1/* Gimple IR support functions.
2
3 Copyright (C) 2007-2023 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "backend.h"
26#include "tree.h"
27#include "gimple.h"
28#include "ssa.h"
29#include "cgraph.h"
30#include "diagnostic.h"
31#include "alias.h"
32#include "fold-const.h"
33#include "calls.h"
34#include "stor-layout.h"
35#include "internal-fn.h"
36#include "tree-eh.h"
37#include "gimple-iterator.h"
38#include "gimple-walk.h"
39#include "gimplify.h"
40#include "target.h"
41#include "builtins.h"
42#include "selftest.h"
43#include "gimple-pretty-print.h"
44#include "stringpool.h"
45#include "attribs.h"
46#include "asan.h"
47#include "ubsan.h"
48#include "langhooks.h"
49#include "attr-fnspec.h"
50#include "ipa-modref-tree.h"
51#include "ipa-modref.h"
52#include "dbgcnt.h"
53
54/* All the tuples have their operand vector (if present) at the very bottom
55 of the structure. Therefore, the offset required to find the
56 operands vector the size of the structure minus the size of the 1
57 element tree array at the end (see gimple_ops). */
58#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
59 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
60EXPORTED_CONST size_t gimple_ops_offset_[] = {
61#include "gsstruct.def"
62};
63#undef DEFGSSTRUCT
64
65#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
66static const size_t gsstruct_code_size[] = {
67#include "gsstruct.def"
68};
69#undef DEFGSSTRUCT
70
71#define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
72const char *const gimple_code_name[] = {
73#include "gimple.def"
74};
75#undef DEFGSCODE
76
77#define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
78EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
79#include "gimple.def"
80};
81#undef DEFGSCODE
82
83/* Gimple stats. */
84
85uint64_t gimple_alloc_counts[(int) gimple_alloc_kind_all];
86uint64_t gimple_alloc_sizes[(int) gimple_alloc_kind_all];
87
88/* Keep in sync with gimple.h:enum gimple_alloc_kind. */
89static const char * const gimple_alloc_kind_names[] = {
90 "assignments",
91 "phi nodes",
92 "conditionals",
93 "everything else"
94};
95
96/* Static gimple tuple members. */
97const enum gimple_code gassign::code_;
98const enum gimple_code gcall::code_;
99const enum gimple_code gcond::code_;
100
101
102/* Gimple tuple constructors.
103 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
104 be passed a NULL to start with an empty sequence. */
105
106/* Set the code for statement G to CODE. */
107
108static inline void
109gimple_set_code (gimple *g, enum gimple_code code)
110{
111 g->code = code;
112}
113
114/* Return the number of bytes needed to hold a GIMPLE statement with
115 code CODE. */
116
117size_t
118gimple_size (enum gimple_code code, unsigned num_ops)
119{
120 size_t size = gsstruct_code_size[gss_for_code (code)];
121 if (num_ops > 0)
122 size += (sizeof (tree) * (num_ops - 1));
123 return size;
124}
125
126/* Initialize GIMPLE statement G with CODE and NUM_OPS. */
127
128void
129gimple_init (gimple *g, enum gimple_code code, unsigned num_ops)
130{
131 gimple_set_code (g, code);
132 gimple_set_num_ops (gs: g, num_ops);
133
134 /* Do not call gimple_set_modified here as it has other side
135 effects and this tuple is still not completely built. */
136 g->modified = 1;
137 gimple_init_singleton (g);
138}
139
140/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
141 operands. */
142
143gimple *
144gimple_alloc (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
145{
146 size_t size;
147 gimple *stmt;
148
149 size = gimple_size (code, num_ops);
150 if (GATHER_STATISTICS)
151 {
152 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
153 gimple_alloc_counts[(int) kind]++;
154 gimple_alloc_sizes[(int) kind] += size;
155 }
156
157 stmt = ggc_alloc_cleared_gimple_statement_stat (s: size PASS_MEM_STAT);
158 gimple_init (g: stmt, code, num_ops);
159 return stmt;
160}
161
162/* Set SUBCODE to be the code of the expression computed by statement G. */
163
164static inline void
165gimple_set_subcode (gimple *g, unsigned subcode)
166{
167 /* We only have 16 bits for the RHS code. Assert that we are not
168 overflowing it. */
169 gcc_assert (subcode < (1 << 16));
170 g->subcode = subcode;
171}
172
173
174
175/* Build a tuple with operands. CODE is the statement to build (which
176 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
177 for the new tuple. NUM_OPS is the number of operands to allocate. */
178
179#define gimple_build_with_ops(c, s, n) \
180 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
181
182static gimple *
183gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
184 unsigned num_ops MEM_STAT_DECL)
185{
186 gimple *s = gimple_alloc (code, num_ops PASS_MEM_STAT);
187 gimple_set_subcode (g: s, subcode);
188
189 return s;
190}
191
192
193/* Build a GIMPLE_RETURN statement returning RETVAL. */
194
195greturn *
196gimple_build_return (tree retval)
197{
198 greturn *s
199 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
200 2));
201 if (retval)
202 gimple_return_set_retval (gs: s, retval);
203 return s;
204}
205
206/* Reset alias information on call S. */
207
208void
209gimple_call_reset_alias_info (gcall *s)
210{
211 if (gimple_call_flags (s) & ECF_CONST)
212 memset (s: gimple_call_use_set (call_stmt: s), c: 0, n: sizeof (struct pt_solution));
213 else
214 pt_solution_reset (gimple_call_use_set (call_stmt: s));
215 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
216 memset (s: gimple_call_clobber_set (call_stmt: s), c: 0, n: sizeof (struct pt_solution));
217 else
218 pt_solution_reset (gimple_call_clobber_set (call_stmt: s));
219}
220
221/* Helper for gimple_build_call, gimple_build_call_valist,
222 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
223 components of a GIMPLE_CALL statement to function FN with NARGS
224 arguments. */
225
226static inline gcall *
227gimple_build_call_1 (tree fn, unsigned nargs)
228{
229 gcall *s
230 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
231 nargs + 3));
232 if (TREE_CODE (fn) == FUNCTION_DECL)
233 fn = build_fold_addr_expr (fn);
234 gimple_set_op (gs: s, i: 1, op: fn);
235 gimple_call_set_fntype (call_stmt: s, TREE_TYPE (TREE_TYPE (fn)));
236 gimple_call_reset_alias_info (s);
237 return s;
238}
239
240
241/* Build a GIMPLE_CALL statement to function FN with the arguments
242 specified in vector ARGS. */
243
244gcall *
245gimple_build_call_vec (tree fn, const vec<tree> &args)
246{
247 unsigned i;
248 unsigned nargs = args.length ();
249 gcall *call = gimple_build_call_1 (fn, nargs);
250
251 for (i = 0; i < nargs; i++)
252 gimple_call_set_arg (gs: call, index: i, arg: args[i]);
253
254 return call;
255}
256
257
258/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
259 arguments. The ... are the arguments. */
260
261gcall *
262gimple_build_call (tree fn, unsigned nargs, ...)
263{
264 va_list ap;
265 gcall *call;
266 unsigned i;
267
268 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
269
270 call = gimple_build_call_1 (fn, nargs);
271
272 va_start (ap, nargs);
273 for (i = 0; i < nargs; i++)
274 gimple_call_set_arg (gs: call, index: i, va_arg (ap, tree));
275 va_end (ap);
276
277 return call;
278}
279
280
281/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
282 arguments. AP contains the arguments. */
283
284gcall *
285gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
286{
287 gcall *call;
288 unsigned i;
289
290 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
291
292 call = gimple_build_call_1 (fn, nargs);
293
294 for (i = 0; i < nargs; i++)
295 gimple_call_set_arg (gs: call, index: i, va_arg (ap, tree));
296
297 return call;
298}
299
300
301/* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
302 Build the basic components of a GIMPLE_CALL statement to internal
303 function FN with NARGS arguments. */
304
305static inline gcall *
306gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
307{
308 gcall *s
309 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
310 nargs + 3));
311 s->subcode |= GF_CALL_INTERNAL;
312 gimple_call_set_internal_fn (call_stmt: s, fn);
313 gimple_call_reset_alias_info (s);
314 return s;
315}
316
317
318/* Build a GIMPLE_CALL statement to internal function FN. NARGS is
319 the number of arguments. The ... are the arguments. */
320
321gcall *
322gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
323{
324 va_list ap;
325 gcall *call;
326 unsigned i;
327
328 call = gimple_build_call_internal_1 (fn, nargs);
329 va_start (ap, nargs);
330 for (i = 0; i < nargs; i++)
331 gimple_call_set_arg (gs: call, index: i, va_arg (ap, tree));
332 va_end (ap);
333
334 return call;
335}
336
337
338/* Build a GIMPLE_CALL statement to internal function FN with the arguments
339 specified in vector ARGS. */
340
341gcall *
342gimple_build_call_internal_vec (enum internal_fn fn, const vec<tree> &args)
343{
344 unsigned i, nargs;
345 gcall *call;
346
347 nargs = args.length ();
348 call = gimple_build_call_internal_1 (fn, nargs);
349 for (i = 0; i < nargs; i++)
350 gimple_call_set_arg (gs: call, index: i, arg: args[i]);
351
352 return call;
353}
354
355
356/* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
357 assumed to be in GIMPLE form already. Minimal checking is done of
358 this fact. */
359
360gcall *
361gimple_build_call_from_tree (tree t, tree fnptrtype)
362{
363 unsigned i, nargs;
364 gcall *call;
365
366 gcc_assert (TREE_CODE (t) == CALL_EXPR);
367
368 nargs = call_expr_nargs (t);
369
370 tree fndecl = NULL_TREE;
371 if (CALL_EXPR_FN (t) == NULL_TREE)
372 call = gimple_build_call_internal_1 (CALL_EXPR_IFN (t), nargs);
373 else
374 {
375 fndecl = get_callee_fndecl (t);
376 call = gimple_build_call_1 (fn: fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
377 }
378
379 for (i = 0; i < nargs; i++)
380 gimple_call_set_arg (gs: call, index: i, CALL_EXPR_ARG (t, i));
381
382 gimple_set_block (g: call, TREE_BLOCK (t));
383 gimple_set_location (g: call, EXPR_LOCATION (t));
384
385 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
386 gimple_call_set_chain (call_stmt: call, CALL_EXPR_STATIC_CHAIN (t));
387 gimple_call_set_tail (s: call, CALL_EXPR_TAILCALL (t));
388 gimple_call_set_must_tail (s: call, CALL_EXPR_MUST_TAIL_CALL (t));
389 gimple_call_set_return_slot_opt (s: call, CALL_EXPR_RETURN_SLOT_OPT (t));
390 if (fndecl
391 && fndecl_built_in_p (node: fndecl, klass: BUILT_IN_NORMAL)
392 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
393 gimple_call_set_alloca_for_var (s: call, CALL_ALLOCA_FOR_VAR_P (t));
394 else if (fndecl
395 && (DECL_IS_OPERATOR_NEW_P (fndecl)
396 || DECL_IS_OPERATOR_DELETE_P (fndecl)))
397 gimple_call_set_from_new_or_delete (s: call, CALL_FROM_NEW_OR_DELETE_P (t));
398 else
399 gimple_call_set_from_thunk (s: call, CALL_FROM_THUNK_P (t));
400 gimple_call_set_va_arg_pack (s: call, CALL_EXPR_VA_ARG_PACK (t));
401 gimple_call_set_nothrow (s: call, TREE_NOTHROW (t));
402 if (fndecl)
403 gimple_call_set_expected_throw (s: call,
404 expected_throw_p: flags_from_decl_or_type (fndecl)
405 & ECF_XTHROW);
406 gimple_call_set_by_descriptor (s: call, CALL_EXPR_BY_DESCRIPTOR (t));
407 copy_warning (call, t);
408
409 if (fnptrtype)
410 {
411 gimple_call_set_fntype (call_stmt: call, TREE_TYPE (fnptrtype));
412
413 /* Check if it's an indirect CALL and the type has the
414 nocf_check attribute. In that case propagate the information
415 to the gimple CALL insn. */
416 if (!fndecl)
417 {
418 gcc_assert (POINTER_TYPE_P (fnptrtype));
419 tree fntype = TREE_TYPE (fnptrtype);
420
421 if (lookup_attribute (attr_name: "nocf_check", TYPE_ATTRIBUTES (fntype)))
422 gimple_call_set_nocf_check (gs: call, nocf_check: true);
423 }
424 }
425
426 return call;
427}
428
429/* Build a gcall to __builtin_unreachable as rewritten by
430 -fsanitize=unreachable. */
431
432gcall *
433gimple_build_builtin_unreachable (location_t loc)
434{
435 tree data = NULL_TREE;
436 tree fn = sanitize_unreachable_fn (data: &data, loc);
437 gcall *g = gimple_build_call (fn, nargs: data != NULL_TREE, data);
438 gimple_call_set_ctrl_altering (s: g, ctrl_altering_p: true);
439 gimple_set_location (g, location: loc);
440 return g;
441}
442
443/* Build a GIMPLE_ASSIGN statement.
444
445 LHS of the assignment.
446 RHS of the assignment which can be unary or binary. */
447
448gassign *
449gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
450{
451 enum tree_code subcode;
452 tree op1, op2, op3;
453
454 extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
455 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
456}
457
458
459/* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
460 OP1, OP2 and OP3. */
461
462static inline gassign *
463gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
464 tree op2, tree op3 MEM_STAT_DECL)
465{
466 unsigned num_ops;
467 gassign *p;
468
469 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
470 code). */
471 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
472
473 p = as_a <gassign *> (
474 p: gimple_build_with_ops_stat (code: GIMPLE_ASSIGN, subcode: (unsigned)subcode, num_ops
475 PASS_MEM_STAT));
476 gimple_assign_set_lhs (gs: p, lhs);
477 gimple_assign_set_rhs1 (gs: p, rhs: op1);
478 if (op2)
479 {
480 gcc_assert (num_ops > 2);
481 gimple_assign_set_rhs2 (gs: p, rhs: op2);
482 }
483
484 if (op3)
485 {
486 gcc_assert (num_ops > 3);
487 gimple_assign_set_rhs3 (gs: p, rhs: op3);
488 }
489
490 return p;
491}
492
493/* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
494 OP1, OP2 and OP3. */
495
496gassign *
497gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
498 tree op2, tree op3 MEM_STAT_DECL)
499{
500 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
501}
502
503/* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
504 OP1 and OP2. */
505
506gassign *
507gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
508 tree op2 MEM_STAT_DECL)
509{
510 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
511 PASS_MEM_STAT);
512}
513
514/* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
515
516gassign *
517gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
518{
519 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
520 PASS_MEM_STAT);
521}
522
523
524/* Build a GIMPLE_COND statement.
