1/* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006-2023 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#ifndef GCC_IRA_INT_H
22#define GCC_IRA_INT_H
23
24#include "recog.h"
25#include "function-abi.h"
26
27/* To provide consistency in naming, all IRA external variables,
28 functions, common typedefs start with prefix ira_. */
29
30#if CHECKING_P
31#define ENABLE_IRA_CHECKING
32#endif
33
34#ifdef ENABLE_IRA_CHECKING
35#define ira_assert(c) gcc_assert (c)
36#else
37/* Always define and include C, so that warnings for empty body in an
38 'if' statement and unused variable do not occur. */
39#define ira_assert(c) ((void)(0 && (c)))
40#endif
41
42/* Compute register frequency from edge frequency FREQ. It is
43 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
44 profile driven feedback is available and the function is never
45 executed, frequency is always equivalent. Otherwise rescale the
46 edge frequency. */
47#define REG_FREQ_FROM_EDGE_FREQ(freq) \
48 (optimize_function_for_size_p (cfun) \
49 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
50 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
51
52/* A modified value of flag `-fira-verbose' used internally. */
53extern int internal_flag_ira_verbose;
54
55/* Dump file of the allocator if it is not NULL. */
56extern FILE *ira_dump_file;
57
58/* Typedefs for pointers to allocno live range, allocno, and copy of
59 allocnos. */
60typedef struct live_range *live_range_t;
61typedef struct ira_allocno *ira_allocno_t;
62typedef struct ira_allocno_pref *ira_pref_t;
63typedef struct ira_allocno_copy *ira_copy_t;
64typedef struct ira_object *ira_object_t;
65
66/* Definition of vector of allocnos and copies. */
67
68/* Typedef for pointer to the subsequent structure. */
69typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
70
71typedef unsigned short move_table[N_REG_CLASSES];
72
73/* In general case, IRA is a regional allocator. The regions are
74 nested and form a tree. Currently regions are natural loops. The
75 following structure describes loop tree node (representing basic
76 block or loop). We need such tree because the loop tree from
77 cfgloop.h is not convenient for the optimization: basic blocks are
78 not a part of the tree from cfgloop.h. We also use the nodes for
79 storing additional information about basic blocks/loops for the
80 register allocation purposes. */
81struct ira_loop_tree_node
82{
83 /* The node represents basic block if children == NULL. */
84 basic_block bb; /* NULL for loop. */
85 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */
86 class loop *loop;
87 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
88 SUBLOOP_NEXT is always NULL for BBs. */
89 ira_loop_tree_node_t subloop_next, next;
90 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
91 the node. They are NULL for BBs. */
92 ira_loop_tree_node_t subloops, children;
93 /* The node immediately containing given node. */
94 ira_loop_tree_node_t parent;
95
96 /* Loop level in range [0, ira_loop_tree_height). */
97 int level;
98
99 /* All the following members are defined only for nodes representing
100 loops. */
101
102 /* The loop number from CFG loop tree. The root number is 0. */
103 int loop_num;
104
105 /* True if the loop was marked for removal from the register
106 allocation. */
107 bool to_remove_p;
108
109 /* Allocnos in the loop corresponding to their regnos. If it is
110 NULL the loop does not form a separate register allocation region
111 (e.g. because it has abnormal enter/exit edges and we cannot put
112 code for register shuffling on the edges if a different
113 allocation is used for a pseudo-register on different sides of
114 the edges). Caps are not in the map (remember we can have more
115 one cap with the same regno in a region). */
116 ira_allocno_t *regno_allocno_map;
117
118 /* True if there is an entry to given loop not from its parent (or
119 grandparent) basic block. For example, it is possible for two
120 adjacent loops inside another loop. */
121 bool entered_from_non_parent_p;
122
123 /* Maximal register pressure inside loop for given register class
124 (defined only for the pressure classes). */
125 int reg_pressure[N_REG_CLASSES];
126
127 /* Numbers of allocnos referred or living in the loop node (except
128 for its subloops). */
129 bitmap all_allocnos;
130
131 /* Numbers of allocnos living at the loop borders. */
132 bitmap border_allocnos;
133
134 /* Regnos of pseudos modified in the loop node (including its
135 subloops). */
136 bitmap modified_regnos;
137
138 /* Numbers of copies referred in the corresponding loop. */
139 bitmap local_copies;
140};
141
142/* The root of the loop tree corresponding to the all function. */
143extern ira_loop_tree_node_t ira_loop_tree_root;
144
145/* Height of the loop tree. */
146extern int ira_loop_tree_height;
147
148/* All nodes representing basic blocks are referred through the
149 following array. We cannot use basic block member `aux' for this
150 because it is used for insertion of insns on edges. */
151extern ira_loop_tree_node_t ira_bb_nodes;
152
153/* Two access macros to the nodes representing basic blocks. */
154#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
155#define IRA_BB_NODE_BY_INDEX(index) __extension__ \
156(({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
157 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
158 { \
159 fprintf (stderr, \
160 "\n%s: %d: error in %s: it is not a block node\n", \
161 __FILE__, __LINE__, __FUNCTION__); \
162 gcc_unreachable (); \
163 } \
164 _node; }))
165#else
166#define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
167#endif
168
169#define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
170
171/* All nodes representing loops are referred through the following
172 array. */
173extern ira_loop_tree_node_t ira_loop_nodes;
174
175/* Two access macros to the nodes representing loops. */
176#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
177#define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
178(({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \
179 if (_node->children == NULL || _node->bb != NULL \
180 || (_node->loop == NULL && current_loops != NULL)) \
181 { \
182 fprintf (stderr, \
183 "\n%s: %d: error in %s: it is not a loop node\n", \
184 __FILE__, __LINE__, __FUNCTION__); \
185 gcc_unreachable (); \
186 } \
187 _node; }))
188#else
189#define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
190#endif
191
192#define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
193
194
195/* The structure describes program points where a given allocno lives.
196 If the live ranges of two allocnos are intersected, the allocnos
197 are in conflict. */
198struct live_range
199{
200 /* Object whose live range is described by given structure. */
201 ira_object_t object;
202 /* Program point range. */
203 int start, finish;
204 /* Next structure describing program points where the allocno
205 lives. */
206 live_range_t next;
207 /* Pointer to structures with the same start/finish. */
208 live_range_t start_next, finish_next;
209};
210
211/* Program points are enumerated by numbers from range
212 0..IRA_MAX_POINT-1. There are approximately two times more program
213 points than insns. Program points are places in the program where
214 liveness info can be changed. In most general case (there are more
215 complicated cases too) some program points correspond to places
216 where input operand dies and other ones correspond to places where
217 output operands are born. */
218extern int ira_max_point;
219
220/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
221 live ranges with given start/finish point. */
222extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
223
224/* A structure representing conflict information for an allocno
225 (or one of its subwords). */
226struct ira_object
227{
228 /* The allocno associated with this record. */
229 ira_allocno_t allocno;
230 /* Vector of accumulated conflicting conflict_redords with NULL end
231 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
232 otherwise. */
233 void *conflicts_array;
234 /* Pointer to structures describing at what program point the
235 object lives. We always maintain the list in such way that *the
236 ranges in the list are not intersected and ordered by decreasing
237 their program points*. */
238 live_range_t live_ranges;
239 /* The subword within ALLOCNO which is represented by this object.
