1/* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2023 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22/* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
25
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
33
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
41
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
46
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
49
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
54
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
58
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
62
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
67
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
71
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
75
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
83
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
86
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
92
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
95
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
101
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
106
107#undef REG_OK_STRICT
108
109#include "config.h"
110#include "system.h"
111#include "coretypes.h"
112#include "backend.h"
113#include "hooks.h"
114#include "target.h"
115#include "rtl.h"
116#include "tree.h"
117#include "predict.h"
118#include "df.h"
119#include "memmodel.h"
120#include "tm_p.h"
121#include "expmed.h"
122#include "optabs.h"
123#include "regs.h"
124#include "ira.h"
125#include "recog.h"
126#include "output.h"
127#include "addresses.h"
128#include "expr.h"
129#include "cfgrtl.h"
130#include "rtl-error.h"
131#include "lra.h"
132#include "lra-int.h"
133#include "print-rtl.h"
134#include "function-abi.h"
135#include "rtl-iter.h"
136
137/* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
138 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
139 reload insns. */
140static int bb_reload_num;
141
142/* The current insn being processed and corresponding its single set
143 (NULL otherwise), its data (basic block, the insn data, the insn
144 static data, and the mode of each operand). */
145static rtx_insn *curr_insn;
146static rtx curr_insn_set;
147static basic_block curr_bb;
148static lra_insn_recog_data_t curr_id;
149static struct lra_static_insn_data *curr_static_id;
150static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
151/* Mode of the register substituted by its equivalence with VOIDmode
152 (e.g. constant) and whose subreg is given operand of the current
153 insn. VOIDmode in all other cases. */
154static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
155
156
157
158/* Start numbers for new registers and insns at the current constraints
159 pass start. */
160static int new_regno_start;
161static int new_insn_uid_start;
162
163/* If LOC is nonnull, strip any outer subreg from it. */
164static inline rtx *
165strip_subreg (rtx *loc)
166{
167 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
168}
169
170/* Return hard regno of REGNO or if it is was not assigned to a hard
171 register, use a hard register from its allocno class. */
172static int
173get_try_hard_regno (int regno)
174{
175 int hard_regno;
176 enum reg_class rclass;
177
178 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
179 hard_regno = lra_get_regno_hard_regno (regno);
180 if (hard_regno >= 0)
181 return hard_regno;
182 rclass = lra_get_allocno_class (regno);
183 if (rclass == NO_REGS)
184 return -1;
185 return ira_class_hard_regs[rclass][0];
186}
187
188/* Return the hard regno of X after removing its subreg. If X is not a
189 register or a subreg of a register, return -1. If X is a pseudo, use its
190 assignment. If X is a hard regno, return the final hard regno which will be
191 after elimination. */
192static int
193get_hard_regno (rtx x)
194{
195 rtx reg;
196 int hard_regno;
197
198 reg = x;
199 if (SUBREG_P (x))
200 reg = SUBREG_REG (x);
201 if (! REG_P (reg))
202 return -1;
203 if (! HARD_REGISTER_NUM_P (hard_regno = REGNO (reg)))
204 hard_regno = lra_get_regno_hard_regno (regno: hard_regno);
205 if (hard_regno < 0)
206 return -1;
207 if (HARD_REGISTER_NUM_P (REGNO (reg)))
208 hard_regno = lra_get_elimination_hard_regno (hard_regno);
209 if (SUBREG_P (x))
210 hard_regno += subreg_regno_offset (hard_regno, GET_MODE (reg),
211 SUBREG_BYTE (x), GET_MODE (x));
212 return hard_regno;
213}
214
215/* If REGNO is a hard register or has been allocated a hard register,
216 return the class of that register. If REGNO is a reload pseudo
217 created by the current constraints pass, return its allocno class.
218 Return NO_REGS otherwise. */
219static enum reg_class
220get_reg_class (int regno)
221{
222 int hard_regno;
223
224 if (! HARD_REGISTER_NUM_P (hard_regno = regno))
225 hard_regno = lra_get_regno_hard_regno (regno);
226 if (hard_regno >= 0)
227 {
228 hard_regno = lra_get_elimination_hard_regno (hard_regno);
229 return REGNO_REG_CLASS (hard_regno);
230 }
231 if (regno >= new_regno_start)
232 return lra_get_allocno_class (regno);
233 return NO_REGS;
234}
235
236/* Return true if REG_CLASS has enough allocatable hard regs to keep value of
237 REG_MODE. */
238static bool
239enough_allocatable_hard_regs_p (enum reg_class reg_class,
240 enum machine_mode reg_mode)
241{
242 int i, j, hard_regno, class_size, nregs;
243
244 if (hard_reg_set_subset_p (reg_class_contents[reg_class], y: lra_no_alloc_regs))
245 return false;
246 class_size = ira_class_hard_regs_num[reg_class];
247 for (i = 0; i < class_size; i++)
248 {
249 hard_regno = ira_class_hard_regs[reg_class][i];
250 nregs = hard_regno_nregs (regno: hard_regno, mode: reg_mode);
251 if (nregs == 1)
252 return true;
253 for (j = 0; j < nregs; j++)
254 if (TEST_HARD_REG_BIT (set: lra_no_alloc_regs, bit: hard_regno + j)
255 || ! TEST_HARD_REG_BIT (reg_class_contents[reg_class],
256 bit: hard_regno + j))
257 break;
258 if (j >= nregs)
259 return true;
260 }
261 return false;
262}
263
264/* Return true if REG satisfies (or will satisfy) reg class constraint
265 CL. Use elimination first if REG is a hard register. If REG is a
266 reload pseudo created by this constraints pass, assume that it will
267 be allocated a hard register from its allocno class, but allow that
268 class to be narrowed to CL if it is currently a superset of CL and
269 if either:
270
271 - ALLOW_ALL_RELOAD_CLASS_CHANGES_P is true or
272 - the instruction we're processing is not a reload move.
273
274 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
275 REGNO (reg), or NO_REGS if no change in its class was needed. */
276static bool
277in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class,
278 bool allow_all_reload_class_changes_p = false)
279{
280 enum reg_class rclass, common_class;
281 machine_mode reg_mode;
282 rtx src;
283 int regno = REGNO (reg);
284
285 if (new_class != NULL)
286 *new_class = NO_REGS;
287 if (regno < FIRST_PSEUDO_REGISTER)
288 {
289 rtx final_reg = reg;
290 rtx *final_loc = &final_reg;
291
292 lra_eliminate_reg_if_possible (final_loc);
293 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
294 }
295 reg_mode = GET_MODE (reg);
296 rclass = get_reg_class (regno);
297 src = curr_insn_set != NULL ? SET_SRC (curr_insn_set) : NULL;
298 if (regno < new_regno_start
299 /* Do not allow the constraints for reload instructions to
300 influence the classes of new pseudos. These reloads are
301 typically moves that have many alternatives, and restricting
302 reload pseudos for one alternative may lead to situations
303 where other reload pseudos are no longer allocatable. */
304 || (!allow_all_reload_class_changes_p
305 && INSN_UID (insn: curr_insn) >= new_insn_uid_start
306 && src != NULL
307 && ((REG_P (src) || MEM_P (src))
308 || (GET_CODE (src) == SUBREG
309 && (REG_P (SUBREG_REG (src)) || MEM_P (SUBREG_REG (src)))))))
310 /* When we don't know what class will be used finally for reload
311 pseudos, we use ALL_REGS. */
312 return ((regno >= new_regno_start && rclass == ALL_REGS)
313 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
314 && ! hard_reg_set_subset_p (reg_class_contents[cl],
315 y: lra_no_alloc_regs)));
316 else
317 {
318 common_class = ira_reg_class_subset[rclass][cl];
319 if (new_class != NULL)
320 *new_class = common_class;
321 return enough_allocatable_hard_regs_p (reg_class: common_class, reg_mode);
322 }
323}
324
325/* Return true if REGNO satisfies a memory constraint. */
326static bool
327in_mem_p (int regno)
328{
329 return get_reg_class (regno) == NO_REGS;
330}
331
332/* Return true if ADDR is a valid memory address for mode MODE in address
333 space AS, and check that each pseudo has the proper kind of hard
334 reg. */
335static bool
336valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
337 rtx addr, addr_space_t as)
338{
339#ifdef GO_IF_LEGITIMATE_ADDRESS
340 lra_assert (ADDR_SPACE_GENERIC_P (as));
341 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
342 return false;
343
344 win:
345 return true;
346#else
347 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as,
348 ERROR_MARK);
349#endif
350}
351
352namespace {
353 /* Temporarily eliminates registers in an address (for the lifetime of
354 the object). */
355 class address_eliminator {
356 public:
357 address_eliminator (struct address_info *ad);
358 ~address_eliminator ();
359
360 private:
361 struct address_info *m_ad;
362 rtx *m_base_loc;
363 rtx m_base_reg;
364 rtx *m_index_loc;
365 rtx m_index_reg;
366 };
367}
368
369address_eliminator::address_eliminator (struct address_info *ad)
370 : m_ad (ad),
371 m_base_loc (strip_subreg (loc: ad->base_term)),
372 m_base_reg (NULL_RTX),
373 m_index_loc (strip_subreg (loc: ad->index_term)),
374 m_index_reg (NULL_RTX)
375{
376 if (m_base_loc != NULL)
377 {
378 m_base_reg = *m_base_loc;
379 /* If we have non-legitimate address which is decomposed not in
380 the way we expected, don't do elimination here. In such case
381 the address will be reloaded and elimination will be done in
382 reload insn finally. */
383 if (REG_P (m_base_reg))
384 lra_eliminate_reg_if_possible (m_base_loc);
385 if (m_ad->base_term2 != NULL)
386 *m_ad->base_term2 = *m_ad->base_term;
387 }
388 if (m_index_loc != NULL)
389 {
390 m_index_reg = *m_index_loc;
391 if (REG_P (m_index_reg))
392 lra_eliminate_reg_if_possible (m_index_loc);
393 }
394}
395
396address_eliminator::~address_eliminator ()
397{
398 if (m_base_loc && *m_base_loc != m_base_reg)
399 {
400 *m_base_loc = m_base_reg;
401 if (m_ad->base_term2 != NULL)
402 *m_ad->base_term2 = *m_ad->base_term;
403 }
404 if (m_index_loc && *m_index_loc != m_index_reg)
405 *m_index_loc = m_index_reg;
406}
407
408/* Return true if the eliminated form of AD is a legitimate target address.
409 If OP is a MEM, AD is the address within OP, otherwise OP should be
410 ignored. CONSTRAINT is one constraint that the operand may need
411 to meet. */
412static bool
413valid_address_p (rtx op, struct address_info *ad,
414 enum constraint_num constraint)
415{
416 address_eliminator eliminator (ad);
417
418 /* Allow a memory OP if it matches CONSTRAINT, even if CONSTRAINT is more
419 forgiving than "m".
420 Need to extract memory from op for special memory constraint,
421 i.e. bcst_mem_operand in i386 backend. */
422 if (MEM_P (extract_mem_from_operand (op))
423 && insn_extra_relaxed_memory_constraint (constraint)
424 && constraint_satisfied_p (x: op, c: constraint))
425 return true;
426
427 return valid_address_p (mode: ad->mode, addr: *ad->outer, as: ad->as);
428}
429
430/* For special_memory_operand, it could be false for MEM_P (op),
431 i.e. bcst_mem_operand in i386 backend.
432 Extract and return real memory operand or op. */
433rtx
434extract_mem_from_operand (rtx op)
435{
436 for (rtx x = op;; x = XEXP (x, 0))
437 {
438 if (MEM_P (x))
439 return x;
440 if (GET_RTX_LENGTH (GET_CODE (x)) != 1
441 || GET_RTX_FORMAT (GET_CODE (x))[0] != 'e')
442 break;
443 }
444 return op;
445}
446
447/* Return true if the eliminated form of memory reference OP satisfies
448 extra (special) memory constraint CONSTRAINT. */
449static bool
450satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
451{
452 struct address_info ad;
453 rtx mem = extract_mem_from_operand (op);
454 if (!MEM_P (mem))
455 return false;
456
457 decompose_mem_address (&ad, mem);
458 address_eliminator eliminator (&ad);
459 return constraint_satisfied_p (x: op, c: constraint);
460}
461
462/* Return true if the eliminated form of address AD satisfies extra
463 address constraint CONSTRAINT. */
464static bool
465satisfies_address_constraint_p (struct address_info *ad,
466 enum constraint_num constraint)
467{
468 address_eliminator eliminator (ad);
469 return constraint_satisfied_p (x: *ad->outer, c: constraint);
470}
471
472/* Return true if the eliminated form of address OP satisfies extra
473 address constraint CONSTRAINT. */
474static bool
475satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
476{
477 struct address_info ad;
478
479 decompose_lea_address (&ad, &op);
480 return satisfies_address_constraint_p (ad: &ad, constraint);
481}
482
483/* Initiate equivalences for LRA. As we keep original equivalences
484 before any elimination, we need to make copies otherwise any change
485 in insns might change the equivalences. */
486void
487lra_init_equiv (void)
488{
489 ira_expand_reg_equiv ();
490 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
491 {
492 rtx res;
493
494 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
495 ira_reg_equiv[i].memory = copy_rtx (res);
496 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
497 ira_reg_equiv[i].invariant = copy_rtx (res);
498 }
499}
500
501static rtx loc_equivalence_callback (rtx, const_rtx, void *);
502
503/* Update equivalence for REGNO. We need to this as the equivalence
504 might contain other pseudos which are changed by their
505 equivalences. */
506static void
507update_equiv (int regno)
508{
509 rtx x;
510
511 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
512 ira_reg_equiv[regno].memory
513 = simplify_replace_fn_rtx (x, NULL_RTX, fn: loc_equivalence_callback,
514 NULL_RTX);
515 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
516 ira_reg_equiv[regno].invariant
517 = simplify_replace_fn_rtx (x, NULL_RTX, fn: loc_equivalence_callback,
518 NULL_RTX);
519}
520
521/* If we have decided to substitute X with another value, return that
522 value, otherwise return X. */
523static rtx
524get_equiv (rtx x)
525{
526 int regno;
527 rtx res;
528
529 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
530 || ! ira_reg_equiv[regno].defined_p
531 || ! ira_reg_equiv[regno].profitable_p
532 || lra_get_regno_hard_regno (regno) >= 0)
533 return x;
534 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
535 {
536 if (targetm.cannot_substitute_mem_equiv_p (res))
537 return x;
538 return res;
539 }
540 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
541 return res;
542 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
543 return res;
544 gcc_unreachable ();
545}
546
547/* If we have decided to substitute X with the equivalent value,
548 return that value after elimination for INSN, otherwise return
549 X. */
550static rtx
551get_equiv_with_elimination (rtx x, rtx_insn *insn)
552{
553 rtx res = get_equiv (x);
554
555 if (x == res || CONSTANT_P (res))
556 return res;
557 return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
558 false, false, 0, true);
559}
560
561/* Set up curr_operand_mode. */
562static void
563init_curr_operand_mode (void)
564{
565 int nop = curr_static_id->n_operands;
566 for (int i = 0; i < nop; i++)
567 {
568 machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
569 if (mode == VOIDmode)
570 {
571 /* The .md mode for address operands is the mode of the
572 addressed value rather than the mode of the address itself. */
573 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
574 mode = Pmode;
575 else
576 mode = curr_static_id->operand[i].mode;
577 }
578 curr_operand_mode[i] = mode;
579 }
580}
581
582
583
584/* The page contains code to reuse input reloads. */
585
586/* Structure describes input reload of the current insns. */
587struct input_reload
588{
589 /* True for input reload of matched operands. */
590 bool match_p;
591 /* Reloaded value. */
592 rtx input;
593 /* Reload pseudo used. */
594 rtx reg;
595};
596
597/* The number of elements in the following array. */
598static int curr_insn_input_reloads_num;
599/* Array containing info about input reloads. It is used to find the
600 same input reload and reuse the reload pseudo in this case. */
601static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
602
603/* Initiate data concerning reuse of input reloads for the current
604 insn. */
605static void
606init_curr_insn_input_reloads (void)
607{
608 curr_insn_input_reloads_num = 0;
609}
610
611/* The canonical form of an rtx inside a MEM is not necessarily the same as the
612 canonical form of the rtx outside the MEM. Fix this up in the case that
613 we're reloading an address (and therefore pulling it outside a MEM). */
614static rtx
615canonicalize_reload_addr (rtx addr)
616{
617 subrtx_var_iterator::array_type array;
618 FOR_EACH_SUBRTX_VAR (iter, array, addr, NONCONST)
619 {
620 rtx x = *iter;
621 if (GET_CODE (x) == MULT && CONST_INT_P (XEXP (x, 1)))
622 {
623 const HOST_WIDE_INT ci = INTVAL (XEXP (x, 1));
624 const int pwr2 = exact_log2 (x: ci);
625 if (pwr2 > 0)
626 {
627 /* Rewrite this to use a shift instead, which is canonical when
628 outside of a MEM. */
629 PUT_CODE (x, ASHIFT);
630 XEXP (x, 1) = GEN_INT (pwr2);
631 }
632 }
633 }
634
635 return addr;
636}
637
638/* Create a new pseudo using MODE, RCLASS, EXCLUDE_START_HARD_REGS, ORIGINAL or
639 reuse an existing reload pseudo. Don't reuse an existing reload pseudo if
640 IN_SUBREG_P is true and the reused pseudo should be wrapped up in a SUBREG.
641 The result pseudo is returned through RESULT_REG. Return TRUE if we created
642 a new pseudo, FALSE if we reused an existing reload pseudo. Use TITLE to
643 describe new registers for debug purposes. */
644static bool
645get_reload_reg (enum op_type type, machine_mode mode, rtx original,
646 enum reg_class rclass, HARD_REG_SET *exclude_start_hard_regs,
647 bool in_subreg_p, const char *title, rtx *result_reg)
648{
649 int i, regno;
650 enum reg_class new_class;
651 bool unique_p = false;
652
653 if (type == OP_OUT)
654 {
655 /* Output reload registers tend to start out with a conservative
656 choice of register class. Usually this is ALL_REGS, although
657 a target might narrow it (for performance reasons) through
658 targetm.preferred_reload_class. It's therefore quite common
659 for a reload instruction to require a more restrictive class
660 than the class that was originally assigned to the reload register.
661
662 In these situations, it's more efficient to refine the choice
663 of register class rather than create a second reload register.
664 This also helps to avoid cycling for registers that are only
665 used by reload instructions. */
666 if (REG_P (original)
667 && (int) REGNO (original) >= new_regno_start
668 && INSN_UID (insn: curr_insn) >= new_insn_uid_start
669 && in_class_p (reg: original, cl: rclass, new_class: &new_class, allow_all_reload_class_changes_p: true))
670 {
671 unsigned int regno = REGNO (original);
672 if (lra_dump_file != NULL)
673 {
674 fprintf (stream: lra_dump_file, format: " Reuse r%d for output ", regno);
675 dump_value_slim (lra_dump_file, original, 1);
676 }
677 if (new_class != lra_get_allocno_class (regno))
678 lra_change_class (regno, new_class, title: ", change to", nl_p: false);
679 if (lra_dump_file != NULL)
680 fprintf (stream: lra_dump_file, format: "\n");
681 *result_reg = original;
682 return false;
683 }
684 *result_reg
685 = lra_create_new_reg_with_unique_value (mode, original, rclass,
686 exclude_start_hard_regs, title);
687 return true;
688 }
689 /* Prevent reuse value of expression with side effects,
690 e.g. volatile memory. */
691 if (! side_effects_p (original))
692 for (i = 0; i < curr_insn_input_reloads_num; i++)
693 {
694 if (! curr_insn_input_reloads[i].match_p
695 && rtx_equal_p (curr_insn_input_reloads[i].input, original)
696 && in_class_p (reg: curr_insn_input_reloads[i].reg, cl: rclass, new_class: &new_class))
697 {
698 rtx reg = curr_insn_input_reloads[i].reg;
699 regno = REGNO (reg);
700 /* If input is equal to original and both are VOIDmode,
701 GET_MODE (reg) might be still different from mode.
702 Ensure we don't return *result_reg with wrong mode. */
703 if (GET_MODE (reg) != mode)
704 {
705 if (in_subreg_p)
706 continue;
707 if (maybe_lt (a: GET_MODE_SIZE (GET_MODE (reg)),
708 b: GET_MODE_SIZE (mode)))
709 continue;
710 reg = lowpart_subreg (outermode: mode, op: reg, GET_MODE (reg));
711 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
712 continue;
713 }
714 *result_reg = reg;
715 if (lra_dump_file != NULL)
716 {
717 fprintf (stream: lra_dump_file, format: " Reuse r%d for reload ", regno);
718 dump_value_slim (lra_dump_file, original, 1);
719 }
720 if (new_class != lra_get_allocno_class (regno))
721 lra_change_class (regno, new_class, title: ", change to", nl_p: false);
722 if (lra_dump_file != NULL)
723 fprintf (stream: lra_dump_file, format: "\n");
724 return false;
725 }
726 /* If we have an input reload with a different mode, make sure it
727 will get a different hard reg. */
728 else if (REG_P (original)
729 && REG_P (curr_insn_input_reloads[i].input)
730 && REGNO (original) == REGNO (curr_insn_input_reloads[i].input)
731 && (GET_MODE (original)
732 != GET_MODE (curr_insn_input_reloads[i].input)))
733 unique_p = true;
734 }
735 *result_reg = (unique_p
736 ? lra_create_new_reg_with_unique_value
737 : lra_create_new_reg) (mode, original, rclass,
738 exclude_start_hard_regs, title);
739 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
740 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
741 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = false;
742 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
743 return true;
744}
745
746
747/* The page contains major code to choose the current insn alternative
748 and generate reloads for it. */
749
750/* Return the offset from REGNO of the least significant register
751 in (reg:MODE REGNO).
752
753 This function is used to tell whether two registers satisfy
754 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
755
756 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
757 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
758int
759lra_constraint_offset (int regno, machine_mode mode)
760{
761 lra_assert (regno < FIRST_PSEUDO_REGISTER);
762
763 scalar_int_mode int_mode;
764 if (WORDS_BIG_ENDIAN
765 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
766 && GET_MODE_SIZE (mode: int_mode) > UNITS_PER_WORD)
767 return hard_regno_nregs (regno, mode) - 1;
768 return 0;
769}
770
771/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
772 if they are the same hard reg, and has special hacks for
773 auto-increment and auto-decrement. This is specifically intended for
774 process_alt_operands to use in determining whether two operands
775 match. X is the operand whose number is the lower of the two.
776
777 It is supposed that X is the output operand and Y is the input
778 operand. Y_HARD_REGNO is the final hard regno of register Y or
779 register in subreg Y as we know it now. Otherwise, it is a
780 negative value. */
781static bool
782operands_match_p (rtx x, rtx y, int y_hard_regno)
783{
784 int i;
785 RTX_CODE code = GET_CODE (x);
786 const char *fmt;
787
788 if (x == y)
789 return true;
790 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
791 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
792 {
793 int j;
794
795 i = get_hard_regno (x);
796 if (i < 0)
797 goto slow;
798
799 if ((j = y_hard_regno) < 0)
800 goto slow;
801
802 i += lra_constraint_offset (regno: i, GET_MODE (x));
803 j += lra_constraint_offset (regno: j, GET_MODE (y));
804
805 return i == j;
806 }
807
808 /* If two operands must match, because they are really a single
809 operand of an assembler insn, then two post-increments are invalid
810 because the assembler insn would increment only once. On the
811 other hand, a post-increment matches ordinary indexing if the
812 post-increment is the output operand. */
813 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
814 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
815
816 /* Two pre-increments are invalid because the assembler insn would
817 increment only once. On the other hand, a pre-increment matches
818 ordinary indexing if the pre-increment is the input operand. */
819 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
820 || GET_CODE (y) == PRE_MODIFY)
821 return operands_match_p (x, XEXP (y, 0), y_hard_regno: -1);
822
823 slow:
824
825 if (code == REG && REG_P (y))
826 return REGNO (x) == REGNO (y);
827
828 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
829 && x == SUBREG_REG (y))
830 return true;
831 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
832 && SUBREG_REG (x) == y)
833 return true;
834
835 /* Now we have disposed of all the cases in which different rtx
836 codes can match. */
837 if (code != GET_CODE (y))
838 return false;
839
840 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
841 if (GET_MODE (x) != GET_MODE (y))
842 return false;
843
844 switch (code)
845 {
846 CASE_CONST_UNIQUE:
847 return false;
848
849 case CONST_VECTOR:
850 if (!same_vector_encodings_p (x, y))
851 return false;
852 break;
853
854 case LABEL_REF:
855 return label_ref_label (ref: x) == label_ref_label (ref: y);
856 case SYMBOL_REF:
857 return XSTR (x, 0) == XSTR (y, 0);
858
859 default:
860 break;
861 }
862
863 /* Compare the elements. If any pair of corresponding elements fail
864 to match, return false for the whole things. */
865
866 fmt = GET_RTX_FORMAT (code);
867 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
868 {
869 int val, j;
870 switch (fmt[i])
871 {
872 case 'w':
873 if (XWINT (x, i) != XWINT (y, i))
874 return false;
875 break;
876
877 case 'i':
878 if (XINT (x, i) != XINT (y, i))
879 return false;
880 break;
881
882 case 'p':
883 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
884 return false;
885 break;
886
887 case 'e':
888 val = operands_match_p (XEXP (x, i), XEXP (y, i), y_hard_regno: -1);
889 if (val == 0)
890 return false;
891 break;
892
893 case '0':
894 break;
895
896 case 'E':
897 if (XVECLEN (x, i) != XVECLEN (y, i))
898 return false;
899 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
900 {
901 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), y_hard_regno: -1);
902 if (val == 0)
903 return false;
904 }
905 break;
906
907 /* It is believed that rtx's at this level will never
908 contain anything but integers and other rtx's, except for
909 within LABEL_REFs and SYMBOL_REFs. */
910 default:
911 gcc_unreachable ();
912 }
913 }
914 return true;
915}
916
917/* True if X is a constant that can be forced into the constant pool.
918 MODE is the mode of the operand, or VOIDmode if not known. */
919#define CONST_POOL_OK_P(MODE, X) \
920 ((MODE) != VOIDmode \
921 && CONSTANT_P (X) \
922 && GET_CODE (X) != HIGH \
923 && GET_MODE_SIZE (MODE).is_constant () \
924 && !targetm.cannot_force_const_mem (MODE, X))
925
926/* True if C is a non-empty register class that has too few registers
927 to be safely used as a reload target class. */
928#define SMALL_REGISTER_CLASS_P(C) \
929 (ira_class_hard_regs_num [(C)] == 1 \
930 || (ira_class_hard_regs_num [(C)] >= 1 \
931 && targetm.class_likely_spilled_p (C)))
932
933/* If REG is a reload pseudo, try to make its class satisfying CL. */
934static void
935narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
936{
937 enum reg_class rclass;
938
939 /* Do not make more accurate class from reloads generated. They are
940 mostly moves with a lot of constraints. Making more accurate
941 class may results in very narrow class and impossibility of find
942 registers for several reloads of one insn. */
943 if (INSN_UID (insn: curr_insn) >= new_insn_uid_start)
944 return;
945 if (GET_CODE (reg) == SUBREG)
946 reg = SUBREG_REG (reg);
947 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
948 return;
949 if (in_class_p (reg, cl, new_class: &rclass) && rclass != cl)
950 lra_change_class (REGNO (reg), new_class: rclass, title: " Change to", nl_p: true);
951}
952
953/* Searches X for any reference to a reg with the same value as REGNO,
954 returning the rtx of the reference found if any. Otherwise,
955 returns NULL_RTX. */
956static rtx
957regno_val_use_in (unsigned int regno, rtx x)
958{
959 const char *fmt;
960 int i, j;
961 rtx tem;
962
963 if (REG_P (x) && lra_reg_info[REGNO (x)].val == lra_reg_info[regno].val)
964 return x;
965
966 fmt = GET_RTX_FORMAT (GET_CODE (x));
967 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
968 {
969 if (fmt[i] == 'e')
970 {
971 if ((tem = regno_val_use_in (regno, XEXP (x, i))))
972 return tem;
973 }
974 else if (fmt[i] == 'E')
975 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
976 if ((tem = regno_val_use_in (regno , XVECEXP (x, i, j))))
977 return tem;
978 }
979
980 return NULL_RTX;
981}
982
983/* Return true if all current insn non-output operands except INS (it
984 has a negaitve end marker) do not use pseudos with the same value
985 as REGNO. */
986static bool
987check_conflict_input_operands (int regno, signed char *ins)
988{
989 int in;
990 int n_operands = curr_static_id->n_operands;
991
992 for (int nop = 0; nop < n_operands; nop++)
993 if (! curr_static_id->operand[nop].is_operator
994 && curr_static_id->operand[nop].type != OP_OUT)
995 {
996 for (int i = 0; (in = ins[i]) >= 0; i++)
997 if (in == nop)
998 break;
999 if (in < 0
1000 && regno_val_use_in (regno, x: *curr_id->operand_loc[nop]) != NULL_RTX)
1001 return false;
1002 }
1003 return true;
1004}
1005
1006/* Generate reloads for matching OUT and INS (array of input operand numbers
1007 with end marker -1) with reg class GOAL_CLASS and EXCLUDE_START_HARD_REGS,
1008 considering output operands OUTS (similar array to INS) needing to be in
1009 different registers. Add input and output reloads correspondingly to the
1010 lists *BEFORE and *AFTER. OUT might be negative. In this case we generate
1011 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
1012 that the output operand is early clobbered for chosen alternative. */
1013static void
1014match_reload (signed char out, signed char *ins, signed char *outs,
1015 enum reg_class goal_class, HARD_REG_SET *exclude_start_hard_regs,
1016 rtx_insn **before, rtx_insn **after, bool early_clobber_p)
1017{
1018 bool out_conflict;
1019 int i, in;
1020 rtx new_in_reg, new_out_reg, reg;
1021 machine_mode inmode, outmode;
1022 rtx in_rtx = *curr_id->operand_loc[ins[0]];
1023 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
1024
1025 inmode = curr_operand_mode[ins[0]];
1026 outmode = out < 0 ? inmode : curr_operand_mode[out];
1027 push_to_sequence (*before);
1028 if (inmode != outmode)
1029 {
1030 /* process_alt_operands has already checked that the mode sizes
1031 are ordered. */
1032 if (partial_subreg_p (outermode: outmode, innermode: inmode))
1033 {
1034 bool asm_p = asm_noperands (PATTERN (insn: curr_insn)) >= 0;
1035 int hr;
1036 HARD_REG_SET temp_hard_reg_set;
1037
1038 if (asm_p && (hr = get_hard_regno (x: out_rtx)) >= 0
1039 && hard_regno_nregs (regno: hr, mode: inmode) > 1)
1040 {
1041 /* See gcc.c-torture/execute/20030222-1.c.
1042 Consider the code for 32-bit (e.g. BE) target:
1043 int i, v; long x; x = v; asm ("" : "=r" (i) : "0" (x));
1044 We generate the following RTL with reload insns:
1045 1. subreg:si(x:di, 0) = 0;
1046 2. subreg:si(x:di, 4) = v:si;
1047 3. t:di = x:di, dead x;
1048 4. asm ("" : "=r" (subreg:si(t:di,4)) : "0" (t:di))
1049 5. i:si = subreg:si(t:di,4);
1050 If we assign hard reg of x to t, dead code elimination
1051 will remove insn #2 and we will use unitialized hard reg.
1052 So exclude the hard reg of x for t. We could ignore this
1053 problem for non-empty asm using all x value but it is hard to
1054 check that the asm are expanded into insn realy using x
1055 and setting r. */
1056 CLEAR_HARD_REG_SET (set&: temp_hard_reg_set);
1057 if (exclude_start_hard_regs != NULL)
1058 temp_hard_reg_set = *exclude_start_hard_regs;
1059 SET_HARD_REG_BIT (set&: temp_hard_reg_set, bit: hr);
1060 exclude_start_hard_regs = &temp_hard_reg_set;
1061 }
1062 reg = new_in_reg
1063 = lra_create_new_reg_with_unique_value (inmode, in_rtx, goal_class,
1064 exclude_start_hard_regs,
1065 "");
1066 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
1067 LRA_SUBREG_P (new_out_reg) = 1;
1068 /* If the input reg is dying here, we can use the same hard
1069 register for REG and IN_RTX. We do it only for original
1070 pseudos as reload pseudos can die although original
1071 pseudos still live where reload pseudos dies. */
1072 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
1073 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1074 && (!early_clobber_p
1075 || check_conflict_input_operands(REGNO (in_rtx), ins)))
1076 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
1077 }
1078 else
1079 {
1080 reg = new_out_reg
1081 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
1082 goal_class,
1083 exclude_start_hard_regs,
1084 "");
1085 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
1086 /* NEW_IN_REG is non-paradoxical subreg. We don't want
1087 NEW_OUT_REG living above. We add clobber clause for
1088 this. This is just a temporary clobber. We can remove
1089 it at the end of LRA work. */
1090 rtx_insn *clobber = emit_clobber (new_out_reg);
1091 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
1092 LRA_SUBREG_P (new_in_reg) = 1;
1093 if (GET_CODE (in_rtx) == SUBREG)
1094 {
1095 rtx subreg_reg = SUBREG_REG (in_rtx);
1096
1097 /* If SUBREG_REG is dying here and sub-registers IN_RTX
1098 and NEW_IN_REG are similar, we can use the same hard
1099 register for REG and SUBREG_REG. */
1100 if (REG_P (subreg_reg)
1101 && (int) REGNO (subreg_reg) < lra_new_regno_start
1102 && GET_MODE (subreg_reg) == outmode
1103 && known_eq (SUBREG_BYTE (in_rtx), SUBREG_BYTE (new_in_reg))
1104 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))
1105 && (! early_clobber_p
1106 || check_conflict_input_operands (REGNO (subreg_reg),
1107 ins)))
1108 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
1109 }
1110 }
1111 }
1112 else
1113 {
1114 /* Pseudos have values -- see comments for lra_reg_info.
1115 Different pseudos with the same value do not conflict even if
1116 they live in the same place. When we create a pseudo we
1117 assign value of original pseudo (if any) from which we
1118 created the new pseudo. If we create the pseudo from the
1119 input pseudo, the new pseudo will have no conflict with the
1120 input pseudo which is wrong when the input pseudo lives after
1121 the insn and as the new pseudo value is changed by the insn
1122 output. Therefore we create the new pseudo from the output
1123 except the case when we have single matched dying input
1124 pseudo.
1125
1126 We cannot reuse the current output register because we might
1127 have a situation like "a <- a op b", where the constraints
1128 force the second input operand ("b") to match the output
1129 operand ("a"). "b" must then be copied into a new register
1130 so that it doesn't clobber the current value of "a".
1131
1132 We cannot use the same value if the output pseudo is
1133 early clobbered or the input pseudo is mentioned in the
1134 output, e.g. as an address part in memory, because
1135 output reload will actually extend the pseudo liveness.