525
526 PRED is the condition used to compare LHS and the RHS.
527 T_LABEL is the label to jump to if the condition is true.
528 F_LABEL is the label to jump to otherwise. */
529
530gcond *
531gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
532 tree t_label, tree f_label)
533{
534 gcond *p;
535
536 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
537 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
538 gimple_cond_set_lhs (gs: p, lhs);
539 gimple_cond_set_rhs (gs: p, rhs);
540 gimple_cond_set_true_label (gs: p, label: t_label);
541 gimple_cond_set_false_label (gs: p, label: f_label);
542 return p;
543}
544
545/* Build a GIMPLE_COND statement from the conditional expression tree
546 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
547
548gcond *
549gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
550{
551 enum tree_code code;
552 tree lhs, rhs;
553
554 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
555 return gimple_build_cond (pred_code: code, lhs, rhs, t_label, f_label);
556}
557
558/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
559 boolean expression tree COND. */
560
561void
562gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
563{
564 enum tree_code code;
565 tree lhs, rhs;
566
567 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
568 gimple_cond_set_condition (stmt, code, lhs, rhs);
569}
570
571/* Build a GIMPLE_LABEL statement for LABEL. */
572
573glabel *
574gimple_build_label (tree label)
575{
576 glabel *p
577 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
578 gimple_label_set_label (gs: p, label);
579 return p;
580}
581
582/* Build a GIMPLE_GOTO statement to label DEST. */
583
584ggoto *
585gimple_build_goto (tree dest)
586{
587 ggoto *p
588 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
589 gimple_goto_set_dest (gs: p, dest);
590 return p;
591}
592
593
594/* Build a GIMPLE_NOP statement. */
595
596gimple *
597gimple_build_nop (void)
598{
599 return gimple_alloc (code: GIMPLE_NOP, num_ops: 0);
600}
601
602
603/* Build a GIMPLE_BIND statement.
604 VARS are the variables in BODY.
605 BLOCK is the containing block. */
606
607gbind *
608gimple_build_bind (tree vars, gimple_seq body, tree block)
609{
610 gbind *p = as_a <gbind *> (p: gimple_alloc (code: GIMPLE_BIND, num_ops: 0));
611 gimple_bind_set_vars (bind_stmt: p, vars);
612 if (body)
613 gimple_bind_set_body (bind_stmt: p, seq: body);
614 if (block)
615 gimple_bind_set_block (bind_stmt: p, block);
616 return p;
617}
618
619/* Helper function to set the simple fields of a asm stmt.
620
621 STRING is a pointer to a string that is the asm blocks assembly code.
622 NINPUT is the number of register inputs.
623 NOUTPUT is the number of register outputs.
624 NCLOBBERS is the number of clobbered registers.
625 */
626
627static inline gasm *
628gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
629 unsigned nclobbers, unsigned nlabels)
630{
631 gasm *p;
632 int size = strlen (s: string);
633
634 p = as_a <gasm *> (
635 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
636 ninputs + noutputs + nclobbers + nlabels));
637
638 p->ni = ninputs;
639 p->no = noutputs;
640 p->nc = nclobbers;
641 p->nl = nlabels;
642 p->string = ggc_alloc_string (contents: string, length: size);
643
644 if (GATHER_STATISTICS)
645 gimple_alloc_sizes[(int) gimple_alloc_kind (code: GIMPLE_ASM)] += size;
646
647 return p;
648}
649
650/* Build a GIMPLE_ASM statement.
651
652 STRING is the assembly code.
653 NINPUT is the number of register inputs.
654 NOUTPUT is the number of register outputs.
655 NCLOBBERS is the number of clobbered registers.
656 INPUTS is a vector of the input register parameters.
657 OUTPUTS is a vector of the output register parameters.
658 CLOBBERS is a vector of the clobbered register parameters.
659 LABELS is a vector of destination labels. */
660
661gasm *
662gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
663 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
664 vec<tree, va_gc> *labels)
665{
666 gasm *p;
667 unsigned i;
668
669 p = gimple_build_asm_1 (string,
670 ninputs: vec_safe_length (v: inputs),
671 noutputs: vec_safe_length (v: outputs),
672 nclobbers: vec_safe_length (v: clobbers),
673 nlabels: vec_safe_length (v: labels));
674
675 for (i = 0; i < vec_safe_length (v: inputs); i++)
676 gimple_asm_set_input_op (asm_stmt: p, index: i, in_op: (*inputs)[i]);
677
678 for (i = 0; i < vec_safe_length (v: outputs); i++)
679 gimple_asm_set_output_op (asm_stmt: p, index: i, out_op: (*outputs)[i]);
680
681 for (i = 0; i < vec_safe_length (v: clobbers); i++)
682 gimple_asm_set_clobber_op (asm_stmt: p, index: i, clobber_op: (*clobbers)[i]);
683
684 for (i = 0; i < vec_safe_length (v: labels); i++)
685 gimple_asm_set_label_op (asm_stmt: p, index: i, label_op: (*labels)[i]);
686
687 return p;
688}
689
690/* Build a GIMPLE_CATCH statement.
691
692 TYPES are the catch types.
693 HANDLER is the exception handler. */
694
695gcatch *
696gimple_build_catch (tree types, gimple_seq handler)
697{
698 gcatch *p = as_a <gcatch *> (p: gimple_alloc (code: GIMPLE_CATCH, num_ops: 0));
699 gimple_catch_set_types (catch_stmt: p, t: types);
700 if (handler)
701 gimple_catch_set_handler (catch_stmt: p, handler);
702
703 return p;
704}
705
706/* Build a GIMPLE_EH_FILTER statement.
707
708 TYPES are the filter's types.
709 FAILURE is the filter's failure action. */
710
711geh_filter *
712gimple_build_eh_filter (tree types, gimple_seq failure)
713{
714 geh_filter *p = as_a <geh_filter *> (p: gimple_alloc (code: GIMPLE_EH_FILTER, num_ops: 0));
715 gimple_eh_filter_set_types (eh_filter_stmt: p, types);
716 if (failure)
717 gimple_eh_filter_set_failure (eh_filter_stmt: p, failure);
718
719 return p;
720}
721
722/* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
723
724geh_mnt *
725gimple_build_eh_must_not_throw (tree decl)
726{
727 geh_mnt *p = as_a <geh_mnt *> (p: gimple_alloc (code: GIMPLE_EH_MUST_NOT_THROW, num_ops: 0));
728
729 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
730 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
731 gimple_eh_must_not_throw_set_fndecl (eh_mnt_stmt: p, decl);
732
733 return p;
734}
735
736/* Build a GIMPLE_EH_ELSE statement. */
737
738geh_else *
739gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
740{
741 geh_else *p = as_a <geh_else *> (p: gimple_alloc (code: GIMPLE_EH_ELSE, num_ops: 0));
742 gimple_eh_else_set_n_body (eh_else_stmt: p, seq: n_body);
743 gimple_eh_else_set_e_body (eh_else_stmt: p, seq: e_body);
744 return p;
745}
746
747/* Build a GIMPLE_TRY statement.
748
749 EVAL is the expression to evaluate.
750 CLEANUP is the cleanup expression.
751 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
752 whether this is a try/catch or a try/finally respectively. */
753
754gtry *
755gimple_build_try (gimple_seq eval, gimple_seq cleanup,
756 enum gimple_try_flags kind)
757{
758 gtry *p;
759
760 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
761 p = as_a <gtry *> (p: gimple_alloc (code: GIMPLE_TRY, num_ops: 0));
762 gimple_set_subcode (g: p, subcode: kind);
763 if (eval)
764 gimple_try_set_eval (try_stmt: p, eval);
765 if (cleanup)
766 gimple_try_set_cleanup (try_stmt: p, cleanup);
767
768 return p;
769}
770
771/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
772
773 CLEANUP is the cleanup expression. */
774
775gimple *
776gimple_build_wce (gimple_seq cleanup)
777{
778 gimple *p = gimple_alloc (code: GIMPLE_WITH_CLEANUP_EXPR, num_ops: 0);
779 if (cleanup)
780 gimple_wce_set_cleanup (gs: p, cleanup);
781
782 return p;
783}
784
785
786/* Build a GIMPLE_RESX statement. */
787
788gresx *
789gimple_build_resx (int region)
790{
791 gresx *p
792 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
793 p->region = region;
794 return p;
795}
796
797
798/* The helper for constructing a gimple switch statement.
799 INDEX is the switch's index.
800 NLABELS is the number of labels in the switch excluding the default.
801 DEFAULT_LABEL is the default label for the switch statement. */
802
803gswitch *
804gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
805{
806 /* nlabels + 1 default label + 1 index. */
807 gcc_checking_assert (default_label);
808 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
809 ERROR_MARK,
810 1 + 1 + nlabels));
811 gimple_switch_set_index (gs: p, index);
812 gimple_switch_set_default_label (gs: p, label: default_label);
813 return p;
814}
815
816/* Build a GIMPLE_SWITCH statement.
817
818 INDEX is the switch's index.
819 DEFAULT_LABEL is the default label
820 ARGS is a vector of labels excluding the default. */
821
822gswitch *
823gimple_build_switch (tree index, tree default_label, const vec<tree> &args)
824{
825 unsigned i, nlabels = args.length ();
826
827 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
828
829 /* Copy the labels from the vector to the switch statement. */
830 for (i = 0; i < nlabels; i++)
831 gimple_switch_set_label (gs: p, index: i + 1, label: args[i]);
832
833 return p;
834}
835
836/* Build a GIMPLE_EH_DISPATCH statement. */
837
838geh_dispatch *
839gimple_build_eh_dispatch (int region)
840{
841 geh_dispatch *p
842 = as_a <geh_dispatch *> (
843 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
844 p->region = region;
845 return p;
846}
847
848/* Build a new GIMPLE_DEBUG_BIND statement.
849
850 VAR is bound to VALUE; block and location are taken from STMT. */
851
852gdebug *
853gimple_build_debug_bind (tree var, tree value, gimple *stmt MEM_STAT_DECL)
854{
855 gdebug *p
856 = as_a <gdebug *> (p: gimple_build_with_ops_stat (code: GIMPLE_DEBUG,
857 subcode: (unsigned)GIMPLE_DEBUG_BIND, num_ops: 2
858 PASS_MEM_STAT));
859 gimple_debug_bind_set_var (dbg: p, var);
860 gimple_debug_bind_set_value (dbg: p, value);
861 if (stmt)
862 gimple_set_location (g: p, location: gimple_location (g: stmt));
863
864 return p;
865}
866
867
868/* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
869
870 VAR is bound to VALUE; block and location are taken from STMT. */
871
872gdebug *
873gimple_build_debug_source_bind (tree var, tree value,
874 gimple *stmt MEM_STAT_DECL)
875{
876 gdebug *p
877 = as_a <gdebug *> (
878 p: gimple_build_with_ops_stat (code: GIMPLE_DEBUG,
879 subcode: (unsigned)GIMPLE_DEBUG_SOURCE_BIND, num_ops: 2
880 PASS_MEM_STAT));
881
882 gimple_debug_source_bind_set_var (dbg: p, var);
883 gimple_debug_source_bind_set_value (dbg: p, value);
884 if (stmt)
885 gimple_set_location (g: p, location: gimple_location (g: stmt));
886
887 return p;
888}
889
890
891/* Build a new GIMPLE_DEBUG_BEGIN_STMT statement in BLOCK at
892 LOCATION. */
893
894gdebug *
895gimple_build_debug_begin_stmt (tree block, location_t location
896 MEM_STAT_DECL)
897{
898 gdebug *p
899 = as_a <gdebug *> (
900 p: gimple_build_with_ops_stat (code: GIMPLE_DEBUG,
901 subcode: (unsigned)GIMPLE_DEBUG_BEGIN_STMT, num_ops: 0
902 PASS_MEM_STAT));
903
904 gimple_set_location (g: p, location);
905 gimple_set_block (g: p, block);
906 cfun->debug_marker_count++;
907
908 return p;
909}
910
911
912/* Build a new GIMPLE_DEBUG_INLINE_ENTRY statement in BLOCK at
913 LOCATION. The BLOCK links to the inlined function. */
914
915gdebug *
916gimple_build_debug_inline_entry (tree block, location_t location
917 MEM_STAT_DECL)
918{
919 gdebug *p
920 = as_a <gdebug *> (
921 p: gimple_build_with_ops_stat (code: GIMPLE_DEBUG,
922 subcode: (unsigned)GIMPLE_DEBUG_INLINE_ENTRY, num_ops: 0
923 PASS_MEM_STAT));
924
925 gimple_set_location (g: p, location);
926 gimple_set_block (g: p, block);
927 cfun->debug_marker_count++;
928
929 return p;
930}
931
932
933/* Build a GIMPLE_OMP_CRITICAL statement.
934
935 BODY is the sequence of statements for which only one thread can execute.
936 NAME is optional identifier for this critical block.
937 CLAUSES are clauses for this critical block. */
938
939gomp_critical *
940gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
941{
942 gomp_critical *p
943 = as_a <gomp_critical *> (p: gimple_alloc (code: GIMPLE_OMP_CRITICAL, num_ops: 0));
944 gimple_omp_critical_set_name (crit_stmt: p, name);
945 gimple_omp_critical_set_clauses (crit_stmt: p, clauses);
946 if (body)
947 gimple_omp_set_body (gs: p, body);
948
949 return p;
950}
951
952/* Build a GIMPLE_OMP_FOR statement.
953
954 BODY is sequence of statements inside the for loop.
955 KIND is the `for' variant.
956 CLAUSES are any of the construct's clauses.
957 COLLAPSE is the collapse count.
958 PRE_BODY is the sequence of statements that are loop invariant. */
959
960gomp_for *
961gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
962 gimple_seq pre_body)
963{
964 gomp_for *p = as_a <gomp_for *> (p: gimple_alloc (code: GIMPLE_OMP_FOR, num_ops: 0));
965 if (body)
966 gimple_omp_set_body (gs: p, body);
967 gimple_omp_for_set_clauses (gs: p, clauses);
968 gimple_omp_for_set_kind (g: p, kind);
969 p->collapse = collapse;
970 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (c: collapse);
971
972 if (pre_body)
973 gimple_omp_for_set_pre_body (gs: p, pre_body);
974
975 return p;
976}
977
978
979/* Build a GIMPLE_OMP_PARALLEL statement.
980
981 BODY is sequence of statements which are executed in parallel.
982 CLAUSES are the OMP parallel construct's clauses.
983 CHILD_FN is the function created for the parallel threads to execute.
984 DATA_ARG are the shared data argument(s). */
985
986gomp_parallel *
987gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
988 tree data_arg)
989{
990 gomp_parallel *p
991 = as_a <gomp_parallel *> (p: gimple_alloc (code: GIMPLE_OMP_PARALLEL, num_ops: 0));
992 if (body)
993 gimple_omp_set_body (gs: p, body);
994 gimple_omp_parallel_set_clauses (omp_parallel_stmt: p, clauses);
995 gimple_omp_parallel_set_child_fn (omp_parallel_stmt: p, child_fn);
996 gimple_omp_parallel_set_data_arg (omp_parallel_stmt: p, data_arg);
997
998 return p;
999}
1000
1001
1002/* Build a GIMPLE_OMP_TASK statement.
1003
1004 BODY is sequence of statements which are executed by the explicit task.
1005 CLAUSES are the OMP task construct's clauses.
1006 CHILD_FN is the function created for the parallel threads to execute.
1007 DATA_ARG are the shared data argument(s).
1008 COPY_FN is the optional function for firstprivate initialization.
1009 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
1010
1011gomp_task *
1012gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
1013 tree data_arg, tree copy_fn, tree arg_size,
1014 tree arg_align)
1015{
1016 gomp_task *p = as_a <gomp_task *> (p: gimple_alloc (code: GIMPLE_OMP_TASK, num_ops: 0));
1017 if (body)
1018 gimple_omp_set_body (gs: p, body);
1019 gimple_omp_task_set_clauses (gs: p, clauses);
1020 gimple_omp_task_set_child_fn (gs: p, child_fn);
1021 gimple_omp_task_set_data_arg (gs: p, data_arg);
1022 gimple_omp_task_set_copy_fn (gs: p, copy_fn);
1023 gimple_omp_task_set_arg_size (gs: p, arg_size);
1024 gimple_omp_task_set_arg_align (gs: p, arg_align);
1025
1026 return p;
1027}
1028
1029
1030/* Build a GIMPLE_OMP_SECTION statement for a sections statement.