240 Zero means the lowest-order subword (or the entire allocno in case
241 it is not being tracked in subwords). */
242 int subword;
243 /* Allocated size of the conflicts array. */
244 unsigned int conflicts_array_size;
245 /* A unique number for every instance of this structure, which is used
246 to represent it in conflict bit vectors. */
247 int id;
248 /* Before building conflicts, MIN and MAX are initialized to
249 correspondingly minimal and maximal points of the accumulated
250 live ranges. Afterwards, they hold the minimal and maximal ids
251 of other ira_objects that this one can conflict with. */
252 int min, max;
253 /* Initial and accumulated hard registers conflicting with this
254 object and as a consequences cannot be assigned to the allocno.
255 All non-allocatable hard regs and hard regs of register classes
256 different from given allocno one are included in the sets. */
257 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
258 /* Number of accumulated conflicts in the vector of conflicting
259 objects. */
260 int num_accumulated_conflicts;
261 /* TRUE if conflicts are represented by a vector of pointers to
262 ira_object structures. Otherwise, we use a bit vector indexed
263 by conflict ID numbers. */
264 unsigned int conflict_vec_p : 1;
265};
266
267/* A structure representing an allocno (allocation entity). Allocno
268 represents a pseudo-register in an allocation region. If
269 pseudo-register does not live in a region but it lives in the
270 nested regions, it is represented in the region by special allocno
271 called *cap*. There may be more one cap representing the same
272 pseudo-register in region. It means that the corresponding
273 pseudo-register lives in more one non-intersected subregion. */
274struct ira_allocno
275{
276 /* The allocno order number starting with 0. Each allocno has an
277 unique number and the number is never changed for the
278 allocno. */
279 int num;
280 /* Regno for allocno or cap. */
281 int regno;
282 /* Mode of the allocno which is the mode of the corresponding
283 pseudo-register. */
284 ENUM_BITFIELD (machine_mode) mode : MACHINE_MODE_BITSIZE;
285 /* Widest mode of the allocno which in at least one case could be
286 for paradoxical subregs where wmode > mode. */
287 ENUM_BITFIELD (machine_mode) wmode : MACHINE_MODE_BITSIZE;
288 /* Register class which should be used for allocation for given
289 allocno. NO_REGS means that we should use memory. */
290 ENUM_BITFIELD (reg_class) aclass : 16;
291 /* Hard register assigned to given allocno. Negative value means
292 that memory was allocated to the allocno. During the reload,
293 spilled allocno has value equal to the corresponding stack slot
294 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
295 reload (at this point pseudo-register has only one allocno) which
296 did not get stack slot yet. */
297 signed int hard_regno : 16;
298 /* A bitmask of the ABIs used by calls that occur while the allocno
299 is live. */
300 unsigned int crossed_calls_abis : NUM_ABI_IDS;
301 /* During the reload, value TRUE means that we should not reassign a
302 hard register to the allocno got memory earlier. It is set up
303 when we removed memory-memory move insn before each iteration of
304 the reload. */
305 unsigned int dont_reassign_p : 1;
306#ifdef STACK_REGS
307 /* Set to TRUE if allocno can't be assigned to the stack hard
308 register correspondingly in this region and area including the
309 region and all its subregions recursively. */
310 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
311#endif
312 /* TRUE value means that there is no sense to spill the allocno
313 during coloring because the spill will result in additional
314 reloads in reload pass. */
315 unsigned int bad_spill_p : 1;
316 /* TRUE if a hard register or memory has been assigned to the
317 allocno. */
318 unsigned int assigned_p : 1;
319 /* TRUE if conflicts for given allocno are represented by vector of
320 pointers to the conflicting allocnos. Otherwise, we use a bit
321 vector where a bit with given index represents allocno with the
322 same number. */
323 unsigned int conflict_vec_p : 1;
324 /* True if the parent loop has an allocno for the same register and
325 if the parent allocno's assignment might not be valid in this loop.
326 This means that we cannot merge this allocno and the parent allocno
327 together.
328
329 This is only ever true for non-cap allocnos. */
330 unsigned int might_conflict_with_parent_p : 1;
331 /* Accumulated usage references of the allocno. Here and below,
332 word 'accumulated' means info for given region and all nested
333 subregions. In this case, 'accumulated' means sum of references
334 of the corresponding pseudo-register in this region and in all
335 nested subregions recursively. */
336 int nrefs;
337 /* Accumulated frequency of usage of the allocno. */
338 int freq;
339 /* Minimal accumulated and updated costs of usage register of the
340 allocno class. */
341 int class_cost, updated_class_cost;
342 /* Minimal accumulated, and updated costs of memory for the allocno.
343 At the allocation start, the original and updated costs are
344 equal. The updated cost may be changed after finishing
345 allocation in a region and starting allocation in a subregion.
346 The change reflects the cost of spill/restore code on the
347 subregion border if we assign memory to the pseudo in the
348 subregion. */
349 int memory_cost, updated_memory_cost;
350 /* Accumulated number of points where the allocno lives and there is
351 excess pressure for its class. Excess pressure for a register
352 class at some point means that there are more allocnos of given
353 register class living at the point than number of hard-registers
354 of the class available for the allocation. */
355 int excess_pressure_points_num;
356 /* The number of objects tracked in the following array. */
357 int num_objects;
358 /* Accumulated frequency of calls which given allocno
359 intersects. */
360 int call_freq;
361 /* Accumulated number of the intersected calls. */
362 int calls_crossed_num;
363 /* The number of calls across which it is live, but which should not
364 affect register preferences. */
365 int cheap_calls_crossed_num;
366 /* Allocnos with the same regno are linked by the following member.
367 Allocnos corresponding to inner loops are first in the list (it
368 corresponds to depth-first traverse of the loops). */
369 ira_allocno_t next_regno_allocno;
370 /* There may be different allocnos with the same regno in different
371 regions. Allocnos are bound to the corresponding loop tree node.