1136 We don't care about eliminable hard regs here as we are
1137 interesting only in pseudos. */
1138
1139 /* Matching input's register value is the same as one of the other
1140 output operand. Output operands in a parallel insn must be in
1141 different registers. */
1142 out_conflict = false;
1143 if (REG_P (in_rtx))
1144 {
1145 for (i = 0; outs[i] >= 0; i++)
1146 {
1147 rtx other_out_rtx = *curr_id->operand_loc[outs[i]];
1148 if (outs[i] != out && REG_P (other_out_rtx)
1149 && (regno_val_use_in (REGNO (in_rtx), x: other_out_rtx)
1150 != NULL_RTX))
1151 {
1152 out_conflict = true;
1153 break;
1154 }
1155 }
1156 }
1157
1158 new_in_reg = new_out_reg
1159 = (! early_clobber_p && ins[1] < 0 && REG_P (in_rtx)
1160 && (int) REGNO (in_rtx) < lra_new_regno_start
1161 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1162 && (! early_clobber_p
1163 || check_conflict_input_operands (REGNO (in_rtx), ins))
1164 && (out < 0
1165 || regno_val_use_in (REGNO (in_rtx), x: out_rtx) == NULL_RTX)
1166 && !out_conflict
1167 ? lra_create_new_reg (inmode, in_rtx, goal_class,
1168 exclude_start_hard_regs, "")
1169 : lra_create_new_reg_with_unique_value (outmode, out_rtx, goal_class,
1170 exclude_start_hard_regs,
1171 ""));
1172 }
1173 /* In operand can be got from transformations before processing insn
1174 constraints. One example of such transformations is subreg
1175 reloading (see function simplify_operand_subreg). The new
1176 pseudos created by the transformations might have inaccurate
1177 class (ALL_REGS) and we should make their classes more
1178 accurate. */
1179 narrow_reload_pseudo_class (reg: in_rtx, cl: goal_class);
1180 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
1181 *before = get_insns ();
1182 end_sequence ();
1183 /* Add the new pseudo to consider values of subsequent input reload
1184 pseudos. */
1185 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
1186 curr_insn_input_reloads[curr_insn_input_reloads_num].input = in_rtx;
1187 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = true;
1188 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = new_in_reg;
1189 for (i = 0; (in = ins[i]) >= 0; i++)
1190 if (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
1191 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]))
1192 *curr_id->operand_loc[in] = new_in_reg;
1193 else
1194 {
1195 lra_assert
1196 (GET_MODE (new_out_reg) == GET_MODE (*curr_id->operand_loc[in]));
1197 *curr_id->operand_loc[in] = new_out_reg;
1198 }
1199 lra_update_dups (curr_id, ins);
1200 if (out < 0)
1201 return;
1202 /* See a comment for the input operand above. */
1203 narrow_reload_pseudo_class (reg: out_rtx, cl: goal_class);
1204 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
1205 {
1206 reg = SUBREG_P (out_rtx) ? SUBREG_REG (out_rtx) : out_rtx;
1207 start_sequence ();
1208 /* If we had strict_low_part, use it also in reload to keep other
1209 parts unchanged but do it only for regs as strict_low_part
1210 has no sense for memory and probably there is no insn pattern
1211 to match the reload insn in memory case. */
1212 if (out >= 0 && curr_static_id->operand[out].strict_low && REG_P (reg))
1213 out_rtx = gen_rtx_STRICT_LOW_PART (VOIDmode, out_rtx);
1214 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
1215 emit_insn (*after);
1216 *after = get_insns ();
1217 end_sequence ();
1218 }
1219 *curr_id->operand_loc[out] = new_out_reg;
1220 lra_update_dup (id: curr_id, nop: out);
1221}
1222
1223/* Return register class which is union of all reg classes in insn
1224 constraint alternative string starting with P. */
1225static enum reg_class
1226reg_class_from_constraints (const char *p)
1227{
1228 int c, len;
1229 enum reg_class op_class = NO_REGS;
1230
1231 do
1232 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1233 {
1234 case '#':
1235 case ',':
1236 return op_class;
1237
1238 case 'g':
1239 op_class = reg_class_subunion[op_class][GENERAL_REGS];
1240 break;
1241
1242 default:
1243 enum constraint_num cn = lookup_constraint (p);
1244 enum reg_class cl = reg_class_for_constraint (c: cn);
1245 if (cl == NO_REGS)
1246 {
1247 if (insn_extra_address_constraint (c: cn))
1248 op_class
1249 = (reg_class_subunion
1250 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1251 outer_code: ADDRESS, index_code: SCRATCH)]);
1252 break;
1253 }
1254
1255 op_class = reg_class_subunion[op_class][cl];
1256 break;
1257 }
1258 while ((p += len), c);
1259 return op_class;
1260}
1261
1262/* If OP is a register, return the class of the register as per
1263 get_reg_class, otherwise return NO_REGS. */
1264static inline enum reg_class
1265get_op_class (rtx op)
1266{
1267 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1268}
1269
1270/* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1271 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1272 SUBREG for VAL to make them equal. */
1273static rtx_insn *
1274emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1275{
1276 if (GET_MODE (mem_pseudo) != GET_MODE (val))
1277 {
1278 /* Usually size of mem_pseudo is greater than val size but in
1279 rare cases it can be less as it can be defined by target
1280 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1281 if (! MEM_P (val))
1282 {
1283 val = gen_lowpart_SUBREG (GET_MODE (mem_pseudo),
1284 GET_CODE (val) == SUBREG
1285 ? SUBREG_REG (val) : val);
1286 LRA_SUBREG_P (val) = 1;
1287 }
1288 else
1289 {
1290 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1291 LRA_SUBREG_P (mem_pseudo) = 1;
1292 }
1293 }
1294 return to_p ? gen_move_insn (mem_pseudo, val)
1295 : gen_move_insn (val, mem_pseudo);
1296}
1297
1298/* Process a special case insn (register move), return true if we
1299 don't need to process it anymore. INSN should be a single set
1300 insn. Set up that RTL was changed through CHANGE_P and that hook
1301 TARGET_SECONDARY_MEMORY_NEEDED says to use secondary memory through
1302 SEC_MEM_P. */
1303static bool
1304check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1305{
1306 int sregno, dregno;
1307 rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1308 rtx_insn *before;
1309 enum reg_class dclass, sclass, secondary_class;
1310 secondary_reload_info sri;
1311
1312 lra_assert (curr_insn_set != NULL_RTX);
1313 dreg = dest = SET_DEST (curr_insn_set);
1314 sreg = src = SET_SRC (curr_insn_set);
1315 if (GET_CODE (dest) == SUBREG)
1316 dreg = SUBREG_REG (dest);
1317 if (GET_CODE (src) == SUBREG)
1318 sreg = SUBREG_REG (src);
1319 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1320 return false;
1321 sclass = dclass = NO_REGS;
1322 if (REG_P (dreg))
1323 dclass = get_reg_class (REGNO (dreg));
1324 gcc_assert (dclass < LIM_REG_CLASSES && dclass >= NO_REGS);
1325 if (dclass == ALL_REGS)
1326 /* ALL_REGS is used for new pseudos created by transformations
1327 like reload of SUBREG_REG (see function
1328 simplify_operand_subreg). We don't know their class yet. We
1329 should figure out the class from processing the insn
1330 constraints not in this fast path function. Even if ALL_REGS
1331 were a right class for the pseudo, secondary_... hooks usually
1332 are not define for ALL_REGS. */
1333 return false;
1334 if (REG_P (sreg))
1335 sclass = get_reg_class (REGNO (sreg));
1336 gcc_assert (sclass < LIM_REG_CLASSES && sclass >= NO_REGS);
1337 if (sclass == ALL_REGS)
1338 /* See comments above. */
1339 return false;
1340 if (sclass == NO_REGS && dclass == NO_REGS)
1341 return false;
1342 if (targetm.secondary_memory_needed (GET_MODE (src), sclass, dclass)
1343 && ((sclass != NO_REGS && dclass != NO_REGS)
1344 || (GET_MODE (src)
1345 != targetm.secondary_memory_needed_mode (GET_MODE (src)))))
1346 {
1347 *sec_mem_p = true;
1348 return false;
1349 }
1350 if (! REG_P (dreg) || ! REG_P (sreg))
1351 return false;
1352 sri.prev_sri = NULL;
1353 sri.icode = CODE_FOR_nothing;
1354 sri.extra_cost = 0;
1355 secondary_class = NO_REGS;
1356 /* Set up hard register for a reload pseudo for hook
1357 secondary_reload because some targets just ignore unassigned
1358 pseudos in the hook. */
1359 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1360 {
1361 dregno = REGNO (dreg);
1362 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1363 }
1364 else
1365 dregno = -1;
1366 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1367 {
1368 sregno = REGNO (sreg);
1369 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1370 }
1371 else
1372 sregno = -1;
1373 if (sclass != NO_REGS)
1374 secondary_class
1375 = (enum reg_class) targetm.secondary_reload (false, dest,
1376 (reg_class_t) sclass,
1377 GET_MODE (src), &sri);
1378 if (sclass == NO_REGS
1379 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1380 && dclass != NO_REGS))
1381 {
1382 enum reg_class old_sclass = secondary_class;
1383 secondary_reload_info old_sri = sri;
1384
1385 sri.prev_sri = NULL;
1386 sri.icode = CODE_FOR_nothing;
1387 sri.extra_cost = 0;
1388 secondary_class
1389 = (enum reg_class) targetm.secondary_reload (true, src,
1390 (reg_class_t) dclass,
1391 GET_MODE (src), &sri);
1392 /* Check the target hook consistency. */
1393 lra_assert
1394 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1395 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1396 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1397 }
1398 if (sregno >= 0)
1399 reg_renumber [sregno] = -1;
1400 if (dregno >= 0)
1401 reg_renumber [dregno] = -1;
1402 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1403 return false;
1404 *change_p = true;
1405 new_reg = NULL_RTX;
1406 if (secondary_class != NO_REGS)
1407 new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1408 secondary_class, NULL,
1409 "secondary");
1410 start_sequence ();
1411 if (sri.icode == CODE_FOR_nothing)
1412 lra_emit_move (new_reg, src);
1413 else
1414 {
1415 enum reg_class scratch_class;
1416
1417 scratch_class = (reg_class_from_constraints
1418 (p: insn_data[sri.icode].operand[2].constraint));
1419 scratch_reg = (lra_create_new_reg_with_unique_value
1420 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1421 scratch_class, NULL, "scratch"));
1422 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1423 src, scratch_reg));
1424 }
1425 before = get_insns ();
1426 end_sequence ();
1427 lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1428 if (new_reg != NULL_RTX)
1429 SET_SRC (curr_insn_set) = new_reg;
1430 else
1431 {
1432 if (lra_dump_file != NULL)
1433 {
1434 fprintf (stream: lra_dump_file, format: "Deleting move %u\n", INSN_UID (insn: curr_insn));
1435 dump_insn_slim (lra_dump_file, curr_insn);
1436 }
1437 lra_set_insn_deleted (curr_insn);
1438 return true;
1439 }
1440 return false;
1441}
1442
1443/* The following data describe the result of process_alt_operands.
1444 The data are used in curr_insn_transform to generate reloads. */
1445
1446/* The chosen reg classes which should be used for the corresponding
1447 operands. */
1448static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1449/* Hard registers which cannot be a start hard register for the corresponding
1450 operands. */
1451static HARD_REG_SET goal_alt_exclude_start_hard_regs[MAX_RECOG_OPERANDS];
1452/* True if the operand should be the same as another operand and that
1453 other operand does not need a reload. */
1454static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1455/* True if the operand does not need a reload. */
1456static bool goal_alt_win[MAX_RECOG_OPERANDS];
1457/* True if the operand can be offsetable memory. */
1458static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1459/* The number of an operand to which given operand can be matched to. */
1460static int goal_alt_matches[MAX_RECOG_OPERANDS];
1461/* The number of elements in the following array. */
1462static int goal_alt_dont_inherit_ops_num;
1463/* Numbers of operands whose reload pseudos should not be inherited. */
1464static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1465/* True if we should try only this alternative for the next constraint sub-pass
1466 to speed up the sub-pass. */
1467static bool goal_reuse_alt_p;
1468/* True if the insn commutative operands should be swapped. */
1469static bool goal_alt_swapped;
1470/* The chosen insn alternative. */
1471static int goal_alt_number;
1472/* True if output reload of the stack pointer should be generated. */
1473static bool goal_alt_out_sp_reload_p;
1474
1475/* True if the corresponding operand is the result of an equivalence
1476 substitution. */
1477static bool equiv_substition_p[MAX_RECOG_OPERANDS];
1478
1479/* The following five variables are used to choose the best insn
1480 alternative. They reflect final characteristics of the best
1481 alternative. */
1482
1483/* Number of necessary reloads and overall cost reflecting the
1484 previous value and other unpleasantness of the best alternative. */
1485static int best_losers, best_overall;
1486/* Overall number hard registers used for reloads. For example, on
1487 some targets we need 2 general registers to reload DFmode and only
1488 one floating point register. */
1489static int best_reload_nregs;
1490/* Overall number reflecting distances of previous reloading the same
1491 value. The distances are counted from the current BB start. It is
1492 used to improve inheritance chances. */
1493static int best_reload_sum;
1494
1495/* True if the current insn should have no correspondingly input or
1496 output reloads. */
1497static bool no_input_reloads_p, no_output_reloads_p;
1498
1499/* True if we swapped the commutative operands in the current
1500 insn. */
1501static int curr_swapped;
1502
1503/* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1504 register of class CL. Add any input reloads to list BEFORE. AFTER
1505 is nonnull if *LOC is an automodified value; handle that case by
1506 adding the required output reloads to list AFTER. Return true if
1507 the RTL was changed.
1508
1509 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1510 register. Return false if the address register is correct. */
1511static bool
1512process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1513 enum reg_class cl)
1514{
1515 int regno;
1516 enum reg_class rclass, new_class;
1517 rtx reg;
1518 rtx new_reg;
1519 machine_mode mode;
1520 bool subreg_p, before_p = false;
1521
1522 subreg_p = GET_CODE (*loc) == SUBREG;
1523 if (subreg_p)
1524 {
1525 reg = SUBREG_REG (*loc);
1526 mode = GET_MODE (reg);
1527
1528 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1529 between two registers with different classes, but there normally will
1530 be "mov" which transfers element of vector register into the general
1531 register, and this normally will be a subreg which should be reloaded
1532 as a whole. This is particularly likely to be triggered when
1533 -fno-split-wide-types specified. */
1534 if (!REG_P (reg)
1535 || in_class_p (reg, cl, new_class: &new_class)
1536 || known_le (GET_MODE_SIZE (mode), GET_MODE_SIZE (ptr_mode)))
1537 loc = &SUBREG_REG (*loc);
1538 }
1539
1540 reg = *loc;
1541 mode = GET_MODE (reg);
1542 if (! REG_P (reg))
1543 {
1544 if (check_only_p)
1545 return true;
1546 /* Always reload memory in an address even if the target supports
1547 such addresses. */
1548 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, NULL,
1549 "address");
1550 before_p = true;
1551 }
1552 else
1553 {
1554 regno = REGNO (reg);
1555 rclass = get_reg_class (regno);
1556 if (! check_only_p
1557 && (*loc = get_equiv_with_elimination (x: reg, insn: curr_insn)) != reg)
1558 {
1559 if (lra_dump_file != NULL)
1560 {
1561 fprintf (stream: lra_dump_file,
1562 format: "Changing pseudo %d in address of insn %u on equiv ",
1563 REGNO (reg), INSN_UID (insn: curr_insn));
1564 dump_value_slim (lra_dump_file, *loc, 1);
1565 fprintf (stream: lra_dump_file, format: "\n");
1566 }
1567 *loc = copy_rtx (*loc);
1568 }
1569 if (*loc != reg || ! in_class_p (reg, cl, new_class: &new_class))
1570 {
1571 if (check_only_p)
1572 return true;
1573 reg = *loc;
1574 if (get_reload_reg (type: after == NULL ? OP_IN : OP_INOUT,
1575 mode, original: reg, rclass: cl, NULL,
1576 in_subreg_p: subreg_p, title: "address", result_reg: &new_reg))
1577 before_p = true;
1578 }
1579 else if (new_class != NO_REGS && rclass != new_class)
1580 {
1581 if (check_only_p)
1582 return true;
1583 lra_change_class (regno, new_class, title: " Change to", nl_p: true);
1584 return false;
1585 }
1586 else
1587 return false;
1588 }
1589 if (before_p)
1590 {
1591 push_to_sequence (*before);
1592 lra_emit_move (new_reg, reg);
1593 *before = get_insns ();
1594 end_sequence ();
1595 }
1596 *loc = new_reg;
1597 if (after != NULL)
1598 {
1599 start_sequence ();
1600 lra_emit_move (before_p ? copy_rtx (reg) : reg, new_reg);
1601 emit_insn (*after);
1602 *after = get_insns ();
1603 end_sequence ();
1604 }
1605 return true;
1606}
1607
1608/* Insert move insn in simplify_operand_subreg. BEFORE returns
1609 the insn to be inserted before curr insn. AFTER returns the
1610 the insn to be inserted after curr insn. ORIGREG and NEWREG
1611 are the original reg and new reg for reload. */
1612static void
1613insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1614 rtx newreg)
1615{
1616 if (before)
1617 {
1618 push_to_sequence (*before);
1619 lra_emit_move (newreg, origreg);
1620 *before = get_insns ();
1621 end_sequence ();
1622 }
1623 if (after)
1624 {
1625 start_sequence ();
1626 lra_emit_move (origreg, newreg);
1627 emit_insn (*after);
1628 *after = get_insns ();
1629 end_sequence ();
1630 }
1631}
1632
1633static bool valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1634static bool process_address (int, bool, rtx_insn **, rtx_insn **);
1635
1636/* Make reloads for subreg in operand NOP with internal subreg mode
1637 REG_MODE, add new reloads for further processing. Return true if
1638 any change was done. */
1639static bool
1640simplify_operand_subreg (int nop, machine_mode reg_mode)
1641{
1642 int hard_regno, inner_hard_regno;
1643 rtx_insn *before, *after;
1644 machine_mode mode, innermode;
1645 rtx reg, new_reg;
1646 rtx operand = *curr_id->operand_loc[nop];
1647 enum reg_class regclass;
1648 enum op_type type;
1649
1650 before = after = NULL;
1651
1652 if (GET_CODE (operand) != SUBREG)
1653 return false;
1654
1655 mode = GET_MODE (operand);
1656 reg = SUBREG_REG (operand);
1657 innermode = GET_MODE (reg);
1658 type = curr_static_id->operand[nop].type;
1659 if (MEM_P (reg))
1660 {
1661 const bool addr_was_valid
1662 = valid_address_p (mode: innermode, XEXP (reg, 0), MEM_ADDR_SPACE (reg));
1663 alter_subreg (curr_id->operand_loc[nop], false);
1664 rtx subst = *curr_id->operand_loc[nop];
1665 lra_assert (MEM_P (subst));
1666 const bool addr_is_valid = valid_address_p (GET_MODE (subst),
1667 XEXP (subst, 0),
1668 MEM_ADDR_SPACE (subst));
1669 if (!addr_was_valid
1670 || addr_is_valid
1671 || ((get_constraint_type (c: lookup_constraint
1672 (p: curr_static_id->operand[nop].constraint))
1673 != CT_SPECIAL_MEMORY)
1674 /* We still can reload address and if the address is
1675 valid, we can remove subreg without reloading its
1676 inner memory. */
1677 && valid_address_p (GET_MODE (subst),
1678 addr: regno_reg_rtx
1679 [ira_class_hard_regs
1680 [base_reg_class (GET_MODE (subst),
1681 MEM_ADDR_SPACE (subst),
1682 outer_code: ADDRESS, index_code: SCRATCH)][0]],
1683 MEM_ADDR_SPACE (subst))))
1684 {
1685 /* If we change the address for a paradoxical subreg of memory, the
1686 new address might violate the necessary alignment or the access
1687 might be slow; take this into consideration. We need not worry
1688 about accesses beyond allocated memory for paradoxical memory
1689 subregs as we don't substitute such equiv memory (see processing
1690 equivalences in function lra_constraints) and because for spilled
1691 pseudos we allocate stack memory enough for the biggest
1692 corresponding paradoxical subreg.
1693
1694 However, do not blindly simplify a (subreg (mem ...)) for
1695 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1696 data into a register when the inner is narrower than outer or
1697 missing important data from memory when the inner is wider than
1698 outer. This rule only applies to modes that are no wider than
1699 a word.
1700
1701 If valid memory becomes invalid after subreg elimination
1702 and address might be different we still have to reload
1703 memory.
1704 */
1705 if ((! addr_was_valid
1706 || addr_is_valid
1707 || known_eq (GET_MODE_SIZE (mode), GET_MODE_SIZE (innermode)))
1708 && !(maybe_ne (a: GET_MODE_PRECISION (mode),
1709 b: GET_MODE_PRECISION (mode: innermode))
1710 && known_le (GET_MODE_SIZE (mode), UNITS_PER_WORD)
1711 && known_le (GET_MODE_SIZE (innermode), UNITS_PER_WORD)
1712 && WORD_REGISTER_OPERATIONS)
1713 && (!(MEM_ALIGN (subst) < GET_MODE_ALIGNMENT (mode)
1714 && targetm.slow_unaligned_access (mode, MEM_ALIGN (subst)))
1715 || (MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (innermode)
1716 && targetm.slow_unaligned_access (innermode,
1717 MEM_ALIGN (reg)))))
1718 return true;
1719
1720 *curr_id->operand_loc[nop] = operand;
1721
1722 /* But if the address was not valid, we cannot reload the MEM without
1723 reloading the address first. */
1724 if (!addr_was_valid)
1725 process_address (nop, false, &before, &after);
1726
1727 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1728 enum reg_class rclass
1729 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1730 if (get_reload_reg (type: curr_static_id->operand[nop].type, mode: innermode,
1731 original: reg, rclass, NULL,
1732 in_subreg_p: true, title: "slow/invalid mem", result_reg: &new_reg))
1733 {
1734 bool insert_before, insert_after;
1735 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1736
1737 insert_before = (type != OP_OUT
1738 || partial_subreg_p (outermode: mode, innermode));
1739 insert_after = type != OP_IN;
1740 insert_move_for_subreg (before: insert_before ? &before : NULL,
1741 after: insert_after ? &after : NULL,
1742 origreg: reg, newreg: new_reg);
1743 }
1744 SUBREG_REG (operand) = new_reg;
1745
1746 /* Convert to MODE. */
1747 reg = operand;
1748 rclass
1749 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1750 if (get_reload_reg (type: curr_static_id->operand[nop].type, mode, original: reg,
1751 rclass, NULL,
1752 in_subreg_p: true, title: "slow/invalid mem", result_reg: &new_reg))
1753 {
1754 bool insert_before, insert_after;
1755 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1756
1757 insert_before = type != OP_OUT;
1758 insert_after = type != OP_IN;
1759 insert_move_for_subreg (before: insert_before ? &before : NULL,
1760 after: insert_after ? &after : NULL,
1761 origreg: reg, newreg: new_reg);
1762 }
1763 *curr_id->operand_loc[nop] = new_reg;
1764 lra_process_new_insns (curr_insn, before, after,
1765 "Inserting slow/invalid mem reload");
1766 return true;
1767 }
1768
1769 /* If the address was valid and became invalid, prefer to reload
1770 the memory. Typical case is when the index scale should
1771 correspond the memory. */
1772 *curr_id->operand_loc[nop] = operand;
1773 /* Do not return false here as the MEM_P (reg) will be processed
1774 later in this function. */
1775 }
1776 else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1777 {
1778 alter_subreg (curr_id->operand_loc[nop], false);
1779 return true;
1780 }
1781 else if (CONSTANT_P (reg))
1782 {
1783 /* Try to simplify subreg of constant. It is usually result of
1784 equivalence substitution. */
1785 if (innermode == VOIDmode
1786 && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1787 innermode = curr_static_id->operand[nop].mode;
1788 if ((new_reg = simplify_subreg (outermode: mode, op: reg, innermode,
1789 SUBREG_BYTE (operand))) != NULL_RTX)
1790 {
1791 *curr_id->operand_loc[nop] = new_reg;
1792 return true;
1793 }
1794 }
1795 /* Put constant into memory when we have mixed modes. It generates
1796 a better code in most cases as it does not need a secondary
1797 reload memory. It also prevents LRA looping when LRA is using
1798 secondary reload memory again and again. */
1799 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1800 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1801 {
1802 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1803 alter_subreg (curr_id->operand_loc[nop], false);
1804 return true;
1805 }
1806 auto fp_subreg_can_be_simplified_after_reload_p = [] (machine_mode innermode,
1807 poly_uint64 offset,
1808 machine_mode mode) {
1809 reload_completed = 1;
1810 bool res = simplify_subreg_regno (FRAME_POINTER_REGNUM,
1811 innermode,
1812 offset, mode) >= 0;
1813 reload_completed = 0;
1814 return res;
1815 };
1816 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1817 if there may be a problem accessing OPERAND in the outer
1818 mode. */
1819 if ((REG_P (reg)
1820 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1821 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1822 /* Don't reload paradoxical subregs because we could be looping
1823 having repeatedly final regno out of hard regs range. */
1824 && (hard_regno_nregs (regno: hard_regno, mode: innermode)
1825 >= hard_regno_nregs (regno: hard_regno, mode))
1826 && simplify_subreg_regno (hard_regno, innermode,
1827 SUBREG_BYTE (operand), mode) < 0
1828 /* Exclude reloading of frame pointer in subreg if frame pointer can not
1829 be simplified here only because the reload is not finished yet. */
1830 && (hard_regno != FRAME_POINTER_REGNUM
1831 || !fp_subreg_can_be_simplified_after_reload_p (innermode,
1832 SUBREG_BYTE (operand),
1833 mode))
1834 /* Don't reload subreg for matching reload. It is actually
1835 valid subreg in LRA. */
1836 && ! LRA_SUBREG_P (operand))
1837 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1838 {
1839 enum reg_class rclass;
1840
1841 if (REG_P (reg))
1842 /* There is a big probability that we will get the same class
1843 for the new pseudo and we will get the same insn which
1844 means infinite looping. So spill the new pseudo. */
1845 rclass = NO_REGS;
1846 else
1847 /* The class will be defined later in curr_insn_transform. */
1848 rclass
1849 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1850
1851 if (get_reload_reg (type: curr_static_id->operand[nop].type, mode: reg_mode, original: reg,
1852 rclass, NULL,
1853 in_subreg_p: true, title: "subreg reg", result_reg: &new_reg))
1854 {
1855 bool insert_before, insert_after;
1856 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1857
1858 insert_before = (type != OP_OUT
1859 || read_modify_subreg_p (operand));
1860 insert_after = (type != OP_IN);
1861 insert_move_for_subreg (before: insert_before ? &before : NULL,
1862 after: insert_after ? &after : NULL,
1863 origreg: reg, newreg: new_reg);
1864 }
1865 SUBREG_REG (operand) = new_reg;
1866 lra_process_new_insns (curr_insn, before, after,
1867 "Inserting subreg reload");
1868 return true;
1869 }
1870 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1871 IRA allocates hardreg to the inner pseudo reg according to its mode
1872 instead of the outermode, so the size of the hardreg may not be enough
1873 to contain the outermode operand, in that case we may need to insert
1874 reload for the reg. For the following two types of paradoxical subreg,
1875 we need to insert reload:
1876 1. If the op_type is OP_IN, and the hardreg could not be paired with
1877 other hardreg to contain the outermode operand
1878 (checked by in_hard_reg_set_p), we need to insert the reload.
1879 2. If the op_type is OP_OUT or OP_INOUT.
1880
1881 Here is a paradoxical subreg example showing how the reload is generated:
1882
1883 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1884 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1885
1886 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1887 here, if reg107 is assigned to hardreg R15, because R15 is the last
1888 hardreg, compiler cannot find another hardreg to pair with R15 to
1889 contain TImode data. So we insert a TImode reload reg180 for it.
1890 After reload is inserted:
1891
1892 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1893 (reg:DI 107 [ __comp ])) -1
1894 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1895 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1896
1897 Two reload hard registers will be allocated to reg180 to save TImode data
1898 in LRA_assign.
1899
1900 For LRA pseudos this should normally be handled by the biggest_mode
1901 mechanism. However, it's possible for new uses of an LRA pseudo
1902 to be introduced after we've allocated it, such as when undoing
1903 inheritance, and the allocated register might not then be appropriate
1904 for the new uses. */
1905 else if (REG_P (reg)
1906 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1907 && paradoxical_subreg_p (x: operand)
1908 && (inner_hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1909 && ((hard_regno
1910 = simplify_subreg_regno (inner_hard_regno, innermode,
1911 SUBREG_BYTE (operand), mode)) < 0
1912 || ((hard_regno_nregs (regno: inner_hard_regno, mode: innermode)
1913 < hard_regno_nregs (regno: hard_regno, mode))
1914 && (regclass = lra_get_allocno_class (REGNO (reg)))
1915 && (type != OP_IN
1916 || !in_hard_reg_set_p (reg_class_contents[regclass],
1917 mode, regno: hard_regno)
1918 || overlaps_hard_reg_set_p (regs: lra_no_alloc_regs,
1919 mode, regno: hard_regno)))))
1920 {
1921 /* The class will be defined later in curr_insn_transform. */
1922 enum reg_class rclass
1923 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1924
1925 if (get_reload_reg (type: curr_static_id->operand[nop].type, mode, original: reg,
1926 rclass, NULL,
1927 in_subreg_p: true, title: "paradoxical subreg", result_reg: &new_reg))
1928 {
1929 rtx subreg;
1930 bool insert_before, insert_after;
1931
1932 PUT_MODE (x: new_reg, mode);
1933 subreg = gen_lowpart_SUBREG (innermode, new_reg);
1934 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1935
1936 insert_before = (type != OP_OUT);
1937 insert_after = (type != OP_IN);
1938 insert_move_for_subreg (before: insert_before ? &before : NULL,
1939 after: insert_after ? &after : NULL,
1940 origreg: reg, newreg: subreg);
1941 }
1942 SUBREG_REG (operand) = new_reg;
1943 lra_process_new_insns (curr_insn, before, after,
1944 "Inserting paradoxical subreg reload");
1945 return true;
1946 }
1947 return false;
1948}
1949
1950/* Return TRUE if X refers for a hard register from SET. */
1951static bool
1952uses_hard_regs_p (rtx x, HARD_REG_SET set)
1953{
1954 int i, j, x_hard_regno;
1955 machine_mode mode;
1956 const char *fmt;
1957 enum rtx_code code;
1958
1959 if (x == NULL_RTX)
1960 return false;
1961 code = GET_CODE (x);
1962 mode = GET_MODE (x);
1963
1964 if (code == SUBREG)
1965 {
1966 /* For all SUBREGs we want to check whether the full multi-register
1967 overlaps the set. For normal SUBREGs this means 'get_hard_regno' of
1968 the inner register, for paradoxical SUBREGs this means the
1969 'get_hard_regno' of the full SUBREG and for complete SUBREGs either is
1970 fine. Use the wider mode for all cases. */
1971 rtx subreg = SUBREG_REG (x);
1972 mode = wider_subreg_mode (x);
1973 if (mode == GET_MODE (subreg))
1974 {
1975 x = subreg;
1976 code = GET_CODE (x);
1977 }
1978 }
1979
1980 if (REG_P (x) || SUBREG_P (x))
1981 {
1982 x_hard_regno = get_hard_regno (x);
1983 return (x_hard_regno >= 0
1984 && overlaps_hard_reg_set_p (regs: set, mode, regno: x_hard_regno));
1985 }
1986 fmt = GET_RTX_FORMAT (code);
1987 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1988 {
1989 if (fmt[i] == 'e')
1990 {
1991 if (uses_hard_regs_p (XEXP (x, i), set))
1992 return true;
1993 }
1994 else if (fmt[i] == 'E')
1995 {
1996 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1997 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1998 return true;
1999 }
2000 }
2001 return false;
2002}
2003
2004/* Return true if OP is a spilled pseudo. */
2005static inline bool
2006spilled_pseudo_p (rtx op)
2007{
2008 return (REG_P (op)
2009 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
2010}
2011
2012/* Return true if X is a general constant. */
2013static inline bool
2014general_constant_p (rtx x)
2015{
2016 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
2017}
2018
2019static bool
2020reg_in_class_p (rtx reg, enum reg_class cl)
2021{
2022 if (cl == NO_REGS)
2023 return get_reg_class (REGNO (reg)) == NO_REGS;
2024 return in_class_p (reg, cl, NULL);
2025}
2026
2027/* Return true if SET of RCLASS contains no hard regs which can be
2028 used in MODE. */
2029static bool
2030prohibited_class_reg_set_mode_p (enum reg_class rclass,
2031 HARD_REG_SET &set,
2032 machine_mode mode)
2033{
2034 HARD_REG_SET temp;
2035
2036 lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
2037 temp = set & ~lra_no_alloc_regs;
2038 return (hard_reg_set_subset_p
2039 (x: temp, ira_prohibited_class_mode_regs[rclass][mode]));
2040}
2041
2042
2043/* Used to check validity info about small class input operands. It
2044 should be incremented at start of processing an insn
2045 alternative. */
2046static unsigned int curr_small_class_check = 0;
2047
2048/* Update number of used inputs of class OP_CLASS for operand NOP
2049 of alternative NALT. Return true if we have more such class operands
2050 than the number of available regs. */
2051static bool
2052update_and_check_small_class_inputs (int nop, int nalt,
2053 enum reg_class op_class)
2054{
2055 static unsigned int small_class_check[LIM_REG_CLASSES];
2056 static int small_class_input_nums[LIM_REG_CLASSES];
2057
2058 if (SMALL_REGISTER_CLASS_P (op_class)
2059 /* We are interesting in classes became small because of fixing
2060 some hard regs, e.g. by an user through GCC options. */
2061 && hard_reg_set_intersect_p (reg_class_contents[op_class],
2062 ira_no_alloc_regs)
2063 && (curr_static_id->operand[nop].type != OP_OUT
2064 || TEST_BIT (curr_static_id->operand[nop].early_clobber_alts, nalt)))
2065 {
2066 if (small_class_check[op_class] == curr_small_class_check)
2067 small_class_input_nums[op_class]++;
2068 else
2069 {
2070 small_class_check[op_class] = curr_small_class_check;
2071 small_class_input_nums[op_class] = 1;
2072 }
2073 if (small_class_input_nums[op_class] > ira_class_hard_regs_num[op_class])
2074 return true;
2075 }
2076 return false;
2077}
2078
2079/* Print operand constraints for alternative ALT_NUMBER of the current
2080 insn. */
2081static void
2082print_curr_insn_alt (int alt_number)
2083{
2084 for (int i = 0; i < curr_static_id->n_operands; i++)
2085 {
2086 const char *p = (curr_static_id->operand_alternative
2087 [alt_number * curr_static_id->n_operands + i].constraint);
2088 if (*p == '\0')
2089 continue;
2090 fprintf (stream: lra_dump_file, format: " (%d) ", i);
2091 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
2092 fputc (c: *p, stream: lra_dump_file);
2093 }
2094}
2095
2096/* Major function to choose the current insn alternative and what
2097 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
2098 negative we should consider only this alternative. Return false if
2099 we cannot choose the alternative or find how to reload the
2100 operands. */
2101static bool
2102process_alt_operands (int only_alternative)
2103{
2104 bool ok_p = false;
2105 int nop, overall, nalt;
2106 int n_alternatives = curr_static_id->n_alternatives;
2107 int n_operands = curr_static_id->n_operands;
2108 /* LOSERS counts the operands that don't fit this alternative and
2109 would require loading. */
2110 int losers;
2111 int addr_losers;
2112 /* REJECT is a count of how undesirable this alternative says it is
2113 if any reloading is required. If the alternative matches exactly
2114 then REJECT is ignored, but otherwise it gets this much counted
2115 against it in addition to the reloading needed. */
2116 int reject;
2117 /* This is defined by '!' or '?' alternative constraint and added to
2118 reject. But in some cases it can be ignored. */
2119 int static_reject;
2120 int op_reject;
2121 /* The number of elements in the following array. */
2122 int early_clobbered_regs_num;
2123 /* Numbers of operands which are early clobber registers. */
2124 int early_clobbered_nops[MAX_RECOG_OPERANDS];
2125 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
2126 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
2127 HARD_REG_SET curr_alt_exclude_start_hard_regs[MAX_RECOG_OPERANDS];
2128 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
2129 bool curr_alt_win[MAX_RECOG_OPERANDS];
2130 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
2131 int curr_alt_matches[MAX_RECOG_OPERANDS];
2132 /* The number of elements in the following array. */
2133 int curr_alt_dont_inherit_ops_num;
2134 /* Numbers of operands whose reload pseudos should not be inherited. */
2135 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
2136 bool curr_reuse_alt_p;
2137 /* True if output stack pointer reload should be generated for the current
2138 alternative. */
2139 bool curr_alt_out_sp_reload_p;
2140 rtx op;
2141 /* The register when the operand is a subreg of register, otherwise the
2142 operand itself. */
2143 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
2144 /* The register if the operand is a register or subreg of register,
2145 otherwise NULL. */
2146 rtx operand_reg[MAX_RECOG_OPERANDS];
2147 int hard_regno[MAX_RECOG_OPERANDS];
2148 machine_mode biggest_mode[MAX_RECOG_OPERANDS];
2149 int reload_nregs, reload_sum;
2150 bool costly_p;
2151 enum reg_class cl;
2152
2153 /* Calculate some data common for all alternatives to speed up the
2154 function. */
2155 for (nop = 0; nop < n_operands; nop++)
2156 {
2157 rtx reg;
2158
2159 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
2160 /* The real hard regno of the operand after the allocation. */
2161 hard_regno[nop] = get_hard_regno (x: op);
2162
2163 operand_reg[nop] = reg = op;
2164 biggest_mode[nop] = GET_MODE (op);
2165 if (GET_CODE (op) == SUBREG)
2166 {
2167 biggest_mode[nop] = wider_subreg_mode (x: op);
2168 operand_reg[nop] = reg = SUBREG_REG (op);
2169 }
2170 if (! REG_P (reg))
2171 operand_reg[nop] = NULL_RTX;
2172 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
2173 || ((int) REGNO (reg)
2174 == lra_get_elimination_hard_regno (REGNO (reg))))
2175 no_subreg_reg_operand[nop] = reg;
2176 else
2177 operand_reg[nop] = no_subreg_reg_operand[nop]
2178 /* Just use natural mode for elimination result. It should
2179 be enough for extra constraints hooks. */
2180 = regno_reg_rtx[hard_regno[nop]];
2181 }
2182
2183 /* The constraints are made of several alternatives. Each operand's
2184 constraint looks like foo,bar,... with commas separating the
2185 alternatives. The first alternatives for all operands go
2186 together, the second alternatives go together, etc.