1031
1032 BODY is the sequence of statements in the section. */
1033
1034gimple *
1035gimple_build_omp_section (gimple_seq body)
1036{
1037 gimple *p = gimple_alloc (code: GIMPLE_OMP_SECTION, num_ops: 0);
1038 if (body)
1039 gimple_omp_set_body (gs: p, body);
1040
1041 return p;
1042}
1043
1044
1045/* Build a GIMPLE_OMP_STRUCTURED_BLOCK statement.
1046
1047 BODY is the structured block sequence. */
1048
1049gimple *
1050gimple_build_omp_structured_block (gimple_seq body)
1051{
1052 gimple *p = gimple_alloc (code: GIMPLE_OMP_STRUCTURED_BLOCK, num_ops: 0);
1053 if (body)
1054 gimple_omp_set_body (gs: p, body);
1055
1056 return p;
1057}
1058
1059
1060/* Build a GIMPLE_OMP_MASTER statement.
1061
1062 BODY is the sequence of statements to be executed by just the master. */
1063
1064gimple *
1065gimple_build_omp_master (gimple_seq body)
1066{
1067 gimple *p = gimple_alloc (code: GIMPLE_OMP_MASTER, num_ops: 0);
1068 if (body)
1069 gimple_omp_set_body (gs: p, body);
1070
1071 return p;
1072}
1073
1074/* Build a GIMPLE_OMP_MASKED statement.
1075
1076 BODY is the sequence of statements to be executed by the selected thread(s). */
1077
1078gimple *
1079gimple_build_omp_masked (gimple_seq body, tree clauses)
1080{
1081 gimple *p = gimple_alloc (code: GIMPLE_OMP_MASKED, num_ops: 0);
1082 gimple_omp_masked_set_clauses (gs: p, clauses);
1083 if (body)
1084 gimple_omp_set_body (gs: p, body);
1085
1086 return p;
1087}
1088
1089/* Build a GIMPLE_OMP_TASKGROUP statement.
1090
1091 BODY is the sequence of statements to be executed by the taskgroup
1092 construct.
1093 CLAUSES are any of the construct's clauses. */
1094
1095gimple *
1096gimple_build_omp_taskgroup (gimple_seq body, tree clauses)
1097{
1098 gimple *p = gimple_alloc (code: GIMPLE_OMP_TASKGROUP, num_ops: 0);
1099 gimple_omp_taskgroup_set_clauses (gs: p, clauses);
1100 if (body)
1101 gimple_omp_set_body (gs: p, body);
1102
1103 return p;
1104}
1105
1106
1107/* Build a GIMPLE_OMP_CONTINUE statement.
1108
1109 CONTROL_DEF is the definition of the control variable.
1110 CONTROL_USE is the use of the control variable. */
1111
1112gomp_continue *
1113gimple_build_omp_continue (tree control_def, tree control_use)
1114{
1115 gomp_continue *p
1116 = as_a <gomp_continue *> (p: gimple_alloc (code: GIMPLE_OMP_CONTINUE, num_ops: 0));
1117 gimple_omp_continue_set_control_def (cont_stmt: p, def: control_def);
1118 gimple_omp_continue_set_control_use (cont_stmt: p, use: control_use);
1119 return p;
1120}
1121
1122/* Build a GIMPLE_OMP_ORDERED statement.
1123
1124 BODY is the sequence of statements inside a loop that will executed in
1125 sequence.
1126 CLAUSES are clauses for this statement. */
1127
1128gomp_ordered *
1129gimple_build_omp_ordered (gimple_seq body, tree clauses)
1130{
1131 gomp_ordered *p
1132 = as_a <gomp_ordered *> (p: gimple_alloc (code: GIMPLE_OMP_ORDERED, num_ops: 0));
1133 gimple_omp_ordered_set_clauses (ord_stmt: p, clauses);
1134 if (body)
1135 gimple_omp_set_body (gs: p, body);
1136
1137 return p;
1138}
1139
1140
1141/* Build a GIMPLE_OMP_RETURN statement.
1142 WAIT_P is true if this is a non-waiting return. */
1143
1144gimple *
1145gimple_build_omp_return (bool wait_p)
1146{
1147 gimple *p = gimple_alloc (code: GIMPLE_OMP_RETURN, num_ops: 0);
1148 if (wait_p)
1149 gimple_omp_return_set_nowait (s: p);
1150
1151 return p;
1152}
1153
1154
1155/* Build a GIMPLE_OMP_SCAN statement.
1156
1157 BODY is the sequence of statements to be executed by the scan
1158 construct.
1159 CLAUSES are any of the construct's clauses. */
1160
1161gomp_scan *
1162gimple_build_omp_scan (gimple_seq body, tree clauses)
1163{
1164 gomp_scan *p
1165 = as_a <gomp_scan *> (p: gimple_alloc (code: GIMPLE_OMP_SCAN, num_ops: 0));
1166 gimple_omp_scan_set_clauses (scan_stmt: p, clauses);
1167 if (body)
1168 gimple_omp_set_body (gs: p, body);
1169
1170 return p;
1171}
1172
1173
1174/* Build a GIMPLE_OMP_SECTIONS statement.
1175
1176 BODY is a sequence of section statements.
1177 CLAUSES are any of the OMP sections contsruct's clauses: private,
1178 firstprivate, lastprivate, reduction, and nowait. */
1179
1180gomp_sections *
1181gimple_build_omp_sections (gimple_seq body, tree clauses)
1182{
1183 gomp_sections *p
1184 = as_a <gomp_sections *> (p: gimple_alloc (code: GIMPLE_OMP_SECTIONS, num_ops: 0));
1185 if (body)
1186 gimple_omp_set_body (gs: p, body);
1187 gimple_omp_sections_set_clauses (gs: p, clauses);
1188
1189 return p;
1190}
1191
1192
1193/* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1194
1195gimple *
1196gimple_build_omp_sections_switch (void)
1197{
1198 return gimple_alloc (code: GIMPLE_OMP_SECTIONS_SWITCH, num_ops: 0);
1199}
1200
1201
1202/* Build a GIMPLE_OMP_SINGLE statement.
1203
1204 BODY is the sequence of statements that will be executed once.
1205 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1206 copyprivate, nowait. */
1207
1208gomp_single *
1209gimple_build_omp_single (gimple_seq body, tree clauses)
1210{
1211 gomp_single *p
1212 = as_a <gomp_single *> (p: gimple_alloc (code: GIMPLE_OMP_SINGLE, num_ops: 0));
1213 if (body)
1214 gimple_omp_set_body (gs: p, body);
1215 gimple_omp_single_set_clauses (omp_single_stmt: p, clauses);
1216
1217 return p;
1218}
1219
1220
1221/* Build a GIMPLE_OMP_SCOPE statement.
1222
1223 BODY is the sequence of statements that will be executed once.
1224 CLAUSES are any of the OMP scope construct's clauses: private, reduction,
1225 nowait. */
1226
1227gimple *
1228gimple_build_omp_scope (gimple_seq body, tree clauses)
1229{
1230 gimple *p = gimple_alloc (code: GIMPLE_OMP_SCOPE, num_ops: 0);
1231 gimple_omp_scope_set_clauses (gs: p, clauses);
1232 if (body)
1233 gimple_omp_set_body (gs: p, body);
1234
1235 return p;
1236}
1237
1238
1239/* Build a GIMPLE_OMP_TARGET statement.
1240
1241 BODY is the sequence of statements that will be executed.
1242 KIND is the kind of the region.
1243 CLAUSES are any of the construct's clauses. */
1244
1245gomp_target *
1246gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1247{
1248 gomp_target *p
1249 = as_a <gomp_target *> (p: gimple_alloc (code: GIMPLE_OMP_TARGET, num_ops: 0));
1250 if (body)
1251 gimple_omp_set_body (gs: p, body);
1252 gimple_omp_target_set_clauses (omp_target_stmt: p, clauses);
1253 gimple_omp_target_set_kind (g: p, kind);
1254
1255 return p;
1256}
1257
1258
1259/* Build a GIMPLE_OMP_TEAMS statement.
1260
1261 BODY is the sequence of statements that will be executed.
1262 CLAUSES are any of the OMP teams construct's clauses. */
1263
1264gomp_teams *
1265gimple_build_omp_teams (gimple_seq body, tree clauses)
1266{
1267 gomp_teams *p = as_a <gomp_teams *> (p: gimple_alloc (code: GIMPLE_OMP_TEAMS, num_ops: 0));
1268 if (body)
1269 gimple_omp_set_body (gs: p, body);
1270 gimple_omp_teams_set_clauses (omp_teams_stmt: p, clauses);
1271
1272 return p;
1273}
1274
1275
1276/* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1277
1278gomp_atomic_load *
1279gimple_build_omp_atomic_load (tree lhs, tree rhs, enum omp_memory_order mo)
1280{
1281 gomp_atomic_load *p
1282 = as_a <gomp_atomic_load *> (p: gimple_alloc (code: GIMPLE_OMP_ATOMIC_LOAD, num_ops: 0));
1283 gimple_omp_atomic_load_set_lhs (load_stmt: p, lhs);
1284 gimple_omp_atomic_load_set_rhs (load_stmt: p, rhs);
1285 gimple_omp_atomic_set_memory_order (g: p, mo);
1286 return p;
1287}
1288
1289/* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1290
1291 VAL is the value we are storing. */
1292
1293gomp_atomic_store *
1294gimple_build_omp_atomic_store (tree val, enum omp_memory_order mo)
1295{
1296 gomp_atomic_store *p
1297 = as_a <gomp_atomic_store *> (p: gimple_alloc (code: GIMPLE_OMP_ATOMIC_STORE, num_ops: 0));
1298 gimple_omp_atomic_store_set_val (store_stmt: p, val);
1299 gimple_omp_atomic_set_memory_order (g: p, mo);
1300 return p;
1301}
1302
1303/* Build a GIMPLE_ASSUME statement. */
1304
1305gimple *
1306gimple_build_assume (tree guard, gimple_seq body)
1307{
1308 gimple_statement_assume *p
1309 = as_a <gimple_statement_assume *> (p: gimple_alloc (code: GIMPLE_ASSUME, num_ops: 0));
1310 gimple_assume_set_guard (gs: p, guard);
1311 *gimple_assume_body_ptr (gs: p) = body;
1312 return p;
1313}
1314
1315/* Build a GIMPLE_TRANSACTION statement. */
1316
1317gtransaction *
1318gimple_build_transaction (gimple_seq body)
1319{
1320 gtransaction *p
1321 = as_a <gtransaction *> (p: gimple_alloc (code: GIMPLE_TRANSACTION, num_ops: 0));
1322 gimple_transaction_set_body (transaction_stmt: p, body);
1323 gimple_transaction_set_label_norm (transaction_stmt: p, label: 0);
1324 gimple_transaction_set_label_uninst (transaction_stmt: p, label: 0);
1325 gimple_transaction_set_label_over (transaction_stmt: p, label: 0);
1326 return p;
1327}
1328
1329#if defined ENABLE_GIMPLE_CHECKING
1330/* Complain of a gimple type mismatch and die. */
1331
1332void
1333gimple_check_failed (const gimple *gs, const char *file, int line,
1334 const char *function, enum gimple_code code,
1335 enum tree_code subcode)
1336{
1337 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1338 gimple_code_name[code],
1339 get_tree_code_name (subcode),
1340 gimple_code_name[gimple_code (g: gs)],
1341 gs->subcode > 0
1342 ? get_tree_code_name ((enum tree_code) gs->subcode)
1343 : "",
1344 function, trim_filename (file), line);
1345}
1346#endif /* ENABLE_GIMPLE_CHECKING */
1347
1348
1349/* Link gimple statement GS to the end of the sequence *SEQ_P. If
1350 *SEQ_P is NULL, a new sequence is allocated. */
1351
1352void
1353gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1354{
1355 gimple_stmt_iterator si;
1356 if (gs == NULL)
1357 return;
1358
1359 si = gsi_last (seq&: *seq_p);
1360 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1361}
1362
1363/* Link gimple statement GS to the end of the sequence *SEQ_P. If
1364 *SEQ_P is NULL, a new sequence is allocated. This function is
1365 similar to gimple_seq_add_stmt, but does not scan the operands.
