1/* Inlining decision heuristics.
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* Inlining decision heuristics
22
23 The implementation of inliner is organized as follows:
24
25 inlining heuristics limits
26
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
29 on).
30
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
34 inlining.
35
36 inlining heuristics
37
38 The inliner itself is split into two passes:
39
40 pass_early_inlining
41
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
45
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
52
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
55 flattening.
56
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
60 optimizers.
61
62 Because of lack of whole unit knowledge, the pass cannot really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
67
68 pass_ipa_inline
69
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
72
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
76
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
81
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
87
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
91
92#include "config.h"
93#include "system.h"
94#include "coretypes.h"
95#include "backend.h"
96#include "target.h"
97#include "rtl.h"
98#include "tree.h"
99#include "gimple.h"
100#include "alloc-pool.h"
101#include "tree-pass.h"
102#include "gimple-ssa.h"
103#include "cgraph.h"
104#include "lto-streamer.h"
105#include "trans-mem.h"
106#include "calls.h"
107#include "tree-inline.h"
108#include "profile.h"
109#include "symbol-summary.h"
110#include "tree-vrp.h"
111#include "ipa-prop.h"
112#include "ipa-fnsummary.h"
113#include "ipa-inline.h"
114#include "ipa-utils.h"
115#include "sreal.h"
116#include "auto-profile.h"
117#include "builtins.h"
118#include "fibonacci_heap.h"
119#include "stringpool.h"
120#include "attribs.h"
121#include "asan.h"
122
123/* Inliner uses greedy algorithm to inline calls in a priority order.
124 Badness is used as the key in a Fibonacci heap which roughly corresponds
125 to negation of benefit to cost ratios.
126 In case multiple calls has same priority we want to stabilize the outcomes
127 for which we use ids. */
128class inline_badness
129{
130public:
131 sreal badness;
132 int uid;
133 inline_badness ()
134 : badness (sreal::min ()), uid (0)
135 {
136 }
137 inline_badness (cgraph_edge *e, sreal b)
138 : badness (b), uid (e->get_uid ())
139 {
140 }
141 bool operator<= (const inline_badness &other)
142 {
143 if (badness != other.badness)
144 return badness <= other.badness;
145 return uid <= other.uid;
146 }
147 bool operator== (const inline_badness &other)
148 {
149 return badness == other.badness && uid == other.uid;
150 }
151 bool operator!= (const inline_badness &other)
152 {
153 return badness != other.badness || uid != other.uid;
154 }
155 bool operator< (const inline_badness &other)
156 {
157 if (badness != other.badness)
158 return badness < other.badness;
159 return uid < other.uid;
160 }
161 bool operator> (const inline_badness &other)
162 {
163 if (badness != other.badness)
164 return badness > other.badness;
165 return uid > other.uid;
166 }
167};
168
169typedef fibonacci_heap <inline_badness, cgraph_edge> edge_heap_t;
170typedef fibonacci_node <inline_badness, cgraph_edge> edge_heap_node_t;
171
172/* Statistics we collect about inlining algorithm. */
173static int overall_size;
174static profile_count max_count;
175static profile_count spec_rem;
176
177/* Return false when inlining edge E would lead to violating
178 limits on function unit growth or stack usage growth.
179
180 The relative function body growth limit is present generally
181 to avoid problems with non-linear behavior of the compiler.
182 To allow inlining huge functions into tiny wrapper, the limit
183 is always based on the bigger of the two functions considered.
184
185 For stack growth limits we always base the growth in stack usage
186 of the callers. We want to prevent applications from segfaulting
187 on stack overflow when functions with huge stack frames gets
188 inlined. */
189
190static bool
191caller_growth_limits (struct cgraph_edge *e)
192{
193 struct cgraph_node *to = e->caller;
194 struct cgraph_node *what = e->callee->ultimate_alias_target ();
195 int newsize;
196 int limit = 0;
197 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
198 ipa_size_summary *outer_info = ipa_size_summaries->get (node: to);
199
200 /* Look for function e->caller is inlined to. While doing
201 so work out the largest function body on the way. As
202 described above, we want to base our function growth
203 limits based on that. Not on the self size of the
204 outer function, not on the self size of inline code
205 we immediately inline to. This is the most relaxed
206 interpretation of the rule "do not grow large functions
207 too much in order to prevent compiler from exploding". */
208 while (true)
209 {
210 ipa_size_summary *size_info = ipa_size_summaries->get (node: to);
211 if (limit < size_info->self_size)
212 limit = size_info->self_size;
213 if (stack_size_limit < size_info->estimated_self_stack_size)
214 stack_size_limit = size_info->estimated_self_stack_size;
215 if (to->inlined_to)
216 to = to->callers->caller;
217 else
218 break;
219 }
220
221 ipa_fn_summary *what_info = ipa_fn_summaries->get (node: what);
222 ipa_size_summary *what_size_info = ipa_size_summaries->get (node: what);
223
224 if (limit < what_size_info->self_size)
225 limit = what_size_info->self_size;
226
227 limit += limit * opt_for_fn (to->decl, param_large_function_growth) / 100;
228
229 /* Check the size after inlining against the function limits. But allow
230 the function to shrink if it went over the limits by forced inlining. */
231 newsize = estimate_size_after_inlining (to, e);
232 if (newsize >= ipa_size_summaries->get (node: what)->size
233 && newsize > opt_for_fn (to->decl, param_large_function_insns)
234 && newsize > limit)
235 {
236 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
237 return false;
238 }
239
240 if (!what_info->estimated_stack_size)
241 return true;
242
243 /* FIXME: Stack size limit often prevents inlining in Fortran programs
244 due to large i/o datastructures used by the Fortran front-end.
245 We ought to ignore this limit when we know that the edge is executed
246 on every invocation of the caller (i.e. its call statement dominates
247 exit block). We do not track this information, yet. */
248 stack_size_limit += ((gcov_type)stack_size_limit
249 * opt_for_fn (to->decl, param_stack_frame_growth)
250 / 100);
251
252 inlined_stack = (ipa_get_stack_frame_offset (node: to)
253 + outer_info->estimated_self_stack_size
254 + what_info->estimated_stack_size);
255 /* Check new stack consumption with stack consumption at the place
256 stack is used. */
257 if (inlined_stack > stack_size_limit
258 /* If function already has large stack usage from sibling
259 inline call, we can inline, too.
260 This bit overoptimistically assume that we are good at stack
261 packing. */
262 && inlined_stack > ipa_fn_summaries->get (node: to)->estimated_stack_size
263 && inlined_stack > opt_for_fn (to->decl, param_large_stack_frame))
264 {
265 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
266 return false;
267 }
268 return true;
269}
270
271/* Dump info about why inlining has failed. */
272
273static void
274report_inline_failed_reason (struct cgraph_edge *e)
275{
276 if (dump_enabled_p ())
277 {
278 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
279 " not inlinable: %C -> %C, %s\n",
280 e->caller, e->callee,
281 cgraph_inline_failed_string (e->inline_failed));
282 if ((e->inline_failed == CIF_TARGET_OPTION_MISMATCH
283 || e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
284 && e->caller->lto_file_data
285 && e->callee->ultimate_alias_target ()->lto_file_data)
286 {
287 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
288 " LTO objects: %s, %s\n",
289 e->caller->lto_file_data->file_name,
290 e->callee->ultimate_alias_target ()->lto_file_data->file_name);
291 }
292 if (e->inline_failed == CIF_TARGET_OPTION_MISMATCH)
293 if (dump_file)
294 cl_target_option_print_diff
295 (dump_file, 2, ptr1: target_opts_for_fn (fndecl: e->caller->decl),
296 ptr2: target_opts_for_fn (fndecl: e->callee->ultimate_alias_target ()->decl));
297 if (e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
298 if (dump_file)
299 cl_optimization_print_diff
300 (dump_file, 2, ptr1: opts_for_fn (fndecl: e->caller->decl),
301 ptr2: opts_for_fn (fndecl: e->callee->ultimate_alias_target ()->decl));
302 }
303}
304
305 /* Decide whether sanitizer-related attributes allow inlining. */
306
307static bool
308sanitize_attrs_match_for_inline_p (const_tree caller, const_tree callee)
309{
310 if (!caller || !callee)
311 return true;
312
313 /* Follow clang and allow inlining for always_inline functions. */
314 if (lookup_attribute (attr_name: "always_inline", DECL_ATTRIBUTES (callee)))
315 return true;
316
317 const sanitize_code codes[] =
318 {
319 SANITIZE_ADDRESS,
320 SANITIZE_THREAD,
321 SANITIZE_UNDEFINED,
322 SANITIZE_UNDEFINED_NONDEFAULT,
323 SANITIZE_POINTER_COMPARE,
324 SANITIZE_POINTER_SUBTRACT
325 };
326
327 for (unsigned i = 0; i < ARRAY_SIZE (codes); i++)
328 if (sanitize_flags_p (flag: codes[i], fn: caller)
329 != sanitize_flags_p (flag: codes[i], fn: callee))
330 return false;
331
332 if (sanitize_coverage_p (fn: caller) != sanitize_coverage_p (fn: callee))
333 return false;
334
335 return true;
336}
337
338/* Used for flags where it is safe to inline when caller's value is
339 grater than callee's. */
340#define check_maybe_up(flag) \
341 (opts_for_fn (caller->decl)->x_##flag \
342 != opts_for_fn (callee->decl)->x_##flag \
343 && (!always_inline \
344 || opts_for_fn (caller->decl)->x_##flag \
345 < opts_for_fn (callee->decl)->x_##flag))
346/* Used for flags where it is safe to inline when caller's value is
347 smaller than callee's. */
348#define check_maybe_down(flag) \
349 (opts_for_fn (caller->decl)->x_##flag \
350 != opts_for_fn (callee->decl)->x_##flag \
351 && (!always_inline \
352 || opts_for_fn (caller->decl)->x_##flag \
353 > opts_for_fn (callee->decl)->x_##flag))
354/* Used for flags where exact match is needed for correctness. */
355#define check_match(flag) \
356 (opts_for_fn (caller->decl)->x_##flag \
357 != opts_for_fn (callee->decl)->x_##flag)
358
359/* Decide if we can inline the edge and possibly update
360 inline_failed reason.
361 We check whether inlining is possible at all and whether
362 caller growth limits allow doing so.
363
364 if REPORT is true, output reason to the dump file. */
365
366static bool
367can_inline_edge_p (struct cgraph_edge *e, bool report,
368 bool early = false)
369{
370 gcc_checking_assert (e->inline_failed);
371
372 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
373 {
374 if (report)
375 report_inline_failed_reason (e);
376 return false;
377 }
378
379 bool inlinable = true;
380 enum availability avail;
381 cgraph_node *caller = (e->caller->inlined_to
382 ? e->caller->inlined_to : e->caller);
383 cgraph_node *callee = e->callee->ultimate_alias_target (availability: &avail, ref: caller);
384
385 if (!callee->definition)
386 {
387 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
388 inlinable = false;
389 }
390 if (!early && (!opt_for_fn (callee->decl, optimize)
391 || !opt_for_fn (caller->decl, optimize)))
392 {
393 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
394 inlinable = false;
395 }
396 else if (callee->calls_comdat_local)
397 {
398 e->inline_failed = CIF_USES_COMDAT_LOCAL;
399 inlinable = false;
400 }
401 else if (avail <= AVAIL_INTERPOSABLE)
402 {
403 e->inline_failed = CIF_OVERWRITABLE;
404 inlinable = false;
405 }
406 /* All edges with call_stmt_cannot_inline_p should have inline_failed
407 initialized to one of FINAL_ERROR reasons. */
408 else if (e->call_stmt_cannot_inline_p)
409 gcc_unreachable ();
410 /* Don't inline if the functions have different EH personalities. */
411 else if (DECL_FUNCTION_PERSONALITY (caller->decl)
412 && DECL_FUNCTION_PERSONALITY (callee->decl)
413 && (DECL_FUNCTION_PERSONALITY (caller->decl)
414 != DECL_FUNCTION_PERSONALITY (callee->decl)))
415 {
416 e->inline_failed = CIF_EH_PERSONALITY;
417 inlinable = false;
418 }
419 /* TM pure functions should not be inlined into non-TM_pure
420 functions. */
421 else if (is_tm_pure (callee->decl) && !is_tm_pure (caller->decl))
422 {
423 e->inline_failed = CIF_UNSPECIFIED;
424 inlinable = false;
425 }
426 /* Check compatibility of target optimization options. */
427 else if (!targetm.target_option.can_inline_p (caller->decl,
428 callee->decl))
429 {
430 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
431 inlinable = false;
432 }
433 else if (ipa_fn_summaries->get (node: callee) == NULL
434 || !ipa_fn_summaries->get (node: callee)->inlinable)
435 {
436 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
437 inlinable = false;
438 }
439 /* Don't inline a function with mismatched sanitization attributes. */
440 else if (!sanitize_attrs_match_for_inline_p (caller: caller->decl, callee: callee->decl))
441 {
442 e->inline_failed = CIF_SANITIZE_ATTRIBUTE_MISMATCH;
443 inlinable = false;
444 }
445
446 if (!inlinable && report)
447 report_inline_failed_reason (e);
448 return inlinable;
449}
450
451/* Return inlining_insns_single limit for function N. If HINT or HINT2 is true
452 scale up the bound. */
453
454static int
455inline_insns_single (cgraph_node *n, bool hint, bool hint2)
456{
457 if (hint && hint2)
458 {
459 int64_t spd = opt_for_fn (n->decl, param_inline_heuristics_hint_percent);
460 spd = spd * spd;
461 if (spd > 1000000)
462 spd = 1000000;
463 return opt_for_fn (n->decl, param_max_inline_insns_single) * spd / 100;
464 }
465 if (hint || hint2)
466 return opt_for_fn (n->decl, param_max_inline_insns_single)
467 * opt_for_fn (n->decl, param_inline_heuristics_hint_percent) / 100;
468 return opt_for_fn (n->decl, param_max_inline_insns_single);
469}
470
471/* Return inlining_insns_auto limit for function N. If HINT or HINT2 is true
472 scale up the bound. */
473
474static int
475inline_insns_auto (cgraph_node *n, bool hint, bool hint2)
476{
477 int max_inline_insns_auto = opt_for_fn (n->decl, param_max_inline_insns_auto);
478 if (hint && hint2)
479 {
480 int64_t spd = opt_for_fn (n->decl, param_inline_heuristics_hint_percent);
481 spd = spd * spd;
482 if (spd > 1000000)
483 spd = 1000000;
484 return max_inline_insns_auto * spd / 100;
485 }
486 if (hint || hint2)
487 return max_inline_insns_auto
488 * opt_for_fn (n->decl, param_inline_heuristics_hint_percent) / 100;
489 return max_inline_insns_auto;
490}
491
492/* Decide if we can inline the edge and possibly update
493 inline_failed reason.
