1/* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2023 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20/* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
22
23 * The form of the input:
24
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
34
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
42
43 * The form of the output:
44
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
50
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
53
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
57
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
60
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
64
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
69
70 * Methodology:
71
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
75
76 * asm_operands:
77
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
81
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
85
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
89
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
96
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
99
100 All explicitly referenced input operands may not "skip" a reg.
101 Otherwise we can have holes in the stack.
102
103 3. It is possible that if an input dies in an insn, reload might
104 use the input reg for an output reload. Consider this example:
105
106 asm ("foo" : "=t" (a) : "f" (b));
107
108 This asm says that input B is not popped by the asm, and that
109 the asm pushes a result onto the reg-stack, i.e., the stack is one
110 deeper after the asm than it was before. But, it is possible that
111 reload will think that it can use the same reg for both the input and
112 the output, if input B dies in this insn.
113
114 If any input operand uses the "f" constraint, all output reg
115 constraints must use the "&" earlyclobber.
116
117 The asm above would be written as
118
119 asm ("foo" : "=&t" (a) : "f" (b));
120
121 4. Some operands need to be in particular places on the stack. All
122 output operands fall in this category - there is no other way to
123 know which regs the outputs appear in unless the user indicates
124 this in the constraints.
125
126 Output operands must specifically indicate which reg an output
127 appears in after an asm. "=f" is not allowed: the operand
128 constraints must select a class with a single reg.
129
130 5. Output operands may not be "inserted" between existing stack regs.
131 Since no 387 opcode uses a read/write operand, all output operands
132 are dead before the asm_operands, and are pushed by the asm_operands.
133 It makes no sense to push anywhere but the top of the reg-stack.
134
135 Output operands must start at the top of the reg-stack: output
136 operands may not "skip" a reg.
137
138 6. Some asm statements may need extra stack space for internal
139 calculations. This can be guaranteed by clobbering stack registers
140 unrelated to the inputs and outputs.
141
142 Here are a couple of reasonable asms to want to write. This asm
143 takes one input, which is internally popped, and produces two outputs.
144
145 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146
147 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
148 and replaces them with one output. The user must code the "st(1)"
149 clobber for reg-stack.cc to know that fyl2xp1 pops both inputs.
150
151 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
152
153*/
154
155#include "config.h"
156#include "system.h"
157#include "coretypes.h"
158#include "backend.h"
159#include "target.h"
160#include "rtl.h"
161#include "tree.h"
162#include "df.h"
163#include "insn-config.h"
164#include "memmodel.h"
165#include "regs.h"
166#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
167#include "recog.h"
168#include "varasm.h"
169#include "rtl-error.h"
170#include "cfgrtl.h"
171#include "cfganal.h"
172#include "cfgbuild.h"
173#include "cfgcleanup.h"
174#include "reload.h"
175#include "tree-pass.h"
176#include "rtl-iter.h"
177#include "function-abi.h"
178
179#ifdef STACK_REGS
180
181/* We use this array to cache info about insns, because otherwise we
182 spend too much time in stack_regs_mentioned_p.
183
184 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
185 the insn uses stack registers, two indicates the insn does not use
186 stack registers. */
187static vec<char> stack_regs_mentioned_data;
188
189#define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
190
191int regstack_completed = 0;
192
193/* This is the basic stack record. TOP is an index into REG[] such
194 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
195
196 If TOP is -2, REG[] is not yet initialized. Stack initialization
197 consists of placing each live reg in array `reg' and setting `top'
198 appropriately.
199
200 REG_SET indicates which registers are live. */
201
202typedef struct stack_def
203{
204 int top; /* index to top stack element */
205 HARD_REG_SET reg_set; /* set of live registers */
206 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
207} *stack_ptr;
208
209/* This is used to carry information about basic blocks. It is
210 attached to the AUX field of the standard CFG block. */
211
212typedef struct block_info_def
213{
214 struct stack_def stack_in; /* Input stack configuration. */
215 struct stack_def stack_out; /* Output stack configuration. */
216 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
217 bool done; /* True if block already converted. */
218 int predecessors; /* Number of predecessors that need
219 to be visited. */
220} *block_info;
221
222#define BLOCK_INFO(B) ((block_info) (B)->aux)
223
224/* Passed to change_stack to indicate where to emit insns. */
225enum emit_where
226{
227 EMIT_AFTER,
228 EMIT_BEFORE
229};
230
231/* The block we're currently working on. */
232static basic_block current_block;
233
234/* In the current_block, whether we're processing the first register
235 stack or call instruction, i.e. the regstack is currently the
236 same as BLOCK_INFO(current_block)->stack_in. */
237static bool starting_stack_p;
238
239/* This is the register file for all register after conversion. */
240static rtx
241 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
242
243#define FP_MODE_REG(regno,mode) \
244 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
245
246/* Used to initialize uninitialized registers. */
247static rtx not_a_num;
248
249/* Forward declarations */
250
251static bool stack_regs_mentioned_p (const_rtx pat);
252static void pop_stack (stack_ptr, int);
253static rtx *get_true_reg (rtx *);
254
255static bool check_asm_stack_operands (rtx_insn *);
256static void get_asm_operands_in_out (rtx, int *, int *);
257static rtx stack_result (tree);
258static void replace_reg (rtx *, int);
259static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
260static int get_hard_regnum (stack_ptr, rtx);
261static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
262static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
263static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
264static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
265static bool swap_rtx_condition_1 (rtx);
266static bool swap_rtx_condition (rtx_insn *, int &);
267static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx, bool);
268static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
269static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
270static bool subst_stack_regs (rtx_insn *, stack_ptr);
271static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
272static void print_stack (FILE *, stack_ptr);
273static rtx_insn *next_flags_user (rtx_insn *, int &);
274
275/* Return true if any stack register is mentioned somewhere within PAT. */
276
277static bool
278stack_regs_mentioned_p (const_rtx pat)
279{
280 const char *fmt;
281 int i;
282
283 if (STACK_REG_P (pat))
284 return true;
285
286 fmt = GET_RTX_FORMAT (GET_CODE (pat));
287 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
288 {
289 if (fmt[i] == 'E')
290 {
291 int j;
292
293 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
294 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
295 return true;
296 }
297 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
298 return true;
299 }
300
301 return false;
302}
303
304/* Return true if INSN mentions stacked registers, else return zero. */
305
306bool
307stack_regs_mentioned (const_rtx insn)
308{
309 unsigned int uid, max;
310 int test;
311
312 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
313 return false;
314
315 uid = INSN_UID (insn);
316 max = stack_regs_mentioned_data.length ();
317 if (uid >= max)
318 {
319 /* Allocate some extra size to avoid too many reallocs, but
320 do not grow too quickly. */
321 max = uid + uid / 20 + 1;
322 stack_regs_mentioned_data.safe_grow_cleared (len: max, exact: true);
323 }
324
325 test = stack_regs_mentioned_data[uid];
326 if (test == 0)
327 {
328 /* This insn has yet to be examined. Do so now. */
329 test = stack_regs_mentioned_p (pat: PATTERN (insn)) ? 1 : 2;
330 stack_regs_mentioned_data[uid] = test;
331 }
332
333 return test == 1;
334}
335
336static rtx ix86_flags_rtx;
337
338static rtx_insn *
339next_flags_user (rtx_insn *insn, int &debug_seen)
340{
341 /* Search forward looking for the first use of this value.
342 Stop at block boundaries. */
343
344 while (insn != BB_END (current_block))
345 {
346 insn = NEXT_INSN (insn);
347
348 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
349 {
350 if (DEBUG_INSN_P (insn) && debug_seen >= 0)
351 {
352 debug_seen = 1;
353 continue;
354 }
355 return insn;
356 }
357
358 if (CALL_P (insn))
359 return NULL;
360 }
361 return NULL;
362}
363
364/* Reorganize the stack into ascending numbers, before this insn. */
365
366static void
367straighten_stack (rtx_insn *insn, stack_ptr regstack)
368{
369 struct stack_def temp_stack;
370 int top;
371
372 /* If there is only a single register on the stack, then the stack is
373 already in increasing order and no reorganization is needed.
374
375 Similarly if the stack is empty. */
376 if (regstack->top <= 0)
377 return;
378
379 temp_stack.reg_set = regstack->reg_set;
380
381 for (top = temp_stack.top = regstack->top; top >= 0; top--)
382 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
383
384 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
385}
386
387/* Pop a register from the stack. */
388
389static void
390pop_stack (stack_ptr regstack, int regno)
391{
392 int top = regstack->top;
393
394 CLEAR_HARD_REG_BIT (set&: regstack->reg_set, bit: regno);
395 regstack->top--;
396 /* If regno was not at the top of stack then adjust stack. */
397 if (regstack->reg [top] != regno)
398 {
399 int i;
400 for (i = regstack->top; i >= 0; i--)
401 if (regstack->reg [i] == regno)
402 {
403 int j;
404 for (j = i; j < top; j++)
405 regstack->reg [j] = regstack->reg [j + 1];
406 break;
407 }
408 }
409}
410
411/* Return a pointer to the REG expression within PAT. If PAT is not a
412 REG, possible enclosed by a conversion rtx, return the inner part of
413 PAT that stopped the search. */
414
415static rtx *
416get_true_reg (rtx *pat)
417{
418 for (;;)
419 switch (GET_CODE (*pat))
420 {
421 case SUBREG:
422 /* Eliminate FP subregister accesses in favor of the
423 actual FP register in use. */
424 {
425 rtx subreg = SUBREG_REG (*pat);
426
427 if (STACK_REG_P (subreg))
428 {
429 int regno_off = subreg_regno_offset (REGNO (subreg),
430 GET_MODE (subreg),
431 SUBREG_BYTE (*pat),
432 GET_MODE (*pat));
433 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
434 GET_MODE (subreg));
435 return pat;
436 }
437 pat = &XEXP (*pat, 0);
438 break;
439 }
440
441 case FLOAT_TRUNCATE:
442 if (!flag_unsafe_math_optimizations)
443 return pat;
444 /* FALLTHRU */
445
446 case FLOAT:
447 case FIX:
448 case FLOAT_EXTEND:
449 pat = &XEXP (*pat, 0);
450 break;
451
452 case UNSPEC:
453 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
454 || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
455 pat = &XVECEXP (*pat, 0, 0);
456 return pat;
457
458 default:
459 return pat;
460 }
461}
462
463/* Set if we find any malformed asms in a function. */
464static bool any_malformed_asm;
465
466/* There are many rules that an asm statement for stack-like regs must
467 follow. Those rules are explained at the top of this file: the rule
468 numbers below refer to that explanation. */
469
470static bool
471check_asm_stack_operands (rtx_insn *insn)
472{
473 int i;
474 int n_clobbers;
475 bool malformed_asm = false;
476 rtx body = PATTERN (insn);
477
478 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
479 char implicitly_dies[FIRST_PSEUDO_REGISTER];
480 char explicitly_used[FIRST_PSEUDO_REGISTER];
481
482 rtx *clobber_reg = 0;
483 int n_inputs, n_outputs;
484
485 /* Find out what the constraints require. If no constraint
486 alternative matches, this asm is malformed. */
487 extract_constrain_insn (insn);
488
489 preprocess_constraints (insn);
490
491 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
492
493 if (which_alternative < 0)
494 {
495 /* Avoid further trouble with this insn. */
496 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
497 return 0;
498 }
499 const operand_alternative *op_alt = which_op_alt ();
500
501 /* Strip SUBREGs here to make the following code simpler. */
502 for (i = 0; i < recog_data.n_operands; i++)
503 if (GET_CODE (recog_data.operand[i]) == SUBREG
504 && REG_P (SUBREG_REG (recog_data.operand[i])))
505 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
506
507 /* Set up CLOBBER_REG. */
508
509 n_clobbers = 0;
510
511 if (GET_CODE (body) == PARALLEL)
512 {
513 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
514
515 for (i = 0; i < XVECLEN (body, 0); i++)
516 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
517 {
518 rtx clobber = XVECEXP (body, 0, i);
519 rtx reg = XEXP (clobber, 0);
520
521 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
522 reg = SUBREG_REG (reg);
523
524 if (STACK_REG_P (reg))
525 {
526 clobber_reg[n_clobbers] = reg;
527 n_clobbers++;
528 }
529 }
530 }
531
532 /* Enforce rule #4: Output operands must specifically indicate which
533 reg an output appears in after an asm. "=f" is not allowed: the
534 operand constraints must select a class with a single reg.
