1/* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "target.h"
25#include "rtl.h"
26#include "tree.h"
27#include "predict.h"
28#include "df.h"
29#include "memmodel.h"
30#include "tm_p.h"
31#include "optabs.h"
32#include "regs.h"
33#include "emit-rtl.h"
34#include "recog.h"
35
36#include "cfgrtl.h"
37#include "cfgbuild.h"
38#include "cfgcleanup.h"
39#include "reload.h"
40#include "cselib.h"
41#include "tree-pass.h"
42#include "dbgcnt.h"
43#include "function-abi.h"
44#include "rtl-iter.h"
45
46static bool reload_cse_simplify (rtx_insn *, rtx);
47static void reload_cse_regs_1 (void);
48static int reload_cse_simplify_set (rtx, rtx_insn *);
49static int reload_cse_simplify_operands (rtx_insn *, rtx);
50
51static void reload_combine (void);
52static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
53static void reload_combine_note_store (rtx, const_rtx, void *);
54
55static bool reload_cse_move2add (rtx_insn *);
56static void move2add_note_store (rtx, const_rtx, void *);
57
58/* Call cse / combine like post-reload optimization phases.
59 FIRST is the first instruction. */
60
61static void
62reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
63{
64 bool moves_converted;
65 reload_cse_regs_1 ();
66 reload_combine ();
67 moves_converted = reload_cse_move2add (first);
68 if (flag_expensive_optimizations)
69 {
70 if (moves_converted)
71 reload_combine ();
72 reload_cse_regs_1 ();
73 }
74}
75
76/* Try to simplify INSN. Return true if the CFG may have changed. */
77static bool
78reload_cse_simplify (rtx_insn *insn, rtx testreg)
79{
80 rtx body = PATTERN (insn);
81 basic_block insn_bb = BLOCK_FOR_INSN (insn);
82 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
83
84 /* If NO_FUNCTION_CSE has been set by the target, then we should not try
85 to cse function calls. */
86 if (NO_FUNCTION_CSE && CALL_P (insn))
87 return false;
88
89 /* Remember if this insn has been sp += const_int. */
90 rtx sp_set = set_for_reg_notes (insn);
91 rtx sp_addend = NULL_RTX;
92 if (sp_set
93 && SET_DEST (sp_set) == stack_pointer_rtx
94 && GET_CODE (SET_SRC (sp_set)) == PLUS
95 && XEXP (SET_SRC (sp_set), 0) == stack_pointer_rtx
96 && CONST_INT_P (XEXP (SET_SRC (sp_set), 1)))
97 sp_addend = XEXP (SET_SRC (sp_set), 1);
98
99 if (GET_CODE (body) == SET)
100 {
101 int count = 0;
102
103 /* Simplify even if we may think it is a no-op.
104 We may think a memory load of a value smaller than WORD_SIZE
105 is redundant because we haven't taken into account possible
106 implicit extension. reload_cse_simplify_set() will bring
107 this out, so it's safer to simplify before we delete. */
108 count += reload_cse_simplify_set (body, insn);
109
110 if (!count && cselib_redundant_set_p (body))
111 {
112 if (check_for_inc_dec (insn))
113 delete_insn_and_edges (insn);
114 /* We're done with this insn. */
115 goto done;
116 }
117
118 if (count > 0)
119 apply_change_group ();
120 else
121 reload_cse_simplify_operands (insn, testreg);
122 }
123 else if (GET_CODE (body) == PARALLEL)
124 {
125 int i;
126 int count = 0;
127 rtx value = NULL_RTX;
128
129 /* Registers mentioned in the clobber list for an asm cannot be reused
130 within the body of the asm. Invalidate those registers now so that
131 we don't try to substitute values for them. */
132 if (asm_noperands (body) >= 0)
133 {
134 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
135 {
136 rtx part = XVECEXP (body, 0, i);
137 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
138 cselib_invalidate_rtx (XEXP (part, 0));
139 }
140 }
141
142 /* If every action in a PARALLEL is a noop, we can delete
143 the entire PARALLEL. */
144 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
145 {
146 rtx part = XVECEXP (body, 0, i);
147 if (GET_CODE (part) == SET)
148 {
149 if (! cselib_redundant_set_p (part))
150 break;
151 if (REG_P (SET_DEST (part))
152 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
153 {
154 if (value)
155 break;
156 value = SET_DEST (part);
157 }
158 }
159 else if (GET_CODE (part) != CLOBBER && GET_CODE (part) != USE)
160 break;
161 }
162
163 if (i < 0)
164 {
165 if (check_for_inc_dec (insn))
166 delete_insn_and_edges (insn);
167 /* We're done with this insn. */
168 goto done;
169 }
170
171 /* It's not a no-op, but we can try to simplify it. */
172 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
174 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
175
176 if (count > 0)
177 apply_change_group ();
178 else
179 reload_cse_simplify_operands (insn, testreg);
180 }
181
182 /* If sp += const_int insn is changed into sp = reg;, add REG_EQUAL
183 note so that the stack_adjustments pass can undo it if beneficial. */
184 if (sp_addend
185 && SET_DEST (sp_set) == stack_pointer_rtx
186 && REG_P (SET_SRC (sp_set)))
187 set_dst_reg_note (insn, REG_EQUAL,
188 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
189 sp_addend), stack_pointer_rtx);
190
191done:
192 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
193}
194
195/* Do a very simple CSE pass over the hard registers.
196
197 This function detects no-op moves where we happened to assign two
198 different pseudo-registers to the same hard register, and then
199 copied one to the other. Reload will generate a useless
200 instruction copying a register to itself.
201
202 This function also detects cases where we load a value from memory
203 into two different registers, and (if memory is more expensive than
204 registers) changes it to simply copy the first register into the
205 second register.
206
207 Another optimization is performed that scans the operands of each
208 instruction to see whether the value is already available in a
209 hard register. It then replaces the operand with the hard register
210 if possible, much like an optional reload would. */
211
212static void
213reload_cse_regs_1 (void)
214{
215 bool cfg_changed = false;
216 basic_block bb;
217 rtx_insn *insn;
218 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
219
220 cselib_init (CSELIB_RECORD_MEMORY);
221 init_alias_analysis ();
222
223 FOR_EACH_BB_FN (bb, cfun)
224 FOR_BB_INSNS (bb, insn)
225 {
226 if (INSN_P (insn))
227 cfg_changed |= reload_cse_simplify (insn, testreg);
228
229 cselib_process_insn (insn);
230 }
231
232 /* Clean up. */
233 end_alias_analysis ();
234 cselib_finish ();
235 if (cfg_changed)
236 cleanup_cfg (0);
237}
238
239/* Try to simplify a single SET instruction. SET is the set pattern.
240 INSN is the instruction it came from.
241 This function only handles one case: if we set a register to a value
242 which is not a register, we try to find that value in some other register
243 and change the set into a register copy. */
244
245static int
246reload_cse_simplify_set (rtx set, rtx_insn *insn)
247{
248 int did_change = 0;
249 int dreg;
250 rtx src;
251 reg_class_t dclass;
252 int old_cost;
253 cselib_val *val;
254 struct elt_loc_list *l;
255 enum rtx_code extend_op = UNKNOWN;
256 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
257
258 dreg = true_regnum (SET_DEST (set));
259 if (dreg < 0)
260 return 0;
261
262 src = SET_SRC (set);
263 if (side_effects_p (src) || true_regnum (src) >= 0)
264 return 0;
265
266 dclass = REGNO_REG_CLASS (dreg);
267
268 /* When replacing a memory with a register, we need to honor assumptions
269 that combine made wrt the contents of sign bits. We'll do this by
270 generating an extend instruction instead of a reg->reg copy. Thus
271 the destination must be a register that we can widen. */
272 if (MEM_P (src)
273 && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
274 && !REG_P (SET_DEST (set)))
275 return 0;
276
277 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
278 if (! val)
279 return 0;
280
281 /* If memory loads are cheaper than register copies, don't change them. */
282 if (MEM_P (src))
283 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
284 else if (REG_P (src))
285 old_cost = register_move_cost (GET_MODE (src),
286 REGNO_REG_CLASS (REGNO (src)), dclass);
287 else
288 old_cost = set_src_cost (x: src, GET_MODE (SET_DEST (set)), speed_p: speed);
289
290 for (l = val->locs; l; l = l->next)
291 {
292 rtx this_rtx = l->loc;
293 int this_cost;
294
295 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
296 {
297 if (extend_op != UNKNOWN)
298 {
299 wide_int result;
300
301 if (!CONST_SCALAR_INT_P (this_rtx))
302 continue;
303
304 switch (extend_op)
305 {
306 case ZERO_EXTEND:
307 result = wide_int::from (x: rtx_mode_t (this_rtx,
308 GET_MODE (src)),
309 BITS_PER_WORD, sgn: UNSIGNED);
310 break;
311 case SIGN_EXTEND:
312 result = wide_int::from (x: rtx_mode_t (this_rtx,
313 GET_MODE (src)),
314 BITS_PER_WORD, sgn: SIGNED);
315 break;
316 default:
317 gcc_unreachable ();
318 }
319 this_rtx = immed_wide_int_const (result, word_mode);
320 }
321
322 this_cost = set_src_cost (x: this_rtx, GET_MODE (SET_DEST (set)), speed_p: speed);
323 }
324 else if (REG_P (this_rtx))
325 {
326 if (extend_op != UNKNOWN)
327 {
328 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
329 this_cost = set_src_cost (x: this_rtx, mode: word_mode, speed_p: speed);
330 }
331 else
332 this_cost = register_move_cost (GET_MODE (this_rtx),
333 REGNO_REG_CLASS (REGNO (this_rtx)),
334 dclass);
335 }
336 else
337 continue;
338
339 /* If equal costs, prefer registers over anything else. That
340 tends to lead to smaller instructions on some machines. */
341 if (this_cost < old_cost
342 || (this_cost == old_cost
343 && REG_P (this_rtx)
344 && !REG_P (SET_SRC (set))))
345 {
346 if (extend_op != UNKNOWN
347 && REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
348 GET_MODE (SET_DEST (set)), word_mode))
349 {
350 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
351 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
352 validate_change (insn, &SET_DEST (set), wide_dest, 1);
353 }
354
355 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
356 old_cost = this_cost, did_change = 1;
357 }
358 }
359
360 return did_change;
361}
362
363/* Try to replace operands in INSN with equivalent values that are already
364 in registers. This can be viewed as optional reloading.