494 We check whether inlining is possible at all and whether
495 caller growth limits allow doing so.
496
497 if REPORT is true, output reason to the dump file.
498
499 if DISREGARD_LIMITS is true, ignore size limits. */
500
501static bool
502can_inline_edge_by_limits_p (struct cgraph_edge *e, bool report,
503 bool disregard_limits = false, bool early = false)
504{
505 gcc_checking_assert (e->inline_failed);
506
507 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
508 {
509 if (report)
510 report_inline_failed_reason (e);
511 return false;
512 }
513
514 bool inlinable = true;
515 enum availability avail;
516 cgraph_node *caller = (e->caller->inlined_to
517 ? e->caller->inlined_to : e->caller);
518 cgraph_node *callee = e->callee->ultimate_alias_target (availability: &avail, ref: caller);
519 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (caller->decl);
520 tree callee_tree
521 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
522 /* Check if caller growth allows the inlining. */
523 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
524 && !disregard_limits
525 && !lookup_attribute (attr_name: "flatten",
526 DECL_ATTRIBUTES (caller->decl))
527 && !caller_growth_limits (e))
528 inlinable = false;
529 else if (callee->externally_visible
530 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl)
531 && flag_live_patching == LIVE_PATCHING_INLINE_ONLY_STATIC)
532 {
533 e->inline_failed = CIF_EXTERN_LIVE_ONLY_STATIC;
534 inlinable = false;
535 }
536 /* Don't inline a function with a higher optimization level than the
537 caller. FIXME: this is really just tip of iceberg of handling
538 optimization attribute. */
539 else if (caller_tree != callee_tree)
540 {
541 bool always_inline =
542 (DECL_DISREGARD_INLINE_LIMITS (callee->decl)
543 && lookup_attribute (attr_name: "always_inline",
544 DECL_ATTRIBUTES (callee->decl)));
545 ipa_fn_summary *caller_info = ipa_fn_summaries->get (node: caller);
546 ipa_fn_summary *callee_info = ipa_fn_summaries->get (node: callee);
547
548 /* Until GCC 4.9 we did not check the semantics-altering flags
549 below and inlined across optimization boundaries.
550 Enabling checks below breaks several packages by refusing
551 to inline library always_inline functions. See PR65873.
552 Disable the check for early inlining for now until better solution
553 is found. */
554 if (always_inline && early)
555 ;
556 /* There are some options that change IL semantics which means
557 we cannot inline in these cases for correctness reason.
558 Not even for always_inline declared functions. */
559 else if (check_match (flag_wrapv)
560 || check_match (flag_trapv)
561 || check_match (flag_pcc_struct_return)
562 || check_maybe_down (optimize_debug)
563 /* When caller or callee does FP math, be sure FP codegen flags
564 compatible. */
565 || ((caller_info->fp_expressions && callee_info->fp_expressions)
566 && (check_maybe_up (flag_rounding_math)
567 || check_maybe_up (flag_trapping_math)
568 || check_maybe_down (flag_unsafe_math_optimizations)
569 || check_maybe_down (flag_finite_math_only)
570 || check_maybe_up (flag_signaling_nans)
571 || check_maybe_down (flag_cx_limited_range)
572 || check_maybe_up (flag_signed_zeros)
573 || check_maybe_down (flag_associative_math)
574 || check_maybe_down (flag_reciprocal_math)
575 || check_maybe_down (flag_fp_int_builtin_inexact)
576 /* Strictly speaking only when the callee contains function
577 calls that may end up setting errno. */
578 || check_maybe_up (flag_errno_math)))
579 /* We do not want to make code compiled with exceptions to be
580 brought into a non-EH function unless we know that the callee
581 does not throw.
582 This is tracked by DECL_FUNCTION_PERSONALITY. */
583 || (check_maybe_up (flag_non_call_exceptions)
584 && DECL_FUNCTION_PERSONALITY (callee->decl))
585 || (check_maybe_up (flag_exceptions)
586 && DECL_FUNCTION_PERSONALITY (callee->decl))
587 /* When devirtualization is disabled for callee, it is not safe
588 to inline it as we possibly mangled the type info.
589 Allow early inlining of always inlines. */
590 || (!early && check_maybe_down (flag_devirtualize)))
591 {
592 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
593 inlinable = false;
594 }
595 /* gcc.dg/pr43564.c. Apply user-forced inline even at -O0. */
596 else if (always_inline)
597 ;
598 /* When user added an attribute to the callee honor it. */
599 else if (lookup_attribute (attr_name: "optimize", DECL_ATTRIBUTES (callee->decl))
600 && opts_for_fn (fndecl: caller->decl) != opts_for_fn (fndecl: callee->decl))
601 {
602 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
603 inlinable = false;
604 }
605 /* If explicit optimize attribute are not used, the mismatch is caused
606 by different command line options used to build different units.
607 Do not care about COMDAT functions - those are intended to be
608 optimized with the optimization flags of module they are used in.
609 Also do not care about mixing up size/speed optimization when
610 DECL_DISREGARD_INLINE_LIMITS is set. */
611 else if ((callee->merged_comdat
612 && !lookup_attribute (attr_name: "optimize",
613 DECL_ATTRIBUTES (caller->decl)))
614 || DECL_DISREGARD_INLINE_LIMITS (callee->decl))
615 ;
616 /* If mismatch is caused by merging two LTO units with different
617 optimization flags we want to be bit nicer. However never inline
618 if one of functions is not optimized at all. */
619 else if (!opt_for_fn (callee->decl, optimize)
620 || !opt_for_fn (caller->decl, optimize))
621 {
622 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
623 inlinable = false;
624 }
625 /* If callee is optimized for size and caller is not, allow inlining if
626 code shrinks or we are in param_max_inline_insns_single limit and
627 callee is inline (and thus likely an unified comdat).
628 This will allow caller to run faster. */
629 else if (opt_for_fn (callee->decl, optimize_size)
630 > opt_for_fn (caller->decl, optimize_size))
631 {
632 int growth = estimate_edge_growth (edge: e);
633 if (growth > opt_for_fn (caller->decl, param_max_inline_insns_size)
634 && (!DECL_DECLARED_INLINE_P (callee->decl)
635 && growth >= MAX (inline_insns_single (caller, false, false),
636 inline_insns_auto (caller, false, false))))
637 {
638 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
639 inlinable = false;
640 }
641 }
642 /* If callee is more aggressively optimized for performance than caller,
643 we generally want to inline only cheap (runtime wise) functions. */
644 else if (opt_for_fn (callee->decl, optimize_size)
645 < opt_for_fn (caller->decl, optimize_size)
646 || (opt_for_fn (callee->decl, optimize)
647 > opt_for_fn (caller->decl, optimize)))
648 {
649 if (estimate_edge_time (edge: e)
650 >= 20 + ipa_call_summaries->get (edge: e)->call_stmt_time)
651 {
652 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
653 inlinable = false;
654 }
655 }
656
657 }
658
659 if (!inlinable && report)
660 report_inline_failed_reason (e);
661 return inlinable;
662}
663
664
665/* Return true if the edge E is inlinable during early inlining. */
666
667static bool
668can_early_inline_edge_p (struct cgraph_edge *e)
669{
670 cgraph_node *caller = (e->caller->inlined_to
671 ? e->caller->inlined_to : e->caller);
672 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
673 /* Early inliner might get called at WPA stage when IPA pass adds new
674 function. In this case we cannot really do any of early inlining
675 because function bodies are missing. */
676 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
677 return false;
678 if (!gimple_has_body_p (callee->decl))
679 {
680 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
681 return false;
682 }
683 gcc_assert (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
684 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)));
685 if (profile_arc_flag
686 && ((lookup_attribute (attr_name: "no_profile_instrument_function",
687 DECL_ATTRIBUTES (caller->decl)) == NULL_TREE)
688 != (lookup_attribute (attr_name: "no_profile_instrument_function",
689 DECL_ATTRIBUTES (callee->decl)) == NULL_TREE)))
690 return false;
691
692 if (!can_inline_edge_p (e, report: true, early: true)
693 || !can_inline_edge_by_limits_p (e, report: true, disregard_limits: false, early: true))
694 return false;
695 /* When inlining regular functions into always-inline functions
696 during early inlining watch for possible inline cycles. */
697 if (DECL_DISREGARD_INLINE_LIMITS (caller->decl)
698 && lookup_attribute (attr_name: "always_inline", DECL_ATTRIBUTES (caller->decl))
699 && (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
700 || !lookup_attribute (attr_name: "always_inline", DECL_ATTRIBUTES (callee->decl))))
701 {
702 /* If there are indirect calls, inlining may produce direct call.
703 TODO: We may lift this restriction if we avoid errors on formely
704 indirect calls to always_inline functions. Taking address
705 of always_inline function is generally bad idea and should
706 have been declared as undefined, but sadly we allow this. */
707 if (caller->indirect_calls || e->callee->indirect_calls)
708 return false;
709 ipa_fn_summary *callee_info = ipa_fn_summaries->get (node: callee);
710 if (callee_info->safe_to_inline_to_always_inline)
711 return callee_info->safe_to_inline_to_always_inline - 1;
712 for (cgraph_edge *e2 = callee->callees; e2; e2 = e2->next_callee)
713 {
714 struct cgraph_node *callee2 = e2->callee->ultimate_alias_target ();
715 /* As early inliner runs in RPO order, we will see uninlined
716 always_inline calls only in the case of cyclic graphs. */
717 if (DECL_DISREGARD_INLINE_LIMITS (callee2->decl)
718 || lookup_attribute (attr_name: "always_inline", DECL_ATTRIBUTES (callee2->decl)))
719 {
720 callee_info->safe_to_inline_to_always_inline = 1;
721 return false;
722 }
723 /* With LTO watch for case where function is later replaced
724 by always_inline definition.
725 TODO: We may either stop treating noninlined cross-module always
726 inlines as errors, or we can extend decl merging to produce
727 syntacic alias and honor always inline only in units it has
728 been declared as such. */
729 if (flag_lto && callee2->externally_visible)
730 {
731 callee_info->safe_to_inline_to_always_inline = 1;
732 return false;
733 }
734 }
735 callee_info->safe_to_inline_to_always_inline = 2;
736 }
737 return true;
738}
739
740
741/* Return number of calls in N. Ignore cheap builtins. */
742
743static int
744num_calls (struct cgraph_node *n)
745{
746 struct cgraph_edge *e;
747 int num = 0;
748
749 for (e = n->callees; e; e = e->next_callee)
750 if (!is_inexpensive_builtin (e->callee->decl))
751 num++;
752 return num;
753}
754
755
756/* Return true if we are interested in inlining small function. */
757
758static bool
759want_early_inline_function_p (struct cgraph_edge *e)
760{
761 bool want_inline = true;
762 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
763
764 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
765 ;
766 /* For AutoFDO, we need to make sure that before profile summary, all
767 hot paths' IR look exactly the same as profiled binary. As a result,
768 in einliner, we will disregard size limit and inline those callsites
769 that are:
770 * inlined in the profiled binary, and
771 * the cloned callee has enough samples to be considered "hot". */
772 else if (flag_auto_profile && afdo_callsite_hot_enough_for_early_inline (e))
773 ;
774 else if (!DECL_DECLARED_INLINE_P (callee->decl)
775 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
776 {
777 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
778 report_inline_failed_reason (e);
779 want_inline = false;
780 }
781 else
782 {
783 /* First take care of very large functions. */
784 int min_growth = estimate_min_edge_growth (edge: e), growth = 0;
785 int n;
786 int early_inlining_insns = param_early_inlining_insns;
787
788 if (min_growth > early_inlining_insns)
789 {
790 if (dump_enabled_p ())
791 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
792 " will not early inline: %C->%C, "
793 "call is cold and code would grow "
794 "at least by %i\n",
795 e->caller, callee,
796 min_growth);
797 want_inline = false;
798 }
799 else
800 growth = estimate_edge_growth (edge: e);
801
802
803 if (!want_inline || growth <= param_max_inline_insns_size)
804 ;
805 else if (!e->maybe_hot_p ())
806 {
807 if (dump_enabled_p ())
808 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
809 " will not early inline: %C->%C, "
810 "call is cold and code would grow by %i\n",
811 e->caller, callee,
812 growth);
813 want_inline = false;
814 }
815 else if (growth > early_inlining_insns)
816 {
817 if (dump_enabled_p ())
818 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
819 " will not early inline: %C->%C, "
820 "growth %i exceeds --param early-inlining-insns\n",
821 e->caller, callee, growth);
822 want_inline = false;
823 }
824 else if ((n = num_calls (n: callee)) != 0
825 && growth * (n + 1) > early_inlining_insns)
826 {
827 if (dump_enabled_p ())
828 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
829 " will not early inline: %C->%C, "
830 "growth %i exceeds --param early-inlining-insns "
831 "divided by number of calls\n",
832 e->caller, callee, growth);
833 want_inline = false;
834 }
835 }
836 return want_inline;
837}
838
839/* Compute time of the edge->caller + edge->callee execution when inlining
840 does not happen. */
841
842inline sreal
843compute_uninlined_call_time (struct cgraph_edge *edge,
844 sreal uninlined_call_time,
845 sreal freq)
846{
847 cgraph_node *caller = (edge->caller->inlined_to
848 ? edge->caller->inlined_to
849 : edge->caller);
850
851 if (freq > 0)
852 uninlined_call_time *= freq;
853 else
854 uninlined_call_time = uninlined_call_time >> 11;
855
856 sreal caller_time = ipa_fn_summaries->get (node: caller)->time;
857 return uninlined_call_time + caller_time;
858}
859
860/* Same as compute_uinlined_call_time but compute time when inlining
861 does happen. */
862
863inline sreal
864compute_inlined_call_time (struct cgraph_edge *edge,
865 sreal time,
866 sreal freq)
867{
868 cgraph_node *caller = (edge->caller->inlined_to
869 ? edge->caller->inlined_to
870 : edge->caller);
871 sreal caller_time = ipa_fn_summaries->get (node: caller)->time;
872
873 if (freq > 0)
874 time *= freq;
875 else
876 time = time >> 11;
877
878 /* This calculation should match one in ipa-inline-analysis.cc
879 (estimate_edge_size_and_time). */
880 time -= (sreal)ipa_call_summaries->get (edge)->call_stmt_time * freq;
881 time += caller_time;
882 if (time <= 0)
883 time = ((sreal) 1) >> 8;
884 gcc_checking_assert (time >= 0);
885 return time;
886}
887
888/* Determine time saved by inlining EDGE of frequency FREQ
889 where callee's runtime w/o inlining is UNINLINED_TYPE
890 and with inlined is INLINED_TYPE. */
891
892inline sreal
893inlining_speedup (struct cgraph_edge *edge,
894 sreal freq,
895 sreal uninlined_time,
896 sreal inlined_time)
897{
898 sreal speedup = uninlined_time - inlined_time;
899 /* Handling of call_time should match one in ipa-inline-fnsummary.c
900 (estimate_edge_size_and_time). */
901 sreal call_time = ipa_call_summaries->get (edge)->call_stmt_time;
902
903 if (freq > 0)
904 {
905 speedup = (speedup + call_time);
906 if (freq != 1)
907 speedup = speedup * freq;
908 }
909 else if (freq == 0)
910 speedup = speedup >> 11;
911 gcc_checking_assert (speedup >= 0);
912 return speedup;
913}
914
915/* Return true if the speedup for inlining E is bigger than
916 param_inline_min_speedup. */
917
918static bool
919big_speedup_p (struct cgraph_edge *e)
920{
921 sreal unspec_time;
922 sreal spec_time = estimate_edge_time (edge: e, nonspec_time: &unspec_time);
923 sreal freq = e->sreal_frequency ();
924 sreal time = compute_uninlined_call_time (edge: e, uninlined_call_time: unspec_time, freq);
925 sreal inlined_time = compute_inlined_call_time (edge: e, time: spec_time, freq);
926 cgraph_node *caller = (e->caller->inlined_to
927 ? e->caller->inlined_to
928 : e->caller);
929 int limit = opt_for_fn (caller->decl, param_inline_min_speedup);
930
931 if ((time - inlined_time) * 100 > time * limit)
932 return true;
933 return false;
934}
935
936/* Return true if we are interested in inlining small function.