1366 During gimplification, we need to manipulate statement sequences
1367 before the def/use vectors have been constructed. */
1368
1369void
1370gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1371{
1372 gimple_stmt_iterator si;
1373
1374 if (gs == NULL)
1375 return;
1376
1377 si = gsi_last (seq&: *seq_p);
1378 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1379}
1380
1381/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1382 NULL, a new sequence is allocated. */
1383
1384void
1385gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1386{
1387 gimple_stmt_iterator si;
1388 if (src == NULL)
1389 return;
1390
1391 si = gsi_last (seq&: *dst_p);
1392 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1393}
1394
1395/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1396 NULL, a new sequence is allocated. This function is
1397 similar to gimple_seq_add_seq, but does not scan the operands. */
1398
1399void
1400gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1401{
1402 gimple_stmt_iterator si;
1403 if (src == NULL)
1404 return;
1405
1406 si = gsi_last (seq&: *dst_p);
1407 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1408}
1409
1410/* Determine whether to assign a location to the statement GS. */
1411
1412static bool
1413should_carry_location_p (gimple *gs)
1414{
1415 /* Don't emit a line note for a label. We particularly don't want to
1416 emit one for the break label, since it doesn't actually correspond
1417 to the beginning of the loop/switch. */
1418 if (gimple_code (g: gs) == GIMPLE_LABEL)
1419 return false;
1420
1421 return true;
1422}
1423
1424/* Set the location for gimple statement GS to LOCATION. */
1425
1426static void
1427annotate_one_with_location (gimple *gs, location_t location)
1428{
1429 if (!gimple_has_location (g: gs)
1430 && !gimple_do_not_emit_location_p (g: gs)
1431 && should_carry_location_p (gs))
1432 gimple_set_location (g: gs, location);
1433}
1434
1435/* Set LOCATION for all the statements after iterator GSI in sequence
1436 SEQ. If GSI is pointing to the end of the sequence, start with the
1437 first statement in SEQ. */
1438
1439void
1440annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1441 location_t location)
1442{
1443 if (gsi_end_p (i: gsi))
1444 gsi = gsi_start (seq);
1445 else
1446 gsi_next (i: &gsi);
1447
1448 for (; !gsi_end_p (i: gsi); gsi_next (i: &gsi))
1449 annotate_one_with_location (gs: gsi_stmt (i: gsi), location);
1450}
1451
1452/* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1453
1454void
1455annotate_all_with_location (gimple_seq stmt_p, location_t location)
1456{
1457 gimple_stmt_iterator i;
1458
1459 if (gimple_seq_empty_p (s: stmt_p))
1460 return;
1461
1462 for (i = gsi_start (seq&: stmt_p); !gsi_end_p (i); gsi_next (i: &i))
1463 {
1464 gimple *gs = gsi_stmt (i);
1465 annotate_one_with_location (gs, location);
1466 }
1467}
1468
1469/* Helper function of empty_body_p. Return true if STMT is an empty
1470 statement. */
1471
1472static bool
1473empty_stmt_p (gimple *stmt)
1474{
1475 if (gimple_code (g: stmt) == GIMPLE_NOP)
1476 return true;
1477 if (gbind *bind_stmt = dyn_cast <gbind *> (p: stmt))
1478 return empty_body_p (gimple_bind_body (gs: bind_stmt));
1479 return false;
1480}
1481
1482
1483/* Return true if BODY contains nothing but empty statements. */
1484
1485bool
1486empty_body_p (gimple_seq body)
1487{
1488 gimple_stmt_iterator i;
1489
1490 if (gimple_seq_empty_p (s: body))
1491 return true;
1492 for (i = gsi_start (seq&: body); !gsi_end_p (i); gsi_next (i: &i))
1493 if (!empty_stmt_p (stmt: gsi_stmt (i))
1494 && !is_gimple_debug (gs: gsi_stmt (i)))
1495 return false;
1496
1497 return true;
1498}
1499
1500
1501/* Perform a deep copy of sequence SRC and return the result. */
1502
1503gimple_seq
1504gimple_seq_copy (gimple_seq src)
1505{
1506 gimple_stmt_iterator gsi;
1507 gimple_seq new_seq = NULL;
1508 gimple *stmt;
1509
1510 for (gsi = gsi_start (seq&: src); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
1511 {
1512 stmt = gimple_copy (gsi_stmt (i: gsi));
1513 gimple_seq_add_stmt (seq_p: &new_seq, gs: stmt);
1514 }
1515
1516 return new_seq;
1517}
1518
1519
1520
1521/* Return true if calls C1 and C2 are known to go to the same function. */
1522
1523bool
1524gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1525{
1526 if (gimple_call_internal_p (gs: c1))
1527 return (gimple_call_internal_p (gs: c2)
1528 && gimple_call_internal_fn (gs: c1) == gimple_call_internal_fn (gs: c2)
1529 && (!gimple_call_internal_unique_p (gs: as_a <const gcall *> (p: c1))
1530 || c1 == c2));
1531 else
1532 return (gimple_call_fn (gs: c1) == gimple_call_fn (gs: c2)
1533 || (gimple_call_fndecl (gs: c1)
1534 && gimple_call_fndecl (gs: c1) == gimple_call_fndecl (gs: c2)));
1535}
1536
1537/* Detect flags from a GIMPLE_CALL. This is just like
1538 call_expr_flags, but for gimple tuples. */
1539
1540int
1541gimple_call_flags (const gimple *stmt)
1542{
1543 int flags = 0;
1544
1545 if (gimple_call_internal_p (gs: stmt))
1546 flags = internal_fn_flags (fn: gimple_call_internal_fn (gs: stmt));
1547 else
1548 {
1549 tree decl = gimple_call_fndecl (gs: stmt);
1550 if (decl)
1551 flags = flags_from_decl_or_type (decl);
1552 flags |= flags_from_decl_or_type (gimple_call_fntype (gs: stmt));
1553 }
1554
1555 if (stmt->subcode & GF_CALL_NOTHROW)
1556 flags |= ECF_NOTHROW;
1557 if (stmt->subcode & GF_CALL_XTHROW)
1558 flags |= ECF_XTHROW;
1559
1560 if (stmt->subcode & GF_CALL_BY_DESCRIPTOR)
1561 flags |= ECF_BY_DESCRIPTOR;
1562
1563 return flags;
1564}
1565
1566/* Return the "fn spec" string for call STMT. */
1567
1568attr_fnspec
1569gimple_call_fnspec (const gcall *stmt)
1570{
1571 tree type, attr;
1572
1573 if (gimple_call_internal_p (gs: stmt))
1574 {
1575 const_tree spec = internal_fn_fnspec (fn: gimple_call_internal_fn (gs: stmt));
1576 if (spec)
1577 return spec;
1578 else
1579 return "";
1580 }
1581
1582 type = gimple_call_fntype (gs: stmt);
1583 if (type)
1584 {
1585 attr = lookup_attribute (attr_name: "fn spec", TYPE_ATTRIBUTES (type));
1586 if (attr)
1587 return TREE_VALUE (TREE_VALUE (attr));
1588 }
1589 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1590 return builtin_fnspec (gimple_call_fndecl (gs: stmt));
1591 tree fndecl = gimple_call_fndecl (gs: stmt);
1592 /* If the call is to a replaceable operator delete and results
1593 from a delete expression as opposed to a direct call to
1594 such operator, then we can treat it as free. */
1595 if (fndecl
1596 && DECL_IS_OPERATOR_DELETE_P (fndecl)
1597 && DECL_IS_REPLACEABLE_OPERATOR (fndecl)
1598 && gimple_call_from_new_or_delete (s: stmt))
1599 return ". o ";
1600 /* Similarly operator new can be treated as malloc. */
1601 if (fndecl
1602 && DECL_IS_REPLACEABLE_OPERATOR_NEW_P (fndecl)
1603 && gimple_call_from_new_or_delete (s: stmt))
1604 return "m ";
1605 return "";
1606}
1607
1608/* Detects argument flags for argument number ARG on call STMT. */
1609
1610int
1611gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1612{
1613 attr_fnspec fnspec = gimple_call_fnspec (stmt);
1614 int flags = 0;
1615
1616 if (fnspec.known_p ())
1617 flags = fnspec.arg_eaf_flags (i: arg);
1618 tree callee = gimple_call_fndecl (gs: stmt);
1619 if (callee)
1620 {
1621 cgraph_node *node = cgraph_node::get (decl: callee);
1622 modref_summary *summary = node ? get_modref_function_summary (func: node)
1623 : NULL;
1624
1625 if (summary && summary->arg_flags.length () > arg)
1626 {
1627 int modref_flags = summary->arg_flags[arg];
1628
1629 /* We have possibly optimized out load. Be conservative here. */
1630 if (!node->binds_to_current_def_p ())
1631 modref_flags = interposable_eaf_flags (modref_flags, flags);
1632 if (dbg_cnt (index: ipa_mod_ref_pta))
1633 flags |= modref_flags;
1634 }
1635 }
1636 return flags;
1637}
1638
1639/* Detects argument flags for return slot on call STMT. */
1640
1641int
1642gimple_call_retslot_flags (const gcall *stmt)
1643{
1644 int flags = implicit_retslot_eaf_flags;
1645
1646 tree callee = gimple_call_fndecl (gs: stmt);
1647 if (callee)
1648 {
1649 cgraph_node *node = cgraph_node::get (decl: callee);
1650 modref_summary *summary = node ? get_modref_function_summary (func: node)
1651 : NULL;
1652
1653 if (summary)
1654 {
1655 int modref_flags = summary->retslot_flags;
1656
1657 /* We have possibly optimized out load. Be conservative here. */
1658 if (!node->binds_to_current_def_p ())
1659 modref_flags = interposable_eaf_flags (modref_flags, flags);
1660 if (dbg_cnt (index: ipa_mod_ref_pta))
1661 flags |= modref_flags;
1662 }
1663 }
1664 return flags;
1665}
1666
1667/* Detects argument flags for static chain on call STMT. */
1668
1669int
1670gimple_call_static_chain_flags (const gcall *stmt)
1671{
1672 int flags = 0;
1673
1674 tree callee = gimple_call_fndecl (gs: stmt);
1675 if (callee)
1676 {
1677 cgraph_node *node = cgraph_node::get (decl: callee);
1678 modref_summary *summary = node ? get_modref_function_summary (func: node)
1679 : NULL;
1680
1681 /* Nested functions should always bind to current def since
1682 there is no public ABI for them. */
1683 gcc_checking_assert (node->binds_to_current_def_p ());
1684 if (summary)
1685 {
1686 int modref_flags = summary->static_chain_flags;
1687
1688 if (dbg_cnt (index: ipa_mod_ref_pta))
1689 flags |= modref_flags;
1690 }
1691 }
1692 return flags;
1693}
1694
1695/* Detects return flags for the call STMT. */
1696
1697int
1698gimple_call_return_flags (const gcall *stmt)
1699{
1700 if (gimple_call_flags (stmt) & ECF_MALLOC)
1701 return ERF_NOALIAS;
1702
1703 attr_fnspec fnspec = gimple_call_fnspec (stmt);
1704
1705 unsigned int arg_no;
1706 if (fnspec.returns_arg (arg_no: &arg_no))
1707 return ERF_RETURNS_ARG | arg_no;
1708
1709 if (fnspec.returns_noalias_p ())
1710 return ERF_NOALIAS;
1711 return 0;
1712}
1713
1714
1715/* Return true if call STMT is known to return a non-zero result. */
1716
1717bool
1718gimple_call_nonnull_result_p (gcall *call)
1719{
1720 tree fndecl = gimple_call_fndecl (gs: call);
1721 if (!fndecl)
1722 return false;
1723 if (flag_delete_null_pointer_checks && !flag_check_new
1724 && DECL_IS_OPERATOR_NEW_P (fndecl)
1725 && !TREE_NOTHROW (fndecl))
1726 return true;
1727
1728 /* References are always non-NULL. */
1729 if (flag_delete_null_pointer_checks
1730 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
1731 return true;
1732
1733 if (flag_delete_null_pointer_checks
1734 && lookup_attribute (attr_name: "returns_nonnull",
1735 TYPE_ATTRIBUTES (gimple_call_fntype (call))))
1736 return true;
1737 return gimple_alloca_call_p (call);
1738}
1739
1740
1741/* If CALL returns a non-null result in an argument, return that arg. */
1742
1743tree
1744gimple_call_nonnull_arg (gcall *call)
1745{
1746 tree fndecl = gimple_call_fndecl (gs: call);
1747 if (!fndecl)
1748 return NULL_TREE;
1749
1750 unsigned rf = gimple_call_return_flags (stmt: call);
1751 if (rf & ERF_RETURNS_ARG)
1752 {
1753 unsigned argnum = rf & ERF_RETURN_ARG_MASK;
1754 if (argnum < gimple_call_num_args (gs: call))
1755 {
1756 tree arg = gimple_call_arg (gs: call, index: argnum);
1757 if (SSA_VAR_P (arg)
1758 && infer_nonnull_range_by_attribute (call, arg))
1759 return arg;
1760 }
1761 }
1762 return NULL_TREE;
1763}
1764
1765
1766/* Return true if GS is a copy assignment. */
1767
1768bool
1769gimple_assign_copy_p (gimple *gs)
1770{
1771 return (gimple_assign_single_p (gs)
1772 && is_gimple_val (gimple_op (gs, i: 1)));
1773}
1774
1775
1776/* Return true if GS is a SSA_NAME copy assignment. */
1777
1778bool
1779gimple_assign_ssa_name_copy_p (gimple *gs)
1780{
1781 return (gimple_assign_single_p (gs)
1782 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1783 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1784}
1785
1786
1787/* Return true if GS is an assignment with a unary RHS, but the
1788 operator has no effect on the assigned value. The logic is adapted
1789 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1790 instances in which STRIP_NOPS was previously applied to the RHS of
1791 an assignment.
1792
1793 NOTE: In the use cases that led to the creation of this function
1794 and of gimple_assign_single_p, it is typical to test for either
1795 condition and to proceed in the same manner. In each case, the
1796 assigned value is represented by the single RHS operand of the
1797 assignment. I suspect there may be cases where gimple_assign_copy_p,
1798 gimple_assign_single_p, or equivalent logic is used where a similar
1799 treatment of unary NOPs is appropriate. */
1800
1801bool
1802gimple_assign_unary_nop_p (gimple *gs)
1803{
1804 return (is_gimple_assign (gs)
1805 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1806 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1807 && gimple_assign_rhs1 (gs) != error_mark_node
1808 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1809 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1810}
1811
1812/* Return true if GS is an assignment that loads from its rhs1. */
1813
1814bool
1815gimple_assign_load_p (const gimple *gs)
1816{
1817 tree rhs;
1818 if (!gimple_assign_single_p (gs))
1819 return false;
1820 rhs = gimple_assign_rhs1 (gs);
1821 if (TREE_CODE (rhs) == WITH_SIZE_EXPR)
1822 return true;
1823 if (handled_component_p (t: rhs))
1824 rhs = TREE_OPERAND (rhs, 0);
1825 return (handled_component_p (t: rhs)
1826 || DECL_P (rhs)
1827 || TREE_CODE (rhs) == MEM_REF
1828 || TREE_CODE (rhs) == TARGET_MEM_REF);
1829}
1830
1831
1832/* Set BB to be the basic block holding G. */
1833
1834void
1835gimple_set_bb (gimple *stmt, basic_block bb)
1836{
1837 stmt->bb = bb;
1838
1839 if (gimple_code (g: stmt) != GIMPLE_LABEL)
1840 return;
1841
1842 /* If the statement is a label, add the label to block-to-labels map
1843 so that we can speed up edge creation for GIMPLE_GOTOs. */
1844 if (cfun->cfg)
1845 {
1846 tree t;
1847 int uid;
1848
1849 t = gimple_label_label (gs: as_a <glabel *> (p: stmt));
1850 uid = LABEL_DECL_UID (t);
1851 if (uid == -1)
1852 {
1853 unsigned old_len =
1854 vec_safe_length (label_to_block_map_for_fn (cfun));
1855 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1856 if (old_len <= (unsigned) uid)
1857 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun), len: uid + 1);
1858 }
1859
1860 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1861 }
1862}
1863
1864
1865/* Modify the RHS of the assignment pointed-to by GSI using the
1866 operands in the expression tree EXPR.
1867
1868 NOTE: The statement pointed-to by GSI may be reallocated if it
1869 did not have enough operand slots.
1870
1871 This function is useful to convert an existing tree expression into
1872 the flat representation used for the RHS of a GIMPLE assignment.
1873 It will reallocate memory as needed to expand or shrink the number
1874 of operand slots needed to represent EXPR.
1875
1876 NOTE: If you find yourself building a tree and then calling this
1877 function, you are most certainly doing it the slow way. It is much
1878 better to build a new assignment or to use the function
1879 gimple_assign_set_rhs_with_ops, which does not require an
1880 expression tree to be built. */
1881
1882void
1883gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1884{
1885 enum tree_code subcode;
1886 tree op1, op2, op3;
1887
1888 extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1889 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1890}
1891
1892
1893/* Set the RHS of assignment statement pointed-to by GSI to CODE with
1894 operands OP1, OP2 and OP3.
