n->vuse);
1304 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1305 }
1306 src = val_tmp;
1307 }
1308 else if (!bswap)
1309 {
1310 gimple *g = NULL;
1311 if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), TREE_TYPE (src)))
1312 {
1313 if (!is_gimple_val (src))
1314 return NULL_TREE;
1315 if (conv_code == VIEW_CONVERT_EXPR)
1316 src = bswap_view_convert (gsi: &gsi, TREE_TYPE (tgt), val: src, before: true);
1317 g = gimple_build_assign (tgt, conv_code, src);
1318 }
1319 else if (cur_stmt)
1320 g = gimple_build_assign (tgt, src);
1321 else
1322 tgt = src;
1323 if (n->range == 16)
1324 nop_stats.found_16bit++;
1325 else if (n->range == 32)
1326 nop_stats.found_32bit++;
1327 else
1328 {
1329 gcc_assert (n->range == 64);
1330 nop_stats.found_64bit++;
1331 }
1332 if (dump_file)
1333 {
1334 fprintf (stream: dump_file,
1335 format: "%d bit reshuffle in target endianness found at: ",
1336 (int) n->range);
1337 if (cur_stmt)
1338 print_gimple_stmt (dump_file, cur_stmt, 0);
1339 else
1340 {
1341 print_generic_expr (dump_file, tgt, TDF_NONE);
1342 fprintf (stream: dump_file, format: "\n");
1343 }
1344 }
1345 if (cur_stmt)
1346 gsi_replace (&gsi, g, true);
1347 return tgt;
1348 }
1349 else if (TREE_CODE (src) == BIT_FIELD_REF)
1350 src = TREE_OPERAND (src, 0);
1351
1352 if (n->range == 16)
1353 bswap_stats.found_16bit++;
1354 else if (n->range == 32)
1355 bswap_stats.found_32bit++;
1356 else
1357 {
1358 gcc_assert (n->range == 64);
1359 bswap_stats.found_64bit++;
1360 }
1361
1362 tmp = src;
1363
1364 /* Convert the src expression if necessary. */
1365 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
1366 {
1367 gimple *convert_stmt;
1368
1369 tmp = make_temp_ssa_name (type: bswap_type, NULL, name: "bswapsrc");
1370 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
1371 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1372 }
1373
1374 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
1375 are considered as rotation of 2N bit values by N bits is generally not
1376 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
1377 gives 0x03040102 while a bswap for that value is 0x04030201. */
1378 if (bswap && n->range == 16)
1379 {
1380 tree count = build_int_cst (NULL, BITS_PER_UNIT);
1381 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
1382 bswap_stmt = gimple_build_assign (NULL, src);
1383 }
1384 else
1385 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
1386
1387 if (tgt == NULL_TREE)
1388 tgt = make_ssa_name (var: bswap_type);
1389 tmp = tgt;
1390
1391 if (mask != ~(uint64_t) 0)
1392 {
1393 tree m = build_int_cst (bswap_type, mask);
1394 tmp = make_temp_ssa_name (type: bswap_type, NULL, name: "bswapdst");
1395 gimple_set_lhs (bswap_stmt, tmp);
1396 mask_stmt = gimple_build_assign (tgt, BIT_AND_EXPR, tmp, m);
1397 tmp = tgt;
1398 }
1399
1400 if (l_rotate)
1401 {
1402 tree m = build_int_cst (bswap_type, l_rotate);
1403 tmp = make_temp_ssa_name (type: bswap_type, NULL,
1404 name: mask_stmt ? "bswapmaskdst" : "bswapdst");
1405 gimple_set_lhs (mask_stmt ? mask_stmt : bswap_stmt, tmp);
1406 rotl_stmt = gimple_build_assign (tgt, LROTATE_EXPR, tmp, m);
1407 tmp = tgt;
1408 }
1409
1410 /* Convert the result if necessary. */
1411 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
1412 {
1413 tmp = make_temp_ssa_name (type: bswap_type, NULL, name: "bswapdst");
1414 tree atmp = tmp;
1415 gimple_stmt_iterator gsi2 = gsi;
1416 if (conv_code == VIEW_CONVERT_EXPR)
1417 atmp = bswap_view_convert (gsi: &gsi2, TREE_TYPE (tgt), val: tmp, before: false);
1418 gimple *convert_stmt = gimple_build_assign (tgt, conv_code, atmp);
1419 gsi_insert_after (&gsi2, convert_stmt, GSI_SAME_STMT);
1420 }
1421
1422 gimple_set_lhs (rotl_stmt ? rotl_stmt
1423 : mask_stmt ? mask_stmt : bswap_stmt, tmp);
1424
1425 if (dump_file)
1426 {
1427 fprintf (stream: dump_file, format: "%d bit bswap implementation found at: ",
1428 (int) n->range);
1429 if (cur_stmt)
1430 print_gimple_stmt (dump_file, cur_stmt, 0);
1431 else
1432 {
1433 print_generic_expr (dump_file, tgt, TDF_NONE);
1434 fprintf (stream: dump_file, format: "\n");
1435 }
1436 }
1437
1438 if (cur_stmt)
1439 {
1440 if (rotl_stmt)
1441 gsi_insert_after (&gsi, rotl_stmt, GSI_SAME_STMT);
1442 if (mask_stmt)
1443 gsi_insert_after (&gsi, mask_stmt, GSI_SAME_STMT);
1444 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
1445 gsi_remove (&gsi, true);
1446 }
1447 else
1448 {
1449 gsi_insert_before (&gsi, bswap_stmt, GSI_SAME_STMT);
1450 if (mask_stmt)
1451 gsi_insert_before (&gsi, mask_stmt, GSI_SAME_STMT);
1452 if (rotl_stmt)
1453 gsi_insert_after (&gsi, rotl_stmt, GSI_SAME_STMT);
1454 }
1455 return tgt;
1456}
1457
1458/* Try to optimize an assignment CUR_STMT with CONSTRUCTOR on the rhs
1459 using bswap optimizations. CDI_DOMINATORS need to be
1460 computed on entry. Return true if it has been optimized and
1461 TODO_update_ssa is needed. */
1462
1463static bool
1464maybe_optimize_vector_constructor (gimple *cur_stmt)
1465{
1466 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
1467 struct symbolic_number n;
1468 bool bswap;
1469
1470 gcc_assert (is_gimple_assign (cur_stmt)
1471 && gimple_assign_rhs_code (cur_stmt) == CONSTRUCTOR);
1472
1473 tree rhs = gimple_assign_rhs1 (gs: cur_stmt);
1474 if (!VECTOR_TYPE_P (TREE_TYPE (rhs))
1475 || !INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (rhs)))
1476 || gimple_assign_lhs (gs: cur_stmt) == NULL_TREE)
1477 return false;
1478
1479 HOST_WIDE_INT sz = int_size_in_bytes (TREE_TYPE (rhs)) * BITS_PER_UNIT;
1480 switch (sz)
1481 {
1482 case 16:
1483 load_type = bswap_type = uint16_type_node;
1484 break;
1485 case 32:
1486 if (builtin_decl_explicit_p (fncode: BUILT_IN_BSWAP32)
1487 && optab_handler (op: bswap_optab, SImode) != CODE_FOR_nothing)
1488 {
1489 load_type = uint32_type_node;
1490 fndecl = builtin_decl_explicit (fncode: BUILT_IN_BSWAP32);
1491 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1492 }
1493 else
1494 return false;
1495 break;
1496 case 64:
1497 if (builtin_decl_explicit_p (fncode: BUILT_IN_BSWAP64)
1498 && (optab_handler (op: bswap_optab, DImode) != CODE_FOR_nothing
1499 || (word_mode == SImode
1500 && builtin_decl_explicit_p (fncode: BUILT_IN_BSWAP32)
1501 && optab_handler (op: bswap_optab, SImode) != CODE_FOR_nothing)))
1502 {
1503 load_type = uint64_type_node;
1504 fndecl = builtin_decl_explicit (fncode: BUILT_IN_BSWAP64);
1505 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1506 }
1507 else
1508 return false;
1509 break;
1510 default:
1511 return false;
1512 }
1513
1514 bool cast64_to_32;
1515 uint64_t mask, l_rotate;
1516 gimple *ins_stmt = find_bswap_or_nop (stmt: cur_stmt, n: &n, bswap: &bswap,
1517 cast64_to_32: &cast64_to_32, mask: &mask, l_rotate: &l_rotate);
1518 if (!ins_stmt
1519 || n.range != (unsigned HOST_WIDE_INT) sz
1520 || cast64_to_32
1521 || mask != ~(uint64_t) 0)
1522 return false;
1523
1524 if (bswap && !fndecl && n.range != 16)
1525 return false;
1526
1527 memset (s: &nop_stats, c: 0, n: sizeof (nop_stats));
1528 memset (s: &bswap_stats, c: 0, n: sizeof (bswap_stats));
1529 return bswap_replace (gsi: gsi_for_stmt (cur_stmt), ins_stmt, fndecl,
1530 bswap_type, load_type, n: &n, bswap, mask,
1531 l_rotate) != NULL_TREE;
1532}
1533
1534/* Find manual byte swap implementations as well as load in a given
1535 endianness. Byte swaps are turned into a bswap builtin invokation
1536 while endian loads are converted to bswap builtin invokation or
1537 simple load according to the target endianness. */
1538
1539unsigned int
1540pass_optimize_bswap::execute (function *fun)
1541{
1542 basic_block bb;
1543 bool bswap32_p, bswap64_p;
1544 bool changed = false;
1545 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1546
1547 bswap32_p = (builtin_decl_explicit_p (fncode: BUILT_IN_BSWAP32)
1548 && optab_handler (op: bswap_optab, SImode) != CODE_FOR_nothing);
1549 bswap64_p = (builtin_decl_explicit_p (fncode: BUILT_IN_BSWAP64)
1550 && (optab_handler (op: bswap_optab, DImode) != CODE_FOR_nothing
1551 || (bswap32_p && word_mode == SImode)));
1552
1553 /* Determine the argument type of the builtins. The code later on
1554 assumes that the return and argument type are the same. */
1555 if (bswap32_p)
1556 {
1557 tree fndecl = builtin_decl_explicit (fncode: BUILT_IN_BSWAP32);
1558 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1559 }
1560
1561 if (bswap64_p)
1562 {
1563 tree fndecl = builtin_decl_explicit (fncode: BUILT_IN_BSWAP64);
1564 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1565 }
1566
1567 memset (s: &nop_stats, c: 0, n: sizeof (nop_stats));
1568 memset (s: &bswap_stats, c: 0, n: sizeof (bswap_stats));
1569 calculate_dominance_info (CDI_DOMINATORS);
1570
1571 FOR_EACH_BB_FN (bb, fun)
1572 {
1573 gimple_stmt_iterator gsi;
1574
1575 /* We do a reverse scan for bswap patterns to make sure we get the
1576 widest match. As bswap pattern matching doesn't handle previously
1577 inserted smaller bswap replacements as sub-patterns, the wider
1578 variant wouldn't be detected. */
1579 for (gsi = gsi_last_bb (bb); !gsi_end_p (i: gsi);)
1580 {
1581 gimple *ins_stmt, *cur_stmt = gsi_stmt (i: gsi);
1582 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
1583 enum tree_code code;
1584 struct symbolic_number n;
1585 bool bswap, cast64_to_32;
1586 uint64_t mask, l_rotate;
1587
1588 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
1589 might be moved to a different basic block by bswap_replace and gsi
1590 must not points to it if that's the case. Moving the gsi_prev
1591 there make sure that gsi points to the statement previous to
1592 cur_stmt while still making sure that all statements are
1593 considered in this basic block. */
1594 gsi_prev (i: &gsi);
1595
1596 if (!is_gimple_assign (gs: cur_stmt))
1597 continue;
1598
1599 code = gimple_assign_rhs_code (gs: cur_stmt);
1600 switch (code)
1601 {
1602 case LROTATE_EXPR:
1603 case RROTATE_EXPR:
1604 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (gs: cur_stmt))
1605 || tree_to_uhwi (gimple_assign_rhs2 (gs: cur_stmt))
1606 % BITS_PER_UNIT)
1607 continue;
1608 /* Fall through. */
1609 case BIT_IOR_EXPR:
1610 case BIT_XOR_EXPR:
1611 case PLUS_EXPR:
1612 break;
1613 case CONSTRUCTOR:
1614 {
1615 tree rhs = gimple_assign_rhs1 (gs: cur_stmt);
1616 if (VECTOR_TYPE_P (TREE_TYPE (rhs))
1617 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (rhs))))
1618 break;
1619 }
1620 continue;
1621 default:
1622 continue;
1623 }
1624
1625 ins_stmt = find_bswap_or_nop (stmt: cur_stmt, n: &n, bswap: &bswap,
1626 cast64_to_32: &cast64_to_32, mask: &mask, l_rotate: &l_rotate);
1627
1628 if (!ins_stmt)
1629 continue;
1630
1631 switch (n.range)
1632 {
1633 case 16:
1634 /* Already in canonical form, nothing to do. */
1635 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
1636 continue;
1637 load_type = bswap_type = uint16_type_node;
1638 break;
1639 case 32:
1640 load_type = uint32_type_node;
1641 if (bswap32_p)
1642 {
1643 fndecl = builtin_decl_explicit (fncode: BUILT_IN_BSWAP32);
1644 bswap_type = bswap32_type;
1645 }
1646 break;
1647 case 64:
1648 load_type = uint64_type_node;
1649 if (bswap64_p)
1650 {
1651 fndecl = builtin_decl_explicit (fncode: BUILT_IN_BSWAP64);
1652 bswap_type = bswap64_type;
1653 }
1654 break;
1655 default:
1656 continue;
1657 }
1658
1659 if (bswap && !fndecl && n.range != 16)
1660 continue;
1661
1662 if (bswap_replace (gsi: gsi_for_stmt (cur_stmt), ins_stmt, fndecl,
1663 bswap_type, load_type, n: &n, bswap, mask,
1664 l_rotate))
1665 changed = true;
1666 }
1667 }
1668
1669 statistics_counter_event (fun, "16-bit nop implementations found",
1670 nop_stats.found_16bit);
1671 statistics_counter_event (fun, "32-bit nop implementations found",
1672 nop_stats.found_32bit);
1673 statistics_counter_event (fun, "64-bit nop implementations found",
1674 nop_stats.found_64bit);
1675 statistics_counter_event (fun, "16-bit bswap implementations found",
1676 bswap_stats.found_16bit);
1677 statistics_counter_event (fun, "32-bit bswap implementations found",
1678 bswap_stats.found_32bit);
1679 statistics_counter_event (fun, "64-bit bswap implementations found",
1680 bswap_stats.found_64bit);
1681
1682 return (changed ? TODO_update_ssa : 0);
1683}
1684
1685} // anon namespace
1686
1687gimple_opt_pass *
1688make_pass_optimize_bswap (gcc::context *ctxt)
1689{
1690 return new pass_optimize_bswap (ctxt);
1691}
1692
1693namespace {
1694
1695/* Struct recording one operand for the store, which is either a constant,
1696 then VAL represents the constant and all the other fields are zero, or
1697 a memory load, then VAL represents the reference, BASE_ADDR is non-NULL
1698 and the other fields also reflect the memory load, or an SSA name, then
1699 VAL represents the SSA name and all the other fields are zero. */
1700
1701class store_operand_info
1702{
1703public:
1704 tree val;
1705 tree base_addr;
1706 poly_uint64 bitsize;
1707 poly_uint64 bitpos;
1708 poly_uint64 bitregion_start;
1709 poly_uint64 bitregion_end;
1710 gimple *stmt;
1711 bool bit_not_p;
1712 store_operand_info ();
1713};
1714
1715store_operand_info::store_operand_info ()
1716 : val (NULL_TREE), base_addr (NULL_TREE), bitsize (0), bitpos (0),
1717 bitregion_start (0), bitregion_end (0), stmt (NULL), bit_not_p (false)
1718{
1719}
1720
1721/* Struct recording the information about a single store of an immediate
1722 to memory. These are created in the first phase and coalesced into
1723 merged_store_group objects in the second phase. */
1724
1725class store_immediate_info
1726{
1727public:
1728 unsigned HOST_WIDE_INT bitsize;
1729 unsigned HOST_WIDE_INT bitpos;
1730 unsigned HOST_WIDE_INT bitregion_start;
1731 /* This is one past the last bit of the bit region. */
1732 unsigned HOST_WIDE_INT bitregion_end;
1733 gimple *stmt;
1734 unsigned int order;
1735 /* INTEGER_CST for constant store, STRING_CST for string store,
1736 MEM_REF for memory copy, BIT_*_EXPR for logical bitwise operation,
1737 BIT_INSERT_EXPR for bit insertion.
1738 LROTATE_EXPR if it can be only bswap optimized and
1739 ops are not really meaningful.
1740 NOP_EXPR if bswap optimization detected identity, ops
1741 are not meaningful. */
1742 enum tree_code rhs_code;
1743 /* Two fields for bswap optimization purposes. */
1744 struct symbolic_number n;
1745 gimple *ins_stmt;
1746 /* True if BIT_{AND,IOR,XOR}_EXPR result is inverted before storing. */
1747 bool bit_not_p;
1748 /* True if ops have been swapped and thus ops[1] represents
1749 rhs1 of BIT_{AND,IOR,XOR}_EXPR and ops[0] represents rhs2. */
1750 bool ops_swapped_p;
1751 /* The index number of the landing pad, or 0 if there is none. */
1752 int lp_nr;
1753 /* Operands. For BIT_*_EXPR rhs_code both operands are used, otherwise
1754 just the first one. */
1755 store_operand_info ops[2];
1756 store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
1757 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
1758 gimple *, unsigned int, enum tree_code,
1759 struct symbolic_number &, gimple *, bool, int,
1760 const store_operand_info &,
1761 const store_operand_info &);
1762};
1763
1764store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
1765 unsigned HOST_WIDE_INT bp,
1766 unsigned HOST_WIDE_INT brs,
1767 unsigned HOST_WIDE_INT bre,
1768 gimple *st,
1769 unsigned int ord,
1770 enum tree_code rhscode,
1771 struct symbolic_number &nr,
1772 gimple *ins_stmtp,
1773 bool bitnotp,
1774 int nr2,
1775 const store_operand_info &op0r,
1776 const store_operand_info &op1r)
1777 : bitsize (bs), bitpos (bp), bitregion_start (brs), bitregion_end (bre),
1778 stmt (st), order (ord), rhs_code (rhscode), n (nr),
1779 ins_stmt (ins_stmtp), bit_not_p (bitnotp), ops_swapped_p (false),
1780 lp_nr (nr2), ops { op0r, op1r }
1781{
1782}
1783
1784/* Struct representing a group of stores to contiguous memory locations.
1785 These are produced by the second phase (coalescing) and consumed in the
1786 third phase that outputs the widened stores. */
1787
1788class merged_store_group
1789{
1790public:
1791 unsigned HOST_WIDE_INT start;
1792 unsigned HOST_WIDE_INT width;
1793 unsigned HOST_WIDE_INT bitregion_start;
1794 unsigned HOST_WIDE_INT bitregion_end;
1795 /* The size of the allocated memory for val and mask. */
1796 unsigned HOST_WIDE_INT buf_size;
1797 unsigned HOST_WIDE_INT align_base;
1798 poly_uint64 load_align_base[2];
1799
1800 unsigned int align;
1801 unsigned int load_align[2];
1802 unsigned int first_order;
1803 unsigned int last_order;
1804 bool bit_insertion;
1805 bool string_concatenation;
1806 bool only_constants;
1807 bool consecutive;
1808 unsigned int first_nonmergeable_order;
1809 int lp_nr;
1810
1811 auto_vec<store_immediate_info *> stores;
1812 /* We record the first and last original statements in the sequence because
1813 we'll need their vuse/vdef and replacement position. It's easier to keep
1814 track of them separately as 'stores' is reordered by apply_stores. */
1815 gimple *last_stmt;
1816 gimple *first_stmt;
1817 unsigned char *val;
1818 unsigned char *mask;
1819
1820 merged_store_group (store_immediate_info *);
1821 ~merged_store_group ();
1822 bool can_be_merged_into (store_immediate_info *);
1823 void merge_into (store_immediate_info *);
1824 void merge_overlapping (store_immediate_info *);
1825 bool apply_stores ();
1826private:
1827 void do_merge (store_immediate_info *);
1828};
1829
1830/* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
1831
1832static void
1833dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len)
1834{
1835 if (!fd)
1836 return;
1837
1838 for (unsigned int i = 0; i < len; i++)
1839 fprintf (stream: fd, format: "%02x ", ptr[i]);
1840 fprintf (stream: fd, format: "\n");
1841}
1842
1843/* Clear out LEN bits starting from bit START in the byte array
1844 PTR. This clears the bits to the *right* from START.
1845 START must be within [0, BITS_PER_UNIT) and counts starting from
1846 the least significant bit. */
1847
1848static void
1849clear_bit_region_be (unsigned char *ptr, unsigned int start,
1850 unsigned int len)
1851{
1852 if (len == 0)
1853 return;
1854 /* Clear len bits to the right of start. */
1855 else if (len <= start + 1)
1856 {
1857 unsigned char mask = (~(~0U << len));
1858 mask = mask << (start + 1U - len);
1859 ptr[0] &= ~mask;
1860 }
1861 else if (start != BITS_PER_UNIT - 1)
1862 {
1863 clear_bit_region_be (ptr, start, len: (start % BITS_PER_UNIT) + 1);
1864 clear_bit_region_be (ptr: ptr + 1, BITS_PER_UNIT - 1,
1865 len: len - (start % BITS_PER_UNIT) - 1);
1866 }
1867 else if (start == BITS_PER_UNIT - 1
1868 && len > BITS_PER_UNIT)
1869 {
1870 unsigned int nbytes = len / BITS_PER_UNIT;
1871 memset (s: ptr, c: 0, n: nbytes);
1872 if (len % BITS_PER_UNIT != 0)
1873 clear_bit_region_be (ptr: ptr + nbytes, BITS_PER_UNIT - 1,
1874 len: len % BITS_PER_UNIT);
1875 }
1876 else
1877 gcc_unreachable ();
1878}
1879
1880/* In the byte array PTR clear the bit region starting at bit
1881 START and is LEN bits wide.
1882 For regions spanning multiple bytes do this recursively until we reach
1883 zero LEN or a region contained within a single byte. */
1884
1885static void
1886clear_bit_region (unsigned char *ptr, unsigned int start,
1887 unsigned int len)
1888{
1889 /* Degenerate base case. */
1890 if (len == 0)
1891 return;
1892 else if (start >= BITS_PER_UNIT)
1893 clear_bit_region (ptr: ptr + 1, start: start - BITS_PER_UNIT, len);
1894 /* Second base case. */
1895 else if ((start + len) <= BITS_PER_UNIT)
1896 {
1897 unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len);
1898 mask >>= BITS_PER_UNIT - (start + len);
1899
1900 ptr[0] &= ~mask;
1901
1902 return;
1903 }
1904 /* Clear most significant bits in a byte and proceed with the next byte. */
1905 else if (start != 0)
1906 {
1907 clear_bit_region (ptr, start, BITS_PER_UNIT - start);
1908 clear_bit_region (ptr: ptr + 1, start: 0, len: len - (BITS_PER_UNIT - start));
1909 }
1910 /* Whole bytes need to be cleared. */
1911 else if (start == 0 && len > BITS_PER_UNIT)
1912 {
1913 unsigned int nbytes = len / BITS_PER_UNIT;
1914 /* We could recurse on each byte but we clear whole bytes, so a simple
1915 memset will do. */
1916 memset (s: ptr, c: '\0', n: nbytes);
1917 /* Clear the remaining sub-byte region if there is one. */
1918 if (len % BITS_PER_UNIT != 0)
1919 clear_bit_region (ptr: ptr + nbytes, start: 0, len: len % BITS_PER_UNIT);
1920 }
1921 else
1922 gcc_unreachable ();
1923}
1924
1925/* Write BITLEN bits of EXPR to the byte array PTR at
1926 bit position BITPOS. PTR should contain TOTAL_BYTES elements.