937 When REPORT is true, report reason to dump file. */
938
939static bool
940want_inline_small_function_p (struct cgraph_edge *e, bool report)
941{
942 bool want_inline = true;
943 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
944 cgraph_node *to = (e->caller->inlined_to
945 ? e->caller->inlined_to : e->caller);
946
947 /* Allow this function to be called before can_inline_edge_p,
948 since it's usually cheaper. */
949 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
950 want_inline = false;
951 else if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
952 ;
953 else if (!DECL_DECLARED_INLINE_P (callee->decl)
954 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
955 {
956 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
957 want_inline = false;
958 }
959 /* Do fast and conservative check if the function can be good
960 inline candidate. */
961 else if ((!DECL_DECLARED_INLINE_P (callee->decl)
962 && (!e->count.ipa ().initialized_p () || !e->maybe_hot_p ()))
963 && ipa_fn_summaries->get (node: callee)->min_size
964 - ipa_call_summaries->get (edge: e)->call_stmt_size
965 > inline_insns_auto (n: e->caller, hint: true, hint2: true))
966 {
967 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
968 want_inline = false;
969 }
970 else if ((DECL_DECLARED_INLINE_P (callee->decl)
971 || e->count.ipa ().nonzero_p ())
972 && ipa_fn_summaries->get (node: callee)->min_size
973 - ipa_call_summaries->get (edge: e)->call_stmt_size
974 > inline_insns_single (n: e->caller, hint: true, hint2: true))
975 {
976 e->inline_failed = (DECL_DECLARED_INLINE_P (callee->decl)
977 ? CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
978 : CIF_MAX_INLINE_INSNS_AUTO_LIMIT);
979 want_inline = false;
980 }
981 else
982 {
983 int growth = estimate_edge_growth (edge: e);
984 ipa_hints hints = estimate_edge_hints (edge: e);
985 /* We have two independent groups of hints. If one matches in each
986 of groups the limits are inreased. If both groups matches, limit
987 is increased even more. */
988 bool apply_hints = (hints & (INLINE_HINT_indirect_call
989 | INLINE_HINT_known_hot
990 | INLINE_HINT_loop_iterations
991 | INLINE_HINT_loop_stride));
992 bool apply_hints2 = (hints & INLINE_HINT_builtin_constant_p);
993
994 if (growth <= opt_for_fn (to->decl,
995 param_max_inline_insns_size))
996 ;
997 /* Apply param_max_inline_insns_single limit. Do not do so when
998 hints suggests that inlining given function is very profitable.
999 Avoid computation of big_speedup_p when not necessary to change
1000 outcome of decision. */
1001 else if (DECL_DECLARED_INLINE_P (callee->decl)
1002 && growth >= inline_insns_single (n: e->caller, hint: apply_hints,
1003 hint2: apply_hints2)
1004 && (apply_hints || apply_hints2
1005 || growth >= inline_insns_single (n: e->caller, hint: true,
1006 hint2: apply_hints2)
1007 || !big_speedup_p (e)))
1008 {
1009 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
1010 want_inline = false;
1011 }
1012 else if (!DECL_DECLARED_INLINE_P (callee->decl)
1013 && !opt_for_fn (e->caller->decl, flag_inline_functions)
1014 && growth >= opt_for_fn (to->decl,
1015 param_max_inline_insns_small))
1016 {
1017 /* growth_positive_p is expensive, always test it last. */
1018 if (growth >= inline_insns_single (n: e->caller, hint: false, hint2: false)
1019 || growth_positive_p (callee, e, growth))
1020 {
1021 e->inline_failed = CIF_NOT_DECLARED_INLINED;
1022 want_inline = false;
1023 }
1024 }
1025 /* Apply param_max_inline_insns_auto limit for functions not declared
1026 inline. Bypass the limit when speedup seems big. */
1027 else if (!DECL_DECLARED_INLINE_P (callee->decl)
1028 && growth >= inline_insns_auto (n: e->caller, hint: apply_hints,
1029 hint2: apply_hints2)
1030 && (apply_hints || apply_hints2
1031 || growth >= inline_insns_auto (n: e->caller, hint: true,
1032 hint2: apply_hints2)
1033 || !big_speedup_p (e)))
1034 {
1035 /* growth_positive_p is expensive, always test it last. */
1036 if (growth >= inline_insns_single (n: e->caller, hint: false, hint2: false)
1037 || growth_positive_p (callee, e, growth))
1038 {
1039 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
1040 want_inline = false;
1041 }
1042 }
1043 /* If call is cold, do not inline when function body would grow. */
1044 else if (!e->maybe_hot_p ()
1045 && (growth >= inline_insns_single (n: e->caller, hint: false, hint2: false)
1046 || growth_positive_p (callee, e, growth)))
1047 {
1048 e->inline_failed = CIF_UNLIKELY_CALL;
1049 want_inline = false;
1050 }
1051 }
1052 if (!want_inline && report)
1053 report_inline_failed_reason (e);
1054 return want_inline;
1055}
1056
1057/* EDGE is self recursive edge.
1058 We handle two cases - when function A is inlining into itself
1059 or when function A is being inlined into another inliner copy of function
1060 A within function B.
1061
1062 In first case OUTER_NODE points to the toplevel copy of A, while
1063 in the second case OUTER_NODE points to the outermost copy of A in B.
1064
1065 In both cases we want to be extra selective since
1066 inlining the call will just introduce new recursive calls to appear. */
1067
1068static bool
1069want_inline_self_recursive_call_p (struct cgraph_edge *edge,
1070 struct cgraph_node *outer_node,
1071 bool peeling,
1072 int depth)
1073{
1074 char const *reason = NULL;
1075 bool want_inline = true;
1076 sreal caller_freq = 1;
1077 int max_depth = opt_for_fn (outer_node->decl,
1078 param_max_inline_recursive_depth_auto);
1079
1080 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
1081 max_depth = opt_for_fn (outer_node->decl,
1082 param_max_inline_recursive_depth);
1083
1084 if (!edge->maybe_hot_p ())
1085 {
1086 reason = "recursive call is cold";
1087 want_inline = false;
1088 }
1089 else if (depth > max_depth)
1090 {
1091 reason = "--param max-inline-recursive-depth exceeded.";
1092 want_inline = false;
1093 }
1094 else if (outer_node->inlined_to
1095 && (caller_freq = outer_node->callers->sreal_frequency ()) == 0)
1096 {
1097 reason = "caller frequency is 0";
1098 want_inline = false;
1099 }
1100
1101 if (!want_inline)
1102 ;
1103 /* Inlining of self recursive function into copy of itself within other
1104 function is transformation similar to loop peeling.
1105
1106 Peeling is profitable if we can inline enough copies to make probability
1107 of actual call to the self recursive function very small. Be sure that
1108 the probability of recursion is small.
1109
1110 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
1111 This way the expected number of recursion is at most max_depth. */
1112 else if (peeling)
1113 {
1114 sreal max_prob = (sreal)1 - ((sreal)1 / (sreal)max_depth);
1115 int i;
1116 for (i = 1; i < depth; i++)
1117 max_prob = max_prob * max_prob;
1118 if (edge->sreal_frequency () >= max_prob * caller_freq)
1119 {
1120 reason = "frequency of recursive call is too large";
1121 want_inline = false;
1122 }
1123 }
1124 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if
1125 recursion depth is large. We reduce function call overhead and increase
1126 chances that things fit in hardware return predictor.
1127
1128 Recursive inlining might however increase cost of stack frame setup
1129 actually slowing down functions whose recursion tree is wide rather than
1130 deep.
1131
1132 Deciding reliably on when to do recursive inlining without profile feedback
1133 is tricky. For now we disable recursive inlining when probability of self
1134 recursion is low.
1135
1136 Recursive inlining of self recursive call within loop also results in
1137 large loop depths that generally optimize badly. We may want to throttle
1138 down inlining in those cases. In particular this seems to happen in one
1139 of libstdc++ rb tree methods. */
1140 else
1141 {
1142 if (edge->sreal_frequency () * 100
1143 <= caller_freq
1144 * opt_for_fn (outer_node->decl,
1145 param_min_inline_recursive_probability))
1146 {
1147 reason = "frequency of recursive call is too small";
1148 want_inline = false;
1149 }
1150 }
1151 if (!want_inline && dump_enabled_p ())
1152 dump_printf_loc (MSG_MISSED_OPTIMIZATION, edge->call_stmt,
1153 " not inlining recursively: %s\n", reason);
1154 return want_inline;
1155}
1156
1157/* Return true when NODE has uninlinable caller;
1158 set HAS_HOT_CALL if it has hot call.
1159 Worker for cgraph_for_node_and_aliases. */
1160
1161static bool
1162check_callers (struct cgraph_node *node, void *has_hot_call)
1163{
1164 struct cgraph_edge *e;
1165 for (e = node->callers; e; e = e->next_caller)
1166 {
1167 if (!opt_for_fn (e->caller->decl, flag_inline_functions_called_once)
1168 || !opt_for_fn (e->caller->decl, optimize))
1169 return true;
1170 if (!can_inline_edge_p (e, report: true))
1171 return true;
1172 if (e->recursive_p ())
1173 return true;
1174 if (!can_inline_edge_by_limits_p (e, report: true))
1175 return true;
1176 /* Inlining large functions to large loop depth is often harmful because
1177 of register pressure it implies. */
1178 if ((int)ipa_call_summaries->get (edge: e)->loop_depth
1179 > param_inline_functions_called_once_loop_depth)
1180 return true;
1181 /* Do not produce gigantic functions. */
1182 if (estimate_size_after_inlining (e->caller->inlined_to ?
1183 e->caller->inlined_to : e->caller, e)
1184 > param_inline_functions_called_once_insns)
1185 return true;
1186 if (!(*(bool *)has_hot_call) && e->maybe_hot_p ())
1187 *(bool *)has_hot_call = true;
1188 }
1189 return false;
1190}
1191
1192/* If NODE has a caller, return true. */
1193
1194static bool
1195has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
1196{
1197 if (node->callers)
1198 return true;
1199 return false;
1200}
1201
1202/* Decide if inlining NODE would reduce unit size by eliminating
1203 the offline copy of function.
1204 When COLD is true the cold calls are considered, too. */
1205
1206static bool
1207want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
1208{
1209 bool has_hot_call = false;
1210
1211 /* Aliases gets inlined along with the function they alias. */
1212 if (node->alias)
1213 return false;
1214 /* Already inlined? */
1215 if (node->inlined_to)
1216 return false;
1217 /* Does it have callers? */
1218 if (!node->call_for_symbol_and_aliases (callback: has_caller_p, NULL, include_overwritable: true))
1219 return false;
1220 /* Inlining into all callers would increase size? */
1221 if (growth_positive_p (node, NULL, INT_MIN) > 0)
1222 return false;
1223 /* All inlines must be possible. */
1224 if (node->call_for_symbol_and_aliases (callback: check_callers, data: &has_hot_call,
1225 include_overwritable: true))
1226 return false;
1227 if (!cold && !has_hot_call)
1228 return false;
1229 return true;
1230}
1231
1232/* Return true if WHERE of SIZE is a possible candidate for wrapper heuristics
1233 in estimate_edge_badness. */
1234
1235static bool
1236wrapper_heuristics_may_apply (struct cgraph_node *where, int size)
1237{
1238 return size < (DECL_DECLARED_INLINE_P (where->decl)
1239 ? inline_insns_single (n: where, hint: false, hint2: false)
1240 : inline_insns_auto (n: where, hint: false, hint2: false));
1241}
1242
1243/* A cost model driving the inlining heuristics in a way so the edges with
1244 smallest badness are inlined first. After each inlining is performed
1245 the costs of all caller edges of nodes affected are recomputed so the
1246 metrics may accurately depend on values such as number of inlinable callers
1247 of the function or function body size. */
1248
1249static sreal
1250edge_badness (struct cgraph_edge *edge, bool dump)
1251{
1252 sreal badness;
1253 int growth;
1254 sreal edge_time, unspec_edge_time;
1255 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
1256 class ipa_fn_summary *callee_info = ipa_fn_summaries->get (node: callee);
1257 ipa_hints hints;
1258 cgraph_node *caller = (edge->caller->inlined_to
1259 ? edge->caller->inlined_to
1260 : edge->caller);
1261
1262 growth = estimate_edge_growth (edge);
1263 edge_time = estimate_edge_time (edge, nonspec_time: &unspec_edge_time);
1264 hints = estimate_edge_hints (edge);
1265 gcc_checking_assert (edge_time >= 0);
1266 /* Check that inlined time is better, but tolerate some roundoff issues.