372 Pseudo-register may have only one regular allocno with given loop
373 tree node but more than one cap (see comments above). */
374 ira_loop_tree_node_t loop_tree_node;
375 /* Allocno hard reg preferences. */
376 ira_pref_t allocno_prefs;
377 /* Copies to other non-conflicting allocnos. The copies can
378 represent move insn or potential move insn usually because of two
379 operand insn constraints. */
380 ira_copy_t allocno_copies;
381 /* It is a allocno (cap) representing given allocno on upper loop tree
382 level. */
383 ira_allocno_t cap;
384 /* It is a link to allocno (cap) on lower loop level represented by
385 given cap. Null if given allocno is not a cap. */
386 ira_allocno_t cap_member;
387 /* An array of structures describing conflict information and live
388 ranges for each object associated with the allocno. There may be
389 more than one such object in cases where the allocno represents a
390 multi-word register. */
391 ira_object_t objects[2];
392 /* Registers clobbered by intersected calls. */
393 HARD_REG_SET crossed_calls_clobbered_regs;
394 /* Array of usage costs (accumulated and the one updated during
395 coloring) for each hard register of the allocno class. The
396 member value can be NULL if all costs are the same and equal to
397 CLASS_COST. For example, the costs of two different hard
398 registers can be different if one hard register is callee-saved
399 and another one is callee-used and the allocno lives through
400 calls. Another example can be case when for some insn the
401 corresponding pseudo-register value should be put in specific
402 register class (e.g. AREG for x86) which is a strict subset of
403 the allocno class (GENERAL_REGS for x86). We have updated costs
404 to reflect the situation when the usage cost of a hard register
405 is decreased because the allocno is connected to another allocno
406 by a copy and the another allocno has been assigned to the hard
407 register. */
408 int *hard_reg_costs, *updated_hard_reg_costs;
409 /* Array of decreasing costs (accumulated and the one updated during
410 coloring) for allocnos conflicting with given allocno for hard
411 regno of the allocno class. The member value can be NULL if all
412 costs are the same. These costs are used to reflect preferences
413 of other allocnos not assigned yet during assigning to given
414 allocno. */
415 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
416 /* Different additional data. It is used to decrease size of
417 allocno data footprint. */
418 void *add_data;
419};
420
421
422/* All members of the allocno structures should be accessed only
423 through the following macros. */
424#define ALLOCNO_NUM(A) ((A)->num)
425#define ALLOCNO_REGNO(A) ((A)->regno)
426#define ALLOCNO_REG(A) ((A)->reg)
427#define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
428#define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
429#define ALLOCNO_CAP(A) ((A)->cap)
430#define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
431#define ALLOCNO_NREFS(A) ((A)->nrefs)
432#define ALLOCNO_FREQ(A) ((A)->freq)
433#define ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P(A) \
434 ((A)->might_conflict_with_parent_p)
435#define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
436#define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
437#define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
438#define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
439#define ALLOCNO_CROSSED_CALLS_ABIS(A) ((A)->crossed_calls_abis)
440#define ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS(A) \
441 ((A)->crossed_calls_clobbered_regs)
442#define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
443#define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
444#define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
445#define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
446#define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
447#ifdef STACK_REGS
448#define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
449#define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
450#endif
451#define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
452#define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
453#define ALLOCNO_MODE(A) ((A)->mode)
454#define ALLOCNO_WMODE(A) ((A)->wmode)
455#define ALLOCNO_PREFS(A) ((A)->allocno_prefs)
456#define ALLOCNO_COPIES(A) ((A)->allocno_copies)
457#define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
458#define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
459#define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
460 ((A)->conflict_hard_reg_costs)
461#define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
462 ((A)->updated_conflict_hard_reg_costs)
463#define ALLOCNO_CLASS(A) ((A)->aclass)
464#define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
465#define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
466#define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
467#define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
468#define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
469 ((A)->excess_pressure_points_num)
470#define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
471#define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
472#define ALLOCNO_ADD_DATA(A) ((A)->add_data)
473
474/* Typedef for pointer to the subsequent structure. */
475typedef struct ira_emit_data *ira_emit_data_t;
476
477/* Allocno bound data used for emit pseudo live range split insns and
478 to flattening IR. */
479struct ira_emit_data
480{
481 /* TRUE if the allocno assigned to memory was a destination of
482 removed move (see ira-emit.cc) at loop exit because the value of
483 the corresponding pseudo-register is not changed inside the
484 loop. */
485 unsigned int mem_optimized_dest_p : 1;
486 /* TRUE if the corresponding pseudo-register has disjoint live
487 ranges and the other allocnos of the pseudo-register except this
488 one changed REG. */
489 unsigned int somewhere_renamed_p : 1;
490 /* TRUE if allocno with the same REGNO in a subregion has been
491 renamed, in other words, got a new pseudo-register. */
492 unsigned int child_renamed_p : 1;
493 /* Final rtx representation of the allocno. */
494 rtx reg;
495 /* Non NULL if we remove restoring value from given allocno to
496 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.cc) because the
497 allocno value is not changed inside the loop. */
498 ira_allocno_t mem_optimized_dest;
499};
500
501#define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
502
503/* Data used to emit live range split insns and to flattening IR. */
504extern ira_emit_data_t ira_allocno_emit_data;
505
506/* Abbreviation for frequent emit data access. */
507inline rtx
508allocno_emit_reg (ira_allocno_t a)
509{
510 return ALLOCNO_EMIT_DATA (a)->reg;
511}
512
513#define OBJECT_ALLOCNO(O) ((O)->allocno)
514#define OBJECT_SUBWORD(O) ((O)->subword)
515#define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
516#define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
517#define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
518#define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
519#define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
520#define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
521#define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
522#define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
523#define OBJECT_MIN(O) ((O)->min)
524#define OBJECT_MAX(O) ((O)->max)
525#define OBJECT_CONFLICT_ID(O) ((O)->id)
526#define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
527
528/* Map regno -> allocnos with given regno (see comments for
529 allocno member `next_regno_allocno'). */
530extern ira_allocno_t *ira_regno_allocno_map;
531
532/* Array of references to all allocnos. The order number of the
533 allocno corresponds to the index in the array. Removed allocnos
534 have NULL element value. */
535extern ira_allocno_t *ira_allocnos;
536
537/* The size of the previous array. */
538extern int ira_allocnos_num;
539
540/* Map a conflict id to its corresponding ira_object structure. */
541extern ira_object_t *ira_object_id_map;
542
543/* The size of the previous array. */
544extern int ira_objects_num;
545
546/* The following structure represents a hard register preference of
547 allocno. The preference represent move insns or potential move
548 insns usually because of two operand insn constraints. One move
549 operand is a hard register. */
550struct ira_allocno_pref
551{
552 /* The unique order number of the preference node starting with 0. */
553 int num;
554 /* Preferred hard register. */
555 int hard_regno;
556 /* Accumulated execution frequency of insns from which the
557 preference created. */
558 int freq;
559 /* Given allocno. */
560 ira_allocno_t allocno;
561 /* All preferences with the same allocno are linked by the following
562 member. */
563 ira_pref_t next_pref;
564};
565
566/* Array of references to all allocno preferences. The order number
567 of the preference corresponds to the index in the array. */
568extern ira_pref_t *ira_prefs;
569
570/* Size of the previous array. */
571extern int ira_prefs_num;
572
573/* The following structure represents a copy of two allocnos. The
574 copies represent move insns or potential move insns usually because
575 of two operand insn constraints. To remove register shuffle, we
576 also create copies between allocno which is output of an insn and
577 allocno becoming dead in the insn. */
578struct ira_allocno_copy
579{
580 /* The unique order number of the copy node starting with 0. */
581 int num;
582 /* Allocnos connected by the copy. The first allocno should have
583 smaller order number than the second one. */
584 ira_allocno_t first, second;
585 /* Execution frequency of the copy. */
586 int freq;
587 bool constraint_p;
588 /* It is a move insn which is an origin of the copy. The member
589 value for the copy representing two operand insn constraints or
590 for the copy created to remove register shuffle is NULL. In last
591 case the copy frequency is smaller than the corresponding insn
592 execution frequency. */
593 rtx_insn *insn;
594 /* All copies with the same allocno as FIRST are linked by the two
595 following members. */
596 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
597 /* All copies with the same allocno as SECOND are linked by the two
598 following members. */
599 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
600 /* Region from which given copy is originated. */
601 ira_loop_tree_node_t loop_tree_node;
602};
603
604/* Array of references to all copies. The order number of the copy
605 corresponds to the index in the array. Removed copies have NULL
606 element value. */
607extern ira_copy_t *ira_copies;
608
609/* Size of the previous array. */
610extern int ira_copies_num;
611
612/* The following structure describes a stack slot used for spilled
613 pseudo-registers. */
614class ira_spilled_reg_stack_slot
615{
616public:
617 /* pseudo-registers assigned to the stack slot. */
618 bitmap_head spilled_regs;
619 /* RTL representation of the stack slot. */
620 rtx mem;
621 /* Size of the stack slot. */
622 poly_uint64 width;
623};
624
625/* The number of elements in the following array. */
626extern int ira_spilled_reg_stack_slots_num;
627
628/* The following array contains info about spilled pseudo-registers
629 stack slots used in current function so far. */
630extern class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
631
632/* Correspondingly overall cost of the allocation, cost of the
633 allocnos assigned to hard-registers, cost of the allocnos assigned
634 to memory, cost of loads, stores and register move insns generated
635 for pseudo-register live range splitting (see ira-emit.cc). */
636extern int64_t ira_overall_cost;
637extern int64_t ira_reg_cost, ira_mem_cost;
638extern int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
639extern int ira_move_loops_num, ira_additional_jumps_num;
640
641
642/* This page contains a bitset implementation called 'min/max sets' used to
643 record conflicts in IRA.