1927 Return true if the operation succeeded. */
1928
1929static bool
1930encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos,
1931 unsigned int total_bytes)
1932{
1933 unsigned int first_byte = bitpos / BITS_PER_UNIT;
1934 bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT)
1935 || (bitpos % BITS_PER_UNIT)
1936 || !int_mode_for_size (size: bitlen, limit: 0).exists ());
1937 bool empty_ctor_p
1938 = (TREE_CODE (expr) == CONSTRUCTOR
1939 && CONSTRUCTOR_NELTS (expr) == 0
1940 && TYPE_SIZE_UNIT (TREE_TYPE (expr))
1941 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (expr))));
1942
1943 if (!sub_byte_op_p)
1944 {
1945 if (first_byte >= total_bytes)
1946 return false;
1947 total_bytes -= first_byte;
1948 if (empty_ctor_p)
1949 {
1950 unsigned HOST_WIDE_INT rhs_bytes
1951 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
1952 if (rhs_bytes > total_bytes)
1953 return false;
1954 memset (s: ptr + first_byte, c: '\0', n: rhs_bytes);
1955 return true;
1956 }
1957 return native_encode_expr (expr, ptr + first_byte, total_bytes) != 0;
1958 }
1959
1960 /* LITTLE-ENDIAN
1961 We are writing a non byte-sized quantity or at a position that is not
1962 at a byte boundary.
1963 |--------|--------|--------| ptr + first_byte
1964 ^ ^
1965 xxx xxxxxxxx xxx< bp>
1966 |______EXPR____|
1967
1968 First native_encode_expr EXPR into a temporary buffer and shift each
1969 byte in the buffer by 'bp' (carrying the bits over as necessary).
1970 |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
1971 <------bitlen---->< bp>
1972 Then we clear the destination bits:
1973 |---00000|00000000|000-----| ptr + first_byte
1974 <-------bitlen--->< bp>
1975
1976 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1977 |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
1978
1979 BIG-ENDIAN
1980 We are writing a non byte-sized quantity or at a position that is not
1981 at a byte boundary.
1982 ptr + first_byte |--------|--------|--------|
1983 ^ ^
1984 <bp >xxx xxxxxxxx xxx
1985 |_____EXPR_____|
1986
1987 First native_encode_expr EXPR into a temporary buffer and shift each
1988 byte in the buffer to the right by (carrying the bits over as necessary).
1989 We shift by as much as needed to align the most significant bit of EXPR
1990 with bitpos:
1991 |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
1992 <---bitlen----> <bp ><-----bitlen----->
1993 Then we clear the destination bits:
1994 ptr + first_byte |-----000||00000000||00000---|
1995 <bp ><-------bitlen----->
1996
1997 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1998 ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
1999 The awkwardness comes from the fact that bitpos is counted from the
2000 most significant bit of a byte. */
2001
2002 /* We must be dealing with fixed-size data at this point, since the
2003 total size is also fixed. */
2004 unsigned int byte_size;
2005 if (empty_ctor_p)
2006 {
2007 unsigned HOST_WIDE_INT rhs_bytes
2008 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
2009 if (rhs_bytes > total_bytes)
2010 return false;
2011 byte_size = rhs_bytes;
2012 }
2013 else
2014 {
2015 fixed_size_mode mode
2016 = as_a <fixed_size_mode> (TYPE_MODE (TREE_TYPE (expr)));
2017 byte_size
2018 = mode == BLKmode
2019 ? tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)))
2020 : GET_MODE_SIZE (mode);
2021 }
2022 /* Allocate an extra byte so that we have space to shift into. */
2023 byte_size++;
2024 unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size);
2025 memset (s: tmpbuf, c: '\0', n: byte_size);
2026 /* The store detection code should only have allowed constants that are
2027 accepted by native_encode_expr or empty ctors. */
2028 if (!empty_ctor_p
2029 && native_encode_expr (expr, tmpbuf, byte_size - 1) == 0)
2030 gcc_unreachable ();
2031
2032 /* The native_encode_expr machinery uses TYPE_MODE to determine how many
2033 bytes to write. This means it can write more than
2034 ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
2035 write 8 bytes for a bitlen of 40). Skip the bytes that are not within
2036 bitlen and zero out the bits that are not relevant as well (that may
2037 contain a sign bit due to sign-extension). */
2038 unsigned int padding
2039 = byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1;
2040 /* On big-endian the padding is at the 'front' so just skip the initial
2041 bytes. */
2042 if (BYTES_BIG_ENDIAN)
2043 tmpbuf += padding;
2044
2045 byte_size -= padding;
2046
2047 if (bitlen % BITS_PER_UNIT != 0)
2048 {
2049 if (BYTES_BIG_ENDIAN)
2050 clear_bit_region_be (ptr: tmpbuf, BITS_PER_UNIT - 1,
2051 BITS_PER_UNIT - (bitlen % BITS_PER_UNIT));
2052 else
2053 clear_bit_region (ptr: tmpbuf, start: bitlen,
2054 len: byte_size * BITS_PER_UNIT - bitlen);
2055 }
2056 /* Left shifting relies on the last byte being clear if bitlen is
2057 a multiple of BITS_PER_UNIT, which might not be clear if
2058 there are padding bytes. */
2059 else if (!BYTES_BIG_ENDIAN)
2060 tmpbuf[byte_size - 1] = '\0';
2061
2062 /* Clear the bit region in PTR where the bits from TMPBUF will be
2063 inserted into. */
2064 if (BYTES_BIG_ENDIAN)
2065 clear_bit_region_be (ptr: ptr + first_byte,
2066 BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), len: bitlen);
2067 else
2068 clear_bit_region (ptr: ptr + first_byte, start: bitpos % BITS_PER_UNIT, len: bitlen);
2069
2070 int shift_amnt;
2071 int bitlen_mod = bitlen % BITS_PER_UNIT;
2072 int bitpos_mod = bitpos % BITS_PER_UNIT;
2073
2074 bool skip_byte = false;
2075 if (BYTES_BIG_ENDIAN)
2076 {
2077 /* BITPOS and BITLEN are exactly aligned and no shifting
2078 is necessary. */
2079 if (bitpos_mod + bitlen_mod == BITS_PER_UNIT
2080 || (bitpos_mod == 0 && bitlen_mod == 0))
2081 shift_amnt = 0;
2082 /* |. . . . . . . .|
2083 <bp > <blen >.
2084 We always shift right for BYTES_BIG_ENDIAN so shift the beginning
2085 of the value until it aligns with 'bp' in the next byte over. */
2086 else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT)
2087 {
2088 shift_amnt = bitlen_mod + bitpos_mod;
2089 skip_byte = bitlen_mod != 0;
2090 }
2091 /* |. . . . . . . .|
2092 <----bp--->
2093 <---blen---->.
2094 Shift the value right within the same byte so it aligns with 'bp'. */
2095 else
2096 shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT;
2097 }
2098 else
2099 shift_amnt = bitpos % BITS_PER_UNIT;
2100
2101 /* Create the shifted version of EXPR. */
2102 if (!BYTES_BIG_ENDIAN)
2103 {
2104 shift_bytes_in_array_left (tmpbuf, byte_size, shift_amnt);
2105 if (shift_amnt == 0)
2106 byte_size--;
2107 }
2108 else
2109 {
2110 gcc_assert (BYTES_BIG_ENDIAN);
2111 shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt);
2112 /* If shifting right forced us to move into the next byte skip the now
2113 empty byte. */
2114 if (skip_byte)
2115 {
2116 tmpbuf++;
2117 byte_size--;
2118 }
2119 }
2120
2121 /* Insert the bits from TMPBUF. */
2122 for (unsigned int i = 0; i < byte_size; i++)
2123 ptr[first_byte + i] |= tmpbuf[i];
2124
2125 return true;
2126}
2127
2128/* Sorting function for store_immediate_info objects.
2129 Sorts them by bitposition. */
2130
2131static int
2132sort_by_bitpos (const void *x, const void *y)
2133{
2134 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
2135 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
2136
2137 if ((*tmp)->bitpos < (*tmp2)->bitpos)
2138 return -1;
2139 else if ((*tmp)->bitpos > (*tmp2)->bitpos)
2140 return 1;
2141 else
2142 /* If they are the same let's use the order which is guaranteed to
2143 be different. */
2144 return (*tmp)->order - (*tmp2)->order;
2145}
2146
2147/* Sorting function for store_immediate_info objects.
2148 Sorts them by the order field. */
2149
2150static int
2151sort_by_order (const void *x, const void *y)
2152{
2153 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
2154 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
2155
2156 if ((*tmp)->order < (*tmp2)->order)
2157 return -1;
2158 else if ((*tmp)->order > (*tmp2)->order)
2159 return 1;
2160
2161 gcc_unreachable ();
2162}
2163
2164/* Initialize a merged_store_group object from a store_immediate_info
2165 object. */
2166
2167merged_store_group::merged_store_group (store_immediate_info *info)
2168{
2169 start = info->bitpos;
2170 width = info->bitsize;
2171 bitregion_start = info->bitregion_start;
2172 bitregion_end = info->bitregion_end;
2173 /* VAL has memory allocated for it in apply_stores once the group
2174 width has been finalized. */
2175 val = NULL;
2176 mask = NULL;
2177 bit_insertion = info->rhs_code == BIT_INSERT_EXPR;
2178 string_concatenation = info->rhs_code == STRING_CST;
2179 only_constants = info->rhs_code == INTEGER_CST;
2180 consecutive = true;
2181 first_nonmergeable_order = ~0U;
2182 lp_nr = info->lp_nr;
2183 unsigned HOST_WIDE_INT align_bitpos = 0;
2184 get_object_alignment_1 (gimple_assign_lhs (gs: info->stmt),
2185 &align, &align_bitpos);
2186 align_base = start - align_bitpos;
2187 for (int i = 0; i < 2; ++i)
2188 {
2189 store_operand_info &op = info->ops[i];
2190 if (op.base_addr == NULL_TREE)
2191 {
2192 load_align[i] = 0;
2193 load_align_base[i] = 0;
2194 }
2195 else
2196 {
2197 get_object_alignment_1 (op.val, &load_align[i], &align_bitpos);
2198 load_align_base[i] = op.bitpos - align_bitpos;
2199 }
2200 }
2201 stores.create (nelems: 1);
2202 stores.safe_push (obj: info);
2203 last_stmt = info->stmt;
2204 last_order = info->order;
2205 first_stmt = last_stmt;
2206 first_order = last_order;
2207 buf_size = 0;
2208}
2209
2210merged_store_group::~merged_store_group ()
2211{
2212 if (val)
2213 XDELETEVEC (val);
2214}
2215
2216/* Return true if the store described by INFO can be merged into the group. */
2217
2218bool
2219merged_store_group::can_be_merged_into (store_immediate_info *info)
2220{
2221 /* Do not merge bswap patterns. */
2222 if (info->rhs_code == LROTATE_EXPR)
2223 return false;
2224
2225 if (info->lp_nr != lp_nr)
2226 return false;
2227
2228 /* The canonical case. */
2229 if (info->rhs_code == stores[0]->rhs_code)
2230 return true;
2231
2232 /* BIT_INSERT_EXPR is compatible with INTEGER_CST if no STRING_CST. */
2233 if (info->rhs_code == BIT_INSERT_EXPR && stores[0]->rhs_code == INTEGER_CST)
2234 return !string_concatenation;
2235
2236 if (stores[0]->rhs_code == BIT_INSERT_EXPR && info->rhs_code == INTEGER_CST)
2237 return !string_concatenation;
2238
2239 /* We can turn MEM_REF into BIT_INSERT_EXPR for bit-field stores, but do it
2240 only for small regions since this can generate a lot of instructions. */
2241 if (info->rhs_code == MEM_REF
2242 && (stores[0]->rhs_code == INTEGER_CST
2243 || stores[0]->rhs_code == BIT_INSERT_EXPR)
2244 && info->bitregion_start == stores[0]->bitregion_start
2245 && info->bitregion_end == stores[0]->bitregion_end
2246 && info->bitregion_end - info->bitregion_start <= MAX_FIXED_MODE_SIZE)
2247 return !string_concatenation;
2248
2249 if (stores[0]->rhs_code == MEM_REF
2250 && (info->rhs_code == INTEGER_CST
2251 || info->rhs_code == BIT_INSERT_EXPR)
2252 && info->bitregion_start == stores[0]->bitregion_start
2253 && info->bitregion_end == stores[0]->bitregion_end
2254 && info->bitregion_end - info->bitregion_start <= MAX_FIXED_MODE_SIZE)
2255 return !string_concatenation;
2256
2257 /* STRING_CST is compatible with INTEGER_CST if no BIT_INSERT_EXPR. */
2258 if (info->rhs_code == STRING_CST
2259 && stores[0]->rhs_code == INTEGER_CST
2260 && stores[0]->bitsize == CHAR_BIT)
2261 return !bit_insertion;
2262
2263 if (stores[0]->rhs_code == STRING_CST
2264 && info->rhs_code == INTEGER_CST
2265 && info->bitsize == CHAR_BIT)
2266 return !bit_insertion;
2267
2268 return false;
2269}
2270
2271/* Helper method for merge_into and merge_overlapping to do
2272 the common part. */
2273
2274void
2275merged_store_group::do_merge (store_immediate_info *info)
2276{
2277 bitregion_start = MIN (bitregion_start, info->bitregion_start);
2278 bitregion_end = MAX (bitregion_end, info->bitregion_end);
2279
2280 unsigned int this_align;
2281 unsigned HOST_WIDE_INT align_bitpos = 0;
2282 get_object_alignment_1 (gimple_assign_lhs (gs: info->stmt),
2283 &this_align, &align_bitpos);
2284 if (this_align > align)
2285 {
2286 align = this_align;
2287 align_base = info->bitpos - align_bitpos;
2288 }
2289 for (int i = 0; i < 2; ++i)
2290 {
2291 store_operand_info &op = info->ops[i];
2292 if (!op.base_addr)
2293 continue;
2294
2295 get_object_alignment_1 (op.val, &this_align, &align_bitpos);
2296 if (this_align > load_align[i])
2297 {
2298 load_align[i] = this_align;
2299 load_align_base[i] = op.bitpos - align_bitpos;
2300 }
2301 }
2302
2303 gimple *stmt = info->stmt;
2304 stores.safe_push (obj: info);
2305 if (info->order > last_order)
2306 {
2307 last_order = info->order;
2308 last_stmt = stmt;
2309 }
2310 else if (info->order < first_order)
2311 {
2312 first_order = info->order;
2313 first_stmt = stmt;
2314 }
2315
2316 if (info->bitpos != start + width)
2317 consecutive = false;
2318
2319 /* We need to use extraction if there is any bit-field. */
2320 if (info->rhs_code == BIT_INSERT_EXPR)
2321 {
2322 bit_insertion = true;
2323 gcc_assert (!string_concatenation);
2324 }
2325
2326 /* We want to use concatenation if there is any string. */
2327 if (info->rhs_code == STRING_CST)
2328 {
2329 string_concatenation = true;
2330 gcc_assert (!bit_insertion);
2331 }
2332
2333 /* But we cannot use it if we don't have consecutive stores. */
2334 if (!consecutive)
2335 string_concatenation = false;
2336
2337 if (info->rhs_code != INTEGER_CST)
2338 only_constants = false;
2339}
2340
2341/* Merge a store recorded by INFO into this merged store.
2342 The store is not overlapping with the existing recorded
2343 stores. */
2344
2345void
2346merged_store_group::merge_into (store_immediate_info *info)
2347{
2348 do_merge (info);
2349
2350 /* Make sure we're inserting in the position we think we're inserting. */
2351 gcc_assert (info->bitpos >= start + width
2352 && info->bitregion_start <= bitregion_end);
2353
2354 width = info->bitpos + info->bitsize - start;
2355}
2356
2357/* Merge a store described by INFO into this merged store.
2358 INFO overlaps in some way with the current store (i.e. it's not contiguous
2359 which is handled by merged_store_group::merge_into). */
2360
2361void
2362merged_store_group::merge_overlapping (store_immediate_info *info)
2363{
2364 do_merge (info);
2365
2366 /* If the store extends the size of the group, extend the width. */
2367 if (info->bitpos + info->bitsize > start + width)
2368 width = info->bitpos + info->bitsize - start;
2369}
2370
2371/* Go through all the recorded stores in this group in program order and
2372 apply their values to the VAL byte array to create the final merged
2373 value. Return true if the operation succeeded. */
2374
2375bool
2376merged_store_group::apply_stores ()
2377{
2378 store_immediate_info *info;
2379 unsigned int i;
2380
2381 /* Make sure we have more than one store in the group, otherwise we cannot
2382 merge anything. */
2383 if (bitregion_start % BITS_PER_UNIT != 0
2384 || bitregion_end % BITS_PER_UNIT != 0
2385 || stores.length () == 1)
2386 return false;
2387
2388 buf_size = (bitregion_end - bitregion_start) / BITS_PER_UNIT;
2389
2390 /* Really do string concatenation for large strings only. */
2391 if (buf_size <= MOVE_MAX)
2392 string_concatenation = false;
2393
2394 /* String concatenation only works for byte aligned start and end. */
2395 if (start % BITS_PER_UNIT != 0 || width % BITS_PER_UNIT != 0)
2396 string_concatenation = false;
2397
2398 /* Create a power-of-2-sized buffer for native_encode_expr. */
2399 if (!string_concatenation)
2400 buf_size = 1 << ceil_log2 (x: buf_size);
2401
2402 val = XNEWVEC (unsigned char, 2 * buf_size);
2403 mask = val + buf_size;
2404 memset (s: val, c: 0, n: buf_size);
2405 memset (s: mask, c: ~0U, n: buf_size);
2406
2407 stores.qsort (sort_by_order);
2408
2409 FOR_EACH_VEC_ELT (stores, i, info)
2410 {
2411 unsigned int pos_in_buffer = info->bitpos - bitregion_start;
2412 tree cst;
2413 if (info->ops[0].val && info->ops[0].base_addr == NULL_TREE)
2414 cst = info->ops[0].val;
2415 else if (info->ops[1].val && info->ops[1].base_addr == NULL_TREE)
2416 cst = info->ops[1].val;
2417 else
2418 cst = NULL_TREE;
2419 bool ret = true;
2420 if (cst && info->rhs_code != BIT_INSERT_EXPR)
2421 ret = encode_tree_to_bitpos (expr: cst, ptr: val, bitlen: info->bitsize, bitpos: pos_in_buffer,
2422 total_bytes: buf_size);
2423 unsigned char *m = mask + (pos_in_buffer / BITS_PER_UNIT);
2424 if (BYTES_BIG_ENDIAN)
2425 clear_bit_region_be (ptr: m, start: (BITS_PER_UNIT - 1
2426 - (pos_in_buffer % BITS_PER_UNIT)),
2427 len: info->bitsize);
2428 else
2429 clear_bit_region (ptr: m, start: pos_in_buffer % BITS_PER_UNIT, len: info->bitsize);
2430 if (cst && dump_file && (dump_flags & TDF_DETAILS))
2431 {
2432 if (ret)
2433 {
2434 fputs (s: "After writing ", stream: dump_file);
2435 print_generic_expr (dump_file, cst, TDF_NONE);
2436 fprintf (stream: dump_file, format: " of size " HOST_WIDE_INT_PRINT_DEC
2437 " at position %d\n", info->bitsize, pos_in_buffer);
2438 fputs (s: " the merged value contains ", stream: dump_file);
2439 dump_char_array (fd: dump_file, ptr: val, len: buf_size);
2440 fputs (s: " the merged mask contains ", stream: dump_file);
2441 dump_char_array (fd: dump_file, ptr: mask, len: buf_size);
2442 if (bit_insertion)
2443 fputs (s: " bit insertion is required\n", stream: dump_file);
2444 if (string_concatenation)
2445 fputs (s: " string concatenation is required\n", stream: dump_file);
2446 }
2447 else
2448 fprintf (stream: dump_file, format: "Failed to merge stores\n");
2449 }
2450 if (!ret)
2451 return false;
2452 }
2453 stores.qsort (sort_by_bitpos);
2454 return true;
2455}
2456
2457/* Structure describing the store chain. */
2458
2459class imm_store_chain_info
2460{
2461public:
2462 /* Doubly-linked list that imposes an order on chain processing.