365
366 For each non-register operand in the insn, see if any hard regs are
367 known to be equivalent to that operand. Record the alternatives which
368 can accept these hard registers. Among all alternatives, select the
369 ones which are better or equal to the one currently matching, where
370 "better" is in terms of '?' and '!' constraints. Among the remaining
371 alternatives, select the one which replaces most operands with
372 hard registers. */
373
374static int
375reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
376{
377 int i, j;
378
379 /* For each operand, all registers that are equivalent to it. */
380 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
381
382 const char *constraints[MAX_RECOG_OPERANDS];
383
384 /* Vector recording how bad an alternative is. */
385 int *alternative_reject;
386 /* Vector recording how many registers can be introduced by choosing
387 this alternative. */
388 int *alternative_nregs;
389 /* Array of vectors recording, for each operand and each alternative,
390 which hard register to substitute, or -1 if the operand should be
391 left as it is. */
392 int *op_alt_regno[MAX_RECOG_OPERANDS];
393 /* Array of alternatives, sorted in order of decreasing desirability. */
394 int *alternative_order;
395
396 extract_constrain_insn (insn);
397
398 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
399 return 0;
400
401 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
402 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
403 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
404 memset (s: alternative_reject, c: 0, n: recog_data.n_alternatives * sizeof (int));
405 memset (s: alternative_nregs, c: 0, n: recog_data.n_alternatives * sizeof (int));
406
407 /* For each operand, find out which regs are equivalent. */
408 for (i = 0; i < recog_data.n_operands; i++)
409 {
410 cselib_val *v;
411 struct elt_loc_list *l;
412 rtx op;
413
414 CLEAR_HARD_REG_SET (set&: equiv_regs[i]);
415
416 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
417 right, so avoid the problem here. Similarly NOTE_INSN_DELETED_LABEL.
418 Likewise if we have a constant and the insn pattern doesn't tell us
419 the mode we need. */
420 if (LABEL_P (recog_data.operand[i])
421 || (NOTE_P (recog_data.operand[i])
422 && NOTE_KIND (recog_data.operand[i]) == NOTE_INSN_DELETED_LABEL)
423 || (CONSTANT_P (recog_data.operand[i])
424 && recog_data.operand_mode[i] == VOIDmode))
425 continue;
426
427 op = recog_data.operand[i];
428 if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
429 {
430 rtx set = single_set (insn);
431
432 /* We might have multiple sets, some of which do implicit
433 extension. Punt on this for now. */
434 if (! set)
435 continue;
436 /* If the destination is also a MEM or a STRICT_LOW_PART, no
437 extension applies.
438 Also, if there is an explicit extension, we don't have to
439 worry about an implicit one. */
440 else if (MEM_P (SET_DEST (set))
441 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
442 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
443 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
444 ; /* Continue ordinary processing. */
445 /* If the register cannot change mode to word_mode, it follows that
446 it cannot have been used in word_mode. */
447 else if (REG_P (SET_DEST (set))
448 && !REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
449 GET_MODE (SET_DEST (set)),
450 word_mode))
451 ; /* Continue ordinary processing. */
452 /* If this is a straight load, make the extension explicit. */
453 else if (REG_P (SET_DEST (set))
454 && recog_data.n_operands == 2
455 && SET_SRC (set) == op
456 && SET_DEST (set) == recog_data.operand[1-i])
457 {
458 validate_change (insn, recog_data.operand_loc[i],
459 gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
460 word_mode, op),
461 1);
462 validate_change (insn, recog_data.operand_loc[1-i],
463 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
464 1);
465 if (! apply_change_group ())
466 return 0;
467 return reload_cse_simplify_operands (insn, testreg);
468 }
469 else
470 /* ??? There might be arithmetic operations with memory that are
471 safe to optimize, but is it worth the trouble? */
472 continue;
473 }
474
475 if (side_effects_p (op))
476 continue;
477 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
478 if (! v)
479 continue;
480
481 for (l = v->locs; l; l = l->next)
482 if (REG_P (l->loc))
483 SET_HARD_REG_BIT (set&: equiv_regs[i], REGNO (l->loc));
484 }
485
486 alternative_mask preferred = get_preferred_alternatives (insn);
487 for (i = 0; i < recog_data.n_operands; i++)
488 {
489 machine_mode mode;
490 int regno;
491 const char *p;
492
493 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
494 for (j = 0; j < recog_data.n_alternatives; j++)
495 op_alt_regno[i][j] = -1;
496
497 p = constraints[i] = recog_data.constraints[i];
498 mode = recog_data.operand_mode[i];
499
500 /* Add the reject values for each alternative given by the constraints
501 for this operand. */
502 j = 0;
503 while (*p != '\0')
504 {
505 char c = *p++;
506 if (c == ',')
507 j++;
508 else if (c == '?')
509 alternative_reject[j] += 3;
510 else if (c == '!')
511 alternative_reject[j] += 300;
512 }
513
514 /* We won't change operands which are already registers. We
515 also don't want to modify output operands. */
516 regno = true_regnum (recog_data.operand[i]);
517 if (regno >= 0
518 || constraints[i][0] == '='
519 || constraints[i][0] == '+')
520 continue;
521
522 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
523 {
524 enum reg_class rclass = NO_REGS;
525
526 if (! TEST_HARD_REG_BIT (set: equiv_regs[i], bit: regno))
527 continue;
528
529 set_mode_and_regno (testreg, mode, regno);
530
531 /* We found a register equal to this operand. Now look for all
532 alternatives that can accept this register and have not been
533 assigned a register they can use yet. */
534 j = 0;
535 p = constraints[i];
536 for (;;)
537 {
538 char c = *p;
539
540 switch (c)
541 {
542 case 'g':
543 rclass = reg_class_subunion[rclass][GENERAL_REGS];
544 break;
545
546 default:
547 rclass
548 = (reg_class_subunion
549 [rclass]
550 [reg_class_for_constraint (c: lookup_constraint (p))]);
551 break;
552
553 case ',': case '\0':
554 /* See if REGNO fits this alternative, and set it up as the
555 replacement register if we don't have one for this
556 alternative yet and the operand being replaced is not
557 a cheap CONST_INT. */
558 if (op_alt_regno[i][j] == -1
559 && TEST_BIT (preferred, j)
560 && reg_fits_class_p (testreg, rclass, 0, mode)
561 && (!CONST_INT_P (recog_data.operand[i])
562 || (set_src_cost (x: recog_data.operand[i], mode,
563 speed_p: optimize_bb_for_speed_p
564 (BLOCK_FOR_INSN (insn)))
565 > set_src_cost (x: testreg, mode,
566 speed_p: optimize_bb_for_speed_p
567 (BLOCK_FOR_INSN (insn))))))
568 {
569 alternative_nregs[j]++;
570 op_alt_regno[i][j] = regno;
571 }
572 j++;
573 rclass = NO_REGS;
574 break;
575 }
576 p += CONSTRAINT_LEN (c, p);
577
578 if (c == '\0')
579 break;
580 }
581 }
582 }
583
584 /* The loop below sets alternative_order[0] but -Wmaybe-uninitialized
585 can't know that. Clear it here to avoid the warning. */
586 alternative_order[0] = 0;
587 gcc_assert (!recog_data.n_alternatives
588 || (which_alternative >= 0
589 && which_alternative < recog_data.n_alternatives));
590
591 /* Record all alternatives which are better or equal to the currently
592 matching one in the alternative_order array. */
593 for (i = j = 0; i < recog_data.n_alternatives; i++)
594 if (alternative_reject[i] <= alternative_reject[which_alternative])
595 alternative_order[j++] = i;
596 recog_data.n_alternatives = j;
597
598 /* Sort it. Given a small number of alternatives, a dumb algorithm
599 won't hurt too much. */
600 for (i = 0; i < recog_data.n_alternatives - 1; i++)
601 {
602 int best = i;
603 int best_reject = alternative_reject[alternative_order[i]];
604 int best_nregs = alternative_nregs[alternative_order[i]];
605
606 for (j = i + 1; j < recog_data.n_alternatives; j++)
607 {
608 int this_reject = alternative_reject[alternative_order[j]];
609 int this_nregs = alternative_nregs[alternative_order[j]];
610
611 if (this_reject < best_reject
612 || (this_reject == best_reject && this_nregs > best_nregs))
613 {
614 best = j;
615 best_reject = this_reject;
616 best_nregs = this_nregs;
617 }
618 }
619
620 std::swap (a&: alternative_order[best], b&: alternative_order[i]);
621 }
622
623 /* Substitute the operands as determined by op_alt_regno for the best
624 alternative. */
625 j = alternative_order[0];
626
627 for (i = 0; i < recog_data.n_operands; i++)
628 {
629 machine_mode mode = recog_data.operand_mode[i];
630 if (op_alt_regno[i][j] == -1)
631 continue;
632
633 validate_change (insn, recog_data.operand_loc[i],
634 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
635 }
636
637 for (i = recog_data.n_dups - 1; i >= 0; i--)
638 {
639 int op = recog_data.dup_num[i];
640 machine_mode mode = recog_data.operand_mode[op];
641
642 if (op_alt_regno[op][j] == -1)
643 continue;
644
645 validate_change (insn, recog_data.dup_loc[i],
646 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
647 }
648
649 return apply_change_group ();
650}
651
652/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
653 addressing now.