535
536 Also enforce rule #5: Output operands must start at the top of
537 the reg-stack: output operands may not "skip" a reg. */
538
539 memset (s: reg_used_as_output, c: 0, n: sizeof (reg_used_as_output));
540 for (i = 0; i < n_outputs; i++)
541 if (STACK_REG_P (recog_data.operand[i]))
542 {
543 if (reg_class_size[(int) op_alt[i].cl] != 1)
544 {
545 error_for_asm (insn, "output constraint %d must specify a single register", i);
546 malformed_asm = true;
547 }
548 else
549 {
550 int j;
551
552 for (j = 0; j < n_clobbers; j++)
553 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
554 {
555 error_for_asm (insn, "output constraint %d cannot be "
556 "specified together with %qs clobber",
557 i, reg_names [REGNO (clobber_reg[j])]);
558 malformed_asm = true;
559 break;
560 }
561 if (j == n_clobbers)
562 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
563 }
564 }
565
566
567 /* Search for first non-popped reg. */
568 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
569 if (! reg_used_as_output[i])
570 break;
571
572 /* If there are any other popped regs, that's an error. */
573 for (; i < LAST_STACK_REG + 1; i++)
574 if (reg_used_as_output[i])
575 break;
576
577 if (i != LAST_STACK_REG + 1)
578 {
579 error_for_asm (insn, "output registers must be grouped at top of stack");
580 malformed_asm = true;
581 }
582
583 /* Enforce rule #2: All implicitly popped input regs must be closer
584 to the top of the reg-stack than any input that is not implicitly
585 popped. */
586
587 memset (s: implicitly_dies, c: 0, n: sizeof (implicitly_dies));
588 memset (s: explicitly_used, c: 0, n: sizeof (explicitly_used));
589 for (i = n_outputs; i < n_outputs + n_inputs; i++)
590 if (STACK_REG_P (recog_data.operand[i]))
591 {
592 /* An input reg is implicitly popped if it is tied to an
593 output, or if there is a CLOBBER for it. */
594 int j;
595
596 for (j = 0; j < n_clobbers; j++)
597 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
598 break;
599
600 if (j < n_clobbers || op_alt[i].matches >= 0)
601 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
602 else if (reg_class_size[(int) op_alt[i].cl] == 1)
603 explicitly_used[REGNO (recog_data.operand[i])] = 1;
604 }
605
606 /* Search for first non-popped reg. */
607 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
608 if (! implicitly_dies[i])
609 break;
610
611 /* If there are any other popped regs, that's an error. */
612 for (; i < LAST_STACK_REG + 1; i++)
613 if (implicitly_dies[i])
614 break;
615
616 if (i != LAST_STACK_REG + 1)
617 {
618 error_for_asm (insn,
619 "implicitly popped registers must be grouped "
620 "at top of stack");
621 malformed_asm = true;
622 }
623
624 /* Search for first not-explicitly used reg. */
625 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
626 if (! implicitly_dies[i] && ! explicitly_used[i])
627 break;
628
629 /* If there are any other explicitly used regs, that's an error. */
630 for (; i < LAST_STACK_REG + 1; i++)
631 if (explicitly_used[i])
632 break;
633
634 if (i != LAST_STACK_REG + 1)
635 {
636 error_for_asm (insn,
637 "explicitly used registers must be grouped "
638 "at top of stack");
639 malformed_asm = true;
640 }
641
642 /* Enforce rule #3: If any input operand uses the "f" constraint, all
643 output constraints must use the "&" earlyclobber.
644
645 ??? Detect this more deterministically by having constrain_asm_operands
646 record any earlyclobber. */
647
648 for (i = n_outputs; i < n_outputs + n_inputs; i++)
649 if (STACK_REG_P (recog_data.operand[i]) && op_alt[i].matches == -1)
650 {
651 int j;
652
653 for (j = 0; j < n_outputs; j++)
654 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
655 {
656 error_for_asm (insn,
657 "output operand %d must use %<&%> constraint", j);
658 malformed_asm = true;
659 }
660 }
661
662 if (malformed_asm)
663 {
664 /* Avoid further trouble with this insn. */
665 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
666 any_malformed_asm = true;
667 return false;
668 }
669
670 return true;
671}
672
673/* Calculate the number of inputs and outputs in BODY, an
674 asm_operands. N_OPERANDS is the total number of operands, and
675 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
676 placed. */
677
678static void
679get_asm_operands_in_out (rtx body, int *pout, int *pin)
680{
681 rtx asmop = extract_asm_operands (body);
682
683 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
684 *pout = (recog_data.n_operands
685 - ASM_OPERANDS_INPUT_LENGTH (asmop)
686 - ASM_OPERANDS_LABEL_LENGTH (asmop));
687}
688
689/* If current function returns its result in an fp stack register,
690 return the REG. Otherwise, return 0. */
691
692static rtx
693stack_result (tree decl)
694{
695 rtx result;
696
697 /* If the value is supposed to be returned in memory, then clearly
698 it is not returned in a stack register. */
699 if (aggregate_value_p (DECL_RESULT (decl), decl))
700 return 0;
701
702 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
703 if (result != 0)
704 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
705 decl, true);
706
707 return result != 0 && STACK_REG_P (result) ? result : 0;
708}
709
710
711/*
712 * This section deals with stack register substitution, and forms the second
713 * pass over the RTL.
714 */
715
716/* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
717 the desired hard REGNO. */
718
719static void
720replace_reg (rtx *reg, int regno)
721{
722 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
723 gcc_assert (STACK_REG_P (*reg));
724
725 gcc_assert (GET_MODE_CLASS (GET_MODE (*reg)) == MODE_FLOAT
726 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
727
728 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
729}
730
731/* Remove a note of type NOTE, which must be found, for register
732 number REGNO from INSN. Remove only one such note. */
733
734static void
735remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
736{
737 rtx *note_link, this_rtx;
738
739 note_link = &REG_NOTES (insn);
740 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
741 if (REG_NOTE_KIND (this_rtx) == note
742 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
743 {
744 *note_link = XEXP (this_rtx, 1);
745 return;
746 }
747 else
748 note_link = &XEXP (this_rtx, 1);
749
750 gcc_unreachable ();
751}
752
753/* Find the hard register number of virtual register REG in REGSTACK.
754 The hard register number is relative to the top of the stack. -1 is
755 returned if the register is not found. */
756
757static int
758get_hard_regnum (stack_ptr regstack, rtx reg)
759{
760 int i;
761
762 gcc_assert (STACK_REG_P (reg));
763
764 for (i = regstack->top; i >= 0; i--)
765 if (regstack->reg[i] == REGNO (reg))
766 break;
767
768 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
769}
770
771/* Emit an insn to pop virtual register REG before or after INSN.
772 REGSTACK is the stack state after INSN and is updated to reflect this
773 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
774 is represented as a SET whose destination is the register to be popped
775 and source is the top of stack. A death note for the top of stack
776 cases the movdf pattern to pop. */
777
778static rtx_insn *
779emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg,
780 enum emit_where where)
781{
782 machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
783 rtx_insn *pop_insn;
784 rtx pop_rtx;
785 int hard_regno;
786
787 /* For complex types take care to pop both halves. These may survive in
788 CLOBBER and USE expressions. */
789 if (COMPLEX_MODE_P (GET_MODE (reg)))
790 {
791 rtx reg1 = FP_MODE_REG (REGNO (reg), raw_mode);
792 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, raw_mode);
793
794 pop_insn = NULL;
795 if (get_hard_regnum (regstack, reg: reg1) >= 0)
796 pop_insn = emit_pop_insn (insn, regstack, reg: reg1, where);
797 if (get_hard_regnum (regstack, reg: reg2) >= 0)
798 pop_insn = emit_pop_insn (insn, regstack, reg: reg2, where);
799 gcc_assert (pop_insn);
800 return pop_insn;
801 }
802
803 hard_regno = get_hard_regnum (regstack, reg);
804
805 gcc_assert (hard_regno >= FIRST_STACK_REG);
806
807 pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, raw_mode),
808 FP_MODE_REG (FIRST_STACK_REG, raw_mode));
809
810 if (where == EMIT_AFTER)
811 pop_insn = emit_insn_after (pop_rtx, insn);
812 else
813 pop_insn = emit_insn_before (pop_rtx, insn);
814
815 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, raw_mode));
816
817 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
818 = regstack->reg[regstack->top];
819 regstack->top -= 1;
820 CLEAR_HARD_REG_BIT (set&: regstack->reg_set, REGNO (reg));
821
822 return pop_insn;