2463 PNXP (prev's next pointer) points to the head of a list, or to
2464 the next field in the previous chain in the list.
2465 See pass_store_merging::m_stores_head for more rationale. */
2466 imm_store_chain_info *next, **pnxp;
2467 tree base_addr;
2468 auto_vec<store_immediate_info *> m_store_info;
2469 auto_vec<merged_store_group *> m_merged_store_groups;
2470
2471 imm_store_chain_info (imm_store_chain_info *&inspt, tree b_a)
2472 : next (inspt), pnxp (&inspt), base_addr (b_a)
2473 {
2474 inspt = this;
2475 if (next)
2476 {
2477 gcc_checking_assert (pnxp == next->pnxp);
2478 next->pnxp = &next;
2479 }
2480 }
2481 ~imm_store_chain_info ()
2482 {
2483 *pnxp = next;
2484 if (next)
2485 {
2486 gcc_checking_assert (&next == next->pnxp);
2487 next->pnxp = pnxp;
2488 }
2489 }
2490 bool terminate_and_process_chain ();
2491 bool try_coalesce_bswap (merged_store_group *, unsigned int, unsigned int,
2492 unsigned int);
2493 bool coalesce_immediate_stores ();
2494 bool output_merged_store (merged_store_group *);
2495 bool output_merged_stores ();
2496};
2497
2498const pass_data pass_data_tree_store_merging = {
2499 .type: GIMPLE_PASS, /* type */
2500 .name: "store-merging", /* name */
2501 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
2502 .tv_id: TV_GIMPLE_STORE_MERGING, /* tv_id */
2503 PROP_ssa, /* properties_required */
2504 .properties_provided: 0, /* properties_provided */
2505 .properties_destroyed: 0, /* properties_destroyed */
2506 .todo_flags_start: 0, /* todo_flags_start */
2507 TODO_update_ssa, /* todo_flags_finish */
2508};
2509
2510class pass_store_merging : public gimple_opt_pass
2511{
2512public:
2513 pass_store_merging (gcc::context *ctxt)
2514 : gimple_opt_pass (pass_data_tree_store_merging, ctxt), m_stores_head (),
2515 m_n_chains (0), m_n_stores (0)
2516 {
2517 }
2518
2519 /* Pass not supported for PDP-endian, nor for insane hosts or
2520 target character sizes where native_{encode,interpret}_expr
2521 doesn't work properly. */
2522 bool
2523 gate (function *) final override
2524 {
2525 return flag_store_merging
2526 && BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
2527 && CHAR_BIT == 8
2528 && BITS_PER_UNIT == 8;
2529 }
2530
2531 unsigned int execute (function *) final override;
2532
2533private:
2534 hash_map<tree_operand_hash, class imm_store_chain_info *> m_stores;
2535
2536 /* Form a doubly-linked stack of the elements of m_stores, so that
2537 we can iterate over them in a predictable way. Using this order
2538 avoids extraneous differences in the compiler output just because
2539 of tree pointer variations (e.g. different chains end up in
2540 different positions of m_stores, so they are handled in different
2541 orders, so they allocate or release SSA names in different
2542 orders, and when they get reused, subsequent passes end up
2543 getting different SSA names, which may ultimately change
2544 decisions when going out of SSA). */
2545 imm_store_chain_info *m_stores_head;
2546
2547 /* The number of store chains currently tracked. */
2548 unsigned m_n_chains;
2549 /* The number of stores currently tracked. */
2550 unsigned m_n_stores;
2551
2552 bool process_store (gimple *);
2553 bool terminate_and_process_chain (imm_store_chain_info *);
2554 bool terminate_all_aliasing_chains (imm_store_chain_info **, gimple *);
2555 bool terminate_and_process_all_chains ();
2556}; // class pass_store_merging
2557
2558/* Terminate and process all recorded chains. Return true if any changes
2559 were made. */
2560
2561bool
2562pass_store_merging::terminate_and_process_all_chains ()
2563{
2564 bool ret = false;
2565 while (m_stores_head)
2566 ret |= terminate_and_process_chain (m_stores_head);
2567 gcc_assert (m_stores.is_empty ());
2568 return ret;
2569}
2570
2571/* Terminate all chains that are affected by the statement STMT.
2572 CHAIN_INFO is the chain we should ignore from the checks if
2573 non-NULL. Return true if any changes were made. */
2574
2575bool
2576pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
2577 **chain_info,
2578 gimple *stmt)
2579{
2580 bool ret = false;
2581
2582 /* If the statement doesn't touch memory it can't alias. */
2583 if (!gimple_vuse (g: stmt))
2584 return false;
2585
2586 tree store_lhs = gimple_store_p (gs: stmt) ? gimple_get_lhs (stmt) : NULL_TREE;
2587 ao_ref store_lhs_ref;
2588 ao_ref_init (&store_lhs_ref, store_lhs);
2589 for (imm_store_chain_info *next = m_stores_head, *cur = next; cur; cur = next)
2590 {
2591 next = cur->next;
2592
2593 /* We already checked all the stores in chain_info and terminated the
2594 chain if necessary. Skip it here. */
2595 if (chain_info && *chain_info == cur)
2596 continue;
2597
2598 store_immediate_info *info;
2599 unsigned int i;
2600 FOR_EACH_VEC_ELT (cur->m_store_info, i, info)
2601 {
2602 tree lhs = gimple_assign_lhs (gs: info->stmt);
2603 ao_ref lhs_ref;
2604 ao_ref_init (&lhs_ref, lhs);
2605 if (ref_maybe_used_by_stmt_p (stmt, &lhs_ref)
2606 || stmt_may_clobber_ref_p_1 (stmt, &lhs_ref)
2607 || (store_lhs && refs_may_alias_p_1 (&store_lhs_ref,
2608 &lhs_ref, false)))
2609 {
2610 if (dump_file && (dump_flags & TDF_DETAILS))
2611 {
2612 fprintf (stream: dump_file, format: "stmt causes chain termination:\n");
2613 print_gimple_stmt (dump_file, stmt, 0);
2614 }
2615 ret |= terminate_and_process_chain (cur);
2616 break;
2617 }
2618 }
2619 }
2620
2621 return ret;
2622}
2623
2624/* Helper function. Terminate the recorded chain storing to base object
2625 BASE. Return true if the merging and output was successful. The m_stores
2626 entry is removed after the processing in any case. */
2627
2628bool
2629pass_store_merging::terminate_and_process_chain (imm_store_chain_info *chain_info)
2630{
2631 m_n_stores -= chain_info->m_store_info.length ();
2632 m_n_chains--;
2633 bool ret = chain_info->terminate_and_process_chain ();
2634 m_stores.remove (k: chain_info->base_addr);
2635 delete chain_info;
2636 return ret;
2637}
2638
2639/* Return true if stmts in between FIRST (inclusive) and LAST (exclusive)
2640 may clobber REF. FIRST and LAST must have non-NULL vdef. We want to
2641 be able to sink load of REF across stores between FIRST and LAST, up
2642 to right before LAST. */
2643
2644bool
2645stmts_may_clobber_ref_p (gimple *first, gimple *last, tree ref)
2646{
2647 ao_ref r;
2648 ao_ref_init (&r, ref);
2649 unsigned int count = 0;
2650 tree vop = gimple_vdef (g: last);
2651 gimple *stmt;
2652
2653 /* Return true conservatively if the basic blocks are different. */
2654 if (gimple_bb (g: first) != gimple_bb (g: last))
2655 return true;
2656
2657 do
2658 {
2659 stmt = SSA_NAME_DEF_STMT (vop);
2660 if (stmt_may_clobber_ref_p_1 (stmt, &r))
2661 return true;
2662 if (gimple_store_p (gs: stmt)
2663 && refs_anti_dependent_p (ref, gimple_get_lhs (stmt)))
2664 return true;
2665 /* Avoid quadratic compile time by bounding the number of checks
2666 we perform. */
2667 if (++count > MAX_STORE_ALIAS_CHECKS)
2668 return true;
2669 vop = gimple_vuse (g: stmt);
2670 }
2671 while (stmt != first);
2672
2673 return false;
2674}
2675
2676/* Return true if INFO->ops[IDX] is mergeable with the
2677 corresponding loads already in MERGED_STORE group.
2678 BASE_ADDR is the base address of the whole store group. */
2679
2680bool
2681compatible_load_p (merged_store_group *merged_store,
2682 store_immediate_info *info,
2683 tree base_addr, int idx)
2684{
2685 store_immediate_info *infof = merged_store->stores[0];
2686 if (!info->ops[idx].base_addr
2687 || maybe_ne (a: info->ops[idx].bitpos - infof->ops[idx].bitpos,
2688 b: info->bitpos - infof->bitpos)
2689 || !operand_equal_p (info->ops[idx].base_addr,
2690 infof->ops[idx].base_addr, flags: 0))
2691 return false;
2692
2693 store_immediate_info *infol = merged_store->stores.last ();
2694 tree load_vuse = gimple_vuse (g: info->ops[idx].stmt);
2695 /* In this case all vuses should be the same, e.g.
2696 _1 = s.a; _2 = s.b; _3 = _1 | 1; t.a = _3; _4 = _2 | 2; t.b = _4;
2697 or
2698 _1 = s.a; _2 = s.b; t.a = _1; t.b = _2;
2699 and we can emit the coalesced load next to any of those loads. */
2700 if (gimple_vuse (g: infof->ops[idx].stmt) == load_vuse
2701 && gimple_vuse (g: infol->ops[idx].stmt) == load_vuse)
2702 return true;
2703
2704 /* Otherwise, at least for now require that the load has the same
2705 vuse as the store. See following examples. */
2706 if (gimple_vuse (g: info->stmt) != load_vuse)
2707 return false;
2708
2709 if (gimple_vuse (g: infof->stmt) != gimple_vuse (g: infof->ops[idx].stmt)
2710 || (infof != infol
2711 && gimple_vuse (g: infol->stmt) != gimple_vuse (g: infol->ops[idx].stmt)))
2712 return false;
2713
2714 /* If the load is from the same location as the store, already
2715 the construction of the immediate chain info guarantees no intervening
2716 stores, so no further checks are needed. Example:
2717 _1 = s.a; _2 = _1 & -7; s.a = _2; _3 = s.b; _4 = _3 & -7; s.b = _4; */
2718 if (known_eq (info->ops[idx].bitpos, info->bitpos)
2719 && operand_equal_p (info->ops[idx].base_addr, base_addr, flags: 0))
2720 return true;
2721
2722 /* Otherwise, we need to punt if any of the loads can be clobbered by any
2723 of the stores in the group, or any other stores in between those.
2724 Previous calls to compatible_load_p ensured that for all the
2725 merged_store->stores IDX loads, no stmts starting with
2726 merged_store->first_stmt and ending right before merged_store->last_stmt
2727 clobbers those loads. */
2728 gimple *first = merged_store->first_stmt;
2729 gimple *last = merged_store->last_stmt;
2730 /* The stores are sorted by increasing store bitpos, so if info->stmt store
2731 comes before the so far first load, we'll be changing
2732 merged_store->first_stmt. In that case we need to give up if
2733 any of the earlier processed loads clobber with the stmts in the new
2734 range. */
2735 if (info->order < merged_store->first_order)
2736 {
2737 for (store_immediate_info *infoc : merged_store->stores)
2738 if (stmts_may_clobber_ref_p (first: info->stmt, last: first, ref: infoc->ops[idx].val))
2739 return false;
2740 first = info->stmt;
2741 }
2742 /* Similarly, we could change merged_store->last_stmt, so ensure
2743 in that case no stmts in the new range clobber any of the earlier
2744 processed loads. */
2745 else if (info->order > merged_store->last_order)
2746 {
2747 for (store_immediate_info *infoc : merged_store->stores)
2748 if (stmts_may_clobber_ref_p (first: last, last: info->stmt, ref: infoc->ops[idx].val))
2749 return false;
2750 last = info->stmt;
2751 }
2752 /* And finally, we'd be adding a new load to the set, ensure it isn't
2753 clobbered in the new range. */
2754 if (stmts_may_clobber_ref_p (first, last, ref: info->ops[idx].val))
2755 return false;
2756
2757 /* Otherwise, we are looking for:
2758 _1 = s.a; _2 = _1 ^ 15; t.a = _2; _3 = s.b; _4 = _3 ^ 15; t.b = _4;
2759 or
2760 _1 = s.a; t.a = _1; _2 = s.b; t.b = _2; */
2761 return true;
2762}
2763
2764/* Add all refs loaded to compute VAL to REFS vector. */
2765
2766void
2767gather_bswap_load_refs (vec<tree> *refs, tree val)
2768{
2769 if (TREE_CODE (val) != SSA_NAME)
2770 return;
2771
2772 gimple *stmt = SSA_NAME_DEF_STMT (val);
2773 if (!is_gimple_assign (gs: stmt))
2774 return;
2775
2776 if (gimple_assign_load_p (stmt))
2777 {
2778 refs->safe_push (obj: gimple_assign_rhs1 (gs: stmt));
2779 return;
2780 }
2781
2782 switch (gimple_assign_rhs_class (gs: stmt))
2783 {
2784 case GIMPLE_BINARY_RHS:
2785 gather_bswap_load_refs (refs, val: gimple_assign_rhs2 (gs: stmt));
2786 /* FALLTHRU */
2787 case GIMPLE_UNARY_RHS:
2788 gather_bswap_load_refs (refs, val: gimple_assign_rhs1 (gs: stmt));
2789 break;
2790 default:
2791 gcc_unreachable ();
2792 }
2793}
2794
2795/* Check if there are any stores in M_STORE_INFO after index I
2796 (where M_STORE_INFO must be sorted by sort_by_bitpos) that overlap
2797 a potential group ending with END that have their order
2798 smaller than LAST_ORDER. ALL_INTEGER_CST_P is true if
2799 all the stores already merged and the one under consideration
2800 have rhs_code of INTEGER_CST. Return true if there are no such stores.
2801 Consider:
2802 MEM[(long long int *)p_28] = 0;
2803 MEM[(long long int *)p_28 + 8B] = 0;
2804 MEM[(long long int *)p_28 + 16B] = 0;
2805 MEM[(long long int *)p_28 + 24B] = 0;
2806 _129 = (int) _130;
2807 MEM[(int *)p_28 + 8B] = _129;
2808 MEM[(int *)p_28].a = -1;
2809 We already have
2810 MEM[(long long int *)p_28] = 0;
2811 MEM[(int *)p_28].a = -1;
2812 stmts in the current group and need to consider if it is safe to
2813 add MEM[(long long int *)p_28 + 8B] = 0; store into the same group.
2814 There is an overlap between that store and the MEM[(int *)p_28 + 8B] = _129;
2815 store though, so if we add the MEM[(long long int *)p_28 + 8B] = 0;
2816 into the group and merging of those 3 stores is successful, merged
2817 stmts will be emitted at the latest store from that group, i.e.
2818 LAST_ORDER, which is the MEM[(int *)p_28].a = -1; store.
2819 The MEM[(int *)p_28 + 8B] = _129; store that originally follows
2820 the MEM[(long long int *)p_28 + 8B] = 0; would now be before it,
2821 so we need to refuse merging MEM[(long long int *)p_28 + 8B] = 0;
2822 into the group. That way it will be its own store group and will
2823 not be touched. If ALL_INTEGER_CST_P and there are overlapping
2824 INTEGER_CST stores, those are mergeable using merge_overlapping,
2825 so don't return false for those.
2826
2827 Similarly, check stores from FIRST_EARLIER (inclusive) to END_EARLIER
2828 (exclusive), whether they don't overlap the bitrange START to END
2829 and have order in between FIRST_ORDER and LAST_ORDER. This is to
2830 prevent merging in cases like:
2831 MEM <char[12]> [&b + 8B] = {};
2832 MEM[(short *) &b] = 5;
2833 _5 = *x_4(D);
2834 MEM <long long unsigned int> [&b + 2B] = _5;
2835 MEM[(char *)&b + 16B] = 88;
2836 MEM[(int *)&b + 20B] = 1;
2837 The = {} store comes in sort_by_bitpos before the = 88 store, and can't
2838 be merged with it, because the = _5 store overlaps these and is in between
2839 them in sort_by_order ordering. If it was merged, the merged store would
2840 go after the = _5 store and thus change behavior. */
2841
2842static bool
2843check_no_overlap (const vec<store_immediate_info *> &m_store_info,
2844 unsigned int i,
2845 bool all_integer_cst_p, unsigned int first_order,
2846 unsigned int last_order, unsigned HOST_WIDE_INT start,
2847 unsigned HOST_WIDE_INT end, unsigned int first_earlier,
2848 unsigned end_earlier)
2849{
2850 unsigned int len = m_store_info.length ();
2851 for (unsigned int j = first_earlier; j < end_earlier; j++)
2852 {
2853 store_immediate_info *info = m_store_info[j];
2854 if (info->order > first_order
2855 && info->order < last_order
2856 && info->bitpos + info->bitsize > start)
2857 return false;
2858 }
2859 for (++i; i < len; ++i)
2860 {
2861 store_immediate_info *info = m_store_info[i];
2862 if (info->bitpos >= end)
2863 break;
2864 if (info->order < last_order
2865 && (!all_integer_cst_p || info->rhs_code != INTEGER_CST))
2866 return false;
2867 }
2868 return true;
2869}
2870
2871/* Return true if m_store_info[first] and at least one following store
2872 form a group which store try_size bitsize value which is byte swapped
2873 from a memory load or some value, or identity from some value.