654 This code might also be useful when reload gave up on reg+reg addressing
655 because of clashes between the return register and INDEX_REG_CLASS. */
656
657/* The maximum number of uses of a register we can keep track of to
658 replace them with reg+reg addressing. */
659#define RELOAD_COMBINE_MAX_USES 16
660
661/* Describes a recorded use of a register. */
662struct reg_use
663{
664 /* The insn where a register has been used. */
665 rtx_insn *insn;
666 /* Points to the memory reference enclosing the use, if any, NULL_RTX
667 otherwise. */
668 rtx containing_mem;
669 /* Location of the register within INSN. */
670 rtx *usep;
671 /* The reverse uid of the insn. */
672 int ruid;
673};
674
675/* If the register is used in some unknown fashion, USE_INDEX is negative.
676 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
677 indicates where it is first set or clobbered.
678 Otherwise, USE_INDEX is the index of the last encountered use of the
679 register (which is first among these we have seen since we scan backwards).
680 USE_RUID indicates the first encountered, i.e. last, of these uses.
681 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
682 with a constant offset; OFFSET contains this constant in that case.
683 STORE_RUID is always meaningful if we only want to use a value in a
684 register in a different place: it denotes the next insn in the insn
685 stream (i.e. the last encountered) that sets or clobbers the register.
686 REAL_STORE_RUID is similar, but clobbers are ignored when updating it.
687 EXPR is the expression used when storing the register. */
688static struct
689 {
690 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
691 rtx offset;
692 int use_index;
693 int store_ruid;
694 int real_store_ruid;
695 int use_ruid;
696 bool all_offsets_match;
697 rtx expr;
698 } reg_state[FIRST_PSEUDO_REGISTER];
699
700/* Reverse linear uid. This is increased in reload_combine while scanning
701 the instructions from last to first. It is used to set last_label_ruid
702 and the store_ruid / use_ruid fields in reg_state. */
703static int reload_combine_ruid;
704
705/* The RUID of the last label we encountered in reload_combine. */
706static int last_label_ruid;
707
708/* The RUID of the last jump we encountered in reload_combine. */
709static int last_jump_ruid;
710
711/* The register numbers of the first and last index register. A value of
712 -1 in LAST_INDEX_REG indicates that we've previously computed these
713 values and found no suitable index registers. */
714static int first_index_reg = -1;
715static int last_index_reg;
716
717#define LABEL_LIVE(LABEL) \
718 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
719
720/* Subroutine of reload_combine_split_ruids, called to fix up a single
721 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
722
723static inline void
724reload_combine_split_one_ruid (int *pruid, int split_ruid)
725{
726 if (*pruid > split_ruid)
727 (*pruid)++;
728}
729
730/* Called when we insert a new insn in a position we've already passed in
731 the scan. Examine all our state, increasing all ruids that are higher
732 than SPLIT_RUID by one in order to make room for a new insn. */
733
734static void
735reload_combine_split_ruids (int split_ruid)
736{
737 unsigned i;
738
739 reload_combine_split_one_ruid (pruid: &reload_combine_ruid, split_ruid);
740 reload_combine_split_one_ruid (pruid: &last_label_ruid, split_ruid);
741 reload_combine_split_one_ruid (pruid: &last_jump_ruid, split_ruid);
742
743 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
744 {
745 int j, idx = reg_state[i].use_index;
746 reload_combine_split_one_ruid (pruid: &reg_state[i].use_ruid, split_ruid);
747 reload_combine_split_one_ruid (pruid: &reg_state[i].store_ruid, split_ruid);
748 reload_combine_split_one_ruid (pruid: &reg_state[i].real_store_ruid,
749 split_ruid);
750 if (idx < 0)
751 continue;
752 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
753 {
754 reload_combine_split_one_ruid (pruid: &reg_state[i].reg_use[j].ruid,
755 split_ruid);
756 }
757 }
758}
759
760/* Called when we are about to rescan a previously encountered insn with
761 reload_combine_note_use after modifying some part of it. This clears all
762 information about uses in that particular insn. */
763
764static void
765reload_combine_purge_insn_uses (rtx_insn *insn)
766{
767 unsigned i;
768
769 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
770 {
771 int j, k, idx = reg_state[i].use_index;
772 if (idx < 0)
773 continue;
774 j = k = RELOAD_COMBINE_MAX_USES;
775 while (j-- > idx)
776 {
777 if (reg_state[i].reg_use[j].insn != insn)
778 {
779 k--;
780 if (k != j)
781 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
782 }
783 }
784 reg_state[i].use_index = k;
785 }
786}
787
788/* Called when we need to forget about all uses of REGNO after an insn
789 which is identified by RUID. */
790
791static void
792reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
793{
794 int j, k, idx = reg_state[regno].use_index;
795 if (idx < 0)
796 return;
797 j = k = RELOAD_COMBINE_MAX_USES;
798 while (j-- > idx)
799 {
800 if (reg_state[regno].reg_use[j].ruid >= ruid)
801 {
802 k--;
803 if (k != j)
804 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
805 }
806 }
807 reg_state[regno].use_index = k;
808}
809
810/* Find the use of REGNO with the ruid that is highest among those
811 lower than RUID_LIMIT, and return it if it is the only use of this
812 reg in the insn. Return NULL otherwise. */
813
814static struct reg_use *
815reload_combine_closest_single_use (unsigned regno, int ruid_limit)
816{
817 int i, best_ruid = 0;
818 int use_idx = reg_state[regno].use_index;
819 struct reg_use *retval;
820
821 if (use_idx < 0)
822 return NULL;
823 retval = NULL;
824 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
825 {
826 struct reg_use *use = reg_state[regno].reg_use + i;
827 int this_ruid = use->ruid;
828 if (this_ruid >= ruid_limit)
829 continue;
830 if (this_ruid > best_ruid)
831 {
832 best_ruid = this_ruid;
833 retval = use;
834 }
835 else if (this_ruid == best_ruid)
836 retval = NULL;
837 }
838 if (last_label_ruid >= best_ruid)
839 return NULL;
840 return retval;
841}
842
843/* After we've moved an add insn, fix up any debug insns that occur
844 between the old location of the add and the new location. REG is
845 the destination register of the add insn; REPLACEMENT is the
846 SET_SRC of the add. FROM and TO specify the range in which we
847 should make this change on debug insns. */
848
849static void
850fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
851{
852 rtx_insn *insn;
853 for (insn = from; insn != to; insn = NEXT_INSN (insn))
854 {
855 rtx t;
856
857 if (!DEBUG_BIND_INSN_P (insn))
858 continue;
859
860 t = INSN_VAR_LOCATION_LOC (insn);
861 t = simplify_replace_rtx (t, reg, replacement);
862 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
863 }
864}
865
866/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
867 with SRC in the insn described by USE, taking costs into account. Return
868 true if we made the replacement. */
869
870static bool
871try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
872{
873 rtx_insn *use_insn = use->insn;
874 rtx mem = use->containing_mem;
875 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn: use_insn));
876
877 if (mem != NULL_RTX)
878 {
879 addr_space_t as = MEM_ADDR_SPACE (mem);
880 rtx oldaddr = XEXP (mem, 0);
881 rtx newaddr = NULL_RTX;
882 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
883 int new_cost;
884
885 newaddr = simplify_replace_rtx (oldaddr, reg, src);
886 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
887 {
888 XEXP (mem, 0) = newaddr;
889 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
890 XEXP (mem, 0) = oldaddr;
891 if (new_cost <= old_cost
892 && validate_change (use_insn,
893 &XEXP (mem, 0), newaddr, 0))
894 return true;
895 }
896 }
897 else
898 {
899 rtx new_set = single_set (insn: use_insn);
900 if (new_set
901 && REG_P (SET_DEST (new_set))
902 && GET_CODE (SET_SRC (new_set)) == PLUS
903 && REG_P (XEXP (SET_SRC (new_set), 0))
904 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
905 {
906 rtx new_src;
907 machine_mode mode = GET_MODE (SET_DEST (new_set));
908 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed_p: speed);
909
910 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
911 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
912
913 if (set_src_cost (x: new_src, mode, speed_p: speed) <= old_cost
914 && validate_change (use_insn, &SET_SRC (new_set),
915 new_src, 0))
916 return true;
917 }
918 }
919 return false;
920}
921
922/* Called by reload_combine when scanning INSN. This function tries to detect
923 patterns where a constant is added to a register, and the result is used
924 in an address.