2187
2188 First loop over alternatives. */
2189 alternative_mask preferred = curr_id->preferred_alternatives;
2190 if (only_alternative >= 0)
2191 preferred &= ALTERNATIVE_BIT (only_alternative);
2192
2193 for (nalt = 0; nalt < n_alternatives; nalt++)
2194 {
2195 /* Loop over operands for one constraint alternative. */
2196 if (!TEST_BIT (preferred, nalt))
2197 continue;
2198
2199 if (lra_dump_file != NULL)
2200 {
2201 fprintf (stream: lra_dump_file, format: " Considering alt=%d of insn %d: ",
2202 nalt, INSN_UID (insn: curr_insn));
2203 print_curr_insn_alt (alt_number: nalt);
2204 fprintf (stream: lra_dump_file, format: "\n");
2205 }
2206
2207 bool matching_early_clobber[MAX_RECOG_OPERANDS];
2208 curr_small_class_check++;
2209 overall = losers = addr_losers = 0;
2210 static_reject = reject = reload_nregs = reload_sum = 0;
2211 for (nop = 0; nop < n_operands; nop++)
2212 {
2213 int inc = (curr_static_id
2214 ->operand_alternative[nalt * n_operands + nop].reject);
2215 if (lra_dump_file != NULL && inc != 0)
2216 fprintf (stream: lra_dump_file,
2217 format: " Staticly defined alt reject+=%d\n", inc);
2218 static_reject += inc;
2219 matching_early_clobber[nop] = 0;
2220 }
2221 reject += static_reject;
2222 early_clobbered_regs_num = 0;
2223 curr_alt_out_sp_reload_p = false;
2224 curr_reuse_alt_p = true;
2225
2226 for (nop = 0; nop < n_operands; nop++)
2227 {
2228 const char *p;
2229 char *end;
2230 int len, c, m, i, opalt_num, this_alternative_matches;
2231 bool win, did_match, offmemok, early_clobber_p;
2232 /* false => this operand can be reloaded somehow for this
2233 alternative. */
2234 bool badop;
2235 /* true => this operand can be reloaded if the alternative
2236 allows regs. */
2237 bool winreg;
2238 /* True if a constant forced into memory would be OK for
2239 this operand. */
2240 bool constmemok;
2241 enum reg_class this_alternative, this_costly_alternative;
2242 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
2243 HARD_REG_SET this_alternative_exclude_start_hard_regs;
2244 bool this_alternative_match_win, this_alternative_win;
2245 bool this_alternative_offmemok;
2246 bool scratch_p;
2247 machine_mode mode;
2248 enum constraint_num cn;
2249
2250 opalt_num = nalt * n_operands + nop;
2251 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
2252 {
2253 /* Fast track for no constraints at all. */
2254 curr_alt[nop] = NO_REGS;
2255 CLEAR_HARD_REG_SET (set&: curr_alt_set[nop]);
2256 curr_alt_win[nop] = true;
2257 curr_alt_match_win[nop] = false;
2258 curr_alt_offmemok[nop] = false;
2259 curr_alt_matches[nop] = -1;
2260 continue;
2261 }
2262
2263 op = no_subreg_reg_operand[nop];
2264 mode = curr_operand_mode[nop];
2265
2266 win = did_match = winreg = offmemok = constmemok = false;
2267 badop = true;
2268
2269 early_clobber_p = false;
2270 p = curr_static_id->operand_alternative[opalt_num].constraint;
2271
2272 this_costly_alternative = this_alternative = NO_REGS;
2273 /* We update set of possible hard regs besides its class
2274 because reg class might be inaccurate. For example,
2275 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2276 is translated in HI_REGS because classes are merged by
2277 pairs and there is no accurate intermediate class. */
2278 CLEAR_HARD_REG_SET (set&: this_alternative_set);
2279 CLEAR_HARD_REG_SET (set&: this_costly_alternative_set);
2280 CLEAR_HARD_REG_SET (set&: this_alternative_exclude_start_hard_regs);
2281 this_alternative_win = false;
2282 this_alternative_match_win = false;
2283 this_alternative_offmemok = false;
2284 this_alternative_matches = -1;
2285
2286 /* An empty constraint should be excluded by the fast
2287 track. */
2288 lra_assert (*p != 0 && *p != ',');
2289
2290 op_reject = 0;
2291 /* Scan this alternative's specs for this operand; set WIN
2292 if the operand fits any letter in this alternative.
2293 Otherwise, clear BADOP if this operand could fit some
2294 letter after reloads, or set WINREG if this operand could
2295 fit after reloads provided the constraint allows some
2296 registers. */
2297 costly_p = false;
2298 do
2299 {
2300 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2301 {
2302 case '\0':
2303 len = 0;
2304 break;
2305 case ',':
2306 c = '\0';
2307 break;
2308
2309 case '&':
2310 early_clobber_p = true;
2311 break;
2312
2313 case '$':
2314 op_reject += LRA_MAX_REJECT;
2315 break;
2316 case '^':
2317 op_reject += LRA_LOSER_COST_FACTOR;
2318 break;
2319
2320 case '#':
2321 /* Ignore rest of this alternative. */
2322 c = '\0';
2323 break;
2324
2325 case '0': case '1': case '2': case '3': case '4':
2326 case '5': case '6': case '7': case '8': case '9':
2327 {
2328 int m_hregno;
2329 bool match_p;
2330
2331 m = strtoul (nptr: p, endptr: &end, base: 10);
2332 p = end;
2333 len = 0;
2334 lra_assert (nop > m);
2335
2336 /* Reject matches if we don't know which operand is
2337 bigger. This situation would arguably be a bug in
2338 an .md pattern, but could also occur in a user asm. */
2339 if (!ordered_p (a: GET_MODE_SIZE (mode: biggest_mode[m]),
2340 b: GET_MODE_SIZE (mode: biggest_mode[nop])))
2341 break;
2342
2343 /* Don't match wrong asm insn operands for proper
2344 diagnostic later. */
2345 if (INSN_CODE (curr_insn) < 0
2346 && (curr_operand_mode[m] == BLKmode
2347 || curr_operand_mode[nop] == BLKmode)
2348 && curr_operand_mode[m] != curr_operand_mode[nop])
2349 break;
2350
2351 m_hregno = get_hard_regno (x: *curr_id->operand_loc[m]);
2352 /* We are supposed to match a previous operand.
2353 If we do, we win if that one did. If we do
2354 not, count both of the operands as losers.
2355 (This is too conservative, since most of the
2356 time only a single reload insn will be needed
2357 to make the two operands win. As a result,
2358 this alternative may be rejected when it is
2359 actually desirable.) */
2360 match_p = false;
2361 if (operands_match_p (x: *curr_id->operand_loc[nop],
2362 y: *curr_id->operand_loc[m], y_hard_regno: m_hregno))
2363 {
2364 /* We should reject matching of an early
2365 clobber operand if the matching operand is
2366 not dying in the insn. */
2367 if (!TEST_BIT (curr_static_id->operand[m]
2368 .early_clobber_alts, nalt)
2369 || operand_reg[nop] == NULL_RTX
2370 || (find_regno_note (curr_insn, REG_DEAD,
2371 REGNO (op))
2372 || REGNO (op) == REGNO (operand_reg[m])))
2373 match_p = true;
2374 }
2375 if (match_p)
2376 {
2377 /* If we are matching a non-offsettable
2378 address where an offsettable address was
2379 expected, then we must reject this
2380 combination, because we can't reload
2381 it. */
2382 if (curr_alt_offmemok[m]
2383 && MEM_P (*curr_id->operand_loc[m])
2384 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
2385 continue;
2386 }
2387 else
2388 {
2389 /* If the operands do not match and one
2390 operand is INOUT, we can not match them.
2391 Try other possibilities, e.g. other
2392 alternatives or commutative operand
2393 exchange. */
2394 if (curr_static_id->operand[nop].type == OP_INOUT
2395 || curr_static_id->operand[m].type == OP_INOUT)
2396 break;
2397 /* Operands don't match. If the operands are
2398 different user defined explicit hard
2399 registers, then we cannot make them match
2400 when one is early clobber operand. */
2401 if ((REG_P (*curr_id->operand_loc[nop])
2402 || SUBREG_P (*curr_id->operand_loc[nop]))
2403 && (REG_P (*curr_id->operand_loc[m])
2404 || SUBREG_P (*curr_id->operand_loc[m])))
2405 {
2406 rtx nop_reg = *curr_id->operand_loc[nop];
2407 if (SUBREG_P (nop_reg))
2408 nop_reg = SUBREG_REG (nop_reg);
2409 rtx m_reg = *curr_id->operand_loc[m];
2410 if (SUBREG_P (m_reg))
2411 m_reg = SUBREG_REG (m_reg);
2412
2413 if (REG_P (nop_reg)
2414 && HARD_REGISTER_P (nop_reg)
2415 && REG_USERVAR_P (nop_reg)
2416 && REG_P (m_reg)
2417 && HARD_REGISTER_P (m_reg)
2418 && REG_USERVAR_P (m_reg))
2419 {
2420 int i;
2421
2422 for (i = 0; i < early_clobbered_regs_num; i++)
2423 if (m == early_clobbered_nops[i])
2424 break;
2425 if (i < early_clobbered_regs_num
2426 || early_clobber_p)
2427 break;
2428 }
2429 }
2430 /* Both operands must allow a reload register,
2431 otherwise we cannot make them match. */
2432 if (curr_alt[m] == NO_REGS)
2433 break;
2434 /* Retroactively mark the operand we had to
2435 match as a loser, if it wasn't already and
2436 it wasn't matched to a register constraint
2437 (e.g it might be matched by memory). */
2438 if (curr_alt_win[m]
2439 && (operand_reg[m] == NULL_RTX
2440 || hard_regno[m] < 0))
2441 {
2442 losers++;
2443 reload_nregs
2444 += (ira_reg_class_max_nregs[curr_alt[m]]
2445 [GET_MODE (*curr_id->operand_loc[m])]);
2446 }
2447
2448 /* Prefer matching earlyclobber alternative as
2449 it results in less hard regs required for
2450 the insn than a non-matching earlyclobber
2451 alternative. */
2452 if (TEST_BIT (curr_static_id->operand[m]
2453 .early_clobber_alts, nalt))
2454 {
2455 if (lra_dump_file != NULL)
2456 fprintf
2457 (stream: lra_dump_file,
2458 format: " %d Matching earlyclobber alt:"
2459 " reject--\n",
2460 nop);
2461 if (!matching_early_clobber[m])
2462 {
2463 reject--;
2464 matching_early_clobber[m] = 1;
2465 }
2466 }
2467 /* Otherwise we prefer no matching
2468 alternatives because it gives more freedom
2469 in RA. */
2470 else if (operand_reg[nop] == NULL_RTX
2471 || (find_regno_note (curr_insn, REG_DEAD,
2472 REGNO (operand_reg[nop]))
2473 == NULL_RTX))
2474 {
2475 if (lra_dump_file != NULL)
2476 fprintf
2477 (stream: lra_dump_file,
2478 format: " %d Matching alt: reject+=2\n",
2479 nop);
2480 reject += 2;
2481 }
2482 }
2483 /* If we have to reload this operand and some
2484 previous operand also had to match the same
2485 thing as this operand, we don't know how to do
2486 that. */
2487 if (!match_p || !curr_alt_win[m])
2488 {
2489 for (i = 0; i < nop; i++)
2490 if (curr_alt_matches[i] == m)
2491 break;
2492 if (i < nop)
2493 break;
2494 }
2495 else
2496 did_match = true;
2497
2498 this_alternative_matches = m;
2499 /* This can be fixed with reloads if the operand
2500 we are supposed to match can be fixed with
2501 reloads. */
2502 badop = false;
2503 this_alternative = curr_alt[m];
2504 this_alternative_set = curr_alt_set[m];
2505 this_alternative_exclude_start_hard_regs
2506 = curr_alt_exclude_start_hard_regs[m];
2507 winreg = this_alternative != NO_REGS;
2508 break;
2509 }
2510
2511 case 'g':
2512 if (MEM_P (op)
2513 || general_constant_p (x: op)
2514 || spilled_pseudo_p (op))
2515 win = true;
2516 cl = GENERAL_REGS;
2517 goto reg;
2518
2519 default:
2520 cn = lookup_constraint (p);
2521 switch (get_constraint_type (c: cn))
2522 {
2523 case CT_REGISTER:
2524 cl = reg_class_for_constraint (c: cn);
2525 if (cl != NO_REGS)
2526 goto reg;
2527 break;
2528
2529 case CT_CONST_INT:
2530 if (CONST_INT_P (op)
2531 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2532 win = true;
2533 break;
2534
2535 case CT_MEMORY:
2536 case CT_RELAXED_MEMORY:
2537 if (MEM_P (op)
2538 && satisfies_memory_constraint_p (op, constraint: cn))
2539 win = true;
2540 else if (spilled_pseudo_p (op))
2541 win = true;
2542
2543 /* If we didn't already win, we can reload constants
2544 via force_const_mem or put the pseudo value into
2545 memory, or make other memory by reloading the
2546 address like for 'o'. */
2547 if (CONST_POOL_OK_P (mode, op)
2548 || MEM_P (op) || REG_P (op)
2549 /* We can restore the equiv insn by a
2550 reload. */
2551 || equiv_substition_p[nop])
2552 badop = false;
2553 constmemok = true;
2554 offmemok = true;
2555 break;
2556
2557 case CT_ADDRESS:
2558 /* An asm operand with an address constraint
2559 that doesn't satisfy address_operand has
2560 is_address cleared, so that we don't try to
2561 make a non-address fit. */
2562 if (!curr_static_id->operand[nop].is_address)
2563 break;
2564 /* If we didn't already win, we can reload the address
2565 into a base register. */
2566 if (satisfies_address_constraint_p (op, constraint: cn))
2567 win = true;
2568 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2569 outer_code: ADDRESS, index_code: SCRATCH);
2570 badop = false;
2571 goto reg;
2572
2573 case CT_FIXED_FORM:
2574 if (constraint_satisfied_p (x: op, c: cn))
2575 win = true;
2576 break;
2577
2578 case CT_SPECIAL_MEMORY:
2579 if (satisfies_memory_constraint_p (op, constraint: cn))
2580 win = true;
2581 else if (spilled_pseudo_p (op))
2582 {
2583 curr_reuse_alt_p = false;
2584 win = true;
2585 }
2586 break;
2587 }
2588 break;
2589
2590 reg:
2591 if (mode == BLKmode)
2592 break;
2593 this_alternative = reg_class_subunion[this_alternative][cl];
2594 if (hard_reg_set_subset_p (x: this_alternative_set,
2595 reg_class_contents[cl]))
2596 this_alternative_exclude_start_hard_regs
2597 = ira_exclude_class_mode_regs[cl][mode];
2598 else if (!hard_reg_set_subset_p (reg_class_contents[cl],
2599 y: this_alternative_set))
2600 this_alternative_exclude_start_hard_regs
2601 |= ira_exclude_class_mode_regs[cl][mode];
2602 this_alternative_set |= reg_class_contents[cl];
2603 if (costly_p)
2604 {
2605 this_costly_alternative
2606 = reg_class_subunion[this_costly_alternative][cl];
2607 this_costly_alternative_set |= reg_class_contents[cl];
2608 }
2609 winreg = true;
2610 if (REG_P (op))
2611 {
2612 tree decl;
2613 if (hard_regno[nop] >= 0
2614 && in_hard_reg_set_p (regs: this_alternative_set,
2615 mode, regno: hard_regno[nop])
2616 && ((REG_ATTRS (op) && (decl = REG_EXPR (op)) != NULL
2617 && VAR_P (decl) && DECL_HARD_REGISTER (decl))
2618 || !(TEST_HARD_REG_BIT
2619 (set: this_alternative_exclude_start_hard_regs,
2620 bit: hard_regno[nop]))))
2621 win = true;
2622 else if (hard_regno[nop] < 0
2623 && in_class_p (reg: op, cl: this_alternative, NULL))
2624 win = true;
2625 }
2626 break;
2627 }
2628 if (c != ' ' && c != '\t')
2629 costly_p = c == '*';
2630 }
2631 while ((p += len), c);
2632
2633 scratch_p = (operand_reg[nop] != NULL_RTX
2634 && ira_former_scratch_p (REGNO (operand_reg[nop])));
2635 /* Record which operands fit this alternative. */
2636 if (win)
2637 {
2638 this_alternative_win = true;
2639 if (operand_reg[nop] != NULL_RTX)
2640 {
2641 if (hard_regno[nop] >= 0)
2642 {
2643 if (in_hard_reg_set_p (regs: this_costly_alternative_set,
2644 mode, regno: hard_regno[nop]))
2645 {
2646 if (lra_dump_file != NULL)
2647 fprintf (stream: lra_dump_file,
2648 format: " %d Costly set: reject++\n",
2649 nop);
2650 reject++;
2651 }
2652 }
2653 else
2654 {
2655 /* Prefer won reg to spilled pseudo under other
2656 equal conditions for possibe inheritance. */
2657 if (! scratch_p)
2658 {
2659 if (lra_dump_file != NULL)
2660 fprintf
2661 (stream: lra_dump_file,
2662 format: " %d Non pseudo reload: reject++\n",
2663 nop);
2664 reject++;
2665 }
2666 if (in_class_p (reg: operand_reg[nop],
2667 cl: this_costly_alternative, NULL))
2668 {
2669 if (lra_dump_file != NULL)
2670 fprintf
2671 (stream: lra_dump_file,
2672 format: " %d Non pseudo costly reload:"
2673 " reject++\n",
2674 nop);
2675 reject++;
2676 }
2677 }
2678 /* We simulate the behavior of old reload here.
2679 Although scratches need hard registers and it
2680 might result in spilling other pseudos, no reload
2681 insns are generated for the scratches. So it
2682 might cost something but probably less than old
2683 reload pass believes. */
2684 if (scratch_p)
2685 {
2686 if (lra_dump_file != NULL)
2687 fprintf (stream: lra_dump_file,
2688 format: " %d Scratch win: reject+=2\n",
2689 nop);
2690 reject += 2;
2691 }
2692 }
2693 }
2694 else if (did_match)
2695 this_alternative_match_win = true;
2696 else
2697 {
2698 int const_to_mem = 0;
2699 bool no_regs_p;
2700
2701 reject += op_reject;
2702 /* Mark output reload of the stack pointer. */
2703 if (op == stack_pointer_rtx
2704 && curr_static_id->operand[nop].type != OP_IN)
2705 curr_alt_out_sp_reload_p = true;
2706
2707 /* If this alternative asks for a specific reg class, see if there
2708 is at least one allocatable register in that class. */
2709 no_regs_p
2710 = (this_alternative == NO_REGS
2711 || (hard_reg_set_subset_p
2712 (reg_class_contents[this_alternative],
2713 y: lra_no_alloc_regs)));
2714
2715 /* For asms, verify that the class for this alternative is possible
2716 for the mode that is specified. */
2717 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2718 {
2719 int i;
2720 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2721 if (targetm.hard_regno_mode_ok (i, mode)
2722 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2723 mode, regno: i))
2724 break;
2725 if (i == FIRST_PSEUDO_REGISTER)
2726 winreg = false;
2727 }
2728
2729 /* If this operand accepts a register, and if the
2730 register class has at least one allocatable register,
2731 then this operand can be reloaded. */
2732 if (winreg && !no_regs_p)
2733 badop = false;
2734
2735 if (badop)
2736 {
2737 if (lra_dump_file != NULL)
2738 fprintf (stream: lra_dump_file,
2739 format: " Bad operand -- refuse\n");
2740 goto fail;
2741 }
2742
2743 if (this_alternative != NO_REGS)
2744 {
2745 HARD_REG_SET available_regs
2746 = (reg_class_contents[this_alternative]
2747 & ~((ira_prohibited_class_mode_regs
2748 [this_alternative][mode])
2749 | lra_no_alloc_regs));
2750 if (hard_reg_set_empty_p (x: available_regs))
2751 {
2752 /* There are no hard regs holding a value of given
2753 mode. */
2754 if (offmemok)
2755 {
2756 this_alternative = NO_REGS;
2757 if (lra_dump_file != NULL)
2758 fprintf (stream: lra_dump_file,
2759 format: " %d Using memory because of"
2760 " a bad mode: reject+=2\n",
2761 nop);
2762 reject += 2;
2763 }
2764 else
2765 {
2766 if (lra_dump_file != NULL)
2767 fprintf (stream: lra_dump_file,
2768 format: " Wrong mode -- refuse\n");
2769 goto fail;
2770 }
2771 }
2772 }
2773
2774 /* If not assigned pseudo has a class which a subset of
2775 required reg class, it is a less costly alternative
2776 as the pseudo still can get a hard reg of necessary
2777 class. */
2778 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2779 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2780 && ira_class_subset_p[this_alternative][cl])
2781 {
2782 if (lra_dump_file != NULL)
2783 fprintf
2784 (stream: lra_dump_file,
2785 format: " %d Super set class reg: reject-=3\n", nop);
2786 reject -= 3;
2787 }
2788
2789 this_alternative_offmemok = offmemok;
2790 if (this_costly_alternative != NO_REGS)
2791 {
2792 if (lra_dump_file != NULL)
2793 fprintf (stream: lra_dump_file,
2794 format: " %d Costly loser: reject++\n", nop);
2795 reject++;
2796 }
2797 /* If the operand is dying, has a matching constraint,
2798 and satisfies constraints of the matched operand
2799 which failed to satisfy the own constraints, most probably
2800 the reload for this operand will be gone. */
2801 if (this_alternative_matches >= 0
2802 && !curr_alt_win[this_alternative_matches]
2803 && REG_P (op)
2804 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2805 && (hard_regno[nop] >= 0
2806 ? in_hard_reg_set_p (regs: this_alternative_set,
2807 mode, regno: hard_regno[nop])
2808 : in_class_p (reg: op, cl: this_alternative, NULL)))
2809 {
2810 if (lra_dump_file != NULL)
2811 fprintf
2812 (stream: lra_dump_file,
2813 format: " %d Dying matched operand reload: reject++\n",
2814 nop);
2815 reject++;
2816 }
2817 else
2818 {
2819 /* Strict_low_part requires to reload the register
2820 not the sub-register. In this case we should
2821 check that a final reload hard reg can hold the
2822 value mode. */
2823 if (curr_static_id->operand[nop].strict_low
2824 && REG_P (op)
2825 && hard_regno[nop] < 0
2826 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2827 && ira_class_hard_regs_num[this_alternative] > 0
2828 && (!targetm.hard_regno_mode_ok
2829 (ira_class_hard_regs[this_alternative][0],
2830 GET_MODE (*curr_id->operand_loc[nop]))))
2831 {
2832 if (lra_dump_file != NULL)
2833 fprintf
2834 (stream: lra_dump_file,
2835 format: " Strict low subreg reload -- refuse\n");
2836 goto fail;
2837 }
2838 losers++;
2839 }
2840 if (operand_reg[nop] != NULL_RTX
2841 /* Output operands and matched input operands are
2842 not inherited. The following conditions do not
2843 exactly describe the previous statement but they
2844 are pretty close. */
2845 && curr_static_id->operand[nop].type != OP_OUT
2846 && (this_alternative_matches < 0
2847 || curr_static_id->operand[nop].type != OP_IN))
2848 {
2849 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2850 (operand_reg[nop])]
2851 .last_reload);
2852
2853 /* The value of reload_sum has sense only if we
2854 process insns in their order. It happens only on
2855 the first constraints sub-pass when we do most of
2856 reload work. */
2857 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2858 reload_sum += last_reload - bb_reload_num;
2859 }
2860 /* If this is a constant that is reloaded into the
2861 desired class by copying it to memory first, count
2862 that as another reload. This is consistent with
2863 other code and is required to avoid choosing another
2864 alternative when the constant is moved into memory.
2865 Note that the test here is precisely the same as in
2866 the code below that calls force_const_mem. */
2867 if (CONST_POOL_OK_P (mode, op)
2868 && ((targetm.preferred_reload_class
2869 (op, this_alternative) == NO_REGS)
2870 || no_input_reloads_p))
2871 {
2872 const_to_mem = 1;
2873 if (! no_regs_p)
2874 losers++;
2875 }
2876
2877 /* Alternative loses if it requires a type of reload not
2878 permitted for this insn. We can always reload
2879 objects with a REG_UNUSED note. */
2880 if ((curr_static_id->operand[nop].type != OP_IN
2881 && no_output_reloads_p
2882 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2883 || (curr_static_id->operand[nop].type != OP_OUT
2884 && no_input_reloads_p && ! const_to_mem)
2885 || (this_alternative_matches >= 0
2886 && (no_input_reloads_p
2887 || (no_output_reloads_p
2888 && (curr_static_id->operand
2889 [this_alternative_matches].type != OP_IN)
2890 && ! find_reg_note (curr_insn, REG_UNUSED,
2891 no_subreg_reg_operand
2892 [this_alternative_matches])))))
2893 {
2894 if (lra_dump_file != NULL)
2895 fprintf
2896 (stream: lra_dump_file,
2897 format: " No input/output reload -- refuse\n");
2898 goto fail;
2899 }
2900
2901 /* Alternative loses if it required class pseudo cannot
2902 hold value of required mode. Such insns can be
2903 described by insn definitions with mode iterators. */
2904 if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2905 && ! hard_reg_set_empty_p (x: this_alternative_set)
2906 /* It is common practice for constraints to use a
2907 class which does not have actually enough regs to
2908 hold the value (e.g. x86 AREG for mode requiring
2909 more one general reg). Therefore we have 2
2910 conditions to check that the reload pseudo cannot
2911 hold the mode value. */
2912 && (!targetm.hard_regno_mode_ok
2913 (ira_class_hard_regs[this_alternative][0],
2914 GET_MODE (*curr_id->operand_loc[nop])))
2915 /* The above condition is not enough as the first
2916 reg in ira_class_hard_regs can be not aligned for
2917 multi-words mode values. */
2918 && (prohibited_class_reg_set_mode_p
2919 (rclass: this_alternative, set&: this_alternative_set,
2920 GET_MODE (*curr_id->operand_loc[nop]))))
2921 {
2922 if (lra_dump_file != NULL)
2923 fprintf (stream: lra_dump_file,
2924 format: " reload pseudo for op %d "
2925 "cannot hold the mode value -- refuse\n",
2926 nop);
2927 goto fail;
2928 }
2929
2930 /* Check strong discouragement of reload of non-constant
2931 into class THIS_ALTERNATIVE. */
2932 if (! CONSTANT_P (op) && ! no_regs_p
2933 && (targetm.preferred_reload_class
2934 (op, this_alternative) == NO_REGS
2935 || (curr_static_id->operand[nop].type == OP_OUT
2936 && (targetm.preferred_output_reload_class
2937 (op, this_alternative) == NO_REGS))))
2938 {
2939 if (offmemok && REG_P (op))
2940 {
2941 if (lra_dump_file != NULL)
2942 fprintf
2943 (stream: lra_dump_file,
2944 format: " %d Spill pseudo into memory: reject+=3\n",
2945 nop);
2946 reject += 3;
2947 }
2948 else
2949 {
2950 if (lra_dump_file != NULL)
2951 fprintf
2952 (stream: lra_dump_file,
2953 format: " %d Non-prefered reload: reject+=%d\n",
2954 nop, LRA_MAX_REJECT);
2955 reject += LRA_MAX_REJECT;
2956 }
2957 }
2958
2959 if (! (MEM_P (op) && offmemok)
2960 && ! (const_to_mem && constmemok))
2961 {
2962 /* We prefer to reload pseudos over reloading other
2963 things, since such reloads may be able to be
2964 eliminated later. So bump REJECT in other cases.
2965 Don't do this in the case where we are forcing a
2966 constant into memory and it will then win since
2967 we don't want to have a different alternative
2968 match then. */
2969 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2970 {
2971 if (lra_dump_file != NULL)
2972 fprintf
2973 (stream: lra_dump_file,
2974 format: " %d Non-pseudo reload: reject+=2\n",
2975 nop);
2976 reject += 2;
2977 }
2978
2979 if (! no_regs_p)
2980 reload_nregs
2981 += ira_reg_class_max_nregs[this_alternative][mode];
2982
2983 if (SMALL_REGISTER_CLASS_P (this_alternative))
2984 {
2985 if (lra_dump_file != NULL)
2986 fprintf
2987 (stream: lra_dump_file,
2988 format: " %d Small class reload: reject+=%d\n",
2989 nop, LRA_LOSER_COST_FACTOR / 2);
2990 reject += LRA_LOSER_COST_FACTOR / 2;
2991 }
2992 }
2993
2994 /* We are trying to spill pseudo into memory. It is
2995 usually more costly than moving to a hard register
2996 although it might takes the same number of
2997 reloads.
2998
2999 Non-pseudo spill may happen also. Suppose a target allows both
3000 register and memory in the operand constraint alternatives,
3001 then it's typical that an eliminable register has a substition
3002 of "base + offset" which can either be reloaded by a simple
3003 "new_reg <= base + offset" which will match the register
3004 constraint, or a similar reg addition followed by further spill
3005 to and reload from memory which will match the memory
3006 constraint, but this memory spill will be much more costly
3007 usually.
3008
3009 Code below increases the reject for both pseudo and non-pseudo
3010 spill. */
3011 if (no_regs_p
3012 && !(MEM_P (op) && offmemok)
3013 && !(REG_P (op) && hard_regno[nop] < 0))
3014 {
3015 if (lra_dump_file != NULL)
3016 fprintf
3017 (stream: lra_dump_file,
3018 format: " %d Spill %spseudo into memory: reject+=3\n",
3019 nop, REG_P (op) ? "" : "Non-");
3020 reject += 3;
3021 if (VECTOR_MODE_P (mode))
3022 {
3023 /* Spilling vectors into memory is usually more
3024 costly as they contain big values. */
3025 if (lra_dump_file != NULL)
3026 fprintf
3027 (stream: lra_dump_file,
3028 format: " %d Spill vector pseudo: reject+=2\n",
3029 nop);
3030 reject += 2;
3031 }
3032 }
3033
3034 /* When we use an operand requiring memory in given
3035 alternative, the insn should write *and* read the
3036 value to/from memory it is costly in comparison with
3037 an insn alternative which does not use memory
3038 (e.g. register or immediate operand). We exclude
3039 memory operand for such case as we can satisfy the
3040 memory constraints by reloading address. */
3041 if (no_regs_p && offmemok && !MEM_P (op))
3042 {
3043 if (lra_dump_file != NULL)
3044 fprintf
3045 (stream: lra_dump_file,
3046 format: " Using memory insn operand %d: reject+=3\n",
3047 nop);
3048 reject += 3;
3049 }
3050
3051 /* If reload requires moving value through secondary
3052 memory, it will need one more insn at least. */
3053 if (this_alternative != NO_REGS
3054 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
3055 && ((curr_static_id->operand[nop].type != OP_OUT
3056 && targetm.secondary_memory_needed (GET_MODE (op), cl,
3057 this_alternative))
3058 || (curr_static_id->operand[nop].type != OP_IN
3059 && (targetm.secondary_memory_needed
3060 (GET_MODE (op), this_alternative, cl)))))
3061 losers++;
3062
3063 if (MEM_P (op) && offmemok)
3064 addr_losers++;
3065 else
3066 {
3067 /* Input reloads can be inherited more often than
3068 output reloads can be removed, so penalize output
3069 reloads. */
3070 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
3071 {
3072 if (lra_dump_file != NULL)
3073 fprintf
3074 (stream: lra_dump_file,
3075 format: " %d Non input pseudo reload: reject++\n",
3076 nop);
3077 reject++;
3078 }
3079
3080 if (curr_static_id->operand[nop].type == OP_INOUT)
3081 {
3082 if (lra_dump_file != NULL)
3083 fprintf
3084 (stream: lra_dump_file,
3085 format: " %d Input/Output reload: reject+=%d\n",
3086 nop, LRA_LOSER_COST_FACTOR);
3087 reject += LRA_LOSER_COST_FACTOR;
3088 }
3089 }
3090 }
3091
3092 if (early_clobber_p && ! scratch_p)
3093 {
3094 if (lra_dump_file != NULL)
3095 fprintf (stream: lra_dump_file,
3096 format: " %d Early clobber: reject++\n", nop);
3097 reject++;
3098 }
3099 /* ??? We check early clobbers after processing all operands
3100 (see loop below) and there we update the costs more.