1895
1896 NOTE: The statement pointed-to by GSI may be reallocated if it
1897 did not have enough operand slots. */
1898
1899void
1900gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1901 tree op1, tree op2, tree op3)
1902{
1903 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1904 gimple *stmt = gsi_stmt (i: *gsi);
1905 gimple *old_stmt = stmt;
1906
1907 /* If the new CODE needs more operands, allocate a new statement. */
1908 if (gimple_num_ops (gs: stmt) < new_rhs_ops + 1)
1909 {
1910 tree lhs = gimple_assign_lhs (gs: old_stmt);
1911 stmt = gimple_alloc (code: gimple_code (g: old_stmt), num_ops: new_rhs_ops + 1);
1912 memcpy (dest: stmt, src: old_stmt, n: gimple_size (code: gimple_code (g: old_stmt)));
1913 gimple_init_singleton (g: stmt);
1914
1915 /* The LHS needs to be reset as this also changes the SSA name
1916 on the LHS. */
1917 gimple_assign_set_lhs (gs: stmt, lhs);
1918 }
1919
1920 gimple_set_num_ops (gs: stmt, num_ops: new_rhs_ops + 1);
1921 gimple_set_subcode (g: stmt, subcode: code);
1922 gimple_assign_set_rhs1 (gs: stmt, rhs: op1);
1923 if (new_rhs_ops > 1)
1924 gimple_assign_set_rhs2 (gs: stmt, rhs: op2);
1925 if (new_rhs_ops > 2)
1926 gimple_assign_set_rhs3 (gs: stmt, rhs: op3);
1927 if (stmt != old_stmt)
1928 gsi_replace (gsi, stmt, false);
1929}
1930
1931
1932/* Return the LHS of a statement that performs an assignment,
1933 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1934 for a call to a function that returns no value, or for a
1935 statement other than an assignment or a call. */
1936
1937tree
1938gimple_get_lhs (const gimple *stmt)
1939{
1940 enum gimple_code code = gimple_code (g: stmt);
1941
1942 if (code == GIMPLE_ASSIGN)
1943 return gimple_assign_lhs (gs: stmt);
1944 else if (code == GIMPLE_CALL)
1945 return gimple_call_lhs (gs: stmt);
1946 else if (code == GIMPLE_PHI)
1947 return gimple_phi_result (gs: stmt);
1948 else
1949 return NULL_TREE;
1950}
1951
1952
1953/* Set the LHS of a statement that performs an assignment,
1954 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1955
1956void
1957gimple_set_lhs (gimple *stmt, tree lhs)
1958{
1959 enum gimple_code code = gimple_code (g: stmt);
1960
1961 if (code == GIMPLE_ASSIGN)
1962 gimple_assign_set_lhs (gs: stmt, lhs);
1963 else if (code == GIMPLE_CALL)
1964 gimple_call_set_lhs (gs: stmt, lhs);
1965 else
1966 gcc_unreachable ();
1967}
1968
1969
1970/* Return a deep copy of statement STMT. All the operands from STMT
1971 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1972 and VUSE operand arrays are set to empty in the new copy. The new
1973 copy isn't part of any sequence. */
1974
1975gimple *
1976gimple_copy (gimple *stmt)
1977{
1978 enum gimple_code code = gimple_code (g: stmt);
1979 unsigned num_ops = gimple_num_ops (gs: stmt);
1980 gimple *copy = gimple_alloc (code, num_ops);
1981 unsigned i;
1982
1983 /* Shallow copy all the fields from STMT. */
1984 memcpy (dest: copy, src: stmt, n: gimple_size (code));
1985 gimple_init_singleton (g: copy);
1986
1987 /* If STMT has sub-statements, deep-copy them as well. */
1988 if (gimple_has_substatements (g: stmt))
1989 {
1990 gimple_seq new_seq;
1991 tree t;
1992
1993 switch (gimple_code (g: stmt))
1994 {
1995 case GIMPLE_BIND:
1996 {
1997 gbind *bind_stmt = as_a <gbind *> (p: stmt);
1998 gbind *bind_copy = as_a <gbind *> (p: copy);
1999 new_seq = gimple_seq_copy (src: gimple_bind_body (gs: bind_stmt));
2000 gimple_bind_set_body (bind_stmt: bind_copy, seq: new_seq);
2001 gimple_bind_set_vars (bind_stmt: bind_copy,
2002 vars: unshare_expr (gimple_bind_vars (bind_stmt)));
2003 gimple_bind_set_block (bind_stmt: bind_copy, block: gimple_bind_block (bind_stmt));
2004 }
2005 break;
2006
2007 case GIMPLE_CATCH:
2008 {
2009 gcatch *catch_stmt = as_a <gcatch *> (p: stmt);
2010 gcatch *catch_copy = as_a <gcatch *> (p: copy);
2011 new_seq = gimple_seq_copy (src: gimple_catch_handler (catch_stmt));
2012 gimple_catch_set_handler (catch_stmt: catch_copy, handler: new_seq);
2013 t = unshare_expr (gimple_catch_types (catch_stmt));
2014 gimple_catch_set_types (catch_stmt: catch_copy, t);
2015 }
2016 break;
2017
2018 case GIMPLE_EH_FILTER:
2019 {
2020 geh_filter *eh_filter_stmt = as_a <geh_filter *> (p: stmt);
2021 geh_filter *eh_filter_copy = as_a <geh_filter *> (p: copy);
2022 new_seq
2023 = gimple_seq_copy (src: gimple_eh_filter_failure (gs: eh_filter_stmt));
2024 gimple_eh_filter_set_failure (eh_filter_stmt: eh_filter_copy, failure: new_seq);
2025 t = unshare_expr (gimple_eh_filter_types (gs: eh_filter_stmt));
2026 gimple_eh_filter_set_types (eh_filter_stmt: eh_filter_copy, types: t);
2027 }
2028 break;
2029
2030 case GIMPLE_EH_ELSE:
2031 {
2032 geh_else *eh_else_stmt = as_a <geh_else *> (p: stmt);
2033 geh_else *eh_else_copy = as_a <geh_else *> (p: copy);
2034 new_seq = gimple_seq_copy (src: gimple_eh_else_n_body (eh_else_stmt));
2035 gimple_eh_else_set_n_body (eh_else_stmt: eh_else_copy, seq: new_seq);
2036 new_seq = gimple_seq_copy (src: gimple_eh_else_e_body (eh_else_stmt));
2037 gimple_eh_else_set_e_body (eh_else_stmt: eh_else_copy, seq: new_seq);
2038 }
2039 break;
2040
2041 case GIMPLE_TRY:
2042 {
2043 gtry *try_stmt = as_a <gtry *> (p: stmt);
2044 gtry *try_copy = as_a <gtry *> (p: copy);
2045 new_seq = gimple_seq_copy (src: gimple_try_eval (gs: try_stmt));
2046 gimple_try_set_eval (try_stmt: try_copy, eval: new_seq);
2047 new_seq = gimple_seq_copy (src: gimple_try_cleanup (gs: try_stmt));
2048 gimple_try_set_cleanup (try_stmt: try_copy, cleanup: new_seq);
2049 }
2050 break;
2051
2052 case GIMPLE_OMP_FOR:
2053 new_seq = gimple_seq_copy (src: gimple_omp_for_pre_body (gs: stmt));
2054 gimple_omp_for_set_pre_body (gs: copy, pre_body: new_seq);
2055 t = unshare_expr (gimple_omp_for_clauses (gs: stmt));
2056 gimple_omp_for_set_clauses (gs: copy, clauses: t);
2057 {
2058 gomp_for *omp_for_copy = as_a <gomp_for *> (p: copy);
2059 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
2060 ( c: gimple_omp_for_collapse (gs: stmt));
2061 }
2062 for (i = 0; i < gimple_omp_for_collapse (gs: stmt); i++)
2063 {
2064 gimple_omp_for_set_cond (gs: copy, i,
2065 cond: gimple_omp_for_cond (gs: stmt, i));
2066 gimple_omp_for_set_index (gs: copy, i,
2067 index: gimple_omp_for_index (gs: stmt, i));
2068 t = unshare_expr (gimple_omp_for_initial (gs: stmt, i));
2069 gimple_omp_for_set_initial (gs: copy, i, initial: t);
2070 t = unshare_expr (gimple_omp_for_final (gs: stmt, i));
2071 gimple_omp_for_set_final (gs: copy, i, final: t);
2072 t = unshare_expr (gimple_omp_for_incr (gs: stmt, i));
2073 gimple_omp_for_set_incr (gs: copy, i, incr: t);
2074 }
2075 goto copy_omp_body;
2076
2077 case GIMPLE_OMP_PARALLEL:
2078 {
2079 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (p: stmt);
2080 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (p: copy);
2081 t = unshare_expr (gimple_omp_parallel_clauses (gs: omp_par_stmt));
2082 gimple_omp_parallel_set_clauses (omp_parallel_stmt: omp_par_copy, clauses: t);
2083 t = unshare_expr (gimple_omp_parallel_child_fn (omp_parallel_stmt: omp_par_stmt));
2084 gimple_omp_parallel_set_child_fn (omp_parallel_stmt: omp_par_copy, child_fn: t);
2085 t = unshare_expr (gimple_omp_parallel_data_arg (omp_parallel_stmt: omp_par_stmt));
2086 gimple_omp_parallel_set_data_arg (omp_parallel_stmt: omp_par_copy, data_arg: t);
2087 }
2088 goto copy_omp_body;
2089
2090 case GIMPLE_OMP_TASK:
2091 t = unshare_expr (gimple_omp_task_clauses (gs: stmt));
2092 gimple_omp_task_set_clauses (gs: copy, clauses: t);
2093 t = unshare_expr (gimple_omp_task_child_fn (gs: stmt));
2094 gimple_omp_task_set_child_fn (gs: copy, child_fn: t);
2095 t = unshare_expr (gimple_omp_task_data_arg (gs: stmt));
2096 gimple_omp_task_set_data_arg (gs: copy, data_arg: t);
2097 t = unshare_expr (gimple_omp_task_copy_fn (gs: stmt));
2098 gimple_omp_task_set_copy_fn (gs: copy, copy_fn: t);
2099 t = unshare_expr (gimple_omp_task_arg_size (gs: stmt));
2100 gimple_omp_task_set_arg_size (gs: copy, arg_size: t);
2101 t = unshare_expr (gimple_omp_task_arg_align (gs: stmt));
2102 gimple_omp_task_set_arg_align (gs: copy, arg_align: t);
2103 goto copy_omp_body;
2104
2105 case GIMPLE_OMP_CRITICAL:
2106 t = unshare_expr (gimple_omp_critical_name
2107 (crit_stmt: as_a <gomp_critical *> (p: stmt)));
2108 gimple_omp_critical_set_name (crit_stmt: as_a <gomp_critical *> (p: copy), name: t);
2109 t = unshare_expr (gimple_omp_critical_clauses
2110 (crit_stmt: as_a <gomp_critical *> (p: stmt)));
2111 gimple_omp_critical_set_clauses (crit_stmt: as_a <gomp_critical *> (p: copy), clauses: t);
2112 goto copy_omp_body;
2113
2114 case GIMPLE_OMP_ORDERED:
2115 t = unshare_expr (gimple_omp_ordered_clauses
2116 (ord_stmt: as_a <gomp_ordered *> (p: stmt)));
2117 gimple_omp_ordered_set_clauses (ord_stmt: as_a <gomp_ordered *> (p: copy), clauses: t);
2118 goto copy_omp_body;
2119
2120 case GIMPLE_OMP_SCAN:
2121 t = gimple_omp_scan_clauses (scan_stmt: as_a <gomp_scan *> (p: stmt));
2122 t = unshare_expr (t);
2123 gimple_omp_scan_set_clauses (scan_stmt: as_a <gomp_scan *> (p: copy), clauses: t);
2124 goto copy_omp_body;
2125
2126 case GIMPLE_OMP_TASKGROUP:
2127 t = unshare_expr (gimple_omp_taskgroup_clauses (gs: stmt));
2128 gimple_omp_taskgroup_set_clauses (gs: copy, clauses: t);
2129 goto copy_omp_body;
2130
2131 case GIMPLE_OMP_SECTIONS:
2132 t = unshare_expr (gimple_omp_sections_clauses (gs: stmt));
2133 gimple_omp_sections_set_clauses (gs: copy, clauses: t);
2134 t = unshare_expr (gimple_omp_sections_control (gs: stmt));
2135 gimple_omp_sections_set_control (gs: copy, control: t);
2136 goto copy_omp_body;
2137
2138 case GIMPLE_OMP_SINGLE:
2139 {
2140 gomp_single *omp_single_copy = as_a <gomp_single *> (p: copy);
2141 t = unshare_expr (gimple_omp_single_clauses (gs: stmt));
2142 gimple_omp_single_set_clauses (omp_single_stmt: omp_single_copy, clauses: t);
2143 }
2144 goto copy_omp_body;
2145
2146 case GIMPLE_OMP_SCOPE:
2147 t = unshare_expr (gimple_omp_scope_clauses (gs: stmt));
2148 gimple_omp_scope_set_clauses (gs: copy, clauses: t);
2149 goto copy_omp_body;
2150
2151 case GIMPLE_OMP_TARGET:
2152 {
2153 gomp_target *omp_target_stmt = as_a <gomp_target *> (p: stmt);
2154 gomp_target *omp_target_copy = as_a <gomp_target *> (p: copy);
2155 t = unshare_expr (gimple_omp_target_clauses (gs: omp_target_stmt));
2156 gimple_omp_target_set_clauses (omp_target_stmt: omp_target_copy, clauses: t);
2157 t = unshare_expr (gimple_omp_target_data_arg (omp_target_stmt));
2158 gimple_omp_target_set_data_arg (omp_target_stmt: omp_target_copy, data_arg: t);
2159 }
2160 goto copy_omp_body;
2161
2162 case GIMPLE_OMP_TEAMS:
2163 {
2164 gomp_teams *omp_teams_copy = as_a <gomp_teams *> (p: copy);
2165 t = unshare_expr (gimple_omp_teams_clauses (gs: stmt));
2166 gimple_omp_teams_set_clauses (omp_teams_stmt: omp_teams_copy, clauses: t);
2167 }
2168 /* FALLTHRU */
2169
2170 case GIMPLE_OMP_SECTION:
2171 case GIMPLE_OMP_MASTER:
2172 case GIMPLE_OMP_STRUCTURED_BLOCK:
2173 copy_omp_body:
2174 new_seq = gimple_seq_copy (src: gimple_omp_body (gs: stmt));
2175 gimple_omp_set_body (gs: copy, body: new_seq);
2176 break;
2177
2178 case GIMPLE_OMP_MASKED:
2179 t = unshare_expr (gimple_omp_masked_clauses (gs: stmt));
2180 gimple_omp_masked_set_clauses (gs: copy, clauses: t);
2181 goto copy_omp_body;
2182
2183 case GIMPLE_ASSUME:
2184 new_seq = gimple_seq_copy (src: gimple_assume_body (gs: stmt));
2185 *gimple_assume_body_ptr (gs: copy) = new_seq;
2186 gimple_assume_set_guard (gs: copy,
2187 guard: unshare_expr (gimple_assume_guard (gs: stmt)));
2188 break;
2189
2190 case GIMPLE_TRANSACTION:
2191 new_seq = gimple_seq_copy (src: gimple_transaction_body (
2192 transaction_stmt: as_a <gtransaction *> (p: stmt)));
2193 gimple_transaction_set_body (transaction_stmt: as_a <gtransaction *> (p: copy),
2194 body: new_seq);
2195 break;
2196
2197 case GIMPLE_WITH_CLEANUP_EXPR:
2198 new_seq = gimple_seq_copy (src: gimple_wce_cleanup (gs: stmt));
2199 gimple_wce_set_cleanup (gs: copy, cleanup: new_seq);
2200 break;
2201
2202 default:
2203 gcc_unreachable ();
2204 }
2205 }
2206
2207 /* Make copy of operands. */
2208 for (i = 0; i < num_ops; i++)
2209 gimple_set_op (gs: copy, i, op: unshare_expr (gimple_op (gs: stmt, i)));
2210
2211 if (gimple_has_mem_ops (g: stmt))
2212 {
2213 gimple_set_vdef (g: copy, vdef: gimple_vdef (g: stmt));
2214 gimple_set_vuse (g: copy, vuse: gimple_vuse (g: stmt));
2215 }
2216
2217 /* Clear out SSA operand vectors on COPY. */
2218 if (gimple_has_ops (g: stmt))
2219 {
2220 gimple_set_use_ops (g: copy, NULL);
2221
2222 /* SSA operands need to be updated. */
2223 gimple_set_modified (s: copy, modifiedp: true);
2224 }
2225
2226 if (gimple_debug_nonbind_marker_p (s: stmt))
2227 cfun->debug_marker_count++;
2228
2229 return copy;
2230}
2231
2232/* Move OLD_STMT's vuse and vdef operands to NEW_STMT, on the assumption
2233 that OLD_STMT is about to be removed. */
2234
2235void
2236gimple_move_vops (gimple *new_stmt, gimple *old_stmt)
2237{
2238 tree vdef = gimple_vdef (g: old_stmt);
2239 gimple_set_vuse (g: new_stmt, vuse: gimple_vuse (g: old_stmt));
2240 gimple_set_vdef (g: new_stmt, vdef);
2241 if (vdef && TREE_CODE (vdef) == SSA_NAME)
2242 SSA_NAME_DEF_STMT (vdef) = new_stmt;
2243}
2244
2245/* Return true if statement S has side-effects. We consider a
2246 statement to have side effects if:
2247
2248 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2249 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2250
2251bool
2252gimple_has_side_effects (const gimple *s)
2253{
2254 if (is_gimple_debug (gs: s))
2255 return false;
2256
2257 /* We don't have to scan the arguments to check for
2258 volatile arguments, though, at present, we still
2259 do a scan to check for TREE_SIDE_EFFECTS. */
2260 if (gimple_has_volatile_ops (stmt: s))
2261 return true;
2262
2263 if (gimple_code (g: s) == GIMPLE_ASM
2264 && gimple_asm_volatile_p (asm_stmt: as_a <const gasm *> (p: s)))
2265 return true;
2266
2267 if (is_gimple_call (gs: s))
2268 {
2269 int flags = gimple_call_flags (stmt: s);
2270
2271 /* An infinite loop is considered a side effect. */
2272 if (!(flags & (ECF_CONST | ECF_PURE))
2273 || (flags & ECF_LOOPING_CONST_OR_PURE))
2274 return true;
2275
2276 return false;
2277 }
2278
2279 return false;
2280}
2281
2282/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2283 Return true if S can trap. When INCLUDE_MEM is true, check whether
2284 the memory operations could trap. When INCLUDE_STORES is true and
2285 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2286
2287bool
2288gimple_could_trap_p_1 (const gimple *s, bool include_mem, bool include_stores)
2289{
2290 tree t, div = NULL_TREE;
2291 enum tree_code op;
2292
2293 if (include_mem)
2294 {
2295 unsigned i, start = (is_gimple_assign (gs: s) && !include_stores) ? 1 : 0;
2296
2297 for (i = start; i < gimple_num_ops (gs: s); i++)
2298 if (tree_could_trap_p (gimple_op (gs: s, i)))