925 Return true if no further processing is needed on INSN; false if it wasn't
926 recognized and should be handled normally. */
927
928static bool
929reload_combine_recognize_const_pattern (rtx_insn *insn)
930{
931 int from_ruid = reload_combine_ruid;
932 rtx set, pat, reg, src, addreg;
933 unsigned int regno;
934 struct reg_use *use;
935 bool must_move_add;
936 rtx_insn *add_moved_after_insn = NULL;
937 int add_moved_after_ruid = 0;
938 int clobbered_regno = -1;
939
940 set = single_set (insn);
941 if (set == NULL_RTX)
942 return false;
943
944 reg = SET_DEST (set);
945 src = SET_SRC (set);
946 if (!REG_P (reg)
947 || REG_NREGS (reg) != 1
948 || GET_MODE (reg) != Pmode
949 || reg == stack_pointer_rtx)
950 return false;
951
952 regno = REGNO (reg);
953
954 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
955 uses of REG1 inside an address, or inside another add insn. If
956 possible and profitable, merge the addition into subsequent
957 uses. */
958 if (GET_CODE (src) != PLUS
959 || !REG_P (XEXP (src, 0))
960 || !CONSTANT_P (XEXP (src, 1)))
961 return false;
962
963 addreg = XEXP (src, 0);
964 must_move_add = rtx_equal_p (reg, addreg);
965
966 pat = PATTERN (insn);
967 if (must_move_add && set != pat)
968 {
969 /* We have to be careful when moving the add; apart from the
970 single_set there may also be clobbers. Recognize one special
971 case, that of one clobber alongside the set (likely a clobber
972 of the CC register). */
973 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
974 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
975 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
976 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
977 return false;
978 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
979 }
980
981 do
982 {
983 use = reload_combine_closest_single_use (regno, ruid_limit: from_ruid);
984
985 if (use)
986 /* Start the search for the next use from here. */
987 from_ruid = use->ruid;
988
989 if (use && GET_MODE (*use->usep) == Pmode)
990 {
991 bool delete_add = false;
992 rtx_insn *use_insn = use->insn;
993 int use_ruid = use->ruid;
994
995 /* Avoid moving the add insn past a jump. */
996 if (must_move_add && use_ruid <= last_jump_ruid)
997 break;
998
999 /* If the add clobbers another hard reg in parallel, don't move
1000 it past a real set of this hard reg. */
1001 if (must_move_add && clobbered_regno >= 0
1002 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1003 break;
1004
1005 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1006 /* Avoid moving a use of ADDREG past a point where it is stored. */
1007 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1008 break;
1009
1010 /* We also must not move the addition past an insn that sets
1011 the same register, unless we can combine two add insns. */
1012 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1013 {
1014 if (use->containing_mem == NULL_RTX)
1015 delete_add = true;
1016 else
1017 break;
1018 }
1019
1020 if (try_replace_in_use (use, reg, src))
1021 {
1022 reload_combine_purge_insn_uses (insn: use_insn);
1023 reload_combine_note_use (&PATTERN (insn: use_insn), use_insn,
1024 use_ruid, NULL_RTX);
1025
1026 if (delete_add)
1027 {
1028 fixup_debug_insns (reg, replacement: src, from: insn, to: use_insn);
1029 delete_insn (insn);
1030 return true;
1031 }
1032 if (must_move_add)
1033 {
1034 add_moved_after_insn = use_insn;
1035 add_moved_after_ruid = use_ruid;
1036 }
1037 continue;
1038 }
1039 }
1040 /* If we get here, we couldn't handle this use. */
1041 if (must_move_add)
1042 break;
1043 }
1044 while (use);
1045
1046 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1047 /* Process the add normally. */
1048 return false;
1049
1050 fixup_debug_insns (reg, replacement: src, from: insn, to: add_moved_after_insn);
1051
1052 reorder_insns (insn, insn, add_moved_after_insn);
1053 reload_combine_purge_reg_uses_after_ruid (regno, ruid: add_moved_after_ruid);
1054 reload_combine_split_ruids (split_ruid: add_moved_after_ruid - 1);
1055 reload_combine_note_use (&PATTERN (insn), insn,
1056 add_moved_after_ruid, NULL_RTX);
1057 reg_state[regno].store_ruid = add_moved_after_ruid;
1058
1059 return true;
1060}
1061
1062/* Called by reload_combine when scanning INSN. Try to detect a pattern we
1063 can handle and improve. Return true if no further processing is needed on
1064 INSN; false if it wasn't recognized and should be handled normally. */
1065
1066static bool
1067reload_combine_recognize_pattern (rtx_insn *insn)
1068{
1069 rtx set, reg, src;
1070
1071 set = single_set (insn);
1072 if (set == NULL_RTX)
1073 return false;
1074
1075 reg = SET_DEST (set);
1076 src = SET_SRC (set);
1077 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1078 return false;
1079
1080 unsigned int regno = REGNO (reg);
1081 machine_mode mode = GET_MODE (reg);
1082
1083 if (reg_state[regno].use_index < 0
1084 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1085 return false;
1086
1087 for (int i = reg_state[regno].use_index;
1088 i < RELOAD_COMBINE_MAX_USES; i++)
1089 {
1090 struct reg_use *use = reg_state[regno].reg_use + i;
1091 if (GET_MODE (*use->usep) != mode)
1092 return false;
1093 /* Don't try to adjust (use (REGX)). */
1094 if (GET_CODE (PATTERN (use->insn)) == USE
1095 && &XEXP (PATTERN (use->insn), 0) == use->usep)
1096 return false;
1097 }
1098
1099 /* Look for (set (REGX) (CONST_INT))
1100 (set (REGX) (PLUS (REGX) (REGY)))
1101 ...
1102 ... (MEM (REGX)) ...
1103 and convert it to
1104 (set (REGZ) (CONST_INT))
1105 ...
1106 ... (MEM (PLUS (REGZ) (REGY)))... .
1107
1108 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1109 and that we know all uses of REGX before it dies.
1110 Also, explicitly check that REGX != REGY; our life information
1111 does not yet show whether REGY changes in this insn. */
1112
1113 if (GET_CODE (src) == PLUS
1114 && reg_state[regno].all_offsets_match
1115 && last_index_reg != -1
1116 && REG_P (XEXP (src, 1))
1117 && rtx_equal_p (XEXP (src, 0), reg)
1118 && !rtx_equal_p (XEXP (src, 1), reg)
1119 && last_label_ruid < reg_state[regno].use_ruid)
1120 {
1121 rtx base = XEXP (src, 1);
1122 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1123 rtx prev_set = prev ? single_set (insn: prev) : NULL_RTX;
1124 rtx index_reg = NULL_RTX;
1125 rtx reg_sum = NULL_RTX;
1126 int i;
1127
1128 /* Now we need to set INDEX_REG to an index register (denoted as
1129 REGZ in the illustration above) and REG_SUM to the expression
1130 register+register that we want to use to substitute uses of REG
1131 (typically in MEMs) with. First check REG and BASE for being
1132 index registers; we can use them even if they are not dead. */
1133 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], bit: regno)
1134 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1135 REGNO (base)))
1136 {
1137 index_reg = reg;
1138 reg_sum = src;
1139 }
1140 else
1141 {
1142 /* Otherwise, look for a free index register. Since we have
1143 checked above that neither REG nor BASE are index registers,
1144 if we find anything at all, it will be different from these
1145 two registers. */
1146 for (i = first_index_reg; i <= last_index_reg; i++)
1147 {
1148 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], bit: i)
1149 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1150 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1151 && (crtl->abi->clobbers_full_reg_p (regno: i)
1152 || df_regs_ever_live_p (i))
1153 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1154 && !fixed_regs[i] && !global_regs[i]
1155 && hard_regno_nregs (regno: i, GET_MODE (reg)) == 1
1156 && targetm.hard_regno_scratch_ok (i))
1157 {
1158 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1159 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1160 break;
1161 }
1162 }
1163 }
1164
1165 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1166 (REGY), i.e. BASE, is not clobbered before the last use we'll
1167 create. */
1168 if (reg_sum
1169 && prev_set
1170 && CONST_INT_P (SET_SRC (prev_set))
1171 && rtx_equal_p (SET_DEST (prev_set), reg)
1172 && (reg_state[REGNO (base)].store_ruid
1173 <= reg_state[regno].use_ruid))
1174 {
1175 /* Change destination register and, if necessary, the constant
1176 value in PREV, the constant loading instruction. */
1177 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1178 if (reg_state[regno].offset != const0_rtx)
1179 {
1180 HOST_WIDE_INT c
1181 = trunc_int_for_mode (UINTVAL (SET_SRC (prev_set))
1182 + UINTVAL (reg_state[regno].offset),
1183 GET_MODE (index_reg));
1184 validate_change (prev, &SET_SRC (prev_set), GEN_INT (c), 1);
1185 }
1186
1187 /* Now for every use of REG that we have recorded, replace REG
1188 with REG_SUM. */
1189 for (i = reg_state[regno].use_index;
1190 i < RELOAD_COMBINE_MAX_USES; i++)
1191 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1192 reg_state[regno].reg_use[i].usep,
1193 /* Each change must have its own
1194 replacement. */
1195 reg_sum, 1);
1196
1197 if (apply_change_group ())
1198 {
1199 struct reg_use *lowest_ruid = NULL;
1200
1201 /* For every new use of REG_SUM, we have to record the use
1202 of BASE therein, i.e. operand 1. */
1203 for (i = reg_state[regno].use_index;
1204 i < RELOAD_COMBINE_MAX_USES; i++)
1205 {
1206 struct reg_use *use = reg_state[regno].reg_use + i;
1207 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1208 use->ruid, use->containing_mem);
1209 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1210 lowest_ruid = use;
1211 }
1212
1213 fixup_debug_insns (reg, replacement: reg_sum, from: insn, to: lowest_ruid->insn);
1214
1215 /* Delete the reg-reg addition. */
1216 delete_insn (insn);
1217
1218 if (reg_state[regno].offset != const0_rtx)
1219 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1220 are now invalid. */
1221 remove_reg_equal_equiv_notes (prev);
1222