1267 FIXME: When callee profile drops to 0 we account calls more. This
1268 should be fixed by never doing that. */
1269 gcc_checking_assert ((edge_time * 100
1270 - callee_info->time * 101).to_int () <= 0
1271 || callee->count.ipa ().initialized_p ());
1272 gcc_checking_assert (growth <= ipa_size_summaries->get (callee)->size);
1273
1274 if (dump)
1275 {
1276 fprintf (stream: dump_file, format: " Badness calculation for %s -> %s\n",
1277 edge->caller->dump_name (),
1278 edge->callee->dump_name ());
1279 fprintf (stream: dump_file, format: " size growth %i, time %f unspec %f ",
1280 growth,
1281 edge_time.to_double (),
1282 unspec_edge_time.to_double ());
1283 ipa_dump_hints (f: dump_file, hints);
1284 if (big_speedup_p (e: edge))
1285 fprintf (stream: dump_file, format: " big_speedup");
1286 fprintf (stream: dump_file, format: "\n");
1287 }
1288
1289 /* Always prefer inlining saving code size. */
1290 if (growth <= 0)
1291 {
1292 badness = (sreal) (-SREAL_MIN_SIG + growth) << (SREAL_MAX_EXP / 256);
1293 if (dump)
1294 fprintf (stream: dump_file, format: " %f: Growth %d <= 0\n", badness.to_double (),
1295 growth);
1296 }
1297 /* Inlining into EXTERNAL functions is not going to change anything unless
1298 they are themselves inlined. */
1299 else if (DECL_EXTERNAL (caller->decl))
1300 {
1301 if (dump)
1302 fprintf (stream: dump_file, format: " max: function is external\n");
1303 return sreal::max ();
1304 }
1305 /* When profile is available. Compute badness as:
1306
1307 time_saved * caller_count
1308 goodness = -------------------------------------------------
1309 growth_of_caller * overall_growth * combined_size
1310
1311 badness = - goodness
1312
1313 Again use negative value to make calls with profile appear hotter
1314 then calls without.
1315 */
1316 else if (opt_for_fn (caller->decl, flag_guess_branch_prob)
1317 || caller->count.ipa ().nonzero_p ())
1318 {
1319 sreal numerator, denominator;
1320 int overall_growth;
1321 sreal freq = edge->sreal_frequency ();
1322
1323 numerator = inlining_speedup (edge, freq, uninlined_time: unspec_edge_time, inlined_time: edge_time);
1324 if (numerator <= 0)
1325 numerator = ((sreal) 1 >> 8);
1326 if (caller->count.ipa ().nonzero_p ())
1327 numerator *= caller->count.ipa ().to_gcov_type ();
1328 else if (caller->count.ipa ().initialized_p ())
1329 numerator = numerator >> 11;
1330 denominator = growth;
1331
1332 overall_growth = callee_info->growth;
1333
1334 /* Look for inliner wrappers of the form:
1335
1336 inline_caller ()
1337 {
1338 do_fast_job...
1339 if (need_more_work)
1340 noninline_callee ();
1341 }
1342 Without penalizing this case, we usually inline noninline_callee
1343 into the inline_caller because overall_growth is small preventing
1344 further inlining of inline_caller.
1345
1346 Penalize only callgraph edges to functions with small overall
1347 growth ...
1348 */
1349 if (growth > overall_growth
1350 /* ... and having only one caller which is not inlined ... */
1351 && callee_info->single_caller
1352 && !edge->caller->inlined_to
1353 /* ... and edges executed only conditionally ... */
1354 && freq < 1
1355 /* ... consider case where callee is not inline but caller is ... */
1356 && ((!DECL_DECLARED_INLINE_P (edge->callee->decl)
1357 && DECL_DECLARED_INLINE_P (caller->decl))
1358 /* ... or when early optimizers decided to split and edge
1359 frequency still indicates splitting is a win ... */
1360 || (callee->split_part && !caller->split_part
1361 && freq * 100
1362 < opt_for_fn (caller->decl,
1363 param_partial_inlining_entry_probability)
1364 /* ... and do not overwrite user specified hints. */
1365 && (!DECL_DECLARED_INLINE_P (edge->callee->decl)
1366 || DECL_DECLARED_INLINE_P (caller->decl)))))
1367 {
1368 ipa_fn_summary *caller_info = ipa_fn_summaries->get (node: caller);
1369 int caller_growth = caller_info->growth;
1370
1371 /* Only apply the penalty when caller looks like inline candidate,
1372 and it is not called once. */
1373 if (!caller_info->single_caller && overall_growth < caller_growth
1374 && caller_info->inlinable
1375 && wrapper_heuristics_may_apply
1376 (where: caller, size: ipa_size_summaries->get (node: caller)->size))
1377 {
1378 if (dump)
1379 fprintf (stream: dump_file,
1380 format: " Wrapper penalty. Increasing growth %i to %i\n",
1381 overall_growth, caller_growth);
1382 overall_growth = caller_growth;
1383 }
1384 }
1385 if (overall_growth > 0)
1386 {
1387 /* Strongly prefer functions with few callers that can be inlined
1388 fully. The square root here leads to smaller binaries at average.
1389 Watch however for extreme cases and return to linear function
1390 when growth is large. */
1391 if (overall_growth < 256)
1392 overall_growth *= overall_growth;
1393 else
1394 overall_growth += 256 * 256 - 256;
1395 denominator *= overall_growth;
1396 }
1397 denominator *= ipa_size_summaries->get (node: caller)->size + growth;
1398
1399 badness = - numerator / denominator;
1400
1401 if (dump)
1402 {
1403 fprintf (stream: dump_file,
1404 format: " %f: guessed profile. frequency %f, count %" PRId64
1405 " caller count %" PRId64
1406 " time saved %f"
1407 " overall growth %i (current) %i (original)"
1408 " %i (compensated)\n",
1409 badness.to_double (),
1410 freq.to_double (),
1411 edge->count.ipa ().initialized_p ()
1412 ? edge->count.ipa ().to_gcov_type () : -1,
1413 caller->count.ipa ().initialized_p ()
1414 ? caller->count.ipa ().to_gcov_type () : -1,
1415 inlining_speedup (edge, freq, uninlined_time: unspec_edge_time,
1416 inlined_time: edge_time).to_double (),
1417 estimate_growth (callee),
1418 callee_info->growth, overall_growth);
1419 }
1420 }
1421 /* When function local profile is not available or it does not give
1422 useful information (i.e. frequency is zero), base the cost on
1423 loop nest and overall size growth, so we optimize for overall number
1424 of functions fully inlined in program. */
1425 else
1426 {
1427 int nest = MIN (ipa_call_summaries->get (edge)->loop_depth, 8);
1428 badness = growth;
1429
1430 /* Decrease badness if call is nested. */
1431 if (badness > 0)
1432 badness = badness >> nest;
1433 else
1434 badness = badness << nest;
1435 if (dump)
1436 fprintf (stream: dump_file, format: " %f: no profile. nest %i\n",
1437 badness.to_double (), nest);
1438 }
1439 gcc_checking_assert (badness != 0);
1440
1441 if (edge->recursive_p ())
1442 badness = badness.shift (s: badness > 0 ? 4 : -4);
1443 if ((hints & (INLINE_HINT_indirect_call
1444 | INLINE_HINT_loop_iterations
1445 | INLINE_HINT_loop_stride))
1446 || callee_info->growth <= 0)
1447 badness = badness.shift (s: badness > 0 ? -2 : 2);
1448 if (hints & INLINE_HINT_builtin_constant_p)
1449 badness = badness.shift (s: badness > 0 ? -4 : 4);
1450 if (hints & (INLINE_HINT_same_scc))
1451 badness = badness.shift (s: badness > 0 ? 3 : -3);
1452 else if (hints & (INLINE_HINT_in_scc))
1453 badness = badness.shift (s: badness > 0 ? 2 : -2);
1454 else if (hints & (INLINE_HINT_cross_module))
1455 badness = badness.shift (s: badness > 0 ? 1 : -1);
1456 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1457 badness = badness.shift (s: badness > 0 ? -4 : 4);
1458 else if ((hints & INLINE_HINT_declared_inline))
1459 badness = badness.shift (s: badness > 0 ? -3 : 3);
1460 if (dump)
1461 fprintf (stream: dump_file, format: " Adjusted by hints %f\n", badness.to_double ());
1462 return badness;
1463}
1464
1465/* Recompute badness of EDGE and update its key in HEAP if needed. */
1466static inline void
1467update_edge_key (edge_heap_t *heap, struct cgraph_edge *edge)
1468{
1469 sreal badness = edge_badness (edge, dump: false);
1470 if (edge->aux)
1471 {
1472 edge_heap_node_t *n = (edge_heap_node_t *) edge->aux;
1473 gcc_checking_assert (n->get_data () == edge);
1474
1475 /* fibonacci_heap::replace_key does busy updating of the
1476 heap that is unnecessarily expensive.
1477 We do lazy increases: after extracting minimum if the key
1478 turns out to be out of date, it is re-inserted into heap
1479 with correct value. */
1480 if (badness < n->get_key ().badness)
1481 {
1482 if (dump_file && (dump_flags & TDF_DETAILS))
1483 {
1484 fprintf (stream: dump_file,
1485 format: " decreasing badness %s -> %s, %f to %f\n",
1486 edge->caller->dump_name (),
1487 edge->callee->dump_name (),
1488 n->get_key ().badness.to_double (),
1489 badness.to_double ());
1490 }
1491 inline_badness b (edge, badness);
1492 heap->decrease_key (node: n, key: b);
1493 }
1494 }
1495 else
1496 {
1497 if (dump_file && (dump_flags & TDF_DETAILS))
1498 {
1499 fprintf (stream: dump_file,
1500 format: " enqueuing call %s -> %s, badness %f\n",
1501 edge->caller->dump_name (),
1502 edge->callee->dump_name (),
1503 badness.to_double ());
1504 }
1505 inline_badness b (edge, badness);
1506 edge->aux = heap->insert (key: b, data: edge);
1507 }
1508}
1509
1510
1511/* NODE was inlined.
1512 All caller edges needs to be reset because
1513 size estimates change. Similarly callees needs reset
1514 because better context may be known. */
1515
1516static void
1517reset_edge_caches (struct cgraph_node *node)
1518{
1519 struct cgraph_edge *edge;
1520 struct cgraph_edge *e = node->callees;
1521 struct cgraph_node *where = node;
1522 struct ipa_ref *ref;
1523
1524 if (where->inlined_to)
1525 where = where->inlined_to;
1526
1527 reset_node_cache (node: where);
1528
1529 if (edge_growth_cache != NULL)
1530 for (edge = where->callers; edge; edge = edge->next_caller)
1531 if (edge->inline_failed)
1532 edge_growth_cache->remove (edge);
1533
1534 FOR_EACH_ALIAS (where, ref)
1535 reset_edge_caches (node: dyn_cast <cgraph_node *> (p: ref->referring));
1536
1537 if (!e)
1538 return;
1539
1540 while (true)
1541 if (!e->inline_failed && e->callee->callees)
1542 e = e->callee->callees;
1543 else
1544 {
1545 if (edge_growth_cache != NULL && e->inline_failed)
1546 edge_growth_cache->remove (edge: e);
1547 if (e->next_callee)
1548 e = e->next_callee;
1549 else
1550 {
1551 do
1552 {
1553 if (e->caller == node)
1554 return;
1555 e = e->caller->callers;
1556 }
1557 while (!e->next_callee);
1558 e = e->next_callee;
1559 }
1560 }
1561}
1562
1563/* Recompute HEAP nodes for each of caller of NODE.
1564 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1565 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1566 it is inlinable. Otherwise check all edges. */
1567
1568static void
1569update_caller_keys (edge_heap_t *heap, struct cgraph_node *node,
1570 bitmap updated_nodes,
1571 struct cgraph_edge *check_inlinablity_for)
1572{
1573 struct cgraph_edge *edge;
1574 struct ipa_ref *ref;
1575
1576 if ((!node->alias && !ipa_fn_summaries->get (node)->inlinable)
1577 || node->inlined_to)
1578 return;
1579 if (!bitmap_set_bit (updated_nodes, node->get_uid ()))
1580 return;
1581
1582 FOR_EACH_ALIAS (node, ref)
1583 {
1584 struct cgraph_node *alias = dyn_cast <cgraph_node *> (p: ref->referring);
1585 update_caller_keys (heap, node: alias, updated_nodes, check_inlinablity_for);
1586 }
1587
1588 for (edge = node->callers; edge; edge = edge->next_caller)
1589 if (edge->inline_failed)
1590 {
1591 if (!check_inlinablity_for
1592 || check_inlinablity_for == edge)
1593 {
1594 if (can_inline_edge_p (e: edge, report: false)
1595 && want_inline_small_function_p (e: edge, report: false)
1596 && can_inline_edge_by_limits_p (e: edge, report: false))
1597 update_edge_key (heap, edge);
1598 else if (edge->aux)
1599 {
1600 report_inline_failed_reason (e: edge);
1601 heap->delete_node (node: (edge_heap_node_t *) edge->aux);
1602 edge->aux = NULL;
1603 }
1604 }
1605 else if (edge->aux)
1606 update_edge_key (heap, edge);
1607 }
1608}
1609
1610/* Recompute HEAP nodes for each uninlined call in NODE
1611 If UPDATE_SINCE is non-NULL check if edges called within that function
1612 are inlinable (typically UPDATE_SINCE is the inline clone we introduced
1613 where all edges have new context).