2299 return true;
2300 }
2301
2302 switch (gimple_code (g: s))
2303 {
2304 case GIMPLE_ASM:
2305 return gimple_asm_volatile_p (asm_stmt: as_a <const gasm *> (p: s));
2306
2307 case GIMPLE_CALL:
2308 if (gimple_call_internal_p (gs: s))
2309 return false;
2310 t = gimple_call_fndecl (gs: s);
2311 /* Assume that indirect and calls to weak functions may trap. */
2312 if (!t || !DECL_P (t) || DECL_WEAK (t))
2313 return true;
2314 return false;
2315
2316 case GIMPLE_ASSIGN:
2317 op = gimple_assign_rhs_code (gs: s);
2318
2319 /* For COND_EXPR only the condition may trap. */
2320 if (op == COND_EXPR)
2321 return tree_could_trap_p (gimple_assign_rhs1 (gs: s));
2322
2323 /* For comparisons we need to check rhs operand types instead of lhs type
2324 (which is BOOLEAN_TYPE). */
2325 if (TREE_CODE_CLASS (op) == tcc_comparison)
2326 t = TREE_TYPE (gimple_assign_rhs1 (s));
2327 else
2328 t = TREE_TYPE (gimple_assign_lhs (s));
2329
2330 if (get_gimple_rhs_class (code: op) == GIMPLE_BINARY_RHS)
2331 div = gimple_assign_rhs2 (gs: s);
2332
2333 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2334 (INTEGRAL_TYPE_P (t)
2335 && TYPE_OVERFLOW_TRAPS (t)),
2336 div));
2337
2338 case GIMPLE_COND:
2339 t = TREE_TYPE (gimple_cond_lhs (s));
2340 return operation_could_trap_p (gimple_cond_code (gs: s),
2341 FLOAT_TYPE_P (t), false, NULL_TREE);
2342
2343 default:
2344 break;
2345 }
2346
2347 return false;
2348}
2349
2350/* Return true if statement S can trap. */
2351
2352bool
2353gimple_could_trap_p (const gimple *s)
2354{
2355 return gimple_could_trap_p_1 (s, include_mem: true, include_stores: true);
2356}
2357
2358/* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2359
2360bool
2361gimple_assign_rhs_could_trap_p (gimple *s)
2362{
2363 gcc_assert (is_gimple_assign (s));
2364 return gimple_could_trap_p_1 (s, include_mem: true, include_stores: false);
2365}
2366
2367
2368/* Print debugging information for gimple stmts generated. */
2369
2370void
2371dump_gimple_statistics (void)
2372{
2373 int i;
2374 uint64_t total_tuples = 0, total_bytes = 0;
2375
2376 if (! GATHER_STATISTICS)
2377 {
2378 fprintf (stderr, format: "No GIMPLE statistics\n");
2379 return;
2380 }
2381
2382 fprintf (stderr, format: "\nGIMPLE statements\n");
2383 fprintf (stderr, format: "Kind Stmts Bytes\n");
2384 fprintf (stderr, format: "---------------------------------------\n");
2385 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2386 {
2387 fprintf (stderr, format: "%-20s %7" PRIu64 "%c %10" PRIu64 "%c\n",
2388 gimple_alloc_kind_names[i],
2389 SIZE_AMOUNT (gimple_alloc_counts[i]),
2390 SIZE_AMOUNT (gimple_alloc_sizes[i]));
2391 total_tuples += gimple_alloc_counts[i];
2392 total_bytes += gimple_alloc_sizes[i];
2393 }
2394 fprintf (stderr, format: "---------------------------------------\n");
2395 fprintf (stderr, format: "%-20s %7" PRIu64 "%c %10" PRIu64 "%c\n", "Total",
2396 SIZE_AMOUNT (total_tuples), SIZE_AMOUNT (total_bytes));
2397 fprintf (stderr, format: "---------------------------------------\n");
2398}
2399
2400
2401/* Return the number of operands needed on the RHS of a GIMPLE
2402 assignment for an expression with tree code CODE. */
2403
2404unsigned
2405get_gimple_rhs_num_ops (enum tree_code code)
2406{
2407 switch (get_gimple_rhs_class (code))
2408 {
2409 case GIMPLE_UNARY_RHS:
2410 case GIMPLE_SINGLE_RHS:
2411 return 1;
2412 case GIMPLE_BINARY_RHS:
2413 return 2;
2414 case GIMPLE_TERNARY_RHS:
2415 return 3;
2416 default:
2417 gcc_unreachable ();
2418 }
2419}
2420
2421#define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2422 (unsigned char) \
2423 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2424 : ((TYPE) == tcc_binary \
2425 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2426 : ((TYPE) == tcc_constant \
2427 || (TYPE) == tcc_declaration \
2428 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2429 : ((SYM) == TRUTH_AND_EXPR \
2430 || (SYM) == TRUTH_OR_EXPR \
2431 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2432 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2433 : ((SYM) == COND_EXPR \
2434 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2435 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2436 || (SYM) == DOT_PROD_EXPR \
2437 || (SYM) == SAD_EXPR \
2438 || (SYM) == REALIGN_LOAD_EXPR \
2439 || (SYM) == VEC_COND_EXPR \
2440 || (SYM) == VEC_PERM_EXPR \
2441 || (SYM) == BIT_INSERT_EXPR) ? GIMPLE_TERNARY_RHS \
2442 : ((SYM) == CONSTRUCTOR \
2443 || (SYM) == OBJ_TYPE_REF \
2444 || (SYM) == ADDR_EXPR \
2445 || (SYM) == WITH_SIZE_EXPR \
2446 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2447 : GIMPLE_INVALID_RHS),
2448#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2449
2450const unsigned char gimple_rhs_class_table[] = {
2451#include "all-tree.def"
2452};
2453
2454#undef DEFTREECODE
2455#undef END_OF_BASE_TREE_CODES
2456
2457/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2458 the positions marked by the set ARGS_TO_SKIP. */
2459
2460gcall *
2461gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2462{
2463 int i;
2464 int nargs = gimple_call_num_args (gs: stmt);
2465 auto_vec<tree> vargs (nargs);
2466 gcall *new_stmt;
2467
2468 for (i = 0; i < nargs; i++)
2469 if (!bitmap_bit_p (args_to_skip, i))
2470 vargs.quick_push (obj: gimple_call_arg (gs: stmt, index: i));
2471
2472 if (gimple_call_internal_p (gs: stmt))
2473 new_stmt = gimple_build_call_internal_vec (fn: gimple_call_internal_fn (gs: stmt),
2474 args: vargs);
2475 else
2476 new_stmt = gimple_build_call_vec (fn: gimple_call_fn (gs: stmt), args: vargs);
2477
2478 if (gimple_call_lhs (gs: stmt))
2479 gimple_call_set_lhs (gs: new_stmt, lhs: gimple_call_lhs (gs: stmt));
2480
2481 gimple_set_vuse (g: new_stmt, vuse: gimple_vuse (g: stmt));
2482 gimple_set_vdef (g: new_stmt, vdef: gimple_vdef (g: stmt));
2483
2484 if (gimple_has_location (g: stmt))
2485 gimple_set_location (g: new_stmt, location: gimple_location (g: stmt));
2486 gimple_call_copy_flags (dest_call: new_stmt, orig_call: stmt);
2487 gimple_call_set_chain (call_stmt: new_stmt, chain: gimple_call_chain (gs: stmt));
2488
2489 gimple_set_modified (s: new_stmt, modifiedp: true);
2490
2491 return new_stmt;
2492}
2493
2494
2495
2496/* Return true if the field decls F1 and F2 are at the same offset.
2497
2498 This is intended to be used on GIMPLE types only. */
2499
2500bool
2501gimple_compare_field_offset (tree f1, tree f2)
2502{
2503 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2504 {
2505 tree offset1 = DECL_FIELD_OFFSET (f1);
2506 tree offset2 = DECL_FIELD_OFFSET (f2);
2507 return ((offset1 == offset2
2508 /* Once gimplification is done, self-referential offsets are
2509 instantiated as operand #2 of the COMPONENT_REF built for
2510 each access and reset. Therefore, they are not relevant
2511 anymore and fields are interchangeable provided that they
2512 represent the same access. */
2513 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2514 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2515 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2516 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2517 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2518 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), flags: 0))
2519 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2520 || operand_equal_p (offset1, offset2, flags: 0))
2521 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2522 DECL_FIELD_BIT_OFFSET (f2)));
2523 }
2524
2525 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2526 should be, so handle differing ones specially by decomposing
2527 the offset into a byte and bit offset manually. */
2528 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2529 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2530 {
2531 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2532 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2533 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2534 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2535 + bit_offset1 / BITS_PER_UNIT);
2536 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2537 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2538 + bit_offset2 / BITS_PER_UNIT);
2539 if (byte_offset1 != byte_offset2)
2540 return false;
2541 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2542 }
2543
2544 return false;
2545}
2546
2547
2548/* Return a type the same as TYPE except unsigned or
2549 signed according to UNSIGNEDP. */
2550
2551static tree
2552gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2553{
2554 tree type1;
2555 int i;
2556
2557 type1 = TYPE_MAIN_VARIANT (type);
2558 if (type1 == signed_char_type_node
2559 || type1 == char_type_node
2560 || type1 == unsigned_char_type_node)
2561 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2562 if (type1 == integer_type_node || type1 == unsigned_type_node)
2563 return unsignedp ? unsigned_type_node : integer_type_node;
2564 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2565 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2566 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2567 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2568 if (type1 == long_long_integer_type_node
2569 || type1 == long_long_unsigned_type_node)
2570 return unsignedp
2571 ? long_long_unsigned_type_node
2572 : long_long_integer_type_node;
2573
2574 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2575 if (int_n_enabled_p[i]
2576 && (type1 == int_n_trees[i].unsigned_type
2577 || type1 == int_n_trees[i].signed_type))
2578 return unsignedp
2579 ? int_n_trees[i].unsigned_type
2580 : int_n_trees[i].signed_type;
2581
2582#if HOST_BITS_PER_WIDE_INT >= 64
2583 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2584 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2585#endif
2586 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2587 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2588 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2589 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2590 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2591 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2592 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2593 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2594
2595#define GIMPLE_FIXED_TYPES(NAME) \
2596 if (type1 == short_ ## NAME ## _type_node \
2597 || type1 == unsigned_short_ ## NAME ## _type_node) \
2598 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2599 : short_ ## NAME ## _type_node; \
2600 if (type1 == NAME ## _type_node \
2601 || type1 == unsigned_ ## NAME ## _type_node) \
2602 return unsignedp ? unsigned_ ## NAME ## _type_node \
2603 : NAME ## _type_node; \
2604 if (type1 == long_ ## NAME ## _type_node \
2605 || type1 == unsigned_long_ ## NAME ## _type_node) \
2606 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2607 : long_ ## NAME ## _type_node; \
2608 if (type1 == long_long_ ## NAME ## _type_node \
2609 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2610 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2611 : long_long_ ## NAME ## _type_node;
2612
2613#define GIMPLE_FIXED_MODE_TYPES(NAME) \
2614 if (type1 == NAME ## _type_node \
2615 || type1 == u ## NAME ## _type_node) \
2616 return unsignedp ? u ## NAME ## _type_node \
2617 : NAME ## _type_node;
2618
2619#define GIMPLE_FIXED_TYPES_SAT(NAME) \
2620 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2621 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2622 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2623 : sat_ ## short_ ## NAME ## _type_node; \
2624 if (type1 == sat_ ## NAME ## _type_node \
2625 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2626 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2627 : sat_ ## NAME ## _type_node; \
2628 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2629 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2630 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2631 : sat_ ## long_ ## NAME ## _type_node; \
2632 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2633 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2634 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2635 : sat_ ## long_long_ ## NAME ## _type_node;
2636
2637#define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2638 if (type1 == sat_ ## NAME ## _type_node \
2639 || type1 == sat_ ## u ## NAME ## _type_node) \
2640 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2641 : sat_ ## NAME ## _type_node;
2642
2643 GIMPLE_FIXED_TYPES (fract);
2644 GIMPLE_FIXED_TYPES_SAT (fract);
2645 GIMPLE_FIXED_TYPES (accum);
2646 GIMPLE_FIXED_TYPES_SAT (accum);
2647
2648 GIMPLE_FIXED_MODE_TYPES (qq);
2649 GIMPLE_FIXED_MODE_TYPES (hq);
2650 GIMPLE_FIXED_MODE_TYPES (sq);
2651 GIMPLE_FIXED_MODE_TYPES (dq);
2652 GIMPLE_FIXED_MODE_TYPES (tq);
2653 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2654 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2655 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2656 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2657 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2658 GIMPLE_FIXED_MODE_TYPES (ha);
2659 GIMPLE_FIXED_MODE_TYPES (sa);
2660 GIMPLE_FIXED_MODE_TYPES (da);
2661 GIMPLE_FIXED_MODE_TYPES (ta);
2662 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2663 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2664 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2665 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2666
2667 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2668 the precision; they have precision set to match their range, but
2669 may use a wider mode to match an ABI. If we change modes, we may
2670 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2671 the precision as well, so as to yield correct results for
2672 bit-field types. C++ does not have these separate bit-field
2673 types, and producing a signed or unsigned variant of an
2674 ENUMERAL_TYPE may cause other problems as well. */
2675 if (!INTEGRAL_TYPE_P (type)
2676 || TYPE_UNSIGNED (type) == unsignedp)
2677 return type;
2678
2679#define TYPE_OK(node) \
2680 (TYPE_MODE (type) == TYPE_MODE (node) \
2681 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2682 if (TYPE_OK (signed_char_type_node))
2683 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2684 if (TYPE_OK (integer_type_node))
2685 return unsignedp ? unsigned_type_node : integer_type_node;
2686 if (TYPE_OK (short_integer_type_node))
2687 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2688 if (TYPE_OK (long_integer_type_node))
2689 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2690 if (TYPE_OK (long_long_integer_type_node))
2691 return (unsignedp
2692 ? long_long_unsigned_type_node
2693 : long_long_integer_type_node);
2694
2695 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2696 if (int_n_enabled_p[i]
2697 && TYPE_MODE (type) == int_n_data[i].m