1223 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1224 return true;
1225 }
1226 }
1227 }
1228 return false;
1229}
1230
1231static void
1232reload_combine (void)
1233{
1234 rtx_insn *insn, *prev;
1235 basic_block bb;
1236 unsigned int r;
1237 int min_labelno, n_labels;
1238 HARD_REG_SET ever_live_at_start, *label_live;
1239
1240 /* To avoid wasting too much time later searching for an index register,
1241 determine the minimum and maximum index register numbers. */
1242 if (INDEX_REG_CLASS == NO_REGS)
1243 last_index_reg = -1;
1244 else if (first_index_reg == -1 && last_index_reg == 0)
1245 {
1246 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1247 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], bit: r))
1248 {
1249 if (first_index_reg == -1)
1250 first_index_reg = r;
1251
1252 last_index_reg = r;
1253 }
1254
1255 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1256 to -1 so we'll know to quit early the next time we get here. */
1257 if (first_index_reg == -1)
1258 {
1259 last_index_reg = -1;
1260 return;
1261 }
1262 }
1263
1264 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1265 information is a bit fuzzy immediately after reload, but it's
1266 still good enough to determine which registers are live at a jump
1267 destination. */
1268 min_labelno = get_first_label_num ();
1269 n_labels = max_label_num () - min_labelno;
1270 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1271 CLEAR_HARD_REG_SET (set&: ever_live_at_start);
1272
1273 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1274 {
1275 insn = BB_HEAD (bb);
1276 if (LABEL_P (insn))
1277 {
1278 HARD_REG_SET live;
1279 bitmap live_in = df_get_live_in (bb);
1280
1281 REG_SET_TO_HARD_REG_SET (live, live_in);
1282 compute_use_by_pseudos (&live, live_in);
1283 LABEL_LIVE (insn) = live;
1284 ever_live_at_start |= live;
1285 }
1286 }
1287
1288 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1289 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1290 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1291 {
1292 reg_state[r].store_ruid = 0;
1293 reg_state[r].real_store_ruid = 0;
1294 if (fixed_regs[r])
1295 reg_state[r].use_index = -1;
1296 else
1297 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1298 }
1299
1300 for (insn = get_last_insn (); insn; insn = prev)
1301 {
1302 bool control_flow_insn;
1303 rtx note;
1304
1305 prev = PREV_INSN (insn);
1306
1307 /* We cannot do our optimization across labels. Invalidating all the use
1308 information we have would be costly, so we just note where the label
1309 is and then later disable any optimization that would cross it. */
1310 if (LABEL_P (insn))
1311 last_label_ruid = reload_combine_ruid;
1312 else if (BARRIER_P (insn))
1313 {
1314 /* Crossing a barrier resets all the use information. */
1315 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1316 if (! fixed_regs[r])
1317 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1318 }
1319 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1320 /* Optimizations across insns being marked as volatile must be
1321 prevented. All the usage information is invalidated
1322 here. */
1323 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1324 if (! fixed_regs[r]
1325 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1326 reg_state[r].use_index = -1;
1327
1328 if (! NONDEBUG_INSN_P (insn))
1329 continue;
1330
1331 reload_combine_ruid++;
1332
1333 control_flow_insn = control_flow_insn_p (insn);
1334 if (control_flow_insn)
1335 last_jump_ruid = reload_combine_ruid;
1336
1337 if (reload_combine_recognize_const_pattern (insn)
1338 || reload_combine_recognize_pattern (insn))
1339 continue;
1340
1341 note_stores (insn, reload_combine_note_store, NULL);
1342
1343 if (CALL_P (insn))
1344 {
1345 rtx link;
1346 HARD_REG_SET used_regs = insn_callee_abi (insn).full_reg_clobbers ();
1347
1348 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1349 if (TEST_HARD_REG_BIT (set: used_regs, bit: r))
1350 {
1351 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1352 reg_state[r].store_ruid = reload_combine_ruid;
1353 }
1354
1355 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1356 link = XEXP (link, 1))
1357 {
1358 rtx setuse = XEXP (link, 0);
1359 rtx usage_rtx = XEXP (setuse, 0);
1360
1361 if (GET_CODE (setuse) == USE && REG_P (usage_rtx))
1362 {
1363 unsigned int end_regno = END_REGNO (x: usage_rtx);
1364 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1365 reg_state[i].use_index = -1;
1366 }
1367 }
1368 }
1369
1370 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1371 {
1372 /* Non-spill registers might be used at the call destination in
1373 some unknown fashion, so we have to mark the unknown use. */
1374 HARD_REG_SET *live;
1375
1376 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1377 && JUMP_LABEL (insn))
1378 {
1379 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1380 live = NULL;
1381 else
1382 live = &LABEL_LIVE (JUMP_LABEL (insn));
1383 }
1384 else
1385 live = &ever_live_at_start;
1386
1387 if (live)
1388 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1389 if (TEST_HARD_REG_BIT (set: *live, bit: r))
1390 reg_state[r].use_index = -1;
1391 }
1392
1393 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1394 NULL_RTX);
1395
1396 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1397 {
1398 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1399 {
1400 int regno = REGNO (XEXP (note, 0));
1401 reg_state[regno].store_ruid = reload_combine_ruid;
1402 reg_state[regno].real_store_ruid = reload_combine_ruid;
1403 reg_state[regno].use_index = -1;
1404 }
1405 }
1406 }
1407
1408 free (ptr: label_live);
1409}
1410
1411/* Check if DST is a register or a subreg of a register; if it is,
1412 update store_ruid, real_store_ruid and use_index in the reg_state
1413 structure accordingly. Called via note_stores from reload_combine. */
1414
1415static void
1416reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1417{
1418 int regno = 0;
1419 int i;
1420 machine_mode mode = GET_MODE (dst);
1421
1422 if (GET_CODE (dst) == SUBREG)
1423 {
1424 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1425 GET_MODE (SUBREG_REG (dst)),
1426 SUBREG_BYTE (dst),
1427 GET_MODE (dst));
1428 dst = SUBREG_REG (dst);
1429 }
1430
1431 /* Some targets do argument pushes without adding REG_INC notes. */
1432
1433 if (MEM_P (dst))
1434 {
1435 dst = XEXP (dst, 0);
1436 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1437 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1438 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1439 {
1440 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1441 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1442 {
1443 /* We could probably do better, but for now mark the register
1444 as used in an unknown fashion and set/clobbered at this
1445 insn. */
1446 reg_state[i].use_index = -1;
1447 reg_state[i].store_ruid = reload_combine_ruid;
1448 reg_state[i].real_store_ruid = reload_combine_ruid;
1449 }
1450 }
1451 else
1452 return;
1453 }
1454
1455 if (!REG_P (dst))
1456 return;
1457 regno += REGNO (dst);
1458
1459 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1460 careful with registers / register parts that are not full words.
1461 Similarly for ZERO_EXTRACT. */
1462 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1463 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1464 {
1465 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1466 {
1467 reg_state[i].use_index = -1;
1468 reg_state[i].store_ruid = reload_combine_ruid;
1469 reg_state[i].real_store_ruid = reload_combine_ruid;
1470 }
1471 }
1472 else
1473 {
1474 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1475 {
1476 reg_state[i].store_ruid = reload_combine_ruid;
1477 if (GET_CODE (set) == SET)
1478 reg_state[i].real_store_ruid = reload_combine_ruid;
1479 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1480 }
1481 }
1482}
1483
1484/* XP points to a piece of rtl that has to be checked for any uses of
1485 registers.
1486 *XP is the pattern of INSN, or a part of it.
1487 Called from reload_combine, and recursively by itself. */
1488static void
1489reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1490{
1491 rtx x = *xp;
1492 enum rtx_code code = x->code;
1493 const char *fmt;
1494 int i, j;
1495 rtx offset = const0_rtx; /* For the REG case below. */
1496
1497 switch (code)
1498 {
1499 case SET:
1500 if (REG_P (SET_DEST (x)))
1501 {
1502 reload_combine_note_use (xp: &SET_SRC (x), insn, ruid, NULL_RTX);
1503 return;
1504 }
1505 break;
1506
1507 case USE:
1508 /* If this is the USE of a return value, we can't change it. */
1509 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1510 {
1511 /* Mark the return register as used in an unknown fashion. */
1512 rtx reg = XEXP (x, 0);
1513 unsigned int end_regno = END_REGNO (x: reg);
1514 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1515 reg_state[regno].use_index = -1;
1516 return;
1517 }
1518 break;
1519
1520 case CLOBBER:
1521 if (REG_P (SET_DEST (x)))
1522 {
1523 /* No spurious CLOBBERs of pseudo registers may remain. */
1524 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1525 return;
1526 }
1527 break;
1528
1529 case PLUS:
1530 /* We are interested in (plus (reg) (const_int)) . */
1531 if (!REG_P (XEXP (x, 0))
1532 || !CONST_INT_P (XEXP (x, 1)))
1533 break;
1534 offset = XEXP (x, 1);
1535 x = XEXP (x, 0);
1536 /* Fall through. */
1537 case REG:
1538 {
1539 int regno = REGNO (x);
1540 int use_index;
1541 int nregs;
1542
1543 /* No spurious USEs of pseudo registers may remain. */
1544 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1545
1546 nregs = REG_NREGS (x);
1547
1548 /* We can't substitute into multi-hard-reg uses. */
1549 if (nregs > 1)
1550 {
1551 while (--nregs >= 0)
1552 reg_state[regno + nregs].use_index = -1;
1553 return;
1554 }
1555
1556 /* We may be called to update uses in previously seen insns.