2874 This uses the bswap pass APIs. */
2875
2876bool
2877imm_store_chain_info::try_coalesce_bswap (merged_store_group *merged_store,
2878 unsigned int first,
2879 unsigned int try_size,
2880 unsigned int first_earlier)
2881{
2882 unsigned int len = m_store_info.length (), last = first;
2883 unsigned HOST_WIDE_INT width = m_store_info[first]->bitsize;
2884 if (width >= try_size)
2885 return false;
2886 for (unsigned int i = first + 1; i < len; ++i)
2887 {
2888 if (m_store_info[i]->bitpos != m_store_info[first]->bitpos + width
2889 || m_store_info[i]->lp_nr != merged_store->lp_nr
2890 || m_store_info[i]->ins_stmt == NULL)
2891 return false;
2892 width += m_store_info[i]->bitsize;
2893 if (width >= try_size)
2894 {
2895 last = i;
2896 break;
2897 }
2898 }
2899 if (width != try_size)
2900 return false;
2901
2902 bool allow_unaligned
2903 = !STRICT_ALIGNMENT && param_store_merging_allow_unaligned;
2904 /* Punt if the combined store would not be aligned and we need alignment. */
2905 if (!allow_unaligned)
2906 {
2907 unsigned int align = merged_store->align;
2908 unsigned HOST_WIDE_INT align_base = merged_store->align_base;
2909 for (unsigned int i = first + 1; i <= last; ++i)
2910 {
2911 unsigned int this_align;
2912 unsigned HOST_WIDE_INT align_bitpos = 0;
2913 get_object_alignment_1 (gimple_assign_lhs (gs: m_store_info[i]->stmt),
2914 &this_align, &align_bitpos);
2915 if (this_align > align)
2916 {
2917 align = this_align;
2918 align_base = m_store_info[i]->bitpos - align_bitpos;
2919 }
2920 }
2921 unsigned HOST_WIDE_INT align_bitpos
2922 = (m_store_info[first]->bitpos - align_base) & (align - 1);
2923 if (align_bitpos)
2924 align = least_bit_hwi (x: align_bitpos);
2925 if (align < try_size)
2926 return false;
2927 }
2928
2929 tree type;
2930 switch (try_size)
2931 {
2932 case 16: type = uint16_type_node; break;
2933 case 32: type = uint32_type_node; break;
2934 case 64: type = uint64_type_node; break;
2935 default: gcc_unreachable ();
2936 }
2937 struct symbolic_number n;
2938 gimple *ins_stmt = NULL;
2939 int vuse_store = -1;
2940 unsigned int first_order = merged_store->first_order;
2941 unsigned int last_order = merged_store->last_order;
2942 gimple *first_stmt = merged_store->first_stmt;
2943 gimple *last_stmt = merged_store->last_stmt;
2944 unsigned HOST_WIDE_INT end = merged_store->start + merged_store->width;
2945 store_immediate_info *infof = m_store_info[first];
2946
2947 for (unsigned int i = first; i <= last; ++i)
2948 {
2949 store_immediate_info *info = m_store_info[i];
2950 struct symbolic_number this_n = info->n;
2951 this_n.type = type;
2952 if (!this_n.base_addr)
2953 this_n.range = try_size / BITS_PER_UNIT;
2954 else
2955 /* Update vuse in case it has changed by output_merged_stores. */
2956 this_n.vuse = gimple_vuse (g: info->ins_stmt);
2957 unsigned int bitpos = info->bitpos - infof->bitpos;
2958 if (!do_shift_rotate (code: LSHIFT_EXPR, n: &this_n,
2959 BYTES_BIG_ENDIAN
2960 ? try_size - info->bitsize - bitpos
2961 : bitpos))
2962 return false;
2963 if (this_n.base_addr && vuse_store)
2964 {
2965 unsigned int j;
2966 for (j = first; j <= last; ++j)
2967 if (this_n.vuse == gimple_vuse (g: m_store_info[j]->stmt))
2968 break;
2969 if (j > last)
2970 {
2971 if (vuse_store == 1)
2972 return false;
2973 vuse_store = 0;
2974 }
2975 }
2976 if (i == first)
2977 {
2978 n = this_n;
2979 ins_stmt = info->ins_stmt;
2980 }
2981 else
2982 {
2983 if (n.base_addr && n.vuse != this_n.vuse)
2984 {
2985 if (vuse_store == 0)
2986 return false;
2987 vuse_store = 1;
2988 }
2989 if (info->order > last_order)
2990 {
2991 last_order = info->order;
2992 last_stmt = info->stmt;
2993 }
2994 else if (info->order < first_order)
2995 {
2996 first_order = info->order;
2997 first_stmt = info->stmt;
2998 }
2999 end = MAX (end, info->bitpos + info->bitsize);
3000
3001 ins_stmt = perform_symbolic_merge (source_stmt1: ins_stmt, n1: &n, source_stmt2: info->ins_stmt,
3002 n2: &this_n, n: &n, code: BIT_IOR_EXPR);
3003 if (ins_stmt == NULL)
3004 return false;
3005 }
3006 }
3007
3008 uint64_t cmpxchg, cmpnop;
3009 bool cast64_to_32;
3010 find_bswap_or_nop_finalize (n: &n, cmpxchg: &cmpxchg, cmpnop: &cmpnop, cast64_to_32: &cast64_to_32);
3011
3012 /* A complete byte swap should make the symbolic number to start with
3013 the largest digit in the highest order byte. Unchanged symbolic
3014 number indicates a read with same endianness as target architecture. */
3015 if (n.n != cmpnop && n.n != cmpxchg)
3016 return false;
3017
3018 /* For now. */
3019 if (cast64_to_32)
3020 return false;
3021
3022 if (n.base_addr == NULL_TREE && !is_gimple_val (n.src))
3023 return false;
3024
3025 if (!check_no_overlap (m_store_info, i: last, all_integer_cst_p: false, first_order, last_order,
3026 start: merged_store->start, end, first_earlier, end_earlier: first))
3027 return false;
3028
3029 /* Don't handle memory copy this way if normal non-bswap processing
3030 would handle it too. */
3031 if (n.n == cmpnop && (unsigned) n.n_ops == last - first + 1)
3032 {
3033 unsigned int i;
3034 for (i = first; i <= last; ++i)
3035 if (m_store_info[i]->rhs_code != MEM_REF)
3036 break;
3037 if (i == last + 1)
3038 return false;
3039 }
3040
3041 if (n.n == cmpxchg)
3042 switch (try_size)
3043 {
3044 case 16:
3045 /* Will emit LROTATE_EXPR. */
3046 break;
3047 case 32:
3048 if (builtin_decl_explicit_p (fncode: BUILT_IN_BSWAP32)
3049 && optab_handler (op: bswap_optab, SImode) != CODE_FOR_nothing)
3050 break;
3051 return false;
3052 case 64:
3053 if (builtin_decl_explicit_p (fncode: BUILT_IN_BSWAP64)
3054 && optab_handler (op: bswap_optab, DImode) != CODE_FOR_nothing)
3055 break;
3056 return false;
3057 default:
3058 gcc_unreachable ();
3059 }
3060
3061 if (!allow_unaligned && n.base_addr)
3062 {
3063 unsigned int align = get_object_alignment (n.src);
3064 if (align < try_size)
3065 return false;
3066 }
3067
3068 /* If each load has vuse of the corresponding store, need to verify
3069 the loads can be sunk right before the last store. */
3070 if (vuse_store == 1)
3071 {
3072 auto_vec<tree, 64> refs;
3073 for (unsigned int i = first; i <= last; ++i)
3074 gather_bswap_load_refs (refs: &refs,
3075 val: gimple_assign_rhs1 (gs: m_store_info[i]->stmt));
3076
3077 for (tree ref : refs)
3078 if (stmts_may_clobber_ref_p (first: first_stmt, last: last_stmt, ref))
3079 return false;
3080 n.vuse = NULL_TREE;
3081 }
3082
3083 infof->n = n;
3084 infof->ins_stmt = ins_stmt;
3085 for (unsigned int i = first; i <= last; ++i)
3086 {
3087 m_store_info[i]->rhs_code = n.n == cmpxchg ? LROTATE_EXPR : NOP_EXPR;
3088 m_store_info[i]->ops[0].base_addr = NULL_TREE;
3089 m_store_info[i]->ops[1].base_addr = NULL_TREE;
3090 if (i != first)
3091 merged_store->merge_into (info: m_store_info[i]);
3092 }
3093
3094 return true;
3095}
3096
3097/* Go through the candidate stores recorded in m_store_info and merge them
3098 into merged_store_group objects recorded into m_merged_store_groups
3099 representing the widened stores. Return true if coalescing was successful
3100 and the number of widened stores is fewer than the original number
3101 of stores. */
3102
3103bool
3104imm_store_chain_info::coalesce_immediate_stores ()
3105{
3106 /* Anything less can't be processed. */
3107 if (m_store_info.length () < 2)
3108 return false;
3109
3110 if (dump_file && (dump_flags & TDF_DETAILS))
3111 fprintf (stream: dump_file, format: "Attempting to coalesce %u stores in chain\n",
3112 m_store_info.length ());
3113
3114 store_immediate_info *info;
3115 unsigned int i, ignore = 0;
3116 unsigned int first_earlier = 0;
3117 unsigned int end_earlier = 0;
3118
3119 /* Order the stores by the bitposition they write to. */
3120 m_store_info.qsort (sort_by_bitpos);
3121
3122 info = m_store_info[0];
3123 merged_store_group *merged_store = new merged_store_group (info);
3124 if (dump_file && (dump_flags & TDF_DETAILS))
3125 fputs (s: "New store group\n", stream: dump_file);
3126
3127 FOR_EACH_VEC_ELT (m_store_info, i, info)
3128 {
3129 unsigned HOST_WIDE_INT new_bitregion_start, new_bitregion_end;
3130
3131 if (i <= ignore)
3132 goto done;
3133
3134 while (first_earlier < end_earlier
3135 && (m_store_info[first_earlier]->bitpos
3136 + m_store_info[first_earlier]->bitsize
3137 <= merged_store->start))
3138 first_earlier++;
3139
3140 /* First try to handle group of stores like:
3141 p[0] = data >> 24;
3142 p[1] = data >> 16;
3143 p[2] = data >> 8;
3144 p[3] = data;
3145 using the bswap framework. */
3146 if (info->bitpos == merged_store->start + merged_store->width
3147 && merged_store->stores.length () == 1
3148 && merged_store->stores[0]->ins_stmt != NULL
3149 && info->lp_nr == merged_store->lp_nr
3150 && info->ins_stmt != NULL)
3151 {
3152 unsigned int try_size;
3153 for (try_size = 64; try_size >= 16; try_size >>= 1)
3154 if (try_coalesce_bswap (merged_store, first: i - 1, try_size,
3155 first_earlier))
3156 break;
3157
3158 if (try_size >= 16)
3159 {
3160 ignore = i + merged_store->stores.length () - 1;
3161 m_merged_store_groups.safe_push (obj: merged_store);
3162 if (ignore < m_store_info.length ())
3163 {
3164 merged_store = new merged_store_group (m_store_info[ignore]);
3165 end_earlier = ignore;
3166 }
3167 else
3168 merged_store = NULL;
3169 goto done;
3170 }
3171 }
3172
3173 new_bitregion_start
3174 = MIN (merged_store->bitregion_start, info->bitregion_start);
3175 new_bitregion_end
3176 = MAX (merged_store->bitregion_end, info->bitregion_end);
3177
3178 if (info->order >= merged_store->first_nonmergeable_order
3179 || (((new_bitregion_end - new_bitregion_start + 1) / BITS_PER_UNIT)
3180 > (unsigned) param_store_merging_max_size))
3181 ;
3182
3183 /* |---store 1---|
3184 |---store 2---|
3185 Overlapping stores. */
3186 else if (IN_RANGE (info->bitpos, merged_store->start,
3187 merged_store->start + merged_store->width - 1)
3188 /* |---store 1---||---store 2---|
3189 Handle also the consecutive INTEGER_CST stores case here,
3190 as we have here the code to deal with overlaps. */
3191 || (info->bitregion_start <= merged_store->bitregion_end
3192 && info->rhs_code == INTEGER_CST
3193 && merged_store->only_constants
3194 && merged_store->can_be_merged_into (info)))
3195 {
3196 /* Only allow overlapping stores of constants. */
3197 if (info->rhs_code == INTEGER_CST
3198 && merged_store->only_constants
3199 && info->lp_nr == merged_store->lp_nr)
3200 {
3201 unsigned int first_order
3202 = MIN (merged_store->first_order, info->order);
3203 unsigned int last_order
3204 = MAX (merged_store->last_order, info->order);
3205 unsigned HOST_WIDE_INT end
3206 = MAX (merged_store->start + merged_store->width,
3207 info->bitpos + info->bitsize);
3208 if (check_no_overlap (m_store_info, i, all_integer_cst_p: true, first_order,
3209 last_order, start: merged_store->start, end,
3210 first_earlier, end_earlier))
3211 {
3212 /* check_no_overlap call above made sure there are no
3213 overlapping stores with non-INTEGER_CST rhs_code
3214 in between the first and last of the stores we've
3215 just merged. If there are any INTEGER_CST rhs_code
3216 stores in between, we need to merge_overlapping them
3217 even if in the sort_by_bitpos order there are other
3218 overlapping stores in between. Keep those stores as is.
3219 Example:
3220 MEM[(int *)p_28] = 0;
3221 MEM[(char *)p_28 + 3B] = 1;
3222 MEM[(char *)p_28 + 1B] = 2;
3223 MEM[(char *)p_28 + 2B] = MEM[(char *)p_28 + 6B];
3224 We can't merge the zero store with the store of two and
3225 not merge anything else, because the store of one is
3226 in the original order in between those two, but in
3227 store_by_bitpos order it comes after the last store that
3228 we can't merge with them. We can merge the first 3 stores
3229 and keep the last store as is though. */
3230 unsigned int len = m_store_info.length ();
3231 unsigned int try_order = last_order;
3232 unsigned int first_nonmergeable_order;
3233 unsigned int k;
3234 bool last_iter = false;
3235 int attempts = 0;
3236 do
3237 {
3238 unsigned int max_order = 0;
3239 unsigned int min_order = first_order;
3240 unsigned first_nonmergeable_int_order = ~0U;
3241 unsigned HOST_WIDE_INT this_end = end;
3242 k = i;
3243 first_nonmergeable_order = ~0U;
3244 for (unsigned int j = i + 1; j < len; ++j)
3245 {
3246 store_immediate_info *info2 = m_store_info[j];
3247 if (info2->bitpos >= this_end)
3248 break;
3249 if (info2->order < try_order)
3250 {
3251 if (info2->rhs_code != INTEGER_CST
3252 || info2->lp_nr != merged_store->lp_nr)
3253 {
3254 /* Normally check_no_overlap makes sure this
3255 doesn't happen, but if end grows below,
3256 then we need to process more stores than
3257 check_no_overlap verified. Example:
3258 MEM[(int *)p_5] = 0;
3259 MEM[(short *)p_5 + 3B] = 1;
3260 MEM[(char *)p_5 + 4B] = _9;
3261 MEM[(char *)p_5 + 2B] = 2; */
3262 k = 0;
3263 break;
3264 }
3265 k = j;
3266 min_order = MIN (min_order, info2->order);
3267 this_end = MAX (this_end,
3268 info2->bitpos + info2->bitsize);
3269 }
3270 else if (info2->rhs_code == INTEGER_CST
3271 && info2->lp_nr == merged_store->lp_nr
3272 && !last_iter)
3273 {
3274 max_order = MAX (max_order, info2->order + 1);
3275 first_nonmergeable_int_order
3276 = MIN (first_nonmergeable_int_order,
3277 info2->order);
3278 }
3279 else
3280 first_nonmergeable_order
3281 = MIN (first_nonmergeable_order, info2->order);
3282 }
3283 if (k > i
3284 && !check_no_overlap (m_store_info, i: len - 1, all_integer_cst_p: true,
3285 first_order: min_order, last_order: try_order,
3286 start: merged_store->start, end: this_end,
3287 first_earlier, end_earlier))
3288 k = 0;
3289 if (k == 0)
3290 {
3291 if (last_order == try_order)
3292 break;
3293 /* If this failed, but only because we grew
3294 try_order, retry with the last working one,
3295 so that we merge at least something. */
3296 try_order = last_order;
3297 last_iter = true;
3298 continue;
3299 }
3300 last_order = try_order;
3301 /* Retry with a larger try_order to see if we could
3302 merge some further INTEGER_CST stores. */
3303 if (max_order
3304 && (first_nonmergeable_int_order
3305 < first_nonmergeable_order))
3306 {
3307 try_order = MIN (max_order,
3308 first_nonmergeable_order);
3309 try_order
3310 = MIN (try_order,
3311 merged_store->first_nonmergeable_order);
3312 if (try_order > last_order && ++attempts < 16)
3313 continue;
3314 }
3315 first_nonmergeable_order
3316 = MIN (first_nonmergeable_order,
3317 first_nonmergeable_int_order);
3318 end = this_end;
3319 break;
3320 }
3321 while (1);
3322
3323 if (k != 0)
3324 {
3325 merged_store->merge_overlapping (info);
3326
3327 merged_store->first_nonmergeable_order
3328 = MIN (merged_store->first_nonmergeable_order,
3329 first_nonmergeable_order);
3330
3331 for (unsigned int j = i + 1; j <= k; j++)
3332 {
3333 store_immediate_info *info2 = m_store_info[j];
3334 gcc_assert (info2->bitpos < end);
3335 if (info2->order < last_order)
3336 {
3337 gcc_assert (info2->rhs_code == INTEGER_CST);
3338 if (info != info2)
3339 merged_store->merge_overlapping (info: info2);
3340 }
3341 /* Other stores are kept and not merged in any
3342 way. */
3343 }
3344 ignore = k;
3345 goto done;
3346 }
3347 }
3348 }
3349 }
3350 /* |---store 1---||---store 2---|
3351 This store is consecutive to the previous one.
3352 Merge it into the current store group. There can be gaps in between
3353 the stores, but there can't be gaps in between bitregions. */
3354 else if (info->bitregion_start <= merged_store->bitregion_end
3355 && merged_store->can_be_merged_into (info))
3356 {
3357 store_immediate_info *infof = merged_store->stores[0];
3358
3359 /* All the rhs_code ops that take 2 operands are commutative,
3360 swap the operands if it could make the operands compatible. */
3361 if (infof->ops[0].base_addr
3362 && infof->ops[1].base_addr
3363 && info->ops[0].base_addr
3364 && info->ops[1].base_addr
3365 && known_eq (info->ops[1].bitpos - infof->ops[0].bitpos,
3366 info->bitpos - infof->bitpos)
3367 && operand_equal_p (info->ops[1].base_addr,
3368 infof->ops[0].base_addr, flags: 0))
3369 {
3370 std::swap (a&: info->ops[0], b&: info->ops[1]);
3371 info->ops_swapped_p = true;
3372 }
3373 if (check_no_overlap (m_store_info, i, all_integer_cst_p: false,
3374 MIN (merged_store->first_order, info->order),
3375 MAX (merged_store->last_order, info->order),
3376 start: merged_store->start,
3377 MAX (merged_store->start + merged_store->width,
3378 info->bitpos + info->bitsize),
3379 first_earlier, end_earlier))
3380 {
3381 /* Turn MEM_REF into BIT_INSERT_EXPR for bit-field stores. */
3382 if (info->rhs_code == MEM_REF && infof->rhs_code != MEM_REF)
3383 {
3384 info->rhs_code = BIT_INSERT_EXPR;
3385 info->ops[0].val = gimple_assign_rhs1 (gs: info->stmt);
3386 info->ops[0].base_addr = NULL_TREE;
3387 }
3388 else if (infof->rhs_code == MEM_REF && info->rhs_code != MEM_REF)
3389 {
3390 for (store_immediate_info *infoj : merged_store->stores)
3391 {
3392 infoj->rhs_code = BIT_INSERT_EXPR;
3393 infoj->ops[0].val = gimple_assign_rhs1 (gs: infoj->stmt);
3394 infoj->ops[0].base_addr = NULL_TREE;
3395 }
3396 merged_store->bit_insertion = true;
3397 }
3398 if ((infof->ops[0].base_addr
3399 ? compatible_load_p (merged_store, info, base_addr, idx: 0)
3400 : !info->ops[0].base_addr)
3401 && (infof->ops[1].base_addr
3402 ? compatible_load_p (merged_store, info, base_addr, idx: 1)
3403 : !info->ops[1].base_addr))
3404 {
3405 merged_store->merge_into (info);
3406 goto done;
3407 }
3408 }
3409 }
3410
3411 /* |---store 1---| <gap> |---store 2---|.
3412 Gap between stores or the rhs not compatible. Start a new group. */
3413
3414 /* Try to apply all the stores recorded for the group to determine
3415 the bitpattern they write and discard it if that fails.
3416 This will also reject single-store groups. */
3417 if (merged_store->apply_stores ())
3418 m_merged_store_groups.safe_push (obj: merged_store);
3419 else
3420 delete merged_store;
3421
3422 merged_store = new merged_store_group (info);
3423 end_earlier = i;
3424 if (dump_file && (dump_flags & TDF_DETAILS))
3425 fputs (s: "New store group\n", stream: dump_file);
3426
3427 done:
3428 if (dump_file && (dump_flags & TDF_DETAILS))
3429 {
3430 fprintf (stream: dump_file, format: "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC
3431 " bitpos:" HOST_WIDE_INT_PRINT_DEC " val:",
3432 i, info->bitsize, info->bitpos);
3433 print_generic_expr (dump_file, gimple_assign_rhs1 (gs: info->stmt));
3434 fputc (c: '\n', stream: dump_file);
3435 }
3436 }
3437
3438 /* Record or discard the last store group. */
3439 if (merged_store)
3440 {
3441 if (merged_store->apply_stores ())
3442 m_merged_store_groups.safe_push (obj: merged_store);
3443 else
3444 delete merged_store;
3445 }
3446
3447 gcc_assert (m_merged_store_groups.length () <= m_store_info.length ());
3448
3449 bool success
3450 = !m_merged_store_groups.is_empty ()
3451 && m_merged_store_groups.length () < m_store_info.length ();
3452
3453 if (success && dump_file)
3454 fprintf (stream: dump_file, format: "Coalescing successful!\nMerged into %u stores\n",
3455 m_merged_store_groups.length ());
3456
3457 return success;
3458}
3459
3460/* Return the type to use for the merged stores or loads described by STMTS.
3461 This is needed to get the alias sets right. If IS_LOAD, look for rhs,
3462 otherwise lhs. Additionally set *CLIQUEP and *BASEP to MR_DEPENDENCE_*
3463 of the MEM_REFs if any. */
3464
3465static tree
3466get_alias_type_for_stmts (vec<gimple *> &stmts, bool is_load,
3467 unsigned short *cliquep, unsigned short *basep)
3468{
3469 gimple *stmt;
3470 unsigned int i;
3471 tree type = NULL_TREE;
3472 tree ret = NULL_TREE;
3473 *cliquep = 0;
3474 *basep = 0;
3475
3476 FOR_EACH_VEC_ELT (stmts, i, stmt)
3477 {
3478 tree ref = is_load ? gimple_assign_rhs1 (gs: stmt)
3479 : gimple_assign_lhs (gs: stmt);
3480 tree type1 = reference_alias_ptr_type (ref);
3481 tree base = get_base_address (t: ref);
3482
3483 if (i == 0)
3484 {
3485 if (TREE_CODE (base) == MEM_REF)
3486 {
3487 *cliquep = MR_DEPENDENCE_CLIQUE (base);
3488 *basep = MR_DEPENDENCE_BASE (base);
3489 }
3490 ret = type = type1;
3491 continue;
3492 }
3493 if (!alias_ptr_types_compatible_p (type, type1))
3494 ret = ptr_type_node;
3495 if (TREE_CODE (base) != MEM_REF
3496 || *cliquep != MR_DEPENDENCE_CLIQUE (base)
3497 || *basep != MR_DEPENDENCE_BASE (base))
3498 {
3499 *cliquep = 0;
3500 *basep = 0;
3501 }
3502 }
3503 return ret;
3504}
3505
3506/* Return the location_t information we can find among the statements
3507 in STMTS. */
3508
3509static location_t
3510get_location_for_stmts (vec<gimple *> &stmts)
3511{
3512 for (gimple *stmt : stmts)
3513 if (gimple_has_location (g: stmt))
3514 return gimple_location (g: stmt);
3515
3516 return UNKNOWN_LOCATION;
3517}
3518
3519/* Used to decribe a store resulting from splitting a wide store in smaller
3520 regularly-sized stores in split_group. */
3521
3522class split_store
3523{
3524public:
3525 unsigned HOST_WIDE_INT bytepos;
3526 unsigned HOST_WIDE_INT size;
3527 unsigned HOST_WIDE_INT align;
3528 auto_vec<store_immediate_info *> orig_stores;
3529 /* True if there is a single orig stmt covering the whole split store. */
3530 bool orig;
3531 split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
3532 unsigned HOST_WIDE_INT);
3533};
3534
3535/* Simple constructor. */
3536
3537split_store::split_store (unsigned HOST_WIDE_INT bp,
3538 unsigned HOST_WIDE_INT sz,
3539 unsigned HOST_WIDE_INT al)
3540 : bytepos (bp), size (sz), align (al), orig (false)
3541{
3542 orig_stores.create (nelems: 0);
3543}
3544
3545/* Record all stores in GROUP that write to the region starting at BITPOS and
3546 is of size BITSIZE. Record infos for such statements in STORES if
3547 non-NULL. The stores in GROUP must be sorted by bitposition. Return INFO
3548 if there is exactly one original store in the range (in that case ignore
3549 clobber stmts, unless there are only clobber stmts). */
3550
3551static store_immediate_info *
3552find_constituent_stores (class merged_store_group *group,
3553 vec<store_immediate_info *> *stores,
3554 unsigned int *first,
3555 unsigned HOST_WIDE_INT bitpos,
3556 unsigned HOST_WIDE_INT bitsize)
3557{
3558 store_immediate_info *info, *ret = NULL;
3559 unsigned int i;
3560 bool second = false;
3561 bool update_first = true;
3562 unsigned HOST_WIDE_INT end = bitpos + bitsize;
3563 for (i = *first; group->stores.iterate (ix: i, ptr: &info); ++i)
3564 {
3565 unsigned HOST_WIDE_INT stmt_start = info->bitpos;
3566 unsigned HOST_WIDE_INT stmt_end = stmt_start + info->bitsize;
3567 if (stmt_end <= bitpos)
3568 {
3569 /* BITPOS passed to this function never decreases from within the
3570 same split_group call, so optimize and don't scan info records
3571 which are known to end before or at BITPOS next time.