3101 Should we update the cost (may be approximately) here
3102 because of early clobber register reloads or it is a rare
3103 or non-important thing to be worth to do it. */
3104 overall = (losers * LRA_LOSER_COST_FACTOR + reject
3105 - (addr_losers == losers ? static_reject : 0));
3106 if ((best_losers == 0 || losers != 0) && best_overall < overall)
3107 {
3108 if (lra_dump_file != NULL)
3109 fprintf (stream: lra_dump_file,
3110 format: " overall=%d,losers=%d -- refuse\n",
3111 overall, losers);
3112 goto fail;
3113 }
3114
3115 if (update_and_check_small_class_inputs (nop, nalt,
3116 op_class: this_alternative))
3117 {
3118 if (lra_dump_file != NULL)
3119 fprintf (stream: lra_dump_file,
3120 format: " not enough small class regs -- refuse\n");
3121 goto fail;
3122 }
3123 curr_alt[nop] = this_alternative;
3124 curr_alt_set[nop] = this_alternative_set;
3125 curr_alt_exclude_start_hard_regs[nop]
3126 = this_alternative_exclude_start_hard_regs;
3127 curr_alt_win[nop] = this_alternative_win;
3128 curr_alt_match_win[nop] = this_alternative_match_win;
3129 curr_alt_offmemok[nop] = this_alternative_offmemok;
3130 curr_alt_matches[nop] = this_alternative_matches;
3131
3132 if (this_alternative_matches >= 0
3133 && !did_match && !this_alternative_win)
3134 curr_alt_win[this_alternative_matches] = false;
3135
3136 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
3137 early_clobbered_nops[early_clobbered_regs_num++] = nop;
3138 }
3139
3140 if (curr_insn_set != NULL_RTX && n_operands == 2
3141 /* Prevent processing non-move insns. */
3142 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
3143 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
3144 && ((! curr_alt_win[0] && ! curr_alt_win[1]
3145 && REG_P (no_subreg_reg_operand[0])
3146 && REG_P (no_subreg_reg_operand[1])
3147 && (reg_in_class_p (reg: no_subreg_reg_operand[0], cl: curr_alt[1])
3148 || reg_in_class_p (reg: no_subreg_reg_operand[1], cl: curr_alt[0])))
3149 || (! curr_alt_win[0] && curr_alt_win[1]
3150 && REG_P (no_subreg_reg_operand[1])
3151 /* Check that we reload memory not the memory
3152 address. */
3153 && ! (curr_alt_offmemok[0]
3154 && MEM_P (no_subreg_reg_operand[0]))
3155 && reg_in_class_p (reg: no_subreg_reg_operand[1], cl: curr_alt[0]))
3156 || (curr_alt_win[0] && ! curr_alt_win[1]
3157 && REG_P (no_subreg_reg_operand[0])
3158 /* Check that we reload memory not the memory
3159 address. */
3160 && ! (curr_alt_offmemok[1]
3161 && MEM_P (no_subreg_reg_operand[1]))
3162 && reg_in_class_p (reg: no_subreg_reg_operand[0], cl: curr_alt[1])
3163 && (! CONST_POOL_OK_P (curr_operand_mode[1],
3164 no_subreg_reg_operand[1])
3165 || (targetm.preferred_reload_class
3166 (no_subreg_reg_operand[1],
3167 (enum reg_class) curr_alt[1]) != NO_REGS))
3168 /* If it is a result of recent elimination in move
3169 insn we can transform it into an add still by
3170 using this alternative. */
3171 && GET_CODE (no_subreg_reg_operand[1]) != PLUS
3172 /* Likewise if the source has been replaced with an
3173 equivalent value. This only happens once -- the reload
3174 will use the equivalent value instead of the register it
3175 replaces -- so there should be no danger of cycling. */
3176 && !equiv_substition_p[1])))
3177 {
3178 /* We have a move insn and a new reload insn will be similar
3179 to the current insn. We should avoid such situation as
3180 it results in LRA cycling. */
3181 if (lra_dump_file != NULL)
3182 fprintf (stream: lra_dump_file,
3183 format: " Cycle danger: overall += LRA_MAX_REJECT\n");
3184 overall += LRA_MAX_REJECT;
3185 }
3186 ok_p = true;
3187 curr_alt_dont_inherit_ops_num = 0;
3188 for (nop = 0; nop < early_clobbered_regs_num; nop++)
3189 {
3190 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
3191 HARD_REG_SET temp_set;
3192
3193 i = early_clobbered_nops[nop];
3194 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
3195 || hard_regno[i] < 0)
3196 continue;
3197 lra_assert (operand_reg[i] != NULL_RTX);
3198 clobbered_hard_regno = hard_regno[i];
3199 CLEAR_HARD_REG_SET (set&: temp_set);
3200 add_to_hard_reg_set (regs: &temp_set, GET_MODE (*curr_id->operand_loc[i]),
3201 regno: clobbered_hard_regno);
3202 first_conflict_j = last_conflict_j = -1;
3203 for (j = 0; j < n_operands; j++)
3204 if (j == i
3205 /* We don't want process insides of match_operator and
3206 match_parallel because otherwise we would process
3207 their operands once again generating a wrong
3208 code. */
3209 || curr_static_id->operand[j].is_operator)
3210 continue;
3211 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
3212 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
3213 continue;
3214 /* If we don't reload j-th operand, check conflicts. */
3215 else if ((curr_alt_win[j] || curr_alt_match_win[j])
3216 && uses_hard_regs_p (x: *curr_id->operand_loc[j], set: temp_set))
3217 {
3218 if (first_conflict_j < 0)
3219 first_conflict_j = j;
3220 last_conflict_j = j;
3221 /* Both the earlyclobber operand and conflicting operand
3222 cannot both be user defined hard registers. */
3223 if (HARD_REGISTER_P (operand_reg[i])
3224 && REG_USERVAR_P (operand_reg[i])
3225 && operand_reg[j] != NULL_RTX
3226 && HARD_REGISTER_P (operand_reg[j])
3227 && REG_USERVAR_P (operand_reg[j]))
3228 {
3229 /* For asm, let curr_insn_transform diagnose it. */
3230 if (INSN_CODE (curr_insn) < 0)
3231 return false;
3232 fatal_insn ("unable to generate reloads for "
3233 "impossible constraints:", curr_insn);
3234 }
3235 }
3236 if (last_conflict_j < 0)
3237 continue;
3238
3239 /* If an earlyclobber operand conflicts with another non-matching
3240 operand (ie, they have been assigned the same hard register),
3241 then it is better to reload the other operand, as there may
3242 exist yet another operand with a matching constraint associated
3243 with the earlyclobber operand. However, if one of the operands
3244 is an explicit use of a hard register, then we must reload the
3245 other non-hard register operand. */
3246 if (HARD_REGISTER_P (operand_reg[i])
3247 || (first_conflict_j == last_conflict_j
3248 && operand_reg[last_conflict_j] != NULL_RTX
3249 && !curr_alt_match_win[last_conflict_j]
3250 && !HARD_REGISTER_P (operand_reg[last_conflict_j])))
3251 {
3252 curr_alt_win[last_conflict_j] = false;
3253 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
3254 = last_conflict_j;
3255 losers++;
3256 if (lra_dump_file != NULL)
3257 fprintf
3258 (stream: lra_dump_file,
3259 format: " %d Conflict early clobber reload: reject--\n",
3260 i);
3261 }
3262 else
3263 {
3264 /* We need to reload early clobbered register and the
3265 matched registers. */
3266 for (j = 0; j < n_operands; j++)
3267 if (curr_alt_matches[j] == i)
3268 {
3269 curr_alt_match_win[j] = false;
3270 losers++;
3271 overall += LRA_LOSER_COST_FACTOR;
3272 }
3273 if (! curr_alt_match_win[i])
3274 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
3275 else
3276 {
3277 /* Remember pseudos used for match reloads are never
3278 inherited. */
3279 lra_assert (curr_alt_matches[i] >= 0);
3280 curr_alt_win[curr_alt_matches[i]] = false;
3281 }
3282 curr_alt_win[i] = curr_alt_match_win[i] = false;
3283 losers++;
3284 if (lra_dump_file != NULL)
3285 fprintf
3286 (stream: lra_dump_file,
3287 format: " %d Matched conflict early clobber reloads: "
3288 "reject--\n",
3289 i);
3290 }
3291 /* Early clobber was already reflected in REJECT. */
3292 if (!matching_early_clobber[i])
3293 {
3294 lra_assert (reject > 0);
3295 reject--;
3296 matching_early_clobber[i] = 1;
3297 }
3298 overall += LRA_LOSER_COST_FACTOR - 1;
3299 }
3300 if (lra_dump_file != NULL)
3301 fprintf (stream: lra_dump_file, format: " overall=%d,losers=%d,rld_nregs=%d\n",
3302 overall, losers, reload_nregs);
3303
3304 /* If this alternative can be made to work by reloading, and it
3305 needs less reloading than the others checked so far, record
3306 it as the chosen goal for reloading. */
3307 if ((best_losers != 0 && losers == 0)
3308 || (((best_losers == 0 && losers == 0)
3309 || (best_losers != 0 && losers != 0))
3310 && (best_overall > overall
3311 || (best_overall == overall
3312 /* If the cost of the reloads is the same,
3313 prefer alternative which requires minimal
3314 number of reload regs. */
3315 && (reload_nregs < best_reload_nregs
3316 || (reload_nregs == best_reload_nregs
3317 && (best_reload_sum < reload_sum
3318 || (best_reload_sum == reload_sum
3319 && nalt < goal_alt_number))))))))
3320 {
3321 for (nop = 0; nop < n_operands; nop++)
3322 {
3323 goal_alt_win[nop] = curr_alt_win[nop];
3324 goal_alt_match_win[nop] = curr_alt_match_win[nop];
3325 goal_alt_matches[nop] = curr_alt_matches[nop];
3326 goal_alt[nop] = curr_alt[nop];
3327 goal_alt_exclude_start_hard_regs[nop]
3328 = curr_alt_exclude_start_hard_regs[nop];
3329 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
3330 }
3331 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
3332 goal_reuse_alt_p = curr_reuse_alt_p;
3333 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
3334 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
3335 goal_alt_swapped = curr_swapped;
3336 goal_alt_out_sp_reload_p = curr_alt_out_sp_reload_p;
3337 best_overall = overall;
3338 best_losers = losers;
3339 best_reload_nregs = reload_nregs;
3340 best_reload_sum = reload_sum;
3341 goal_alt_number = nalt;
3342 }
3343 if (losers == 0)
3344 /* Everything is satisfied. Do not process alternatives
3345 anymore. */
3346 break;
3347 fail:
3348 ;
3349 }
3350 return ok_p;
3351}
3352
3353/* Make reload base reg from address AD. */
3354static rtx
3355base_to_reg (struct address_info *ad)
3356{
3357 enum reg_class cl;
3358 int code = -1;
3359 rtx new_inner = NULL_RTX;
3360 rtx new_reg = NULL_RTX;
3361 rtx_insn *insn;
3362 rtx_insn *last_insn = get_last_insn();
3363
3364 lra_assert (ad->disp == ad->disp_term);
3365 cl = base_reg_class (mode: ad->mode, as: ad->as, outer_code: ad->base_outer_code,
3366 index_code: get_index_code (ad));
3367 new_reg = lra_create_new_reg (GET_MODE (*ad->base), NULL_RTX, cl, NULL,
3368 "base");
3369 new_inner = simplify_gen_binary (code: PLUS, GET_MODE (new_reg), op0: new_reg,
3370 op1: ad->disp_term == NULL
3371 ? const0_rtx
3372 : *ad->disp_term);
3373 if (!valid_address_p (mode: ad->mode, addr: new_inner, as: ad->as))
3374 return NULL_RTX;
3375 insn = emit_insn (gen_rtx_SET (new_reg, *ad->base));
3376 code = recog_memoized (insn);
3377 if (code < 0)
3378 {
3379 delete_insns_since (last_insn);
3380 return NULL_RTX;
3381 }
3382
3383 return new_inner;
3384}
3385
3386/* Make reload base reg + DISP from address AD. Return the new pseudo. */
3387static rtx
3388base_plus_disp_to_reg (struct address_info *ad, rtx disp)
3389{
3390 enum reg_class cl;
3391 rtx new_reg;
3392
3393 lra_assert (ad->base == ad->base_term);
3394 cl = base_reg_class (mode: ad->mode, as: ad->as, outer_code: ad->base_outer_code,
3395 index_code: get_index_code (ad));
3396 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX, cl, NULL,
3397 "base + disp");
3398 lra_emit_add (new_reg, *ad->base_term, disp);
3399 return new_reg;
3400}
3401
3402/* Make reload of index part of address AD. Return the new
3403 pseudo. */
3404static rtx
3405index_part_to_reg (struct address_info *ad, enum reg_class index_class)
3406{
3407 rtx new_reg;
3408
3409 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
3410 index_class, NULL, "index term");
3411 expand_mult (GET_MODE (*ad->index), *ad->index_term,
3412 GEN_INT (get_index_scale (ad)), new_reg, 1);
3413 return new_reg;
3414}
3415
3416/* Return true if we can add a displacement to address AD, even if that
3417 makes the address invalid. The fix-up code requires any new address
3418 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3419static bool
3420can_add_disp_p (struct address_info *ad)
3421{
3422 return (!ad->autoinc_p
3423 && ad->segment == NULL
3424 && ad->base == ad->base_term
3425 && ad->disp == ad->disp_term);
3426}
3427
3428/* Make equiv substitution in address AD. Return true if a substitution
3429 was made. */
3430static bool
3431equiv_address_substitution (struct address_info *ad)
3432{
3433 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
3434 poly_int64 disp;
3435 HOST_WIDE_INT scale;
3436 bool change_p;
3437
3438 base_term = strip_subreg (loc: ad->base_term);
3439 if (base_term == NULL)
3440 base_reg = new_base_reg = NULL_RTX;
3441 else
3442 {
3443 base_reg = *base_term;
3444 new_base_reg = get_equiv_with_elimination (x: base_reg, insn: curr_insn);
3445 }
3446 index_term = strip_subreg (loc: ad->index_term);
3447 if (index_term == NULL)
3448 index_reg = new_index_reg = NULL_RTX;
3449 else
3450 {
3451 index_reg = *index_term;
3452 new_index_reg = get_equiv_with_elimination (x: index_reg, insn: curr_insn);
3453 }
3454 if (base_reg == new_base_reg && index_reg == new_index_reg)
3455 return false;
3456 disp = 0;
3457 change_p = false;
3458 if (lra_dump_file != NULL)
3459 {
3460 fprintf (stream: lra_dump_file, format: "Changing address in insn %d ",
3461 INSN_UID (insn: curr_insn));
3462 dump_value_slim (lra_dump_file, *ad->outer, 1);
3463 }
3464 if (base_reg != new_base_reg)
3465 {
3466 poly_int64 offset;
3467 if (REG_P (new_base_reg))
3468 {
3469 *base_term = new_base_reg;
3470 change_p = true;
3471 }
3472 else if (GET_CODE (new_base_reg) == PLUS
3473 && REG_P (XEXP (new_base_reg, 0))
3474 && poly_int_rtx_p (XEXP (new_base_reg, 1), res: &offset)
3475 && can_add_disp_p (ad))
3476 {
3477 disp += offset;
3478 *base_term = XEXP (new_base_reg, 0);
3479 change_p = true;
3480 }
3481 if (ad->base_term2 != NULL)
3482 *ad->base_term2 = *ad->base_term;
3483 }
3484 if (index_reg != new_index_reg)
3485 {
3486 poly_int64 offset;
3487 if (REG_P (new_index_reg))
3488 {
3489 *index_term = new_index_reg;
3490 change_p = true;
3491 }
3492 else if (GET_CODE (new_index_reg) == PLUS
3493 && REG_P (XEXP (new_index_reg, 0))
3494 && poly_int_rtx_p (XEXP (new_index_reg, 1), res: &offset)
3495 && can_add_disp_p (ad)
3496 && (scale = get_index_scale (ad)))
3497 {
3498 disp += offset * scale;
3499 *index_term = XEXP (new_index_reg, 0);
3500 change_p = true;
3501 }
3502 }
3503 if (maybe_ne (a: disp, b: 0))
3504 {
3505 if (ad->disp != NULL)
3506 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
3507 else
3508 {
3509 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
3510 update_address (ad);
3511 }
3512 change_p = true;
3513 }
3514 if (lra_dump_file != NULL)
3515 {
3516 if (! change_p)
3517 fprintf (stream: lra_dump_file, format: " -- no change\n");
3518 else
3519 {
3520 fprintf (stream: lra_dump_file, format: " on equiv ");
3521 dump_value_slim (lra_dump_file, *ad->outer, 1);
3522 fprintf (stream: lra_dump_file, format: "\n");
3523 }
3524 }
3525 return change_p;
3526}
3527
3528/* Skip all modifiers and whitespaces in constraint STR and return the
3529 result. */
3530static const char *
3531skip_constraint_modifiers (const char *str)
3532{
3533 for (;;str++)
3534 switch (*str)
3535 {
3536 case '+': case '&' : case '=': case '*': case ' ': case '\t':
3537 case '$': case '^' : case '%': case '?': case '!':
3538 break;
3539 default: return str;
3540 }
3541}
3542
3543/* Takes a string of 0 or more comma-separated constraints. When more
3544 than one constraint is present, evaluate whether they all correspond
3545 to a single, repeated constraint (e.g. "r,r") or whether we have
3546 more than one distinct constraints (e.g. "r,m"). */
3547static bool
3548constraint_unique (const char *cstr)
3549{
3550 enum constraint_num ca, cb;
3551 ca = CONSTRAINT__UNKNOWN;
3552 for (;;)
3553 {
3554 cstr = skip_constraint_modifiers (str: cstr);
3555 if (*cstr == '\0' || *cstr == ',')
3556 cb = CONSTRAINT_X;
3557 else
3558 {
3559 cb = lookup_constraint (p: cstr);
3560 if (cb == CONSTRAINT__UNKNOWN)
3561 return false;
3562 cstr += CONSTRAINT_LEN (cstr[0], cstr);
3563 }
3564 /* Handle the first iteration of the loop. */
3565 if (ca == CONSTRAINT__UNKNOWN)
3566 ca = cb;
3567 /* Handle the general case of comparing ca with subsequent
3568 constraints. */
3569 else if (ca != cb)
3570 return false;
3571 if (*cstr == '\0')
3572 return true;
3573 if (*cstr == ',')
3574 cstr += 1;
3575 }
3576}
3577
3578/* Major function to make reloads for an address in operand NOP or
3579 check its correctness (If CHECK_ONLY_P is true). The supported
3580 cases are:
3581
3582 1) an address that existed before LRA started, at which point it
3583 must have been valid. These addresses are subject to elimination
3584 and may have become invalid due to the elimination offset being out
3585 of range.
3586
3587 2) an address created by forcing a constant to memory
3588 (force_const_to_mem). The initial form of these addresses might
3589 not be valid, and it is this function's job to make them valid.
3590
3591 3) a frame address formed from a register and a (possibly zero)
3592 constant offset. As above, these addresses might not be valid and
3593 this function must make them so.
3594
3595 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3596 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3597 address. Return true for any RTL change.
3598
3599 The function is a helper function which does not produce all
3600 transformations (when CHECK_ONLY_P is false) which can be
3601 necessary. It does just basic steps. To do all necessary
3602 transformations use function process_address. */
3603static bool
3604process_address_1 (int nop, bool check_only_p,
3605 rtx_insn **before, rtx_insn **after)
3606{
3607 struct address_info ad;
3608 rtx new_reg;
3609 HOST_WIDE_INT scale;
3610 rtx op = *curr_id->operand_loc[nop];
3611 rtx mem = extract_mem_from_operand (op);
3612 const char *constraint;
3613 enum constraint_num cn;
3614 bool change_p = false;
3615
3616 if (MEM_P (mem)
3617 && GET_MODE (mem) == BLKmode
3618 && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3619 return false;
3620
3621 constraint
3622 = skip_constraint_modifiers (str: curr_static_id->operand[nop].constraint);
3623 if (IN_RANGE (constraint[0], '0', '9'))
3624 {
3625 char *end;
3626 unsigned long dup = strtoul (nptr: constraint, endptr: &end, base: 10);
3627 constraint
3628 = skip_constraint_modifiers (str: curr_static_id->operand[dup].constraint);
3629 }
3630 cn = lookup_constraint (p: *constraint == '\0' ? "X" : constraint);
3631 /* If we have several alternatives or/and several constraints in an
3632 alternative and we can not say at this stage what constraint will be used,
3633 use unknown constraint. The exception is an address constraint. If
3634 operand has one address constraint, probably all others constraints are
3635 address ones. */
3636 if (constraint[0] != '\0' && get_constraint_type (c: cn) != CT_ADDRESS
3637 && !constraint_unique (cstr: constraint))
3638 cn = CONSTRAINT__UNKNOWN;
3639 if (insn_extra_address_constraint (c: cn)
3640 /* When we find an asm operand with an address constraint that
3641 doesn't satisfy address_operand to begin with, we clear
3642 is_address, so that we don't try to make a non-address fit.
3643 If the asm statement got this far, it's because other
3644 constraints are available, and we'll use them, disregarding
3645 the unsatisfiable address ones. */
3646 && curr_static_id->operand[nop].is_address)
3647 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
3648 /* Do not attempt to decompose arbitrary addresses generated by combine
3649 for asm operands with loose constraints, e.g 'X'.
3650 Need to extract memory from op for special memory constraint,
3651 i.e. bcst_mem_operand in i386 backend. */
3652 else if (MEM_P (mem)
3653 && !(INSN_CODE (curr_insn) < 0
3654 && get_constraint_type (c: cn) == CT_FIXED_FORM
3655 && constraint_satisfied_p (x: op, c: cn)))
3656 decompose_mem_address (&ad, mem);
3657 else if (GET_CODE (op) == SUBREG
3658 && MEM_P (SUBREG_REG (op)))
3659 decompose_mem_address (&ad, SUBREG_REG (op));
3660 else
3661 return false;
3662 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3663 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3664 when INDEX_REG_CLASS is a single register class. */
3665 enum reg_class index_cl = index_reg_class (insn: curr_insn);
3666 if (ad.base_term != NULL
3667 && ad.index_term != NULL
3668 && ira_class_hard_regs_num[index_cl] == 1
3669 && REG_P (*ad.base_term)
3670 && REG_P (*ad.index_term)
3671 && in_class_p (reg: *ad.base_term, cl: index_cl, NULL)
3672 && ! in_class_p (reg: *ad.index_term, cl: index_cl, NULL))
3673 {
3674 std::swap (a&: ad.base, b&: ad.index);
3675 std::swap (a&: ad.base_term, b&: ad.index_term);
3676 }
3677 if (! check_only_p)
3678 change_p = equiv_address_substitution (ad: &ad);
3679 if (ad.base_term != NULL
3680 && (process_addr_reg
3681 (loc: ad.base_term, check_only_p, before,
3682 after: (ad.autoinc_p
3683 && !(REG_P (*ad.base_term)
3684 && find_regno_note (curr_insn, REG_DEAD,
3685 REGNO (*ad.base_term)) != NULL_RTX)
3686 ? after : NULL),
3687 cl: base_reg_class (mode: ad.mode, as: ad.as, outer_code: ad.base_outer_code,
3688 index_code: get_index_code (&ad), insn: curr_insn))))
3689 {
3690 change_p = true;
3691 if (ad.base_term2 != NULL)
3692 *ad.base_term2 = *ad.base_term;
3693 }
3694 if (ad.index_term != NULL
3695 && process_addr_reg (loc: ad.index_term, check_only_p,
3696 before, NULL, cl: index_cl))
3697 change_p = true;
3698
3699 /* Target hooks sometimes don't treat extra-constraint addresses as
3700 legitimate address_operands, so handle them specially. */
3701 if (insn_extra_address_constraint (c: cn)
3702 && satisfies_address_constraint_p (ad: &ad, constraint: cn))
3703 return change_p;
3704
3705 if (check_only_p)
3706 return change_p;
3707
3708 /* There are three cases where the shape of *AD.INNER may now be invalid:
3709
3710 1) the original address was valid, but either elimination or
3711 equiv_address_substitution was applied and that made
3712 the address invalid.
3713
3714 2) the address is an invalid symbolic address created by
3715 force_const_to_mem.
3716
3717 3) the address is a frame address with an invalid offset.
3718
3719 4) the address is a frame address with an invalid base.
3720
3721 All these cases involve a non-autoinc address, so there is no
3722 point revalidating other types. */
3723 if (ad.autoinc_p || valid_address_p (op, ad: &ad, constraint: cn))
3724 return change_p;
3725
3726 /* Any index existed before LRA started, so we can assume that the
3727 presence and shape of the index is valid. */
3728 push_to_sequence (*before);
3729 lra_assert (ad.disp == ad.disp_term);
3730 if (ad.base == NULL)
3731 {
3732 if (ad.index == NULL)
3733 {
3734 rtx_insn *insn;
3735 rtx_insn *last = get_last_insn ();
3736 int code = -1;
3737 enum reg_class cl = base_reg_class (mode: ad.mode, as: ad.as,
3738 outer_code: SCRATCH, index_code: SCRATCH,
3739 insn: curr_insn);
3740 rtx addr = *ad.inner;
3741
3742 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, NULL, "addr");
3743 if (HAVE_lo_sum)
3744 {
3745 /* addr => lo_sum (new_base, addr), case (2) above. */
3746 insn = emit_insn (gen_rtx_SET
3747 (new_reg,
3748 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
3749 code = recog_memoized (insn);
3750 if (code >= 0)
3751 {
3752 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
3753 if (!valid_address_p (op, ad: &ad, constraint: cn))
3754 {
3755 /* Try to put lo_sum into register. */
3756 insn = emit_insn (gen_rtx_SET
3757 (new_reg,
3758 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
3759 code = recog_memoized (insn);
3760 if (code >= 0)
3761 {
3762 *ad.inner = new_reg;
3763 if (!valid_address_p (op, ad: &ad, constraint: cn))
3764 {
3765 *ad.inner = addr;
3766 code = -1;
3767 }
3768 }
3769
3770 }
3771 }
3772 if (code < 0)
3773 delete_insns_since (last);
3774 }
3775
3776 if (code < 0)
3777 {
3778 /* addr => new_base, case (2) above. */
3779 lra_emit_move (new_reg, addr);
3780
3781 for (insn = last == NULL_RTX ? get_insns () : NEXT_INSN (insn: last);
3782 insn != NULL_RTX;
3783 insn = NEXT_INSN (insn))
3784 if (recog_memoized (insn) < 0)
3785 break;
3786 if (insn != NULL_RTX)
3787 {
3788 /* Do nothing if we cannot generate right insns.
3789 This is analogous to reload pass behavior. */
3790 delete_insns_since (last);
3791 end_sequence ();
3792 return false;
3793 }
3794 *ad.inner = new_reg;
3795 }
3796 }
3797 else
3798 {
3799 /* index * scale + disp => new base + index * scale,
3800 case (1) above. */
3801 enum reg_class cl = base_reg_class (mode: ad.mode, as: ad.as, outer_code: PLUS,
3802 GET_CODE (*ad.index),
3803 insn: curr_insn);
3804
3805 lra_assert (index_cl != NO_REGS);
3806 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, NULL, "disp");
3807 lra_emit_move (new_reg, *ad.disp);
3808 *ad.inner = simplify_gen_binary (code: PLUS, GET_MODE (new_reg),
3809 op0: new_reg, op1: *ad.index);
3810 }
3811 }
3812 else if (ad.index == NULL)
3813 {
3814 int regno;
3815 enum reg_class cl;
3816 rtx set;
3817 rtx_insn *insns, *last_insn;
3818 /* Try to reload base into register only if the base is invalid
3819 for the address but with valid offset, case (4) above. */
3820 start_sequence ();
3821 new_reg = base_to_reg (ad: &ad);
3822
3823 /* base + disp => new base, cases (1) and (3) above. */
3824 /* Another option would be to reload the displacement into an
3825 index register. However, postreload has code to optimize
3826 address reloads that have the same base and different
3827 displacements, so reloading into an index register would
3828 not necessarily be a win. */
3829 if (new_reg == NULL_RTX)
3830 {
3831 /* See if the target can split the displacement into a
3832 legitimate new displacement from a local anchor. */
3833 gcc_assert (ad.disp == ad.disp_term);
3834 poly_int64 orig_offset;
3835 rtx offset1, offset2;
3836 if (poly_int_rtx_p (x: *ad.disp, res: &orig_offset)
3837 && targetm.legitimize_address_displacement (&offset1, &offset2,
3838 orig_offset,
3839 ad.mode))
3840 {
3841 new_reg = base_plus_disp_to_reg (ad: &ad, disp: offset1);
3842 new_reg = gen_rtx_PLUS (GET_MODE (new_reg), new_reg, offset2);
3843 }
3844 else
3845 new_reg = base_plus_disp_to_reg (ad: &ad, disp: *ad.disp);
3846 }
3847 insns = get_insns ();
3848 last_insn = get_last_insn ();
3849 /* If we generated at least two insns, try last insn source as
3850 an address. If we succeed, we generate one less insn. */
3851 if (REG_P (new_reg)
3852 && last_insn != insns
3853 && (set = single_set (insn: last_insn)) != NULL_RTX
3854 && GET_CODE (SET_SRC (set)) == PLUS
3855 && REG_P (XEXP (SET_SRC (set), 0))
3856 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3857 {
3858 *ad.inner = SET_SRC (set);
3859 if (valid_address_p (op, ad: &ad, constraint: cn))
3860 {
3861 *ad.base_term = XEXP (SET_SRC (set), 0);
3862 *ad.disp_term = XEXP (SET_SRC (set), 1);
3863 cl = base_reg_class (mode: ad.mode, as: ad.as, outer_code: ad.base_outer_code,
3864 index_code: get_index_code (&ad), insn: curr_insn);
3865 regno = REGNO (*ad.base_term);
3866 if (regno >= FIRST_PSEUDO_REGISTER
3867 && cl != lra_get_allocno_class (regno))
3868 lra_change_class (regno, new_class: cl, title: " Change to", nl_p: true);
3869 new_reg = SET_SRC (set);
3870 delete_insns_since (PREV_INSN (insn: last_insn));
3871 }
3872 }
3873 end_sequence ();
3874 emit_insn (insns);
3875 *ad.inner = new_reg;
3876 }
3877 else if (ad.disp_term != NULL)
3878 {
3879 /* base + scale * index + disp => new base + scale * index,
3880 case (1) above. */
3881 gcc_assert (ad.disp == ad.disp_term);
3882 new_reg = base_plus_disp_to_reg (ad: &ad, disp: *ad.disp);
3883 *ad.inner = simplify_gen_binary (code: PLUS, GET_MODE (new_reg),
3884 op0: new_reg, op1: *ad.index);
3885 }
3886 else if ((scale = get_index_scale (&ad)) == 1)
3887 {
3888 /* The last transformation to one reg will be made in
3889 curr_insn_transform function. */
3890 end_sequence ();
3891 return false;
3892 }
3893 else if (scale != 0)
3894 {
3895 /* base + scale * index => base + new_reg,
3896 case (1) above.
3897 Index part of address may become invalid. For example, we
3898 changed pseudo on the equivalent memory and a subreg of the
3899 pseudo onto the memory of different mode for which the scale is
3900 prohibitted. */
3901 new_reg = index_part_to_reg (ad: &ad, index_class: index_cl);
3902 *ad.inner = simplify_gen_binary (code: PLUS, GET_MODE (new_reg),
3903 op0: *ad.base_term, op1: new_reg);
3904 }
3905 else
3906 {
3907 enum reg_class cl = base_reg_class (mode: ad.mode, as: ad.as,
3908 outer_code: SCRATCH, index_code: SCRATCH,
3909 insn: curr_insn);
3910 rtx addr = *ad.inner;
3911
3912 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, NULL, "addr");
3913 /* addr => new_base. */
3914 lra_emit_move (new_reg, addr);
3915 *ad.inner = new_reg;
3916 }
3917 *before = get_insns ();
3918 end_sequence ();
3919 return true;
3920}
3921
3922/* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3923 Use process_address_1 as a helper function. Return true for any
3924 RTL changes.
3925
3926 If CHECK_ONLY_P is true, just check address correctness. Return
3927 false if the address correct. */
3928static bool
3929process_address (int nop, bool check_only_p,
3930 rtx_insn **before, rtx_insn **after)
3931{
3932 bool res = false;
3933
3934 while (process_address_1 (nop, check_only_p, before, after))
3935 {
3936 if (check_only_p)
3937 return true;
3938 res = true;
3939 }
3940 return res;
3941}
3942
3943/* Emit insns to reload VALUE into a new register. VALUE is an
3944 auto-increment or auto-decrement RTX whose operand is a register or
3945 memory location; so reloading involves incrementing that location.
3946 IN is either identical to VALUE, or some cheaper place to reload
3947 value being incremented/decremented from.
3948
3949 INC_AMOUNT is the number to increment or decrement by (always
3950 positive and ignored for POST_MODIFY/PRE_MODIFY).
3951
3952 Return pseudo containing the result. */
3953static rtx
3954emit_inc (enum reg_class new_rclass, rtx in, rtx value, poly_int64 inc_amount)
3955{
3956 /* REG or MEM to be copied and incremented. */
3957 rtx incloc = XEXP (value, 0);
3958 /* Nonzero if increment after copying. */
3959 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3960 || GET_CODE (value) == POST_MODIFY);
3961 rtx_insn *last;
3962 rtx inc;
3963 rtx_insn *add_insn;
3964 int code;
3965 rtx real_in = in == value ? incloc : in;
3966 rtx result;
3967 bool plus_p = true;
3968
3969 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3970 {
3971 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3972 || GET_CODE (XEXP (value, 1)) == MINUS);
3973 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3974 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3975 inc = XEXP (XEXP (value, 1), 1);
3976 }
3977 else
3978 {
3979 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3980 inc_amount = -inc_amount;
3981
3982 inc = gen_int_mode (inc_amount, GET_MODE (value));
3983 }
3984
3985 if (! post && REG_P (incloc))
3986 result = incloc;
3987 else
3988 result = lra_create_new_reg (GET_MODE (value), value, new_rclass, NULL,
3989 "INC/DEC result");
3990
3991 if (real_in != result)
3992 {
3993 /* First copy the location to the result register. */
3994 lra_assert (REG_P (result));
3995 emit_insn (gen_move_insn (result, real_in));
3996 }
3997
3998 /* We suppose that there are insns to add/sub with the constant
3999 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
4000 old reload worked with this assumption. If the assumption
4001 becomes wrong, we should use approach in function
4002 base_plus_disp_to_reg. */
4003 if (in == value)
4004 {
4005 /* See if we can directly increment INCLOC. */
4006 last = get_last_insn ();
4007 add_insn = emit_insn (plus_p
4008 ? gen_add2_insn (incloc, inc)
4009 : gen_sub2_insn (incloc, inc));
4010
4011 code = recog_memoized (insn: add_insn);
4012 if (code >= 0)
4013 {
4014 if (! post && result != incloc)
4015 emit_insn (gen_move_insn (result, incloc));
4016 return result;
4017 }
4018 delete_insns_since (last);
4019 }
4020
4021 /* If couldn't do the increment directly, must increment in RESULT.
4022 The way we do this depends on whether this is pre- or
4023 post-increment. For pre-increment, copy INCLOC to the reload
4024 register, increment it there, then save back. */
4025 if (! post)
4026 {
4027 if (real_in != result)
4028 emit_insn (gen_move_insn (result, real_in));
4029 if (plus_p)
4030 emit_insn (gen_add2_insn (result, inc));
4031 else
4032 emit_insn (gen_sub2_insn (result, inc));
4033 if (result != incloc)
4034 emit_insn (gen_move_insn (incloc, result));
4035 }
4036 else
4037 {
4038 /* Post-increment.
4039
4040 Because this might be a jump insn or a compare, and because
4041 RESULT may not be available after the insn in an input
4042 reload, we must do the incrementing before the insn being
4043 reloaded for.
4044
4045 We have already copied IN to RESULT. Increment the copy in
4046 RESULT, save that back, then decrement RESULT so it has
4047 the original value. */
4048 if (plus_p)
4049 emit_insn (gen_add2_insn (result, inc));
4050 else
4051 emit_insn (gen_sub2_insn (result, inc));
4052 emit_insn (gen_move_insn (incloc, result));
4053 /* Restore non-modified value for the result. We prefer this
4054 way because it does not require an additional hard
4055 register. */
4056 if (plus_p)
4057 {
4058 poly_int64 offset;
4059 if (poly_int_rtx_p (x: inc, res: &offset))
4060 emit_insn (gen_add2_insn (result,
4061 gen_int_mode (-offset,
4062 GET_MODE (result))));
4063 else
4064 emit_insn (gen_sub2_insn (result, inc));
4065 }
4066 else
4067 emit_insn (gen_add2_insn (result, inc));
4068 }
4069 return result;
4070}
4071
4072/* Return true if the current move insn does not need processing as we
4073 already know that it satisfies its constraints. */
4074static bool
4075simple_move_p (void)
4076{
4077 rtx dest, src;
4078 enum reg_class dclass, sclass;
4079
4080 lra_assert (curr_insn_set != NULL_RTX);
4081 dest = SET_DEST (curr_insn_set);
4082 src = SET_SRC (curr_insn_set);
4083
4084 /* If the instruction has multiple sets we need to process it even if it
4085 is single_set. This can happen if one or more of the SETs are dead.