1557 Don't add uses beyond the last store we saw. */
1558 if (ruid < reg_state[regno].store_ruid)
1559 return;
1560
1561 /* If this register is already used in some unknown fashion, we
1562 can't do anything.
1563 If we decrement the index from zero to -1, we can't store more
1564 uses, so this register becomes used in an unknown fashion. */
1565 use_index = --reg_state[regno].use_index;
1566 if (use_index < 0)
1567 return;
1568
1569 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1570 {
1571 /* This is the first use of this register we have seen since we
1572 marked it as dead. */
1573 reg_state[regno].offset = offset;
1574 reg_state[regno].all_offsets_match = true;
1575 reg_state[regno].use_ruid = ruid;
1576 }
1577 else
1578 {
1579 if (reg_state[regno].use_ruid > ruid)
1580 reg_state[regno].use_ruid = ruid;
1581
1582 if (! rtx_equal_p (offset, reg_state[regno].offset))
1583 reg_state[regno].all_offsets_match = false;
1584 }
1585
1586 reg_state[regno].reg_use[use_index].insn = insn;
1587 reg_state[regno].reg_use[use_index].ruid = ruid;
1588 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1589 reg_state[regno].reg_use[use_index].usep = xp;
1590 return;
1591 }
1592
1593 case MEM:
1594 containing_mem = x;
1595 break;
1596
1597 default:
1598 break;
1599 }
1600
1601 /* Recursively process the components of X. */
1602 fmt = GET_RTX_FORMAT (code);
1603 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1604 {
1605 if (fmt[i] == 'e')
1606 reload_combine_note_use (xp: &XEXP (x, i), insn, ruid, containing_mem);
1607 else if (fmt[i] == 'E')
1608 {
1609 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1610 reload_combine_note_use (xp: &XVECEXP (x, i, j), insn, ruid,
1611 containing_mem);
1612 }
1613 }
1614}
1615
1616/* See if we can reduce the cost of a constant by replacing a move
1617 with an add. We track situations in which a register is set to a
1618 constant or to a register plus a constant. */
1619/* We cannot do our optimization across labels. Invalidating all the
1620 information about register contents we have would be costly, so we
1621 use move2add_last_label_luid to note where the label is and then
1622 later disable any optimization that would cross it.
1623 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1624 are only valid if reg_set_luid[n] is greater than
1625 move2add_last_label_luid.
1626 For a set that established a new (potential) base register with
1627 non-constant value, we use move2add_luid from the place where the
1628 setting insn is encountered; registers based off that base then
1629 get the same reg_set_luid. Constants all get
1630 move2add_last_label_luid + 1 as their reg_set_luid. */
1631static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1632
1633/* If reg_base_reg[n] is negative, register n has been set to
1634 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1635 If reg_base_reg[n] is non-negative, register n has been set to the
1636 sum of reg_offset[n] and the value of register reg_base_reg[n]
1637 before reg_set_luid[n], calculated in mode reg_mode[n] .
1638 For multi-hard-register registers, all but the first one are
1639 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1640 marks it as invalid. */
1641static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1642static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1643static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1644static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1645
1646/* move2add_luid is linearly increased while scanning the instructions
1647 from first to last. It is used to set reg_set_luid in
1648 reload_cse_move2add and move2add_note_store. */
1649static int move2add_luid;
1650
1651/* move2add_last_label_luid is set whenever a label is found. Labels
1652 invalidate all previously collected reg_offset data. */
1653static int move2add_last_label_luid;
1654
1655/* ??? We don't know how zero / sign extension is handled, hence we
1656 can't go from a narrower to a wider mode. */
1657#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1658 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1659 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1660 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1661
1662/* Record that REG is being set to a value with the mode of REG. */
1663
1664static void
1665move2add_record_mode (rtx reg)
1666{
1667 int regno, nregs;
1668 machine_mode mode = GET_MODE (reg);
1669
1670 if (GET_CODE (reg) == SUBREG)
1671 {
1672 regno = subreg_regno (reg);
1673 nregs = subreg_nregs (reg);
1674 }
1675 else if (REG_P (reg))
1676 {
1677 regno = REGNO (reg);
1678 nregs = REG_NREGS (reg);
1679 }
1680 else
1681 gcc_unreachable ();
1682 for (int i = nregs - 1; i > 0; i--)
1683 reg_mode[regno + i] = BLKmode;
1684 reg_mode[regno] = mode;
1685}
1686
1687/* Record that REG is being set to the sum of SYM and OFF. */
1688
1689static void
1690move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1691{
1692 int regno = REGNO (reg);
1693
1694 move2add_record_mode (reg);
1695 reg_set_luid[regno] = move2add_luid;
1696 reg_base_reg[regno] = -1;
1697 reg_symbol_ref[regno] = sym;
1698 reg_offset[regno] = INTVAL (off);
1699}
1700
1701/* Check if REGNO contains a valid value in MODE. */
1702
1703static bool
1704move2add_valid_value_p (int regno, scalar_int_mode mode)
1705{
1706 if (reg_set_luid[regno] <= move2add_last_label_luid)
1707 return false;
1708
1709 if (mode != reg_mode[regno])
1710 {
1711 scalar_int_mode old_mode;
1712 if (!is_a <scalar_int_mode> (m: reg_mode[regno], result: &old_mode)
1713 || !MODES_OK_FOR_MOVE2ADD (mode, old_mode)
1714 || !REG_CAN_CHANGE_MODE_P (regno, old_mode, mode))
1715 return false;
1716 /* The value loaded into regno in reg_mode[regno] is also valid in
1717 mode after truncation only if (REG:mode regno) is the lowpart of
1718 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1719 regno of the lowpart might be different. */
1720 poly_int64 s_off = subreg_lowpart_offset (outermode: mode, innermode: old_mode);
1721 s_off = subreg_regno_offset (regno, old_mode, s_off, mode);
1722 if (maybe_ne (a: s_off, b: 0))
1723 /* We could in principle adjust regno, check reg_mode[regno] to be
1724 BLKmode, and return s_off to the caller (vs. -1 for failure),
1725 but we currently have no callers that could make use of this
1726 information. */
1727 return false;
1728 }
1729
1730 for (int i = end_hard_regno (mode, regno) - 1; i > regno; i--)
1731 if (reg_mode[i] != BLKmode)
1732 return false;
1733 return true;
1734}
1735
1736/* This function is called with INSN that sets REG (of mode MODE)
1737 to (SYM + OFF), while REG is known to already have value (SYM + offset).
1738 This function tries to change INSN into an add instruction
1739 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1740 It also updates the information about REG's known value.
1741 Return true if we made a change. */
1742
1743static bool
1744move2add_use_add2_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1745 rtx_insn *insn)
1746{
1747 rtx set = single_set (insn);
1748 rtx src = SET_SRC (set);
1749 int regno = REGNO (reg);
1750 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno], mode);
1751 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1752 bool changed = false;
1753
1754 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1755 use (set (reg) (reg)) instead.
1756 We don't delete this insn, nor do we convert it into a
1757 note, to avoid losing register notes or the return
1758 value flag. jump2 already knows how to get rid of
1759 no-op moves. */
1760 if (new_src == const0_rtx)
1761 {
1762 /* If the constants are different, this is a
1763 truncation, that, if turned into (set (reg)
1764 (reg)), would be discarded. Maybe we should
1765 try a truncMN pattern? */
1766 if (INTVAL (off) == reg_offset [regno])
1767 changed = validate_change (insn, &SET_SRC (set), reg, 0);
1768 }
1769 else
1770 {
1771 struct full_rtx_costs oldcst, newcst;
1772 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
1773
1774 get_full_set_rtx_cost (x: set, c: &oldcst);
1775 SET_SRC (set) = tem;
1776 get_full_set_rtx_cost (x: set, c: &newcst);
1777 SET_SRC (set) = src;
1778
1779 if (costs_lt_p (a: &newcst, b: &oldcst, speed)
1780 && have_add2_insn (reg, new_src))
1781 changed = validate_change (insn, &SET_SRC (set), tem, 0);
1782 else if (sym == NULL_RTX && mode != BImode)
1783 {
1784 scalar_int_mode narrow_mode;
1785 FOR_EACH_MODE_UNTIL (narrow_mode, mode)
1786 {
1787 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1788 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1789 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1790 {
1791 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1792 rtx narrow_src = gen_int_mode (INTVAL (off),
1793 narrow_mode);
1794 rtx new_set
1795 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1796 narrow_reg),
1797 narrow_src);
1798 get_full_set_rtx_cost (x: new_set, c: &newcst);
1799
1800 /* We perform this replacement only if NEXT is either a
1801 naked SET, or else its single_set is the first element
1802 in a PARALLEL. */
1803 rtx *setloc = GET_CODE (PATTERN (insn)) == PARALLEL
1804 ? &XVECEXP (PATTERN (insn), 0, 0) : &PATTERN (insn);
1805 if (*setloc == set && costs_lt_p (a: &newcst, b: &oldcst, speed))
1806 {
1807 changed = validate_change (insn, setloc, new_set, 0);
1808 if (changed)
1809 break;
1810 }
1811 }
1812 }
1813 }
1814 }
1815 move2add_record_sym_value (reg, sym, off);
1816 return changed;