644 They are named min/maxs set since we keep track of a minimum and a maximum
645 bit number for each set representing the bounds of valid elements. Otherwise,
646 the implementation resembles sbitmaps in that we store an array of integers
647 whose bits directly represent the members of the set. */
648
649/* The type used as elements in the array, and the number of bits in
650 this type. */
651
652#define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
653#define IRA_INT_TYPE HOST_WIDE_INT
654
655/* Set, clear or test bit number I in R, a bit vector of elements with
656 minimal index and maximal index equal correspondingly to MIN and
657 MAX. */
658#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
659
660#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
661 (({ int _min = (MIN), _max = (MAX), _i = (I); \
662 if (_i < _min || _i > _max) \
663 { \
664 fprintf (stderr, \
665 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
666 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
667 gcc_unreachable (); \
668 } \
669 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
670 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
671
672
673#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
674 (({ int _min = (MIN), _max = (MAX), _i = (I); \
675 if (_i < _min || _i > _max) \
676 { \
677 fprintf (stderr, \
678 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
679 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
680 gcc_unreachable (); \
681 } \
682 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
683 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
684
685#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
686 (({ int _min = (MIN), _max = (MAX), _i = (I); \
687 if (_i < _min || _i > _max) \
688 { \
689 fprintf (stderr, \
690 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
691 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
692 gcc_unreachable (); \
693 } \
694 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
695 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
696
697#else
698
699#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
700 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
701 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
702
703#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
704 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
705 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
706
707#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
708 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
709 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
710
711#endif
712
713/* The iterator for min/max sets. */
714struct minmax_set_iterator {
715
716 /* Array containing the bit vector. */
717 IRA_INT_TYPE *vec;
718
719 /* The number of the current element in the vector. */
720 unsigned int word_num;
721
722 /* The number of bits in the bit vector. */
723 unsigned int nel;
724
725 /* The current bit index of the bit vector. */
726 unsigned int bit_num;
727
728 /* Index corresponding to the 1st bit of the bit vector. */
729 int start_val;
730
731 /* The word of the bit vector currently visited. */
732 unsigned IRA_INT_TYPE word;
733};
734
735/* Initialize the iterator I for bit vector VEC containing minimal and
736 maximal values MIN and MAX. */
737inline void
738minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
739 int max)
740{
741 i->vec = vec;
742 i->word_num = 0;
743 i->nel = max < min ? 0 : max - min + 1;
744 i->start_val = min;
745 i->bit_num = 0;
746 i->word = i->nel == 0 ? 0 : vec[0];
747}
748
749/* Return TRUE if we have more allocnos to visit, in which case *N is
750 set to the number of the element to be visited. Otherwise, return
751 FALSE. */
752inline bool
753minmax_set_iter_cond (minmax_set_iterator *i, int *n)
754{
755 /* Skip words that are zeros. */
756 for (; i->word == 0; i->word = i->vec[i->word_num])
757 {
758 i->word_num++;
759 i->bit_num = i->word_num * IRA_INT_BITS;
760
761 /* If we have reached the end, break. */
762 if (i->bit_num >= i->nel)
763 return false;
764 }
765
766 /* Skip bits that are zero. */
767 int off = ctz_hwi (x: i->word);
768 i->bit_num += off;
769 i->word >>= off;
770
771 *n = (int) i->bit_num + i->start_val;
772
773 return true;
774}
775
776/* Advance to the next element in the set. */
777inline void
778minmax_set_iter_next (minmax_set_iterator *i)
779{
780 i->word >>= 1;
781 i->bit_num++;
782}
783
784/* Loop over all elements of a min/max set given by bit vector VEC and
785 their minimal and maximal values MIN and MAX. In each iteration, N
786 is set to the number of next allocno. ITER is an instance of
787 minmax_set_iterator used to iterate over the set. */
788#define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
789 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
790 minmax_set_iter_cond (&(ITER), &(N)); \
791 minmax_set_iter_next (&(ITER)))
792
793class target_ira_int {
794public:
795 ~target_ira_int ();
796
797 void free_ira_costs ();
798 void free_register_move_costs ();
799
800 /* Initialized once. It is a maximal possible size of the allocated
801 struct costs. */
802 size_t x_max_struct_costs_size;
803
804 /* Allocated and initialized once, and used to initialize cost values
805 for each insn. */
806 struct costs *x_init_cost;
807
808 /* Allocated once, and used for temporary purposes. */
809 struct costs *x_temp_costs;
810
811 /* Allocated once, and used for the cost calculation. */
812 struct costs *x_op_costs[MAX_RECOG_OPERANDS];
813 struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
814
815 /* Hard registers that cannot be used for the register allocator for
816 all functions of the current compilation unit. */
817 HARD_REG_SET x_no_unit_alloc_regs;
818
819 /* Map: hard regs X modes -> set of hard registers for storing value
820 of given mode starting with given hard register. */
821 HARD_REG_SET (x_ira_reg_mode_hard_regset
822 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
823
824 /* Maximum cost of moving from a register in one class to a register
825 in another class. Based on TARGET_REGISTER_MOVE_COST. */
826 move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
827
828 /* Similar, but here we don't have to move if the first index is a
829 subset of the second so in that case the cost is zero. */
830 move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
831
832 /* Similar, but here we don't have to move if the first index is a
833 superset of the second so in that case the cost is zero. */
834 move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
835
836 /* Keep track of the last mode we initialized move costs for. */
837 int x_last_mode_for_init_move_cost;
838
839 /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
840 cost not minimal. */
841 short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
842
843 /* Map class->true if class is a possible allocno class, false
844 otherwise. */
845 bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
846
847 /* Map class->true if class is a pressure class, false otherwise. */
848 bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
849
850 /* Array of the number of hard registers of given class which are
851 available for allocation. The order is defined by the hard
852 register numbers. */
853 short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
854
855 /* Index (in ira_class_hard_regs; for given register class and hard
856 register (in general case a hard register can belong to several
857 register classes;. The index is negative for hard registers
858 unavailable for the allocation. */
859 short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
860
861 /* Index [CL][M] contains R if R appears somewhere in a register of the form:
862
863 (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M]
864
865 For example, if:
866
867 - (reg:M 2) is valid and occupies two registers;
868 - register 2 belongs to CL; and
869 - register 3 belongs to the same pressure class as CL
870
871 then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be
872 in the set. */
873 HARD_REG_SET x_ira_useful_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
874
875 /* The value is number of elements in the subsequent array. */
876 int x_ira_important_classes_num;
877
878 /* The array containing all non-empty classes. Such classes is
879 important for calculation of the hard register usage costs. */
880 enum reg_class x_ira_important_classes[N_REG_CLASSES];
881
882 /* The array containing indexes of important classes in the previous
883 array. The array elements are defined only for important
884 classes. */
885 int x_ira_important_class_nums[N_REG_CLASSES];
886
887 /* Map class->true if class is an uniform class, false otherwise. */
888 bool x_ira_uniform_class_p[N_REG_CLASSES];
889
890 /* The biggest important class inside of intersection of the two
891 classes (that is calculated taking only hard registers available
892 for allocation into account;. If the both classes contain no hard
893 registers available for allocation, the value is calculated with
894 taking all hard-registers including fixed ones into account. */
895 enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
896
897 /* Classes with end marker LIM_REG_CLASSES which are intersected with
898 given class (the first index). That includes given class itself.