4086 See PR73650. */
4087 if (multiple_sets (curr_insn))
4088 return false;
4089
4090 return ((dclass = get_op_class (op: dest)) != NO_REGS
4091 && (sclass = get_op_class (op: src)) != NO_REGS
4092 /* The backend guarantees that register moves of cost 2
4093 never need reloads. */
4094 && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
4095 }
4096
4097/* Swap operands NOP and NOP + 1. */
4098static inline void
4099swap_operands (int nop)
4100{
4101 std::swap (a&: curr_operand_mode[nop], b&: curr_operand_mode[nop + 1]);
4102 std::swap (a&: original_subreg_reg_mode[nop], b&: original_subreg_reg_mode[nop + 1]);
4103 std::swap (a&: *curr_id->operand_loc[nop], b&: *curr_id->operand_loc[nop + 1]);
4104 std::swap (a&: equiv_substition_p[nop], b&: equiv_substition_p[nop + 1]);
4105 /* Swap the duplicates too. */
4106 lra_update_dup (id: curr_id, nop);
4107 lra_update_dup (id: curr_id, nop: nop + 1);
4108}
4109
4110/* Main entry point of the constraint code: search the body of the
4111 current insn to choose the best alternative. It is mimicking insn
4112 alternative cost calculation model of former reload pass. That is
4113 because machine descriptions were written to use this model. This
4114 model can be changed in future. Make commutative operand exchange
4115 if it is chosen.
4116
4117 if CHECK_ONLY_P is false, do RTL changes to satisfy the
4118 constraints. Return true if any change happened during function
4119 call.
4120
4121 If CHECK_ONLY_P is true then don't do any transformation. Just
4122 check that the insn satisfies all constraints. If the insn does
4123 not satisfy any constraint, return true. */
4124static bool
4125curr_insn_transform (bool check_only_p)
4126{
4127 int i, j, k;
4128 int n_operands;
4129 int n_alternatives;
4130 int n_outputs;
4131 int commutative;
4132 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
4133 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
4134 signed char outputs[MAX_RECOG_OPERANDS + 1];
4135 rtx_insn *before, *after;
4136 bool alt_p = false;
4137 /* Flag that the insn has been changed through a transformation. */
4138 bool change_p;
4139 bool sec_mem_p;
4140 bool use_sec_mem_p;
4141 int max_regno_before;
4142 int reused_alternative_num;
4143
4144 curr_insn_set = single_set (insn: curr_insn);
4145 if (curr_insn_set != NULL_RTX && simple_move_p ())
4146 {
4147 /* We assume that the corresponding insn alternative has no
4148 earlier clobbers. If it is not the case, don't define move
4149 cost equal to 2 for the corresponding register classes. */
4150 lra_set_used_insn_alternative (curr_insn, LRA_NON_CLOBBERED_ALT);
4151 return false;
4152 }
4153
4154 no_input_reloads_p = no_output_reloads_p = false;
4155 goal_alt_number = -1;
4156 change_p = sec_mem_p = false;
4157
4158 /* CALL_INSNs are not allowed to have any output reloads. */
4159 if (CALL_P (curr_insn))
4160 no_output_reloads_p = true;
4161
4162 n_operands = curr_static_id->n_operands;
4163 n_alternatives = curr_static_id->n_alternatives;
4164
4165 /* Just return "no reloads" if insn has no operands with
4166 constraints. */
4167 if (n_operands == 0 || n_alternatives == 0)
4168 return false;
4169
4170 max_regno_before = max_reg_num ();
4171
4172 for (i = 0; i < n_operands; i++)
4173 {
4174 goal_alt_matched[i][0] = -1;
4175 goal_alt_matches[i] = -1;
4176 }
4177
4178 commutative = curr_static_id->commutative;
4179
4180 /* Now see what we need for pseudos that didn't get hard regs or got
4181 the wrong kind of hard reg. For this, we must consider all the
4182 operands together against the register constraints. */
4183
4184 best_losers = best_overall = INT_MAX;
4185 best_reload_sum = 0;
4186
4187 curr_swapped = false;
4188 goal_alt_swapped = false;
4189
4190 if (! check_only_p)
4191 /* Make equivalence substitution and memory subreg elimination
4192 before address processing because an address legitimacy can
4193 depend on memory mode. */
4194 for (i = 0; i < n_operands; i++)
4195 {
4196 rtx op, subst, old;
4197 bool op_change_p = false;
4198
4199 if (curr_static_id->operand[i].is_operator)
4200 continue;
4201
4202 old = op = *curr_id->operand_loc[i];
4203 if (GET_CODE (old) == SUBREG)
4204 old = SUBREG_REG (old);
4205 subst = get_equiv_with_elimination (x: old, insn: curr_insn);
4206 original_subreg_reg_mode[i] = VOIDmode;
4207 equiv_substition_p[i] = false;
4208 if (subst != old)
4209 {
4210 equiv_substition_p[i] = true;
4211 subst = copy_rtx (subst);
4212 lra_assert (REG_P (old));
4213 if (GET_CODE (op) != SUBREG)
4214 *curr_id->operand_loc[i] = subst;
4215 else
4216 {
4217 SUBREG_REG (op) = subst;
4218 if (GET_MODE (subst) == VOIDmode)
4219 original_subreg_reg_mode[i] = GET_MODE (old);
4220 }
4221 if (lra_dump_file != NULL)
4222 {
4223 fprintf (stream: lra_dump_file,
4224 format: "Changing pseudo %d in operand %i of insn %u on equiv ",
4225 REGNO (old), i, INSN_UID (insn: curr_insn));
4226 dump_value_slim (lra_dump_file, subst, 1);
4227 fprintf (stream: lra_dump_file, format: "\n");
4228 }
4229 op_change_p = change_p = true;
4230 }
4231 if (simplify_operand_subreg (nop: i, GET_MODE (old)) || op_change_p)
4232 {
4233 change_p = true;
4234 lra_update_dup (id: curr_id, nop: i);
4235 }
4236 }
4237
4238 /* Reload address registers and displacements. We do it before
4239 finding an alternative because of memory constraints. */
4240 before = after = NULL;
4241 for (i = 0; i < n_operands; i++)
4242 if (! curr_static_id->operand[i].is_operator
4243 && process_address (nop: i, check_only_p, before: &before, after: &after))
4244 {
4245 if (check_only_p)
4246 return true;
4247 change_p = true;
4248 lra_update_dup (id: curr_id, nop: i);
4249 }
4250
4251 if (change_p)
4252 /* If we've changed the instruction then any alternative that
4253 we chose previously may no longer be valid. */
4254 lra_set_used_insn_alternative (curr_insn, LRA_UNKNOWN_ALT);
4255
4256 if (! check_only_p && curr_insn_set != NULL_RTX
4257 && check_and_process_move (change_p: &change_p, sec_mem_p: &sec_mem_p))
4258 return change_p;
4259
4260 try_swapped:
4261
4262 reused_alternative_num = check_only_p ? LRA_UNKNOWN_ALT : curr_id->used_insn_alternative;
4263 if (lra_dump_file != NULL && reused_alternative_num >= 0)
4264 fprintf (stream: lra_dump_file, format: "Reusing alternative %d for insn #%u\n",
4265 reused_alternative_num, INSN_UID (insn: curr_insn));
4266
4267 if (process_alt_operands (only_alternative: reused_alternative_num))
4268 alt_p = true;
4269
4270 if (check_only_p)
4271 return ! alt_p || best_losers != 0;
4272
4273 /* If insn is commutative (it's safe to exchange a certain pair of
4274 operands) then we need to try each alternative twice, the second
4275 time matching those two operands as if we had exchanged them. To
4276 do this, really exchange them in operands.
4277
4278 If we have just tried the alternatives the second time, return
4279 operands to normal and drop through. */
4280
4281 if (reused_alternative_num < 0 && commutative >= 0)
4282 {
4283 curr_swapped = !curr_swapped;
4284 if (curr_swapped)
4285 {
4286 swap_operands (nop: commutative);
4287 goto try_swapped;
4288 }
4289 else
4290 swap_operands (nop: commutative);
4291 }
4292
4293 if (! alt_p && ! sec_mem_p)
4294 {
4295 /* No alternative works with reloads?? */
4296 if (INSN_CODE (curr_insn) >= 0)
4297 fatal_insn ("unable to generate reloads for:", curr_insn);
4298 error_for_asm (curr_insn,
4299 "inconsistent operand constraints in an %<asm%>");
4300 lra_asm_error_p = true;
4301 if (! JUMP_P (curr_insn))
4302 {
4303 /* Avoid further trouble with this insn. Don't generate use
4304 pattern here as we could use the insn SP offset. */
4305 lra_set_insn_deleted (curr_insn);
4306 }
4307 else
4308 {
4309 lra_invalidate_insn_data (curr_insn);
4310 ira_nullify_asm_goto (insn: curr_insn);
4311 lra_update_insn_regno_info (curr_insn);
4312 }
4313 return true;
4314 }
4315
4316 /* If the best alternative is with operands 1 and 2 swapped, swap
4317 them. Update the operand numbers of any reloads already
4318 pushed. */
4319
4320 if (goal_alt_swapped)
4321 {
4322 if (lra_dump_file != NULL)
4323 fprintf (stream: lra_dump_file, format: " Commutative operand exchange in insn %u\n",
4324 INSN_UID (insn: curr_insn));
4325
4326 /* Swap the duplicates too. */
4327 swap_operands (nop: commutative);
4328 change_p = true;
4329 }
4330
4331 /* Some targets' TARGET_SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
4332 too conservatively. So we use the secondary memory only if there
4333 is no any alternative without reloads. */
4334 use_sec_mem_p = false;
4335 if (! alt_p)
4336 use_sec_mem_p = true;
4337 else if (sec_mem_p)
4338 {
4339 for (i = 0; i < n_operands; i++)
4340 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
4341 break;
4342 use_sec_mem_p = i < n_operands;
4343 }
4344
4345 if (use_sec_mem_p)
4346 {
4347 int in = -1, out = -1;
4348 rtx new_reg, src, dest, rld;
4349 machine_mode sec_mode, rld_mode;
4350
4351 lra_assert (curr_insn_set != NULL_RTX && sec_mem_p);
4352 dest = SET_DEST (curr_insn_set);
4353 src = SET_SRC (curr_insn_set);
4354 for (i = 0; i < n_operands; i++)
4355 if (*curr_id->operand_loc[i] == dest)
4356 out = i;
4357 else if (*curr_id->operand_loc[i] == src)
4358 in = i;
4359 for (i = 0; i < curr_static_id->n_dups; i++)
4360 if (out < 0 && *curr_id->dup_loc[i] == dest)
4361 out = curr_static_id->dup_num[i];
4362 else if (in < 0 && *curr_id->dup_loc[i] == src)
4363 in = curr_static_id->dup_num[i];
4364 lra_assert (out >= 0 && in >= 0
4365 && curr_static_id->operand[out].type == OP_OUT
4366 && curr_static_id->operand[in].type == OP_IN);
4367 rld = partial_subreg_p (GET_MODE (src), GET_MODE (dest)) ? src : dest;
4368 rld_mode = GET_MODE (rld);
4369 sec_mode = targetm.secondary_memory_needed_mode (rld_mode);
4370 new_reg = lra_create_new_reg (sec_mode, NULL_RTX, NO_REGS, NULL,
4371 "secondary");
4372 /* If the mode is changed, it should be wider. */
4373 lra_assert (!partial_subreg_p (sec_mode, rld_mode));
4374 if (sec_mode != rld_mode)
4375 {
4376 /* If the target says specifically to use another mode for
4377 secondary memory moves we cannot reuse the original
4378 insn. */
4379 after = emit_spill_move (to_p: false, mem_pseudo: new_reg, val: dest);
4380 lra_process_new_insns (curr_insn, NULL, after,
4381 "Inserting the sec. move");
4382 /* We may have non null BEFORE here (e.g. after address
4383 processing. */
4384 push_to_sequence (before);
4385 before = emit_spill_move (to_p: true, mem_pseudo: new_reg, val: src);
4386 emit_insn (before);
4387 before = get_insns ();
4388 end_sequence ();
4389 lra_process_new_insns (curr_insn, before, NULL, "Changing on");
4390 lra_set_insn_deleted (curr_insn);
4391 }
4392 else if (dest == rld)
4393 {
4394 *curr_id->operand_loc[out] = new_reg;
4395 lra_update_dup (id: curr_id, nop: out);
4396 after = emit_spill_move (to_p: false, mem_pseudo: new_reg, val: dest);
4397 lra_process_new_insns (curr_insn, NULL, after,
4398 "Inserting the sec. move");
4399 }
4400 else
4401 {
4402 *curr_id->operand_loc[in] = new_reg;
4403 lra_update_dup (id: curr_id, nop: in);
4404 /* See comments above. */
4405 push_to_sequence (before);
4406 before = emit_spill_move (to_p: true, mem_pseudo: new_reg, val: src);
4407 emit_insn (before);
4408 before = get_insns ();
4409 end_sequence ();
4410 lra_process_new_insns (curr_insn, before, NULL,
4411 "Inserting the sec. move");
4412 }
4413 lra_update_insn_regno_info (curr_insn);
4414 return true;
4415 }
4416
4417 lra_assert (goal_alt_number >= 0);
4418 lra_set_used_insn_alternative (curr_insn, goal_reuse_alt_p
4419 ? goal_alt_number : LRA_UNKNOWN_ALT);
4420
4421 if (lra_dump_file != NULL)
4422 {
4423 const char *p;
4424
4425 fprintf (stream: lra_dump_file, format: " Choosing alt %d in insn %u:",
4426 goal_alt_number, INSN_UID (insn: curr_insn));
4427 print_curr_insn_alt (alt_number: goal_alt_number);
4428 if (INSN_CODE (curr_insn) >= 0
4429 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
4430 fprintf (stream: lra_dump_file, format: " {%s}", p);
4431 if (maybe_ne (a: curr_id->sp_offset, b: 0))
4432 {
4433 fprintf (stream: lra_dump_file, format: " (sp_off=");
4434 print_dec (value: curr_id->sp_offset, file: lra_dump_file);
4435 fprintf (stream: lra_dump_file, format: ")");
4436 }
4437 fprintf (stream: lra_dump_file, format: "\n");
4438 }
4439
4440 /* Right now, for any pair of operands I and J that are required to
4441 match, with J < I, goal_alt_matches[I] is J. Add I to
4442 goal_alt_matched[J]. */
4443
4444 for (i = 0; i < n_operands; i++)
4445 if ((j = goal_alt_matches[i]) >= 0)
4446 {
4447 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
4448 ;
4449 /* We allow matching one output operand and several input
4450 operands. */
4451 lra_assert (k == 0
4452 || (curr_static_id->operand[j].type == OP_OUT
4453 && curr_static_id->operand[i].type == OP_IN
4454 && (curr_static_id->operand
4455 [goal_alt_matched[j][0]].type == OP_IN)));
4456 goal_alt_matched[j][k] = i;
4457 goal_alt_matched[j][k + 1] = -1;
4458 }
4459
4460 for (i = 0; i < n_operands; i++)
4461 goal_alt_win[i] |= goal_alt_match_win[i];
4462
4463 /* Any constants that aren't allowed and can't be reloaded into
4464 registers are here changed into memory references. */
4465 for (i = 0; i < n_operands; i++)
4466 if (goal_alt_win[i])
4467 {
4468 int regno;
4469 enum reg_class new_class;
4470 rtx reg = *curr_id->operand_loc[i];
4471
4472 if (GET_CODE (reg) == SUBREG)
4473 reg = SUBREG_REG (reg);
4474
4475 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
4476 {
4477 bool ok_p = in_class_p (reg, cl: goal_alt[i], new_class: &new_class);
4478
4479 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
4480 {
4481 lra_assert (ok_p);
4482 lra_change_class (regno, new_class, title: " Change to", nl_p: true);
4483 }
4484 }
4485 }
4486 else
4487 {
4488 const char *constraint;
4489 char c;
4490 rtx op = *curr_id->operand_loc[i];
4491 rtx subreg = NULL_RTX;
4492 machine_mode mode = curr_operand_mode[i];
4493
4494 if (GET_CODE (op) == SUBREG)
4495 {
4496 subreg = op;
4497 op = SUBREG_REG (op);
4498 mode = GET_MODE (op);
4499 }
4500
4501 if (CONST_POOL_OK_P (mode, op)
4502 && ((targetm.preferred_reload_class
4503 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
4504 || no_input_reloads_p))
4505 {
4506 rtx tem = force_const_mem (mode, op);
4507
4508 change_p = true;
4509 if (subreg != NULL_RTX)
4510 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
4511
4512 *curr_id->operand_loc[i] = tem;
4513 lra_update_dup (id: curr_id, nop: i);
4514 process_address (nop: i, check_only_p: false, before: &before, after: &after);
4515
4516 /* If the alternative accepts constant pool refs directly
4517 there will be no reload needed at all. */
4518 if (subreg != NULL_RTX)
4519 continue;
4520 /* Skip alternatives before the one requested. */
4521 constraint = (curr_static_id->operand_alternative
4522 [goal_alt_number * n_operands + i].constraint);
4523 for (;
4524 (c = *constraint) && c != ',' && c != '#';
4525 constraint += CONSTRAINT_LEN (c, constraint))
4526 {
4527 enum constraint_num cn = lookup_constraint (p: constraint);
4528 if ((insn_extra_memory_constraint (c: cn)
4529 || insn_extra_special_memory_constraint (c: cn)
4530 || insn_extra_relaxed_memory_constraint (cn))
4531 && satisfies_memory_constraint_p (op: tem, constraint: cn))
4532 break;
4533 }
4534 if (c == '\0' || c == ',' || c == '#')
4535 continue;
4536
4537 goal_alt_win[i] = true;
4538 }
4539 }
4540
4541 n_outputs = 0;
4542 for (i = 0; i < n_operands; i++)
4543 if (curr_static_id->operand[i].type == OP_OUT)
4544 outputs[n_outputs++] = i;
4545 outputs[n_outputs] = -1;
4546 for (i = 0; i < n_operands; i++)
4547 {
4548 int regno;
4549 bool optional_p = false;
4550 rtx old, new_reg;
4551 rtx op = *curr_id->operand_loc[i];
4552
4553 if (goal_alt_win[i])
4554 {
4555 if (goal_alt[i] == NO_REGS
4556 && REG_P (op)
4557 /* When we assign NO_REGS it means that we will not
4558 assign a hard register to the scratch pseudo by
4559 assigment pass and the scratch pseudo will be
4560 spilled. Spilled scratch pseudos are transformed
4561 back to scratches at the LRA end. */
4562 && ira_former_scratch_operand_p (insn: curr_insn, nop: i)
4563 && ira_former_scratch_p (REGNO (op)))
4564 {
4565 int regno = REGNO (op);
4566 lra_change_class (regno, new_class: NO_REGS, title: " Change to", nl_p: true);
4567 if (lra_get_regno_hard_regno (regno) >= 0)
4568 /* We don't have to mark all insn affected by the
4569 spilled pseudo as there is only one such insn, the
4570 current one. */
4571 reg_renumber[regno] = -1;
4572 lra_assert (bitmap_single_bit_set_p
4573 (&lra_reg_info[REGNO (op)].insn_bitmap));
4574 }
4575 /* We can do an optional reload. If the pseudo got a hard
4576 reg, we might improve the code through inheritance. If
4577 it does not get a hard register we coalesce memory/memory
4578 moves later. Ignore move insns to avoid cycling. */
4579 if (! lra_simple_p
4580 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
4581 && goal_alt[i] != NO_REGS && REG_P (op)
4582 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4583 && regno < new_regno_start
4584 && ! ira_former_scratch_p (regno)
4585 && reg_renumber[regno] < 0
4586 /* Check that the optional reload pseudo will be able to
4587 hold given mode value. */
4588 && ! (prohibited_class_reg_set_mode_p
4589 (rclass: goal_alt[i], reg_class_contents[goal_alt[i]],
4590 PSEUDO_REGNO_MODE (regno)))
4591 && (curr_insn_set == NULL_RTX
4592 || !((REG_P (SET_SRC (curr_insn_set))
4593 || MEM_P (SET_SRC (curr_insn_set))
4594 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
4595 && (REG_P (SET_DEST (curr_insn_set))
4596 || MEM_P (SET_DEST (curr_insn_set))
4597 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
4598 optional_p = true;
4599 else if (goal_alt_matched[i][0] != -1
4600 && curr_static_id->operand[i].type == OP_OUT
4601 && (curr_static_id->operand_alternative
4602 [goal_alt_number * n_operands + i].earlyclobber)
4603 && REG_P (op))
4604 {
4605 for (j = 0; goal_alt_matched[i][j] != -1; j++)
4606 {
4607 rtx op2 = *curr_id->operand_loc[goal_alt_matched[i][j]];
4608
4609 if (REG_P (op2) && REGNO (op) != REGNO (op2))
4610 break;
4611 }
4612 if (goal_alt_matched[i][j] != -1)
4613 {
4614 /* Generate reloads for different output and matched
4615 input registers. This is the easiest way to avoid
4616 creation of non-existing register conflicts in
4617 lra-lives.cc. */
4618 match_reload (out: i, ins: goal_alt_matched[i], outs: outputs, goal_class: goal_alt[i],
4619 exclude_start_hard_regs: &goal_alt_exclude_start_hard_regs[i], before: &before,
4620 after: &after, early_clobber_p: true);
4621 }
4622 continue;
4623 }
4624 else
4625 {
4626 enum reg_class rclass, common_class;
4627
4628 if (REG_P (op) && goal_alt[i] != NO_REGS
4629 && (regno = REGNO (op)) >= new_regno_start
4630 && (rclass = get_reg_class (regno)) == ALL_REGS
4631 && ((common_class = ira_reg_class_subset[rclass][goal_alt[i]])
4632 != NO_REGS)
4633 && common_class != ALL_REGS
4634 && enough_allocatable_hard_regs_p (reg_class: common_class,
4635 GET_MODE (op)))
4636 /* Refine reload pseudo class from chosen alternative
4637 constraint. */
4638 lra_change_class (regno, new_class: common_class, title: " Change to", nl_p: true);
4639 continue;
4640 }
4641 }
4642
4643 /* Operands that match previous ones have already been handled. */
4644 if (goal_alt_matches[i] >= 0)
4645 continue;
4646
4647 /* We should not have an operand with a non-offsettable address
4648 appearing where an offsettable address will do. It also may
4649 be a case when the address should be special in other words
4650 not a general one (e.g. it needs no index reg). */
4651 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
4652 {
4653 enum reg_class rclass;
4654 rtx *loc = &XEXP (op, 0);
4655 enum rtx_code code = GET_CODE (*loc);
4656
4657 push_to_sequence (before);
4658 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
4659 outer_code: MEM, index_code: SCRATCH, insn: curr_insn);
4660 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
4661 new_reg = emit_inc (new_rclass: rclass, in: *loc, value: *loc,
4662 /* This value does not matter for MODIFY. */
4663 inc_amount: GET_MODE_SIZE (GET_MODE (op)));
4664 else if (get_reload_reg (type: OP_IN, Pmode, original: *loc, rclass,
4665 NULL, in_subreg_p: false,
4666 title: "offsetable address", result_reg: &new_reg))
4667 {
4668 rtx addr = *loc;
4669 enum rtx_code code = GET_CODE (addr);
4670 bool align_p = false;
4671
4672 if (code == AND && CONST_INT_P (XEXP (addr, 1)))
4673 {
4674 /* (and ... (const_int -X)) is used to align to X bytes. */
4675 align_p = true;
4676 addr = XEXP (*loc, 0);
4677 }
4678 else
4679 addr = canonicalize_reload_addr (addr);
4680
4681 lra_emit_move (new_reg, addr);
4682 if (align_p)
4683 emit_move_insn (new_reg, gen_rtx_AND (GET_MODE (new_reg), new_reg, XEXP (*loc, 1)));
4684 }
4685 before = get_insns ();
4686 end_sequence ();
4687 *loc = new_reg;
4688 lra_update_dup (id: curr_id, nop: i);
4689 }
4690 else if (goal_alt_matched[i][0] == -1)
4691 {
4692 machine_mode mode;
4693 rtx reg, *loc;
4694 int hard_regno;
4695 enum op_type type = curr_static_id->operand[i].type;
4696
4697 loc = curr_id->operand_loc[i];
4698 mode = curr_operand_mode[i];
4699 if (GET_CODE (*loc) == SUBREG)
4700 {
4701 reg = SUBREG_REG (*loc);
4702 poly_int64 byte = SUBREG_BYTE (*loc);
4703 if (REG_P (reg)
4704 /* Strict_low_part requires reloading the register and not
4705 just the subreg. Likewise for a strict subreg no wider
4706 than a word for WORD_REGISTER_OPERATIONS targets. */
4707 && (curr_static_id->operand[i].strict_low
4708 || (!paradoxical_subreg_p (outermode: mode, GET_MODE (reg))
4709 && (hard_regno
4710 = get_try_hard_regno (REGNO (reg))) >= 0
4711 && (simplify_subreg_regno
4712 (hard_regno,
4713 GET_MODE (reg), byte, mode) < 0)
4714 && (goal_alt[i] == NO_REGS
4715 || (simplify_subreg_regno
4716 (ira_class_hard_regs[goal_alt[i]][0],
4717 GET_MODE (reg), byte, mode) >= 0)))
4718 || (partial_subreg_p (outermode: mode, GET_MODE (reg))
4719 && known_le (GET_MODE_SIZE (GET_MODE (reg)),
4720 UNITS_PER_WORD)
4721 && WORD_REGISTER_OPERATIONS))
4722 /* Avoid the situation when there are no available hard regs
4723 for the pseudo mode but there are ones for the subreg
4724 mode: */
4725 && !(goal_alt[i] != NO_REGS
4726 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
4727 && (prohibited_class_reg_set_mode_p
4728 (rclass: goal_alt[i], reg_class_contents[goal_alt[i]],
4729 GET_MODE (reg)))
4730 && !(prohibited_class_reg_set_mode_p
4731 (rclass: goal_alt[i], reg_class_contents[goal_alt[i]],
4732 mode))))
4733 {
4734 /* An OP_INOUT is required when reloading a subreg of a
4735 mode wider than a word to ensure that data beyond the
4736 word being reloaded is preserved. Also automatically
4737 ensure that strict_low_part reloads are made into
4738 OP_INOUT which should already be true from the backend
4739 constraints. */
4740 if (type == OP_OUT
4741 && (curr_static_id->operand[i].strict_low
4742 || read_modify_subreg_p (*loc)))
4743 type = OP_INOUT;
4744 loc = &SUBREG_REG (*loc);
4745 mode = GET_MODE (*loc);
4746 }
4747 }
4748 old = *loc;
4749 if (get_reload_reg (type, mode, original: old, rclass: goal_alt[i],
4750 exclude_start_hard_regs: &goal_alt_exclude_start_hard_regs[i],
4751 in_subreg_p: loc != curr_id->operand_loc[i], title: "", result_reg: &new_reg)
4752 && type != OP_OUT)
4753 {
4754 push_to_sequence (before);
4755 lra_emit_move (new_reg, old);
4756 before = get_insns ();
4757 end_sequence ();
4758 }
4759 *loc = new_reg;
4760 if (type != OP_IN
4761 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
4762 {
4763 start_sequence ();
4764 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
4765 emit_insn (after);
4766 after = get_insns ();
4767 end_sequence ();
4768 *loc = new_reg;
4769 }
4770 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
4771 if (goal_alt_dont_inherit_ops[j] == i)
4772 {
4773 lra_set_regno_unique_value (REGNO (new_reg));
4774 break;
4775 }
4776 lra_update_dup (id: curr_id, nop: i);
4777 }
4778 else if (curr_static_id->operand[i].type == OP_IN
4779 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4780 == OP_OUT
4781 || (curr_static_id->operand[goal_alt_matched[i][0]].type
4782 == OP_INOUT
4783 && (operands_match_p
4784 (x: *curr_id->operand_loc[i],
4785 y: *curr_id->operand_loc[goal_alt_matched[i][0]],
4786 y_hard_regno: -1)))))
4787 {
4788 /* generate reloads for input and matched outputs. */
4789 match_inputs[0] = i;
4790 match_inputs[1] = -1;
4791 match_reload (out: goal_alt_matched[i][0], ins: match_inputs, outs: outputs,
4792 goal_class: goal_alt[i], exclude_start_hard_regs: &goal_alt_exclude_start_hard_regs[i],
4793 before: &before, after: &after,
4794 early_clobber_p: curr_static_id->operand_alternative
4795 [goal_alt_number * n_operands + goal_alt_matched[i][0]]
4796 .earlyclobber);
4797 }
4798 else if ((curr_static_id->operand[i].type == OP_OUT
4799 || (curr_static_id->operand[i].type == OP_INOUT
4800 && (operands_match_p
4801 (x: *curr_id->operand_loc[i],
4802 y: *curr_id->operand_loc[goal_alt_matched[i][0]],
4803 y_hard_regno: -1))))
4804 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4805 == OP_IN))
4806 /* Generate reloads for output and matched inputs. */
4807 match_reload (out: i, ins: goal_alt_matched[i], outs: outputs, goal_class: goal_alt[i],
4808 exclude_start_hard_regs: &goal_alt_exclude_start_hard_regs[i], before: &before, after: &after,
4809 early_clobber_p: curr_static_id->operand_alternative
4810 [goal_alt_number * n_operands + i].earlyclobber);
4811 else if (curr_static_id->operand[i].type == OP_IN
4812 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4813 == OP_IN))
4814 {
4815 /* Generate reloads for matched inputs. */
4816 match_inputs[0] = i;
4817 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
4818 match_inputs[j + 1] = k;
4819 match_inputs[j + 1] = -1;
4820 match_reload (out: -1, ins: match_inputs, outs: outputs, goal_class: goal_alt[i],
4821 exclude_start_hard_regs: &goal_alt_exclude_start_hard_regs[i],
4822 before: &before, after: &after, early_clobber_p: false);
4823 }
4824 else
4825 /* We must generate code in any case when function
4826 process_alt_operands decides that it is possible. */
4827 gcc_unreachable ();
4828
4829 if (optional_p)
4830 {
4831 rtx reg = op;
4832
4833 lra_assert (REG_P (reg));
4834 regno = REGNO (reg);
4835 op = *curr_id->operand_loc[i]; /* Substitution. */
4836 if (GET_CODE (op) == SUBREG)
4837 op = SUBREG_REG (op);
4838 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
4839 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
4840 lra_reg_info[REGNO (op)].restore_rtx = reg;
4841 if (lra_dump_file != NULL)
4842 fprintf (stream: lra_dump_file,
4843 format: " Making reload reg %d for reg %d optional\n",
4844 REGNO (op), regno);
4845 }
4846 }
4847 if (before != NULL_RTX || after != NULL_RTX
4848 || max_regno_before != max_reg_num ())
4849 change_p = true;
4850 if (change_p)
4851 {
4852 lra_update_operator_dups (id: curr_id);
4853 /* Something changes -- process the insn. */
4854 lra_update_insn_regno_info (curr_insn);
4855 if (asm_noperands (PATTERN (insn: curr_insn)) >= 0
4856 && ++curr_id->asm_reloads_num >= FIRST_PSEUDO_REGISTER)
4857 /* Most probably there are no enough registers to satisfy asm insn: */
4858 lra_asm_insn_error (insn: curr_insn);
4859 }
4860 if (goal_alt_out_sp_reload_p)
4861 {
4862 /* We have an output stack pointer reload -- update sp offset: */
4863 rtx set;
4864 bool done_p = false;
4865 poly_int64 sp_offset = curr_id->sp_offset;
4866 for (rtx_insn *insn = after; insn != NULL_RTX; insn = NEXT_INSN (insn))
4867 if ((set = single_set (insn)) != NULL_RTX
4868 && SET_DEST (set) == stack_pointer_rtx)
4869 {
4870 lra_assert (!done_p);
4871 done_p = true;
4872 curr_id->sp_offset = 0;
4873 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
4874 id->sp_offset = sp_offset;
4875 if (lra_dump_file != NULL)
4876 fprintf (stream: lra_dump_file,
4877 format: " Moving sp offset from insn %u to %u\n",
4878 INSN_UID (insn: curr_insn), INSN_UID (insn));
4879 }
4880 lra_assert (done_p);
4881 }
4882 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
4883 return change_p;
4884}
4885
4886/* Return true if INSN satisfies all constraints. In other words, no
4887 reload insns are needed. */
4888bool
4889lra_constrain_insn (rtx_insn *insn)
4890{
4891 int saved_new_regno_start = new_regno_start;
4892 int saved_new_insn_uid_start = new_insn_uid_start;
4893 bool change_p;
4894
4895 curr_insn = insn;
4896 curr_id = lra_get_insn_recog_data (insn: curr_insn);
4897 curr_static_id = curr_id->insn_static_data;
4898 new_insn_uid_start = get_max_uid ();
4899 new_regno_start = max_reg_num ();
4900 change_p = curr_insn_transform (check_only_p: true);
4901 new_regno_start = saved_new_regno_start;
4902 new_insn_uid_start = saved_new_insn_uid_start;
4903 return ! change_p;
4904}
4905
4906/* Return true if X is in LIST. */
4907static bool
4908in_list_p (rtx x, rtx list)
4909{
4910 for (; list != NULL_RTX; list = XEXP (list, 1))
4911 if (XEXP (list, 0) == x)
4912 return true;
4913 return false;
4914}
4915
4916/* Return true if X contains an allocatable hard register (if
4917 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4918static bool
4919contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
4920{
4921 int i, j;
4922 const char *fmt;
4923 enum rtx_code code;
4924
4925 code = GET_CODE (x);
4926 if (REG_P (x))
4927 {
4928 int regno = REGNO (x);
4929 HARD_REG_SET alloc_regs;
4930
4931 if (hard_reg_p)
4932 {
4933 if (regno >= FIRST_PSEUDO_REGISTER)
4934 regno = lra_get_regno_hard_regno (regno);
4935 if (regno < 0)
4936 return false;
4937 alloc_regs = ~lra_no_alloc_regs;
4938 return overlaps_hard_reg_set_p (regs: alloc_regs, GET_MODE (x), regno);
4939 }
4940 else
4941 {
4942 if (regno < FIRST_PSEUDO_REGISTER)
4943 return false;
4944 if (! spilled_p)
4945 return true;
4946 return lra_get_regno_hard_regno (regno) < 0;
4947 }
4948 }
4949 fmt = GET_RTX_FORMAT (code);
4950 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4951 {
4952 if (fmt[i] == 'e')
4953 {
4954 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
4955 return true;
4956 }
4957 else if (fmt[i] == 'E')
4958 {
4959 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4960 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
4961 return true;
4962 }
4963 }
4964 return false;
4965}
4966
4967/* Process all regs in location *LOC and change them on equivalent
4968 substitution. Return true if any change was done. */
4969static bool
4970loc_equivalence_change_p (rtx *loc)
4971{
4972 rtx subst, reg, x = *loc;
4973 bool result = false;
4974 enum rtx_code code = GET_CODE (x);
4975 const char *fmt;
4976 int i, j;
4977
4978 if (code == SUBREG)
4979 {
4980 reg = SUBREG_REG (x);
4981 if ((subst = get_equiv_with_elimination (x: reg, insn: curr_insn)) != reg
4982 && GET_MODE (subst) == VOIDmode)
4983 {
4984 /* We cannot reload debug location. Simplify subreg here
4985 while we know the inner mode. */
4986 *loc = simplify_gen_subreg (GET_MODE (x), op: subst,
4987 GET_MODE (reg), SUBREG_BYTE (x));
4988 return true;
4989 }
4990 }
4991 if (code == REG && (subst = get_equiv_with_elimination (x, insn: curr_insn)) != x)
4992 {
4993 *loc = subst;
4994 return true;
4995 }
4996
4997 /* Scan all the operand sub-expressions. */
4998 fmt = GET_RTX_FORMAT (code);
4999 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5000 {
5001 if (fmt[i] == 'e')
5002 result = loc_equivalence_change_p (loc: &XEXP (x, i)) || result;
5003 else if (fmt[i] == 'E')
5004 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5005 result
5006 = loc_equivalence_change_p (loc: &XVECEXP (x, i, j)) || result;
5007 }
5008 return result;
5009}
5010
5011/* Similar to loc_equivalence_change_p, but for use as
5012 simplify_replace_fn_rtx callback. DATA is insn for which the
5013 elimination is done. If it null we don't do the elimination. */
5014static rtx
5015loc_equivalence_callback (rtx loc, const_rtx, void *data)
5016{
5017 if (!REG_P (loc))
5018 return NULL_RTX;
5019
5020 rtx subst = (data == NULL
5021 ? get_equiv (x: loc) : get_equiv_with_elimination (x: loc, insn: (rtx_insn *) data));
5022 if (subst != loc)
5023 return subst;
5024
5025 return NULL_RTX;
5026}
5027
5028/* Maximum number of generated reload insns per an insn. It is for
5029 preventing this pass cycling in a bug case. */
5030#define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
5031
5032/* The current iteration number of this LRA pass. */
5033int lra_constraint_iter;
5034
5035/* True if we should during assignment sub-pass check assignment
5036 correctness for all pseudos and spill some of them to correct
5037 conflicts. It can be necessary when we substitute equiv which
5038 needs checking register allocation correctness because the
5039 equivalent value contains allocatable hard registers, or when we
5040 restore multi-register pseudo, or when we change the insn code and
5041 its operand became INOUT operand when it was IN one before. */
5042bool check_and_force_assignment_correctness_p;
5043
5044/* Return true if REGNO is referenced in more than one block. */
5045static bool
5046multi_block_pseudo_p (int regno)
5047{
5048 basic_block bb = NULL;
5049 unsigned int uid;
5050 bitmap_iterator bi;
5051
5052 if (regno < FIRST_PSEUDO_REGISTER)
5053 return false;
5054
5055 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
5056 if (bb == NULL)
5057 bb = BLOCK_FOR_INSN (insn: lra_insn_recog_data[uid]->insn);
5058 else if (BLOCK_FOR_INSN (insn: lra_insn_recog_data[uid]->insn) != bb)
5059 return true;
5060 return false;
5061}
5062
5063/* Return true if LIST contains a deleted insn. */
5064static bool
5065contains_deleted_insn_p (rtx_insn_list *list)
5066{
5067 for (; list != NULL_RTX; list = list->next ())
5068 if (NOTE_P (list->insn ())
5069 && NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
5070 return true;
5071 return false;
5072}
5073
5074/* Return true if X contains a pseudo dying in INSN. */
5075static bool
5076dead_pseudo_p (rtx x, rtx_insn *insn)
5077{
5078 int i, j;
5079 const char *fmt;
5080 enum rtx_code code;
5081
5082 if (REG_P (x))
5083 return (insn != NULL_RTX
5084 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
5085 code = GET_CODE (x);
5086 fmt = GET_RTX_FORMAT (code);
5087 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5088 {
5089 if (fmt[i] == 'e')
5090 {
5091 if (dead_pseudo_p (XEXP (x, i), insn))
5092 return true;
5093 }
5094 else if (fmt[i] == 'E')
5095 {
5096 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5097 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
5098 return true;
5099 }
5100 }
5101 return false;
5102}
5103
5104/* Return true if INSN contains a dying pseudo in INSN right hand
5105 side. */
5106static bool
5107insn_rhs_dead_pseudo_p (rtx_insn *insn)
5108{
5109 rtx set = single_set (insn);
5110
5111 gcc_assert (set != NULL);
5112 return dead_pseudo_p (SET_SRC (set), insn);
5113}
5114
5115/* Return true if any init insn of REGNO contains a dying pseudo in
5116 insn right hand side. */
5117static bool
5118init_insn_rhs_dead_pseudo_p (int regno)
5119{
5120 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
5121
5122 if (insns == NULL)
5123 return false;
5124 for (; insns != NULL_RTX; insns = insns->next ())
5125 if (insn_rhs_dead_pseudo_p (insn: insns->insn ()))
5126 return true;
5127 return false;
5128}
5129
5130/* Return TRUE if REGNO has a reverse equivalence. The equivalence is
5131 reverse only if we have one init insn with given REGNO as a
5132 source. */
5133static bool
5134reverse_equiv_p (int regno)
5135{
5136 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
5137 rtx set;
5138
5139 if (insns == NULL)
5140 return false;
5141 if (! INSN_P (insns->insn ())
5142 || insns->next () != NULL)
5143 return false;
5144 if ((set = single_set (insn: insns->insn ())) == NULL_RTX)
5145 return false;
5146 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
5147}
5148
5149/* Return TRUE if REGNO was reloaded in an equivalence init insn. We
5150 call this function only for non-reverse equivalence. */
5151static bool
5152contains_reloaded_insn_p (int regno)
5153{
5154 rtx set;
5155 rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
5156
5157 for (; list != NULL; list = list->next ())
5158 if ((set = single_set (insn: list->insn ())) == NULL_RTX
5159 || ! REG_P (SET_DEST (set))
5160 || (int) REGNO (SET_DEST (set)) != regno)
5161 return true;
5162 return false;
5163}
5164
5165/* Try combine secondary memory reload insn FROM for insn TO into TO insn.