823}
824
825/* Emit an insn before or after INSN to swap virtual register REG with
826 the top of stack. REGSTACK is the stack state before the swap, and
827 is updated to reflect the swap. A swap insn is represented as a
828 PARALLEL of two patterns: each pattern moves one reg to the other.
829
830 If REG is already at the top of the stack, no insn is emitted. */
831
832static void
833emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
834{
835 int hard_regno;
836 int other_reg; /* swap regno temps */
837 rtx_insn *i1; /* the stack-reg insn prior to INSN */
838 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
839
840 hard_regno = get_hard_regnum (regstack, reg);
841
842 if (hard_regno == FIRST_STACK_REG)
843 return;
844 if (hard_regno == -1)
845 {
846 /* Something failed if the register wasn't on the stack. If we had
847 malformed asms, we zapped the instruction itself, but that didn't
848 produce the same pattern of register sets as before. To prevent
849 further failure, adjust REGSTACK to include REG at TOP. */
850 gcc_assert (any_malformed_asm);
851 regstack->reg[++regstack->top] = REGNO (reg);
852 return;
853 }
854 gcc_assert (hard_regno >= FIRST_STACK_REG);
855
856 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
857 std::swap (a&: regstack->reg[regstack->top], b&: regstack->reg[other_reg]);
858
859 /* Find the previous insn involving stack regs, but don't pass a
860 block boundary. */
861 i1 = NULL;
862 if (current_block && insn != BB_HEAD (current_block))
863 {
864 rtx_insn *tmp = PREV_INSN (insn);
865 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
866 while (tmp != limit)
867 {
868 if (LABEL_P (tmp)
869 || CALL_P (tmp)
870 || NOTE_INSN_BASIC_BLOCK_P (tmp)
871 || (NONJUMP_INSN_P (tmp)
872 && stack_regs_mentioned (insn: tmp)))
873 {
874 i1 = tmp;
875 break;
876 }
877 tmp = PREV_INSN (insn: tmp);
878 }
879 }
880
881 if (i1 != NULL_RTX
882 && (i1set = single_set (insn: i1)) != NULL_RTX)
883 {
884 rtx i1src = *get_true_reg (pat: &SET_SRC (i1set));
885 rtx i1dest = *get_true_reg (pat: &SET_DEST (i1set));
886
887 /* If the previous register stack push was from the reg we are to
888 swap with, omit the swap. */
889
890 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
891 && REG_P (i1src)
892 && REGNO (i1src) == (unsigned) hard_regno - 1
893 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
894 return;
895
896 /* If the previous insn wrote to the reg we are to swap with,
897 omit the swap. */
898
899 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
900 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
901 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
902 return;
903
904 /* Instead of
905 fld a
906 fld b
907 fxch %st(1)
908 just use
909 fld b
910 fld a
911 if possible. Similarly for fld1, fldz, fldpi etc. instead of any
912 of the loads or for float extension from memory. */
913
914 i1src = SET_SRC (i1set);
915 if (GET_CODE (i1src) == FLOAT_EXTEND)
916 i1src = XEXP (i1src, 0);
917 if (REG_P (i1dest)
918 && REGNO (i1dest) == FIRST_STACK_REG
919 && (MEM_P (i1src) || GET_CODE (i1src) == CONST_DOUBLE)
920 && !side_effects_p (i1src)
921 && hard_regno == FIRST_STACK_REG + 1
922 && i1 != BB_HEAD (current_block))
923 {
924 /* i1 is the last insn that involves stack regs before insn, and
925 is known to be a load without other side-effects, i.e. fld b
926 in the above comment. */
927 rtx_insn *i2 = NULL;
928 rtx i2set;
929 rtx_insn *tmp = PREV_INSN (insn: i1);
930 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
931 /* Find the previous insn involving stack regs, but don't pass a
932 block boundary. */
933 while (tmp != limit)
934 {
935 if (LABEL_P (tmp)
936 || CALL_P (tmp)
937 || NOTE_INSN_BASIC_BLOCK_P (tmp)
938 || (NONJUMP_INSN_P (tmp)
939 && stack_regs_mentioned (insn: tmp)))
940 {
941 i2 = tmp;
942 break;
943 }
944 tmp = PREV_INSN (insn: tmp);
945 }
946 if (i2 != NULL_RTX
947 && (i2set = single_set (insn: i2)) != NULL_RTX)
948 {
949 rtx i2dest = *get_true_reg (pat: &SET_DEST (i2set));
950 rtx i2src = SET_SRC (i2set);
951 if (GET_CODE (i2src) == FLOAT_EXTEND)
952 i2src = XEXP (i2src, 0);
953 /* If the last two insns before insn that involve
954 stack regs are loads, where the latter (i1)
955 pushes onto the register stack and thus
956 moves the value from the first load (i2) from
957 %st to %st(1), consider swapping them. */
958 if (REG_P (i2dest)
959 && REGNO (i2dest) == FIRST_STACK_REG
960 && (MEM_P (i2src) || GET_CODE (i2src) == CONST_DOUBLE)
961 /* Ensure i2 doesn't have other side-effects. */
962 && !side_effects_p (i2src)
963 /* And that the two instructions can actually be
964 swapped, i.e. there shouldn't be any stores
965 in between i2 and i1 that might alias with
966 the i1 memory, and the memory address can't
967 use registers set in between i2 and i1. */
968 && !modified_between_p (SET_SRC (i1set), i2, i1))
969 {
970 /* Move i1 (fld b above) right before i2 (fld a
971 above. */
972 remove_insn (i1);
973 SET_PREV_INSN (i1) = NULL_RTX;
974 SET_NEXT_INSN (i1) = NULL_RTX;
975 set_block_for_insn (insn: i1, NULL);
976 emit_insn_before (i1, i2);
977 return;
978 }
979 }
980 }
981 }
982
983 /* Avoid emitting the swap if this is the first register stack insn
984 of the current_block. Instead update the current_block's stack_in
985 and let compensate edges take care of this for us. */
986 if (current_block && starting_stack_p)
987 {
988 BLOCK_INFO (current_block)->stack_in = *regstack;
989 starting_stack_p = false;
990 return;
991 }
992
993 machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
994 rtx op1 = FP_MODE_REG (hard_regno, raw_mode);
995 rtx op2 = FP_MODE_REG (FIRST_STACK_REG, raw_mode);
996 rtx swap_rtx
997 = gen_rtx_PARALLEL (VOIDmode,
998 gen_rtvec (2, gen_rtx_SET (op1, op2),
999 gen_rtx_SET (op2, op1)));
1000 if (i1)
1001 emit_insn_after (swap_rtx, i1);
1002 else if (current_block)
1003 emit_insn_before (swap_rtx, BB_HEAD (current_block));
1004 else
1005 emit_insn_before (swap_rtx, insn);
1006}
1007
1008/* Emit an insns before INSN to swap virtual register SRC1 with
1009 the top of stack and virtual register SRC2 with second stack
1010 slot. REGSTACK is the stack state before the swaps, and
1011 is updated to reflect the swaps. A swap insn is represented as a
1012 PARALLEL of two patterns: each pattern moves one reg to the other.
1013
1014 If SRC1 and/or SRC2 are already at the right place, no swap insn
1015 is emitted. */
1016
1017static void
1018swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
1019{
1020 struct stack_def temp_stack;
1021 int regno, j, k;
1022
1023 temp_stack = *regstack;
1024
1025 /* Place operand 1 at the top of stack. */
1026 regno = get_hard_regnum (regstack: &temp_stack, reg: src1);
1027 gcc_assert (regno >= 0);
1028 if (regno != FIRST_STACK_REG)
1029 {
1030 k = temp_stack.top - (regno - FIRST_STACK_REG);
1031 j = temp_stack.top;
1032
1033 std::swap (a&: temp_stack.reg[j], b&: temp_stack.reg[k]);
1034 }
1035
1036 /* Place operand 2 next on the stack. */
1037 regno = get_hard_regnum (regstack: &temp_stack, reg: src2);
1038 gcc_assert (regno >= 0);
1039 if (regno != FIRST_STACK_REG + 1)
1040 {
1041 k = temp_stack.top - (regno - FIRST_STACK_REG);
1042 j = temp_stack.top - 1;
1043
1044 std::swap (a&: temp_stack.reg[j], b&: temp_stack.reg[k]);
1045 }
1046
1047 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1048}
1049
1050/* Handle a move to or from a stack register in PAT, which is in INSN.
1051 REGSTACK is the current stack. Return whether a control flow insn
1052 was deleted in the process. */
1053
1054static bool
1055move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
1056{
1057 rtx *psrc = get_true_reg (pat: &SET_SRC (pat));
1058 rtx *pdest = get_true_reg (pat: &SET_DEST (pat));
1059 rtx src, dest;
1060 rtx note;
1061 bool control_flow_insn_deleted = false;
1062
1063 src = *psrc; dest = *pdest;
1064
1065 if (STACK_REG_P (src) && STACK_REG_P (dest))
1066 {
1067 /* Write from one stack reg to another. If SRC dies here, then
1068 just change the register mapping and delete the insn. */
1069
1070 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1071 if (note)
1072 {
1073 int i;
1074
1075 /* If this is a no-op move, there must not be a REG_DEAD note. */
1076 gcc_assert (REGNO (src) != REGNO (dest));
1077
1078 for (i = regstack->top; i >= 0; i--)
1079 if (regstack->reg[i] == REGNO (src))
1080 break;
1081
1082 /* The destination must be dead, or life analysis is borked. */
1083 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG
1084 || any_malformed_asm);
1085
1086 /* If the source is not live, this is yet another case of
1087 uninitialized variables. Load up a NaN instead. */
1088 if (i < 0)
1089 return move_nan_for_stack_reg (insn, regstack, dest);
1090
1091 /* It is possible that the dest is unused after this insn.
1092 If so, just pop the src. */
1093
1094 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1095 emit_pop_insn (insn, regstack, reg: src, where: EMIT_AFTER);
1096 else
1097 {
1098 regstack->reg[i] = REGNO (dest);
1099 SET_HARD_REG_BIT (set&: regstack->reg_set, REGNO (dest));
1100 CLEAR_HARD_REG_BIT (set&: regstack->reg_set, REGNO (src));
1101 }
1102
1103 if (control_flow_insn_p (insn))
1104 control_flow_insn_deleted = true;
1105 delete_insn (insn);
1106 return control_flow_insn_deleted;
1107 }
1108
1109 /* The source reg does not die. */
1110
1111 /* If this appears to be a no-op move, delete it, or else it
1112 will confuse the machine description output patterns. But if
1113 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1114 for REG_UNUSED will not work for deleted insns. */
1115
1116 if (REGNO (src) == REGNO (dest))
1117 {
1118 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1119 emit_pop_insn (insn, regstack, reg: dest, where: EMIT_AFTER);
1120
1121 if (control_flow_insn_p (insn))
1122 control_flow_insn_deleted = true;
1123 delete_insn (insn);
1124 return control_flow_insn_deleted;
1125 }
1126
1127 /* The destination ought to be dead. */
1128 if (get_hard_regnum (regstack, reg: dest) >= FIRST_STACK_REG)
1129 gcc_assert (any_malformed_asm);
1130 else
1131 {
1132 replace_reg (reg: psrc, regno: get_hard_regnum (regstack, reg: src));
1133
1134 regstack->reg[++regstack->top] = REGNO (dest);
1135 SET_HARD_REG_BIT (set&: regstack->reg_set, REGNO (dest));
1136 replace_reg (reg: pdest, FIRST_STACK_REG);
1137 }
1138 }
1139 else if (STACK_REG_P (src))
1140 {
1141 /* Save from a stack reg to MEM, or possibly integer reg. Since
1142 only top of stack may be saved, emit an exchange first if
1143 needs be. */
1144
1145 emit_swap_insn (insn, regstack, reg: src);
1146
1147 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1148 if (note)
1149 {
1150 replace_reg (reg: &XEXP (note, 0), FIRST_STACK_REG);
1151 regstack->top--;
1152 CLEAR_HARD_REG_BIT (set&: regstack->reg_set, REGNO (src));
1153 }
1154 else if ((GET_MODE (src) == XFmode)
1155 && regstack->top < REG_STACK_SIZE - 1)
1156 {
1157 /* A 387 cannot write an XFmode value to a MEM without
1158 clobbering the source reg. The output code can handle
1159 this by reading back the value from the MEM.
1160 But it is more efficient to use a temp register if one is
1161 available. Push the source value here if the register
1162 stack is not full, and then write the value to memory via
1163 a pop. */
1164 rtx push_rtx;
1165 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1166
1167 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1168 emit_insn_before (push_rtx, insn);
1169 add_reg_note (insn, REG_DEAD, top_stack_reg);
1170 }
1171
1172 replace_reg (reg: psrc, FIRST_STACK_REG);
1173 }
1174 else
1175 {
1176 rtx pat = PATTERN (insn);
1177
1178 gcc_assert (STACK_REG_P (dest));
1179
1180 /* Load from MEM, or possibly integer REG or constant, into the
1181 stack regs. The actual target is always the top of the
1182 stack. The stack mapping is changed to reflect that DEST is
1183 now at top of stack. */
1184
1185 /* The destination ought to be dead. However, there is a
1186 special case with i387 UNSPEC_TAN, where destination is live
1187 (an argument to fptan) but inherent load of 1.0 is modelled
1188 as a load from a constant. */
1189 if (GET_CODE (pat) == PARALLEL
1190 && XVECLEN (pat, 0) == 2
1191 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1192 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1193 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1194 emit_swap_insn (insn, regstack, reg: dest);
1195 else
1196 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG
1197 || any_malformed_asm);
1198
1199 gcc_assert (regstack->top < REG_STACK_SIZE);
1200
1201 regstack->reg[++regstack->top] = REGNO (dest);
1202 SET_HARD_REG_BIT (set&: regstack->reg_set, REGNO (dest));
1203 replace_reg (reg: pdest, FIRST_STACK_REG);
1204 }
1205
1206 return control_flow_insn_deleted;
1207}
1208
1209/* A helper function which replaces INSN with a pattern that loads up
1210 a NaN into DEST, then invokes move_for_stack_reg. */
1211
1212static bool
1213move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1214{
1215 rtx pat;
1216
1217 dest = FP_MODE_REG (REGNO (dest), SFmode);
1218 pat = gen_rtx_SET (dest, not_a_num);
1219 PATTERN (insn) = pat;
1220 INSN_CODE (insn) = -1;
1221
1222 return move_for_stack_reg (insn, regstack, pat);
1223}
1224
1225/* Swap the condition on a branch, if there is one. Return true if we
1226 found a condition to swap. False if the condition was not used as
1227 such. */
1228
1229static bool
1230swap_rtx_condition_1 (rtx pat)
1231{
1232 const char *fmt;
1233 bool r = false;
1234 int i;
1235
1236 if (COMPARISON_P (pat))
1237 {
1238 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1239 r = true;
1240 }
1241 else
1242 {
1243 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1244 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1245 {
1246 if (fmt[i] == 'E')
1247 {
1248 int j;
1249
1250 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1251 if (swap_rtx_condition_1 (XVECEXP (pat, i, j)))
1252 r = true;
1253 }
1254 else if (fmt[i] == 'e' && swap_rtx_condition_1 (XEXP (pat, i)))
1255 r = true;
1256 }
1257 }
1258
1259 return r;
1260}
1261
1262/* This function swaps condition in cc users and returns true
1263 if successful. It is invoked in 2 different modes, one with
1264 DEBUG_SEEN set initially to 0. In this mode, next_flags_user
1265 will skip DEBUG_INSNs that it would otherwise return and just
1266 sets DEBUG_SEEN to 1 in that case. If DEBUG_SEEN is 0 at
1267 the end of toplevel swap_rtx_condition which returns true,
1268 it means no problematic DEBUG_INSNs were seen and all changes
1269 have been applied. If it returns true but DEBUG_SEEN is 1,
1270 it means some problematic DEBUG_INSNs were seen and no changes
1271 have been applied so far. In that case one needs to call
1272 swap_rtx_condition again with DEBUG_SEEN set to -1, in which
1273 case it doesn't skip DEBUG_INSNs, but instead adjusts the
1274 flags related condition in them or resets them as needed. */
1275
1276static bool
1277swap_rtx_condition (rtx_insn *insn, int &debug_seen)
1278{
1279 rtx pat = PATTERN (insn);
1280
1281 /* We're looking for a single set to an HImode temporary. */
1282
1283 if (GET_CODE (pat) == SET
1284 && REG_P (SET_DEST (pat))
1285 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1286 {
1287 insn = next_flags_user (insn, debug_seen);
1288 if (insn == NULL_RTX)
1289 return false;
1290 pat = PATTERN (insn);
1291 }
1292
1293 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1294 with the cc value right now. We may be able to search for one
1295 though. */
1296
1297 if (GET_CODE (pat) == SET
1298 && GET_CODE (SET_SRC (pat)) == UNSPEC
1299 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1300 {
1301 rtx dest = SET_DEST (pat);
1302
1303 /* Search forward looking for the first use of this value.