3572 Only do it if all stores before this one also pass this. */
3573 if (update_first)
3574 *first = i + 1;
3575 continue;
3576 }
3577 else
3578 update_first = false;
3579
3580 /* The stores in GROUP are ordered by bitposition so if we're past
3581 the region for this group return early. */
3582 if (stmt_start >= end)
3583 return ret;
3584
3585 if (gimple_clobber_p (s: info->stmt))
3586 {
3587 if (stores)
3588 stores->safe_push (obj: info);
3589 if (ret == NULL)
3590 ret = info;
3591 continue;
3592 }
3593 if (stores)
3594 {
3595 stores->safe_push (obj: info);
3596 if (ret && !gimple_clobber_p (s: ret->stmt))
3597 {
3598 ret = NULL;
3599 second = true;
3600 }
3601 }
3602 else if (ret && !gimple_clobber_p (s: ret->stmt))
3603 return NULL;
3604 if (!second)
3605 ret = info;
3606 }
3607 return ret;
3608}
3609
3610/* Return how many SSA_NAMEs used to compute value to store in the INFO
3611 store have multiple uses. If any SSA_NAME has multiple uses, also
3612 count statements needed to compute it. */
3613
3614static unsigned
3615count_multiple_uses (store_immediate_info *info)
3616{
3617 gimple *stmt = info->stmt;
3618 unsigned ret = 0;
3619 switch (info->rhs_code)
3620 {
3621 case INTEGER_CST:
3622 case STRING_CST:
3623 return 0;
3624 case BIT_AND_EXPR:
3625 case BIT_IOR_EXPR:
3626 case BIT_XOR_EXPR:
3627 if (info->bit_not_p)
3628 {
3629 if (!has_single_use (var: gimple_assign_rhs1 (gs: stmt)))
3630 ret = 1; /* Fall through below to return
3631 the BIT_NOT_EXPR stmt and then
3632 BIT_{AND,IOR,XOR}_EXPR and anything it
3633 uses. */
3634 else
3635 /* stmt is after this the BIT_NOT_EXPR. */
3636 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3637 }
3638 if (!has_single_use (var: gimple_assign_rhs1 (gs: stmt)))
3639 {
3640 ret += 1 + info->ops[0].bit_not_p;
3641 if (info->ops[1].base_addr)
3642 ret += 1 + info->ops[1].bit_not_p;
3643 return ret + 1;
3644 }
3645 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3646 /* stmt is now the BIT_*_EXPR. */
3647 if (!has_single_use (var: gimple_assign_rhs1 (gs: stmt)))
3648 ret += 1 + info->ops[info->ops_swapped_p].bit_not_p;
3649 else if (info->ops[info->ops_swapped_p].bit_not_p)
3650 {
3651 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3652 if (!has_single_use (var: gimple_assign_rhs1 (gs: stmt2)))
3653 ++ret;
3654 }
3655 if (info->ops[1].base_addr == NULL_TREE)
3656 {
3657 gcc_checking_assert (!info->ops_swapped_p);
3658 return ret;
3659 }
3660 if (!has_single_use (var: gimple_assign_rhs2 (gs: stmt)))
3661 ret += 1 + info->ops[1 - info->ops_swapped_p].bit_not_p;
3662 else if (info->ops[1 - info->ops_swapped_p].bit_not_p)
3663 {
3664 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
3665 if (!has_single_use (var: gimple_assign_rhs1 (gs: stmt2)))
3666 ++ret;
3667 }
3668 return ret;
3669 case MEM_REF:
3670 if (!has_single_use (var: gimple_assign_rhs1 (gs: stmt)))
3671 return 1 + info->ops[0].bit_not_p;
3672 else if (info->ops[0].bit_not_p)
3673 {
3674 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3675 if (!has_single_use (var: gimple_assign_rhs1 (gs: stmt)))
3676 return 1;
3677 }
3678 return 0;
3679 case BIT_INSERT_EXPR:
3680 return has_single_use (var: gimple_assign_rhs1 (gs: stmt)) ? 0 : 1;
3681 default:
3682 gcc_unreachable ();
3683 }
3684}
3685
3686/* Split a merged store described by GROUP by populating the SPLIT_STORES
3687 vector (if non-NULL) with split_store structs describing the byte offset
3688 (from the base), the bit size and alignment of each store as well as the
3689 original statements involved in each such split group.
3690 This is to separate the splitting strategy from the statement
3691 building/emission/linking done in output_merged_store.
3692 Return number of new stores.
3693 If ALLOW_UNALIGNED_STORE is false, then all stores must be aligned.
3694 If ALLOW_UNALIGNED_LOAD is false, then all loads must be aligned.
3695 BZERO_FIRST may be true only when the first store covers the whole group
3696 and clears it; if BZERO_FIRST is true, keep that first store in the set
3697 unmodified and emit further stores for the overrides only.
3698 If SPLIT_STORES is NULL, it is just a dry run to count number of
3699 new stores. */
3700
3701static unsigned int
3702split_group (merged_store_group *group, bool allow_unaligned_store,
3703 bool allow_unaligned_load, bool bzero_first,
3704 vec<split_store *> *split_stores,
3705 unsigned *total_orig,
3706 unsigned *total_new)
3707{
3708 unsigned HOST_WIDE_INT pos = group->bitregion_start;
3709 unsigned HOST_WIDE_INT size = group->bitregion_end - pos;
3710 unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT;
3711 unsigned HOST_WIDE_INT group_align = group->align;
3712 unsigned HOST_WIDE_INT align_base = group->align_base;
3713 unsigned HOST_WIDE_INT group_load_align = group_align;
3714 bool any_orig = false;
3715
3716 gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0));
3717
3718 /* For bswap framework using sets of stores, all the checking has been done
3719 earlier in try_coalesce_bswap and the result always needs to be emitted
3720 as a single store. Likewise for string concatenation. */
3721 if (group->stores[0]->rhs_code == LROTATE_EXPR
3722 || group->stores[0]->rhs_code == NOP_EXPR
3723 || group->string_concatenation)
3724 {
3725 gcc_assert (!bzero_first);
3726 if (total_orig)
3727 {
3728 /* Avoid the old/new stmt count heuristics. It should be
3729 always beneficial. */
3730 total_new[0] = 1;
3731 total_orig[0] = 2;
3732 }
3733
3734 if (split_stores)
3735 {
3736 unsigned HOST_WIDE_INT align_bitpos
3737 = (group->start - align_base) & (group_align - 1);
3738 unsigned HOST_WIDE_INT align = group_align;
3739 if (align_bitpos)
3740 align = least_bit_hwi (x: align_bitpos);
3741 bytepos = group->start / BITS_PER_UNIT;
3742 split_store *store
3743 = new split_store (bytepos, group->width, align);
3744 unsigned int first = 0;
3745 find_constituent_stores (group, stores: &store->orig_stores,
3746 first: &first, bitpos: group->start, bitsize: group->width);
3747 split_stores->safe_push (obj: store);
3748 }
3749
3750 return 1;
3751 }
3752
3753 unsigned int ret = 0, first = 0;
3754 unsigned HOST_WIDE_INT try_pos = bytepos;
3755
3756 if (total_orig)
3757 {
3758 unsigned int i;
3759 store_immediate_info *info = group->stores[0];
3760
3761 total_new[0] = 0;
3762 total_orig[0] = 1; /* The orig store. */
3763 info = group->stores[0];
3764 if (info->ops[0].base_addr)
3765 total_orig[0]++;
3766 if (info->ops[1].base_addr)
3767 total_orig[0]++;
3768 switch (info->rhs_code)
3769 {
3770 case BIT_AND_EXPR:
3771 case BIT_IOR_EXPR:
3772 case BIT_XOR_EXPR:
3773 total_orig[0]++; /* The orig BIT_*_EXPR stmt. */
3774 break;
3775 default:
3776 break;
3777 }
3778 total_orig[0] *= group->stores.length ();
3779
3780 FOR_EACH_VEC_ELT (group->stores, i, info)
3781 {
3782 total_new[0] += count_multiple_uses (info);
3783 total_orig[0] += (info->bit_not_p
3784 + info->ops[0].bit_not_p
3785 + info->ops[1].bit_not_p);
3786 }
3787 }
3788
3789 if (!allow_unaligned_load)
3790 for (int i = 0; i < 2; ++i)
3791 if (group->load_align[i])
3792 group_load_align = MIN (group_load_align, group->load_align[i]);
3793
3794 if (bzero_first)
3795 {
3796 store_immediate_info *gstore;
3797 FOR_EACH_VEC_ELT (group->stores, first, gstore)
3798 if (!gimple_clobber_p (s: gstore->stmt))
3799 break;
3800 ++first;
3801 ret = 1;
3802 if (split_stores)
3803 {
3804 split_store *store
3805 = new split_store (bytepos, gstore->bitsize, align_base);
3806 store->orig_stores.safe_push (obj: gstore);
3807 store->orig = true;
3808 any_orig = true;
3809 split_stores->safe_push (obj: store);
3810 }
3811 }
3812
3813 while (size > 0)
3814 {
3815 if ((allow_unaligned_store || group_align <= BITS_PER_UNIT)
3816 && (group->mask[try_pos - bytepos] == (unsigned char) ~0U
3817 || (bzero_first && group->val[try_pos - bytepos] == 0)))
3818 {
3819 /* Skip padding bytes. */
3820 ++try_pos;
3821 size -= BITS_PER_UNIT;
3822 continue;
3823 }
3824
3825 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
3826 unsigned int try_size = MAX_STORE_BITSIZE, nonmasked;
3827 unsigned HOST_WIDE_INT align_bitpos
3828 = (try_bitpos - align_base) & (group_align - 1);
3829 unsigned HOST_WIDE_INT align = group_align;
3830 bool found_orig = false;
3831 if (align_bitpos)
3832 align = least_bit_hwi (x: align_bitpos);
3833 if (!allow_unaligned_store)
3834 try_size = MIN (try_size, align);
3835 if (!allow_unaligned_load)
3836 {
3837 /* If we can't do or don't want to do unaligned stores
3838 as well as loads, we need to take the loads into account
3839 as well. */
3840 unsigned HOST_WIDE_INT load_align = group_load_align;
3841 align_bitpos = (try_bitpos - align_base) & (load_align - 1);
3842 if (align_bitpos)
3843 load_align = least_bit_hwi (x: align_bitpos);
3844 for (int i = 0; i < 2; ++i)
3845 if (group->load_align[i])
3846 {
3847 align_bitpos
3848 = known_alignment (a: try_bitpos
3849 - group->stores[0]->bitpos
3850 + group->stores[0]->ops[i].bitpos
3851 - group->load_align_base[i]);
3852 if (align_bitpos & (group_load_align - 1))
3853 {
3854 unsigned HOST_WIDE_INT a = least_bit_hwi (x: align_bitpos);
3855 load_align = MIN (load_align, a);
3856 }
3857 }
3858 try_size = MIN (try_size, load_align);
3859 }
3860 store_immediate_info *info
3861 = find_constituent_stores (group, NULL, first: &first, bitpos: try_bitpos, bitsize: try_size);
3862 if (info && !gimple_clobber_p (s: info->stmt))
3863 {
3864 /* If there is just one original statement for the range, see if
3865 we can just reuse the original store which could be even larger
3866 than try_size. */
3867 unsigned HOST_WIDE_INT stmt_end
3868 = ROUND_UP (info->bitpos + info->bitsize, BITS_PER_UNIT);
3869 info = find_constituent_stores (group, NULL, first: &first, bitpos: try_bitpos,
3870 bitsize: stmt_end - try_bitpos);
3871 if (info && info->bitpos >= try_bitpos)
3872 {
3873 store_immediate_info *info2 = NULL;
3874 unsigned int first_copy = first;
3875 if (info->bitpos > try_bitpos
3876 && stmt_end - try_bitpos <= try_size)
3877 {
3878 info2 = find_constituent_stores (group, NULL, first: &first_copy,
3879 bitpos: try_bitpos,
3880 bitsize: info->bitpos - try_bitpos);
3881 gcc_assert (info2 == NULL || gimple_clobber_p (info2->stmt));
3882 }
3883 if (info2 == NULL && stmt_end - try_bitpos < try_size)
3884 {
3885 info2 = find_constituent_stores (group, NULL, first: &first_copy,
3886 bitpos: stmt_end,
3887 bitsize: (try_bitpos + try_size)
3888 - stmt_end);
3889 gcc_assert (info2 == NULL || gimple_clobber_p (info2->stmt));
3890 }
3891 if (info2 == NULL)
3892 {
3893 try_size = stmt_end - try_bitpos;
3894 found_orig = true;
3895 goto found;
3896 }
3897 }
3898 }
3899
3900 /* Approximate store bitsize for the case when there are no padding
3901 bits. */
3902 while (try_size > size)
3903 try_size /= 2;
3904 /* Now look for whole padding bytes at the end of that bitsize. */
3905 for (nonmasked = try_size / BITS_PER_UNIT; nonmasked > 0; --nonmasked)
3906 if (group->mask[try_pos - bytepos + nonmasked - 1]
3907 != (unsigned char) ~0U
3908 && (!bzero_first
3909 || group->val[try_pos - bytepos + nonmasked - 1] != 0))
3910 break;
3911 if (nonmasked == 0 || (info && gimple_clobber_p (s: info->stmt)))
3912 {
3913 /* If entire try_size range is padding, skip it. */
3914 try_pos += try_size / BITS_PER_UNIT;
3915 size -= try_size;
3916 continue;
3917 }
3918 /* Otherwise try to decrease try_size if second half, last 3 quarters
3919 etc. are padding. */
3920 nonmasked *= BITS_PER_UNIT;
3921 while (nonmasked <= try_size / 2)
3922 try_size /= 2;
3923 if (!allow_unaligned_store && group_align > BITS_PER_UNIT)
3924 {
3925 /* Now look for whole padding bytes at the start of that bitsize. */
3926 unsigned int try_bytesize = try_size / BITS_PER_UNIT, masked;
3927 for (masked = 0; masked < try_bytesize; ++masked)
3928 if (group->mask[try_pos - bytepos + masked] != (unsigned char) ~0U
3929 && (!bzero_first
3930 || group->val[try_pos - bytepos + masked] != 0))
3931 break;
3932 masked *= BITS_PER_UNIT;
3933 gcc_assert (masked < try_size);
3934 if (masked >= try_size / 2)
3935 {
3936 while (masked >= try_size / 2)
3937 {
3938 try_size /= 2;
3939 try_pos += try_size / BITS_PER_UNIT;
3940 size -= try_size;
3941 masked -= try_size;
3942 }
3943 /* Need to recompute the alignment, so just retry at the new
3944 position. */
3945 continue;
3946 }
3947 }
3948
3949 found:
3950 ++ret;
3951
3952 if (split_stores)
3953 {
3954 split_store *store
3955 = new split_store (try_pos, try_size, align);
3956 info = find_constituent_stores (group, stores: &store->orig_stores,
3957 first: &first, bitpos: try_bitpos, bitsize: try_size);
3958 if (info
3959 && !gimple_clobber_p (s: info->stmt)
3960 && info->bitpos >= try_bitpos
3961 && info->bitpos + info->bitsize <= try_bitpos + try_size
3962 && (store->orig_stores.length () == 1
3963 || found_orig
3964 || (info->bitpos == try_bitpos
3965 && (info->bitpos + info->bitsize
3966 == try_bitpos + try_size))))
3967 {
3968 store->orig = true;
3969 any_orig = true;
3970 }
3971 split_stores->safe_push (obj: store);
3972 }
3973
3974 try_pos += try_size / BITS_PER_UNIT;
3975 size -= try_size;
3976 }
3977
3978 if (total_orig)
3979 {
3980 unsigned int i;
3981 split_store *store;
3982 /* If we are reusing some original stores and any of the
3983 original SSA_NAMEs had multiple uses, we need to subtract
3984 those now before we add the new ones. */
3985 if (total_new[0] && any_orig)
3986 {
3987 FOR_EACH_VEC_ELT (*split_stores, i, store)
3988 if (store->orig)
3989 total_new[0] -= count_multiple_uses (info: store->orig_stores[0]);
3990 }
3991 total_new[0] += ret; /* The new store. */
3992 store_immediate_info *info = group->stores[0];
3993 if (info->ops[0].base_addr)
3994 total_new[0] += ret;
3995 if (info->ops[1].base_addr)
3996 total_new[0] += ret;
3997 switch (info->rhs_code)
3998 {
3999 case BIT_AND_EXPR:
4000 case BIT_IOR_EXPR:
4001 case BIT_XOR_EXPR:
4002 total_new[0] += ret; /* The new BIT_*_EXPR stmt. */
4003 break;
4004 default:
4005 break;
4006 }
4007 FOR_EACH_VEC_ELT (*split_stores, i, store)
4008 {
4009 unsigned int j;
4010 bool bit_not_p[3] = { false, false, false };
4011 /* If all orig_stores have certain bit_not_p set, then
4012 we'd use a BIT_NOT_EXPR stmt and need to account for it.
4013 If some orig_stores have certain bit_not_p set, then
4014 we'd use a BIT_XOR_EXPR with a mask and need to account for
4015 it. */
4016 FOR_EACH_VEC_ELT (store->orig_stores, j, info)
4017 {
4018 if (info->ops[0].bit_not_p)
4019 bit_not_p[0] = true;
4020 if (info->ops[1].bit_not_p)
4021 bit_not_p[1] = true;
4022 if (info->bit_not_p)
4023 bit_not_p[2] = true;
4024 }
4025 total_new[0] += bit_not_p[0] + bit_not_p[1] + bit_not_p[2];
4026 }
4027
4028 }
4029
4030 return ret;
4031}
4032
4033/* Return the operation through which the operand IDX (if < 2) or
4034 result (IDX == 2) should be inverted. If NOP_EXPR, no inversion
4035 is done, if BIT_NOT_EXPR, all bits are inverted, if BIT_XOR_EXPR,
4036 the bits should be xored with mask. */
4037
4038static enum tree_code
4039invert_op (split_store *split_store, int idx, tree int_type, tree &mask)
4040{
4041 unsigned int i;
4042 store_immediate_info *info;
4043 unsigned int cnt = 0;
4044 bool any_paddings = false;
4045 FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
4046 {
4047 bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
4048 if (bit_not_p)
4049 {
4050 ++cnt;
4051 tree lhs = gimple_assign_lhs (gs: info->stmt);
4052 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4053 && TYPE_PRECISION (TREE_TYPE (lhs)) < info->bitsize)
4054 any_paddings = true;
4055 }
4056 }
4057 mask = NULL_TREE;
4058 if (cnt == 0)
4059 return NOP_EXPR;
4060 if (cnt == split_store->orig_stores.length () && !any_paddings)
4061 return BIT_NOT_EXPR;
4062
4063 unsigned HOST_WIDE_INT try_bitpos = split_store->bytepos * BITS_PER_UNIT;
4064 unsigned buf_size = split_store->size / BITS_PER_UNIT;
4065 unsigned char *buf
4066 = XALLOCAVEC (unsigned char, buf_size);
4067 memset (s: buf, c: ~0U, n: buf_size);
4068 FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
4069 {
4070 bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
4071 if (!bit_not_p)
4072 continue;
4073 /* Clear regions with bit_not_p and invert afterwards, rather than
4074 clear regions with !bit_not_p, so that gaps in between stores aren't
4075 set in the mask. */
4076 unsigned HOST_WIDE_INT bitsize = info->bitsize;
4077 unsigned HOST_WIDE_INT prec = bitsize;
4078 unsigned int pos_in_buffer = 0;
4079 if (any_paddings)
4080 {
4081 tree lhs = gimple_assign_lhs (gs: info->stmt);
4082 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4083 && TYPE_PRECISION (TREE_TYPE (lhs)) < bitsize)
4084 prec = TYPE_PRECISION (TREE_TYPE (lhs));
4085 }
4086 if (info->bitpos < try_bitpos)
4087 {
4088 gcc_assert (info->bitpos + bitsize > try_bitpos);
4089 if (!BYTES_BIG_ENDIAN)
4090 {
4091 if (prec <= try_bitpos - info->bitpos)
4092 continue;
4093 prec -= try_bitpos - info->bitpos;
4094 }
4095 bitsize -= try_bitpos - info->bitpos;
4096 if (BYTES_BIG_ENDIAN && prec > bitsize)
4097 prec = bitsize;
4098 }
4099 else
4100 pos_in_buffer = info->bitpos - try_bitpos;
4101 if (prec < bitsize)
4102 {
4103 /* If this is a bool inversion, invert just the least significant
4104 prec bits rather than all bits of it. */
4105 if (BYTES_BIG_ENDIAN)
4106 {
4107 pos_in_buffer += bitsize - prec;
4108 if (pos_in_buffer >= split_store->size)
4109 continue;
4110 }
4111 bitsize = prec;
4112 }
4113 if (pos_in_buffer + bitsize > split_store->size)
4114 bitsize = split_store->size - pos_in_buffer;
4115 unsigned char *p = buf + (pos_in_buffer / BITS_PER_UNIT);
4116 if (BYTES_BIG_ENDIAN)
4117 clear_bit_region_be (ptr: p, start: (BITS_PER_UNIT - 1
4118 - (pos_in_buffer % BITS_PER_UNIT)), len: bitsize);
4119 else
4120 clear_bit_region (ptr: p, start: pos_in_buffer % BITS_PER_UNIT, len: bitsize);
4121 }
4122 for (unsigned int i = 0; i < buf_size; ++i)
4123 buf[i] = ~buf[i];
4124 mask = native_interpret_expr (int_type, buf, buf_size);
4125 return BIT_XOR_EXPR;
4126}
4127
4128/* Given a merged store group GROUP output the widened version of it.
4129 The store chain is against the base object BASE.
4130 Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output
4131 unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive.