5166 FROM should be a load insn (usually a secondary memory reload insn). Return
5167 TRUE in case of success. */
5168static bool
5169combine_reload_insn (rtx_insn *from, rtx_insn *to)
5170{
5171 bool ok_p;
5172 rtx_insn *saved_insn;
5173 rtx set, from_reg, to_reg, op;
5174 enum reg_class to_class, from_class;
5175 int n, nop;
5176 signed char changed_nops[MAX_RECOG_OPERANDS + 1];
5177
5178 /* Check conditions for second memory reload and original insn: */
5179 if ((targetm.secondary_memory_needed
5180 == hook_bool_mode_reg_class_t_reg_class_t_false)
5181 || NEXT_INSN (insn: from) != to
5182 || !NONDEBUG_INSN_P (to)
5183 || CALL_P (to))
5184 return false;
5185
5186 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn: to);
5187 struct lra_static_insn_data *static_id = id->insn_static_data;
5188
5189 if (id->used_insn_alternative == LRA_UNKNOWN_ALT
5190 || (set = single_set (insn: from)) == NULL_RTX)
5191 return false;
5192 from_reg = SET_DEST (set);
5193 to_reg = SET_SRC (set);
5194 /* Ignore optional reloads: */
5195 if (! REG_P (from_reg) || ! REG_P (to_reg)
5196 || bitmap_bit_p (&lra_optional_reload_pseudos, REGNO (from_reg)))
5197 return false;
5198 to_class = lra_get_allocno_class (REGNO (to_reg));
5199 from_class = lra_get_allocno_class (REGNO (from_reg));
5200 /* Check that reload insn is a load: */
5201 if (to_class != NO_REGS || from_class == NO_REGS)
5202 return false;
5203 for (n = nop = 0; nop < static_id->n_operands; nop++)
5204 {
5205 if (static_id->operand[nop].type != OP_IN)
5206 continue;
5207 op = *id->operand_loc[nop];
5208 if (!REG_P (op) || REGNO (op) != REGNO (from_reg))
5209 continue;
5210 *id->operand_loc[nop] = to_reg;
5211 changed_nops[n++] = nop;
5212 }
5213 changed_nops[n] = -1;
5214 lra_update_dups (id, changed_nops);
5215 lra_update_insn_regno_info (to);
5216 ok_p = recog_memoized (insn: to) >= 0;
5217 if (ok_p)
5218 {
5219 /* Check that combined insn does not need any reloads: */
5220 saved_insn = curr_insn;
5221 curr_insn = to;
5222 curr_id = lra_get_insn_recog_data (insn: curr_insn);
5223 curr_static_id = curr_id->insn_static_data;
5224 for (bool swapped_p = false;;)
5225 {
5226 ok_p = !curr_insn_transform (check_only_p: true);
5227 if (ok_p || curr_static_id->commutative < 0)
5228 break;
5229 swap_operands (nop: curr_static_id->commutative);
5230 if (lra_dump_file != NULL)
5231 {
5232 fprintf (stream: lra_dump_file,
5233 format: " Swapping %scombined insn operands:\n",
5234 swapped_p ? "back " : "");
5235 dump_insn_slim (lra_dump_file, to);
5236 }
5237 if (swapped_p)
5238 break;
5239 swapped_p = true;
5240 }
5241 curr_insn = saved_insn;
5242 curr_id = lra_get_insn_recog_data (insn: curr_insn);
5243 curr_static_id = curr_id->insn_static_data;
5244 }
5245 if (ok_p)
5246 {
5247 id->used_insn_alternative = -1;
5248 lra_push_insn_and_update_insn_regno_info (to);
5249 if (lra_dump_file != NULL)
5250 {
5251 fprintf (stream: lra_dump_file, format: " Use combined insn:\n");
5252 dump_insn_slim (lra_dump_file, to);
5253 }
5254 return true;
5255 }
5256 if (lra_dump_file != NULL)
5257 {
5258 fprintf (stream: lra_dump_file, format: " Failed combined insn:\n");
5259 dump_insn_slim (lra_dump_file, to);
5260 }
5261 for (int i = 0; i < n; i++)
5262 {
5263 nop = changed_nops[i];
5264 *id->operand_loc[nop] = from_reg;
5265 }
5266 lra_update_dups (id, changed_nops);
5267 lra_update_insn_regno_info (to);
5268 if (lra_dump_file != NULL)
5269 {
5270 fprintf (stream: lra_dump_file, format: " Restoring insn after failed combining:\n");
5271 dump_insn_slim (lra_dump_file, to);
5272 }
5273 return false;
5274}
5275
5276/* Entry function of LRA constraint pass. Return true if the
5277 constraint pass did change the code. */
5278bool
5279lra_constraints (bool first_p)
5280{
5281 bool changed_p;
5282 int i, hard_regno, new_insns_num;
5283 unsigned int min_len, new_min_len, uid;
5284 rtx set, x, reg, dest_reg;
5285 rtx_insn *original_insn;
5286 basic_block last_bb;
5287 bitmap_iterator bi;
5288
5289 lra_constraint_iter++;
5290 if (lra_dump_file != NULL)
5291 fprintf (stream: lra_dump_file, format: "\n********** Local #%d: **********\n\n",
5292 lra_constraint_iter);
5293 changed_p = false;
5294 if (pic_offset_table_rtx
5295 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5296 check_and_force_assignment_correctness_p = true;
5297 else if (first_p)
5298 /* On the first iteration we should check IRA assignment
5299 correctness. In rare cases, the assignments can be wrong as
5300 early clobbers operands are ignored in IRA or usages of
5301 paradoxical sub-registers are not taken into account by
5302 IRA. */
5303 check_and_force_assignment_correctness_p = true;
5304 new_insn_uid_start = get_max_uid ();
5305 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
5306 /* Mark used hard regs for target stack size calulations. */
5307 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
5308 if (lra_reg_info[i].nrefs != 0
5309 && (hard_regno = lra_get_regno_hard_regno (regno: i)) >= 0)
5310 {
5311 int j, nregs;
5312
5313 nregs = hard_regno_nregs (regno: hard_regno, mode: lra_reg_info[i].biggest_mode);
5314 for (j = 0; j < nregs; j++)
5315 df_set_regs_ever_live (hard_regno + j, true);
5316 }
5317 /* Do elimination before the equivalence processing as we can spill
5318 some pseudos during elimination. */
5319 lra_eliminate (false, first_p);
5320 auto_bitmap equiv_insn_bitmap (&reg_obstack);
5321 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
5322 if (lra_reg_info[i].nrefs != 0)
5323 {
5324 ira_reg_equiv[i].profitable_p = true;
5325 reg = regno_reg_rtx[i];
5326 if (lra_get_regno_hard_regno (regno: i) < 0 && (x = get_equiv (x: reg)) != reg)
5327 {
5328 bool pseudo_p = contains_reg_p (x, hard_reg_p: false, spilled_p: false);
5329
5330 /* After RTL transformation, we cannot guarantee that
5331 pseudo in the substitution was not reloaded which might
5332 make equivalence invalid. For example, in reverse
5333 equiv of p0
5334
5335 p0 <- ...
5336 ...
5337 equiv_mem <- p0
5338
5339 the memory address register was reloaded before the 2nd
5340 insn. */
5341 if ((! first_p && pseudo_p)
5342 /* We don't use DF for compilation speed sake. So it
5343 is problematic to update live info when we use an
5344 equivalence containing pseudos in more than one
5345 BB. */
5346 || (pseudo_p && multi_block_pseudo_p (regno: i))
5347 /* If an init insn was deleted for some reason, cancel
5348 the equiv. We could update the equiv insns after
5349 transformations including an equiv insn deletion
5350 but it is not worthy as such cases are extremely
5351 rare. */
5352 || contains_deleted_insn_p (list: ira_reg_equiv[i].init_insns)
5353 /* If it is not a reverse equivalence, we check that a
5354 pseudo in rhs of the init insn is not dying in the
5355 insn. Otherwise, the live info at the beginning of
5356 the corresponding BB might be wrong after we
5357 removed the insn. When the equiv can be a
5358 constant, the right hand side of the init insn can
5359 be a pseudo. */
5360 || (! reverse_equiv_p (regno: i)
5361 && (init_insn_rhs_dead_pseudo_p (regno: i)
5362 /* If we reloaded the pseudo in an equivalence
5363 init insn, we cannot remove the equiv init
5364 insns and the init insns might write into
5365 const memory in this case. */
5366 || contains_reloaded_insn_p (regno: i)))
5367 /* Prevent access beyond equivalent memory for
5368 paradoxical subregs. */
5369 || (MEM_P (x)
5370 && maybe_gt (GET_MODE_SIZE (lra_reg_info[i].biggest_mode),
5371 GET_MODE_SIZE (GET_MODE (x))))
5372 || (pic_offset_table_rtx
5373 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
5374 && (targetm.preferred_reload_class
5375 (x, lra_get_allocno_class (regno: i)) == NO_REGS))
5376 || contains_symbol_ref_p (x))))
5377 ira_reg_equiv[i].defined_p
5378 = ira_reg_equiv[i].caller_save_p = false;
5379 if (contains_reg_p (x, hard_reg_p: false, spilled_p: true))
5380 ira_reg_equiv[i].profitable_p = false;
5381 if (get_equiv (x: reg) != reg)
5382 bitmap_ior_into (equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
5383 }
5384 }
5385 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
5386 update_equiv (regno: i);
5387 /* We should add all insns containing pseudos which should be
5388 substituted by their equivalences. */
5389 EXECUTE_IF_SET_IN_BITMAP (equiv_insn_bitmap, 0, uid, bi)
5390 lra_push_insn_by_uid (uid);
5391 min_len = lra_insn_stack_length ();
5392 new_insns_num = 0;
5393 last_bb = NULL;
5394 changed_p = false;
5395 original_insn = NULL;
5396 while ((new_min_len = lra_insn_stack_length ()) != 0)
5397 {
5398 curr_insn = lra_pop_insn ();
5399 --new_min_len;
5400 curr_bb = BLOCK_FOR_INSN (insn: curr_insn);
5401 if (curr_bb != last_bb)
5402 {
5403 last_bb = curr_bb;
5404 bb_reload_num = lra_curr_reload_num;
5405 }
5406 if (min_len > new_min_len)
5407 {
5408 min_len = new_min_len;
5409 new_insns_num = 0;
5410 original_insn = curr_insn;
5411 }
5412 else if (combine_reload_insn (from: curr_insn, to: original_insn))
5413 {
5414 continue;
5415 }
5416 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
5417 internal_error
5418 ("maximum number of generated reload insns per insn achieved (%d)",
5419 MAX_RELOAD_INSNS_NUMBER);
5420 new_insns_num++;
5421 if (DEBUG_INSN_P (curr_insn))
5422 {
5423 /* We need to check equivalence in debug insn and change
5424 pseudo to the equivalent value if necessary. */
5425 curr_id = lra_get_insn_recog_data (insn: curr_insn);
5426 if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (insn: curr_insn)))
5427 {
5428 rtx old = *curr_id->operand_loc[0];
5429 *curr_id->operand_loc[0]
5430 = simplify_replace_fn_rtx (old, NULL_RTX,
5431 fn: loc_equivalence_callback, curr_insn);
5432 if (old != *curr_id->operand_loc[0])
5433 {
5434 /* If we substitute pseudo by shared equivalence, we can fail
5435 to update LRA reg info and this can result in many
5436 unexpected consequences. So keep rtl unshared: */
5437 *curr_id->operand_loc[0]
5438 = copy_rtx (*curr_id->operand_loc[0]);
5439 lra_update_insn_regno_info (curr_insn);
5440 changed_p = true;
5441 }
5442 }
5443 }
5444 else if (INSN_P (curr_insn))
5445 {
5446 if ((set = single_set (insn: curr_insn)) != NULL_RTX)
5447 {
5448 dest_reg = SET_DEST (set);
5449 /* The equivalence pseudo could be set up as SUBREG in a
5450 case when it is a call restore insn in a mode
5451 different from the pseudo mode. */
5452 if (GET_CODE (dest_reg) == SUBREG)
5453 dest_reg = SUBREG_REG (dest_reg);
5454 if ((REG_P (dest_reg)
5455 && (x = get_equiv (x: dest_reg)) != dest_reg
5456 /* Remove insns which set up a pseudo whose value
5457 cannot be changed. Such insns might be not in
5458 init_insns because we don't update equiv data
5459 during insn transformations.
5460
5461 As an example, let suppose that a pseudo got
5462 hard register and on the 1st pass was not
5463 changed to equivalent constant. We generate an
5464 additional insn setting up the pseudo because of
5465 secondary memory movement. Then the pseudo is
5466 spilled and we use the equiv constant. In this
5467 case we should remove the additional insn and
5468 this insn is not init_insns list. */
5469 && (! MEM_P (x) || MEM_READONLY_P (x)
5470 /* Check that this is actually an insn setting
5471 up the equivalence. */
5472 || in_list_p (x: curr_insn,
5473 list: ira_reg_equiv
5474 [REGNO (dest_reg)].init_insns)))
5475 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
5476 && in_list_p (x: curr_insn,
5477 list: ira_reg_equiv
5478 [REGNO (SET_SRC (set))].init_insns)))
5479 {
5480 /* This is equiv init insn of pseudo which did not get a
5481 hard register -- remove the insn. */
5482 if (lra_dump_file != NULL)
5483 {
5484 fprintf (stream: lra_dump_file,
5485 format: " Removing equiv init insn %i (freq=%d)\n",
5486 INSN_UID (insn: curr_insn),
5487 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
5488 dump_insn_slim (lra_dump_file, curr_insn);
5489 }
5490 if (contains_reg_p (x, hard_reg_p: true, spilled_p: false))
5491 check_and_force_assignment_correctness_p = true;
5492 lra_set_insn_deleted (curr_insn);
5493 continue;
5494 }
5495 }
5496 curr_id = lra_get_insn_recog_data (insn: curr_insn);
5497 curr_static_id = curr_id->insn_static_data;
5498 init_curr_insn_input_reloads ();
5499 init_curr_operand_mode ();
5500 if (curr_insn_transform (check_only_p: false))
5501 changed_p = true;
5502 /* Check non-transformed insns too for equiv change as USE
5503 or CLOBBER don't need reloads but can contain pseudos
5504 being changed on their equivalences. */
5505 else if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (insn: curr_insn))
5506 && loc_equivalence_change_p (loc: &PATTERN (insn: curr_insn)))
5507 {
5508 lra_update_insn_regno_info (curr_insn);
5509 changed_p = true;
5510 }
5511 }
5512 }
5513
5514 /* If we used a new hard regno, changed_p should be true because the
5515 hard reg is assigned to a new pseudo. */
5516 if (flag_checking && !changed_p)
5517 {
5518 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
5519 if (lra_reg_info[i].nrefs != 0
5520 && (hard_regno = lra_get_regno_hard_regno (regno: i)) >= 0)
5521 {
5522 int j, nregs = hard_regno_nregs (regno: hard_regno,
5523 PSEUDO_REGNO_MODE (i));
5524
5525 for (j = 0; j < nregs; j++)
5526 lra_assert (df_regs_ever_live_p (hard_regno + j));
5527 }
5528 }
5529 return changed_p;
5530}
5531
5532static void initiate_invariants (void);
5533static void finish_invariants (void);
5534
5535/* Initiate the LRA constraint pass. It is done once per
5536 function. */
5537void
5538lra_constraints_init (void)
5539{
5540 initiate_invariants ();
5541}
5542
5543/* Finalize the LRA constraint pass. It is done once per
5544 function. */
5545void
5546lra_constraints_finish (void)
5547{
5548 finish_invariants ();
5549}
5550
5551
5552
5553/* Structure describes invariants for ineheritance. */
5554struct lra_invariant
5555{
5556 /* The order number of the invariant. */
5557 int num;
5558 /* The invariant RTX. */
5559 rtx invariant_rtx;
5560 /* The origin insn of the invariant. */
5561 rtx_insn *insn;
5562};
5563
5564typedef lra_invariant invariant_t;
5565typedef invariant_t *invariant_ptr_t;
5566typedef const invariant_t *const_invariant_ptr_t;
5567
5568/* Pointer to the inheritance invariants. */
5569static vec<invariant_ptr_t> invariants;
5570
5571/* Allocation pool for the invariants. */
5572static object_allocator<lra_invariant> *invariants_pool;
5573
5574/* Hash table for the invariants. */
5575static htab_t invariant_table;
5576
5577/* Hash function for INVARIANT. */
5578static hashval_t
5579invariant_hash (const void *invariant)
5580{
5581 rtx inv = ((const_invariant_ptr_t) invariant)->invariant_rtx;
5582 return lra_rtx_hash (x: inv);
5583}
5584
5585/* Equal function for invariants INVARIANT1 and INVARIANT2. */
5586static int
5587invariant_eq_p (const void *invariant1, const void *invariant2)
5588{
5589 rtx inv1 = ((const_invariant_ptr_t) invariant1)->invariant_rtx;
5590 rtx inv2 = ((const_invariant_ptr_t) invariant2)->invariant_rtx;
5591
5592 return rtx_equal_p (inv1, inv2);
5593}
5594
5595/* Insert INVARIANT_RTX into the table if it is not there yet. Return
5596 invariant which is in the table. */
5597static invariant_ptr_t
5598insert_invariant (rtx invariant_rtx)
5599{
5600 void **entry_ptr;
5601 invariant_t invariant;
5602 invariant_ptr_t invariant_ptr;
5603
5604 invariant.invariant_rtx = invariant_rtx;
5605 entry_ptr = htab_find_slot (invariant_table, &invariant, INSERT);
5606 if (*entry_ptr == NULL)
5607 {
5608 invariant_ptr = invariants_pool->allocate ();
5609 invariant_ptr->invariant_rtx = invariant_rtx;
5610 invariant_ptr->insn = NULL;
5611 invariants.safe_push (obj: invariant_ptr);
5612 *entry_ptr = (void *) invariant_ptr;
5613 }
5614 return (invariant_ptr_t) *entry_ptr;
5615}
5616
5617/* Initiate the invariant table. */
5618static void
5619initiate_invariants (void)
5620{
5621 invariants.create (nelems: 100);
5622 invariants_pool
5623 = new object_allocator<lra_invariant> ("Inheritance invariants");
5624 invariant_table = htab_create (100, invariant_hash, invariant_eq_p, NULL);
5625}
5626
5627/* Finish the invariant table. */
5628static void
5629finish_invariants (void)
5630{
5631 htab_delete (invariant_table);
5632 delete invariants_pool;
5633 invariants.release ();
5634}
5635
5636/* Make the invariant table empty. */
5637static void
5638clear_invariants (void)
5639{
5640 htab_empty (invariant_table);
5641 invariants_pool->release ();
5642 invariants.truncate (size: 0);
5643}
5644
5645
5646
5647/* This page contains code to do inheritance/split
5648 transformations. */
5649
5650/* Number of reloads passed so far in current EBB. */
5651static int reloads_num;
5652
5653/* Number of calls passed so far in current EBB. */
5654static int calls_num;
5655
5656/* Index ID is the CALLS_NUM associated the last call we saw with
5657 ABI identifier ID. */
5658static int last_call_for_abi[NUM_ABI_IDS];
5659
5660/* Which registers have been fully or partially clobbered by a call
5661 since they were last used. */
5662static HARD_REG_SET full_and_partial_call_clobbers;
5663
5664/* Current reload pseudo check for validity of elements in
5665 USAGE_INSNS. */
5666static int curr_usage_insns_check;
5667
5668/* Info about last usage of registers in EBB to do inheritance/split
5669 transformation. Inheritance transformation is done from a spilled
5670 pseudo and split transformations from a hard register or a pseudo
5671 assigned to a hard register. */
5672struct usage_insns
5673{
5674 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5675 value INSNS is valid. The insns is chain of optional debug insns
5676 and a finishing non-debug insn using the corresponding reg. The
5677 value is also used to mark the registers which are set up in the
5678 current insn. The negated insn uid is used for this. */
5679 int check;
5680 /* Value of global reloads_num at the last insn in INSNS. */
5681 int reloads_num;
5682 /* Value of global reloads_nums at the last insn in INSNS. */
5683 int calls_num;
5684 /* It can be true only for splitting. And it means that the restore
5685 insn should be put after insn given by the following member. */
5686 bool after_p;
5687 /* Next insns in the current EBB which use the original reg and the
5688 original reg value is not changed between the current insn and
5689 the next insns. In order words, e.g. for inheritance, if we need
5690 to use the original reg value again in the next insns we can try
5691 to use the value in a hard register from a reload insn of the
5692 current insn. */
5693 rtx insns;
5694};
5695
5696/* Map: regno -> corresponding pseudo usage insns. */
5697static struct usage_insns *usage_insns;
5698
5699static void
5700setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
5701{
5702 usage_insns[regno].check = curr_usage_insns_check;
5703 usage_insns[regno].insns = insn;
5704 usage_insns[regno].reloads_num = reloads_num;
5705 usage_insns[regno].calls_num = calls_num;
5706 usage_insns[regno].after_p = after_p;
5707 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0)
5708 remove_from_hard_reg_set (regs: &full_and_partial_call_clobbers,
5709 PSEUDO_REGNO_MODE (regno),
5710 regno: reg_renumber[regno]);
5711}
5712
5713/* The function is used to form list REGNO usages which consists of
5714 optional debug insns finished by a non-debug insn using REGNO.
5715 RELOADS_NUM is current number of reload insns processed so far. */
5716static void
5717add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
5718{
5719 rtx next_usage_insns;
5720
5721 if (usage_insns[regno].check == curr_usage_insns_check
5722 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
5723 && DEBUG_INSN_P (insn))
5724 {
5725 /* Check that we did not add the debug insn yet. */
5726 if (next_usage_insns != insn
5727 && (GET_CODE (next_usage_insns) != INSN_LIST
5728 || XEXP (next_usage_insns, 0) != insn))
5729 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
5730 next_usage_insns);
5731 }
5732 else if (NONDEBUG_INSN_P (insn))
5733 setup_next_usage_insn (regno, insn, reloads_num, after_p: false);
5734 else
5735 usage_insns[regno].check = 0;
5736}
5737
5738/* Return first non-debug insn in list USAGE_INSNS. */
5739static rtx_insn *
5740skip_usage_debug_insns (rtx usage_insns)
5741{
5742 rtx insn;
5743
5744 /* Skip debug insns. */
5745 for (insn = usage_insns;
5746 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
5747 insn = XEXP (insn, 1))
5748 ;
5749 return safe_as_a <rtx_insn *> (p: insn);
5750}
5751
5752/* Return true if we need secondary memory moves for insn in
5753 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5754 into the insn. */
5755static bool
5756check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
5757 rtx usage_insns ATTRIBUTE_UNUSED)
5758{
5759 rtx_insn *insn;
5760 rtx set, dest;
5761 enum reg_class cl;
5762
5763 if (inher_cl == ALL_REGS
5764 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
5765 return false;
5766 lra_assert (INSN_P (insn));
5767 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
5768 return false;
5769 dest = SET_DEST (set);
5770 if (! REG_P (dest))
5771 return false;
5772 lra_assert (inher_cl != NO_REGS);
5773 cl = get_reg_class (REGNO (dest));
5774 return (cl != NO_REGS && cl != ALL_REGS
5775 && targetm.secondary_memory_needed (GET_MODE (dest), inher_cl, cl));
5776}
5777
5778/* Registers involved in inheritance/split in the current EBB
5779 (inheritance/split pseudos and original registers). */
5780static bitmap_head check_only_regs;
5781
5782/* Reload pseudos cannot be involded in invariant inheritance in the
5783 current EBB. */
5784static bitmap_head invalid_invariant_regs;
5785
5786/* Do inheritance transformations for insn INSN, which defines (if
5787 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5788 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5789 form as the "insns" field of usage_insns. Return true if we
5790 succeed in such transformation.
5791
5792 The transformations look like:
5793
5794 p <- ... i <- ...
5795 ... p <- i (new insn)
5796 ... =>
5797 <- ... p ... <- ... i ...
5798 or
5799 ... i <- p (new insn)
5800 <- ... p ... <- ... i ...
5801 ... =>
5802 <- ... p ... <- ... i ...
5803 where p is a spilled original pseudo and i is a new inheritance pseudo.
5804
5805
5806 The inheritance pseudo has the smallest class of two classes CL and
5807 class of ORIGINAL REGNO. */
5808static bool
5809inherit_reload_reg (bool def_p, int original_regno,
5810 enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
5811{
5812 if (optimize_function_for_size_p (cfun))
5813 return false;
5814
5815 enum reg_class rclass = lra_get_allocno_class (regno: original_regno);
5816 rtx original_reg = regno_reg_rtx[original_regno];
5817 rtx new_reg, usage_insn;
5818 rtx_insn *new_insns;
5819
5820 lra_assert (! usage_insns[original_regno].after_p);
5821 if (lra_dump_file != NULL)
5822 fprintf (stream: lra_dump_file,
5823 format: " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5824 if (! ira_reg_classes_intersect_p[cl][rclass])
5825 {
5826 if (lra_dump_file != NULL)
5827 {
5828 fprintf (stream: lra_dump_file,
5829 format: " Rejecting inheritance for %d "
5830 "because of disjoint classes %s and %s\n",
5831 original_regno, reg_class_names[cl],
5832 reg_class_names[rclass]);
5833 fprintf (stream: lra_dump_file,
5834 format: " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5835 }
5836 return false;
5837 }
5838 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
5839 /* We don't use a subset of two classes because it can be
5840 NO_REGS. This transformation is still profitable in most
5841 cases even if the classes are not intersected as register
5842 move is probably cheaper than a memory load. */
5843 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
5844 {
5845 if (lra_dump_file != NULL)
5846 fprintf (stream: lra_dump_file, format: " Use smallest class of %s and %s\n",
5847 reg_class_names[cl], reg_class_names[rclass]);
5848
5849 rclass = cl;
5850 }
5851 if (check_secondary_memory_needed_p (inher_cl: rclass, usage_insns: next_usage_insns))
5852 {
5853 /* Reject inheritance resulting in secondary memory moves.
5854 Otherwise, there is a danger in LRA cycling. Also such
5855 transformation will be unprofitable. */
5856 if (lra_dump_file != NULL)
5857 {
5858 rtx_insn *insn = skip_usage_debug_insns (usage_insns: next_usage_insns);
5859 rtx set = single_set (insn);
5860
5861 lra_assert (set != NULL_RTX);
5862
5863 rtx dest = SET_DEST (set);
5864
5865 lra_assert (REG_P (dest));
5866 fprintf (stream: lra_dump_file,
5867 format: " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5868 "as secondary mem is needed\n",
5869 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
5870 original_regno, reg_class_names[rclass]);
5871 fprintf (stream: lra_dump_file,
5872 format: " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5873 }
5874 return false;
5875 }
5876 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
5877 rclass, NULL, "inheritance");
5878 start_sequence ();
5879 if (def_p)
5880 lra_emit_move (original_reg, new_reg);
5881 else
5882 lra_emit_move (new_reg, original_reg);
5883 new_insns = get_insns ();
5884 end_sequence ();
5885 if (NEXT_INSN (insn: new_insns) != NULL_RTX)
5886 {
5887 if (lra_dump_file != NULL)
5888 {
5889 fprintf (stream: lra_dump_file,
5890 format: " Rejecting inheritance %d->%d "
5891 "as it results in 2 or more insns:\n",
5892 original_regno, REGNO (new_reg));
5893 dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
5894 fprintf (stream: lra_dump_file,
5895 format: " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5896 }
5897 return false;
5898 }
5899 lra_substitute_pseudo_within_insn (insn, original_regno, new_reg, false);
5900 lra_update_insn_regno_info (insn);
5901 if (! def_p)
5902 /* We now have a new usage insn for original regno. */
5903 setup_next_usage_insn (regno: original_regno, insn: new_insns, reloads_num, after_p: false);
5904 if (lra_dump_file != NULL)
5905 fprintf (stream: lra_dump_file, format: " Original reg change %d->%d (bb%d):\n",
5906 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5907 lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5908 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5909 bitmap_set_bit (&check_only_regs, original_regno);
5910 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5911 if (def_p)
5912 lra_process_new_insns (insn, NULL, new_insns,
5913 "Add original<-inheritance");
5914 else
5915 lra_process_new_insns (insn, new_insns, NULL,
5916 "Add inheritance<-original");
5917 while (next_usage_insns != NULL_RTX)
5918 {
5919 if (GET_CODE (next_usage_insns) != INSN_LIST)
5920 {
5921 usage_insn = next_usage_insns;
5922 lra_assert (NONDEBUG_INSN_P (usage_insn));
5923 next_usage_insns = NULL;
5924 }
5925 else
5926 {
5927 usage_insn = XEXP (next_usage_insns, 0);
5928 lra_assert (DEBUG_INSN_P (usage_insn));
5929 next_usage_insns = XEXP (next_usage_insns, 1);
5930 }
5931 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5932 DEBUG_INSN_P (usage_insn));
5933 lra_update_insn_regno_info (as_a <rtx_insn *> (p: usage_insn));
5934 if (lra_dump_file != NULL)
5935 {
5936 basic_block bb = BLOCK_FOR_INSN (insn: usage_insn);
5937 fprintf (stream: lra_dump_file,
5938 format: " Inheritance reuse change %d->%d (bb%d):\n",
5939 original_regno, REGNO (new_reg),
5940 bb ? bb->index : -1);
5941 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (p: usage_insn));
5942 }
5943 }
5944 if (lra_dump_file != NULL)
5945 fprintf (stream: lra_dump_file,
5946 format: " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5947 return true;
5948}
5949
5950/* Return true if we need a caller save/restore for pseudo REGNO which
5951 was assigned to a hard register. */
5952static inline bool
5953need_for_call_save_p (int regno)
5954{
5955 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
5956 if (usage_insns[regno].calls_num < calls_num)
5957 {
5958 unsigned int abis = 0;
5959 for (unsigned int i = 0; i < NUM_ABI_IDS; ++i)
5960 if (last_call_for_abi[i] > usage_insns[regno].calls_num)
5961 abis |= 1 << i;
5962 gcc_assert (abis);
5963 if (call_clobbered_in_region_p (abis, mask: full_and_partial_call_clobbers,
5964 PSEUDO_REGNO_MODE (regno),
5965 regno: reg_renumber[regno]))
5966 return true;
5967 }
5968 return false;
5969}
5970
5971/* Global registers occurring in the current EBB. */
5972static bitmap_head ebb_global_regs;
5973
5974/* Return true if we need a split for hard register REGNO or pseudo
5975 REGNO which was assigned to a hard register.
5976 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5977 used for reloads since the EBB end. It is an approximation of the
5978 used hard registers in the split range. The exact value would
5979 require expensive calculations. If we were aggressive with
5980 splitting because of the approximation, the split pseudo will save
5981 the same hard register assignment and will be removed in the undo
5982 pass. We still need the approximation because too aggressive
5983 splitting would result in too inaccurate cost calculation in the
5984 assignment pass because of too many generated moves which will be
5985 probably removed in the undo pass. */
5986static inline bool
5987need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
5988{
5989 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
5990
5991 lra_assert (hard_regno >= 0);
5992 return ((TEST_HARD_REG_BIT (set: potential_reload_hard_regs, bit: hard_regno)
5993 /* Don't split eliminable hard registers, otherwise we can
5994 split hard registers like hard frame pointer, which
5995 lives on BB start/end according to DF-infrastructure,
5996 when there is a pseudo assigned to the register and
5997 living in the same BB. */
5998 && (regno >= FIRST_PSEUDO_REGISTER
5999 || ! TEST_HARD_REG_BIT (set: eliminable_regset, bit: hard_regno))
6000 && ! TEST_HARD_REG_BIT (set: lra_no_alloc_regs, bit: hard_regno)
6001 /* Don't split call clobbered hard regs living through
6002 calls, otherwise we might have a check problem in the
6003 assign sub-pass as in the most cases (exception is a
6004 situation when check_and_force_assignment_correctness_p value is
6005 true) the assign pass assumes that all pseudos living
6006 through calls are assigned to call saved hard regs. */
6007 && (regno >= FIRST_PSEUDO_REGISTER
6008 || !TEST_HARD_REG_BIT (set: full_and_partial_call_clobbers, bit: regno))
6009 /* We need at least 2 reloads to make pseudo splitting
6010 profitable. We should provide hard regno splitting in
6011 any case to solve 1st insn scheduling problem when
6012 moving hard register definition up might result in
6013 impossibility to find hard register for reload pseudo of
6014 small register class. */
6015 && (usage_insns[regno].reloads_num
6016 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
6017 && (regno < FIRST_PSEUDO_REGISTER
6018 /* For short living pseudos, spilling + inheritance can
6019 be considered a substitution for splitting.