1304 Stop at block boundaries. */
1305 while (insn != BB_END (current_block))
1306 {
1307 insn = NEXT_INSN (insn);
1308 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1309 {
1310 if (DEBUG_INSN_P (insn))
1311 {
1312 if (debug_seen >= 0)
1313 debug_seen = 1;
1314 else
1315 /* Reset the DEBUG insn otherwise. */
1316 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1317 continue;
1318 }
1319 break;
1320 }
1321 if (CALL_P (insn))
1322 return false;
1323 }
1324
1325 /* We haven't found it. */
1326 if (insn == BB_END (current_block))
1327 return false;
1328
1329 /* So we've found the insn using this value. If it is anything
1330 other than sahf or the value does not die (meaning we'd have
1331 to search further), then we must give up. */
1332 pat = PATTERN (insn);
1333 if (GET_CODE (pat) != SET
1334 || GET_CODE (SET_SRC (pat)) != UNSPEC
1335 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1336 || ! dead_or_set_p (insn, dest))
1337 return false;
1338
1339 /* Now we are prepared to handle this. */
1340 insn = next_flags_user (insn, debug_seen);
1341 if (insn == NULL_RTX)
1342 return false;
1343 pat = PATTERN (insn);
1344 }
1345
1346 if (swap_rtx_condition_1 (pat))
1347 {
1348 bool fail = false;
1349 if (DEBUG_INSN_P (insn))
1350 gcc_assert (debug_seen < 0);
1351 else
1352 {
1353 INSN_CODE (insn) = -1;
1354 if (recog_memoized (insn) == -1)
1355 fail = true;
1356 }
1357 /* In case the flags don't die here, recurse to try fix
1358 following user too. */
1359 if (!fail && !dead_or_set_p (insn, ix86_flags_rtx))
1360 {
1361 insn = next_flags_user (insn, debug_seen);
1362 if (!insn || !swap_rtx_condition (insn, debug_seen))
1363 fail = true;
1364 }
1365 if (fail || debug_seen == 1)
1366 swap_rtx_condition_1 (pat);
1367 return !fail;
1368 }
1369 return false;
1370}
1371
1372/* Handle a comparison. Special care needs to be taken to avoid
1373 causing comparisons that a 387 cannot do correctly, such as EQ.
1374
1375 Also, a pop insn may need to be emitted. The 387 does have an
1376 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1377 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1378 set up. */
1379
1380static void
1381compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack,
1382 rtx pat_src, bool can_pop_second_op)
1383{
1384 rtx *src1, *src2;
1385 rtx src1_note, src2_note;
1386 int debug_seen = 0;
1387
1388 src1 = get_true_reg (pat: &XEXP (pat_src, 0));
1389 src2 = get_true_reg (pat: &XEXP (pat_src, 1));
1390
1391 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1392 registers that die in this insn - move those to stack top first. */
1393 if ((! STACK_REG_P (*src1)
1394 || (STACK_REG_P (*src2)
1395 && get_hard_regnum (regstack, reg: *src2) == FIRST_STACK_REG))
1396 && swap_rtx_condition (insn, debug_seen))
1397 {
1398 /* If swap_rtx_condition succeeded but some debug insns
1399 were seen along the way, it has actually reverted all the
1400 changes. Rerun swap_rtx_condition in a mode where DEBUG_ISNSs
1401 will be adjusted as well. */
1402 if (debug_seen)
1403 {
1404 debug_seen = -1;
1405 swap_rtx_condition (insn, debug_seen);
1406 }
1407 std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
1408
1409 src1 = get_true_reg (pat: &XEXP (pat_src, 0));
1410 src2 = get_true_reg (pat: &XEXP (pat_src, 1));
1411
1412 INSN_CODE (insn) = -1;
1413 }
1414
1415 /* We will fix any death note later. */
1416
1417 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1418
1419 if (STACK_REG_P (*src2))
1420 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1421 else
1422 src2_note = NULL_RTX;
1423
1424 emit_swap_insn (insn, regstack, reg: *src1);
1425
1426 replace_reg (reg: src1, FIRST_STACK_REG);
1427
1428 if (STACK_REG_P (*src2))
1429 replace_reg (reg: src2, regno: get_hard_regnum (regstack, reg: *src2));
1430
1431 if (src1_note)
1432 {
1433 if (*src2 == CONST0_RTX (GET_MODE (*src2)))
1434 {
1435 /* This is `ftst' insn that can't pop register. */
1436 remove_regno_note (insn, note: REG_DEAD, REGNO (XEXP (src1_note, 0)));
1437 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1438 where: EMIT_AFTER);
1439 }
1440 else
1441 {
1442 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1443 replace_reg (reg: &XEXP (src1_note, 0), FIRST_STACK_REG);
1444 }
1445 }
1446
1447 /* If the second operand dies, handle that. But if the operands are
1448 the same stack register, don't bother, because only one death is
1449 needed, and it was just handled. */
1450
1451 if (src2_note
1452 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1453 && REGNO (*src1) == REGNO (*src2)))
1454 {
1455 /* As a special case, two regs may die in this insn if src2 is
1456 next to top of stack and the top of stack also dies. Since
1457 we have already popped src1, "next to top of stack" is really
1458 at top (FIRST_STACK_REG) now. */
1459
1460 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1461 && src1_note && can_pop_second_op)
1462 {
1463 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1464 replace_reg (reg: &XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1465 }
1466 else
1467 {
1468 /* The 386 can only represent death of the first operand in
1469 the case handled above. In all other cases, emit a separate
1470 pop and remove the death note from here. */
1471 remove_regno_note (insn, note: REG_DEAD, REGNO (XEXP (src2_note, 0)));
1472 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1473 where: EMIT_AFTER);
1474 }
1475 }
1476}
1477
1478/* Substitute hardware stack regs in debug insn INSN, using stack
1479 layout REGSTACK. If we can't find a hardware stack reg for any of
1480 the REGs in it, reset the debug insn. */
1481
1482static void
1483subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1484{
1485 subrtx_ptr_iterator::array_type array;
1486 FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1487 {
1488 rtx *loc = *iter;
1489 rtx x = *loc;
1490 if (STACK_REG_P (x))
1491 {
1492 int hard_regno = get_hard_regnum (regstack, reg: x);
1493
1494 /* If we can't find an active register, reset this debug insn. */
1495 if (hard_regno == -1)
1496 {
1497 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1498 return;
1499 }
1500
1501 gcc_assert (hard_regno >= FIRST_STACK_REG);
1502 replace_reg (reg: loc, regno: hard_regno);
1503 iter.skip_subrtxes ();
1504 }
1505 }
1506}
1507
1508/* Substitute new registers in PAT, which is part of INSN. REGSTACK
1509 is the current register layout. Return whether a control flow insn
1510 was deleted in the process. */
1511
1512static bool
1513subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1514{
1515 rtx *dest, *src;
1516 bool control_flow_insn_deleted = false;
1517
1518 switch (GET_CODE (pat))
1519 {
1520 case USE:
1521 /* Deaths in USE insns can happen in non optimizing compilation.
1522 Handle them by popping the dying register. */
1523 src = get_true_reg (pat: &XEXP (pat, 0));
1524 if (STACK_REG_P (*src)
1525 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1526 {
1527 /* USEs are ignored for liveness information so USEs of dead
1528 register might happen. */
1529 if (TEST_HARD_REG_BIT (set: regstack->reg_set, REGNO (*src)))
1530 emit_pop_insn (insn, regstack, reg: *src, where: EMIT_AFTER);
1531 return control_flow_insn_deleted;
1532 }
1533 /* Uninitialized USE might happen for functions returning uninitialized
1534 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1535 so it is safe to ignore the use here. This is consistent with behavior
1536 of dataflow analyzer that ignores USE too. (This also imply that
1537 forcibly initializing the register to NaN here would lead to ICE later,
1538 since the REG_DEAD notes are not issued.) */
1539 break;
1540
1541 case VAR_LOCATION:
1542 gcc_unreachable ();
1543
1544 case CLOBBER:
1545 {
1546 rtx note;
1547
1548 dest = get_true_reg (pat: &XEXP (pat, 0));
1549 if (STACK_REG_P (*dest))
1550 {
1551 note = find_reg_note (insn, REG_DEAD, *dest);
1552
1553 if (pat != PATTERN (insn))
1554 {
1555 /* The fix_truncdi_1 pattern wants to be able to
1556 allocate its own scratch register. It does this by
1557 clobbering an fp reg so that it is assured of an
1558 empty reg-stack register. If the register is live,
1559 kill it now. Remove the DEAD/UNUSED note so we
1560 don't try to kill it later too.