1614
1615 This is used when we know that edge badnesses are going only to increase
1616 (we introduced new call site) and thus all we need is to insert newly
1617 created edges into heap. */
1618
1619static void
1620update_callee_keys (edge_heap_t *heap, struct cgraph_node *node,
1621 struct cgraph_node *update_since,
1622 bitmap updated_nodes)
1623{
1624 struct cgraph_edge *e = node->callees;
1625 bool check_inlinability = update_since == node;
1626
1627 if (!e)
1628 return;
1629 while (true)
1630 if (!e->inline_failed && e->callee->callees)
1631 {
1632 if (e->callee == update_since)
1633 check_inlinability = true;
1634 e = e->callee->callees;
1635 }
1636 else
1637 {
1638 enum availability avail;
1639 struct cgraph_node *callee;
1640 if (!check_inlinability)
1641 {
1642 if (e->aux
1643 && !bitmap_bit_p (updated_nodes,
1644 e->callee->ultimate_alias_target
1645 (availability: &avail, ref: e->caller)->get_uid ()))
1646 update_edge_key (heap, edge: e);
1647 }
1648 /* We do not reset callee growth cache here. Since we added a new call,
1649 growth should have just increased and consequently badness metric
1650 don't need updating. */
1651 else if (e->inline_failed
1652 && (callee = e->callee->ultimate_alias_target (availability: &avail,
1653 ref: e->caller))
1654 && avail >= AVAIL_AVAILABLE
1655 && ipa_fn_summaries->get (node: callee) != NULL
1656 && ipa_fn_summaries->get (node: callee)->inlinable
1657 && !bitmap_bit_p (updated_nodes, callee->get_uid ()))
1658 {
1659 if (can_inline_edge_p (e, report: false)
1660 && want_inline_small_function_p (e, report: false)
1661 && can_inline_edge_by_limits_p (e, report: false))
1662 {
1663 gcc_checking_assert (check_inlinability || can_inline_edge_p (e, false));
1664 gcc_checking_assert (check_inlinability || e->aux);
1665 update_edge_key (heap, edge: e);
1666 }
1667 else if (e->aux)
1668 {
1669 report_inline_failed_reason (e);
1670 heap->delete_node (node: (edge_heap_node_t *) e->aux);
1671 e->aux = NULL;
1672 }
1673 }
1674 /* In case we redirected to unreachable node we only need to remove the
1675 fibheap entry. */
1676 else if (e->aux)
1677 {
1678 heap->delete_node (node: (edge_heap_node_t *) e->aux);
1679 e->aux = NULL;
1680 }
1681 if (e->next_callee)
1682 e = e->next_callee;
1683 else
1684 {
1685 do
1686 {
1687 if (e->caller == node)
1688 return;
1689 if (e->caller == update_since)
1690 check_inlinability = false;
1691 e = e->caller->callers;
1692 }
1693 while (!e->next_callee);
1694 e = e->next_callee;
1695 }
1696 }
1697}
1698
1699/* Enqueue all recursive calls from NODE into priority queue depending on
1700 how likely we want to recursively inline the call. */
1701
1702static void
1703lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1704 edge_heap_t *heap)
1705{
1706 struct cgraph_edge *e;
1707 enum availability avail;
1708
1709 for (e = where->callees; e; e = e->next_callee)
1710 if (e->callee == node
1711 || (e->callee->ultimate_alias_target (availability: &avail, ref: e->caller) == node
1712 && avail > AVAIL_INTERPOSABLE))
1713 {
1714 inline_badness b (e, -e->sreal_frequency ());
1715 heap->insert (key: b, data: e);
1716 }
1717 for (e = where->callees; e; e = e->next_callee)
1718 if (!e->inline_failed)
1719 lookup_recursive_calls (node, where: e->callee, heap);
1720}
1721
1722/* Decide on recursive inlining: in the case function has recursive calls,
1723 inline until body size reaches given argument. If any new indirect edges
1724 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1725 is NULL. */
1726
1727static bool
1728recursive_inlining (struct cgraph_edge *edge,
1729 vec<cgraph_edge *> *new_edges)
1730{
1731 cgraph_node *to = (edge->caller->inlined_to
1732 ? edge->caller->inlined_to : edge->caller);
1733 int limit = opt_for_fn (to->decl,
1734 param_max_inline_insns_recursive_auto);
1735 inline_badness b (edge, sreal::min ());
1736 edge_heap_t heap (b);
1737 struct cgraph_node *node;
1738 struct cgraph_edge *e;
1739 struct cgraph_node *master_clone = NULL, *next;
1740 int depth = 0;
1741 int n = 0;
1742
1743 node = edge->caller;
1744 if (node->inlined_to)
1745 node = node->inlined_to;
1746
1747 if (DECL_DECLARED_INLINE_P (node->decl))
1748 limit = opt_for_fn (to->decl, param_max_inline_insns_recursive);
1749
1750 /* Make sure that function is small enough to be considered for inlining. */
1751 if (estimate_size_after_inlining (node, edge) >= limit)
1752 return false;
1753 lookup_recursive_calls (node, where: node, heap: &heap);
1754 if (heap.empty ())
1755 return false;
1756
1757 if (dump_file)
1758 fprintf (stream: dump_file,
1759 format: " Performing recursive inlining on %s\n", node->dump_name ());
1760
1761 /* Do the inlining and update list of recursive call during process. */
1762 while (!heap.empty ())
1763 {
1764 struct cgraph_edge *curr = heap.extract_min ();
1765 struct cgraph_node *cnode, *dest = curr->callee;
1766
1767 if (!can_inline_edge_p (e: curr, report: true)
1768 || !can_inline_edge_by_limits_p (e: curr, report: true))
1769 continue;
1770
1771 /* MASTER_CLONE is produced in the case we already started modified
1772 the function. Be sure to redirect edge to the original body before
1773 estimating growths otherwise we will be seeing growths after inlining
1774 the already modified body. */
1775 if (master_clone)
1776 {
1777 curr->redirect_callee (n: master_clone);
1778 if (edge_growth_cache != NULL)
1779 edge_growth_cache->remove (edge: curr);
1780 }
1781
1782 if (estimate_size_after_inlining (node, curr) > limit)
1783 {
1784 curr->redirect_callee (n: dest);
1785 if (edge_growth_cache != NULL)
1786 edge_growth_cache->remove (edge: curr);
1787 break;
1788 }
1789
1790 depth = 1;
1791 for (cnode = curr->caller;
1792 cnode->inlined_to; cnode = cnode->callers->caller)
1793 if (node->decl
1794 == curr->callee->ultimate_alias_target ()->decl)
1795 depth++;
1796
1797 if (!want_inline_self_recursive_call_p (edge: curr, outer_node: node, peeling: false, depth))
1798 {
1799 curr->redirect_callee (n: dest);
1800 if (edge_growth_cache != NULL)
1801 edge_growth_cache->remove (edge: curr);
1802 continue;
1803 }
1804
1805 if (dump_file)
1806 {
1807 fprintf (stream: dump_file,
1808 format: " Inlining call of depth %i", depth);
1809 if (node->count.nonzero_p () && curr->count.initialized_p ())
1810 {
1811 fprintf (stream: dump_file, format: " called approx. %.2f times per call",
1812 (double)curr->count.to_gcov_type ()
1813 / node->count.to_gcov_type ());
1814 }
1815 fprintf (stream: dump_file, format: "\n");
1816 }
1817 if (!master_clone)
1818 {
1819 /* We need original clone to copy around. */
1820 master_clone = node->create_clone (decl: node->decl, count: node->count,
1821 update_original: false, redirect_callers: vNULL, call_duplication_hook: true, NULL, NULL);
1822 for (e = master_clone->callees; e; e = e->next_callee)
1823 if (!e->inline_failed)
1824 clone_inlined_nodes (e, true, false, NULL);
1825 curr->redirect_callee (n: master_clone);
1826 if (edge_growth_cache != NULL)
1827 edge_growth_cache->remove (edge: curr);
1828 }
1829
1830 inline_call (curr, false, new_edges, &overall_size, true);
1831 reset_node_cache (node);
1832 lookup_recursive_calls (node, where: curr->callee, heap: &heap);
1833 n++;
1834 }
1835
1836 if (!heap.empty () && dump_file)
1837 fprintf (stream: dump_file, format: " Recursive inlining growth limit met.\n");
1838
1839 if (!master_clone)
1840 return false;
1841
1842 if (dump_enabled_p ())
1843 dump_printf_loc (MSG_NOTE, edge->call_stmt,
1844 "\n Inlined %i times, "
1845 "body grown from size %i to %i, time %f to %f\n", n,
1846 ipa_size_summaries->get (node: master_clone)->size,
1847 ipa_size_summaries->get (node)->size,
1848 ipa_fn_summaries->get (node: master_clone)->time.to_double (),
1849 ipa_fn_summaries->get (node)->time.to_double ());
1850
1851 /* Remove master clone we used for inlining. We rely that clones inlined
1852 into master clone gets queued just before master clone so we don't
1853 need recursion. */
1854 for (node = symtab->first_function (); node != master_clone;
1855 node = next)
1856 {
1857 next = symtab->next_function (node);
1858 if (node->inlined_to == master_clone)
1859 node->remove ();
1860 }
1861 master_clone->remove ();
1862 return true;
1863}
1864
1865
1866/* Given whole compilation unit estimate of INSNS, compute how large we can
1867 allow the unit to grow. */
1868
1869static int64_t
1870compute_max_insns (cgraph_node *node, int insns)
1871{
1872 int max_insns = insns;
1873 if (max_insns < opt_for_fn (node->decl, param_large_unit_insns))
1874 max_insns = opt_for_fn (node->decl, param_large_unit_insns);
1875
1876 return ((int64_t) max_insns
1877 * (100 + opt_for_fn (node->decl, param_inline_unit_growth)) / 100);
1878}
1879
1880
1881/* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1882
1883static void
1884add_new_edges_to_heap (edge_heap_t *heap, vec<cgraph_edge *> &new_edges)
1885{
1886 while (new_edges.length () > 0)
1887 {
1888 struct cgraph_edge *edge = new_edges.pop ();
1889
1890 gcc_assert (!edge->aux);
1891 gcc_assert (edge->callee);
1892 if (edge->inline_failed
1893 && can_inline_edge_p (e: edge, report: true)
1894 && want_inline_small_function_p (e: edge, report: true)
1895 && can_inline_edge_by_limits_p (e: edge, report: true))
1896 {
1897 inline_badness b (edge, edge_badness (edge, dump: false));
1898 edge->aux = heap->insert (key: b, data: edge);
1899 }
1900 }
1901}
1902
1903/* Remove EDGE from the fibheap. */
1904
1905static void
1906heap_edge_removal_hook (struct cgraph_edge *e, void *data)
1907{
1908 if (e->aux)
1909 {
1910 ((edge_heap_t *)data)->delete_node (node: (edge_heap_node_t *)e->aux);
1911 e->aux = NULL;
1912 }
1913}
1914
1915/* Return true if speculation of edge E seems useful.
1916 If ANTICIPATE_INLINING is true, be conservative and hope that E
1917 may get inlined. */
1918
1919bool
1920speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining)
1921{
1922 /* If we have already decided to inline the edge, it seems useful. */
1923 if (!e->inline_failed)
1924 return true;
1925
1926 enum availability avail;
1927 struct cgraph_node *target = e->callee->ultimate_alias_target (availability: &avail,
1928 ref: e->caller);
1929
1930 gcc_assert (e->speculative && !e->indirect_unknown_callee);
1931
1932 if (!e->maybe_hot_p ())
1933 return false;
1934
1935 /* See if IP optimizations found something potentially useful about the
1936 function. For now we look only for CONST/PURE flags. Almost everything
1937 else we propagate is useless. */
1938 if (avail >= AVAIL_AVAILABLE)
1939 {
1940 int ecf_flags = flags_from_decl_or_type (target->decl);
1941 if (ecf_flags & ECF_CONST)
1942 {
1943 if (!(e->speculative_call_indirect_edge ()->indirect_info
1944 ->ecf_flags & ECF_CONST))
1945 return true;
1946 }
1947 else if (ecf_flags & ECF_PURE)
1948 {
1949 if (!(e->speculative_call_indirect_edge ()->indirect_info
1950 ->ecf_flags & ECF_PURE))
1951 return true;
1952 }
1953 }
1954 /* If we did not managed to inline the function nor redirect
1955 to an ipa-cp clone (that are seen by having local flag set),
1956 it is probably pointless to inline it unless hardware is missing
1957 indirect call predictor. */
1958 if (!anticipate_inlining && !target->local)
1959 return false;
1960 /* For overwritable targets there is not much to do. */
1961 if (!can_inline_edge_p (e, report: false)
1962 || !can_inline_edge_by_limits_p (e, report: false, disregard_limits: true))
1963 return false;
1964 /* OK, speculation seems interesting. */
1965 return true;
1966}
1967
1968/* We know that EDGE is not going to be inlined.
1969 See if we can remove speculation. */
1970
1971static void
1972resolve_noninline_speculation (edge_heap_t *edge_heap, struct cgraph_edge *edge)
1973{
1974 if (edge->speculative && !speculation_useful_p (e: edge, anticipate_inlining: false))
1975 {
1976 struct cgraph_node *node = edge->caller;
1977 struct cgraph_node *where = node->inlined_to
1978 ? node->inlined_to : node;
1979 auto_bitmap updated_nodes;
1980
1981 if (edge->count.ipa ().initialized_p ())
1982 spec_rem += edge->count.ipa ();
1983 cgraph_edge::resolve_speculation (edge);
1984 reset_edge_caches (node: where);
1985 ipa_update_overall_fn_summary (node: where);
1986 update_caller_keys (heap: edge_heap, node: where,
1987 updated_nodes, NULL);
1988 update_callee_keys (heap: edge_heap, node: where, NULL,
1989 updated_nodes);
1990 }
1991}
1992
1993/* Return true if NODE should be accounted for overall size estimate.
1994 Skip all nodes optimized for size so we can measure the growth of hot
1995 part of program no matter of the padding. */
1996
1997bool
1998inline_account_function_p (struct cgraph_node *node)
1999{
2000 return (!DECL_EXTERNAL (node->decl)
2001 && !opt_for_fn (node->decl, optimize_size)
2002 && node->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED);
2003}
2004
2005/* Count number of callers of NODE and store it into DATA (that
2006 points to int. Worker for cgraph_for_node_and_aliases. */
2007
2008static bool
2009sum_callers (struct cgraph_node *node, void *data)
2010{
2011 struct cgraph_edge *e;
2012 int *num_calls = (int *)data;
2013
2014 for (e = node->callers; e; e = e->next_caller)
2015 (*num_calls)++;
2016 return false;
2017}
2018
2019/* We only propagate across edges with non-interposable callee. */
2020
2021inline bool
2022ignore_edge_p (struct cgraph_edge *e)
2023{
2024 enum availability avail;
2025 e->callee->function_or_virtual_thunk_symbol (avail: &avail, ref: e->caller);
2026 return (avail <= AVAIL_INTERPOSABLE);
2027}
2028
2029/* We use greedy algorithm for inlining of small functions:
2030 All inline candidates are put into prioritized heap ordered in
2031 increasing badness.