6020 Therefore we do not splitting for local pseudos. It
6021 decreases also aggressiveness of splitting. The
6022 minimal number of references is chosen taking into
6023 account that for 2 references splitting has no sense
6024 as we can just spill the pseudo. */
6025 || (regno >= FIRST_PSEUDO_REGISTER
6026 && lra_reg_info[regno].nrefs > 3
6027 && bitmap_bit_p (&ebb_global_regs, regno))))
6028 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
6029}
6030
6031/* Return class for the split pseudo created from original pseudo with
6032 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
6033 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
6034 results in no secondary memory movements. */
6035static enum reg_class
6036choose_split_class (enum reg_class allocno_class,
6037 int hard_regno ATTRIBUTE_UNUSED,
6038 machine_mode mode ATTRIBUTE_UNUSED)
6039{
6040 int i;
6041 enum reg_class cl, best_cl = NO_REGS;
6042 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
6043 = REGNO_REG_CLASS (hard_regno);
6044
6045 if (! targetm.secondary_memory_needed (mode, allocno_class, allocno_class)
6046 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], bit: hard_regno))
6047 return allocno_class;
6048 for (i = 0;
6049 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
6050 i++)
6051 if (! targetm.secondary_memory_needed (mode, cl, hard_reg_class)
6052 && ! targetm.secondary_memory_needed (mode, hard_reg_class, cl)
6053 && TEST_HARD_REG_BIT (reg_class_contents[cl], bit: hard_regno)
6054 && (best_cl == NO_REGS
6055 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
6056 best_cl = cl;
6057 return best_cl;
6058}
6059
6060/* Copy any equivalence information from ORIGINAL_REGNO to NEW_REGNO. It only
6061 makes sense to call this function if NEW_REGNO is always equal to
6062 ORIGINAL_REGNO. Set up defined_p flag when caller_save_p flag is set up and
6063 CALL_SAVE_P is true. */
6064
6065static void
6066lra_copy_reg_equiv (unsigned int new_regno, unsigned int original_regno,
6067 bool call_save_p)
6068{
6069 if (!ira_reg_equiv[original_regno].defined_p
6070 && !(call_save_p && ira_reg_equiv[original_regno].caller_save_p))
6071 return;
6072
6073 ira_expand_reg_equiv ();
6074 ira_reg_equiv[new_regno].defined_p = true;
6075 if (ira_reg_equiv[original_regno].memory)
6076 ira_reg_equiv[new_regno].memory
6077 = copy_rtx (ira_reg_equiv[original_regno].memory);
6078 if (ira_reg_equiv[original_regno].constant)
6079 ira_reg_equiv[new_regno].constant
6080 = copy_rtx (ira_reg_equiv[original_regno].constant);
6081 if (ira_reg_equiv[original_regno].invariant)
6082 ira_reg_equiv[new_regno].invariant
6083 = copy_rtx (ira_reg_equiv[original_regno].invariant);
6084}
6085
6086/* Do split transformations for insn INSN, which defines or uses
6087 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
6088 the EBB next uses ORIGINAL_REGNO; it has the same form as the
6089 "insns" field of usage_insns. If TO is not NULL, we don't use
6090 usage_insns, we put restore insns after TO insn. It is a case when
6091 we call it from lra_split_hard_reg_for, outside the inheritance
6092 pass.
6093
6094 The transformations look like:
6095
6096 p <- ... p <- ...
6097 ... s <- p (new insn -- save)
6098 ... =>
6099 ... p <- s (new insn -- restore)
6100 <- ... p ... <- ... p ...
6101 or
6102 <- ... p ... <- ... p ...
6103 ... s <- p (new insn -- save)
6104 ... =>
6105 ... p <- s (new insn -- restore)
6106 <- ... p ... <- ... p ...
6107
6108 where p is an original pseudo got a hard register or a hard
6109 register and s is a new split pseudo. The save is put before INSN
6110 if BEFORE_P is true. Return true if we succeed in such
6111 transformation. */
6112static bool
6113split_reg (bool before_p, int original_regno, rtx_insn *insn,
6114 rtx next_usage_insns, rtx_insn *to)
6115{
6116 enum reg_class rclass;
6117 rtx original_reg;
6118 int hard_regno, nregs;
6119 rtx new_reg, usage_insn;
6120 rtx_insn *restore, *save;
6121 bool after_p;
6122 bool call_save_p;
6123 machine_mode mode;
6124
6125 if (original_regno < FIRST_PSEUDO_REGISTER)
6126 {
6127 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
6128 hard_regno = original_regno;
6129 call_save_p = false;
6130 nregs = 1;
6131 mode = lra_reg_info[hard_regno].biggest_mode;
6132 machine_mode reg_rtx_mode = GET_MODE (regno_reg_rtx[hard_regno]);
6133 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen as
6134 part of a multi-word register. In that case, just use the reg_rtx
6135 mode. Do the same also if the biggest mode was larger than a register
6136 or we can not compare the modes. Otherwise, limit the size to that of
6137 the biggest access in the function or to the natural mode at least. */
6138 if (mode == VOIDmode
6139 || !ordered_p (a: GET_MODE_PRECISION (mode),
6140 b: GET_MODE_PRECISION (mode: reg_rtx_mode))
6141 || paradoxical_subreg_p (outermode: mode, innermode: reg_rtx_mode)
6142 || maybe_gt (GET_MODE_PRECISION (reg_rtx_mode), GET_MODE_PRECISION (mode)))
6143 {
6144 original_reg = regno_reg_rtx[hard_regno];
6145 mode = reg_rtx_mode;
6146 }
6147 else
6148 original_reg = gen_rtx_REG (mode, hard_regno);
6149 }
6150 else
6151 {
6152 mode = PSEUDO_REGNO_MODE (original_regno);
6153 hard_regno = reg_renumber[original_regno];
6154 nregs = hard_regno_nregs (regno: hard_regno, mode);
6155 rclass = lra_get_allocno_class (regno: original_regno);
6156 original_reg = regno_reg_rtx[original_regno];
6157 call_save_p = need_for_call_save_p (regno: original_regno);
6158 }
6159 lra_assert (hard_regno >= 0);
6160 if (lra_dump_file != NULL)
6161 fprintf (stream: lra_dump_file,
6162 format: " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
6163
6164 if (call_save_p)
6165 {
6166 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
6167 hard_regno_nregs (hard_regno, mode),
6168 mode);
6169 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, NULL, "save");
6170 }
6171 else
6172 {
6173 rclass = choose_split_class (allocno_class: rclass, hard_regno, mode);
6174 if (rclass == NO_REGS)
6175 {
6176 if (lra_dump_file != NULL)
6177 {
6178 fprintf (stream: lra_dump_file,
6179 format: " Rejecting split of %d(%s): "
6180 "no good reg class for %d(%s)\n",
6181 original_regno,
6182 reg_class_names[lra_get_allocno_class (regno: original_regno)],
6183 hard_regno,
6184 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
6185 fprintf
6186 (stream: lra_dump_file,
6187 format: " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6188 }
6189 return false;
6190 }
6191 /* Split_if_necessary can split hard registers used as part of a
6192 multi-register mode but splits each register individually. The
6193 mode used for each independent register may not be supported
6194 so reject the split. Splitting the wider mode should theoretically
6195 be possible but is not implemented. */
6196 if (!targetm.hard_regno_mode_ok (hard_regno, mode))
6197 {
6198 if (lra_dump_file != NULL)
6199 {
6200 fprintf (stream: lra_dump_file,
6201 format: " Rejecting split of %d(%s): unsuitable mode %s\n",
6202 original_regno,
6203 reg_class_names[lra_get_allocno_class (regno: original_regno)],
6204 GET_MODE_NAME (mode));
6205 fprintf
6206 (stream: lra_dump_file,
6207 format: " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6208 }
6209 return false;
6210 }
6211 new_reg = lra_create_new_reg (mode, original_reg, rclass, NULL, "split");
6212 reg_renumber[REGNO (new_reg)] = hard_regno;
6213 }
6214 int new_regno = REGNO (new_reg);
6215 save = emit_spill_move (to_p: true, mem_pseudo: new_reg, val: original_reg);
6216 if (NEXT_INSN (insn: save) != NULL_RTX && !call_save_p)
6217 {
6218 if (lra_dump_file != NULL)
6219 {
6220 fprintf
6221 (stream: lra_dump_file,
6222 format: " Rejecting split %d->%d resulting in > 2 save insns:\n",
6223 original_regno, new_regno);
6224 dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
6225 fprintf (stream: lra_dump_file,
6226 format: " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6227 }
6228 return false;
6229 }
6230 restore = emit_spill_move (to_p: false, mem_pseudo: new_reg, val: original_reg);
6231 if (NEXT_INSN (insn: restore) != NULL_RTX && !call_save_p)
6232 {
6233 if (lra_dump_file != NULL)
6234 {
6235 fprintf (stream: lra_dump_file,
6236 format: " Rejecting split %d->%d "
6237 "resulting in > 2 restore insns:\n",
6238 original_regno, new_regno);
6239 dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
6240 fprintf (stream: lra_dump_file,
6241 format: " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6242 }
6243 return false;
6244 }
6245 /* Transfer equivalence information to the spill register, so that
6246 if we fail to allocate the spill register, we have the option of
6247 rematerializing the original value instead of spilling to the stack. */
6248 if (!HARD_REGISTER_NUM_P (original_regno)
6249 && mode == PSEUDO_REGNO_MODE (original_regno))
6250 lra_copy_reg_equiv (new_regno, original_regno, call_save_p);
6251 lra_reg_info[new_regno].restore_rtx = regno_reg_rtx[original_regno];
6252 bitmap_set_bit (&lra_split_regs, new_regno);
6253 if (to != NULL)
6254 {
6255 lra_assert (next_usage_insns == NULL);
6256 usage_insn = to;
6257 after_p = true;
6258 }
6259 else
6260 {
6261 /* We need check_only_regs only inside the inheritance pass. */
6262 bitmap_set_bit (&check_only_regs, new_regno);
6263 bitmap_set_bit (&check_only_regs, original_regno);
6264 after_p = usage_insns[original_regno].after_p;
6265 for (;;)
6266 {
6267 if (GET_CODE (next_usage_insns) != INSN_LIST)
6268 {
6269 usage_insn = next_usage_insns;
6270 break;
6271 }
6272 usage_insn = XEXP (next_usage_insns, 0);
6273 lra_assert (DEBUG_INSN_P (usage_insn));
6274 next_usage_insns = XEXP (next_usage_insns, 1);
6275 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
6276 true);
6277 lra_update_insn_regno_info (as_a <rtx_insn *> (p: usage_insn));
6278 if (lra_dump_file != NULL)
6279 {
6280 fprintf (stream: lra_dump_file, format: " Split reuse change %d->%d:\n",
6281 original_regno, new_regno);
6282 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (p: usage_insn));
6283 }
6284 }
6285 }
6286 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
6287 lra_assert (usage_insn != insn || (after_p && before_p));
6288 lra_process_new_insns (as_a <rtx_insn *> (p: usage_insn),
6289 after_p ? NULL : restore,
6290 after_p ? restore : NULL,
6291 call_save_p
6292 ? "Add reg<-save" : "Add reg<-split");
6293 lra_process_new_insns (insn, before_p ? save : NULL,
6294 before_p ? NULL : save,
6295 call_save_p
6296 ? "Add save<-reg" : "Add split<-reg");
6297 if (nregs > 1 || original_regno < FIRST_PSEUDO_REGISTER)
6298 /* If we are trying to split multi-register. We should check
6299 conflicts on the next assignment sub-pass. IRA can allocate on
6300 sub-register levels, LRA do this on pseudos level right now and
6301 this discrepancy may create allocation conflicts after
6302 splitting.
6303
6304 If we are trying to split hard register we should also check conflicts
6305 as such splitting can create artificial conflict of the hard register
6306 with another pseudo because of simplified conflict calculation in
6307 LRA. */
6308 check_and_force_assignment_correctness_p = true;
6309 if (lra_dump_file != NULL)
6310 fprintf (stream: lra_dump_file,
6311 format: " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6312 return true;
6313}
6314
6315/* Split a hard reg for reload pseudo REGNO having RCLASS and living
6316 in the range [FROM, TO]. Return true if did a split. Otherwise,
6317 return false. */
6318bool
6319spill_hard_reg_in_range (int regno, enum reg_class rclass, rtx_insn *from, rtx_insn *to)
6320{
6321 int i, hard_regno;
6322 int rclass_size;
6323 rtx_insn *insn;
6324 unsigned int uid;
6325 bitmap_iterator bi;
6326 HARD_REG_SET ignore;
6327
6328 lra_assert (from != NULL && to != NULL);
6329 ignore = lra_no_alloc_regs;
6330 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
6331 {
6332 lra_insn_recog_data_t id = lra_insn_recog_data[uid];
6333 struct lra_static_insn_data *static_id = id->insn_static_data;
6334 struct lra_insn_reg *reg;
6335
6336 for (reg = id->regs; reg != NULL; reg = reg->next)
6337 if (reg->regno < FIRST_PSEUDO_REGISTER)
6338 SET_HARD_REG_BIT (set&: ignore, bit: reg->regno);
6339 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
6340 SET_HARD_REG_BIT (set&: ignore, bit: reg->regno);
6341 }
6342 rclass_size = ira_class_hard_regs_num[rclass];
6343 for (i = 0; i < rclass_size; i++)
6344 {
6345 hard_regno = ira_class_hard_regs[rclass][i];
6346 if (! TEST_HARD_REG_BIT (set: lra_reg_info[regno].conflict_hard_regs, bit: hard_regno)
6347 || TEST_HARD_REG_BIT (set: ignore, bit: hard_regno))
6348 continue;
6349 for (insn = from; insn != NEXT_INSN (insn: to); insn = NEXT_INSN (insn))
6350 {
6351 struct lra_static_insn_data *static_id;
6352 struct lra_insn_reg *reg;
6353
6354 if (!INSN_P (insn))
6355 continue;
6356 if (bitmap_bit_p (&lra_reg_info[hard_regno].insn_bitmap,
6357 INSN_UID (insn)))
6358 break;
6359 static_id = lra_get_insn_recog_data (insn)->insn_static_data;
6360 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
6361 if (reg->regno == hard_regno)
6362 break;
6363 if (reg != NULL)
6364 break;
6365 }
6366 if (insn != NEXT_INSN (insn: to))
6367 continue;
6368 if (split_reg (before_p: true, original_regno: hard_regno, insn: from, NULL, to))
6369 return true;
6370 }
6371 return false;
6372}
6373
6374/* Recognize that we need a split transformation for insn INSN, which
6375 defines or uses REGNO in its insn biggest MODE (we use it only if
6376 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
6377 hard registers which might be used for reloads since the EBB end.
6378 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
6379 uid before starting INSN processing. Return true if we succeed in
6380 such transformation. */
6381static bool
6382split_if_necessary (int regno, machine_mode mode,
6383 HARD_REG_SET potential_reload_hard_regs,
6384 bool before_p, rtx_insn *insn, int max_uid)
6385{
6386 bool res = false;
6387 int i, nregs = 1;
6388 rtx next_usage_insns;
6389
6390 if (regno < FIRST_PSEUDO_REGISTER)
6391 nregs = hard_regno_nregs (regno, mode);
6392 for (i = 0; i < nregs; i++)
6393 if (usage_insns[regno + i].check == curr_usage_insns_check
6394 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
6395 /* To avoid processing the register twice or more. */
6396 && ((GET_CODE (next_usage_insns) != INSN_LIST
6397 && INSN_UID (insn: next_usage_insns) < max_uid)
6398 || (GET_CODE (next_usage_insns) == INSN_LIST
6399 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
6400 && need_for_split_p (potential_reload_hard_regs, regno: regno + i)
6401 && split_reg (before_p, original_regno: regno + i, insn, next_usage_insns, NULL))
6402 res = true;
6403 return res;
6404}
6405
6406/* Return TRUE if rtx X is considered as an invariant for
6407 inheritance. */
6408static bool
6409invariant_p (const_rtx x)
6410{
6411 machine_mode mode;
6412 const char *fmt;
6413 enum rtx_code code;
6414 int i, j;
6415
6416 if (side_effects_p (x))
6417 return false;
6418
6419 code = GET_CODE (x);
6420 mode = GET_MODE (x);
6421 if (code == SUBREG)
6422 {
6423 x = SUBREG_REG (x);
6424 code = GET_CODE (x);
6425 mode = wider_subreg_mode (outermode: mode, GET_MODE (x));
6426 }
6427
6428 if (MEM_P (x))
6429 return false;
6430
6431 if (REG_P (x))
6432 {
6433 int i, nregs, regno = REGNO (x);
6434
6435 if (regno >= FIRST_PSEUDO_REGISTER || regno == STACK_POINTER_REGNUM
6436 || TEST_HARD_REG_BIT (set: eliminable_regset, bit: regno)
6437 || GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
6438 return false;
6439 nregs = hard_regno_nregs (regno, mode);
6440 for (i = 0; i < nregs; i++)
6441 if (! fixed_regs[regno + i]
6442 /* A hard register may be clobbered in the current insn
6443 but we can ignore this case because if the hard
6444 register is used it should be set somewhere after the
6445 clobber. */
6446 || bitmap_bit_p (&invalid_invariant_regs, regno + i))
6447 return false;
6448 }
6449 fmt = GET_RTX_FORMAT (code);
6450 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6451 {
6452 if (fmt[i] == 'e')
6453 {
6454 if (! invariant_p (XEXP (x, i)))
6455 return false;
6456 }
6457 else if (fmt[i] == 'E')
6458 {
6459 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6460 if (! invariant_p (XVECEXP (x, i, j)))
6461 return false;
6462 }
6463 }
6464 return true;
6465}
6466
6467/* We have 'dest_reg <- invariant'. Let us try to make an invariant
6468 inheritance transformation (using dest_reg instead invariant in a
6469 subsequent insn). */
6470static bool
6471process_invariant_for_inheritance (rtx dst_reg, rtx invariant_rtx)
6472{
6473 invariant_ptr_t invariant_ptr;
6474 rtx_insn *insn, *new_insns;
6475 rtx insn_set, insn_reg, new_reg;
6476 int insn_regno;
6477 bool succ_p = false;
6478 int dst_regno = REGNO (dst_reg);
6479 machine_mode dst_mode = GET_MODE (dst_reg);
6480 enum reg_class cl = lra_get_allocno_class (regno: dst_regno), insn_reg_cl;
6481
6482 invariant_ptr = insert_invariant (invariant_rtx);
6483 if ((insn = invariant_ptr->insn) != NULL_RTX)
6484 {
6485 /* We have a subsequent insn using the invariant. */
6486 insn_set = single_set (insn);
6487 lra_assert (insn_set != NULL);
6488 insn_reg = SET_DEST (insn_set);
6489 lra_assert (REG_P (insn_reg));
6490 insn_regno = REGNO (insn_reg);
6491 insn_reg_cl = lra_get_allocno_class (regno: insn_regno);
6492
6493 if (dst_mode == GET_MODE (insn_reg)
6494 /* We should consider only result move reg insns which are
6495 cheap. */
6496 && targetm.register_move_cost (dst_mode, cl, insn_reg_cl) == 2
6497 && targetm.register_move_cost (dst_mode, cl, cl) == 2)
6498 {
6499 if (lra_dump_file != NULL)
6500 fprintf (stream: lra_dump_file,
6501 format: " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
6502 new_reg = lra_create_new_reg (dst_mode, dst_reg, cl, NULL,
6503 "invariant inheritance");
6504 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
6505 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
6506 lra_reg_info[REGNO (new_reg)].restore_rtx = PATTERN (insn);
6507 start_sequence ();
6508 lra_emit_move (new_reg, dst_reg);
6509 new_insns = get_insns ();
6510 end_sequence ();
6511 lra_process_new_insns (curr_insn, NULL, new_insns,
6512 "Add invariant inheritance<-original");
6513 start_sequence ();
6514 lra_emit_move (SET_DEST (insn_set), new_reg);
6515 new_insns = get_insns ();
6516 end_sequence ();
6517 lra_process_new_insns (insn, NULL, new_insns,
6518 "Changing reload<-inheritance");
6519 lra_set_insn_deleted (insn);
6520 succ_p = true;
6521 if (lra_dump_file != NULL)
6522 {
6523 fprintf (stream: lra_dump_file,
6524 format: " Invariant inheritance reuse change %d (bb%d):\n",
6525 REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
6526 dump_insn_slim (lra_dump_file, insn);
6527 fprintf (stream: lra_dump_file,
6528 format: " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
6529 }
6530 }
6531 }
6532 invariant_ptr->insn = curr_insn;
6533 return succ_p;
6534}
6535
6536/* Check only registers living at the current program point in the
6537 current EBB. */
6538static bitmap_head live_regs;
6539
6540/* Update live info in EBB given by its HEAD and TAIL insns after
6541 inheritance/split transformation. The function removes dead moves
6542 too. */
6543static void
6544update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
6545{
6546 unsigned int j;
6547 int i, regno;
6548 bool live_p;
6549 rtx_insn *prev_insn;
6550 rtx set;
6551 bool remove_p;
6552 basic_block last_bb, prev_bb, curr_bb;
6553 bitmap_iterator bi;
6554 struct lra_insn_reg *reg;
6555 edge e;
6556 edge_iterator ei;
6557
6558 last_bb = BLOCK_FOR_INSN (insn: tail);
6559 prev_bb = NULL;
6560 for (curr_insn = tail;
6561 curr_insn != PREV_INSN (insn: head);
6562 curr_insn = prev_insn)
6563 {
6564 prev_insn = PREV_INSN (insn: curr_insn);
6565 /* We need to process empty blocks too. They contain
6566 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
6567 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
6568 continue;
6569 curr_bb = BLOCK_FOR_INSN (insn: curr_insn);
6570 if (curr_bb != prev_bb)
6571 {
6572 if (prev_bb != NULL)
6573 {
6574 /* Update df_get_live_in (prev_bb): */
6575 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
6576 if (bitmap_bit_p (&live_regs, j))
6577 bitmap_set_bit (df_get_live_in (bb: prev_bb), j);
6578 else
6579 bitmap_clear_bit (df_get_live_in (bb: prev_bb), j);
6580 }
6581 if (curr_bb != last_bb)
6582 {
6583 /* Update df_get_live_out (curr_bb): */
6584 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
6585 {
6586 live_p = bitmap_bit_p (&live_regs, j);
6587 if (! live_p)
6588 FOR_EACH_EDGE (e, ei, curr_bb->succs)
6589 if (bitmap_bit_p (df_get_live_in (bb: e->dest), j))
6590 {
6591 live_p = true;
6592 break;
6593 }
6594 if (live_p)
6595 bitmap_set_bit (df_get_live_out (bb: curr_bb), j);
6596 else
6597 bitmap_clear_bit (df_get_live_out (bb: curr_bb), j);
6598 }
6599 }
6600 prev_bb = curr_bb;
6601 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (bb: curr_bb));
6602 }
6603 if (! NONDEBUG_INSN_P (curr_insn))
6604 continue;
6605 curr_id = lra_get_insn_recog_data (insn: curr_insn);
6606 curr_static_id = curr_id->insn_static_data;
6607 remove_p = false;
6608 if ((set = single_set (insn: curr_insn)) != NULL_RTX
6609 && REG_P (SET_DEST (set))
6610 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
6611 && SET_DEST (set) != pic_offset_table_rtx
6612 && bitmap_bit_p (&check_only_regs, regno)
6613 && ! bitmap_bit_p (&live_regs, regno))
6614 remove_p = true;
6615 /* See which defined values die here. */
6616 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6617 if (reg->type == OP_OUT && ! reg->subreg_p)
6618 bitmap_clear_bit (&live_regs, reg->regno);
6619 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6620 if (reg->type == OP_OUT && ! reg->subreg_p)
6621 bitmap_clear_bit (&live_regs, reg->regno);
6622 if (curr_id->arg_hard_regs != NULL)
6623 /* Make clobbered argument hard registers die. */
6624 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6625 if (regno >= FIRST_PSEUDO_REGISTER)
6626 bitmap_clear_bit (&live_regs, regno - FIRST_PSEUDO_REGISTER);
6627 /* Mark each used value as live. */
6628 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6629 if (reg->type != OP_OUT
6630 && bitmap_bit_p (&check_only_regs, reg->regno))
6631 bitmap_set_bit (&live_regs, reg->regno);
6632 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6633 if (reg->type != OP_OUT
6634 && bitmap_bit_p (&check_only_regs, reg->regno))
6635 bitmap_set_bit (&live_regs, reg->regno);
6636 if (curr_id->arg_hard_regs != NULL)
6637 /* Make used argument hard registers live. */
6638 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6639 if (regno < FIRST_PSEUDO_REGISTER
6640 && bitmap_bit_p (&check_only_regs, regno))
6641 bitmap_set_bit (&live_regs, regno);
6642 /* It is quite important to remove dead move insns because it
6643 means removing dead store. We don't need to process them for
6644 constraints. */
6645 if (remove_p)
6646 {
6647 if (lra_dump_file != NULL)
6648 {
6649 fprintf (stream: lra_dump_file, format: " Removing dead insn:\n ");
6650 dump_insn_slim (lra_dump_file, curr_insn);
6651 }
6652 lra_set_insn_deleted (curr_insn);
6653 }
6654 }
6655}
6656
6657/* The structure describes info to do an inheritance for the current
6658 insn. We need to collect such info first before doing the
6659 transformations because the transformations change the insn
6660 internal representation. */
6661struct to_inherit
6662{
6663 /* Original regno. */
6664 int regno;
6665 /* Subsequent insns which can inherit original reg value. */
6666 rtx insns;
6667};
6668
6669/* Array containing all info for doing inheritance from the current
6670 insn. */
6671static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
6672
6673/* Number elements in the previous array. */
6674static int to_inherit_num;
6675
6676/* Add inheritance info REGNO and INSNS. Their meaning is described in
6677 structure to_inherit. */
6678static void
6679add_to_inherit (int regno, rtx insns)
6680{
6681 int i;
6682
6683 for (i = 0; i < to_inherit_num; i++)
6684 if (to_inherit[i].regno == regno)
6685 return;
6686 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
6687 to_inherit[to_inherit_num].regno = regno;
6688 to_inherit[to_inherit_num++].insns = insns;
6689}
6690
6691/* Return the last non-debug insn in basic block BB, or the block begin
6692 note if none. */
6693static rtx_insn *
6694get_last_insertion_point (basic_block bb)
6695{
6696 rtx_insn *insn;
6697
6698 FOR_BB_INSNS_REVERSE (bb, insn)
6699 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
6700 return insn;
6701 gcc_unreachable ();
6702}
6703
6704/* Set up RES by registers living on edges FROM except the edge (FROM,
6705 TO) or by registers set up in a jump insn in BB FROM. */
6706static void
6707get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
6708{
6709 rtx_insn *last;
6710 struct lra_insn_reg *reg;
6711 edge e;
6712 edge_iterator ei;
6713
6714 lra_assert (to != NULL);
6715 bitmap_clear (res);
6716 FOR_EACH_EDGE (e, ei, from->succs)
6717 if (e->dest != to)
6718 bitmap_ior_into (res, df_get_live_in (bb: e->dest));
6719 last = get_last_insertion_point (bb: from);
6720 if (! JUMP_P (last))
6721 return;
6722 curr_id = lra_get_insn_recog_data (insn: last);
6723 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6724 if (reg->type != OP_IN)
6725 bitmap_set_bit (res, reg->regno);
6726}
6727
6728/* Used as a temporary results of some bitmap calculations. */
6729static bitmap_head temp_bitmap;
6730
6731/* We split for reloads of small class of hard regs. The following
6732 defines how many hard regs the class should have to be qualified as
6733 small. The code is mostly oriented to x86/x86-64 architecture
6734 where some insns need to use only specific register or pair of
6735 registers and these register can live in RTL explicitly, e.g. for
6736 parameter passing. */
6737static const int max_small_class_regs_num = 2;
6738
6739/* Do inheritance/split transformations in EBB starting with HEAD and
6740 finishing on TAIL. We process EBB insns in the reverse order.
6741 Return true if we did any inheritance/split transformation in the
6742 EBB.
6743
6744 We should avoid excessive splitting which results in worse code
6745 because of inaccurate cost calculations for spilling new split
6746 pseudos in such case. To achieve this we do splitting only if
6747 register pressure is high in given basic block and there are reload
6748 pseudos requiring hard registers. We could do more register
6749 pressure calculations at any given program point to avoid necessary
6750 splitting even more but it is to expensive and the current approach
6751 works well enough. */
6752static bool
6753inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
6754{
6755 int i, src_regno, dst_regno, nregs;
6756 bool change_p, succ_p, update_reloads_num_p;
6757 rtx_insn *prev_insn, *last_insn;
6758 rtx next_usage_insns, curr_set;
6759 enum reg_class cl;
6760 struct lra_insn_reg *reg;
6761 basic_block last_processed_bb, curr_bb = NULL;
6762 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
6763 bitmap to_process;
6764 unsigned int j;
6765 bitmap_iterator bi;
6766 bool head_p, after_p;
6767
6768 change_p = false;
6769 curr_usage_insns_check++;
6770 clear_invariants ();
6771 reloads_num = calls_num = 0;
6772 for (unsigned int i = 0; i < NUM_ABI_IDS; ++i)
6773 last_call_for_abi[i] = 0;
6774 CLEAR_HARD_REG_SET (set&: full_and_partial_call_clobbers);
6775 bitmap_clear (&check_only_regs);
6776 bitmap_clear (&invalid_invariant_regs);
6777 last_processed_bb = NULL;
6778 CLEAR_HARD_REG_SET (set&: potential_reload_hard_regs);
6779 live_hard_regs = eliminable_regset | lra_no_alloc_regs;
6780 /* We don't process new insns generated in the loop. */
6781 for (curr_insn = tail; curr_insn != PREV_INSN (insn: head); curr_insn = prev_insn)
6782 {
6783 prev_insn = PREV_INSN (insn: curr_insn);
6784 if (BLOCK_FOR_INSN (insn: curr_insn) != NULL)
6785 curr_bb = BLOCK_FOR_INSN (insn: curr_insn);
6786 if (last_processed_bb != curr_bb)
6787 {
6788 /* We are at the end of BB. Add qualified living
6789 pseudos for potential splitting. */
6790 to_process = df_get_live_out (bb: curr_bb);
6791 if (last_processed_bb != NULL)
6792 {
6793 /* We are somewhere in the middle of EBB. */
6794 get_live_on_other_edges (from: curr_bb, to: last_processed_bb,
6795 res: &temp_bitmap);
6796 to_process = &temp_bitmap;
6797 }
6798 last_processed_bb = curr_bb;
6799 last_insn = get_last_insertion_point (bb: curr_bb);
6800 after_p = (! JUMP_P (last_insn)
6801 && (! CALL_P (last_insn)
6802 || (find_reg_note (last_insn,
6803 REG_NORETURN, NULL_RTX) == NULL_RTX
6804 && ! SIBLING_CALL_P (last_insn))));
6805 CLEAR_HARD_REG_SET (set&: potential_reload_hard_regs);
6806 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6807 {
6808 if ((int) j >= lra_constraint_new_regno_start)
6809 break;
6810 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6811 {
6812 if (j < FIRST_PSEUDO_REGISTER)
6813 SET_HARD_REG_BIT (set&: live_hard_regs, bit: j);
6814 else
6815 add_to_hard_reg_set (regs: &live_hard_regs,
6816 PSEUDO_REGNO_MODE (j),
6817 regno: reg_renumber[j]);
6818 setup_next_usage_insn (regno: j, insn: last_insn, reloads_num, after_p);
6819 }
6820 }
6821 }
6822 src_regno = dst_regno = -1;
6823 curr_set = single_set (insn: curr_insn);
6824 if (curr_set != NULL_RTX && REG_P (SET_DEST (curr_set)))
6825 dst_regno = REGNO (SET_DEST (curr_set));
6826 if (curr_set != NULL_RTX && REG_P (SET_SRC (curr_set)))
6827 src_regno = REGNO (SET_SRC (curr_set));
6828 update_reloads_num_p = true;
6829 if (src_regno < lra_constraint_new_regno_start
6830 && src_regno >= FIRST_PSEUDO_REGISTER
6831 && reg_renumber[src_regno] < 0
6832 && dst_regno >= lra_constraint_new_regno_start
6833 && (cl = lra_get_allocno_class (regno: dst_regno)) != NO_REGS)
6834 {
6835 /* 'reload_pseudo <- original_pseudo'. */
6836 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6837 reloads_num++;
6838 update_reloads_num_p = false;
6839 succ_p = false;
6840 if (usage_insns[src_regno].check == curr_usage_insns_check
6841 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
6842 succ_p = inherit_reload_reg (def_p: false, original_regno: src_regno, cl,
6843 insn: curr_insn, next_usage_insns);
6844 if (succ_p)
6845 change_p = true;
6846 else
6847 setup_next_usage_insn (regno: src_regno, insn: curr_insn, reloads_num, after_p: false);
6848 if (hard_reg_set_subset_p (reg_class_contents[cl], y: live_hard_regs))
6849 potential_reload_hard_regs |= reg_class_contents[cl];
6850 }
6851 else if (src_regno < 0
6852 && dst_regno >= lra_constraint_new_regno_start
6853 && invariant_p (SET_SRC (curr_set))
6854 && (cl = lra_get_allocno_class (regno: dst_regno)) != NO_REGS
6855 && ! bitmap_bit_p (&invalid_invariant_regs, dst_regno)
6856 && ! bitmap_bit_p (&invalid_invariant_regs,
6857 ORIGINAL_REGNO(regno_reg_rtx[dst_regno])))
6858 {
6859 /* 'reload_pseudo <- invariant'. */
6860 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6861 reloads_num++;
6862 update_reloads_num_p = false;
6863 if (process_invariant_for_inheritance (SET_DEST (curr_set), SET_SRC (curr_set)))
6864 change_p = true;
6865 if (hard_reg_set_subset_p (reg_class_contents[cl], y: live_hard_regs))
6866 potential_reload_hard_regs |= reg_class_contents[cl];
6867 }
6868 else if (src_regno >= lra_constraint_new_regno_start
6869 && dst_regno < lra_constraint_new_regno_start
6870 && dst_regno >= FIRST_PSEUDO_REGISTER
6871 && reg_renumber[dst_regno] < 0
6872 && (cl = lra_get_allocno_class (regno: src_regno)) != NO_REGS
6873 && usage_insns[dst_regno].check == curr_usage_insns_check
6874 && (next_usage_insns
6875 = usage_insns[dst_regno].insns) != NULL_RTX)
6876 {
6877 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6878 reloads_num++;
6879 update_reloads_num_p = false;
6880 /* 'original_pseudo <- reload_pseudo'. */
6881 if (! JUMP_P (curr_insn)
6882 && inherit_reload_reg (def_p: true, original_regno: dst_regno, cl,
6883 insn: curr_insn, next_usage_insns))
6884 change_p = true;
6885 /* Invalidate. */
6886 usage_insns[dst_regno].check = 0;
6887 if (hard_reg_set_subset_p (reg_class_contents[cl], y: live_hard_regs))
6888 potential_reload_hard_regs |= reg_class_contents[cl];
6889 }
6890 else if (INSN_P (curr_insn))
6891 {
6892 int iter;
6893 int max_uid = get_max_uid ();
6894
6895 curr_id = lra_get_insn_recog_data (insn: curr_insn);
6896 curr_static_id = curr_id->insn_static_data;
6897 to_inherit_num = 0;
6898 /* Process insn definitions. */
6899 for (iter = 0; iter < 2; iter++)
6900 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6901 reg != NULL;
6902 reg = reg->next)
6903 if (reg->type != OP_IN
6904 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
6905 {
6906 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
6907 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
6908 && usage_insns[dst_regno].check == curr_usage_insns_check
6909 && (next_usage_insns
6910 = usage_insns[dst_regno].insns) != NULL_RTX)
6911 {
6912 struct lra_insn_reg *r;
6913
6914 for (r = curr_id->regs; r != NULL; r = r->next)
6915 if (r->type != OP_OUT && r->regno == dst_regno)
6916 break;
6917 /* Don't do inheritance if the pseudo is also
6918 used in the insn. */
6919 if (r == NULL)
6920 /* We cannot do inheritance right now
6921 because the current insn reg info (chain
6922 regs) can change after that. */
6923 add_to_inherit (regno: dst_regno, insns: next_usage_insns);
6924 }
6925 /* We cannot process one reg twice here because of
6926 usage_insns invalidation. */
6927 if ((dst_regno < FIRST_PSEUDO_REGISTER
6928 || reg_renumber[dst_regno] >= 0)
6929 && ! reg->subreg_p && reg->type != OP_IN)
6930 {
6931 HARD_REG_SET s;
6932
6933 if (split_if_necessary (regno: dst_regno, mode: reg->biggest_mode,
6934 potential_reload_hard_regs,
6935 before_p: false, insn: curr_insn, max_uid))
6936 change_p = true;
6937 CLEAR_HARD_REG_SET (set&: s);
6938 if (dst_regno < FIRST_PSEUDO_REGISTER)
6939 add_to_hard_reg_set (regs: &s, mode: reg->biggest_mode, regno: dst_regno);
6940 else
6941 add_to_hard_reg_set (regs: &s, PSEUDO_REGNO_MODE (dst_regno),
6942 regno: reg_renumber[dst_regno]);
6943 live_hard_regs &= ~s;
6944 potential_reload_hard_regs &= ~s;
6945 }
6946 /* We should invalidate potential inheritance or
6947 splitting for the current insn usages to the next
6948 usage insns (see code below) as the output pseudo
6949 prevents this. */
6950 if ((dst_regno >= FIRST_PSEUDO_REGISTER
6951 && reg_renumber[dst_regno] < 0)
6952 || (reg->type == OP_OUT && ! reg->subreg_p
6953 && (dst_regno < FIRST_PSEUDO_REGISTER
6954 || reg_renumber[dst_regno] >= 0)))
6955 {
6956 /* Invalidate and mark definitions. */
6957 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6958 usage_insns[dst_regno].check = -(int) INSN_UID (insn: curr_insn);
6959 else
6960 {
6961 nregs = hard_regno_nregs (regno: dst_regno,
6962 mode: reg->biggest_mode);
6963 for (i = 0; i < nregs; i++)
6964 usage_insns[dst_regno + i].check
6965 = -(int) INSN_UID (insn: curr_insn);
6966 }
6967 }
6968 }
6969 /* Process clobbered call regs. */
6970 if (curr_id->arg_hard_regs != NULL)
6971 for (i = 0; (dst_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6972 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6973 usage_insns[dst_regno - FIRST_PSEUDO_REGISTER].check
6974 = -(int) INSN_UID (insn: curr_insn);
6975 if (! JUMP_P (curr_insn))
6976 for (i = 0; i < to_inherit_num; i++)
6977 if (inherit_reload_reg (def_p: true, original_regno: to_inherit[i].regno,
6978 cl: ALL_REGS, insn: curr_insn,
6979 next_usage_insns: to_inherit[i].insns))
6980 change_p = true;
6981 if (CALL_P (curr_insn))
6982 {
6983 rtx cheap, pat, dest;
6984 rtx_insn *restore;
6985 int regno, hard_regno;
6986
6987 calls_num++;
6988 function_abi callee_abi = insn_callee_abi (curr_insn);
6989 last_call_for_abi[callee_abi.id ()] = calls_num;
6990 full_and_partial_call_clobbers
6991 |= callee_abi.full_and_partial_reg_clobbers ();
6992 if ((cheap = find_reg_note (curr_insn,
6993 REG_RETURNED, NULL_RTX)) != NULL_RTX
6994 && ((cheap = XEXP (cheap, 0)), true)
6995 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
6996 && (hard_regno = reg_renumber[regno]) >= 0
6997 && usage_insns[regno].check == curr_usage_insns_check
6998 /* If there are pending saves/restores, the
6999 optimization is not worth. */
7000 && usage_insns[regno].calls_num == calls_num - 1
7001 && callee_abi.clobbers_reg_p (GET_MODE (cheap), regno: hard_regno))
7002 {
7003 /* Restore the pseudo from the call result as
7004 REG_RETURNED note says that the pseudo value is
7005 in the call result and the pseudo is an argument
7006 of the call. */
7007 pat = PATTERN (insn: curr_insn);
7008 if (GET_CODE (pat) == PARALLEL)
7009 pat = XVECEXP (pat, 0, 0);
7010 dest = SET_DEST (pat);
7011 /* For multiple return values dest is PARALLEL.