1817}
1818
1819
1820/* This function is called with INSN that sets REG (of mode MODE) to
1821 (SYM + OFF), but REG doesn't have known value (SYM + offset). This
1822 function tries to find another register which is known to already have
1823 value (SYM + offset) and change INSN into an add instruction
1824 (set (REG) (plus (the found register) (OFF - offset))) if such
1825 a register is found. It also updates the information about
1826 REG's known value.
1827 Return true iff we made a change. */
1828
1829static bool
1830move2add_use_add3_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1831 rtx_insn *insn)
1832{
1833 rtx set = single_set (insn);
1834 rtx src = SET_SRC (set);
1835 int regno = REGNO (reg);
1836 int min_regno = 0;
1837 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1838 int i;
1839 bool changed = false;
1840 struct full_rtx_costs oldcst, newcst, mincst;
1841 rtx plus_expr;
1842
1843 init_costs_to_max (c: &mincst);
1844 get_full_set_rtx_cost (x: set, c: &oldcst);
1845
1846 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1847 SET_SRC (set) = plus_expr;
1848
1849 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1850 if (move2add_valid_value_p (regno: i, mode)
1851 && reg_base_reg[i] < 0
1852 && reg_symbol_ref[i] != NULL_RTX
1853 && rtx_equal_p (sym, reg_symbol_ref[i]))
1854 {
1855 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1856 GET_MODE (reg));
1857 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1858 use (set (reg) (reg)) instead.
1859 We don't delete this insn, nor do we convert it into a
1860 note, to avoid losing register notes or the return
1861 value flag. jump2 already knows how to get rid of
1862 no-op moves. */
1863 if (new_src == const0_rtx)
1864 {
1865 init_costs_to_zero (c: &mincst);
1866 min_regno = i;
1867 break;
1868 }
1869 else
1870 {
1871 XEXP (plus_expr, 1) = new_src;
1872 get_full_set_rtx_cost (x: set, c: &newcst);
1873
1874 if (costs_lt_p (a: &newcst, b: &mincst, speed))
1875 {
1876 mincst = newcst;
1877 min_regno = i;
1878 }
1879 }
1880 }
1881 SET_SRC (set) = src;
1882
1883 if (costs_lt_p (a: &mincst, b: &oldcst, speed))
1884 {
1885 rtx tem;
1886
1887 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1888 if (i != min_regno)
1889 {
1890 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1891 GET_MODE (reg));
1892 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1893 }
1894 if (validate_change (insn, &SET_SRC (set), tem, 0))
1895 changed = true;
1896 }
1897 reg_set_luid[regno] = move2add_luid;
1898 move2add_record_sym_value (reg, sym, off);
1899 return changed;
1900}
1901
1902/* Perform any invalidations necessary for INSN. */
1903
1904static void
1905reload_cse_move2add_invalidate (rtx_insn *insn)
1906{
1907 for (rtx note = REG_NOTES (insn); note; note = XEXP (note, 1))
1908 {
1909 if (REG_NOTE_KIND (note) == REG_INC
1910 && REG_P (XEXP (note, 0)))
1911 {
1912 /* Reset the information about this register. */
1913 int regno = REGNO (XEXP (note, 0));
1914 if (regno < FIRST_PSEUDO_REGISTER)
1915 {
1916 move2add_record_mode (XEXP (note, 0));
1917 reg_mode[regno] = VOIDmode;
1918 }
1919 }
1920 }
1921
1922 /* There are no REG_INC notes for SP autoinc. */
1923 subrtx_var_iterator::array_type array;
1924 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1925 {
1926 rtx mem = *iter;
1927 if (mem
1928 && MEM_P (mem)
1929 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1930 {
1931 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1932 reg_mode[STACK_POINTER_REGNUM] = VOIDmode;
1933 }
1934 }
1935
1936 note_stores (insn, move2add_note_store, insn);
1937
1938 /* If INSN is a conditional branch, we try to extract an
1939 implicit set out of it. */
1940 if (any_condjump_p (insn))
1941 {
1942 rtx cnd = fis_get_condition (insn);
1943
1944 if (cnd != NULL_RTX
1945 && GET_CODE (cnd) == NE
1946 && REG_P (XEXP (cnd, 0))
1947 && !reg_set_p (XEXP (cnd, 0), insn)
1948 /* The following two checks, which are also in
1949 move2add_note_store, are intended to reduce the
1950 number of calls to gen_rtx_SET to avoid memory
1951 allocation if possible. */
1952 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
1953 && REG_NREGS (XEXP (cnd, 0)) == 1
1954 && CONST_INT_P (XEXP (cnd, 1)))
1955 {
1956 rtx implicit_set = gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
1957 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
1958 }
1959 }
1960
1961 /* If this is a CALL_INSN, all call used registers are stored with
1962 unknown values. */
1963 if (CALL_P (insn))
1964 {
1965 function_abi callee_abi = insn_callee_abi (insn);
1966 for (int i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1967 if (reg_mode[i] != VOIDmode
1968 && reg_mode[i] != BLKmode
1969 && callee_abi.clobbers_reg_p (mode: reg_mode[i], regno: i))
1970 /* Reset the information about this register. */
1971 reg_mode[i] = VOIDmode;
1972 }
1973}
1974
1975/* Convert move insns with constant inputs to additions if they are cheaper.
1976 Return true if any changes were made. */
1977static bool
1978reload_cse_move2add (rtx_insn *first)
1979{
1980 int i;
1981 rtx_insn *insn;
1982 bool changed = false;
1983
1984 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1985 {
1986 reg_set_luid[i] = 0;
1987 reg_offset[i] = 0;
1988 reg_base_reg[i] = 0;
1989 reg_symbol_ref[i] = NULL_RTX;
1990 reg_mode[i] = VOIDmode;
1991 }
1992
1993 move2add_last_label_luid = 0;
1994 move2add_luid = 2;
1995 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1996 {
1997 rtx set;
1998
1999 if (LABEL_P (insn))
2000 {
2001 move2add_last_label_luid = move2add_luid;
2002 /* We're going to increment move2add_luid twice after a
2003 label, so that we can use move2add_last_label_luid + 1 as
2004 the luid for constants. */
2005 move2add_luid++;
2006 continue;
2007 }
2008 if (! INSN_P (insn))
2009 continue;
2010 set = single_set (insn);
2011 /* For simplicity, we only perform this optimization on
2012 single-sets. */
2013 scalar_int_mode mode;
2014 if (set
2015 && REG_P (SET_DEST (set))
2016 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (set)), result: &mode))
2017 {
2018 rtx reg = SET_DEST (set);
2019 int regno = REGNO (reg);
2020 rtx src = SET_SRC (set);
2021
2022 /* Check if we have valid information on the contents of this
2023 register in the mode of REG. */
2024 if (move2add_valid_value_p (regno, mode)
2025 && dbg_cnt (index: cse2_move2add))
2026 {
2027 /* Try to transform (set (REGX) (CONST_INT A))
2028 ...
2029 (set (REGX) (CONST_INT B))
2030 to
2031 (set (REGX) (CONST_INT A))
2032 ...
2033 (set (REGX) (plus (REGX) (CONST_INT B-A)))
2034 or
2035 (set (REGX) (CONST_INT A))
2036 ...
2037 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
2038 */
2039
2040 if (CONST_INT_P (src)
2041 && reg_base_reg[regno] < 0
2042 && reg_symbol_ref[regno] == NULL_RTX)
2043 {
2044 changed |= move2add_use_add2_insn (mode, reg, NULL_RTX,
2045 off: src, insn);
2046 continue;
2047 }
2048
2049 /* Try to transform (set (REGX) (REGY))
2050 (set (REGX) (PLUS (REGX) (CONST_INT A)))
2051 ...
2052 (set (REGX) (REGY))
2053 (set (REGX) (PLUS (REGX) (CONST_INT B)))
2054 to
2055 (set (REGX) (REGY))
2056 (set (REGX) (PLUS (REGX) (CONST_INT A)))
2057 ...