2032
2033 The inlining of small functions is bounded by unit growth parameters. */
2034
2035static void
2036inline_small_functions (void)
2037{
2038 struct cgraph_node *node;
2039 struct cgraph_edge *edge;
2040 inline_badness b;
2041 edge_heap_t edge_heap (b);
2042 auto_bitmap updated_nodes;
2043 int min_size;
2044 auto_vec<cgraph_edge *> new_indirect_edges;
2045 int initial_size = 0;
2046 struct cgraph_node **order = XCNEWVEC (cgraph_node *, symtab->cgraph_count);
2047 struct cgraph_edge_hook_list *edge_removal_hook_holder;
2048 new_indirect_edges.create (nelems: 8);
2049
2050 edge_removal_hook_holder
2051 = symtab->add_edge_removal_hook (hook: &heap_edge_removal_hook, data: &edge_heap);
2052
2053 /* Compute overall unit size and other global parameters used by badness
2054 metrics. */
2055
2056 max_count = profile_count::uninitialized ();
2057 ipa_reduced_postorder (order, true, ignore_edge: ignore_edge_p);
2058 free (ptr: order);
2059
2060 FOR_EACH_DEFINED_FUNCTION (node)
2061 if (!node->inlined_to)
2062 {
2063 if (!node->alias && node->analyzed
2064 && (node->has_gimple_body_p () || node->thunk)
2065 && opt_for_fn (node->decl, optimize))
2066 {
2067 class ipa_fn_summary *info = ipa_fn_summaries->get (node);
2068 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->aux;
2069
2070 /* Do not account external functions, they will be optimized out
2071 if not inlined. Also only count the non-cold portion of program. */
2072 if (inline_account_function_p (node))
2073 initial_size += ipa_size_summaries->get (node)->size;
2074 info->growth = estimate_growth (node);
2075
2076 int num_calls = 0;
2077 node->call_for_symbol_and_aliases (callback: sum_callers, data: &num_calls,
2078 include_overwritable: true);
2079 if (num_calls == 1)
2080 info->single_caller = true;
2081 if (dfs && dfs->next_cycle)
2082 {
2083 struct cgraph_node *n2;
2084 int id = dfs->scc_no + 1;
2085 for (n2 = node; n2;
2086 n2 = ((struct ipa_dfs_info *) n2->aux)->next_cycle)
2087 if (opt_for_fn (n2->decl, optimize))
2088 {
2089 ipa_fn_summary *info2 = ipa_fn_summaries->get
2090 (node: n2->inlined_to ? n2->inlined_to : n2);
2091 if (info2->scc_no)
2092 break;
2093 info2->scc_no = id;
2094 }
2095 }
2096 }
2097
2098 for (edge = node->callers; edge; edge = edge->next_caller)
2099 max_count = max_count.max (other: edge->count.ipa ());
2100 }
2101 ipa_free_postorder_info ();
2102 initialize_growth_caches ();
2103
2104 if (dump_file)
2105 fprintf (stream: dump_file,
2106 format: "\nDeciding on inlining of small functions. Starting with size %i.\n",
2107 initial_size);
2108
2109 overall_size = initial_size;
2110 min_size = overall_size;
2111
2112 /* Populate the heap with all edges we might inline. */
2113
2114 FOR_EACH_DEFINED_FUNCTION (node)
2115 {
2116 bool update = false;
2117 struct cgraph_edge *next = NULL;
2118 bool has_speculative = false;
2119
2120 if (!opt_for_fn (node->decl, optimize)
2121 /* With -Og we do not want to perform IPA inlining of small
2122 functions since there are no scalar cleanups after it
2123 that would realize the anticipated win. All abstraction
2124 is removed during early inlining. */
2125 || opt_for_fn (node->decl, optimize_debug))
2126 continue;
2127
2128 if (dump_file)
2129 fprintf (stream: dump_file, format: "Enqueueing calls in %s.\n", node->dump_name ());
2130
2131 for (edge = node->callees; edge; edge = edge->next_callee)
2132 {
2133 if (edge->inline_failed
2134 && !edge->aux
2135 && can_inline_edge_p (e: edge, report: true)
2136 && want_inline_small_function_p (e: edge, report: true)
2137 && can_inline_edge_by_limits_p (e: edge, report: true)
2138 && edge->inline_failed)
2139 {
2140 gcc_assert (!edge->aux);
2141 update_edge_key (heap: &edge_heap, edge);
2142 }
2143 if (edge->speculative)
2144 has_speculative = true;
2145 }
2146 if (has_speculative)
2147 for (edge = node->callees; edge; edge = next)
2148 {
2149 next = edge->next_callee;
2150 if (edge->speculative
2151 && !speculation_useful_p (e: edge, anticipate_inlining: edge->aux != NULL))
2152 {
2153 cgraph_edge::resolve_speculation (edge);
2154 update = true;
2155 }
2156 }
2157 if (update)
2158 {
2159 struct cgraph_node *where = node->inlined_to
2160 ? node->inlined_to : node;
2161 ipa_update_overall_fn_summary (node: where);
2162 reset_edge_caches (node: where);
2163 update_caller_keys (heap: &edge_heap, node: where,
2164 updated_nodes, NULL);
2165 update_callee_keys (heap: &edge_heap, node: where, NULL,
2166 updated_nodes);
2167 bitmap_clear (updated_nodes);
2168 }
2169 }
2170
2171 gcc_assert (in_lto_p
2172 || !(max_count > 0)
2173 || (profile_info && flag_branch_probabilities));
2174
2175 while (!edge_heap.empty ())
2176 {
2177 int old_size = overall_size;
2178 struct cgraph_node *where, *callee;
2179 sreal badness = edge_heap.min_key ().badness;
2180 sreal current_badness;
2181 int growth;
2182
2183 edge = edge_heap.extract_min ();
2184 gcc_assert (edge->aux);
2185 edge->aux = NULL;
2186 if (!edge->inline_failed || !edge->callee->analyzed)
2187 continue;
2188
2189 /* Be sure that caches are maintained consistent.
2190 This check is affected by scaling roundoff errors when compiling for
2191 IPA this we skip it in that case. */
2192 if (flag_checking && !edge->callee->count.ipa_p ()
2193 && (!max_count.initialized_p () || !max_count.nonzero_p ()))
2194 {
2195 sreal cached_badness = edge_badness (edge, dump: false);
2196
2197 int old_size_est = estimate_edge_size (edge);
2198 sreal old_time_est = estimate_edge_time (edge);
2199 int old_hints_est = estimate_edge_hints (edge);
2200
2201 if (edge_growth_cache != NULL)
2202 edge_growth_cache->remove (edge);
2203 reset_node_cache (node: edge->caller->inlined_to
2204 ? edge->caller->inlined_to
2205 : edge->caller);
2206 gcc_assert (old_size_est == estimate_edge_size (edge));
2207 gcc_assert (old_time_est == estimate_edge_time (edge));
2208 /* FIXME:
2209
2210 gcc_assert (old_hints_est == estimate_edge_hints (edge));
2211
2212 fails with profile feedback because some hints depends on
2213 maybe_hot_edge_p predicate and because callee gets inlined to other
2214 calls, the edge may become cold.
2215 This ought to be fixed by computing relative probabilities
2216 for given invocation but that will be better done once whole
2217 code is converted to sreals. Disable for now and revert to "wrong"
2218 value so enable/disable checking paths agree. */
2219 edge_growth_cache->get (edge)->hints = old_hints_est + 1;
2220
2221 /* When updating the edge costs, we only decrease badness in the keys.
2222 Increases of badness are handled lazily; when we see key with out
2223 of date value on it, we re-insert it now. */
2224 current_badness = edge_badness (edge, dump: false);
2225 gcc_assert (cached_badness == current_badness);
2226 gcc_assert (current_badness >= badness);
2227 }
2228 else
2229 current_badness = edge_badness (edge, dump: false);
2230 if (current_badness != badness)
2231 {
2232 if (edge_heap.min () && current_badness > edge_heap.min_key ().badness)
2233 {
2234 inline_badness b (edge, current_badness);
2235 edge->aux = edge_heap.insert (key: b, data: edge);
2236 continue;
2237 }
2238 else
2239 badness = current_badness;
2240 }
2241
2242 if (!can_inline_edge_p (e: edge, report: true)
2243 || !can_inline_edge_by_limits_p (e: edge, report: true))
2244 {
2245 resolve_noninline_speculation (edge_heap: &edge_heap, edge);
2246 continue;
2247 }
2248
2249 callee = edge->callee->ultimate_alias_target ();
2250 growth = estimate_edge_growth (edge);
2251 if (dump_file)
2252 {
2253 fprintf (stream: dump_file,
2254 format: "\nConsidering %s with %i size\n",
2255 callee->dump_name (),
2256 ipa_size_summaries->get (node: callee)->size);
2257 fprintf (stream: dump_file,
2258 format: " to be inlined into %s in %s:%i\n"
2259 " Estimated badness is %f, frequency %.2f.\n",
2260 edge->caller->dump_name (),
2261 edge->call_stmt
2262 && (LOCATION_LOCUS (gimple_location ((const gimple *)
2263 edge->call_stmt))
2264 > BUILTINS_LOCATION)
2265 ? gimple_filename (stmt: (const gimple *) edge->call_stmt)
2266 : "unknown",
2267 edge->call_stmt
2268 ? gimple_lineno (stmt: (const gimple *) edge->call_stmt)
2269 : -1,
2270 badness.to_double (),
2271 edge->sreal_frequency ().to_double ());
2272 if (edge->count.ipa ().initialized_p ())
2273 {
2274 fprintf (stream: dump_file, format: " Called ");
2275 edge->count.ipa ().dump (f: dump_file);
2276 fprintf (stream: dump_file, format: " times\n");
2277 }
2278 if (dump_flags & TDF_DETAILS)
2279 edge_badness (edge, dump: true);
2280 }
2281
2282 where = edge->caller;
2283
2284 if (overall_size + growth > compute_max_insns (node: where, insns: min_size)
2285 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
2286 {
2287 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
2288 report_inline_failed_reason (e: edge);
2289 resolve_noninline_speculation (edge_heap: &edge_heap, edge);
2290 continue;
2291 }
2292
2293 if (!want_inline_small_function_p (e: edge, report: true))
2294 {
2295 resolve_noninline_speculation (edge_heap: &edge_heap, edge);
2296 continue;
2297 }
2298
2299 profile_count old_count = callee->count;
2300
2301 /* Heuristics for inlining small functions work poorly for
2302 recursive calls where we do effects similar to loop unrolling.
2303 When inlining such edge seems profitable, leave decision on
2304 specific inliner. */
2305 if (edge->recursive_p ())
2306 {
2307 if (where->inlined_to)
2308 where = where->inlined_to;
2309 if (!recursive_inlining (edge,
2310 opt_for_fn (edge->caller->decl,
2311 flag_indirect_inlining)
2312 ? &new_indirect_edges : NULL))
2313 {
2314 edge->inline_failed = CIF_RECURSIVE_INLINING;
2315 resolve_noninline_speculation (edge_heap: &edge_heap, edge);
2316 continue;
2317 }
2318 reset_edge_caches (node: where);
2319 /* Recursive inliner inlines all recursive calls of the function
2320 at once. Consequently we need to update all callee keys. */
2321 if (opt_for_fn (edge->caller->decl, flag_indirect_inlining))
2322 add_new_edges_to_heap (heap: &edge_heap, new_edges&: new_indirect_edges);
2323 update_callee_keys (heap: &edge_heap, node: where, update_since: where, updated_nodes);
2324 bitmap_clear (updated_nodes);
2325 }
2326 else
2327 {
2328 struct cgraph_node *outer_node = NULL;
2329 int depth = 0;
2330
2331 /* Consider the case where self recursive function A is inlined
2332 into B. This is desired optimization in some cases, since it
2333 leads to effect similar of loop peeling and we might completely
2334 optimize out the recursive call. However we must be extra
2335 selective. */
2336
2337 where = edge->caller;
2338 while (where->inlined_to)
2339 {
2340 if (where->decl == callee->decl)
2341 outer_node = where, depth++;
2342 where = where->callers->caller;
2343 }
2344 if (outer_node
2345 && !want_inline_self_recursive_call_p (edge, outer_node,
2346 peeling: true, depth))
2347 {
2348 edge->inline_failed
2349 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
2350 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
2351 resolve_noninline_speculation (edge_heap: &edge_heap, edge);
2352 continue;
2353 }
2354 else if (depth && dump_file)
2355 fprintf (stream: dump_file, format: " Peeling recursion with depth %i\n", depth);
2356
2357 gcc_checking_assert (!callee->inlined_to);
2358
2359 int old_size = ipa_size_summaries->get (node: where)->size;
2360 sreal old_time = ipa_fn_summaries->get (node: where)->time;
2361
2362 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
2363 reset_edge_caches (node: edge->callee);
2364 add_new_edges_to_heap (heap: &edge_heap, new_edges&: new_indirect_edges);
2365
2366 /* If caller's size and time increased we do not need to update
2367 all edges because badness is not going to decrease. */
2368 if (old_size <= ipa_size_summaries->get (node: where)->size
2369 && old_time <= ipa_fn_summaries->get (node: where)->time
2370 /* Wrapper penalty may be non-monotonous in this respect.
2371 Fortunately it only affects small functions. */
2372 && !wrapper_heuristics_may_apply (where, size: old_size))
2373 update_callee_keys (heap: &edge_heap, node: edge->callee, update_since: edge->callee,
2374 updated_nodes);
2375 else
2376 update_callee_keys (heap: &edge_heap, node: where,
2377 update_since: edge->callee,
2378 updated_nodes);
2379 }
2380 where = edge->caller;
2381 if (where->inlined_to)
2382 where = where->inlined_to;
2383
2384 /* Our profitability metric can depend on local properties
2385 such as number of inlinable calls and size of the function body.