7012 Currently we handle only single return value case. */
7013 if (REG_P (dest))
7014 {
7015 start_sequence ();
7016 emit_move_insn (cheap, copy_rtx (dest));
7017 restore = get_insns ();
7018 end_sequence ();
7019 lra_process_new_insns (curr_insn, NULL, restore,
7020 "Inserting call parameter restore");
7021 /* We don't need to save/restore of the pseudo from
7022 this call. */
7023 usage_insns[regno].calls_num = calls_num;
7024 remove_from_hard_reg_set
7025 (regs: &full_and_partial_call_clobbers,
7026 GET_MODE (cheap), regno: hard_regno);
7027 bitmap_set_bit (&check_only_regs, regno);
7028 }
7029 }
7030 }
7031 to_inherit_num = 0;
7032 /* Process insn usages. */
7033 for (iter = 0; iter < 2; iter++)
7034 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
7035 reg != NULL;
7036 reg = reg->next)
7037 if ((reg->type != OP_OUT
7038 || (reg->type == OP_OUT && reg->subreg_p))
7039 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
7040 {
7041 if (src_regno >= FIRST_PSEUDO_REGISTER
7042 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
7043 {
7044 if (usage_insns[src_regno].check == curr_usage_insns_check
7045 && (next_usage_insns
7046 = usage_insns[src_regno].insns) != NULL_RTX
7047 && NONDEBUG_INSN_P (curr_insn))
7048 add_to_inherit (regno: src_regno, insns: next_usage_insns);
7049 else if (usage_insns[src_regno].check
7050 != -(int) INSN_UID (insn: curr_insn))
7051 /* Add usages but only if the reg is not set up
7052 in the same insn. */
7053 add_next_usage_insn (regno: src_regno, insn: curr_insn, reloads_num);
7054 }
7055 else if (src_regno < FIRST_PSEUDO_REGISTER
7056 || reg_renumber[src_regno] >= 0)
7057 {
7058 bool before_p;
7059 rtx_insn *use_insn = curr_insn;
7060
7061 before_p = (JUMP_P (curr_insn)
7062 || (CALL_P (curr_insn) && reg->type == OP_IN));
7063 if (NONDEBUG_INSN_P (curr_insn)
7064 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
7065 && split_if_necessary (regno: src_regno, mode: reg->biggest_mode,
7066 potential_reload_hard_regs,
7067 before_p, insn: curr_insn, max_uid))
7068 {
7069 if (reg->subreg_p)
7070 check_and_force_assignment_correctness_p = true;
7071 change_p = true;
7072 /* Invalidate. */
7073 usage_insns[src_regno].check = 0;
7074 if (before_p)
7075 use_insn = PREV_INSN (insn: curr_insn);
7076 }
7077 if (NONDEBUG_INSN_P (curr_insn))
7078 {
7079 if (src_regno < FIRST_PSEUDO_REGISTER)
7080 add_to_hard_reg_set (regs: &live_hard_regs,
7081 mode: reg->biggest_mode, regno: src_regno);
7082 else
7083 add_to_hard_reg_set (regs: &live_hard_regs,
7084 PSEUDO_REGNO_MODE (src_regno),
7085 regno: reg_renumber[src_regno]);
7086 }
7087 if (src_regno >= FIRST_PSEUDO_REGISTER)
7088 add_next_usage_insn (regno: src_regno, insn: use_insn, reloads_num);
7089 else
7090 {
7091 for (i = 0; i < hard_regno_nregs (regno: src_regno, mode: reg->biggest_mode); i++)
7092 add_next_usage_insn (regno: src_regno + i, insn: use_insn, reloads_num);
7093 }
7094 }
7095 }
7096 /* Process used call regs. */
7097 if (curr_id->arg_hard_regs != NULL)
7098 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
7099 if (src_regno < FIRST_PSEUDO_REGISTER)
7100 {
7101 SET_HARD_REG_BIT (set&: live_hard_regs, bit: src_regno);
7102 add_next_usage_insn (regno: src_regno, insn: curr_insn, reloads_num);
7103 }
7104 for (i = 0; i < to_inherit_num; i++)
7105 {
7106 src_regno = to_inherit[i].regno;
7107 if (inherit_reload_reg (def_p: false, original_regno: src_regno, cl: ALL_REGS,
7108 insn: curr_insn, next_usage_insns: to_inherit[i].insns))
7109 change_p = true;
7110 else
7111 setup_next_usage_insn (regno: src_regno, insn: curr_insn, reloads_num, after_p: false);
7112 }
7113 }
7114 if (update_reloads_num_p
7115 && NONDEBUG_INSN_P (curr_insn) && curr_set != NULL_RTX)
7116 {
7117 int regno = -1;
7118 if ((REG_P (SET_DEST (curr_set))
7119 && (regno = REGNO (SET_DEST (curr_set))) >= lra_constraint_new_regno_start
7120 && reg_renumber[regno] < 0
7121 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
7122 || (REG_P (SET_SRC (curr_set))
7123 && (regno = REGNO (SET_SRC (curr_set))) >= lra_constraint_new_regno_start
7124 && reg_renumber[regno] < 0
7125 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
7126 {
7127 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
7128 reloads_num++;
7129 if (hard_reg_set_subset_p (reg_class_contents[cl], y: live_hard_regs))
7130 potential_reload_hard_regs |= reg_class_contents[cl];
7131 }
7132 }
7133 if (NONDEBUG_INSN_P (curr_insn))
7134 {
7135 int regno;
7136
7137 /* Invalidate invariants with changed regs. */
7138 curr_id = lra_get_insn_recog_data (insn: curr_insn);
7139 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
7140 if (reg->type != OP_IN)
7141 {
7142 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
7143 bitmap_set_bit (&invalid_invariant_regs,
7144 ORIGINAL_REGNO (regno_reg_rtx[reg->regno]));
7145 }
7146 curr_static_id = curr_id->insn_static_data;
7147 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
7148 if (reg->type != OP_IN)
7149 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
7150 if (curr_id->arg_hard_regs != NULL)
7151 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
7152 if (regno >= FIRST_PSEUDO_REGISTER)
7153 bitmap_set_bit (&invalid_invariant_regs,
7154 regno - FIRST_PSEUDO_REGISTER);
7155 }
7156 /* We reached the start of the current basic block. */
7157 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (insn: head)
7158 || BLOCK_FOR_INSN (insn: prev_insn) != curr_bb)
7159 {
7160 /* We reached the beginning of the current block -- do
7161 rest of spliting in the current BB. */
7162 to_process = df_get_live_in (bb: curr_bb);
7163 if (BLOCK_FOR_INSN (insn: head) != curr_bb)
7164 {
7165 /* We are somewhere in the middle of EBB. */
7166 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
7167 to: curr_bb, res: &temp_bitmap);
7168 to_process = &temp_bitmap;
7169 }
7170 head_p = true;
7171 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
7172 {
7173 if ((int) j >= lra_constraint_new_regno_start)
7174 break;
7175 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
7176 && usage_insns[j].check == curr_usage_insns_check
7177 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
7178 {
7179 if (need_for_split_p (potential_reload_hard_regs, regno: j))
7180 {
7181 if (lra_dump_file != NULL && head_p)
7182 {
7183 fprintf (stream: lra_dump_file,
7184 format: " ----------------------------------\n");
7185 head_p = false;
7186 }
7187 if (split_reg (before_p: false, original_regno: j, insn: bb_note (curr_bb),
7188 next_usage_insns, NULL))
7189 change_p = true;
7190 }
7191 usage_insns[j].check = 0;
7192 }
7193 }
7194 }
7195 }
7196 return change_p;
7197}
7198
7199/* This value affects EBB forming. If probability of edge from EBB to
7200 a BB is not greater than the following value, we don't add the BB
7201 to EBB. */
7202#define EBB_PROBABILITY_CUTOFF \
7203 ((REG_BR_PROB_BASE * param_lra_inheritance_ebb_probability_cutoff) / 100)
7204
7205/* Current number of inheritance/split iteration. */
7206int lra_inheritance_iter;
7207
7208/* Entry function for inheritance/split pass. */
7209void
7210lra_inheritance (void)
7211{
7212 int i;
7213 basic_block bb, start_bb;
7214 edge e;
7215
7216 lra_inheritance_iter++;
7217 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
7218 return;
7219 timevar_push (tv: TV_LRA_INHERITANCE);
7220 if (lra_dump_file != NULL)
7221 fprintf (stream: lra_dump_file, format: "\n********** Inheritance #%d: **********\n\n",
7222 lra_inheritance_iter);
7223 curr_usage_insns_check = 0;
7224 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
7225 for (i = 0; i < lra_constraint_new_regno_start; i++)
7226 usage_insns[i].check = 0;
7227 bitmap_initialize (head: &check_only_regs, obstack: &reg_obstack);
7228 bitmap_initialize (head: &invalid_invariant_regs, obstack: &reg_obstack);
7229 bitmap_initialize (head: &live_regs, obstack: &reg_obstack);
7230 bitmap_initialize (head: &temp_bitmap, obstack: &reg_obstack);
7231 bitmap_initialize (head: &ebb_global_regs, obstack: &reg_obstack);
7232 FOR_EACH_BB_FN (bb, cfun)
7233 {
7234 start_bb = bb;
7235 if (lra_dump_file != NULL)
7236 fprintf (stream: lra_dump_file, format: "EBB");
7237 /* Form a EBB starting with BB. */
7238 bitmap_clear (&ebb_global_regs);
7239 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
7240 for (;;)
7241 {
7242 if (lra_dump_file != NULL)
7243 fprintf (stream: lra_dump_file, format: " %d", bb->index);
7244 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
7245 || LABEL_P (BB_HEAD (bb->next_bb)))
7246 break;
7247 e = find_fallthru_edge (edges: bb->succs);
7248 if (! e)
7249 break;
7250 if (e->probability.initialized_p ()
7251 && e->probability.to_reg_br_prob_base () < EBB_PROBABILITY_CUTOFF)
7252 break;
7253 bb = bb->next_bb;
7254 }
7255 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
7256 if (lra_dump_file != NULL)
7257 fprintf (stream: lra_dump_file, format: "\n");
7258 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
7259 /* Remember that the EBB head and tail can change in
7260 inherit_in_ebb. */
7261 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
7262 }
7263 bitmap_release (head: &ebb_global_regs);
7264 bitmap_release (head: &temp_bitmap);
7265 bitmap_release (head: &live_regs);
7266 bitmap_release (head: &invalid_invariant_regs);
7267 bitmap_release (head: &check_only_regs);
7268 free (ptr: usage_insns);
7269
7270 timevar_pop (tv: TV_LRA_INHERITANCE);
7271}
7272
7273
7274
7275/* This page contains code to undo failed inheritance/split
7276 transformations. */
7277
7278/* Current number of iteration undoing inheritance/split. */
7279int lra_undo_inheritance_iter;
7280
7281/* Fix BB live info LIVE after removing pseudos created on pass doing
7282 inheritance/split which are REMOVED_PSEUDOS. */
7283static void
7284fix_bb_live_info (bitmap live, bitmap removed_pseudos)
7285{
7286 unsigned int regno;
7287 bitmap_iterator bi;
7288
7289 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
7290 if (bitmap_clear_bit (live, regno)
7291 && REG_P (lra_reg_info[regno].restore_rtx))
7292 bitmap_set_bit (live, REGNO (lra_reg_info[regno].restore_rtx));
7293}
7294
7295/* Return regno of the (subreg of) REG. Otherwise, return a negative
7296 number. */
7297static int
7298get_regno (rtx reg)
7299{
7300 if (GET_CODE (reg) == SUBREG)
7301 reg = SUBREG_REG (reg);
7302 if (REG_P (reg))
7303 return REGNO (reg);
7304 return -1;
7305}
7306
7307/* Delete a move INSN with destination reg DREGNO and a previous
7308 clobber insn with the same regno. The inheritance/split code can
7309 generate moves with preceding clobber and when we delete such moves
7310 we should delete the clobber insn too to keep the correct life
7311 info. */
7312static void
7313delete_move_and_clobber (rtx_insn *insn, int dregno)
7314{
7315 rtx_insn *prev_insn = PREV_INSN (insn);
7316
7317 lra_set_insn_deleted (insn);
7318 lra_assert (dregno >= 0);
7319 if (prev_insn != NULL && NONDEBUG_INSN_P (prev_insn)
7320 && GET_CODE (PATTERN (prev_insn)) == CLOBBER
7321 && dregno == get_regno (XEXP (PATTERN (prev_insn), 0)))
7322 lra_set_insn_deleted (prev_insn);
7323}
7324
7325/* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
7326 return true if we did any change. The undo transformations for
7327 inheritance looks like
7328 i <- i2
7329 p <- i => p <- i2
7330 or removing
7331 p <- i, i <- p, and i <- i3
7332 where p is original pseudo from which inheritance pseudo i was
7333 created, i and i3 are removed inheritance pseudos, i2 is another
7334 not removed inheritance pseudo. All split pseudos or other
7335 occurrences of removed inheritance pseudos are changed on the
7336 corresponding original pseudos.
7337
7338 The function also schedules insns changed and created during
7339 inheritance/split pass for processing by the subsequent constraint
7340 pass. */
7341static bool
7342remove_inheritance_pseudos (bitmap remove_pseudos)
7343{
7344 basic_block bb;
7345 int regno, sregno, prev_sregno, dregno;
7346 rtx restore_rtx;
7347 rtx set, prev_set;
7348 rtx_insn *prev_insn;
7349 bool change_p, done_p;
7350
7351 change_p = ! bitmap_empty_p (map: remove_pseudos);
7352 /* We cannot finish the function right away if CHANGE_P is true
7353 because we need to marks insns affected by previous
7354 inheritance/split pass for processing by the subsequent
7355 constraint pass. */
7356 FOR_EACH_BB_FN (bb, cfun)
7357 {
7358 fix_bb_live_info (live: df_get_live_in (bb), removed_pseudos: remove_pseudos);
7359 fix_bb_live_info (live: df_get_live_out (bb), removed_pseudos: remove_pseudos);
7360 FOR_BB_INSNS_REVERSE (bb, curr_insn)
7361 {
7362 if (! INSN_P (curr_insn))
7363 continue;
7364 done_p = false;
7365 sregno = dregno = -1;
7366 if (change_p && NONDEBUG_INSN_P (curr_insn)
7367 && (set = single_set (insn: curr_insn)) != NULL_RTX)
7368 {
7369 dregno = get_regno (SET_DEST (set));
7370 sregno = get_regno (SET_SRC (set));
7371 }
7372
7373 if (sregno >= 0 && dregno >= 0)
7374 {
7375 if (bitmap_bit_p (remove_pseudos, dregno)
7376 && ! REG_P (lra_reg_info[dregno].restore_rtx))
7377 {
7378 /* invariant inheritance pseudo <- original pseudo */
7379 if (lra_dump_file != NULL)
7380 {
7381 fprintf (stream: lra_dump_file, format: " Removing invariant inheritance:\n");
7382 dump_insn_slim (lra_dump_file, curr_insn);
7383 fprintf (stream: lra_dump_file, format: "\n");
7384 }
7385 delete_move_and_clobber (insn: curr_insn, dregno);
7386 done_p = true;
7387 }
7388 else if (bitmap_bit_p (remove_pseudos, sregno)
7389 && ! REG_P (lra_reg_info[sregno].restore_rtx))
7390 {
7391 /* reload pseudo <- invariant inheritance pseudo */
7392 start_sequence ();
7393 /* We cannot just change the source. It might be
7394 an insn different from the move. */
7395 emit_insn (lra_reg_info[sregno].restore_rtx);
7396 rtx_insn *new_insns = get_insns ();
7397 end_sequence ();
7398 lra_assert (single_set (new_insns) != NULL
7399 && SET_DEST (set) == SET_DEST (single_set (new_insns)));
7400 lra_process_new_insns (curr_insn, NULL, new_insns,
7401 "Changing reload<-invariant inheritance");
7402 delete_move_and_clobber (insn: curr_insn, dregno);
7403 done_p = true;
7404 }
7405 else if ((bitmap_bit_p (remove_pseudos, sregno)
7406 && (get_regno (reg: lra_reg_info[sregno].restore_rtx) == dregno
7407 || (bitmap_bit_p (remove_pseudos, dregno)
7408 && get_regno (reg: lra_reg_info[sregno].restore_rtx) >= 0
7409 && (get_regno (reg: lra_reg_info[sregno].restore_rtx)
7410 == get_regno (reg: lra_reg_info[dregno].restore_rtx)))))
7411 || (bitmap_bit_p (remove_pseudos, dregno)
7412 && get_regno (reg: lra_reg_info[dregno].restore_rtx) == sregno))
7413 /* One of the following cases:
7414 original <- removed inheritance pseudo
7415 removed inherit pseudo <- another removed inherit pseudo
7416 removed inherit pseudo <- original pseudo
7417 Or
7418 removed_split_pseudo <- original_reg
7419 original_reg <- removed_split_pseudo */
7420 {
7421 if (lra_dump_file != NULL)
7422 {
7423 fprintf (stream: lra_dump_file, format: " Removing %s:\n",
7424 bitmap_bit_p (&lra_split_regs, sregno)
7425 || bitmap_bit_p (&lra_split_regs, dregno)
7426 ? "split" : "inheritance");
7427 dump_insn_slim (lra_dump_file, curr_insn);
7428 }
7429 delete_move_and_clobber (insn: curr_insn, dregno);
7430 done_p = true;
7431 }
7432 else if (bitmap_bit_p (remove_pseudos, sregno)
7433 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
7434 {
7435 /* Search the following pattern:
7436 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
7437 original_pseudo <- inherit_or_split_pseudo1
7438 where the 2nd insn is the current insn and
7439 inherit_or_split_pseudo2 is not removed. If it is found,
7440 change the current insn onto:
7441 original_pseudo <- inherit_or_split_pseudo2. */
7442 for (prev_insn = PREV_INSN (insn: curr_insn);
7443 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
7444 prev_insn = PREV_INSN (insn: prev_insn))
7445 ;
7446 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (insn: prev_insn) == bb
7447 && (prev_set = single_set (insn: prev_insn)) != NULL_RTX
7448 /* There should be no subregs in insn we are
7449 searching because only the original reg might
7450 be in subreg when we changed the mode of
7451 load/store for splitting. */
7452 && REG_P (SET_DEST (prev_set))
7453 && REG_P (SET_SRC (prev_set))
7454 && (int) REGNO (SET_DEST (prev_set)) == sregno
7455 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
7456 >= FIRST_PSEUDO_REGISTER)
7457 && (lra_reg_info[prev_sregno].restore_rtx == NULL_RTX
7458 ||
7459 /* As we consider chain of inheritance or
7460 splitting described in above comment we should
7461 check that sregno and prev_sregno were
7462 inheritance/split pseudos created from the
7463 same original regno. */
7464 (get_regno (reg: lra_reg_info[sregno].restore_rtx) >= 0
7465 && (get_regno (reg: lra_reg_info[sregno].restore_rtx)
7466 == get_regno (reg: lra_reg_info[prev_sregno].restore_rtx))))
7467 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
7468 {
7469 lra_assert (GET_MODE (SET_SRC (prev_set))
7470 == GET_MODE (regno_reg_rtx[sregno]));
7471 /* Although we have a single set, the insn can
7472 contain more one sregno register occurrence
7473 as a source. Change all occurrences. */
7474 lra_substitute_pseudo_within_insn (curr_insn, sregno,
7475 SET_SRC (prev_set),
7476 false);
7477 /* As we are finishing with processing the insn
7478 here, check the destination too as it might
7479 inheritance pseudo for another pseudo. */
7480 if (bitmap_bit_p (remove_pseudos, dregno)
7481 && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
7482 && (restore_rtx
7483 = lra_reg_info[dregno].restore_rtx) != NULL_RTX)
7484 {
7485 if (GET_CODE (SET_DEST (set)) == SUBREG)
7486 SUBREG_REG (SET_DEST (set)) = restore_rtx;
7487 else
7488 SET_DEST (set) = restore_rtx;
7489 }
7490 lra_push_insn_and_update_insn_regno_info (curr_insn);
7491 lra_set_used_insn_alternative_by_uid
7492 (INSN_UID (insn: curr_insn), LRA_UNKNOWN_ALT);
7493 done_p = true;
7494 if (lra_dump_file != NULL)
7495 {
7496 fprintf (stream: lra_dump_file, format: " Change reload insn:\n");
7497 dump_insn_slim (lra_dump_file, curr_insn);
7498 }
7499 }
7500 }
7501 }
7502 if (! done_p)
7503 {
7504 struct lra_insn_reg *reg;
7505 bool restored_regs_p = false;
7506 bool kept_regs_p = false;
7507
7508 curr_id = lra_get_insn_recog_data (insn: curr_insn);
7509 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
7510 {
7511 regno = reg->regno;
7512 restore_rtx = lra_reg_info[regno].restore_rtx;
7513 if (restore_rtx != NULL_RTX)
7514 {
7515 if (change_p && bitmap_bit_p (remove_pseudos, regno))
7516 {
7517 lra_substitute_pseudo_within_insn
7518 (curr_insn, regno, restore_rtx, false);
7519 restored_regs_p = true;
7520 }
7521 else
7522 kept_regs_p = true;
7523 }
7524 }
7525 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
7526 {
7527 /* The instruction has changed since the previous
7528 constraints pass. */
7529 lra_push_insn_and_update_insn_regno_info (curr_insn);
7530 lra_set_used_insn_alternative_by_uid
7531 (INSN_UID (insn: curr_insn), LRA_UNKNOWN_ALT);
7532 }
7533 else if (restored_regs_p)
7534 /* The instruction has been restored to the form that
7535 it had during the previous constraints pass. */
7536 lra_update_insn_regno_info (curr_insn);
7537 if (restored_regs_p && lra_dump_file != NULL)
7538 {
7539 fprintf (stream: lra_dump_file, format: " Insn after restoring regs:\n");
7540 dump_insn_slim (lra_dump_file, curr_insn);
7541 }
7542 }
7543 }
7544 }
7545 return change_p;
7546}
7547
7548/* If optional reload pseudos failed to get a hard register or was not
7549 inherited, it is better to remove optional reloads. We do this
7550 transformation after undoing inheritance to figure out necessity to
7551 remove optional reloads easier. Return true if we do any
7552 change. */
7553static bool
7554undo_optional_reloads (void)
7555{
7556 bool change_p, keep_p;
7557 unsigned int regno, uid;
7558 bitmap_iterator bi, bi2;
7559 rtx_insn *insn;
7560 rtx set, src, dest;
7561 auto_bitmap removed_optional_reload_pseudos (&reg_obstack);
7562
7563 bitmap_copy (removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
7564 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
7565 {
7566 keep_p = false;
7567 /* Keep optional reloads from previous subpasses. */
7568 if (lra_reg_info[regno].restore_rtx == NULL_RTX
7569 /* If the original pseudo changed its allocation, just
7570 removing the optional pseudo is dangerous as the original
7571 pseudo will have longer live range. */
7572 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] >= 0)
7573 keep_p = true;
7574 else if (reg_renumber[regno] >= 0)
7575 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
7576 {
7577 insn = lra_insn_recog_data[uid]->insn;
7578 if ((set = single_set (insn)) == NULL_RTX)
7579 continue;
7580 src = SET_SRC (set);
7581 dest = SET_DEST (set);
7582 if ((! REG_P (src) && ! SUBREG_P (src))
7583 || (! REG_P (dest) && ! SUBREG_P (dest)))
7584 continue;
7585 if (get_regno (reg: dest) == (int) regno
7586 /* Ignore insn for optional reloads itself. */
7587 && (get_regno (reg: lra_reg_info[regno].restore_rtx)
7588 != get_regno (reg: src))
7589 /* Check only inheritance on last inheritance pass. */
7590 && get_regno (reg: src) >= new_regno_start
7591 /* Check that the optional reload was inherited. */
7592 && bitmap_bit_p (&lra_inheritance_pseudos, get_regno (reg: src)))
7593 {
7594 keep_p = true;
7595 break;
7596 }
7597 }
7598 if (keep_p)
7599 {
7600 bitmap_clear_bit (removed_optional_reload_pseudos, regno);
7601 if (lra_dump_file != NULL)
7602 fprintf (stream: lra_dump_file, format: "Keep optional reload reg %d\n", regno);
7603 }
7604 }
7605 change_p = ! bitmap_empty_p (map: removed_optional_reload_pseudos);
7606 auto_bitmap insn_bitmap (&reg_obstack);
7607 EXECUTE_IF_SET_IN_BITMAP (removed_optional_reload_pseudos, 0, regno, bi)
7608 {
7609 if (lra_dump_file != NULL)
7610 fprintf (stream: lra_dump_file, format: "Remove optional reload reg %d\n", regno);
7611 bitmap_copy (insn_bitmap, &lra_reg_info[regno].insn_bitmap);
7612 EXECUTE_IF_SET_IN_BITMAP (insn_bitmap, 0, uid, bi2)
7613 {
7614 /* We may have already removed a clobber. */
7615 if (!lra_insn_recog_data[uid])
7616 continue;
7617 insn = lra_insn_recog_data[uid]->insn;
7618 if ((set = single_set (insn)) != NULL_RTX)
7619 {
7620 src = SET_SRC (set);
7621 dest = SET_DEST (set);
7622 if ((REG_P (src) || SUBREG_P (src))
7623 && (REG_P (dest) || SUBREG_P (dest))
7624 && ((get_regno (reg: src) == (int) regno
7625 && (get_regno (reg: lra_reg_info[regno].restore_rtx)
7626 == get_regno (reg: dest)))
7627 || (get_regno (reg: dest) == (int) regno
7628 && (get_regno (reg: lra_reg_info[regno].restore_rtx)
7629 == get_regno (reg: src)))))
7630 {
7631 if (lra_dump_file != NULL)
7632 {
7633 fprintf (stream: lra_dump_file, format: " Deleting move %u\n",
7634 INSN_UID (insn));
7635 dump_insn_slim (lra_dump_file, insn);
7636 }
7637 delete_move_and_clobber (insn, dregno: get_regno (reg: dest));
7638 continue;
7639 }
7640 /* We should not worry about generation memory-memory
7641 moves here as if the corresponding inheritance did
7642 not work (inheritance pseudo did not get a hard reg),
7643 we remove the inheritance pseudo and the optional
7644 reload. */
7645 }
7646 if (GET_CODE (PATTERN (insn)) == CLOBBER
7647 && REG_P (SET_DEST (insn))
7648 && get_regno (SET_DEST (insn)) == (int) regno)
7649 /* Refuse to remap clobbers to preexisting pseudos. */
7650 gcc_unreachable ();
7651 lra_substitute_pseudo_within_insn
7652 (insn, regno, lra_reg_info[regno].restore_rtx, false);
7653 lra_update_insn_regno_info (insn);
7654 if (lra_dump_file != NULL)
7655 {
7656 fprintf (stream: lra_dump_file,
7657 format: " Restoring original insn:\n");
7658 dump_insn_slim (lra_dump_file, insn);
7659 }
7660 }
7661 }
7662 /* Clear restore_regnos. */
7663 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
7664 lra_reg_info[regno].restore_rtx = NULL_RTX;
7665 return change_p;
7666}
7667
7668/* Entry function for undoing inheritance/split transformation. Return true
7669 if we did any RTL change in this pass. */
7670bool
7671lra_undo_inheritance (void)
7672{
7673 unsigned int regno;
7674 int hard_regno;
7675 int n_all_inherit, n_inherit, n_all_split, n_split;
7676 rtx restore_rtx;
7677 bitmap_iterator bi;
7678 bool change_p;
7679
7680 lra_undo_inheritance_iter++;
7681 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
7682 return false;
7683 if (lra_dump_file != NULL)
7684 fprintf (stream: lra_dump_file,
7685 format: "\n********** Undoing inheritance #%d: **********\n\n",
7686 lra_undo_inheritance_iter);
7687 auto_bitmap remove_pseudos (&reg_obstack);
7688 n_inherit = n_all_inherit = 0;
7689 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7690 if (lra_reg_info[regno].restore_rtx != NULL_RTX)
7691 {
7692 n_all_inherit++;
7693 if (reg_renumber[regno] < 0
7694 /* If the original pseudo changed its allocation, just
7695 removing inheritance is dangerous as for changing
7696 allocation we used shorter live-ranges. */
7697 && (! REG_P (lra_reg_info[regno].restore_rtx)
7698 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] < 0))
7699 bitmap_set_bit (remove_pseudos, regno);
7700 else
7701 n_inherit++;
7702 }
7703 if (lra_dump_file != NULL && n_all_inherit != 0)
7704 fprintf (stream: lra_dump_file, format: "Inherit %d out of %d (%.2f%%)\n",
7705 n_inherit, n_all_inherit,
7706 (double) n_inherit / n_all_inherit * 100);
7707 n_split = n_all_split = 0;
7708 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7709 if ((restore_rtx = lra_reg_info[regno].restore_rtx) != NULL_RTX)
7710 {
7711 int restore_regno = REGNO (restore_rtx);
7712
7713 n_all_split++;
7714 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
7715 ? reg_renumber[restore_regno] : restore_regno);
7716 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
7717 bitmap_set_bit (remove_pseudos, regno);
7718 else
7719 {
7720 n_split++;
7721 if (lra_dump_file != NULL)
7722 fprintf (stream: lra_dump_file, format: " Keep split r%d (orig=r%d)\n",
7723 regno, restore_regno);
7724 }
7725 }
7726 if (lra_dump_file != NULL && n_all_split != 0)
7727 fprintf (stream: lra_dump_file, format: "Split %d out of %d (%.2f%%)\n",
7728 n_split, n_all_split,
7729 (double) n_split / n_all_split * 100);
7730 change_p = remove_inheritance_pseudos (remove_pseudos);
7731 /* Clear restore_regnos. */
7732 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7733 lra_reg_info[regno].restore_rtx = NULL_RTX;
7734 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7735 lra_reg_info[regno].restore_rtx = NULL_RTX;
7736 change_p = undo_optional_reloads () || change_p;
7737 return change_p;
7738}
7739

source code of gcc/lra-constraints.cc