1561
1562 In reality the UNUSED note can be absent in some
1563 complicated cases when the register is reused for
1564 partially set variable. */
1565
1566 if (note)
1567 emit_pop_insn (insn, regstack, reg: *dest, where: EMIT_BEFORE);
1568 else
1569 note = find_reg_note (insn, REG_UNUSED, *dest);
1570 if (note)
1571 remove_note (insn, note);
1572 replace_reg (reg: dest, FIRST_STACK_REG + 1);
1573 }
1574 else
1575 {
1576 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1577 indicates an uninitialized value. Because reload removed
1578 all other clobbers, this must be due to a function
1579 returning without a value. Load up a NaN. */
1580
1581 if (!note)
1582 {
1583 rtx t = *dest;
1584 if (COMPLEX_MODE_P (GET_MODE (t)))
1585 {
1586 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1587 if (get_hard_regnum (regstack, reg: u) == -1)
1588 {
1589 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1590 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1591 if (move_nan_for_stack_reg (insn: insn2, regstack, dest: u))
1592 control_flow_insn_deleted = true;
1593 }
1594 }
1595 if (get_hard_regnum (regstack, reg: t) == -1
1596 && move_nan_for_stack_reg (insn, regstack, dest: t))
1597 control_flow_insn_deleted = true;
1598 }
1599 }
1600 }
1601 break;
1602 }
1603
1604 case SET:
1605 {
1606 rtx *src1 = (rtx *) 0, *src2;
1607 rtx src1_note, src2_note;
1608 rtx pat_src;
1609
1610 dest = get_true_reg (pat: &SET_DEST (pat));
1611 src = get_true_reg (pat: &SET_SRC (pat));
1612 pat_src = SET_SRC (pat);
1613
1614 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1615 if (STACK_REG_P (*src)
1616 || (STACK_REG_P (*dest)
1617 && (REG_P (*src) || MEM_P (*src)
1618 || CONST_DOUBLE_P (*src))))
1619 {
1620 if (move_for_stack_reg (insn, regstack, pat))
1621 control_flow_insn_deleted = true;
1622 break;
1623 }
1624
1625 switch (GET_CODE (pat_src))
1626 {
1627 case CALL:
1628 {
1629 int count;
1630 for (count = REG_NREGS (*dest); --count >= 0;)
1631 {
1632 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1633 SET_HARD_REG_BIT (set&: regstack->reg_set, REGNO (*dest) + count);
1634 }
1635 }
1636 replace_reg (reg: dest, FIRST_STACK_REG);
1637 break;
1638
1639 case REG:
1640 gcc_unreachable ();
1641
1642 /* Fall through. */
1643
1644 case FLOAT_TRUNCATE:
1645 case SQRT:
1646 case ABS:
1647 case NEG:
1648 /* These insns only operate on the top of the stack. It's
1649 possible that the tstM case results in a REG_DEAD note on the
1650 source. */
1651
1652 if (src1 == 0)
1653 src1 = get_true_reg (pat: &XEXP (pat_src, 0));
1654
1655 emit_swap_insn (insn, regstack, reg: *src1);
1656
1657 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1658
1659 if (STACK_REG_P (*dest))
1660 replace_reg (reg: dest, FIRST_STACK_REG);
1661
1662 if (src1_note)
1663 {
1664 replace_reg (reg: &XEXP (src1_note, 0), FIRST_STACK_REG);
1665 regstack->top--;
1666 CLEAR_HARD_REG_BIT (set&: regstack->reg_set, REGNO (*src1));
1667 }
1668
1669 replace_reg (reg: src1, FIRST_STACK_REG);
1670 break;
1671
1672 case MINUS:
1673 case DIV:
1674 /* On i386, reversed forms of subM3 and divM3 exist for
1675 MODE_FLOAT, so the same code that works for addM3 and mulM3
1676 can be used. */
1677 case MULT:
1678 case PLUS:
1679 /* These insns can accept the top of stack as a destination
1680 from a stack reg or mem, or can use the top of stack as a
1681 source and some other stack register (possibly top of stack)
1682 as a destination. */
1683
1684 src1 = get_true_reg (pat: &XEXP (pat_src, 0));
1685 src2 = get_true_reg (pat: &XEXP (pat_src, 1));
1686
1687 /* We will fix any death note later. */
1688
1689 if (STACK_REG_P (*src1))
1690 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1691 else
1692 src1_note = NULL_RTX;
1693 if (STACK_REG_P (*src2))
1694 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1695 else
1696 src2_note = NULL_RTX;
1697
1698 /* If either operand is not a stack register, then the dest
1699 must be top of stack. */
1700
1701 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1702 emit_swap_insn (insn, regstack, reg: *dest);
1703 else
1704 {
1705 /* Both operands are REG. If neither operand is already
1706 at the top of stack, choose to make the one that is the
1707 dest the new top of stack. */
1708
1709 int src1_hard_regnum, src2_hard_regnum;
1710
1711 src1_hard_regnum = get_hard_regnum (regstack, reg: *src1);
1712 src2_hard_regnum = get_hard_regnum (regstack, reg: *src2);
1713
1714 /* If the source is not live, this is yet another case of
1715 uninitialized variables. Load up a NaN instead. */
1716 if (src1_hard_regnum == -1)
1717 {
1718 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1719 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1720 if (move_nan_for_stack_reg (insn: insn2, regstack, dest: *src1))
1721 control_flow_insn_deleted = true;
1722 }
1723 if (src2_hard_regnum == -1)
1724 {
1725 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1726 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1727 if (move_nan_for_stack_reg (insn: insn2, regstack, dest: *src2))
1728 control_flow_insn_deleted = true;
1729 }
1730
1731 if (src1_hard_regnum != FIRST_STACK_REG
1732 && src2_hard_regnum != FIRST_STACK_REG)
1733 emit_swap_insn (insn, regstack, reg: *dest);
1734 }
1735
1736 if (STACK_REG_P (*src1))
1737 replace_reg (reg: src1, regno: get_hard_regnum (regstack, reg: *src1));
1738 if (STACK_REG_P (*src2))
1739 replace_reg (reg: src2, regno: get_hard_regnum (regstack, reg: *src2));
1740
1741 if (src1_note)
1742 {
1743 rtx src1_reg = XEXP (src1_note, 0);
1744
1745 /* If the register that dies is at the top of stack, then
1746 the destination is somewhere else - merely substitute it.
1747 But if the reg that dies is not at top of stack, then
1748 move the top of stack to the dead reg, as though we had
1749 done the insn and then a store-with-pop. */
1750
1751 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1752 {
1753 SET_HARD_REG_BIT (set&: regstack->reg_set, REGNO (*dest));
1754 replace_reg (reg: dest, regno: get_hard_regnum (regstack, reg: *dest));
1755 }
1756 else
1757 {
1758 int regno = get_hard_regnum (regstack, reg: src1_reg);
1759
1760 SET_HARD_REG_BIT (set&: regstack->reg_set, REGNO (*dest));
1761 replace_reg (reg: dest, regno);
1762
1763 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1764 = regstack->reg[regstack->top];
1765 }
1766
1767 CLEAR_HARD_REG_BIT (set&: regstack->reg_set,
1768 REGNO (XEXP (src1_note, 0)));
1769 replace_reg (reg: &XEXP (src1_note, 0), FIRST_STACK_REG);
1770 regstack->top--;
1771 }
1772 else if (src2_note)
1773 {
1774 rtx src2_reg = XEXP (src2_note, 0);
1775 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1776 {
1777 SET_HARD_REG_BIT (set&: regstack->reg_set, REGNO (*dest));
1778 replace_reg (reg: dest, regno: get_hard_regnum (regstack, reg: *dest));
1779 }
1780 else
1781 {
1782 int regno = get_hard_regnum (regstack, reg: src2_reg);
1783
1784 SET_HARD_REG_BIT (set&: regstack->reg_set, REGNO (*dest));
1785 replace_reg (reg: dest, regno);
1786
1787 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1788 = regstack->reg[regstack->top];
1789 }
1790
1791 CLEAR_HARD_REG_BIT (set&: regstack->reg_set,
1792 REGNO (XEXP (src2_note, 0)));
1793 replace_reg (reg: &XEXP (src2_note, 0), FIRST_STACK_REG);
1794 regstack->top--;
1795 }
1796 else
1797 {
1798 SET_HARD_REG_BIT (set&: regstack->reg_set, REGNO (*dest));
1799 replace_reg (reg: dest, regno: get_hard_regnum (regstack, reg: *dest));
1800 }
1801
1802 /* Keep operand 1 matching with destination. */
1803 if (COMMUTATIVE_ARITH_P (pat_src)
1804 && REG_P (*src1) && REG_P (*src2)
1805 && REGNO (*src1) != REGNO (*dest))
1806 {
1807 int tmp = REGNO (*src1);
1808 replace_reg (reg: src1, REGNO (*src2));
1809 replace_reg (reg: src2, regno: tmp);
1810 }
1811 break;
1812
1813 case UNSPEC:
1814 switch (XINT (pat_src, 1))
1815 {
1816 case UNSPEC_FIST:
1817 case UNSPEC_FIST_ATOMIC:
1818
1819 case UNSPEC_FIST_FLOOR:
1820 case UNSPEC_FIST_CEIL:
1821
1822 /* These insns only operate on the top of the stack. */
1823
1824 src1 = get_true_reg (pat: &XVECEXP (pat_src, 0, 0));
1825 emit_swap_insn (insn, regstack, reg: *src1);
1826
1827 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1828
1829 if (STACK_REG_P (*dest))
1830 replace_reg (reg: dest, FIRST_STACK_REG);
1831
1832 if (src1_note)
1833 {
1834 replace_reg (reg: &XEXP (src1_note, 0), FIRST_STACK_REG);
1835 regstack->top--;
1836 CLEAR_HARD_REG_BIT (set&: regstack->reg_set, REGNO (*src1));
1837 }
1838
1839 replace_reg (reg: src1, FIRST_STACK_REG);
1840 break;
1841
1842 case UNSPEC_FXAM:
1843
1844 /* This insn only operate on the top of the stack. */
1845
1846 src1 = get_true_reg (pat: &XVECEXP (pat_src, 0, 0));
1847 emit_swap_insn (insn, regstack, reg: *src1);
1848
1849 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1850
1851 replace_reg (reg: src1, FIRST_STACK_REG);
1852
1853 if (src1_note)
1854 {
1855 remove_regno_note (insn, note: REG_DEAD,
1856 REGNO (XEXP (src1_note, 0)));
1857 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1858 where: EMIT_AFTER);
1859 }
1860
1861 break;
1862
1863 case UNSPEC_SIN:
1864 case UNSPEC_COS:
1865 case UNSPEC_FRNDINT:
1866 case UNSPEC_F2XM1:
1867
1868 case UNSPEC_FRNDINT_ROUNDEVEN:
1869 case UNSPEC_FRNDINT_FLOOR:
1870 case UNSPEC_FRNDINT_CEIL:
1871 case UNSPEC_FRNDINT_TRUNC:
1872
1873 /* Above insns operate on the top of the stack. */
1874
1875 case UNSPEC_SINCOS_COS:
1876 case UNSPEC_XTRACT_FRACT:
1877
1878 /* Above insns operate on the top two stack slots,
1879 first part of one input, double output insn. */
1880
1881 src1 = get_true_reg (pat: &XVECEXP (pat_src, 0, 0));
1882
1883 emit_swap_insn (insn, regstack, reg: *src1);
1884
1885 /* Input should never die, it is replaced with output. */
1886 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1887 gcc_assert (!src1_note);
1888
1889 if (STACK_REG_P (*dest))
1890 replace_reg (reg: dest, FIRST_STACK_REG);
1891
1892 replace_reg (reg: src1, FIRST_STACK_REG);
1893 break;
1894
1895 case UNSPEC_SINCOS_SIN:
1896 case UNSPEC_XTRACT_EXP:
1897
1898 /* These insns operate on the top two stack slots,
1899 second part of one input, double output insn. */
1900
1901 regstack->top++;
1902 /* FALLTHRU */
1903
1904 case UNSPEC_TAN:
1905
1906 /* For UNSPEC_TAN, regstack->top is already increased
1907 by inherent load of constant 1.0. */
1908
1909 /* Output value is generated in the second stack slot.