899 This is calculated taking only hard registers available for
900 allocation into account. */
901 enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
902
903 /* The biggest (smallest) important class inside of (covering) union
904 of the two classes (that is calculated taking only hard registers
905 available for allocation into account). If the both classes
906 contain no hard registers available for allocation, the value is
907 calculated with taking all hard-registers including fixed ones
908 into account. In other words, the value is the corresponding
909 reg_class_subunion (reg_class_superunion) value. */
910 enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
911 enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
912
913 /* For each reg class, table listing all the classes contained in it
914 (excluding the class itself. Non-allocatable registers are
915 excluded from the consideration). */
916 enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
917
918 /* Array whose values are hard regset of hard registers for which
919 move of the hard register in given mode into itself is
920 prohibited. */
921 HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
922
923 /* Flag of that the above array has been initialized. */
924 bool x_ira_prohibited_mode_move_regs_initialized_p;
925};
926
927extern class target_ira_int default_target_ira_int;
928#if SWITCHABLE_TARGET
929extern class target_ira_int *this_target_ira_int;
930#else
931#define this_target_ira_int (&default_target_ira_int)
932#endif
933
934#define ira_reg_mode_hard_regset \
935 (this_target_ira_int->x_ira_reg_mode_hard_regset)
936#define ira_register_move_cost \
937 (this_target_ira_int->x_ira_register_move_cost)
938#define ira_max_memory_move_cost \
939 (this_target_ira_int->x_ira_max_memory_move_cost)
940#define ira_may_move_in_cost \
941 (this_target_ira_int->x_ira_may_move_in_cost)
942#define ira_may_move_out_cost \
943 (this_target_ira_int->x_ira_may_move_out_cost)
944#define ira_reg_allocno_class_p \
945 (this_target_ira_int->x_ira_reg_allocno_class_p)
946#define ira_reg_pressure_class_p \
947 (this_target_ira_int->x_ira_reg_pressure_class_p)
948#define ira_non_ordered_class_hard_regs \
949 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
950#define ira_class_hard_reg_index \
951 (this_target_ira_int->x_ira_class_hard_reg_index)
952#define ira_useful_class_mode_regs \
953 (this_target_ira_int->x_ira_useful_class_mode_regs)
954#define ira_important_classes_num \
955 (this_target_ira_int->x_ira_important_classes_num)
956#define ira_important_classes \
957 (this_target_ira_int->x_ira_important_classes)
958#define ira_important_class_nums \
959 (this_target_ira_int->x_ira_important_class_nums)
960#define ira_uniform_class_p \
961 (this_target_ira_int->x_ira_uniform_class_p)
962#define ira_reg_class_intersect \
963 (this_target_ira_int->x_ira_reg_class_intersect)
964#define ira_reg_class_super_classes \
965 (this_target_ira_int->x_ira_reg_class_super_classes)
966#define ira_reg_class_subunion \
967 (this_target_ira_int->x_ira_reg_class_subunion)
968#define ira_reg_class_superunion \
969 (this_target_ira_int->x_ira_reg_class_superunion)
970#define ira_prohibited_mode_move_regs \
971 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
972
973/* ira.cc: */
974
975extern void *ira_allocate (size_t);
976extern void ira_free (void *addr);
977extern bitmap ira_allocate_bitmap (void);
978extern void ira_free_bitmap (bitmap);
979extern void ira_print_disposition (FILE *);
980extern void ira_debug_disposition (void);
981extern void ira_debug_allocno_classes (void);
982extern void ira_init_register_move_cost (machine_mode);
983extern alternative_mask ira_setup_alts (rtx_insn *);
984extern int ira_get_dup_out_num (int, alternative_mask, bool &);
985
986/* ira-build.cc */
987
988/* The current loop tree node and its regno allocno map. */
989extern ira_loop_tree_node_t ira_curr_loop_tree_node;
990extern ira_allocno_t *ira_curr_regno_allocno_map;
991
992extern void ira_debug_pref (ira_pref_t);
993extern void ira_debug_prefs (void);
994extern void ira_debug_allocno_prefs (ira_allocno_t);
995
996extern void ira_debug_copy (ira_copy_t);
997extern void debug (ira_allocno_copy &ref);
998extern void debug (ira_allocno_copy *ptr);
999
1000extern void ira_debug_copies (void);
1001extern void ira_debug_allocno_copies (ira_allocno_t);
1002extern void debug (ira_allocno &ref);
1003extern void debug (ira_allocno *ptr);
1004
1005extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
1006 void (*) (ira_loop_tree_node_t),
1007 void (*) (ira_loop_tree_node_t));
1008extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
1009extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
1010extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
1011extern void ira_create_allocno_objects (ira_allocno_t);
1012extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
1013extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
1014extern void ira_allocate_conflict_vec (ira_object_t, int);
1015extern void ira_allocate_object_conflicts (ira_object_t, int);
1016extern void ior_hard_reg_conflicts (ira_allocno_t, const_hard_reg_set);
1017extern void ira_print_expanded_allocno (ira_allocno_t);
1018extern void ira_add_live_range_to_object (ira_object_t, int, int);
1019extern live_range_t ira_create_live_range (ira_object_t, int, int,
1020 live_range_t);
1021extern live_range_t ira_copy_live_range_list (live_range_t);
1022extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
1023extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
1024extern void ira_finish_live_range (live_range_t);
1025extern void ira_finish_live_range_list (live_range_t);
1026extern void ira_free_allocno_updated_costs (ira_allocno_t);
1027extern ira_pref_t ira_create_pref (ira_allocno_t, int, int);
1028extern void ira_add_allocno_pref (ira_allocno_t, int, int);
1029extern void ira_remove_pref (ira_pref_t);
1030extern void ira_remove_allocno_prefs (ira_allocno_t);
1031extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
1032 int, bool, rtx_insn *,
1033 ira_loop_tree_node_t);
1034extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
1035 bool, rtx_insn *,
1036 ira_loop_tree_node_t);
1037
1038extern int *ira_allocate_cost_vector (reg_class_t);
1039extern void ira_free_cost_vector (int *, reg_class_t);
1040
1041extern void ira_flattening (int, int);
1042extern bool ira_build (void);
1043extern void ira_destroy (void);
1044
1045/* ira-costs.cc */
1046extern void ira_init_costs_once (void);
1047extern void ira_init_costs (void);
1048extern void ira_costs (void);
1049extern void ira_tune_allocno_costs (void);
1050
1051/* ira-lives.cc */
1052
1053extern void ira_rebuild_start_finish_chains (void);
1054extern void ira_print_live_range_list (FILE *, live_range_t);
1055extern void debug (live_range &ref);
1056extern void debug (live_range *ptr);