2058 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
2059 else if (REG_P (src)
2060 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
2061 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
2062 && move2add_valid_value_p (REGNO (src), mode))
2063 {
2064 rtx_insn *next = next_nonnote_nondebug_insn (insn);
2065 rtx set = NULL_RTX;
2066 if (next)
2067 set = single_set (insn: next);
2068 if (set
2069 && SET_DEST (set) == reg
2070 && GET_CODE (SET_SRC (set)) == PLUS
2071 && XEXP (SET_SRC (set), 0) == reg
2072 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
2073 {
2074 rtx src3 = XEXP (SET_SRC (set), 1);
2075 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
2076 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2077 HOST_WIDE_INT regno_offset = reg_offset[regno];
2078 rtx new_src =
2079 gen_int_mode (added_offset
2080 + base_offset
2081 - regno_offset,
2082 mode);
2083 bool success = false;
2084 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2085
2086 if (new_src == const0_rtx)
2087 /* See above why we create (set (reg) (reg)) here. */
2088 success
2089 = validate_change (next, &SET_SRC (set), reg, 0);
2090 else
2091 {
2092 rtx old_src = SET_SRC (set);
2093 struct full_rtx_costs oldcst, newcst;
2094 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
2095
2096 get_full_set_rtx_cost (x: set, c: &oldcst);
2097 SET_SRC (set) = tem;
2098 get_full_set_src_cost (x: tem, mode, c: &newcst);
2099 SET_SRC (set) = old_src;
2100 costs_add_n_insns (c: &oldcst, n: 1);
2101
2102 rtx *setloc = GET_CODE (PATTERN (next)) == PARALLEL
2103 ? &XVECEXP (PATTERN (next), 0, 0) : &PATTERN (insn: next);
2104 if (*setloc == set
2105 && costs_lt_p (a: &newcst, b: &oldcst, speed)
2106 && have_add2_insn (reg, new_src))
2107 {
2108 rtx newpat = gen_rtx_SET (reg, tem);
2109 success
2110 = validate_change (next, setloc, newpat, 0);
2111 }
2112 }
2113 if (success)
2114 delete_insn (insn);
2115 changed |= success;
2116 insn = next;
2117 /* Make sure to perform any invalidations related to
2118 NEXT/INSN since we're going to bypass the normal
2119 flow with the continue below.
2120
2121 Do this before recording the new mode/offset. */
2122 reload_cse_move2add_invalidate (insn);
2123 move2add_record_mode (reg);
2124 reg_offset[regno]
2125 = trunc_int_for_mode (added_offset + base_offset,
2126 mode);
2127 continue;
2128 }
2129 }
2130 }
2131
2132 /* Try to transform
2133 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2134 ...
2135 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2136 to
2137 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2138 ...
2139 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2140 if ((GET_CODE (src) == SYMBOL_REF
2141 || (GET_CODE (src) == CONST
2142 && GET_CODE (XEXP (src, 0)) == PLUS
2143 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2144 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2145 && dbg_cnt (index: cse2_move2add))
2146 {
2147 rtx sym, off;
2148
2149 if (GET_CODE (src) == SYMBOL_REF)
2150 {
2151 sym = src;
2152 off = const0_rtx;
2153 }
2154 else
2155 {
2156 sym = XEXP (XEXP (src, 0), 0);
2157 off = XEXP (XEXP (src, 0), 1);
2158 }
2159
2160 /* If the reg already contains the value which is sum of
2161 sym and some constant value, we can use an add2 insn. */
2162 if (move2add_valid_value_p (regno, mode)
2163 && reg_base_reg[regno] < 0
2164 && reg_symbol_ref[regno] != NULL_RTX
2165 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2166 changed |= move2add_use_add2_insn (mode, reg, sym, off, insn);
2167
2168 /* Otherwise, we have to find a register whose value is sum
2169 of sym and some constant value. */
2170 else
2171 changed |= move2add_use_add3_insn (mode, reg, sym, off, insn);
2172
2173 continue;
2174 }
2175 }
2176 reload_cse_move2add_invalidate (insn);
2177 }
2178 return changed;
2179}
2180
2181/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2182 contains SET.
2183 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2184 Called from reload_cse_move2add via note_stores. */
2185
2186static void
2187move2add_note_store (rtx dst, const_rtx set, void *data)
2188{
2189 rtx_insn *insn = (rtx_insn *) data;
2190 unsigned int regno = 0;
2191 scalar_int_mode mode;
2192
2193 if (GET_CODE (dst) == SUBREG)
2194 regno = subreg_regno (dst);
2195 else if (REG_P (dst))
2196 regno = REGNO (dst);
2197 else
2198 return;
2199
2200 if (!is_a <scalar_int_mode> (GET_MODE (dst), result: &mode))
2201 goto invalidate;
2202
2203 if (GET_CODE (set) == SET)
2204 {
2205 rtx note, sym = NULL_RTX;
2206 rtx off;
2207
2208 note = find_reg_equal_equiv_note (insn);
2209 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2210 {
2211 sym = XEXP (note, 0);
2212 off = const0_rtx;
2213 }
2214 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2215 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2216 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2217 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2218 {
2219 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2220 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2221 }
2222
2223 if (sym != NULL_RTX)
2224 {
2225 move2add_record_sym_value (reg: dst, sym, off);
2226 return;
2227 }
2228 }
2229
2230 if (GET_CODE (set) == SET
2231 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2232 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2233 {
2234 rtx src = SET_SRC (set);
2235 rtx base_reg;
2236 unsigned HOST_WIDE_INT offset;
2237 int base_regno;
2238
2239 switch (GET_CODE (src))
2240 {
2241 case PLUS:
2242 if (REG_P (XEXP (src, 0)))
2243 {
2244 base_reg = XEXP (src, 0);
2245
2246 if (CONST_INT_P (XEXP (src, 1)))
2247 offset = UINTVAL (XEXP (src, 1));
2248 else if (REG_P (XEXP (src, 1))
2249 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2250 {
2251 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2252 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2253 offset = reg_offset[REGNO (XEXP (src, 1))];
2254 /* Maybe the first register is known to be a
2255 constant. */
2256 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2257 && reg_base_reg[REGNO (base_reg)] < 0
2258 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2259 {
2260 offset = reg_offset[REGNO (base_reg)];
2261 base_reg = XEXP (src, 1);
2262 }
2263 else
2264 goto invalidate;
2265 }
2266 else
2267 goto invalidate;
2268
2269 break;
2270 }
2271
2272 goto invalidate;
2273
2274 case REG:
2275 base_reg = src;
2276 offset = 0;
2277 break;
2278
2279 case CONST_INT:
2280 /* Start tracking the register as a constant. */
2281 reg_base_reg[regno] = -1;
2282 reg_symbol_ref[regno] = NULL_RTX;
2283 reg_offset[regno] = INTVAL (SET_SRC (set));
2284 /* We assign the same luid to all registers set to constants. */
2285 reg_set_luid[regno] = move2add_last_label_luid + 1;
2286 move2add_record_mode (reg: dst);
2287 return;
2288
2289 default:
2290 goto invalidate;
2291 }
2292
2293 base_regno = REGNO (base_reg);
2294 /* If information about the base register is not valid, set it
2295 up as a new base register, pretending its value is known
2296 starting from the current insn. */
2297 if (!move2add_valid_value_p (regno: base_regno, mode))
2298 {
2299 reg_base_reg[base_regno] = base_regno;
2300 reg_symbol_ref[base_regno] = NULL_RTX;
2301 reg_offset[base_regno] = 0;
2302 reg_set_luid[base_regno] = move2add_luid;
2303 gcc_assert (GET_MODE (base_reg) == mode);
2304 move2add_record_mode (reg: base_reg);
2305 }
2306
2307 /* Copy base information from our base register. */
2308 reg_set_luid[regno] = reg_set_luid[base_regno];
2309 reg_base_reg[regno] = reg_base_reg[base_regno];
2310 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2311
2312 /* Compute the sum of the offsets or constants. */
2313 reg_offset[regno]
2314 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2315
2316 move2add_record_mode (reg: dst);
2317 }
2318 else
2319 {
2320 invalidate:
2321 /* Invalidate the contents of the register. */
2322 move2add_record_mode (reg: dst);
2323 reg_mode[regno] = VOIDmode;
2324 }
2325}
2326
2327namespace {
2328
2329const pass_data pass_data_postreload_cse =
2330{
2331 .type: RTL_PASS, /* type */
2332 .name: "postreload", /* name */
2333 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
2334 .tv_id: TV_RELOAD_CSE_REGS, /* tv_id */
2335 .properties_required: 0, /* properties_required */
2336 .properties_provided: 0, /* properties_provided */
2337 .properties_destroyed: 0, /* properties_destroyed */
2338 .todo_flags_start: 0, /* todo_flags_start */
2339 TODO_df_finish, /* todo_flags_finish */
2340};
2341
2342class pass_postreload_cse : public rtl_opt_pass
2343{
2344public:
2345 pass_postreload_cse (gcc::context *ctxt)
2346 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2347 {}
2348
2349 /* opt_pass methods: */
2350 bool gate (function *) final override
2351 {
2352 return (optimize > 0 && reload_completed);
2353 }
2354
2355 unsigned int execute (function *) final override;
2356
2357}; // class pass_postreload_cse
2358
2359unsigned int
2360pass_postreload_cse::execute (function *fun)
2361{
2362 if (!dbg_cnt (index: postreload_cse))
2363 return 0;
2364
2365 /* Do a very simple CSE pass over just the hard registers. */
2366 reload_cse_regs (first: get_insns ());
2367 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2368 Remove any EH edges associated with them. */
2369 if (fun->can_throw_non_call_exceptions
2370 && purge_all_dead_edges ())
2371 cleanup_cfg (0);
2372
2373 return 0;
2374}
2375
2376} // anon namespace
2377
2378rtl_opt_pass *
2379make_pass_postreload_cse (gcc::context *ctxt)
2380{
2381 return new pass_postreload_cse (ctxt);
2382}
2383

source code of gcc/postreload.cc