1910 Move current value from second slot to the top. */
1911 regstack->reg[regstack->top]
1912 = regstack->reg[regstack->top - 1];
1913
1914 gcc_assert (STACK_REG_P (*dest));
1915
1916 regstack->reg[regstack->top - 1] = REGNO (*dest);
1917 SET_HARD_REG_BIT (set&: regstack->reg_set, REGNO (*dest));
1918 replace_reg (reg: dest, FIRST_STACK_REG + 1);
1919
1920 src1 = get_true_reg (pat: &XVECEXP (pat_src, 0, 0));
1921
1922 replace_reg (reg: src1, FIRST_STACK_REG);
1923 break;
1924
1925 case UNSPEC_FPATAN:
1926 case UNSPEC_FYL2X:
1927 case UNSPEC_FYL2XP1:
1928 /* These insns operate on the top two stack slots. */
1929
1930 src1 = get_true_reg (pat: &XVECEXP (pat_src, 0, 0));
1931 src2 = get_true_reg (pat: &XVECEXP (pat_src, 0, 1));
1932
1933 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1934 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1935
1936 swap_to_top (insn, regstack, src1: *src1, src2: *src2);
1937
1938 replace_reg (reg: src1, FIRST_STACK_REG);
1939 replace_reg (reg: src2, FIRST_STACK_REG + 1);
1940
1941 if (src1_note)
1942 replace_reg (reg: &XEXP (src1_note, 0), FIRST_STACK_REG);
1943 if (src2_note)
1944 replace_reg (reg: &XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1945
1946 /* Pop both input operands from the stack. */
1947 CLEAR_HARD_REG_BIT (set&: regstack->reg_set,
1948 bit: regstack->reg[regstack->top]);
1949 CLEAR_HARD_REG_BIT (set&: regstack->reg_set,
1950 bit: regstack->reg[regstack->top - 1]);
1951 regstack->top -= 2;
1952
1953 /* Push the result back onto the stack. */
1954 regstack->reg[++regstack->top] = REGNO (*dest);
1955 SET_HARD_REG_BIT (set&: regstack->reg_set, REGNO (*dest));
1956 replace_reg (reg: dest, FIRST_STACK_REG);
1957 break;
1958
1959 case UNSPEC_FSCALE_FRACT:
1960 case UNSPEC_FPREM_F:
1961 case UNSPEC_FPREM1_F:
1962 /* These insns operate on the top two stack slots,
1963 first part of double input, double output insn. */
1964
1965 src1 = get_true_reg (pat: &XVECEXP (pat_src, 0, 0));
1966 src2 = get_true_reg (pat: &XVECEXP (pat_src, 0, 1));
1967
1968 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1969 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1970
1971 /* Inputs should never die, they are
1972 replaced with outputs. */
1973 gcc_assert (!src1_note);
1974 gcc_assert (!src2_note);
1975
1976 swap_to_top (insn, regstack, src1: *src1, src2: *src2);
1977
1978 /* Push the result back onto stack. Empty stack slot
1979 will be filled in second part of insn. */
1980 if (STACK_REG_P (*dest))
1981 {
1982 regstack->reg[regstack->top] = REGNO (*dest);
1983 SET_HARD_REG_BIT (set&: regstack->reg_set, REGNO (*dest));
1984 replace_reg (reg: dest, FIRST_STACK_REG);
1985 }
1986
1987 replace_reg (reg: src1, FIRST_STACK_REG);
1988 replace_reg (reg: src2, FIRST_STACK_REG + 1);
1989 break;
1990
1991 case UNSPEC_FSCALE_EXP:
1992 case UNSPEC_FPREM_U:
1993 case UNSPEC_FPREM1_U:
1994 /* These insns operate on the top two stack slots,
1995 second part of double input, double output insn. */
1996
1997 src1 = get_true_reg (pat: &XVECEXP (pat_src, 0, 0));
1998 src2 = get_true_reg (pat: &XVECEXP (pat_src, 0, 1));
1999
2000 /* Push the result back onto stack. Fill empty slot from
2001 first part of insn and fix top of stack pointer. */
2002 if (STACK_REG_P (*dest))
2003 {
2004 regstack->reg[regstack->top - 1] = REGNO (*dest);
2005 SET_HARD_REG_BIT (set&: regstack->reg_set, REGNO (*dest));
2006 replace_reg (reg: dest, FIRST_STACK_REG + 1);
2007 }
2008
2009 replace_reg (reg: src1, FIRST_STACK_REG);
2010 replace_reg (reg: src2, FIRST_STACK_REG + 1);
2011 break;
2012
2013 case UNSPEC_C2_FLAG:
2014 /* This insn operates on the top two stack slots,
2015 third part of C2 setting double input insn. */
2016
2017 src1 = get_true_reg (pat: &XVECEXP (pat_src, 0, 0));
2018 src2 = get_true_reg (pat: &XVECEXP (pat_src, 0, 1));
2019
2020 replace_reg (reg: src1, FIRST_STACK_REG);
2021 replace_reg (reg: src2, FIRST_STACK_REG + 1);
2022 break;
2023
2024 case UNSPEC_FNSTSW:
2025 /* Combined fcomp+fnstsw generated for doing well with
2026 CSE. When optimizing this would have been broken
2027 up before now. */
2028
2029 pat_src = XVECEXP (pat_src, 0, 0);
2030 if (GET_CODE (pat_src) == COMPARE)
2031 goto do_compare;
2032
2033 /* Fall through. */
2034
2035 case UNSPEC_NOTRAP:
2036
2037 pat_src = XVECEXP (pat_src, 0, 0);
2038 gcc_assert (GET_CODE (pat_src) == COMPARE);
2039 goto do_compare;
2040
2041 default:
2042 gcc_unreachable ();
2043 }
2044 break;
2045
2046 case COMPARE:
2047 do_compare:
2048 /* `fcomi' insn can't pop two regs. */
2049 compare_for_stack_reg (insn, regstack, pat_src,
2050 REGNO (*dest) != FLAGS_REG);
2051 break;
2052
2053 case IF_THEN_ELSE:
2054 /* This insn requires the top of stack to be the destination. */
2055
2056 src1 = get_true_reg (pat: &XEXP (pat_src, 1));
2057 src2 = get_true_reg (pat: &XEXP (pat_src, 2));
2058
2059 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
2060 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
2061
2062 /* If the comparison operator is an FP comparison operator,
2063 it is handled correctly by compare_for_stack_reg () who
2064 will move the destination to the top of stack. But if the
2065 comparison operator is not an FP comparison operator, we
2066 have to handle it here. */
2067 if (get_hard_regnum (regstack, reg: *dest) >= FIRST_STACK_REG
2068 && REGNO (*dest) != regstack->reg[regstack->top])
2069 {
2070 /* In case one of operands is the top of stack and the operands
2071 dies, it is safe to make it the destination operand by
2072 reversing the direction of cmove and avoid fxch. */
2073 if ((REGNO (*src1) == regstack->reg[regstack->top]
2074 && src1_note)
2075 || (REGNO (*src2) == regstack->reg[regstack->top]
2076 && src2_note))
2077 {
2078 int idx1 = (get_hard_regnum (regstack, reg: *src1)
2079 - FIRST_STACK_REG);
2080 int idx2 = (get_hard_regnum (regstack, reg: *src2)
2081 - FIRST_STACK_REG);
2082
2083 /* Make reg-stack believe that the operands are already
2084 swapped on the stack */
2085 regstack->reg[regstack->top - idx1] = REGNO (*src2);
2086 regstack->reg[regstack->top - idx2] = REGNO (*src1);
2087
2088 /* Reverse condition to compensate the operand swap.
2089 i386 do have comparison always reversible. */
2090 PUT_CODE (XEXP (pat_src, 0),
2091 reversed_comparison_code (XEXP (pat_src, 0), insn));
2092 }
2093 else
2094 emit_swap_insn (insn, regstack, reg: *dest);
2095 }
2096
2097 {
2098 rtx src_note [3];
2099 int i;
2100
2101 src_note[0] = 0;
2102 src_note[1] = src1_note;
2103 src_note[2] = src2_note;
2104
2105 if (STACK_REG_P (*src1))
2106 replace_reg (reg: src1, regno: get_hard_regnum (regstack, reg: *src1));
2107 if (STACK_REG_P (*src2))
2108 replace_reg (reg: src2, regno: get_hard_regnum (regstack, reg: *src2));
2109
2110 for (i = 1; i <= 2; i++)
2111 if (src_note [i])
2112 {
2113 int regno = REGNO (XEXP (src_note[i], 0));
2114
2115 /* If the register that dies is not at the top of
2116 stack, then move the top of stack to the dead reg.
2117 Top of stack should never die, as it is the
2118 destination. */
2119 gcc_assert (regno != regstack->reg[regstack->top]);
2120 remove_regno_note (insn, note: REG_DEAD, regno);
2121 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
2122 where: EMIT_AFTER);
2123 }
2124 }
2125
2126 /* Make dest the top of stack. Add dest to regstack if
2127 not present. */
2128 if (get_hard_regnum (regstack, reg: *dest) < FIRST_STACK_REG)
2129 regstack->reg[++regstack->top] = REGNO (*dest);
2130 SET_HARD_REG_BIT (set&: regstack->reg_set, REGNO (*dest));
2131 replace_reg (reg: dest, FIRST_STACK_REG);
2132 break;
2133
2134 default:
2135 gcc_unreachable ();
2136 }
2137 break;
2138 }
2139
2140 default:
2141 break;
2142 }
2143
2144 return control_flow_insn_deleted;
2145}
2146
2147/* Substitute hard regnums for any stack regs in INSN, which has
2148 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2149 before the insn, and is updated with changes made here.
2150
2151 There are several requirements and assumptions about the use of
2152 stack-like regs in asm statements. These rules are enforced by
2153 record_asm_stack_regs; see comments there for details. Any
2154 asm_operands left in the RTL at this point may be assume to meet the
2155 requirements, since record_asm_stack_regs removes any problem asm. */
2156
2157static void
2158subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
2159{
2160 rtx body = PATTERN (insn);
2161
2162 rtx *note_reg; /* Array of note contents */
2163 rtx **note_loc; /* Address of REG field of each note */
2164 enum reg_note *note_kind; /* The type of each note */
2165
2166 rtx *clobber_reg = 0;
2167 rtx **clobber_loc = 0;
2168
2169 struct stack_def temp_stack;
2170 int n_notes;
2171 int n_clobbers;
2172 rtx note;
2173 int i;
2174 int n_inputs, n_outputs;
2175
2176 if (! check_asm_stack_operands (insn))
2177 return;
2178
2179 /* Find out what the constraints required. If no constraint
2180 alternative matches, that is a compiler bug: we should have caught
2181 such an insn in check_asm_stack_operands. */
2182 extract_constrain_insn (insn);
2183
2184 preprocess_constraints (insn);
2185 const operand_alternative *op_alt = which_op_alt ();
2186
2187 get_asm_operands_in_out (body, pout: &n_outputs, pin: &n_inputs);
2188
2189 /* Strip SUBREGs here to make the following code simpler. */
2190 for (i = 0; i < recog_data.n_operands; i++)
2191 if (GET_CODE (recog_data.operand[i]) == SUBREG
2192 && REG_P (SUBREG_REG (recog_data.operand[i])))
2193 {
2194 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2195 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2196 }
2197
2198 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2199
2200 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2201 i++;
2202
2203 note_reg = XALLOCAVEC (rtx, i);
2204 note_loc = XALLOCAVEC (rtx *, i);
2205 note_kind = XALLOCAVEC (enum reg_note, i);
2206
2207 n_notes = 0;
2208 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2209 {
2210 if (GET_CODE (note) != EXPR_LIST)
2211 continue;
2212 rtx reg = XEXP (note, 0);
2213 rtx *loc = & XEXP (note, 0);
2214
2215 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2216 {
2217 loc = & SUBREG_REG (reg);
2218 reg = SUBREG_REG (reg);
2219 }
2220
2221 if (STACK_REG_P (reg)
2222 && (REG_NOTE_KIND (note) == REG_DEAD
2223 || REG_NOTE_KIND (note) == REG_UNUSED))
2224 {
2225 note_reg[n_notes] = reg;
2226 note_loc[n_notes] = loc;
2227 note_kind[n_notes] = REG_NOTE_KIND (note);
2228 n_notes++;
2229 }
2230 }
2231
2232 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2233
2234 n_clobbers = 0;
2235
2236 if (GET_CODE (body) == PARALLEL)
2237 {
2238 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2239 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2240
2241 for (i = 0; i < XVECLEN (body, 0); i++)
2242 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2243 {
2244 rtx clobber = XVECEXP (body, 0, i);
2245 rtx reg = XEXP (clobber, 0);
2246 rtx *loc = & XEXP (clobber, 0);
2247
2248 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2249 {
2250 loc = & SUBREG_REG (reg);
2251 reg = SUBREG_REG (reg);
2252 }
2253
2254 if (STACK_REG_P (reg))
2255 {
2256 clobber_reg[n_clobbers] = reg;
2257 clobber_loc[n_clobbers] = loc;
2258 n_clobbers++;
2259 }
2260 }
2261 }
2262
2263 temp_stack = *regstack;
2264
2265 /* Put the input regs into the desired place in TEMP_STACK. */
2266
2267 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2268 if (STACK_REG_P (recog_data.operand[i])
2269 && reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2270 && op_alt[i].cl != FLOAT_REGS)
2271 {
2272 /* If an operand needs to be in a particular reg in
2273 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2274 these constraints are for single register classes, and
2275 reload guaranteed that operand[i] is already in that class,
2276 we can just use REGNO (recog_data.operand[i]) to know which
2277 actual reg this operand needs to be in. */
2278
2279 int regno = get_hard_regnum (regstack: &temp_stack, reg: recog_data.operand[i]);
2280
2281 gcc_assert (regno >= 0);
2282
2283 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2284 {
2285 /* recog_data.operand[i] is not in the right place. Find
2286 it and swap it with whatever is already in I's place.