1057extern void ira_debug_live_range_list (live_range_t);
1058extern void ira_debug_allocno_live_ranges (ira_allocno_t);
1059extern void ira_debug_live_ranges (void);
1060extern void ira_create_allocno_live_ranges (void);
1061extern void ira_compress_allocno_live_ranges (void);
1062extern void ira_finish_allocno_live_ranges (void);
1063extern void ira_implicitly_set_insn_hard_regs (HARD_REG_SET *,
1064 alternative_mask);
1065
1066/* ira-conflicts.cc */
1067extern void ira_debug_conflicts (bool);
1068extern void ira_build_conflicts (void);
1069
1070/* ira-color.cc */
1071extern ira_allocno_t ira_soft_conflict (ira_allocno_t, ira_allocno_t);
1072extern void ira_debug_hard_regs_forest (void);
1073extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1074extern void ira_reassign_conflict_allocnos (int);
1075extern void ira_initiate_assign (void);
1076extern void ira_finish_assign (void);
1077extern void ira_color (void);
1078
1079/* ira-emit.cc */
1080extern void ira_initiate_emit_data (void);
1081extern void ira_finish_emit_data (void);
1082extern void ira_emit (bool);
1083
1084
1085
1086/* Return true if equivalence of pseudo REGNO is not a lvalue. */
1087inline bool
1088ira_equiv_no_lvalue_p (int regno)
1089{
1090 if (regno >= ira_reg_equiv_len)
1091 return false;
1092 return (ira_reg_equiv[regno].constant != NULL_RTX
1093 || ira_reg_equiv[regno].invariant != NULL_RTX
1094 || (ira_reg_equiv[regno].memory != NULL_RTX
1095 && MEM_READONLY_P (ira_reg_equiv[regno].memory)));
1096}
1097
1098
1099
1100/* Initialize register costs for MODE if necessary. */
1101inline void
1102ira_init_register_move_cost_if_necessary (machine_mode mode)
1103{
1104 if (ira_register_move_cost[mode] == NULL)
1105 ira_init_register_move_cost (mode);
1106}
1107
1108
1109
1110/* The iterator for all allocnos. */
1111struct ira_allocno_iterator {
1112 /* The number of the current element in IRA_ALLOCNOS. */
1113 int n;
1114};
1115
1116/* Initialize the iterator I. */
1117inline void
1118ira_allocno_iter_init (ira_allocno_iterator *i)
1119{
1120 i->n = 0;
1121}
1122
1123/* Return TRUE if we have more allocnos to visit, in which case *A is
1124 set to the allocno to be visited. Otherwise, return FALSE. */
1125inline bool
1126ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1127{
1128 int n;
1129
1130 for (n = i->n; n < ira_allocnos_num; n++)
1131 if (ira_allocnos[n] != NULL)
1132 {
1133 *a = ira_allocnos[n];
1134 i->n = n + 1;
1135 return true;
1136 }
1137 return false;
1138}
1139
1140/* Loop over all allocnos. In each iteration, A is set to the next
1141 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1142 the allocnos. */
1143#define FOR_EACH_ALLOCNO(A, ITER) \
1144 for (ira_allocno_iter_init (&(ITER)); \
1145 ira_allocno_iter_cond (&(ITER), &(A));)
1146
1147/* The iterator for all objects. */
1148struct ira_object_iterator {
1149 /* The number of the current element in ira_object_id_map. */
1150 int n;
1151};
1152
1153/* Initialize the iterator I. */
1154inline void
1155ira_object_iter_init (ira_object_iterator *i)
1156{
1157 i->n = 0;
1158}
1159
1160/* Return TRUE if we have more objects to visit, in which case *OBJ is
1161 set to the object to be visited. Otherwise, return FALSE. */
1162inline bool
1163ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1164{
1165 int n;
1166
1167 for (n = i->n; n < ira_objects_num; n++)
1168 if (ira_object_id_map[n] != NULL)
1169 {
1170 *obj = ira_object_id_map[n];
1171 i->n = n + 1;
1172 return true;
1173 }
1174 return false;
1175}
1176
1177/* Loop over all objects. In each iteration, OBJ is set to the next
1178 object. ITER is an instance of ira_object_iterator used to iterate
1179 the objects. */
1180#define FOR_EACH_OBJECT(OBJ, ITER) \
1181 for (ira_object_iter_init (&(ITER)); \
1182 ira_object_iter_cond (&(ITER), &(OBJ));)
1183
1184/* The iterator for objects associated with an allocno. */
1185struct ira_allocno_object_iterator {
1186 /* The number of the element the allocno's object array. */
1187 int n;
1188};
1189
1190/* Initialize the iterator I. */
1191inline void
1192ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1193{
1194 i->n = 0;
1195}
1196
1197/* Return TRUE if we have more objects to visit in allocno A, in which
1198 case *O is set to the object to be visited. Otherwise, return
1199 FALSE. */
1200inline bool
1201ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1202 ira_object_t *o)
1203{
1204 int n = i->n++;
1205 if (n < ALLOCNO_NUM_OBJECTS (a))
1206 {
1207 *o = ALLOCNO_OBJECT (a, n);
1208 return true;
1209 }
1210 return false;
1211}
1212
1213/* Loop over all objects associated with allocno A. In each
1214 iteration, O is set to the next object. ITER is an instance of
1215 ira_allocno_object_iterator used to iterate the conflicts. */
1216#define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1217 for (ira_allocno_object_iter_init (&(ITER)); \
1218 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1219
1220
1221/* The iterator for prefs. */
1222struct ira_pref_iterator {
1223 /* The number of the current element in IRA_PREFS. */
1224 int n;
1225};
1226
1227/* Initialize the iterator I. */
1228inline void
1229ira_pref_iter_init (ira_pref_iterator *i)
1230{
1231 i->n = 0;
1232}
1233
1234/* Return TRUE if we have more prefs to visit, in which case *PREF is
1235 set to the pref to be visited. Otherwise, return FALSE. */
1236inline bool
1237ira_pref_iter_cond (ira_pref_iterator *i, ira_pref_t *pref)
1238{
1239 int n;
1240
1241 for (n = i->n; n < ira_prefs_num; n++)
1242 if (ira_prefs[n] != NULL)
1243 {
1244 *pref = ira_prefs[n];
1245 i->n = n + 1;
1246 return true;
1247 }
1248 return false;
1249}
1250
1251/* Loop over all prefs. In each iteration, P is set to the next
1252 pref. ITER is an instance of ira_pref_iterator used to iterate
1253 the prefs. */
1254#define FOR_EACH_PREF(P, ITER) \
1255 for (ira_pref_iter_init (&(ITER)); \
1256 ira_pref_iter_cond (&(ITER), &(P));)
1257
1258
1259/* The iterator for copies. */
1260struct ira_copy_iterator {
1261 /* The number of the current element in IRA_COPIES. */
1262 int n;
1263};
1264
1265/* Initialize the iterator I. */
1266inline void
1267ira_copy_iter_init (ira_copy_iterator *i)
1268{
1269 i->n = 0;
1270}
1271
1272/* Return TRUE if we have more copies to visit, in which case *CP is
1273 set to the copy to be visited. Otherwise, return FALSE. */
1274inline bool
1275ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1276{
1277 int n;
1278
1279 for (n = i->n; n < ira_copies_num; n++)
1280 if (ira_copies[n] != NULL)
1281 {
1282 *cp = ira_copies[n];
1283 i->n = n + 1;
1284 return true;
1285 }
1286 return false;
1287}
1288
1289/* Loop over all copies. In each iteration, C is set to the next
1290 copy. ITER is an instance of ira_copy_iterator used to iterate
1291 the copies. */
1292#define FOR_EACH_COPY(C, ITER) \
1293 for (ira_copy_iter_init (&(ITER)); \