2386 After inlining these properties might change for the function we
2387 inlined into (since it's body size changed) and for the functions
2388 called by function we inlined (since number of it inlinable callers
2389 might change). */
2390 update_caller_keys (heap: &edge_heap, node: where, updated_nodes, NULL);
2391 /* Offline copy count has possibly changed, recompute if profile is
2392 available. */
2393 struct cgraph_node *n
2394 = cgraph_node::get (decl: edge->callee->decl)->ultimate_alias_target ();
2395 if (n != edge->callee && n->analyzed && !(n->count == old_count)
2396 && n->count.ipa_p ())
2397 update_callee_keys (heap: &edge_heap, node: n, NULL, updated_nodes);
2398 bitmap_clear (updated_nodes);
2399
2400 if (dump_enabled_p ())
2401 {
2402 ipa_fn_summary *s = ipa_fn_summaries->get (node: where);
2403
2404 /* dump_printf can't handle %+i. */
2405 char buf_net_change[100];
2406 snprintf (s: buf_net_change, maxlen: sizeof buf_net_change, format: "%+i",
2407 overall_size - old_size);
2408
2409 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, edge->call_stmt,
2410 " Inlined %C into %C which now has time %f and "
2411 "size %i, net change of %s%s.\n",
2412 edge->callee, edge->caller,
2413 s->time.to_double (),
2414 ipa_size_summaries->get (node: edge->caller)->size,
2415 buf_net_change,
2416 cross_module_call_p (edge) ? " (cross module)":"");
2417 }
2418 if (min_size > overall_size)
2419 {
2420 min_size = overall_size;
2421
2422 if (dump_file)
2423 fprintf (stream: dump_file, format: "New minimal size reached: %i\n", min_size);
2424 }
2425 }
2426
2427 free_growth_caches ();
2428 if (dump_enabled_p ())
2429 dump_printf (MSG_NOTE,
2430 "Unit growth for small function inlining: %i->%i (%i%%)\n",
2431 initial_size, overall_size,
2432 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
2433 symtab->remove_edge_removal_hook (entry: edge_removal_hook_holder);
2434}
2435
2436/* Flatten NODE. Performed both during early inlining and
2437 at IPA inlining time. */
2438
2439static void
2440flatten_function (struct cgraph_node *node, bool early, bool update)
2441{
2442 struct cgraph_edge *e;
2443
2444 /* We shouldn't be called recursively when we are being processed. */
2445 gcc_assert (node->aux == NULL);
2446
2447 node->aux = (void *) node;
2448
2449 for (e = node->callees; e; e = e->next_callee)
2450 {
2451 struct cgraph_node *orig_callee;
2452 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2453
2454 /* We've hit cycle? It is time to give up. */
2455 if (callee->aux)
2456 {
2457 if (dump_enabled_p ())
2458 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
2459 "Not inlining %C into %C to avoid cycle.\n",
2460 callee, e->caller);
2461 if (cgraph_inline_failed_type (e->inline_failed) != CIF_FINAL_ERROR)
2462 e->inline_failed = CIF_RECURSIVE_INLINING;
2463 continue;
2464 }
2465
2466 /* When the edge is already inlined, we just need to recurse into
2467 it in order to fully flatten the leaves. */
2468 if (!e->inline_failed)
2469 {
2470 flatten_function (node: callee, early, update: false);
2471 continue;
2472 }
2473
2474 /* Flatten attribute needs to be processed during late inlining. For
2475 extra code quality we however do flattening during early optimization,
2476 too. */
2477 if (!early
2478 ? !can_inline_edge_p (e, report: true)
2479 && !can_inline_edge_by_limits_p (e, report: true)
2480 : !can_early_inline_edge_p (e))
2481 continue;
2482
2483 if (e->recursive_p ())
2484 {
2485 if (dump_enabled_p ())
2486 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
2487 "Not inlining: recursive call.\n");
2488 continue;
2489 }
2490
2491 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
2492 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
2493 {
2494 if (dump_enabled_p ())
2495 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
2496 "Not inlining: SSA form does not match.\n");
2497 continue;
2498 }
2499
2500 /* Inline the edge and flatten the inline clone. Avoid
2501 recursing through the original node if the node was cloned. */
2502 if (dump_enabled_p ())
2503 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, e->call_stmt,
2504 " Inlining %C into %C.\n",
2505 callee, e->caller);
2506 orig_callee = callee;
2507 inline_call (e, true, NULL, NULL, false);
2508 if (e->callee != orig_callee)
2509 orig_callee->aux = (void *) node;
2510 flatten_function (node: e->callee, early, update: false);
2511 if (e->callee != orig_callee)
2512 orig_callee->aux = NULL;
2513 }
2514
2515 node->aux = NULL;
2516 cgraph_node *where = node->inlined_to ? node->inlined_to : node;
2517 if (update && opt_for_fn (where->decl, optimize))
2518 ipa_update_overall_fn_summary (node: where);
2519}
2520
2521/* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
2522 DATA points to number of calls originally found so we avoid infinite
2523 recursion. */
2524
2525static bool
2526inline_to_all_callers_1 (struct cgraph_node *node, void *data,
2527 hash_set<cgraph_node *> *callers)
2528{
2529 int *num_calls = (int *)data;
2530 bool callee_removed = false;
2531
2532 while (node->callers && !node->inlined_to)
2533 {
2534 struct cgraph_node *caller = node->callers->caller;
2535
2536 if (!can_inline_edge_p (e: node->callers, report: true)
2537 || !can_inline_edge_by_limits_p (e: node->callers, report: true)
2538 || node->callers->recursive_p ())
2539 {
2540 if (dump_file)
2541 fprintf (stream: dump_file, format: "Uninlinable call found; giving up.\n");
2542 *num_calls = 0;
2543 return false;
2544 }
2545
2546 if (dump_file)
2547 {
2548 cgraph_node *ultimate = node->ultimate_alias_target ();
2549 fprintf (stream: dump_file,
2550 format: "\nInlining %s size %i.\n",
2551 ultimate->dump_name (),
2552 ipa_size_summaries->get (node: ultimate)->size);
2553 fprintf (stream: dump_file,
2554 format: " Called once from %s %i insns.\n",
2555 node->callers->caller->dump_name (),
2556 ipa_size_summaries->get (node: node->callers->caller)->size);
2557 }
2558
2559 /* Remember which callers we inlined to, delaying updating the
2560 overall summary. */
2561 callers->add (k: node->callers->caller);
2562 inline_call (node->callers, true, NULL, NULL, false, callee_removed: &callee_removed);
2563 if (dump_file)
2564 fprintf (stream: dump_file,
2565 format: " Inlined into %s which now has %i size\n",
2566 caller->dump_name (),
2567 ipa_size_summaries->get (node: caller)->size);
2568 if (!(*num_calls)--)
2569 {
2570 if (dump_file)
2571 fprintf (stream: dump_file, format: "New calls found; giving up.\n");
2572 return callee_removed;
2573 }
2574 if (callee_removed)
2575 return true;
2576 }
2577 return false;
2578}
2579
2580/* Wrapper around inline_to_all_callers_1 doing delayed overall summary
2581 update. */
2582
2583static bool
2584inline_to_all_callers (struct cgraph_node *node, void *data)
2585{
2586 hash_set<cgraph_node *> callers;
2587 bool res = inline_to_all_callers_1 (node, data, callers: &callers);
2588 /* Perform the delayed update of the overall summary of all callers
2589 processed. This avoids quadratic behavior in the cases where
2590 we have a lot of calls to the same function. */
2591 for (hash_set<cgraph_node *>::iterator i = callers.begin ();
2592 i != callers.end (); ++i)
2593 ipa_update_overall_fn_summary (node: (*i)->inlined_to ? (*i)->inlined_to : *i);
2594 return res;
2595}
2596
2597/* Output overall time estimate. */
2598static void
2599dump_overall_stats (void)
2600{
2601 sreal sum_weighted = 0, sum = 0;
2602 struct cgraph_node *node;
2603
2604 FOR_EACH_DEFINED_FUNCTION (node)
2605 if (!node->inlined_to
2606 && !node->alias)
2607 {
2608 ipa_fn_summary *s = ipa_fn_summaries->get (node);
2609 if (s != NULL)
2610 {
2611 sum += s->time;
2612 if (node->count.ipa ().initialized_p ())
2613 sum_weighted += s->time * node->count.ipa ().to_gcov_type ();
2614 }
2615 }
2616 fprintf (stream: dump_file, format: "Overall time estimate: "
2617 "%f weighted by profile: "
2618 "%f\n", sum.to_double (), sum_weighted.to_double ());
2619}
2620
2621/* Output some useful stats about inlining. */
2622
2623static void
2624dump_inline_stats (void)
2625{
2626 int64_t inlined_cnt = 0, inlined_indir_cnt = 0;
2627 int64_t inlined_virt_cnt = 0, inlined_virt_indir_cnt = 0;
2628 int64_t noninlined_cnt = 0, noninlined_indir_cnt = 0;
2629 int64_t noninlined_virt_cnt = 0, noninlined_virt_indir_cnt = 0;
2630 int64_t inlined_speculative = 0, inlined_speculative_ply = 0;
2631 int64_t indirect_poly_cnt = 0, indirect_cnt = 0;
2632 int64_t reason[CIF_N_REASONS][2];
2633 sreal reason_freq[CIF_N_REASONS];
2634 int i;
2635 struct cgraph_node *node;
2636
2637 memset (s: reason, c: 0, n: sizeof (reason));
2638 for (i=0; i < CIF_N_REASONS; i++)
2639 reason_freq[i] = 0;
2640 FOR_EACH_DEFINED_FUNCTION (node)
2641 {
2642 struct cgraph_edge *e;
2643 for (e = node->callees; e; e = e->next_callee)
2644 {
2645 if (e->inline_failed)
2646 {
2647 if (e->count.ipa ().initialized_p ())
2648 reason[(int) e->inline_failed][0] += e->count.ipa ().to_gcov_type ();
2649 reason_freq[(int) e->inline_failed] += e->sreal_frequency ();
2650 reason[(int) e->inline_failed][1] ++;
2651 if (DECL_VIRTUAL_P (e->callee->decl)
2652 && e->count.ipa ().initialized_p ())
2653 {
2654 if (e->indirect_inlining_edge)
2655 noninlined_virt_indir_cnt += e->count.ipa ().to_gcov_type ();
2656 else
2657 noninlined_virt_cnt += e->count.ipa ().to_gcov_type ();
2658 }
2659 else if (e->count.ipa ().initialized_p ())
2660 {
2661 if (e->indirect_inlining_edge)
2662 noninlined_indir_cnt += e->count.ipa ().to_gcov_type ();
2663 else
2664 noninlined_cnt += e->count.ipa ().to_gcov_type ();
2665 }
2666 }
2667 else if (e->count.ipa ().initialized_p ())
2668 {
2669 if (e->speculative)
2670 {
2671 if (DECL_VIRTUAL_P (e->callee->decl))
2672 inlined_speculative_ply += e->count.ipa ().to_gcov_type ();
2673 else
2674 inlined_speculative += e->count.ipa ().to_gcov_type ();
2675 }
2676 else if (DECL_VIRTUAL_P (e->callee->decl))
2677 {
2678 if (e->indirect_inlining_edge)
2679 inlined_virt_indir_cnt += e->count.ipa ().to_gcov_type ();
2680 else
2681 inlined_virt_cnt += e->count.ipa ().to_gcov_type ();
2682 }
2683 else
2684 {
2685 if (e->indirect_inlining_edge)
2686 inlined_indir_cnt += e->count.ipa ().to_gcov_type ();
2687 else
2688 inlined_cnt += e->count.ipa ().to_gcov_type ();
2689 }
2690 }
2691 }
2692 for (e = node->indirect_calls; e; e = e->next_callee)
2693 if (e->indirect_info->polymorphic
2694 & e->count.ipa ().initialized_p ())
2695 indirect_poly_cnt += e->count.ipa ().to_gcov_type ();
2696 else if (e->count.ipa ().initialized_p ())
2697 indirect_cnt += e->count.ipa ().to_gcov_type ();
2698 }
2699 if (max_count.initialized_p ())
2700 {
2701 fprintf (stream: dump_file,
2702 format: "Inlined %" PRId64 " + speculative "
2703 "%" PRId64 " + speculative polymorphic "
2704 "%" PRId64 " + previously indirect "
2705 "%" PRId64 " + virtual "
2706 "%" PRId64 " + virtual and previously indirect "
2707 "%" PRId64 "\n" "Not inlined "
2708 "%" PRId64 " + previously indirect "
2709 "%" PRId64 " + virtual "
2710 "%" PRId64 " + virtual and previously indirect "
2711 "%" PRId64 " + still indirect "
2712 "%" PRId64 " + still indirect polymorphic "
2713 "%" PRId64 "\n", inlined_cnt,
2714 inlined_speculative, inlined_speculative_ply,
2715 inlined_indir_cnt, inlined_virt_cnt, inlined_virt_indir_cnt,
2716 noninlined_cnt, noninlined_indir_cnt, noninlined_virt_cnt,
2717 noninlined_virt_indir_cnt, indirect_cnt, indirect_poly_cnt);
2718 fprintf (stream: dump_file, format: "Removed speculations ");
2719 spec_rem.dump (f: dump_file);
2720 fprintf (stream: dump_file, format: "\n");
2721 }
2722 dump_overall_stats ();
2723 fprintf (stream: dump_file, format: "\nWhy inlining failed?\n");
2724 for (i = 0; i < CIF_N_REASONS; i++)
2725 if (reason[i][1])
2726 fprintf (stream: dump_file, format: "%-50s: %8i calls, %8f freq, %" PRId64" count\n",
2727 cgraph_inline_failed_string ((cgraph_inline_failed_t) i),
2728 (int) reason[i][1], reason_freq[i].to_double (), reason[i][0]);
2729}
2730
2731/* Called when node is removed. */
2732
2733static void
2734flatten_remove_node_hook (struct cgraph_node *node, void *data)
2735{
2736 if (lookup_attribute (attr_name: "flatten", DECL_ATTRIBUTES (node->decl)) == NULL)
2737 return;
2738
2739 hash_set<struct cgraph_node *> *removed
2740 = (hash_set<struct cgraph_node *> *) data;
2741 removed->add (k: node);
2742}
2743
2744/* Decide on the inlining. We do so in the topological order to avoid
2745 expenses on updating data structures. */
2746
2747static unsigned int
2748ipa_inline (void)
2749{
2750 struct cgraph_node *node;
2751 int nnodes;
2752 struct cgraph_node **order;
2753 int i, j;
2754 int cold;
2755 bool remove_functions = false;
2756
2757 order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
2758
2759 if (dump_file)
2760 ipa_dump_fn_summaries (f: dump_file);
2761
2762 nnodes = ipa_reverse_postorder (order);
2763 spec_rem = profile_count::zero ();
2764
2765 FOR_EACH_FUNCTION (node)
2766 {
2767 node->aux = 0;
2768
2769 /* Recompute the default reasons for inlining because they may have
2770 changed during merging. */
2771 if (in_lto_p)
2772 {
2773 for (cgraph_edge *e = node->callees; e; e = e->next_callee)
2774 {
2775 gcc_assert (e->inline_failed);
2776 initialize_inline_failed (e);
2777 }
2778 for (cgraph_edge *e = node->indirect_calls; e; e = e->next_callee)
2779 initialize_inline_failed (e);
2780 }
2781 }
2782
2783 if (dump_file)
2784 fprintf (stream: dump_file, format: "\nFlattening functions:\n");
2785
2786 /* First shrink order array, so that it only contains nodes with
2787 flatten attribute. */
2788 for (i = nnodes - 1, j = i; i >= 0; i--)
2789 {
2790 node = order[i];
2791 if (node->definition
2792 /* Do not try to flatten aliases. These may happen for example when
2793 creating local aliases. */
2794 && !node->alias
2795 && lookup_attribute (attr_name: "flatten",
2796 DECL_ATTRIBUTES (node->decl)) != NULL)
2797 order[j--] = order[i];
2798 }
2799
2800 /* After the above loop, order[j + 1] ... order[nnodes - 1] contain
2801 nodes with flatten attribute. If there is more than one such
2802 node, we need to register a node removal hook, as flatten_function
2803 could remove other nodes with flatten attribute. See PR82801. */
2804 struct cgraph_node_hook_list *node_removal_hook_holder = NULL;
2805 hash_set<struct cgraph_node *> *flatten_removed_nodes = NULL;
2806 if (j < nnodes - 2)
2807 {
2808 flatten_removed_nodes = new hash_set<struct cgraph_node *>;
2809 node_removal_hook_holder
2810 = symtab->add_cgraph_removal_hook (hook: &flatten_remove_node_hook,
2811 data: flatten_removed_nodes);
2812 }
2813
2814 /* In the first pass handle functions to be flattened. Do this with
2815 a priority so none of our later choices will make this impossible. */
2816 for (i = nnodes - 1; i > j; i--)
2817 {
2818 node = order[i];
2819 if (flatten_removed_nodes
2820 && flatten_removed_nodes->contains (k: node))
2821 continue;
2822
2823 /* Handle nodes to be flattened.