2698 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2699 return unsignedp
2700 ? int_n_trees[i].unsigned_type
2701 : int_n_trees[i].signed_type;
2702
2703#if HOST_BITS_PER_WIDE_INT >= 64
2704 if (TYPE_OK (intTI_type_node))
2705 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2706#endif
2707 if (TYPE_OK (intDI_type_node))
2708 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2709 if (TYPE_OK (intSI_type_node))
2710 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2711 if (TYPE_OK (intHI_type_node))
2712 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2713 if (TYPE_OK (intQI_type_node))
2714 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2715
2716#undef GIMPLE_FIXED_TYPES
2717#undef GIMPLE_FIXED_MODE_TYPES
2718#undef GIMPLE_FIXED_TYPES_SAT
2719#undef GIMPLE_FIXED_MODE_TYPES_SAT
2720#undef TYPE_OK
2721
2722 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2723}
2724
2725
2726/* Return an unsigned type the same as TYPE in other respects. */
2727
2728tree
2729gimple_unsigned_type (tree type)
2730{
2731 return gimple_signed_or_unsigned_type (unsignedp: true, type);
2732}
2733
2734
2735/* Return a signed type the same as TYPE in other respects. */
2736
2737tree
2738gimple_signed_type (tree type)
2739{
2740 return gimple_signed_or_unsigned_type (unsignedp: false, type);
2741}
2742
2743
2744/* Return the typed-based alias set for T, which may be an expression
2745 or a type. Return -1 if we don't do anything special. */
2746
2747alias_set_type
2748gimple_get_alias_set (tree t)
2749{
2750 /* That's all the expressions we handle specially. */
2751 if (!TYPE_P (t))
2752 return -1;
2753
2754 /* For convenience, follow the C standard when dealing with
2755 character types. Any object may be accessed via an lvalue that
2756 has character type. */
2757 if (t == char_type_node
2758 || t == signed_char_type_node
2759 || t == unsigned_char_type_node)
2760 return 0;
2761
2762 /* Allow aliasing between signed and unsigned variants of the same
2763 type. We treat the signed variant as canonical. */
2764 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2765 {
2766 tree t1 = gimple_signed_type (type: t);
2767
2768 /* t1 == t can happen for boolean nodes which are always unsigned. */
2769 if (t1 != t)
2770 return get_alias_set (t1);
2771 }
2772
2773 /* Allow aliasing between enumeral types and the underlying
2774 integer type. This is required for C since those are
2775 compatible types. */
2776 else if (TREE_CODE (t) == ENUMERAL_TYPE)
2777 {
2778 tree t1 = lang_hooks.types.type_for_size (tree_to_uhwi (TYPE_SIZE (t)),
2779 false /* short-cut above */);
2780 return get_alias_set (t1);
2781 }
2782
2783 return -1;
2784}
2785
2786
2787/* Helper for gimple_ior_addresses_taken_1. */
2788
2789static bool
2790gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2791{
2792 bitmap addresses_taken = (bitmap)data;
2793 addr = get_base_address (t: addr);
2794 if (addr
2795 && DECL_P (addr))
2796 {
2797 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2798 return true;
2799 }
2800 return false;
2801}
2802
2803/* Set the bit for the uid of all decls that have their address taken
2804 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2805 were any in this stmt. */
2806
2807bool
2808gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2809{
2810 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2811 gimple_ior_addresses_taken_1);
2812}
2813
2814
2815/* Return true when STMTs arguments and return value match those of FNDECL,
2816 a decl of a builtin function. */
2817
2818bool
2819gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2820{
2821 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2822
2823 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2824 if (tree decl = builtin_decl_explicit (fncode: DECL_FUNCTION_CODE (decl: fndecl)))
2825 fndecl = decl;
2826
2827 tree ret = gimple_call_lhs (gs: stmt);
2828 if (ret
2829 && !useless_type_conversion_p (TREE_TYPE (ret),
2830 TREE_TYPE (TREE_TYPE (fndecl))))
2831 return false;
2832
2833 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2834 unsigned nargs = gimple_call_num_args (gs: stmt);
2835 for (unsigned i = 0; i < nargs; ++i)
2836 {
2837 /* Variadic args follow. */
2838 if (!targs)
2839 return true;
2840 tree arg = gimple_call_arg (gs: stmt, index: i);
2841 tree type = TREE_VALUE (targs);
2842 if (!useless_type_conversion_p (type, TREE_TYPE (arg))
2843 /* char/short integral arguments are promoted to int
2844 by several frontends if targetm.calls.promote_prototypes
2845 is true. Allow such promotion too. */
2846 && !(INTEGRAL_TYPE_P (type)
2847 && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
2848 && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
2849 && useless_type_conversion_p (integer_type_node,
2850 TREE_TYPE (arg))))
2851 return false;
2852 targs = TREE_CHAIN (targs);
2853 }
2854 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2855 return false;
2856 return true;
2857}
2858
2859/* Return true when STMT is operator a replaceable delete call. */
2860
2861bool
2862gimple_call_operator_delete_p (const gcall *stmt)
2863{
2864 tree fndecl;
2865
2866 if ((fndecl = gimple_call_fndecl (gs: stmt)) != NULL_TREE)
2867 return DECL_IS_OPERATOR_DELETE_P (fndecl);
2868 return false;
2869}
2870
2871/* Return true when STMT is builtins call. */
2872
2873bool
2874gimple_call_builtin_p (const gimple *stmt)
2875{
2876 tree fndecl;
2877 if (is_gimple_call (gs: stmt)
2878 && (fndecl = gimple_call_fndecl (gs: stmt)) != NULL_TREE
2879 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2880 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2881 return false;
2882}
2883
2884/* Return true when STMT is builtins call to CLASS. */
2885
2886bool
2887gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2888{
2889 tree fndecl;
2890 if (is_gimple_call (gs: stmt)
2891 && (fndecl = gimple_call_fndecl (gs: stmt)) != NULL_TREE
2892 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2893 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2894 return false;
2895}
2896
2897/* Return true when STMT is builtins call to CODE of CLASS. */
2898
2899bool
2900gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2901{
2902 tree fndecl;
2903 if (is_gimple_call (gs: stmt)
2904 && (fndecl = gimple_call_fndecl (gs: stmt)) != NULL_TREE
2905 && fndecl_built_in_p (node: fndecl, name1: code))
2906 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2907 return false;
2908}
2909
2910/* If CALL is a call to a combined_fn (i.e. an internal function or
2911 a normal built-in function), return its code, otherwise return
2912 CFN_LAST. */
2913
2914combined_fn
2915gimple_call_combined_fn (const gimple *stmt)
2916{
2917 if (const gcall *call = dyn_cast <const gcall *> (p: stmt))
2918 {
2919 if (gimple_call_internal_p (gs: call))
2920 return as_combined_fn (fn: gimple_call_internal_fn (gs: call));
2921
2922 tree fndecl = gimple_call_fndecl (gs: stmt);
2923 if (fndecl
2924 && fndecl_built_in_p (node: fndecl, klass: BUILT_IN_NORMAL)
2925 && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2926 return as_combined_fn (fn: DECL_FUNCTION_CODE (decl: fndecl));
2927 }
2928 return CFN_LAST;
2929}
2930
2931/* Return true if STMT clobbers memory. STMT is required to be a
2932 GIMPLE_ASM. */
2933
2934bool
2935gimple_asm_clobbers_memory_p (const gasm *stmt)
2936{
2937 unsigned i;
2938
2939 for (i = 0; i < gimple_asm_nclobbers (asm_stmt: stmt); i++)
2940 {
2941 tree op = gimple_asm_clobber_op (asm_stmt: stmt, index: i);
2942 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), s2: "memory") == 0)
2943 return true;
2944 }
2945
2946 /* Non-empty basic ASM implicitly clobbers memory. */
2947 if (gimple_asm_input_p (asm_stmt: stmt) && strlen (s: gimple_asm_string (asm_stmt: stmt)) != 0)
2948 return true;
2949
2950 return false;
2951}
2952
2953/* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2954
2955void
2956dump_decl_set (FILE *file, bitmap set)
2957{
2958 if (set)
2959 {
2960 bitmap_iterator bi;
2961 unsigned i;
2962
2963 fprintf (stream: file, format: "{ ");
2964
2965 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2966 {
2967 fprintf (stream: file, format: "D.%u", i);
2968 fprintf (stream: file, format: " ");
2969 }
2970
2971 fprintf (stream: file, format: "}");
2972 }
2973 else
2974 fprintf (stream: file, format: "NIL");
2975}
2976
2977/* Return true when CALL is a call stmt that definitely doesn't
2978 free any memory or makes it unavailable otherwise. */
2979bool
2980nonfreeing_call_p (gimple *call)
2981{
2982 if (gimple_call_builtin_p (stmt: call, klass: BUILT_IN_NORMAL)
2983 && gimple_call_flags (stmt: call) & ECF_LEAF)
2984 switch (DECL_FUNCTION_CODE (decl: gimple_call_fndecl (gs: call)))
2985 {
2986 /* Just in case these become ECF_LEAF in the future. */
2987 case BUILT_IN_FREE:
2988 case BUILT_IN_TM_FREE:
2989 case BUILT_IN_REALLOC:
2990 case BUILT_IN_STACK_RESTORE:
2991 return false;
2992 default:
2993 return true;
2994 }
2995 else if (gimple_call_internal_p (gs: call))
2996 switch (gimple_call_internal_fn (gs: call))
2997 {
2998 case IFN_ABNORMAL_DISPATCHER:
2999 return true;
3000 case IFN_ASAN_MARK:
3001 return tree_to_uhwi (gimple_call_arg (gs: call, index: 0)) == ASAN_MARK_UNPOISON;
3002 default:
3003 if (gimple_call_flags (stmt: call) & ECF_LEAF)
3004 return true;
3005 return false;
3006 }
3007
3008 tree fndecl = gimple_call_fndecl (gs: call);
3009 if (!fndecl)
3010 return false;
3011 struct cgraph_node *n = cgraph_node::get (decl: fndecl);
3012 if (!n)
3013 return false;
3014 enum availability availability;
3015 n = n->function_symbol (avail: &availability);
3016 if (!n || availability <= AVAIL_INTERPOSABLE)
3017 return false;
3018 return n->nonfreeing_fn;
3019}
3020
3021/* Return true when CALL is a call stmt that definitely need not
3022 be considered to be a memory barrier. */
3023bool
3024nonbarrier_call_p (gimple *call)
3025{
3026 if (gimple_call_flags (stmt: call) & (ECF_PURE | ECF_CONST))
3027 return true;
3028 /* Should extend this to have a nonbarrier_fn flag, just as above in
3029 the nonfreeing case. */
3030 return false;
3031}
3032
3033/* Callback for walk_stmt_load_store_ops.
3034
3035 Return TRUE if OP will dereference the tree stored in DATA, FALSE
3036 otherwise.
3037
3038 This routine only makes a superficial check for a dereference. Thus
3039 it must only be used if it is safe to return a false negative. */
3040static bool
3041check_loadstore (gimple *, tree op, tree, void *data)
3042{
3043 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
3044 {
3045 /* Some address spaces may legitimately dereference zero. */
3046 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
3047 if (targetm.addr_space.zero_address_valid (as))
3048 return false;
3049
3050 return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, flags: 0);
3051 }
3052 return false;
3053}
3054
3055
3056/* Return true if OP can be inferred to be non-NULL after STMT executes,
3057 either by using a pointer dereference or attributes. */
3058bool
3059infer_nonnull_range (gimple *stmt, tree op)
3060{
3061 return (infer_nonnull_range_by_dereference (stmt, op)
3062 || infer_nonnull_range_by_attribute (stmt, op));
3063}
3064
3065/* Return true if OP can be inferred to be non-NULL after STMT
3066 executes by using a pointer dereference. */
3067bool
3068infer_nonnull_range_by_dereference (gimple *stmt, tree op)
3069{
3070 /* We can only assume that a pointer dereference will yield
3071 non-NULL if -fdelete-null-pointer-checks is enabled. */
3072 if (!flag_delete_null_pointer_checks
3073 || !POINTER_TYPE_P (TREE_TYPE (op))
3074 || gimple_code (g: stmt) == GIMPLE_ASM
3075 || gimple_clobber_p (s: stmt))
3076 return false;
3077
3078 if (walk_stmt_load_store_ops (stmt, (void *)op,
3079 check_loadstore, check_loadstore))
3080 return true;
3081
3082 return false;
3083}
3084
3085/* Return true if OP can be inferred to be a non-NULL after STMT
3086 executes by using attributes. */
3087bool
3088infer_nonnull_range_by_attribute (gimple *stmt, tree op)
3089{
3090 /* We can only assume that a pointer dereference will yield
3091 non-NULL if -fdelete-null-pointer-checks is enabled. */
3092 if (!flag_delete_null_pointer_checks
3093 || !POINTER_TYPE_P (TREE_TYPE (op))
3094 || gimple_code (g: stmt) == GIMPLE_ASM)
3095 return false;
3096
3097 if (is_gimple_call (gs: stmt) && !gimple_call_internal_p (gs: stmt))
3098 {
3099 tree fntype = gimple_call_fntype (gs: stmt);
3100 tree attrs = TYPE_ATTRIBUTES (fntype);
3101 for (; attrs; attrs = TREE_CHAIN (attrs))
3102 {
3103 attrs = lookup_attribute (attr_name: "nonnull", list: attrs);
3104
3105 /* If "nonnull" wasn't specified, we know nothing about
3106 the argument. */
3107 if (attrs == NULL_TREE)
3108 return false;
3109
3110 /* If "nonnull" applies to all the arguments, then ARG
3111 is non-null if it's in the argument list. */
3112 if (TREE_VALUE (attrs) == NULL_TREE)
3113 {
3114 for (unsigned int i = 0; i < gimple_call_num_args (gs: stmt); i++)
3115 {
3116 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
3117 && operand_equal_p (op, gimple_call_arg (gs: stmt, index: i), flags: 0))
3118 return true;
3119 }
3120 return false;
3121 }
3122
3123 /* Now see if op appears in the nonnull list. */
3124 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
3125 {
3126 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
3127 if (idx < gimple_call_num_args (gs: stmt))
3128 {
3129 tree arg = gimple_call_arg (gs: stmt, index: idx);
3130 if (operand_equal_p (op, arg, flags: 0))
3131 return true;
3132 }
3133 }
3134 }
3135 }
3136
3137 /* If this function is marked as returning non-null, then we can
3138 infer OP is non-null if it is used in the return statement. */
3139 if (greturn *return_stmt = dyn_cast <greturn *> (p: stmt))
3140 if (gimple_return_retval (gs: return_stmt)
3141 && operand_equal_p (gimple_return_retval (gs: return_stmt), op, flags: 0)
3142 && lookup_attribute (attr_name: "returns_nonnull",
3143 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
3144 return true;
3145
3146 return false;
3147}
3148
3149/* Compare two case labels. Because the front end should already have
3150 made sure that case ranges do not overlap, it is enough to only compare
3151 the CASE_LOW values of each case label. */
3152
3153static int
3154compare_case_labels (const void *p1, const void *p2)
3155{
3156 const_tree const case1 = *(const_tree const*)p1;
3157 const_tree const case2 = *(const_tree const*)p2;
3158
3159 /* The 'default' case label always goes first. */
3160 if (!CASE_LOW (case1))
3161 return -1;
3162 else if (!CASE_LOW (case2))
3163 return 1;
3164 else
3165 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
3166}
3167
3168/* Sort the case labels in LABEL_VEC in place in ascending order. */
3169
3170void
3171sort_case_labels (vec<tree> &label_vec)
3172{
3173 label_vec.qsort (compare_case_labels);