1294 ira_copy_iter_cond (&(ITER), &(C));)
1295
1296/* The iterator for object conflicts. */
1297struct ira_object_conflict_iterator {
1298
1299 /* TRUE if the conflicts are represented by vector of allocnos. */
1300 bool conflict_vec_p;
1301
1302 /* The conflict vector or conflict bit vector. */
1303 void *vec;
1304
1305 /* The number of the current element in the vector (of type
1306 ira_object_t or IRA_INT_TYPE). */
1307 unsigned int word_num;
1308
1309 /* The bit vector size. It is defined only if
1310 OBJECT_CONFLICT_VEC_P is FALSE. */
1311 unsigned int size;
1312
1313 /* The current bit index of bit vector. It is defined only if
1314 OBJECT_CONFLICT_VEC_P is FALSE. */
1315 unsigned int bit_num;
1316
1317 /* The object id corresponding to the 1st bit of the bit vector. It
1318 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
1319 int base_conflict_id;
1320
1321 /* The word of bit vector currently visited. It is defined only if
1322 OBJECT_CONFLICT_VEC_P is FALSE. */
1323 unsigned IRA_INT_TYPE word;
1324};
1325
1326/* Initialize the iterator I with ALLOCNO conflicts. */
1327inline void
1328ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1329 ira_object_t obj)
1330{
1331 i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1332 i->vec = OBJECT_CONFLICT_ARRAY (obj);
1333 i->word_num = 0;
1334 if (i->conflict_vec_p)
1335 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1336 else
1337 {
1338 if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
1339 i->size = 0;
1340 else
1341 i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
1342 + IRA_INT_BITS)
1343 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1344 i->bit_num = 0;
1345 i->base_conflict_id = OBJECT_MIN (obj);
1346 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1347 }
1348}
1349
1350/* Return TRUE if we have more conflicting allocnos to visit, in which
1351 case *A is set to the allocno to be visited. Otherwise, return
1352 FALSE. */
1353inline bool
1354ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1355 ira_object_t *pobj)
1356{
1357 ira_object_t obj;
1358
1359 if (i->conflict_vec_p)
1360 {
1361 obj = ((ira_object_t *) i->vec)[i->word_num++];
1362 if (obj == NULL)
1363 return false;
1364 }
1365 else
1366 {
1367 unsigned IRA_INT_TYPE word = i->word;
1368 unsigned int bit_num = i->bit_num;
1369
1370 /* Skip words that are zeros. */
1371 for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1372 {
1373 i->word_num++;
1374
1375 /* If we have reached the end, break. */
1376 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1377 return false;
1378
1379 bit_num = i->word_num * IRA_INT_BITS;
1380 }
1381
1382 /* Skip bits that are zero. */
1383 int off = ctz_hwi (x: word);
1384 bit_num += off;
1385 word >>= off;
1386
1387 obj = ira_object_id_map[bit_num + i->base_conflict_id];
1388 i->bit_num = bit_num + 1;
1389 i->word = word >> 1;
1390 }
1391
1392 *pobj = obj;
1393 return true;
1394}
1395
1396/* Loop over all objects conflicting with OBJ. In each iteration,
1397 CONF is set to the next conflicting object. ITER is an instance
1398 of ira_object_conflict_iterator used to iterate the conflicts. */
1399#define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1400 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1401 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
1402
1403
1404
1405/* The function returns TRUE if at least one hard register from ones
1406 starting with HARD_REGNO and containing value of MODE are in set
1407 HARD_REGSET. */
1408inline bool
1409ira_hard_reg_set_intersection_p (int hard_regno, machine_mode mode,
1410 HARD_REG_SET hard_regset)
1411{
1412 int i;
1413
1414 gcc_assert (hard_regno >= 0);
1415 for (i = hard_regno_nregs (regno: hard_regno, mode) - 1; i >= 0; i--)
1416 if (TEST_HARD_REG_BIT (set: hard_regset, bit: hard_regno + i))
1417 return true;
1418 return false;
1419}
1420
1421/* Return number of hard registers in hard register SET. */
1422inline int
1423hard_reg_set_size (HARD_REG_SET set)
1424{
1425 int i, size;
1426
1427 for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1428 if (TEST_HARD_REG_BIT (set, bit: i))
1429 size++;
1430 return size;
1431}
1432
1433/* The function returns TRUE if hard registers starting with
1434 HARD_REGNO and containing value of MODE are fully in set
1435 HARD_REGSET. */
1436inline bool
1437ira_hard_reg_in_set_p (int hard_regno, machine_mode mode,
1438 HARD_REG_SET hard_regset)
1439{
1440 int i;
1441
1442 ira_assert (hard_regno >= 0);
1443 for (i = hard_regno_nregs (regno: hard_regno, mode) - 1; i >= 0; i--)
1444 if (!TEST_HARD_REG_BIT (set: hard_regset, bit: hard_regno + i))
1445 return false;
1446 return true;
1447}
1448
1449
1450
1451/* To save memory we use a lazy approach for allocation and
1452 initialization of the cost vectors. We do this only when it is
1453 really necessary. */
1454
1455/* Allocate cost vector *VEC for hard registers of ACLASS and
1456 initialize the elements by VAL if it is necessary */
1457inline void
1458ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
1459{
1460 int i, *reg_costs;
1461 int len;
1462
1463 if (*vec != NULL)
1464 return;
1465 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1466 len = ira_class_hard_regs_num[(int) aclass];
1467 for (i = 0; i < len; i++)
1468 reg_costs[i] = val;
1469}
1470
1471/* Allocate cost vector *VEC for hard registers of ACLASS and copy
1472 values of vector SRC into the vector if it is necessary */
1473inline void
1474ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
1475{
1476 int len;
1477
1478 if (*vec != NULL || src == NULL)
1479 return;
1480 *vec = ira_allocate_cost_vector (aclass);
1481 len = ira_class_hard_regs_num[aclass];
1482 memcpy (dest: *vec, src: src, n: sizeof (int) * len);
1483}
1484
1485/* Allocate cost vector *VEC for hard registers of ACLASS and add
1486 values of vector SRC into the vector if it is necessary */
1487inline void
1488ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
1489{
1490 int i, len;
1491
1492 if (src == NULL)
1493 return;
1494 len = ira_class_hard_regs_num[aclass];
1495 if (*vec == NULL)
1496 {
1497 *vec = ira_allocate_cost_vector (aclass);
1498 memset (s: *vec, c: 0, n: sizeof (int) * len);
1499 }
1500 for (i = 0; i < len; i++)
1501 (*vec)[i] += src[i];
1502}
1503
1504/* Allocate cost vector *VEC for hard registers of ACLASS and copy
1505 values of vector SRC into the vector or initialize it by VAL (if
1506 SRC is null). */
1507inline void
1508ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
1509 int val, int *src)
1510{
1511 int i, *reg_costs;
1512 int len;
1513
1514 if (*vec != NULL)
1515 return;
1516 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1517 len = ira_class_hard_regs_num[aclass];
1518 if (src != NULL)
1519 memcpy (dest: reg_costs, src: src, n: sizeof (int) * len);
1520 else
1521 {
1522 for (i = 0; i < len; i++)
1523 reg_costs[i] = val;
1524 }
1525}
1526