2287 K is where recog_data.operand[i] is now. J is where it
2288 should be. */
2289 int j, k;
2290
2291 k = temp_stack.top - (regno - FIRST_STACK_REG);
2292 j = (temp_stack.top
2293 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2294
2295 std::swap (a&: temp_stack.reg[j], b&: temp_stack.reg[k]);
2296 }
2297 }
2298
2299 /* Emit insns before INSN to make sure the reg-stack is in the right
2300 order. */
2301
2302 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2303
2304 /* Make the needed input register substitutions. Do death notes and
2305 clobbers too, because these are for inputs, not outputs. */
2306
2307 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2308 if (STACK_REG_P (recog_data.operand[i]))
2309 {
2310 int regnum = get_hard_regnum (regstack, reg: recog_data.operand[i]);
2311
2312 gcc_assert (regnum >= 0);
2313
2314 replace_reg (reg: recog_data.operand_loc[i], regno: regnum);
2315 }
2316
2317 for (i = 0; i < n_notes; i++)
2318 if (note_kind[i] == REG_DEAD)
2319 {
2320 int regnum = get_hard_regnum (regstack, reg: note_reg[i]);
2321
2322 gcc_assert (regnum >= 0);
2323
2324 replace_reg (reg: note_loc[i], regno: regnum);
2325 }
2326
2327 for (i = 0; i < n_clobbers; i++)
2328 {
2329 /* It's OK for a CLOBBER to reference a reg that is not live.
2330 Don't try to replace it in that case. */
2331 int regnum = get_hard_regnum (regstack, reg: clobber_reg[i]);
2332
2333 if (regnum >= 0)
2334 replace_reg (reg: clobber_loc[i], regno: regnum);
2335 }
2336
2337 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2338
2339 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2340 if (STACK_REG_P (recog_data.operand[i]))
2341 {
2342 /* An input reg is implicitly popped if it is tied to an
2343 output, or if there is a CLOBBER for it. */
2344 int j;
2345
2346 for (j = 0; j < n_clobbers; j++)
2347 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2348 break;
2349
2350 if (j < n_clobbers || op_alt[i].matches >= 0)
2351 {
2352 /* recog_data.operand[i] might not be at the top of stack.
2353 But that's OK, because all we need to do is pop the
2354 right number of regs off of the top of the reg-stack.
2355 record_asm_stack_regs guaranteed that all implicitly
2356 popped regs were grouped at the top of the reg-stack. */
2357
2358 CLEAR_HARD_REG_BIT (set&: regstack->reg_set,
2359 bit: regstack->reg[regstack->top]);
2360 regstack->top--;
2361 }
2362 }
2363
2364 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2365 Note that there isn't any need to substitute register numbers.
2366 ??? Explain why this is true. */
2367
2368 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2369 {
2370 /* See if there is an output for this hard reg. */
2371 int j;
2372
2373 for (j = 0; j < n_outputs; j++)
2374 if (STACK_REG_P (recog_data.operand[j])
2375 && REGNO (recog_data.operand[j]) == (unsigned) i)
2376 {
2377 regstack->reg[++regstack->top] = i;
2378 SET_HARD_REG_BIT (set&: regstack->reg_set, bit: i);
2379 break;
2380 }
2381 }
2382
2383 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2384 input that the asm didn't implicitly pop. If the asm didn't
2385 implicitly pop an input reg, that reg will still be live.
2386
2387 Note that we can't use find_regno_note here: the register numbers
2388 in the death notes have already been substituted. */
2389
2390 for (i = 0; i < n_outputs; i++)
2391 if (STACK_REG_P (recog_data.operand[i]))
2392 {
2393 int j;
2394
2395 for (j = 0; j < n_notes; j++)
2396 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2397 && note_kind[j] == REG_UNUSED)
2398 {
2399 insn = emit_pop_insn (insn, regstack, reg: recog_data.operand[i],
2400 where: EMIT_AFTER);
2401 break;
2402 }
2403 }
2404
2405 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2406 if (STACK_REG_P (recog_data.operand[i]))
2407 {
2408 int j;
2409
2410 for (j = 0; j < n_notes; j++)
2411 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2412 && note_kind[j] == REG_DEAD
2413 && TEST_HARD_REG_BIT (set: regstack->reg_set,
2414 REGNO (recog_data.operand[i])))
2415 {
2416 insn = emit_pop_insn (insn, regstack, reg: recog_data.operand[i],
2417 where: EMIT_AFTER);
2418 break;
2419 }
2420 }
2421}
2422
2423/* Return true if a function call is allowed to alter some or all bits
2424 of any stack reg. */
2425static bool
2426callee_clobbers_any_stack_reg (const function_abi & callee_abi)
2427{
2428 for (unsigned regno = FIRST_STACK_REG; regno <= LAST_STACK_REG; regno++)
2429 if (callee_abi.clobbers_at_least_part_of_reg_p (regno))
2430 return true;
2431 return false;
2432}
2433
2434
2435/* Substitute stack hard reg numbers for stack virtual registers in
2436 INSN. Non-stack register numbers are not changed. REGSTACK is the
2437 current stack content. Insns may be emitted as needed to arrange the
2438 stack for the 387 based on the contents of the insn. Return whether
2439 a control flow insn was deleted in the process. */
2440
2441static bool
2442subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2443{
2444 rtx *note_link, note;
2445 bool control_flow_insn_deleted = false;
2446 int i;
2447
2448 /* If the target of the call doesn't clobber any stack registers,
2449 Don't clear the arguments. */
2450 if (CALL_P (insn)
2451 && callee_clobbers_any_stack_reg (callee_abi: insn_callee_abi (insn)))
2452 {
2453 int top = regstack->top;
2454
2455 /* If there are any floating point parameters to be passed in
2456 registers for this call, make sure they are in the right
2457 order. */
2458
2459 if (top >= 0)
2460 {
2461 straighten_stack (insn, regstack);
2462
2463 /* Now mark the arguments as dead after the call. */
2464
2465 while (regstack->top >= 0)
2466 {
2467 CLEAR_HARD_REG_BIT (set&: regstack->reg_set, FIRST_STACK_REG + regstack->top);
2468 regstack->top--;
2469 }
2470 }
2471 }
2472
2473 /* Do the actual substitution if any stack regs are mentioned.
2474 Since we only record whether entire insn mentions stack regs, and
2475 subst_stack_regs_pat only works for patterns that contain stack regs,
2476 we must check each pattern in a parallel here. A call_value_pop could
2477 fail otherwise. */
2478
2479 if (stack_regs_mentioned (insn))
2480 {
2481 int n_operands = asm_noperands (PATTERN (insn));
2482 if (n_operands >= 0)
2483 {
2484 /* This insn is an `asm' with operands. Decode the operands,
2485 decide how many are inputs, and do register substitution.
2486 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2487
2488 subst_asm_stack_regs (insn, regstack);
2489 return control_flow_insn_deleted;
2490 }
2491
2492 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2493 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2494 {
2495 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2496 {
2497 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2498 XVECEXP (PATTERN (insn), 0, i)
2499 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2500 if (subst_stack_regs_pat (insn, regstack,
2501 XVECEXP (PATTERN (insn), 0, i)))
2502 control_flow_insn_deleted = true;
2503 }
2504 }
2505 else if (subst_stack_regs_pat (insn, regstack, pat: PATTERN (insn)))
2506 control_flow_insn_deleted = true;
2507 }
2508
2509 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2510 REG_UNUSED will already have been dealt with, so just return. */
2511
2512 if (NOTE_P (insn) || insn->deleted ())
2513 return control_flow_insn_deleted;
2514
2515 /* If this a noreturn call, we can't insert pop insns after it.
2516 Instead, reset the stack state to empty. */
2517 if (CALL_P (insn)
2518 && find_reg_note (insn, REG_NORETURN, NULL))
2519 {
2520 regstack->top = -1;
2521 CLEAR_HARD_REG_SET (set&: regstack->reg_set);
2522 return control_flow_insn_deleted;
2523 }
2524
2525 /* If there is a REG_UNUSED note on a stack register on this insn,
2526 the indicated reg must be popped. The REG_UNUSED note is removed,
2527 since the form of the newly emitted pop insn references the reg,
2528 making it no longer `unset'. */
2529
2530 note_link = &REG_NOTES (insn);
2531 for (note = *note_link; note; note = XEXP (note, 1))
2532 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2533 {
2534 *note_link = XEXP (note, 1);
2535 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), where: EMIT_AFTER);
2536 }
2537 else
2538 note_link = &XEXP (note, 1);
2539
2540 return control_flow_insn_deleted;
2541}
2542
2543/* Change the organization of the stack so that it fits a new basic
2544 block. Some registers might have to be popped, but there can never be
2545 a register live in the new block that is not now live.
2546
2547 Insert any needed insns before or after INSN, as indicated by
2548 WHERE. OLD is the original stack layout, and NEW is the desired
2549 form. OLD is updated to reflect the code emitted, i.e., it will be
2550 the same as NEW upon return.
2551
2552 This function will not preserve block_end[]. But that information
2553 is no longer needed once this has executed. */
2554
2555static void
2556change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2557 enum emit_where where)
2558{
2559 int reg;
2560 machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
2561 rtx_insn *update_end = NULL;
2562 int i;
2563
2564 /* Stack adjustments for the first insn in a block update the
2565 current_block's stack_in instead of inserting insns directly.
2566 compensate_edges will add the necessary code later. */
2567 if (current_block
2568 && starting_stack_p
2569 && where == EMIT_BEFORE)
2570 {
2571 BLOCK_INFO (current_block)->stack_in = *new_stack;
2572 starting_stack_p = false;
2573 *old = *new_stack;
2574 return;
2575 }
2576
2577 /* We will be inserting new insns "backwards". If we are to insert
2578 after INSN, find the next insn, and insert before it. */
2579
2580 if (where == EMIT_AFTER)
2581 {
2582 if (current_block && BB_END (current_block) == insn)
2583 update_end = insn;
2584 insn = NEXT_INSN (insn);
2585 }
2586
2587 /* Initialize partially dead variables. */
2588 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2589 if (TEST_HARD_REG_BIT (set: new_stack->reg_set, bit: i)
2590 && !TEST_HARD_REG_BIT (set: old->reg_set, bit: i))
2591 {
2592 old->reg[++old->top] = i;
2593 SET_HARD_REG_BIT (set&: old->reg_set, bit: i);
2594 emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2595 insn);
2596 }
2597
2598 /* Pop any registers that are not needed in the new block. */
2599
2600 /* If the destination block's stack already has a specified layout
2601 and contains two or more registers, use a more intelligent algorithm
2602 to pop registers that minimizes the number of fxchs below. */
2603 if (new_stack->top > 0)
2604 {
2605 bool slots[REG_STACK_SIZE];
2606 int pops[REG_STACK_SIZE];
2607 int next, dest, topsrc;
2608
2609 /* First pass to determine the free slots. */
2610 for (reg = 0; reg <= new_stack->top; reg++)
2611 slots[reg] = TEST_HARD_REG_BIT (set: new_stack->reg_set, bit: old->reg[reg]);
2612
2613 /* Second pass to allocate preferred slots. */
2614 topsrc = -1;
2615 for (reg = old->top; reg > new_stack->top; reg--)
2616 if (TEST_HARD_REG_BIT (set: new_stack->reg_set, bit: old->reg[reg]))
2617 {
2618 dest = -1;
2619 for (next = 0; next <= new_stack->top; next++)
2620 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2621 {
2622 /* If this is a preference for the new top of stack, record
2623 the fact by remembering it's old->reg in topsrc. */
2624 if (next == new_stack->top)
2625 topsrc = reg;
2626 slots[next] = true;
2627 dest = next;
2628 break;
2629 }
2630 pops[reg] = dest;
2631 }
2632 else
2633 pops[reg] = reg;
2634
2635 /* Intentionally, avoid placing the top of stack in it's correct
2636 location, if we still need to permute the stack below and we
2637 can usefully place it somewhere else. This is the case if any
2638 slot is still unallocated, in which case we should place the
2639 top of stack there. */
2640 if (topsrc != -1)
2641 for (reg = 0; reg < new_stack->top; reg++)
2642 if (!slots[reg])
2643 {
2644 pops[topsrc] = reg;
2645 slots[new_stack->top] = false;
2646 slots[reg] = true;
2647 break;
2648 }
2649
2650 /* Third pass allocates remaining slots and emits pop insns. */
2651 next = new_stack->top;
2652 for (reg = old->top; reg > new_stack->top; reg--)
2653 {
2654 dest = pops[reg];
2655 if (dest == -1)
2656 {
2657 /* Find next free slot. */
2658 while (slots[next])
2659 next--;
2660 dest = next--;
2661 }
2662 emit_pop_insn (insn, regstack: old, FP_MODE_REG (old->reg[dest], raw_mode),
2663 where: EMIT_BEFORE);
2664 }
2665 }
2666 else
2667 {
2668 /* The following loop attempts to maximize the number of times we
2669 pop the top of the stack, as this permits the use of the faster
2670 ffreep instruction on platforms that support it. */
2671 int live, next;
2672
2673 live = 0;
2674 for (reg = 0; reg <= old->top; reg++)
2675 if (TEST_HARD_REG_BIT (set: new_stack->reg_set, bit: old->reg[reg]))
2676 live++;
2677
2678 next = live;
2679 while (old->top >= live)
2680 if (TEST_HARD_REG_BIT (set: new_stack->reg_set, bit: old->reg[old->top]))
2681 {
2682 while (TEST_HARD_REG_BIT (set: new_stack->reg_set, bit: old->reg[next]))
2683 next--;
2684 emit_pop_insn (insn, regstack: old, FP_MODE_REG (old->reg[next], raw_mode),
2685 where: EMIT_BEFORE);
2686 }
2687 else
2688 emit_pop_insn (insn, regstack: old, FP_MODE_REG (old->reg[old->top], raw_mode),
2689 where: EMIT_BEFORE);
2690 }
2691
2692 if (new_stack->top == -2)
2693 {
2694 /* If the new block has never been processed, then it can inherit
2695 the old stack order. */
2696
2697 new_stack->top = old->top;
2698 memcpy (dest: new_stack->reg, src: old->reg, n: sizeof (new_stack->reg));
2699 }
2700 else
2701 {
2702 /* This block has been entered before, and we must match the
2703 previously selected stack order. */
2704
2705 /* By now, the only difference should be the order of the stack,
2706 not their depth or liveliness. */
2707
2708 gcc_assert (old->reg_set == new_stack->reg_set);
2709 gcc_assert (old->top == new_stack->top);
2710
2711 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2712 swaps until the stack is correct.