4132 Make sure that the number of statements output is less than the number of
4133 original statements. If a better sequence is possible emit it and
4134 return true. */
4135
4136bool
4137imm_store_chain_info::output_merged_store (merged_store_group *group)
4138{
4139 const unsigned HOST_WIDE_INT start_byte_pos
4140 = group->bitregion_start / BITS_PER_UNIT;
4141 unsigned int orig_num_stmts = group->stores.length ();
4142 if (orig_num_stmts < 2)
4143 return false;
4144
4145 bool allow_unaligned_store
4146 = !STRICT_ALIGNMENT && param_store_merging_allow_unaligned;
4147 bool allow_unaligned_load = allow_unaligned_store;
4148 bool bzero_first = false;
4149 store_immediate_info *store;
4150 unsigned int num_clobber_stmts = 0;
4151 if (group->stores[0]->rhs_code == INTEGER_CST)
4152 {
4153 unsigned int i;
4154 FOR_EACH_VEC_ELT (group->stores, i, store)
4155 if (gimple_clobber_p (s: store->stmt))
4156 num_clobber_stmts++;
4157 else if (TREE_CODE (gimple_assign_rhs1 (store->stmt)) == CONSTRUCTOR
4158 && CONSTRUCTOR_NELTS (gimple_assign_rhs1 (store->stmt)) == 0
4159 && group->start == store->bitpos
4160 && group->width == store->bitsize
4161 && (group->start % BITS_PER_UNIT) == 0
4162 && (group->width % BITS_PER_UNIT) == 0)
4163 {
4164 bzero_first = true;
4165 break;
4166 }
4167 else
4168 break;
4169 FOR_EACH_VEC_ELT_FROM (group->stores, i, store, i)
4170 if (gimple_clobber_p (s: store->stmt))
4171 num_clobber_stmts++;
4172 if (num_clobber_stmts == orig_num_stmts)
4173 return false;
4174 orig_num_stmts -= num_clobber_stmts;
4175 }
4176 if (allow_unaligned_store || bzero_first)
4177 {
4178 /* If unaligned stores are allowed, see how many stores we'd emit
4179 for unaligned and how many stores we'd emit for aligned stores.
4180 Only use unaligned stores if it allows fewer stores than aligned.
4181 Similarly, if there is a whole region clear first, prefer expanding
4182 it together compared to expanding clear first followed by merged
4183 further stores. */
4184 unsigned cnt[4] = { ~0U, ~0U, ~0U, ~0U };
4185 int pass_min = 0;
4186 for (int pass = 0; pass < 4; ++pass)
4187 {
4188 if (!allow_unaligned_store && (pass & 1) != 0)
4189 continue;
4190 if (!bzero_first && (pass & 2) != 0)
4191 continue;
4192 cnt[pass] = split_group (group, allow_unaligned_store: (pass & 1) != 0,
4193 allow_unaligned_load, bzero_first: (pass & 2) != 0,
4194 NULL, NULL, NULL);
4195 if (cnt[pass] < cnt[pass_min])
4196 pass_min = pass;
4197 }
4198 if ((pass_min & 1) == 0)
4199 allow_unaligned_store = false;
4200 if ((pass_min & 2) == 0)
4201 bzero_first = false;
4202 }
4203
4204 auto_vec<class split_store *, 32> split_stores;
4205 split_store *split_store;
4206 unsigned total_orig, total_new, i;
4207 split_group (group, allow_unaligned_store, allow_unaligned_load, bzero_first,
4208 split_stores: &split_stores, total_orig: &total_orig, total_new: &total_new);
4209
4210 /* Determine if there is a clobber covering the whole group at the start,
4211 followed by proposed split stores that cover the whole group. In that
4212 case, prefer the transformation even if
4213 split_stores.length () == orig_num_stmts. */
4214 bool clobber_first = false;
4215 if (num_clobber_stmts
4216 && gimple_clobber_p (s: group->stores[0]->stmt)
4217 && group->start == group->stores[0]->bitpos
4218 && group->width == group->stores[0]->bitsize
4219 && (group->start % BITS_PER_UNIT) == 0
4220 && (group->width % BITS_PER_UNIT) == 0)
4221 {
4222 clobber_first = true;
4223 unsigned HOST_WIDE_INT pos = group->start / BITS_PER_UNIT;
4224 FOR_EACH_VEC_ELT (split_stores, i, split_store)
4225 if (split_store->bytepos != pos)
4226 {
4227 clobber_first = false;
4228 break;
4229 }
4230 else
4231 pos += split_store->size / BITS_PER_UNIT;
4232 if (pos != (group->start + group->width) / BITS_PER_UNIT)
4233 clobber_first = false;
4234 }
4235
4236 if (split_stores.length () >= orig_num_stmts + clobber_first)
4237 {
4238
4239 /* We didn't manage to reduce the number of statements. Bail out. */
4240 if (dump_file && (dump_flags & TDF_DETAILS))
4241 fprintf (stream: dump_file, format: "Exceeded original number of stmts (%u)."
4242 " Not profitable to emit new sequence.\n",
4243 orig_num_stmts);
4244 FOR_EACH_VEC_ELT (split_stores, i, split_store)
4245 delete split_store;
4246 return false;
4247 }
4248 if (total_orig <= total_new)
4249 {
4250 /* If number of estimated new statements is above estimated original
4251 statements, bail out too. */
4252 if (dump_file && (dump_flags & TDF_DETAILS))
4253 fprintf (stream: dump_file, format: "Estimated number of original stmts (%u)"
4254 " not larger than estimated number of new"
4255 " stmts (%u).\n",
4256 total_orig, total_new);
4257 FOR_EACH_VEC_ELT (split_stores, i, split_store)
4258 delete split_store;
4259 return false;
4260 }
4261 if (group->stores[0]->rhs_code == INTEGER_CST)
4262 {
4263 bool all_orig = true;
4264 FOR_EACH_VEC_ELT (split_stores, i, split_store)
4265 if (!split_store->orig)
4266 {
4267 all_orig = false;
4268 break;
4269 }
4270 if (all_orig)
4271 {
4272 unsigned int cnt = split_stores.length ();
4273 store_immediate_info *store;
4274 FOR_EACH_VEC_ELT (group->stores, i, store)
4275 if (gimple_clobber_p (s: store->stmt))
4276 ++cnt;
4277 /* Punt if we wouldn't make any real changes, i.e. keep all
4278 orig stmts + all clobbers. */
4279 if (cnt == group->stores.length ())
4280 {
4281 if (dump_file && (dump_flags & TDF_DETAILS))
4282 fprintf (stream: dump_file, format: "Exceeded original number of stmts (%u)."
4283 " Not profitable to emit new sequence.\n",
4284 orig_num_stmts);
4285 FOR_EACH_VEC_ELT (split_stores, i, split_store)
4286 delete split_store;
4287 return false;
4288 }
4289 }
4290 }
4291
4292 gimple_stmt_iterator last_gsi = gsi_for_stmt (group->last_stmt);
4293 gimple_seq seq = NULL;
4294 tree last_vdef, new_vuse;
4295 last_vdef = gimple_vdef (g: group->last_stmt);
4296 new_vuse = gimple_vuse (g: group->last_stmt);
4297 tree bswap_res = NULL_TREE;
4298
4299 /* Clobbers are not removed. */
4300 if (gimple_clobber_p (s: group->last_stmt))
4301 {
4302 new_vuse = make_ssa_name (var: gimple_vop (cfun), stmt: group->last_stmt);
4303 gimple_set_vdef (g: group->last_stmt, vdef: new_vuse);
4304 }
4305
4306 if (group->stores[0]->rhs_code == LROTATE_EXPR
4307 || group->stores[0]->rhs_code == NOP_EXPR)
4308 {
4309 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
4310 gimple *ins_stmt = group->stores[0]->ins_stmt;
4311 struct symbolic_number *n = &group->stores[0]->n;
4312 bool bswap = group->stores[0]->rhs_code == LROTATE_EXPR;
4313
4314 switch (n->range)
4315 {
4316 case 16:
4317 load_type = bswap_type = uint16_type_node;
4318 break;
4319 case 32:
4320 load_type = uint32_type_node;
4321 if (bswap)
4322 {
4323 fndecl = builtin_decl_explicit (fncode: BUILT_IN_BSWAP32);
4324 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
4325 }
4326 break;
4327 case 64:
4328 load_type = uint64_type_node;
4329 if (bswap)
4330 {
4331 fndecl = builtin_decl_explicit (fncode: BUILT_IN_BSWAP64);
4332 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
4333 }
4334 break;
4335 default:
4336 gcc_unreachable ();
4337 }
4338
4339 /* If the loads have each vuse of the corresponding store,
4340 we've checked the aliasing already in try_coalesce_bswap and
4341 we want to sink the need load into seq. So need to use new_vuse
4342 on the load. */
4343 if (n->base_addr)
4344 {
4345 if (n->vuse == NULL)
4346 {
4347 n->vuse = new_vuse;
4348 ins_stmt = NULL;
4349 }
4350 else
4351 /* Update vuse in case it has changed by output_merged_stores. */
4352 n->vuse = gimple_vuse (g: ins_stmt);
4353 }
4354 bswap_res = bswap_replace (gsi: gsi_start (seq), ins_stmt, fndecl,
4355 bswap_type, load_type, n, bswap,
4356 mask: ~(uint64_t) 0, l_rotate: 0);
4357 gcc_assert (bswap_res);
4358 }
4359
4360 gimple *stmt = NULL;
4361 auto_vec<gimple *, 32> orig_stmts;
4362 gimple_seq this_seq;
4363 tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &this_seq,
4364 is_gimple_mem_ref_addr, NULL_TREE);
4365 gimple_seq_add_seq_without_update (&seq, this_seq);
4366
4367 tree load_addr[2] = { NULL_TREE, NULL_TREE };
4368 gimple_seq load_seq[2] = { NULL, NULL };
4369 gimple_stmt_iterator load_gsi[2] = { gsi_none (), gsi_none () };
4370 for (int j = 0; j < 2; ++j)
4371 {
4372 store_operand_info &op = group->stores[0]->ops[j];
4373 if (op.base_addr == NULL_TREE)
4374 continue;
4375
4376 store_immediate_info *infol = group->stores.last ();
4377 if (gimple_vuse (g: op.stmt) == gimple_vuse (g: infol->ops[j].stmt))
4378 {
4379 /* We can't pick the location randomly; while we've verified
4380 all the loads have the same vuse, they can be still in different
4381 basic blocks and we need to pick the one from the last bb:
4382 int x = q[0];
4383 if (x == N) return;
4384 int y = q[1];
4385 p[0] = x;
4386 p[1] = y;
4387 otherwise if we put the wider load at the q[0] load, we might
4388 segfault if q[1] is not mapped. */
4389 basic_block bb = gimple_bb (g: op.stmt);
4390 gimple *ostmt = op.stmt;
4391 store_immediate_info *info;
4392 FOR_EACH_VEC_ELT (group->stores, i, info)
4393 {
4394 gimple *tstmt = info->ops[j].stmt;
4395 basic_block tbb = gimple_bb (g: tstmt);
4396 if (dominated_by_p (CDI_DOMINATORS, tbb, bb))
4397 {
4398 ostmt = tstmt;
4399 bb = tbb;
4400 }
4401 }
4402 load_gsi[j] = gsi_for_stmt (ostmt);
4403 load_addr[j]
4404 = force_gimple_operand_1 (unshare_expr (op.base_addr),
4405 &load_seq[j], is_gimple_mem_ref_addr,
4406 NULL_TREE);
4407 }
4408 else if (operand_equal_p (base_addr, op.base_addr, flags: 0))
4409 load_addr[j] = addr;
4410 else
4411 {
4412 load_addr[j]
4413 = force_gimple_operand_1 (unshare_expr (op.base_addr),
4414 &this_seq, is_gimple_mem_ref_addr,
4415 NULL_TREE);
4416 gimple_seq_add_seq_without_update (&seq, this_seq);
4417 }
4418 }
4419
4420 FOR_EACH_VEC_ELT (split_stores, i, split_store)
4421 {
4422 const unsigned HOST_WIDE_INT try_size = split_store->size;
4423 const unsigned HOST_WIDE_INT try_pos = split_store->bytepos;
4424 const unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
4425 const unsigned HOST_WIDE_INT try_align = split_store->align;
4426 const unsigned HOST_WIDE_INT try_offset = try_pos - start_byte_pos;
4427 tree dest, src;
4428 location_t loc;
4429
4430 if (split_store->orig)
4431 {
4432 /* If there is just a single non-clobber constituent store
4433 which covers the whole area, just reuse the lhs and rhs. */
4434 gimple *orig_stmt = NULL;
4435 store_immediate_info *store;
4436 unsigned int j;
4437 FOR_EACH_VEC_ELT (split_store->orig_stores, j, store)
4438 if (!gimple_clobber_p (s: store->stmt))
4439 {
4440 orig_stmt = store->stmt;
4441 break;
4442 }
4443 dest = gimple_assign_lhs (gs: orig_stmt);
4444 src = gimple_assign_rhs1 (gs: orig_stmt);
4445 loc = gimple_location (g: orig_stmt);
4446 }
4447 else
4448 {
4449 store_immediate_info *info;
4450 unsigned short clique, base;
4451 unsigned int k;
4452 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
4453 orig_stmts.safe_push (obj: info->stmt);
4454 tree offset_type
4455 = get_alias_type_for_stmts (stmts&: orig_stmts, is_load: false, cliquep: &clique, basep: &base);
4456 tree dest_type;
4457 loc = get_location_for_stmts (stmts&: orig_stmts);
4458 orig_stmts.truncate (size: 0);
4459
4460 if (group->string_concatenation)
4461 dest_type
4462 = build_array_type_nelts (char_type_node,
4463 try_size / BITS_PER_UNIT);
4464 else
4465 {
4466 dest_type = build_nonstandard_integer_type (try_size, UNSIGNED);
4467 dest_type = build_aligned_type (dest_type, try_align);
4468 }
4469 dest = fold_build2 (MEM_REF, dest_type, addr,
4470 build_int_cst (offset_type, try_pos));
4471 if (TREE_CODE (dest) == MEM_REF)
4472 {
4473 MR_DEPENDENCE_CLIQUE (dest) = clique;
4474 MR_DEPENDENCE_BASE (dest) = base;
4475 }
4476
4477 tree mask;
4478 if (bswap_res || group->string_concatenation)
4479 mask = integer_zero_node;
4480 else
4481 mask = native_interpret_expr (dest_type,
4482 group->mask + try_offset,
4483 group->buf_size);
4484
4485 tree ops[2];
4486 for (int j = 0;
4487 j < 1 + (split_store->orig_stores[0]->ops[1].val != NULL_TREE);
4488 ++j)
4489 {
4490 store_operand_info &op = split_store->orig_stores[0]->ops[j];
4491 if (bswap_res)
4492 ops[j] = bswap_res;
4493 else if (group->string_concatenation)
4494 {
4495 ops[j] = build_string (try_size / BITS_PER_UNIT,
4496 (const char *) group->val + try_offset);
4497 TREE_TYPE (ops[j]) = dest_type;
4498 }
4499 else if (op.base_addr)
4500 {
4501 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
4502 orig_stmts.safe_push (obj: info->ops[j].stmt);
4503
4504 offset_type = get_alias_type_for_stmts (stmts&: orig_stmts, is_load: true,
4505 cliquep: &clique, basep: &base);
4506 location_t load_loc = get_location_for_stmts (stmts&: orig_stmts);
4507 orig_stmts.truncate (size: 0);
4508
4509 unsigned HOST_WIDE_INT load_align = group->load_align[j];
4510 unsigned HOST_WIDE_INT align_bitpos
4511 = known_alignment (a: try_bitpos
4512 - split_store->orig_stores[0]->bitpos
4513 + op.bitpos);
4514 if (align_bitpos & (load_align - 1))
4515 load_align = least_bit_hwi (x: align_bitpos);
4516
4517 tree load_int_type
4518 = build_nonstandard_integer_type (try_size, UNSIGNED);
4519 load_int_type
4520 = build_aligned_type (load_int_type, load_align);
4521
4522 poly_uint64 load_pos
4523 = exact_div (a: try_bitpos
4524 - split_store->orig_stores[0]->bitpos
4525 + op.bitpos,
4526 BITS_PER_UNIT);
4527 ops[j] = fold_build2 (MEM_REF, load_int_type, load_addr[j],
4528 build_int_cst (offset_type, load_pos));
4529 if (TREE_CODE (ops[j]) == MEM_REF)
4530 {
4531 MR_DEPENDENCE_CLIQUE (ops[j]) = clique;
4532 MR_DEPENDENCE_BASE (ops[j]) = base;
4533 }
4534 if (!integer_zerop (mask))
4535 {
4536 /* The load might load some bits (that will be masked
4537 off later on) uninitialized, avoid -W*uninitialized
4538 warnings in that case. */
4539 suppress_warning (ops[j], OPT_Wuninitialized);
4540 }
4541
4542 stmt = gimple_build_assign (make_ssa_name (var: dest_type), ops[j]);
4543 gimple_set_location (g: stmt, location: load_loc);
4544 if (gsi_bb (i: load_gsi[j]))
4545 {
4546 gimple_set_vuse (g: stmt, vuse: gimple_vuse (g: op.stmt));
4547 gimple_seq_add_stmt_without_update (&load_seq[j], stmt);
4548 }
4549 else
4550 {
4551 gimple_set_vuse (g: stmt, vuse: new_vuse);
4552 gimple_seq_add_stmt_without_update (&seq, stmt);
4553 }
4554 ops[j] = gimple_assign_lhs (gs: stmt);
4555 tree xor_mask;
4556 enum tree_code inv_op
4557 = invert_op (split_store, idx: j, int_type: dest_type, mask&: xor_mask);
4558 if (inv_op != NOP_EXPR)
4559 {
4560 stmt = gimple_build_assign (make_ssa_name (var: dest_type),
4561 inv_op, ops[j], xor_mask);
4562 gimple_set_location (g: stmt, location: load_loc);
4563 ops[j] = gimple_assign_lhs (gs: stmt);
4564
4565 if (gsi_bb (i: load_gsi[j]))
4566 gimple_seq_add_stmt_without_update (&load_seq[j],
4567 stmt);
4568 else
4569 gimple_seq_add_stmt_without_update (&seq, stmt);
4570 }
4571 }
4572 else
4573 ops[j] = native_interpret_expr (dest_type,
4574 group->val + try_offset,
4575 group->buf_size);
4576 }
4577
4578 switch (split_store->orig_stores[0]->rhs_code)
4579 {
4580 case BIT_AND_EXPR:
4581 case BIT_IOR_EXPR:
4582 case BIT_XOR_EXPR:
4583 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
4584 {
4585 tree rhs1 = gimple_assign_rhs1 (gs: info->stmt);
4586 orig_stmts.safe_push (SSA_NAME_DEF_STMT (rhs1));
4587 }
4588 location_t bit_loc;
4589 bit_loc = get_location_for_stmts (stmts&: orig_stmts);
4590 orig_stmts.truncate (size: 0);
4591
4592 stmt
4593 = gimple_build_assign (make_ssa_name (var: dest_type),
4594 split_store->orig_stores[0]->rhs_code,
4595 ops[0], ops[1]);
4596 gimple_set_location (g: stmt, location: bit_loc);
4597 /* If there is just one load and there is a separate
4598 load_seq[0], emit the bitwise op right after it. */
4599 if (load_addr[1] == NULL_TREE && gsi_bb (i: load_gsi[0]))
4600 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
4601 /* Otherwise, if at least one load is in seq, we need to
4602 emit the bitwise op right before the store. If there
4603 are two loads and are emitted somewhere else, it would
4604 be better to emit the bitwise op as early as possible;
4605 we don't track where that would be possible right now
4606 though. */
4607 else
4608 gimple_seq_add_stmt_without_update (&seq, stmt);
4609 src = gimple_assign_lhs (gs: stmt);
4610 tree xor_mask;
4611 enum tree_code inv_op;
4612 inv_op = invert_op (split_store, idx: 2, int_type: dest_type, mask&: xor_mask);
4613 if (inv_op != NOP_EXPR)
4614 {
4615 stmt = gimple_build_assign (make_ssa_name (var: dest_type),
4616 inv_op, src, xor_mask);
4617 gimple_set_location (g: stmt, location: bit_loc);
4618 if (load_addr[1] == NULL_TREE && gsi_bb (i: load_gsi[0]))
4619 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
4620 else
4621 gimple_seq_add_stmt_without_update (&seq, stmt);
4622 src = gimple_assign_lhs (gs: stmt);
4623 }
4624 break;
4625 case LROTATE_EXPR:
4626 case NOP_EXPR:
4627 src = ops[0];
4628 if (!is_gimple_val (src))
4629 {
4630 stmt = gimple_build_assign (make_ssa_name (TREE_TYPE (src)),
4631 src);
4632 gimple_seq_add_stmt_without_update (&seq, stmt);
4633 src = gimple_assign_lhs (gs: stmt);
4634 }
4635 if (!useless_type_conversion_p (dest_type, TREE_TYPE (src)))
4636 {
4637 stmt = gimple_build_assign (make_ssa_name (var: dest_type),
4638 NOP_EXPR, src);
4639 gimple_seq_add_stmt_without_update (&seq, stmt);
4640 src = gimple_assign_lhs (gs: stmt);
4641 }
4642 inv_op = invert_op (split_store, idx: 2, int_type: dest_type, mask&: xor_mask);
4643 if (inv_op != NOP_EXPR)
4644 {
4645 stmt = gimple_build_assign (make_ssa_name (var: dest_type),
4646 inv_op, src, xor_mask);
4647 gimple_set_location (g: stmt, location: loc);
4648 gimple_seq_add_stmt_without_update (&seq, stmt);
4649 src = gimple_assign_lhs (gs: stmt);
4650 }
4651 break;
4652 default:
4653 src = ops[0];
4654 break;
4655 }
4656
4657 /* If bit insertion is required, we use the source as an accumulator
4658 into which the successive bit-field values are manually inserted.