2824 Ideally when processing callees we stop inlining at the
2825 entry of cycles, possibly cloning that entry point and
2826 try to flatten itself turning it into a self-recursive
2827 function. */
2828 if (dump_file)
2829 fprintf (stream: dump_file, format: "Flattening %s\n", node->dump_name ());
2830 flatten_function (node, early: false, update: true);
2831 }
2832
2833 if (j < nnodes - 2)
2834 {
2835 symtab->remove_cgraph_removal_hook (entry: node_removal_hook_holder);
2836 delete flatten_removed_nodes;
2837 }
2838 free (ptr: order);
2839
2840 if (dump_file)
2841 dump_overall_stats ();
2842
2843 inline_small_functions ();
2844
2845 gcc_assert (symtab->state == IPA_SSA);
2846 symtab->state = IPA_SSA_AFTER_INLINING;
2847 /* Do first after-inlining removal. We want to remove all "stale" extern
2848 inline functions and virtual functions so we really know what is called
2849 once. */
2850 symtab->remove_unreachable_nodes (file: dump_file);
2851
2852 /* Inline functions with a property that after inlining into all callers the
2853 code size will shrink because the out-of-line copy is eliminated.
2854 We do this regardless on the callee size as long as function growth limits
2855 are met. */
2856 if (dump_file)
2857 fprintf (stream: dump_file,
2858 format: "\nDeciding on functions to be inlined into all callers and "
2859 "removing useless speculations:\n");
2860
2861 /* Inlining one function called once has good chance of preventing
2862 inlining other function into the same callee. Ideally we should
2863 work in priority order, but probably inlining hot functions first
2864 is good cut without the extra pain of maintaining the queue.
2865
2866 ??? this is not really fitting the bill perfectly: inlining function
2867 into callee often leads to better optimization of callee due to
2868 increased context for optimization.
2869 For example if main() function calls a function that outputs help
2870 and then function that does the main optimization, we should inline
2871 the second with priority even if both calls are cold by themselves.
2872
2873 We probably want to implement new predicate replacing our use of
2874 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
2875 to be hot. */
2876 for (cold = 0; cold <= 1; cold ++)
2877 {
2878 FOR_EACH_DEFINED_FUNCTION (node)
2879 {
2880 struct cgraph_edge *edge, *next;
2881 bool update=false;
2882
2883 if (!opt_for_fn (node->decl, optimize)
2884 || !opt_for_fn (node->decl, flag_inline_functions_called_once))
2885 continue;
2886
2887 for (edge = node->callees; edge; edge = next)
2888 {
2889 next = edge->next_callee;
2890 if (edge->speculative && !speculation_useful_p (e: edge, anticipate_inlining: false))
2891 {
2892 if (edge->count.ipa ().initialized_p ())
2893 spec_rem += edge->count.ipa ();
2894 cgraph_edge::resolve_speculation (edge);
2895 update = true;
2896 remove_functions = true;
2897 }
2898 }
2899 if (update)
2900 {
2901 struct cgraph_node *where = node->inlined_to
2902 ? node->inlined_to : node;
2903 reset_edge_caches (node: where);
2904 ipa_update_overall_fn_summary (node: where);
2905 }
2906 if (want_inline_function_to_all_callers_p (node, cold))
2907 {
2908 int num_calls = 0;
2909 node->call_for_symbol_and_aliases (callback: sum_callers, data: &num_calls,
2910 include_overwritable: true);
2911 while (node->call_for_symbol_and_aliases
2912 (callback: inline_to_all_callers, data: &num_calls, include_overwritable: true))
2913 ;
2914 remove_functions = true;
2915 }
2916 }
2917 }
2918
2919 if (dump_enabled_p ())
2920 dump_printf (MSG_NOTE,
2921 "\nInlined %i calls, eliminated %i functions\n\n",
2922 ncalls_inlined, nfunctions_inlined);
2923 if (dump_file)
2924 dump_inline_stats ();
2925
2926 if (dump_file)
2927 ipa_dump_fn_summaries (f: dump_file);
2928 return remove_functions ? TODO_remove_functions : 0;
2929}
2930
2931/* Inline always-inline function calls in NODE
2932 (which itself is possibly inline). */
2933
2934static bool
2935inline_always_inline_functions (struct cgraph_node *node)
2936{
2937 struct cgraph_edge *e;
2938 bool inlined = false;
2939
2940 for (e = node->callees; e; e = e->next_callee)
2941 {
2942 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2943 gcc_checking_assert (!callee->aux || callee->aux == (void *)(size_t)1);
2944 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
2945 /* Watch for self-recursive cycles. */
2946 || callee->aux)
2947 continue;
2948
2949 if (e->recursive_p ())
2950 {
2951 if (dump_enabled_p ())
2952 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
2953 " Not inlining recursive call to %C.\n",
2954 e->callee);
2955 e->inline_failed = CIF_RECURSIVE_INLINING;
2956 continue;
2957 }
2958 if (callee->definition
2959 && !ipa_fn_summaries->get (node: callee))
2960 compute_fn_summary (callee, true);
2961
2962 if (!can_early_inline_edge_p (e))
2963 {
2964 /* Set inlined to true if the callee is marked "always_inline" but
2965 is not inlinable. This will allow flagging an error later in
2966 expand_call_inline in tree-inline.cc. */
2967 if (lookup_attribute (attr_name: "always_inline",
2968 DECL_ATTRIBUTES (callee->decl)) != NULL)
2969 inlined = true;
2970 continue;
2971 }
2972
2973 if (dump_enabled_p ())
2974 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, e->call_stmt,
2975 " Inlining %C into %C (always_inline).\n",
2976 e->callee, e->caller);
2977 inline_call (e, true, NULL, NULL, false);
2978 callee->aux = (void *)(size_t)1;
2979 /* Inline recursively to handle the case where always_inline function was
2980 not optimized yet since it is a part of a cycle in callgraph. */
2981 inline_always_inline_functions (node: e->callee);
2982 callee->aux = NULL;
2983 inlined = true;
2984 }
2985 return inlined;
2986}
2987
2988/* Decide on the inlining. We do so in the topological order to avoid
2989 expenses on updating data structures. */
2990
2991static bool
2992early_inline_small_functions (struct cgraph_node *node)
2993{
2994 struct cgraph_edge *e;
2995 bool inlined = false;
2996
2997 for (e = node->callees; e; e = e->next_callee)
2998 {
2999 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
3000
3001 /* We can encounter not-yet-analyzed function during
3002 early inlining on callgraphs with strongly
3003 connected components. */
3004 ipa_fn_summary *s = ipa_fn_summaries->get (node: callee);
3005 if (s == NULL || !s->inlinable || !e->inline_failed)
3006 continue;
3007
3008 /* Do not consider functions not declared inline. */
3009 if (!DECL_DECLARED_INLINE_P (callee->decl)
3010 && !opt_for_fn (node->decl, flag_inline_small_functions)
3011 && !opt_for_fn (node->decl, flag_inline_functions))
3012 continue;
3013
3014 if (dump_enabled_p ())
3015 dump_printf_loc (MSG_NOTE, e->call_stmt,
3016 "Considering inline candidate %C.\n",
3017 callee);
3018
3019 if (!can_early_inline_edge_p (e))
3020 continue;
3021
3022 if (e->recursive_p ())
3023 {
3024 if (dump_enabled_p ())
3025 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
3026 " Not inlining: recursive call.\n");
3027 continue;
3028 }
3029
3030 if (!want_early_inline_function_p (e))
3031 continue;
3032
3033 if (dump_enabled_p ())
3034 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, e->call_stmt,
3035 " Inlining %C into %C.\n",
3036 callee, e->caller);
3037 inline_call (e, true, NULL, NULL, false);
3038 inlined = true;
3039 }
3040
3041 if (inlined)
3042 ipa_update_overall_fn_summary (node);
3043
3044 return inlined;
3045}
3046
3047unsigned int
3048early_inliner (function *fun)
3049{
3050 struct cgraph_node *node = cgraph_node::get (decl: current_function_decl);
3051 struct cgraph_edge *edge;
3052 unsigned int todo = 0;
3053 int iterations = 0;
3054 bool inlined = false;
3055
3056 if (seen_error ())
3057 return 0;
3058
3059 /* Do nothing if datastructures for ipa-inliner are already computed. This
3060 happens when some pass decides to construct new function and
3061 cgraph_add_new_function calls lowering passes and early optimization on
3062 it. This may confuse ourself when early inliner decide to inline call to
3063 function clone, because function clones don't have parameter list in
3064 ipa-prop matching their signature. */
3065 if (ipa_node_params_sum)
3066 return 0;
3067
3068 if (flag_checking)
3069 node->verify ();
3070 node->remove_all_references ();
3071
3072 /* Even when not optimizing or not inlining inline always-inline
3073 functions. */
3074 inlined = inline_always_inline_functions (node);
3075
3076 if (!optimize
3077 || flag_no_inline
3078 || !flag_early_inlining)
3079 ;
3080 else if (lookup_attribute (attr_name: "flatten",
3081 DECL_ATTRIBUTES (node->decl)) != NULL)
3082 {
3083 /* When the function is marked to be flattened, recursively inline
3084 all calls in it. */
3085 if (dump_enabled_p ())
3086 dump_printf (MSG_OPTIMIZED_LOCATIONS,
3087 "Flattening %C\n", node);
3088 flatten_function (node, early: true, update: true);
3089 inlined = true;
3090 }
3091 else
3092 {
3093 /* If some always_inline functions was inlined, apply the changes.
3094 This way we will not account always inline into growth limits and
3095 moreover we will inline calls from always inlines that we skipped
3096 previously because of conditional in can_early_inline_edge_p
3097 which prevents some inlining to always_inline. */
3098 if (inlined)
3099 {
3100 timevar_push (tv: TV_INTEGRATION);
3101 todo |= optimize_inline_calls (current_function_decl);
3102 /* optimize_inline_calls call above might have introduced new
3103 statements that don't have inline parameters computed. */
3104 for (edge = node->callees; edge; edge = edge->next_callee)
3105 {
3106 /* We can enounter not-yet-analyzed function during
3107 early inlining on callgraphs with strongly
3108 connected components. */
3109 ipa_call_summary *es = ipa_call_summaries->get_create (edge);
3110 es->call_stmt_size
3111 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
3112 es->call_stmt_time
3113 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
3114 }
3115 ipa_update_overall_fn_summary (node);
3116 inlined = false;
3117 timevar_pop (tv: TV_INTEGRATION);
3118 }
3119 /* We iterate incremental inlining to get trivial cases of indirect
3120 inlining. */
3121 while (iterations < opt_for_fn (node->decl,
3122 param_early_inliner_max_iterations)
3123 && early_inline_small_functions (node))
3124 {
3125 timevar_push (tv: TV_INTEGRATION);
3126 todo |= optimize_inline_calls (current_function_decl);
3127
3128 /* Technically we ought to recompute inline parameters so the new
3129 iteration of early inliner works as expected. We however have
3130 values approximately right and thus we only need to update edge
3131 info that might be cleared out for newly discovered edges. */
3132 for (edge = node->callees; edge; edge = edge->next_callee)
3133 {
3134 /* We have no summary for new bound store calls yet. */
3135 ipa_call_summary *es = ipa_call_summaries->get_create (edge);
3136 es->call_stmt_size
3137 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
3138 es->call_stmt_time
3139 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
3140 }
3141 if (iterations < opt_for_fn (node->decl,
3142 param_early_inliner_max_iterations) - 1)
3143 ipa_update_overall_fn_summary (node);
3144 timevar_pop (tv: TV_INTEGRATION);
3145 iterations++;
3146 inlined = false;
3147 }
3148 if (dump_file)
3149 fprintf (stream: dump_file, format: "Iterations: %i\n", iterations);
3150 }
3151
3152 if (inlined)
3153 {
3154 timevar_push (tv: TV_INTEGRATION);
3155 todo |= optimize_inline_calls (current_function_decl);
3156 timevar_pop (tv: TV_INTEGRATION);
3157 }
3158
3159 fun->always_inline_functions_inlined = true;
3160
3161 return todo;
3162}
3163
3164/* Do inlining of small functions. Doing so early helps profiling and other
3165 passes to be somewhat more effective and avoids some code duplication in
3166 later real inlining pass for testcases with very many function calls. */
3167
3168namespace {
3169
3170const pass_data pass_data_early_inline =
3171{
3172 .type: GIMPLE_PASS, /* type */
3173 .name: "einline", /* name */
3174 .optinfo_flags: OPTGROUP_INLINE, /* optinfo_flags */
3175 .tv_id: TV_EARLY_INLINING, /* tv_id */
3176 PROP_ssa, /* properties_required */
3177 .properties_provided: 0, /* properties_provided */
3178 .properties_destroyed: 0, /* properties_destroyed */
3179 .todo_flags_start: 0, /* todo_flags_start */
3180 .todo_flags_finish: 0, /* todo_flags_finish */
3181};
3182
3183class pass_early_inline : public gimple_opt_pass
3184{
3185public:
3186 pass_early_inline (gcc::context *ctxt)
3187 : gimple_opt_pass (pass_data_early_inline, ctxt)
3188 {}
3189
3190 /* opt_pass methods: */
3191 unsigned int execute (function *) final override;
3192
3193}; // class pass_early_inline
3194
3195unsigned int
3196pass_early_inline::execute (function *fun)
3197{
3198 return early_inliner (fun);
3199}
3200
3201} // anon namespace
3202
3203gimple_opt_pass *
3204make_pass_early_inline (gcc::context *ctxt)
3205{
3206 return new pass_early_inline (ctxt);
3207}
3208
3209namespace {
3210
3211const pass_data pass_data_ipa_inline =
3212{
3213 .type: IPA_PASS, /* type */
3214 .name: "inline", /* name */
3215 .optinfo_flags: OPTGROUP_INLINE, /* optinfo_flags */
3216 .tv_id: TV_IPA_INLINING, /* tv_id */
3217 .properties_required: 0, /* properties_required */
3218 .properties_provided: 0, /* properties_provided */
3219 .properties_destroyed: 0, /* properties_destroyed */
3220 .todo_flags_start: 0, /* todo_flags_start */
3221 .todo_flags_finish: ( TODO_dump_symtab ), /* todo_flags_finish */
3222};
3223
3224class pass_ipa_inline : public ipa_opt_pass_d
3225{
3226public:
3227 pass_ipa_inline (gcc::context *ctxt)
3228 : ipa_opt_pass_d (pass_data_ipa_inline, ctxt,
3229 NULL, /* generate_summary */
3230 NULL, /* write_summary */
3231 NULL, /* read_summary */
3232 NULL, /* write_optimization_summary */
3233 NULL, /* read_optimization_summary */
3234 NULL, /* stmt_fixup */
3235 0, /* function_transform_todo_flags_start */
3236 inline_transform, /* function_transform */
3237 NULL) /* variable_transform */
3238 {}
3239
3240 /* opt_pass methods: */
3241 unsigned int execute (function *) final override { return ipa_inline (); }
3242
3243}; // class pass_ipa_inline
3244
3245} // anon namespace
3246
3247ipa_opt_pass_d *
3248make_pass_ipa_inline (gcc::context *ctxt)
3249{
3250 return new pass_ipa_inline (ctxt);
3251}
3252

source code of gcc/ipa-inline.cc