1527extern rtx ira_create_new_reg (rtx);
1528extern int first_moveable_pseudo, last_moveable_pseudo;
1529
1530/* Return the set of registers that would need a caller save if allocno A
1531 overlapped them. */
1532
1533inline HARD_REG_SET
1534ira_need_caller_save_regs (ira_allocno_t a)
1535{
1536 return call_clobbers_in_region (ALLOCNO_CROSSED_CALLS_ABIS (a),
1537 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1538 ALLOCNO_MODE (a));
1539}
1540
1541/* Return true if we would need to save allocno A around a call if we
1542 assigned hard register REGNO. */
1543
1544inline bool
1545ira_need_caller_save_p (ira_allocno_t a, unsigned int regno)
1546{
1547 if (ALLOCNO_CALLS_CROSSED_NUM (a) == 0)
1548 return false;
1549 return call_clobbered_in_region_p (ALLOCNO_CROSSED_CALLS_ABIS (a),
1550 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1551 ALLOCNO_MODE (a), regno);
1552}
1553
1554/* Represents the boundary between an allocno in one loop and its parent
1555 allocno in the enclosing loop. It is usually possible to change a
1556 register's allocation on this boundary; the class provides routines
1557 for calculating the cost of such changes. */
1558class ira_loop_border_costs
1559{
1560public:
1561 ira_loop_border_costs (ira_allocno_t);
1562
1563 int move_between_loops_cost () const;
1564 int spill_outside_loop_cost () const;
1565 int spill_inside_loop_cost () const;
1566
1567private:
1568 /* The mode and class of the child allocno. */
1569 machine_mode m_mode;
1570 reg_class m_class;
1571
1572 /* Sums the frequencies of the entry edges and the exit edges. */
1573 int m_entry_freq, m_exit_freq;
1574};
1575
1576/* Return the cost of storing the register on entry to the loop and
1577 loading it back on exit from the loop. This is the cost to use if
1578 the register is spilled within the loop but is successfully allocated
1579 in the parent loop. */
1580inline int
1581ira_loop_border_costs::spill_inside_loop_cost () const
1582{
1583 return (m_entry_freq * ira_memory_move_cost[m_mode][m_class][0]
1584 + m_exit_freq * ira_memory_move_cost[m_mode][m_class][1]);
1585}
1586
1587/* Return the cost of loading the register on entry to the loop and
1588 storing it back on exit from the loop. This is the cost to use if
1589 the register is successfully allocated within the loop but is spilled
1590 in the parent loop. */
1591inline int
1592ira_loop_border_costs::spill_outside_loop_cost () const
1593{
1594 return (m_entry_freq * ira_memory_move_cost[m_mode][m_class][1]
1595 + m_exit_freq * ira_memory_move_cost[m_mode][m_class][0]);
1596}
1597
1598/* Return the cost of moving the pseudo register between different hard
1599 registers on entry and exit from the loop. This is the cost to use
1600 if the register is successfully allocated within both this loop and
1601 the parent loop, but the allocations for the loops differ. */
1602inline int
1603ira_loop_border_costs::move_between_loops_cost () const
1604{
1605 ira_init_register_move_cost_if_necessary (mode: m_mode);
1606 auto move_cost = ira_register_move_cost[m_mode][m_class][m_class];
1607 return move_cost * (m_entry_freq + m_exit_freq);
1608}
1609
1610/* Return true if subloops that contain allocnos for A's register can
1611 use a different assignment from A. ALLOCATED_P is true for the case
1612 in which allocation succeeded for A. EXCLUDE_OLD_RELOAD is true if
1613 we should always return false for non-LRA targets. (This is a hack
1614 and should be removed along with old reload.) */
1615inline bool
1616ira_subloop_allocnos_can_differ_p (ira_allocno_t a, bool allocated_p = true,
1617 bool exclude_old_reload = true)
1618{
1619 if (exclude_old_reload && !ira_use_lra_p)
1620 return false;
1621
1622 auto regno = ALLOCNO_REGNO (a);
1623
1624 if (pic_offset_table_rtx != NULL
1625 && regno == (int) REGNO (pic_offset_table_rtx))
1626 return false;
1627
1628 ira_assert (regno < ira_reg_equiv_len);
1629 if (ira_equiv_no_lvalue_p (regno))
1630 return false;
1631
1632 /* Avoid overlapping multi-registers. Moves between them might result
1633 in wrong code generation. */
1634 if (allocated_p)
1635 {
1636 auto pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
1637 if (ira_reg_class_max_nregs[pclass][ALLOCNO_MODE (a)] > 1)
1638 return false;
1639 }
1640
1641 return true;
1642}
1643
1644/* Return true if we should treat A and SUBLOOP_A as belonging to a
1645 single region. */
1646inline bool
1647ira_single_region_allocno_p (ira_allocno_t a, ira_allocno_t subloop_a)
1648{
1649 if (flag_ira_region != IRA_REGION_MIXED)
1650 return false;
1651
1652 if (ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P (subloop_a))
1653 return false;
1654
1655 auto rclass = ALLOCNO_CLASS (a);
1656 auto pclass = ira_pressure_class_translate[rclass];
1657 auto loop_used_regs = ALLOCNO_LOOP_TREE_NODE (a)->reg_pressure[pclass];
1658 return loop_used_regs <= ira_class_hard_regs_num[pclass];
1659}
1660
1661/* Return the set of all hard registers that conflict with A. */
1662inline HARD_REG_SET
1663ira_total_conflict_hard_regs (ira_allocno_t a)
1664{
1665 auto obj_0 = ALLOCNO_OBJECT (a, 0);
1666 HARD_REG_SET conflicts = OBJECT_TOTAL_CONFLICT_HARD_REGS (obj_0);
1667 for (int i = 1; i < ALLOCNO_NUM_OBJECTS (a); i++)
1668 conflicts |= OBJECT_TOTAL_CONFLICT_HARD_REGS (ALLOCNO_OBJECT (a, i));
1669 return conflicts;
1670}
1671
1672/* Return the cost of saving a caller-saved register before each call
1673 in A's live range and restoring the same register after each call. */
1674inline int
1675ira_caller_save_cost (ira_allocno_t a)
1676{
1677 auto mode = ALLOCNO_MODE (a);
1678 auto rclass = ALLOCNO_CLASS (a);
1679 return (ALLOCNO_CALL_FREQ (a)
1680 * (ira_memory_move_cost[mode][rclass][0]
1681 + ira_memory_move_cost[mode][rclass][1]));
1682}
1683
1684/* A and SUBLOOP_A are allocnos for the same pseudo register, with A's
1685 loop immediately enclosing SUBLOOP_A's loop. If we allocate to A a
1686 hard register R that is clobbered by a call in SUBLOOP_A, decide
1687 which of the following approaches should be used for handling the
1688 conflict:
1689
1690 (1) Spill R on entry to SUBLOOP_A's loop, assign memory to SUBLOOP_A,
1691 and restore R on exit from SUBLOOP_A's loop.
1692
1693 (2) Spill R before each necessary call in SUBLOOP_A's live range and
1694 restore R after each such call.
1695
1696 Return true if (1) is better than (2). SPILL_COST is the cost of
1697 doing (1). */
1698inline bool
1699ira_caller_save_loop_spill_p (ira_allocno_t a, ira_allocno_t subloop_a,
1700 int spill_cost)
1701{
1702 if (!ira_subloop_allocnos_can_differ_p (a))
1703 return false;
1704
1705 /* Calculate the cost of saving a call-clobbered register
1706 before each call and restoring it afterwards. */
1707 int call_cost = ira_caller_save_cost (a: subloop_a);
1708 return call_cost && call_cost >= spill_cost;
1709}
1710
1711#endif /* GCC_IRA_INT_H */
1712

source code of gcc/ira-int.h