4659 FIXME: perhaps use BIT_INSERT_EXPR instead in some cases? */
4660 if (group->bit_insertion)
4661 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
4662 if (info->rhs_code == BIT_INSERT_EXPR
4663 && info->bitpos < try_bitpos + try_size
4664 && info->bitpos + info->bitsize > try_bitpos)
4665 {
4666 /* Mask, truncate, convert to final type, shift and ior into
4667 the accumulator. Note that every step can be a no-op. */
4668 const HOST_WIDE_INT start_gap = info->bitpos - try_bitpos;
4669 const HOST_WIDE_INT end_gap
4670 = (try_bitpos + try_size) - (info->bitpos + info->bitsize);
4671 tree tem = info->ops[0].val;
4672 if (!INTEGRAL_TYPE_P (TREE_TYPE (tem)))
4673 {
4674 const unsigned HOST_WIDE_INT size
4675 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (tem)));
4676 tree integer_type
4677 = build_nonstandard_integer_type (size, UNSIGNED);
4678 tem = gimple_build (seq: &seq, loc, code: VIEW_CONVERT_EXPR,
4679 type: integer_type, ops: tem);
4680 }
4681 if (TYPE_PRECISION (TREE_TYPE (tem)) <= info->bitsize)
4682 {
4683 tree bitfield_type
4684 = build_nonstandard_integer_type (info->bitsize,
4685 UNSIGNED);
4686 tem = gimple_convert (seq: &seq, loc, type: bitfield_type, op: tem);
4687 }
4688 else if ((BYTES_BIG_ENDIAN ? start_gap : end_gap) > 0)
4689 {
4690 wide_int imask
4691 = wi::mask (width: info->bitsize, negate_p: false,
4692 TYPE_PRECISION (TREE_TYPE (tem)));
4693 tem = gimple_build (seq: &seq, loc,
4694 code: BIT_AND_EXPR, TREE_TYPE (tem), ops: tem,
4695 ops: wide_int_to_tree (TREE_TYPE (tem),
4696 cst: imask));
4697 }
4698 const HOST_WIDE_INT shift
4699 = (BYTES_BIG_ENDIAN ? end_gap : start_gap);
4700 if (shift < 0)
4701 tem = gimple_build (seq: &seq, loc,
4702 code: RSHIFT_EXPR, TREE_TYPE (tem), ops: tem,
4703 ops: build_int_cst (NULL_TREE, -shift));
4704 tem = gimple_convert (seq: &seq, loc, type: dest_type, op: tem);
4705 if (shift > 0)
4706 tem = gimple_build (seq: &seq, loc,
4707 code: LSHIFT_EXPR, type: dest_type, ops: tem,
4708 ops: build_int_cst (NULL_TREE, shift));
4709 src = gimple_build (seq: &seq, loc,
4710 code: BIT_IOR_EXPR, type: dest_type, ops: tem, ops: src);
4711 }
4712
4713 if (!integer_zerop (mask))
4714 {
4715 tree tem = make_ssa_name (var: dest_type);
4716 tree load_src = unshare_expr (dest);
4717 /* The load might load some or all bits uninitialized,
4718 avoid -W*uninitialized warnings in that case.
4719 As optimization, it would be nice if all the bits are
4720 provably uninitialized (no stores at all yet or previous
4721 store a CLOBBER) we'd optimize away the load and replace
4722 it e.g. with 0. */
4723 suppress_warning (load_src, OPT_Wuninitialized);
4724 stmt = gimple_build_assign (tem, load_src);
4725 gimple_set_location (g: stmt, location: loc);
4726 gimple_set_vuse (g: stmt, vuse: new_vuse);
4727 gimple_seq_add_stmt_without_update (&seq, stmt);
4728
4729 /* FIXME: If there is a single chunk of zero bits in mask,
4730 perhaps use BIT_INSERT_EXPR instead? */
4731 stmt = gimple_build_assign (make_ssa_name (var: dest_type),
4732 BIT_AND_EXPR, tem, mask);
4733 gimple_set_location (g: stmt, location: loc);
4734 gimple_seq_add_stmt_without_update (&seq, stmt);
4735 tem = gimple_assign_lhs (gs: stmt);
4736
4737 if (TREE_CODE (src) == INTEGER_CST)
4738 src = wide_int_to_tree (type: dest_type,
4739 cst: wi::bit_and_not (x: wi::to_wide (t: src),
4740 y: wi::to_wide (t: mask)));
4741 else
4742 {
4743 tree nmask
4744 = wide_int_to_tree (type: dest_type,
4745 cst: wi::bit_not (x: wi::to_wide (t: mask)));
4746 stmt = gimple_build_assign (make_ssa_name (var: dest_type),
4747 BIT_AND_EXPR, src, nmask);
4748 gimple_set_location (g: stmt, location: loc);
4749 gimple_seq_add_stmt_without_update (&seq, stmt);
4750 src = gimple_assign_lhs (gs: stmt);
4751 }
4752 stmt = gimple_build_assign (make_ssa_name (var: dest_type),
4753 BIT_IOR_EXPR, tem, src);
4754 gimple_set_location (g: stmt, location: loc);
4755 gimple_seq_add_stmt_without_update (&seq, stmt);
4756 src = gimple_assign_lhs (gs: stmt);
4757 }
4758 }
4759
4760 stmt = gimple_build_assign (dest, src);
4761 gimple_set_location (g: stmt, location: loc);
4762 gimple_set_vuse (g: stmt, vuse: new_vuse);
4763 gimple_seq_add_stmt_without_update (&seq, stmt);
4764
4765 if (group->lp_nr && stmt_could_throw_p (cfun, stmt))
4766 add_stmt_to_eh_lp (stmt, group->lp_nr);
4767
4768 tree new_vdef;
4769 if (i < split_stores.length () - 1)
4770 new_vdef = make_ssa_name (var: gimple_vop (cfun), stmt);
4771 else
4772 new_vdef = last_vdef;
4773
4774 gimple_set_vdef (g: stmt, vdef: new_vdef);
4775 SSA_NAME_DEF_STMT (new_vdef) = stmt;
4776 new_vuse = new_vdef;
4777 }
4778
4779 FOR_EACH_VEC_ELT (split_stores, i, split_store)
4780 delete split_store;
4781
4782 gcc_assert (seq);
4783 if (dump_file)
4784 {
4785 fprintf (stream: dump_file,
4786 format: "New sequence of %u stores to replace old one of %u stores\n",
4787 split_stores.length (), orig_num_stmts);
4788 if (dump_flags & TDF_DETAILS)
4789 print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS);
4790 }
4791
4792 if (gimple_clobber_p (s: group->last_stmt))
4793 update_stmt (s: group->last_stmt);
4794
4795 if (group->lp_nr > 0)
4796 {
4797 /* We're going to insert a sequence of (potentially) throwing stores
4798 into an active EH region. This means that we're going to create
4799 new basic blocks with EH edges pointing to the post landing pad
4800 and, therefore, to have to update its PHI nodes, if any. For the
4801 virtual PHI node, we're going to use the VDEFs created above, but
4802 for the other nodes, we need to record the original reaching defs. */
4803 eh_landing_pad lp = get_eh_landing_pad_from_number (group->lp_nr);
4804 basic_block lp_bb = label_to_block (cfun, lp->post_landing_pad);
4805 basic_block last_bb = gimple_bb (g: group->last_stmt);
4806 edge last_edge = find_edge (last_bb, lp_bb);
4807 auto_vec<tree, 16> last_defs;
4808 gphi_iterator gpi;
4809 for (gpi = gsi_start_phis (lp_bb); !gsi_end_p (i: gpi); gsi_next (i: &gpi))
4810 {
4811 gphi *phi = gpi.phi ();
4812 tree last_def;
4813 if (virtual_operand_p (op: gimple_phi_result (gs: phi)))
4814 last_def = NULL_TREE;
4815 else
4816 last_def = gimple_phi_arg_def (gs: phi, index: last_edge->dest_idx);
4817 last_defs.safe_push (obj: last_def);
4818 }
4819
4820 /* Do the insertion. Then, if new basic blocks have been created in the
4821 process, rewind the chain of VDEFs create above to walk the new basic
4822 blocks and update the corresponding arguments of the PHI nodes. */
4823 update_modified_stmts (seq);
4824 if (gimple_find_sub_bbs (seq, &last_gsi))
4825 while (last_vdef != gimple_vuse (g: group->last_stmt))
4826 {
4827 gimple *stmt = SSA_NAME_DEF_STMT (last_vdef);
4828 if (stmt_could_throw_p (cfun, stmt))
4829 {
4830 edge new_edge = find_edge (gimple_bb (g: stmt), lp_bb);
4831 unsigned int i;
4832 for (gpi = gsi_start_phis (lp_bb), i = 0;
4833 !gsi_end_p (i: gpi);
4834 gsi_next (i: &gpi), i++)
4835 {
4836 gphi *phi = gpi.phi ();
4837 tree new_def;
4838 if (virtual_operand_p (op: gimple_phi_result (gs: phi)))
4839 new_def = last_vdef;
4840 else
4841 new_def = last_defs[i];
4842 add_phi_arg (phi, new_def, new_edge, UNKNOWN_LOCATION);
4843 }
4844 }
4845 last_vdef = gimple_vuse (g: stmt);
4846 }
4847 }
4848 else
4849 gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT);
4850
4851 for (int j = 0; j < 2; ++j)
4852 if (load_seq[j])
4853 gsi_insert_seq_after (&load_gsi[j], load_seq[j], GSI_SAME_STMT);
4854
4855 return true;
4856}
4857
4858/* Process the merged_store_group objects created in the coalescing phase.
4859 The stores are all against the base object BASE.
4860 Try to output the widened stores and delete the original statements if
4861 successful. Return true iff any changes were made. */
4862
4863bool
4864imm_store_chain_info::output_merged_stores ()
4865{
4866 unsigned int i;
4867 merged_store_group *merged_store;
4868 bool ret = false;
4869 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_store)
4870 {
4871 if (dbg_cnt (index: store_merging)
4872 && output_merged_store (group: merged_store))
4873 {
4874 unsigned int j;
4875 store_immediate_info *store;
4876 FOR_EACH_VEC_ELT (merged_store->stores, j, store)
4877 {
4878 gimple *stmt = store->stmt;
4879 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
4880 /* Don't remove clobbers, they are still useful even if
4881 everything is overwritten afterwards. */
4882 if (gimple_clobber_p (s: stmt))
4883 continue;
4884 gsi_remove (&gsi, true);
4885 if (store->lp_nr)
4886 remove_stmt_from_eh_lp (stmt);
4887 if (stmt != merged_store->last_stmt)
4888 {
4889 unlink_stmt_vdef (stmt);
4890 release_defs (stmt);
4891 }
4892 }
4893 ret = true;
4894 }
4895 }
4896 if (ret && dump_file)
4897 fprintf (stream: dump_file, format: "Merging successful!\n");
4898
4899 return ret;
4900}
4901
4902/* Coalesce the store_immediate_info objects recorded against the base object
4903 BASE in the first phase and output them.
4904 Delete the allocated structures.
4905 Return true if any changes were made. */
4906
4907bool
4908imm_store_chain_info::terminate_and_process_chain ()
4909{
4910 if (dump_file && (dump_flags & TDF_DETAILS))
4911 fprintf (stream: dump_file, format: "Terminating chain with %u stores\n",
4912 m_store_info.length ());
4913 /* Process store chain. */
4914 bool ret = false;
4915 if (m_store_info.length () > 1)
4916 {
4917 ret = coalesce_immediate_stores ();
4918 if (ret)
4919 ret = output_merged_stores ();
4920 }
4921
4922 /* Delete all the entries we allocated ourselves. */
4923 store_immediate_info *info;
4924 unsigned int i;
4925 FOR_EACH_VEC_ELT (m_store_info, i, info)
4926 delete info;
4927
4928 merged_store_group *merged_info;
4929 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_info)
4930 delete merged_info;
4931
4932 return ret;
4933}
4934
4935/* Return true iff LHS is a destination potentially interesting for
4936 store merging. In practice these are the codes that get_inner_reference
4937 can process. */
4938
4939static bool
4940lhs_valid_for_store_merging_p (tree lhs)
4941{
4942 if (DECL_P (lhs))
4943 return true;
4944
4945 switch (TREE_CODE (lhs))
4946 {
4947 case ARRAY_REF:
4948 case ARRAY_RANGE_REF:
4949 case BIT_FIELD_REF:
4950 case COMPONENT_REF:
4951 case MEM_REF:
4952 case VIEW_CONVERT_EXPR:
4953 return true;
4954 default:
4955 return false;
4956 }
4957}
4958
4959/* Return true if the tree RHS is a constant we want to consider
4960 during store merging. In practice accept all codes that
4961 native_encode_expr accepts. */
4962
4963static bool
4964rhs_valid_for_store_merging_p (tree rhs)
4965{
4966 unsigned HOST_WIDE_INT size;
4967 if (TREE_CODE (rhs) == CONSTRUCTOR
4968 && CONSTRUCTOR_NELTS (rhs) == 0
4969 && TYPE_SIZE_UNIT (TREE_TYPE (rhs))
4970 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (rhs))))
4971 return true;
4972 return (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (rhs))).is_constant (const_value: &size)
4973 && native_encode_expr (rhs, NULL, size) != 0);
4974}
4975
4976/* Adjust *PBITPOS, *PBITREGION_START and *PBITREGION_END by BYTE_OFF bytes
4977 and return true on success or false on failure. */
4978
4979static bool
4980adjust_bit_pos (poly_offset_int byte_off,
4981 poly_int64 *pbitpos,
4982 poly_uint64 *pbitregion_start,
4983 poly_uint64 *pbitregion_end)
4984{
4985 poly_offset_int bit_off = byte_off << LOG2_BITS_PER_UNIT;
4986 bit_off += *pbitpos;
4987
4988 if (known_ge (bit_off, 0) && bit_off.to_shwi (r: pbitpos))
4989 {
4990 if (maybe_ne (a: *pbitregion_end, b: 0U))
4991 {
4992 bit_off = byte_off << LOG2_BITS_PER_UNIT;
4993 bit_off += *pbitregion_start;
4994 if (bit_off.to_uhwi (r: pbitregion_start))
4995 {
4996 bit_off = byte_off << LOG2_BITS_PER_UNIT;
4997 bit_off += *pbitregion_end;
4998 if (!bit_off.to_uhwi (r: pbitregion_end))
4999 *pbitregion_end = 0;
5000 }
5001 else
5002 *pbitregion_end = 0;
5003 }
5004 return true;
5005 }
5006 else
5007 return false;
5008}
5009
5010/* If MEM is a memory reference usable for store merging (either as
5011 store destination or for loads), return the non-NULL base_addr
5012 and set *PBITSIZE, *PBITPOS, *PBITREGION_START and *PBITREGION_END.
5013 Otherwise return NULL, *PBITPOS should be still valid even for that
5014 case. */
5015
5016static tree
5017mem_valid_for_store_merging (tree mem, poly_uint64 *pbitsize,
5018 poly_uint64 *pbitpos,
5019 poly_uint64 *pbitregion_start,
5020 poly_uint64 *pbitregion_end)
5021{
5022 poly_int64 bitsize, bitpos;
5023 poly_uint64 bitregion_start = 0, bitregion_end = 0;
5024 machine_mode mode;
5025 int unsignedp = 0, reversep = 0, volatilep = 0;
5026 tree offset;
5027 tree base_addr = get_inner_reference (mem, &bitsize, &bitpos, &offset, &mode,
5028 &unsignedp, &reversep, &volatilep);
5029 *pbitsize = bitsize;
5030 if (known_le (bitsize, 0))
5031 return NULL_TREE;
5032
5033 if (TREE_CODE (mem) == COMPONENT_REF
5034 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (mem, 1)))
5035 {
5036 get_bit_range (&bitregion_start, &bitregion_end, mem, &bitpos, &offset);
5037 if (maybe_ne (a: bitregion_end, b: 0U))
5038 bitregion_end += 1;
5039 }
5040
5041 if (reversep)
5042 return NULL_TREE;
5043
5044 /* We do not want to rewrite TARGET_MEM_REFs. */
5045 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
5046 return NULL_TREE;
5047 /* In some cases get_inner_reference may return a
5048 MEM_REF [ptr + byteoffset]. For the purposes of this pass
5049 canonicalize the base_addr to MEM_REF [ptr] and take
5050 byteoffset into account in the bitpos. This occurs in
5051 PR 23684 and this way we can catch more chains. */
5052 else if (TREE_CODE (base_addr) == MEM_REF)
5053 {
5054 if (!adjust_bit_pos (byte_off: mem_ref_offset (base_addr), pbitpos: &bitpos,
5055 pbitregion_start: &bitregion_start, pbitregion_end: &bitregion_end))
5056 return NULL_TREE;
5057 base_addr = TREE_OPERAND (base_addr, 0);
5058 }
5059 /* get_inner_reference returns the base object, get at its
5060 address now. */
5061 else
5062 {
5063 if (maybe_lt (a: bitpos, b: 0))
5064 return NULL_TREE;
5065 base_addr = build_fold_addr_expr (base_addr);
5066 }
5067
5068 if (offset)
5069 {
5070 /* If the access is variable offset then a base decl has to be
5071 address-taken to be able to emit pointer-based stores to it.
5072 ??? We might be able to get away with re-using the original
5073 base up to the first variable part and then wrapping that inside
5074 a BIT_FIELD_REF. */
5075 tree base = get_base_address (t: base_addr);
5076 if (!base || (DECL_P (base) && !TREE_ADDRESSABLE (base)))
5077 return NULL_TREE;
5078
5079 /* Similarly to above for the base, remove constant from the offset. */
5080 if (TREE_CODE (offset) == PLUS_EXPR
5081 && TREE_CODE (TREE_OPERAND (offset, 1)) == INTEGER_CST
5082 && adjust_bit_pos (byte_off: wi::to_poly_offset (TREE_OPERAND (offset, 1)),
5083 pbitpos: &bitpos, pbitregion_start: &bitregion_start, pbitregion_end: &bitregion_end))
5084 offset = TREE_OPERAND (offset, 0);
5085
5086 base_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (base_addr),
5087 base_addr, offset);
5088 }
5089
5090 if (known_eq (bitregion_end, 0U))
5091 {
5092 bitregion_start = round_down_to_byte_boundary (bitpos);
5093 bitregion_end = round_up_to_byte_boundary (bitpos + bitsize);
5094 }
5095
5096 *pbitsize = bitsize;
5097 *pbitpos = bitpos;
5098 *pbitregion_start = bitregion_start;
5099 *pbitregion_end = bitregion_end;
5100 return base_addr;
5101}
5102
5103/* Return true if STMT is a load that can be used for store merging.