3174}
3175
3176/* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
3177
3178 LABELS is a vector that contains all case labels to look at.
3179
3180 INDEX_TYPE is the type of the switch index expression. Case labels
3181 in LABELS are discarded if their values are not in the value range
3182 covered by INDEX_TYPE. The remaining case label values are folded
3183 to INDEX_TYPE.
3184
3185 If a default case exists in LABELS, it is removed from LABELS and
3186 returned in DEFAULT_CASEP. If no default case exists, but the
3187 case labels already cover the whole range of INDEX_TYPE, a default
3188 case is returned pointing to one of the existing case labels.
3189 Otherwise DEFAULT_CASEP is set to NULL_TREE.
3190
3191 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
3192 apply and no action is taken regardless of whether a default case is
3193 found or not. */
3194
3195void
3196preprocess_case_label_vec_for_gimple (vec<tree> &labels,
3197 tree index_type,
3198 tree *default_casep)
3199{
3200 tree min_value, max_value;
3201 tree default_case = NULL_TREE;
3202 size_t i, len;
3203
3204 i = 0;
3205 min_value = TYPE_MIN_VALUE (index_type);
3206 max_value = TYPE_MAX_VALUE (index_type);
3207 while (i < labels.length ())
3208 {
3209 tree elt = labels[i];
3210 tree low = CASE_LOW (elt);
3211 tree high = CASE_HIGH (elt);
3212 bool remove_element = false;
3213
3214 if (low)
3215 {
3216 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
3217 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
3218
3219 /* This is a non-default case label, i.e. it has a value.
3220
3221 See if the case label is reachable within the range of
3222 the index type. Remove out-of-range case values. Turn
3223 case ranges into a canonical form (high > low strictly)
3224 and convert the case label values to the index type.
3225
3226 NB: The type of gimple_switch_index() may be the promoted
3227 type, but the case labels retain the original type. */
3228
3229 if (high)
3230 {
3231 /* This is a case range. Discard empty ranges.
3232 If the bounds or the range are equal, turn this
3233 into a simple (one-value) case. */
3234 int cmp = tree_int_cst_compare (t1: high, t2: low);
3235 if (cmp < 0)
3236 remove_element = true;
3237 else if (cmp == 0)
3238 high = NULL_TREE;
3239 }
3240
3241 if (! high)
3242 {
3243 /* If the simple case value is unreachable, ignore it. */
3244 if ((TREE_CODE (min_value) == INTEGER_CST
3245 && tree_int_cst_compare (t1: low, t2: min_value) < 0)
3246 || (TREE_CODE (max_value) == INTEGER_CST
3247 && tree_int_cst_compare (t1: low, t2: max_value) > 0))
3248 remove_element = true;
3249 else
3250 low = fold_convert (index_type, low);
3251 }
3252 else
3253 {
3254 /* If the entire case range is unreachable, ignore it. */
3255 if ((TREE_CODE (min_value) == INTEGER_CST
3256 && tree_int_cst_compare (t1: high, t2: min_value) < 0)
3257 || (TREE_CODE (max_value) == INTEGER_CST
3258 && tree_int_cst_compare (t1: low, t2: max_value) > 0))
3259 remove_element = true;
3260 else
3261 {
3262 /* If the lower bound is less than the index type's
3263 minimum value, truncate the range bounds. */
3264 if (TREE_CODE (min_value) == INTEGER_CST
3265 && tree_int_cst_compare (t1: low, t2: min_value) < 0)
3266 low = min_value;
3267 low = fold_convert (index_type, low);
3268
3269 /* If the upper bound is greater than the index type's
3270 maximum value, truncate the range bounds. */
3271 if (TREE_CODE (max_value) == INTEGER_CST
3272 && tree_int_cst_compare (t1: high, t2: max_value) > 0)
3273 high = max_value;
3274 high = fold_convert (index_type, high);
3275
3276 /* We may have folded a case range to a one-value case. */
3277 if (tree_int_cst_equal (low, high))
3278 high = NULL_TREE;
3279 }
3280 }
3281
3282 CASE_LOW (elt) = low;
3283 CASE_HIGH (elt) = high;
3284 }
3285 else
3286 {
3287 gcc_assert (!default_case);
3288 default_case = elt;
3289 /* The default case must be passed separately to the
3290 gimple_build_switch routine. But if DEFAULT_CASEP
3291 is NULL, we do not remove the default case (it would
3292 be completely lost). */
3293 if (default_casep)
3294 remove_element = true;
3295 }
3296
3297 if (remove_element)
3298 labels.ordered_remove (ix: i);
3299 else
3300 i++;
3301 }
3302 len = i;
3303
3304 if (!labels.is_empty ())
3305 sort_case_labels (label_vec&: labels);
3306
3307 if (default_casep && !default_case)
3308 {
3309 /* If the switch has no default label, add one, so that we jump
3310 around the switch body. If the labels already cover the whole
3311 range of the switch index_type, add the default label pointing
3312 to one of the existing labels. */
3313 if (len
3314 && TYPE_MIN_VALUE (index_type)
3315 && TYPE_MAX_VALUE (index_type)
3316 && tree_int_cst_equal (CASE_LOW (labels[0]),
3317 TYPE_MIN_VALUE (index_type)))
3318 {
3319 tree low, high = CASE_HIGH (labels[len - 1]);
3320 if (!high)
3321 high = CASE_LOW (labels[len - 1]);
3322 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
3323 {
3324 tree widest_label = labels[0];
3325 for (i = 1; i < len; i++)
3326 {
3327 high = CASE_LOW (labels[i]);
3328 low = CASE_HIGH (labels[i - 1]);
3329 if (!low)
3330 low = CASE_LOW (labels[i - 1]);
3331
3332 if (CASE_HIGH (labels[i]) != NULL_TREE
3333 && (CASE_HIGH (widest_label) == NULL_TREE
3334 || (wi::gtu_p
3335 (x: wi::to_wide (CASE_HIGH (labels[i]))
3336 - wi::to_wide (CASE_LOW (labels[i])),
3337 y: wi::to_wide (CASE_HIGH (widest_label))
3338 - wi::to_wide (CASE_LOW (widest_label))))))
3339 widest_label = labels[i];
3340
3341 if (wi::to_wide (t: low) + 1 != wi::to_wide (t: high))
3342 break;
3343 }
3344 if (i == len)
3345 {
3346 /* Designate the label with the widest range to be the
3347 default label. */
3348 tree label = CASE_LABEL (widest_label);
3349 default_case = build_case_label (NULL_TREE, NULL_TREE,
3350 label);
3351 }
3352 }
3353 }
3354 }
3355
3356 if (default_casep)
3357 *default_casep = default_case;
3358}
3359
3360/* Set the location of all statements in SEQ to LOC. */
3361
3362void
3363gimple_seq_set_location (gimple_seq seq, location_t loc)
3364{
3365 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (i: &i))
3366 gimple_set_location (g: gsi_stmt (i), location: loc);
3367}
3368
3369/* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
3370
3371void
3372gimple_seq_discard (gimple_seq seq)
3373{
3374 gimple_stmt_iterator gsi;
3375
3376 for (gsi = gsi_start (seq); !gsi_end_p (i: gsi); )
3377 {
3378 gimple *stmt = gsi_stmt (i: gsi);
3379 gsi_remove (&gsi, true);
3380 release_defs (stmt);
3381 ggc_free (stmt);
3382 }
3383}
3384
3385/* See if STMT now calls function that takes no parameters and if so, drop
3386 call arguments. This is used when devirtualization machinery redirects
3387 to __builtin_unreachable or __cxa_pure_virtual. */
3388
3389void
3390maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
3391{
3392 tree decl = gimple_call_fndecl (gs: stmt);
3393 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3394 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3395 && gimple_call_num_args (gs: stmt))
3396 {
3397 gimple_set_num_ops (gs: stmt, num_ops: 3);
3398 update_stmt_fn (fn, s: stmt);
3399 }
3400}
3401
3402/* Return false if STMT will likely expand to real function call. */
3403
3404bool
3405gimple_inexpensive_call_p (gcall *stmt)
3406{
3407 if (gimple_call_internal_p (gs: stmt))
3408 return true;
3409 tree decl = gimple_call_fndecl (gs: stmt);
3410 if (decl && is_inexpensive_builtin (decl))
3411 return true;
3412 return false;
3413}
3414
3415/* Return a non-artificial location for STMT. If STMT does not have
3416 location information, get the location from EXPR. */
3417
3418location_t
3419gimple_or_expr_nonartificial_location (gimple *stmt, tree expr)
3420{
3421 location_t loc = gimple_nonartificial_location (g: stmt);
3422 if (loc == UNKNOWN_LOCATION && EXPR_HAS_LOCATION (expr))
3423 loc = tree_nonartificial_location (expr);
3424 return expansion_point_location_if_in_system_header (loc);
3425}
3426
3427
3428#if CHECKING_P
3429
3430namespace selftest {
3431
3432/* Selftests for core gimple structures. */
3433
3434/* Verify that STMT is pretty-printed as EXPECTED.
3435 Helper function for selftests. */
3436
3437static void
3438verify_gimple_pp (const char *expected, gimple *stmt)
3439{
3440 pretty_printer pp;
3441 pp_gimple_stmt_1 (&pp, stmt, 0 /* spc */, TDF_NONE /* flags */);
3442 ASSERT_STREQ (expected, pp_formatted_text (&pp));
3443}
3444
3445/* Build a GIMPLE_ASSIGN equivalent to
3446 tmp = 5;
3447 and verify various properties of it. */
3448
3449static void
3450test_assign_single ()
3451{
3452 tree type = integer_type_node;
3453 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3454 get_identifier ("tmp"),
3455 type);
3456 tree rhs = build_int_cst (type, 5);
3457 gassign *stmt = gimple_build_assign (lhs, rhs);
3458 verify_gimple_pp (expected: "tmp = 5;", stmt);
3459
3460 ASSERT_TRUE (is_gimple_assign (stmt));
3461 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3462 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3463 ASSERT_EQ (rhs, gimple_assign_rhs1 (stmt));
3464 ASSERT_EQ (NULL, gimple_assign_rhs2 (stmt));
3465 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3466 ASSERT_TRUE (gimple_assign_single_p (stmt));
3467 ASSERT_EQ (INTEGER_CST, gimple_assign_rhs_code (stmt));
3468}
3469
3470/* Build a GIMPLE_ASSIGN equivalent to
3471 tmp = a * b;
3472 and verify various properties of it. */
3473
3474static void
3475test_assign_binop ()
3476{
3477 tree type = integer_type_node;
3478 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3479 get_identifier ("tmp"),
3480 type);
3481 tree a = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3482 get_identifier ("a"),
3483 type);
3484 tree b = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3485 get_identifier ("b"),
3486 type);
3487 gassign *stmt = gimple_build_assign (lhs, subcode: MULT_EXPR, op1: a, op2: b);
3488 verify_gimple_pp (expected: "tmp = a * b;", stmt);
3489
3490 ASSERT_TRUE (is_gimple_assign (stmt));
3491 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3492 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3493 ASSERT_EQ (a, gimple_assign_rhs1 (stmt));
3494 ASSERT_EQ (b, gimple_assign_rhs2 (stmt));
3495 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3496 ASSERT_FALSE (gimple_assign_single_p (stmt));
3497 ASSERT_EQ (MULT_EXPR, gimple_assign_rhs_code (stmt));
3498}
3499
3500/* Build a GIMPLE_NOP and verify various properties of it. */
3501
3502static void
3503test_nop_stmt ()
3504{
3505 gimple *stmt = gimple_build_nop ();
3506 verify_gimple_pp (expected: "GIMPLE_NOP", stmt);
3507 ASSERT_EQ (GIMPLE_NOP, gimple_code (stmt));
3508 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3509 ASSERT_FALSE (gimple_assign_single_p (stmt));
3510}
3511
3512/* Build a GIMPLE_RETURN equivalent to
3513 return 7;
3514 and verify various properties of it. */
3515
3516static void
3517test_return_stmt ()
3518{
3519 tree type = integer_type_node;
3520 tree val = build_int_cst (type, 7);
3521 greturn *stmt = gimple_build_return (retval: val);
3522 verify_gimple_pp (expected: "return 7;", stmt);
3523
3524 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3525 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3526 ASSERT_EQ (val, gimple_return_retval (stmt));
3527 ASSERT_FALSE (gimple_assign_single_p (stmt));
3528}
3529
3530/* Build a GIMPLE_RETURN equivalent to
3531 return;
3532 and verify various properties of it. */
3533
3534static void
3535test_return_without_value ()
3536{
3537 greturn *stmt = gimple_build_return (NULL);
3538 verify_gimple_pp (expected: "return;", stmt);
3539
3540 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3541 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3542 ASSERT_EQ (NULL, gimple_return_retval (stmt));
3543 ASSERT_FALSE (gimple_assign_single_p (stmt));
3544}
3545
3546/* Run all of the selftests within this file. */
3547
3548void
3549gimple_cc_tests ()
3550{
3551 test_assign_single ();
3552 test_assign_binop ();
3553 test_nop_stmt ();
3554 test_return_stmt ();
3555 test_return_without_value ();
3556}
3557
3558} // namespace selftest
3559
3560
3561#endif /* CHECKING_P */
3562

source code of gcc/gimple.cc