5104 In that case fill in *OP. BITSIZE, BITPOS, BITREGION_START and
5105 BITREGION_END are properties of the corresponding store. */
5106
5107static bool
5108handled_load (gimple *stmt, store_operand_info *op,
5109 poly_uint64 bitsize, poly_uint64 bitpos,
5110 poly_uint64 bitregion_start, poly_uint64 bitregion_end)
5111{
5112 if (!is_gimple_assign (gs: stmt))
5113 return false;
5114 if (gimple_assign_rhs_code (gs: stmt) == BIT_NOT_EXPR)
5115 {
5116 tree rhs1 = gimple_assign_rhs1 (gs: stmt);
5117 if (TREE_CODE (rhs1) == SSA_NAME
5118 && handled_load (SSA_NAME_DEF_STMT (rhs1), op, bitsize, bitpos,
5119 bitregion_start, bitregion_end))
5120 {
5121 /* Don't allow _1 = load; _2 = ~1; _3 = ~_2; which should have
5122 been optimized earlier, but if allowed here, would confuse the
5123 multiple uses counting. */
5124 if (op->bit_not_p)
5125 return false;
5126 op->bit_not_p = !op->bit_not_p;
5127 return true;
5128 }
5129 return false;
5130 }
5131 if (gimple_vuse (g: stmt)
5132 && gimple_assign_load_p (stmt)
5133 && !stmt_can_throw_internal (cfun, stmt)
5134 && !gimple_has_volatile_ops (stmt))
5135 {
5136 tree mem = gimple_assign_rhs1 (gs: stmt);
5137 op->base_addr
5138 = mem_valid_for_store_merging (mem, pbitsize: &op->bitsize, pbitpos: &op->bitpos,
5139 pbitregion_start: &op->bitregion_start,
5140 pbitregion_end: &op->bitregion_end);
5141 if (op->base_addr != NULL_TREE
5142 && known_eq (op->bitsize, bitsize)
5143 && multiple_p (a: op->bitpos - bitpos, BITS_PER_UNIT)
5144 && known_ge (op->bitpos - op->bitregion_start,
5145 bitpos - bitregion_start)
5146 && known_ge (op->bitregion_end - op->bitpos,
5147 bitregion_end - bitpos))
5148 {
5149 op->stmt = stmt;
5150 op->val = mem;
5151 op->bit_not_p = false;
5152 return true;
5153 }
5154 }
5155 return false;
5156}
5157
5158/* Return the index number of the landing pad for STMT, if any. */
5159
5160static int
5161lp_nr_for_store (gimple *stmt)
5162{
5163 if (!cfun->can_throw_non_call_exceptions || !cfun->eh)
5164 return 0;
5165
5166 if (!stmt_could_throw_p (cfun, stmt))
5167 return 0;
5168
5169 return lookup_stmt_eh_lp (stmt);
5170}
5171
5172/* Record the store STMT for store merging optimization if it can be
5173 optimized. Return true if any changes were made. */
5174
5175bool
5176pass_store_merging::process_store (gimple *stmt)
5177{
5178 tree lhs = gimple_assign_lhs (gs: stmt);
5179 tree rhs = gimple_assign_rhs1 (gs: stmt);
5180 poly_uint64 bitsize, bitpos = 0;
5181 poly_uint64 bitregion_start = 0, bitregion_end = 0;
5182 tree base_addr
5183 = mem_valid_for_store_merging (mem: lhs, pbitsize: &bitsize, pbitpos: &bitpos,
5184 pbitregion_start: &bitregion_start, pbitregion_end: &bitregion_end);
5185 if (known_eq (bitsize, 0U))
5186 return false;
5187
5188 bool invalid = (base_addr == NULL_TREE
5189 || (maybe_gt (bitsize,
5190 (unsigned int) MAX_BITSIZE_MODE_ANY_INT)
5191 && TREE_CODE (rhs) != INTEGER_CST
5192 && (TREE_CODE (rhs) != CONSTRUCTOR
5193 || CONSTRUCTOR_NELTS (rhs) != 0)));
5194 enum tree_code rhs_code = ERROR_MARK;
5195 bool bit_not_p = false;
5196 struct symbolic_number n;
5197 gimple *ins_stmt = NULL;
5198 store_operand_info ops[2];
5199 if (invalid)
5200 ;
5201 else if (TREE_CODE (rhs) == STRING_CST)
5202 {
5203 rhs_code = STRING_CST;
5204 ops[0].val = rhs;
5205 }
5206 else if (rhs_valid_for_store_merging_p (rhs))
5207 {
5208 rhs_code = INTEGER_CST;
5209 ops[0].val = rhs;
5210 }
5211 else if (TREE_CODE (rhs) == SSA_NAME)
5212 {
5213 gimple *def_stmt = SSA_NAME_DEF_STMT (rhs), *def_stmt1, *def_stmt2;
5214 if (!is_gimple_assign (gs: def_stmt))
5215 invalid = true;
5216 else if (handled_load (stmt: def_stmt, op: &ops[0], bitsize, bitpos,
5217 bitregion_start, bitregion_end))
5218 rhs_code = MEM_REF;
5219 else if (gimple_assign_rhs_code (gs: def_stmt) == BIT_NOT_EXPR)
5220 {
5221 tree rhs1 = gimple_assign_rhs1 (gs: def_stmt);
5222 if (TREE_CODE (rhs1) == SSA_NAME
5223 && is_gimple_assign (SSA_NAME_DEF_STMT (rhs1)))
5224 {
5225 bit_not_p = true;
5226 def_stmt = SSA_NAME_DEF_STMT (rhs1);
5227 }
5228 }
5229
5230 if (rhs_code == ERROR_MARK && !invalid)
5231 switch ((rhs_code = gimple_assign_rhs_code (gs: def_stmt)))
5232 {
5233 case BIT_AND_EXPR:
5234 case BIT_IOR_EXPR:
5235 case BIT_XOR_EXPR:
5236 tree rhs1, rhs2;
5237 rhs1 = gimple_assign_rhs1 (gs: def_stmt);
5238 rhs2 = gimple_assign_rhs2 (gs: def_stmt);
5239 invalid = true;
5240 if (TREE_CODE (rhs1) != SSA_NAME)
5241 break;
5242 def_stmt1 = SSA_NAME_DEF_STMT (rhs1);
5243 if (!is_gimple_assign (gs: def_stmt1)
5244 || !handled_load (stmt: def_stmt1, op: &ops[0], bitsize, bitpos,
5245 bitregion_start, bitregion_end))
5246 break;
5247 if (rhs_valid_for_store_merging_p (rhs: rhs2))
5248 ops[1].val = rhs2;
5249 else if (TREE_CODE (rhs2) != SSA_NAME)
5250 break;
5251 else
5252 {
5253 def_stmt2 = SSA_NAME_DEF_STMT (rhs2);
5254 if (!is_gimple_assign (gs: def_stmt2))
5255 break;
5256 else if (!handled_load (stmt: def_stmt2, op: &ops[1], bitsize, bitpos,
5257 bitregion_start, bitregion_end))
5258 break;
5259 }
5260 invalid = false;
5261 break;
5262 default:
5263 invalid = true;
5264 break;
5265 }
5266
5267 unsigned HOST_WIDE_INT const_bitsize;
5268 if (bitsize.is_constant (const_value: &const_bitsize)
5269 && (const_bitsize % BITS_PER_UNIT) == 0
5270 && const_bitsize <= 64
5271 && multiple_p (a: bitpos, BITS_PER_UNIT))
5272 {
5273 ins_stmt = find_bswap_or_nop_1 (stmt: def_stmt, n: &n, limit: 12);
5274 if (ins_stmt)
5275 {
5276 uint64_t nn = n.n;
5277 for (unsigned HOST_WIDE_INT i = 0;
5278 i < const_bitsize;
5279 i += BITS_PER_UNIT, nn >>= BITS_PER_MARKER)
5280 if ((nn & MARKER_MASK) == 0
5281 || (nn & MARKER_MASK) == MARKER_BYTE_UNKNOWN)
5282 {
5283 ins_stmt = NULL;
5284 break;
5285 }
5286 if (ins_stmt)
5287 {
5288 if (invalid)
5289 {
5290 rhs_code = LROTATE_EXPR;
5291 ops[0].base_addr = NULL_TREE;
5292 ops[1].base_addr = NULL_TREE;
5293 }
5294 invalid = false;
5295 }
5296 }
5297 }
5298
5299 if (invalid
5300 && bitsize.is_constant (const_value: &const_bitsize)
5301 && ((const_bitsize % BITS_PER_UNIT) != 0
5302 || !multiple_p (a: bitpos, BITS_PER_UNIT))
5303 && const_bitsize <= MAX_FIXED_MODE_SIZE)
5304 {
5305 /* Bypass a conversion to the bit-field type. */
5306 if (!bit_not_p
5307 && is_gimple_assign (gs: def_stmt)
5308 && CONVERT_EXPR_CODE_P (rhs_code))
5309 {
5310 tree rhs1 = gimple_assign_rhs1 (gs: def_stmt);
5311 if (TREE_CODE (rhs1) == SSA_NAME
5312 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
5313 rhs = rhs1;
5314 }
5315 rhs_code = BIT_INSERT_EXPR;
5316 bit_not_p = false;
5317 ops[0].val = rhs;
5318 ops[0].base_addr = NULL_TREE;
5319 ops[1].base_addr = NULL_TREE;
5320 invalid = false;
5321 }
5322 }
5323 else
5324 invalid = true;
5325
5326 unsigned HOST_WIDE_INT const_bitsize, const_bitpos;
5327 unsigned HOST_WIDE_INT const_bitregion_start, const_bitregion_end;
5328 if (invalid
5329 || !bitsize.is_constant (const_value: &const_bitsize)
5330 || !bitpos.is_constant (const_value: &const_bitpos)
5331 || !bitregion_start.is_constant (const_value: &const_bitregion_start)
5332 || !bitregion_end.is_constant (const_value: &const_bitregion_end))
5333 return terminate_all_aliasing_chains (NULL, stmt);
5334
5335 if (!ins_stmt)
5336 memset (s: &n, c: 0, n: sizeof (n));
5337
5338 class imm_store_chain_info **chain_info = NULL;
5339 bool ret = false;
5340 if (base_addr)
5341 chain_info = m_stores.get (k: base_addr);
5342
5343 store_immediate_info *info;
5344 if (chain_info)
5345 {
5346 unsigned int ord = (*chain_info)->m_store_info.length ();
5347 info = new store_immediate_info (const_bitsize, const_bitpos,
5348 const_bitregion_start,
5349 const_bitregion_end,
5350 stmt, ord, rhs_code, n, ins_stmt,
5351 bit_not_p, lp_nr_for_store (stmt),
5352 ops[0], ops[1]);
5353 if (dump_file && (dump_flags & TDF_DETAILS))
5354 {
5355 fprintf (stream: dump_file, format: "Recording immediate store from stmt:\n");
5356 print_gimple_stmt (dump_file, stmt, 0);
5357 }
5358 (*chain_info)->m_store_info.safe_push (obj: info);
5359 m_n_stores++;
5360 ret |= terminate_all_aliasing_chains (chain_info, stmt);
5361 /* If we reach the limit of stores to merge in a chain terminate and
5362 process the chain now. */
5363 if ((*chain_info)->m_store_info.length ()
5364 == (unsigned int) param_max_stores_to_merge)
5365 {
5366 if (dump_file && (dump_flags & TDF_DETAILS))
5367 fprintf (stream: dump_file,
5368 format: "Reached maximum number of statements to merge:\n");
5369 ret |= terminate_and_process_chain (chain_info: *chain_info);
5370 }
5371 }
5372 else
5373 {
5374 /* Store aliases any existing chain? */
5375 ret |= terminate_all_aliasing_chains (NULL, stmt);
5376
5377 /* Start a new chain. */
5378 class imm_store_chain_info *new_chain
5379 = new imm_store_chain_info (m_stores_head, base_addr);
5380 info = new store_immediate_info (const_bitsize, const_bitpos,
5381 const_bitregion_start,
5382 const_bitregion_end,
5383 stmt, 0, rhs_code, n, ins_stmt,
5384 bit_not_p, lp_nr_for_store (stmt),
5385 ops[0], ops[1]);
5386 new_chain->m_store_info.safe_push (obj: info);
5387 m_n_stores++;
5388 m_stores.put (k: base_addr, v: new_chain);
5389 m_n_chains++;
5390 if (dump_file && (dump_flags & TDF_DETAILS))
5391 {
5392 fprintf (stream: dump_file, format: "Starting active chain number %u with statement:\n",
5393 m_n_chains);
5394 print_gimple_stmt (dump_file, stmt, 0);
5395 fprintf (stream: dump_file, format: "The base object is:\n");
5396 print_generic_expr (dump_file, base_addr);
5397 fprintf (stream: dump_file, format: "\n");
5398 }
5399 }
5400
5401 /* Prune oldest chains so that after adding the chain or store above
5402 we're again within the limits set by the params. */
5403 if (m_n_chains > (unsigned)param_max_store_chains_to_track
5404 || m_n_stores > (unsigned)param_max_stores_to_track)
5405 {
5406 if (dump_file && (dump_flags & TDF_DETAILS))
5407 fprintf (stream: dump_file, format: "Too many chains (%u > %d) or stores (%u > %d), "
5408 "terminating oldest chain(s).\n", m_n_chains,
5409 param_max_store_chains_to_track, m_n_stores,
5410 param_max_stores_to_track);
5411 imm_store_chain_info **e = &m_stores_head;
5412 unsigned idx = 0;
5413 unsigned n_stores = 0;
5414 while (*e)
5415 {
5416 if (idx >= (unsigned)param_max_store_chains_to_track
5417 || (n_stores + (*e)->m_store_info.length ()
5418 > (unsigned)param_max_stores_to_track))
5419 ret |= terminate_and_process_chain (chain_info: *e);
5420 else
5421 {
5422 n_stores += (*e)->m_store_info.length ();
5423 e = &(*e)->next;
5424 ++idx;
5425 }
5426 }
5427 }
5428
5429 return ret;
5430}
5431
5432/* Return true if STMT is a store valid for store merging. */
5433
5434static bool
5435store_valid_for_store_merging_p (gimple *stmt)
5436{
5437 return gimple_assign_single_p (gs: stmt)
5438 && gimple_vdef (g: stmt)
5439 && lhs_valid_for_store_merging_p (lhs: gimple_assign_lhs (gs: stmt))
5440 && (!gimple_has_volatile_ops (stmt) || gimple_clobber_p (s: stmt));
5441}
5442
5443enum basic_block_status { BB_INVALID, BB_VALID, BB_EXTENDED_VALID };
5444
5445/* Return the status of basic block BB wrt store merging. */
5446
5447static enum basic_block_status
5448get_status_for_store_merging (basic_block bb)
5449{
5450 unsigned int num_statements = 0;
5451 unsigned int num_constructors = 0;
5452 gimple_stmt_iterator gsi;
5453 edge e;
5454 gimple *last_stmt = NULL;
5455
5456 for (gsi = gsi_after_labels (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
5457 {
5458 gimple *stmt = gsi_stmt (i: gsi);
5459
5460 if (is_gimple_debug (gs: stmt))
5461 continue;
5462
5463 last_stmt = stmt;
5464
5465 if (store_valid_for_store_merging_p (stmt) && ++num_statements >= 2)
5466 break;
5467
5468 if (is_gimple_assign (gs: stmt)
5469 && gimple_assign_rhs_code (gs: stmt) == CONSTRUCTOR)
5470 {
5471 tree rhs = gimple_assign_rhs1 (gs: stmt);
5472 if (VECTOR_TYPE_P (TREE_TYPE (rhs))
5473 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (rhs)))
5474 && gimple_assign_lhs (gs: stmt) != NULL_TREE)
5475 {
5476 HOST_WIDE_INT sz
5477 = int_size_in_bytes (TREE_TYPE (rhs)) * BITS_PER_UNIT;
5478 if (sz == 16 || sz == 32 || sz == 64)
5479 {
5480 num_constructors = 1;
5481 break;
5482 }
5483 }
5484 }
5485 }
5486
5487 if (num_statements == 0 && num_constructors == 0)
5488 return BB_INVALID;
5489
5490 if (cfun->can_throw_non_call_exceptions && cfun->eh
5491 && store_valid_for_store_merging_p (stmt: last_stmt)
5492 && (e = find_fallthru_edge (edges: bb->succs))
5493 && e->dest == bb->next_bb)
5494 return BB_EXTENDED_VALID;
5495
5496 return (num_statements >= 2 || num_constructors) ? BB_VALID : BB_INVALID;
5497}
5498
5499/* Entry point for the pass. Go over each basic block recording chains of
5500 immediate stores. Upon encountering a terminating statement (as defined
5501 by stmt_terminates_chain_p) process the recorded stores and emit the widened
5502 variants. */
5503
5504unsigned int
5505pass_store_merging::execute (function *fun)
5506{
5507 basic_block bb;
5508 hash_set<gimple *> orig_stmts;
5509 bool changed = false, open_chains = false;
5510
5511 /* If the function can throw and catch non-call exceptions, we'll be trying
5512 to merge stores across different basic blocks so we need to first unsplit
5513 the EH edges in order to streamline the CFG of the function. */
5514 if (cfun->can_throw_non_call_exceptions && cfun->eh)
5515 unsplit_eh_edges ();
5516
5517 calculate_dominance_info (CDI_DOMINATORS);
5518
5519 FOR_EACH_BB_FN (bb, fun)
5520 {
5521 const basic_block_status bb_status = get_status_for_store_merging (bb);
5522 gimple_stmt_iterator gsi;
5523
5524 if (open_chains && (bb_status == BB_INVALID || !single_pred_p (bb)))
5525 {
5526 changed |= terminate_and_process_all_chains ();
5527 open_chains = false;
5528 }
5529
5530 if (bb_status == BB_INVALID)
5531 continue;
5532
5533 if (dump_file && (dump_flags & TDF_DETAILS))
5534 fprintf (stream: dump_file, format: "Processing basic block <%d>:\n", bb->index);
5535
5536 for (gsi = gsi_after_labels (bb); !gsi_end_p (i: gsi); )
5537 {
5538 gimple *stmt = gsi_stmt (i: gsi);
5539 gsi_next (i: &gsi);
5540
5541 if (is_gimple_debug (gs: stmt))
5542 continue;
5543
5544 if (gimple_has_volatile_ops (stmt) && !gimple_clobber_p (s: stmt))
5545 {
5546 /* Terminate all chains. */
5547 if (dump_file && (dump_flags & TDF_DETAILS))
5548 fprintf (stream: dump_file, format: "Volatile access terminates "
5549 "all chains\n");
5550 changed |= terminate_and_process_all_chains ();
5551 open_chains = false;
5552 continue;
5553 }
5554
5555 if (is_gimple_assign (gs: stmt)
5556 && gimple_assign_rhs_code (gs: stmt) == CONSTRUCTOR
5557 && maybe_optimize_vector_constructor (cur_stmt: stmt))
5558 continue;
5559
5560 if (store_valid_for_store_merging_p (stmt))
5561 changed |= process_store (stmt);
5562 else
5563 changed |= terminate_all_aliasing_chains (NULL, stmt);
5564 }
5565
5566 if (bb_status == BB_EXTENDED_VALID)
5567 open_chains = true;
5568 else
5569 {
5570 changed |= terminate_and_process_all_chains ();
5571 open_chains = false;
5572 }
5573 }
5574
5575 if (open_chains)
5576 changed |= terminate_and_process_all_chains ();
5577
5578 /* If the function can throw and catch non-call exceptions and something
5579 changed during the pass, then the CFG has (very likely) changed too. */
5580 if (cfun->can_throw_non_call_exceptions && cfun->eh && changed)
5581 {
5582 free_dominance_info (CDI_DOMINATORS);
5583 return TODO_cleanup_cfg;
5584 }
5585
5586 return 0;
5587}
5588
5589} // anon namespace
5590
5591/* Construct and return a store merging pass object. */
5592
5593gimple_opt_pass *
5594make_pass_store_merging (gcc::context *ctxt)
5595{
5596 return new pass_store_merging (ctxt);
5597}
5598
5599#if CHECKING_P
5600
5601namespace selftest {
5602
5603/* Selftests for store merging helpers. */
5604
5605/* Assert that all elements of the byte arrays X and Y, both of length N
5606 are equal. */
5607
5608static void
5609verify_array_eq (unsigned char *x, unsigned char *y, unsigned int n)
5610{
5611 for (unsigned int i = 0; i < n; i++)
5612 {
5613 if (x[i] != y[i])
5614 {
5615 fprintf (stderr, format: "Arrays do not match. X:\n");
5616 dump_char_array (stderr, ptr: x, len: n);
5617 fprintf (stderr, format: "Y:\n");
5618 dump_char_array (stderr, ptr: y, len: n);
5619 }
5620 ASSERT_EQ (x[i], y[i]);
5621 }
5622}
5623
5624/* Test shift_bytes_in_array_left and that it carries bits across between
5625 bytes correctly. */
5626
5627static void
5628verify_shift_bytes_in_array_left (void)
5629{
5630 /* byte 1 | byte 0
5631 00011111 | 11100000. */
5632 unsigned char orig[2] = { 0xe0, 0x1f };
5633 unsigned char in[2];
5634 memcpy (dest: in, src: orig, n: sizeof orig);
5635
5636 unsigned char expected[2] = { 0x80, 0x7f };
5637 shift_bytes_in_array_left (in, sizeof (in), 2);
5638 verify_array_eq (x: in, y: expected, n: sizeof (in));
5639
5640 memcpy (dest: in, src: orig, n: sizeof orig);
5641 memcpy (dest: expected, src: orig, n: sizeof orig);
5642 /* Check that shifting by zero doesn't change anything. */
5643 shift_bytes_in_array_left (in, sizeof (in), 0);
5644 verify_array_eq (x: in, y: expected, n: sizeof (in));
5645
5646}
5647
5648/* Test shift_bytes_in_array_right and that it carries bits across between
5649 bytes correctly. */
5650
5651static void
5652verify_shift_bytes_in_array_right (void)
5653{
5654 /* byte 1 | byte 0
5655 00011111 | 11100000. */
5656 unsigned char orig[2] = { 0x1f, 0xe0};
5657 unsigned char in[2];
5658 memcpy (dest: in, src: orig, n: sizeof orig);
5659 unsigned char expected[2] = { 0x07, 0xf8};
5660 shift_bytes_in_array_right (in, sizeof (in), 2);
5661 verify_array_eq (x: in, y: expected, n: sizeof (in));
5662
5663 memcpy (dest: in, src: orig, n: sizeof orig);
5664 memcpy (dest: expected, src: orig, n: sizeof orig);
5665 /* Check that shifting by zero doesn't change anything. */
5666 shift_bytes_in_array_right (in, sizeof (in), 0);
5667 verify_array_eq (x: in, y: expected, n: sizeof (in));
5668}
5669
5670/* Test clear_bit_region that it clears exactly the bits asked and
5671 nothing more. */
5672
5673static void
5674verify_clear_bit_region (void)
5675{
5676 /* Start with all bits set and test clearing various patterns in them. */
5677 unsigned char orig[3] = { 0xff, 0xff, 0xff};
5678 unsigned char in[3];
5679 unsigned char expected[3];
5680 memcpy (dest: in, src: orig, n: sizeof in);
5681
5682 /* Check zeroing out all the bits. */
5683 clear_bit_region (ptr: in, start: 0, len: 3 * BITS_PER_UNIT);
5684 expected[0] = expected[1] = expected[2] = 0;
5685 verify_array_eq (x: in, y: expected, n: sizeof in);
5686
5687 memcpy (dest: in, src: orig, n: sizeof in);
5688 /* Leave the first and last bits intact. */
5689 clear_bit_region (ptr: in, start: 1, len: 3 * BITS_PER_UNIT - 2);
5690 expected[0] = 0x1;
5691 expected[1] = 0;
5692 expected[2] = 0x80;
5693 verify_array_eq (x: in, y: expected, n: sizeof in);
5694}
5695
5696/* Test clear_bit_region_be that it clears exactly the bits asked and
5697 nothing more. */
5698
5699static void
5700verify_clear_bit_region_be (void)
5701{
5702 /* Start with all bits set and test clearing various patterns in them. */
5703 unsigned char orig[3] = { 0xff, 0xff, 0xff};
5704 unsigned char in[3];
5705 unsigned char expected[3];
5706 memcpy (dest: in, src: orig, n: sizeof in);
5707
5708 /* Check zeroing out all the bits. */
5709 clear_bit_region_be (ptr: in, BITS_PER_UNIT - 1, len: 3 * BITS_PER_UNIT);
5710 expected[0] = expected[1] = expected[2] = 0;
5711 verify_array_eq (x: in, y: expected, n: sizeof in);
5712
5713 memcpy (dest: in, src: orig, n: sizeof in);
5714 /* Leave the first and last bits intact. */
5715 clear_bit_region_be (ptr: in, BITS_PER_UNIT - 2, len: 3 * BITS_PER_UNIT - 2);
5716 expected[0] = 0x80;
5717 expected[1] = 0;
5718 expected[2] = 0x1;
5719 verify_array_eq (x: in, y: expected, n: sizeof in);
5720}
5721
5722
5723/* Run all of the selftests within this file. */
5724
5725void
5726store_merging_cc_tests (void)
5727{
5728 verify_shift_bytes_in_array_left ();
5729 verify_shift_bytes_in_array_right ();
5730 verify_clear_bit_region ();
5731 verify_clear_bit_region_be ();
5732}
5733
5734} // namespace selftest
5735#endif /* CHECKING_P. */
5736

source code of gcc/gimple-ssa-store-merging.cc