2713
2714 The worst case number of swaps emitted is N + 2, where N is the
2715 depth of the stack. In some cases, the reg at the top of
2716 stack may be correct, but swapped anyway in order to fix
2717 other regs. But since we never swap any other reg away from
2718 its correct slot, this algorithm will converge. */
2719
2720 if (new_stack->top != -1)
2721 do
2722 {
2723 /* Swap the reg at top of stack into the position it is
2724 supposed to be in, until the correct top of stack appears. */
2725
2726 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2727 {
2728 for (reg = new_stack->top; reg >= 0; reg--)
2729 if (new_stack->reg[reg] == old->reg[old->top])
2730 break;
2731
2732 gcc_assert (reg != -1);
2733
2734 emit_swap_insn (insn, regstack: old,
2735 FP_MODE_REG (old->reg[reg], raw_mode));
2736 }
2737
2738 /* See if any regs remain incorrect. If so, bring an
2739 incorrect reg to the top of stack, and let the while loop
2740 above fix it. */
2741
2742 for (reg = new_stack->top; reg >= 0; reg--)
2743 if (new_stack->reg[reg] != old->reg[reg])
2744 {
2745 emit_swap_insn (insn, regstack: old,
2746 FP_MODE_REG (old->reg[reg], raw_mode));
2747 break;
2748 }
2749 } while (reg >= 0);
2750
2751 /* At this point there must be no differences. */
2752
2753 for (reg = old->top; reg >= 0; reg--)
2754 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2755 }
2756
2757 if (update_end)
2758 {
2759 for (update_end = NEXT_INSN (insn: update_end); update_end != insn;
2760 update_end = NEXT_INSN (insn: update_end))
2761 {
2762 set_block_for_insn (insn: update_end, bb: current_block);
2763 if (INSN_P (update_end))
2764 df_insn_rescan (update_end);
2765 }
2766 BB_END (current_block) = PREV_INSN (insn);
2767 }
2768}
2769
2770/* Print stack configuration. */
2771
2772static void
2773print_stack (FILE *file, stack_ptr s)
2774{
2775 if (! file)
2776 return;
2777
2778 if (s->top == -2)
2779 fprintf (stream: file, format: "uninitialized\n");
2780 else if (s->top == -1)
2781 fprintf (stream: file, format: "empty\n");
2782 else
2783 {
2784 int i;
2785 fputs (s: "[ ", stream: file);
2786 for (i = 0; i <= s->top; ++i)
2787 fprintf (stream: file, format: "%d ", s->reg[i]);
2788 fputs (s: "]\n", stream: file);
2789 }
2790}
2791
2792/* This function was doing life analysis. We now let the regular live
2793 code do it's job, so we only need to check some extra invariants
2794 that reg-stack expects. Primary among these being that all registers
2795 are initialized before use.
2796
2797 The function returns true when code was emitted to CFG edges and
2798 commit_edge_insertions needs to be called. */
2799
2800static bool
2801convert_regs_entry (void)
2802{
2803 bool inserted = false;
2804 edge e;
2805 edge_iterator ei;
2806
2807 /* Load something into each stack register live at function entry.
2808 Such live registers can be caused by uninitialized variables or
2809 functions not returning values on all paths. In order to keep
2810 the push/pop code happy, and to not scrog the register stack, we
2811 must put something in these registers. Use a QNaN.
2812
2813 Note that we are inserting converted code here. This code is
2814 never seen by the convert_regs pass. */
2815
2816 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2817 {
2818 basic_block block = e->dest;
2819 block_info bi = BLOCK_INFO (block);
2820 int reg, top = -1;
2821
2822 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2823 if (TEST_HARD_REG_BIT (set: bi->stack_in.reg_set, bit: reg))
2824 {
2825 rtx init;
2826
2827 bi->stack_in.reg[++top] = reg;
2828
2829 init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
2830 not_a_num);
2831 insert_insn_on_edge (init, e);
2832 inserted = true;
2833 }
2834
2835 bi->stack_in.top = top;
2836 }
2837
2838 return inserted;
2839}
2840
2841/* Construct the desired stack for function exit. This will either
2842 be `empty', or the function return value at top-of-stack. */
2843
2844static void
2845convert_regs_exit (void)
2846{
2847 int value_reg_low, value_reg_high;
2848 stack_ptr output_stack;
2849 rtx retvalue;
2850
2851 retvalue = stack_result (decl: current_function_decl);
2852 value_reg_low = value_reg_high = -1;
2853 if (retvalue)
2854 {
2855 value_reg_low = REGNO (retvalue);
2856 value_reg_high = END_REGNO (x: retvalue) - 1;
2857 }
2858
2859 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2860 if (value_reg_low == -1)
2861 output_stack->top = -1;
2862 else
2863 {
2864 int reg;
2865
2866 output_stack->top = value_reg_high - value_reg_low;
2867 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2868 {
2869 output_stack->reg[value_reg_high - reg] = reg;
2870 SET_HARD_REG_BIT (set&: output_stack->reg_set, bit: reg);
2871 }
2872 }
2873}
2874
2875/* Copy the stack info from the end of edge E's source block to the
2876 start of E's destination block. */
2877
2878static void
2879propagate_stack (edge e)
2880{
2881 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2882 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2883 int reg;
2884
2885 /* Preserve the order of the original stack, but check whether
2886 any pops are needed. */
2887 dest_stack->top = -1;
2888 for (reg = 0; reg <= src_stack->top; ++reg)
2889 if (TEST_HARD_REG_BIT (set: dest_stack->reg_set, bit: src_stack->reg[reg]))
2890 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2891
2892 /* Push in any partially dead values. */
2893 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2894 if (TEST_HARD_REG_BIT (set: dest_stack->reg_set, bit: reg)
2895 && !TEST_HARD_REG_BIT (set: src_stack->reg_set, bit: reg))
2896 dest_stack->reg[++dest_stack->top] = reg;
2897}
2898
2899
2900/* Adjust the stack of edge E's source block on exit to match the stack
2901 of it's target block upon input. The stack layouts of both blocks
2902 should have been defined by now. */
2903
2904static bool
2905compensate_edge (edge e)
2906{
2907 basic_block source = e->src, target = e->dest;
2908 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2909 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2910 struct stack_def regstack;
2911 int reg;
2912
2913 if (dump_file)
2914 fprintf (stream: dump_file, format: "Edge %d->%d: ", source->index, target->index);
2915
2916 gcc_assert (target_stack->top != -2);
2917
2918 /* Check whether stacks are identical. */
2919 if (target_stack->top == source_stack->top)
2920 {
2921 for (reg = target_stack->top; reg >= 0; --reg)
2922 if (target_stack->reg[reg] != source_stack->reg[reg])
2923 break;
2924
2925 if (reg == -1)
2926 {
2927 if (dump_file)
2928 fprintf (stream: dump_file, format: "no changes needed\n");
2929 return false;
2930 }
2931 }
2932
2933 if (dump_file)
2934 {
2935 fprintf (stream: dump_file, format: "correcting stack to ");
2936 print_stack (file: dump_file, s: target_stack);
2937 }
2938
2939 /* Abnormal calls may appear to have values live in st(0), but the
2940 abnormal return path will not have actually loaded the values. */
2941 if (e->flags & EDGE_ABNORMAL_CALL)
2942 {
2943 /* Assert that the lifetimes are as we expect -- one value
2944 live at st(0) on the end of the source block, and no
2945 values live at the beginning of the destination block.
2946 For complex return values, we may have st(1) live as well. */
2947 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2948 gcc_assert (target_stack->top == -1);
2949 return false;
2950 }
2951
2952 /* Handle non-call EH edges specially. The normal return path have
2953 values in registers. These will be popped en masse by the unwind
2954 library. */
2955 if (e->flags & EDGE_EH)
2956 {
2957 gcc_assert (target_stack->top == -1);
2958 return false;
2959 }
2960
2961 /* We don't support abnormal edges. Global takes care to
2962 avoid any live register across them, so we should never
2963 have to insert instructions on such edges. */
2964 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2965
2966 /* Make a copy of source_stack as change_stack is destructive. */
2967 regstack = *source_stack;
2968
2969 /* It is better to output directly to the end of the block
2970 instead of to the edge, because emit_swap can do minimal
2971 insn scheduling. We can do this when there is only one
2972 edge out, and it is not abnormal. */
2973 if (EDGE_COUNT (source->succs) == 1)
2974 {
2975 current_block = source;
2976 change_stack (BB_END (source), old: &regstack, new_stack: target_stack,
2977 where: (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2978 }
2979 else
2980 {
2981 rtx_insn *seq;
2982 rtx_note *after;
2983
2984 current_block = NULL;
2985 start_sequence ();
2986
2987 /* ??? change_stack needs some point to emit insns after. */
2988 after = emit_note (NOTE_INSN_DELETED);
2989
2990 change_stack (insn: after, old: &regstack, new_stack: target_stack, where: EMIT_BEFORE);
2991
2992 seq = get_insns ();
2993 end_sequence ();
2994
2995 set_insn_locations (seq, e->goto_locus);
2996 insert_insn_on_edge (seq, e);
2997 return true;
2998 }
2999 return false;
3000}
3001
3002/* Traverse all non-entry edges in the CFG, and emit the necessary
3003 edge compensation code to change the stack from stack_out of the
3004 source block to the stack_in of the destination block. */
3005
3006static bool
3007compensate_edges (void)
3008{
3009 bool inserted = false;
3010 basic_block bb;
3011
3012 starting_stack_p = false;
3013
3014 FOR_EACH_BB_FN (bb, cfun)
3015 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3016 {
3017 edge e;
3018 edge_iterator ei;
3019
3020 FOR_EACH_EDGE (e, ei, bb->succs)
3021 if (compensate_edge (e))
3022 inserted = true;
3023 }
3024 return inserted;
3025}
3026
3027/* Select the better of two edges E1 and E2 to use to determine the
3028 stack layout for their shared destination basic block. This is
3029 typically the more frequently executed. The edge E1 may be NULL
3030 (in which case E2 is returned), but E2 is always non-NULL. */
3031
3032static edge
3033better_edge (edge e1, edge e2)
3034{
3035 if (!e1)
3036 return e2;
3037
3038 if (e1->count () > e2->count ())
3039 return e1;
3040 if (e1->count () < e2->count ())
3041 return e2;
3042
3043 /* Prefer critical edges to minimize inserting compensation code on
3044 critical edges. */
3045
3046 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
3047 return EDGE_CRITICAL_P (e1) ? e1 : e2;
3048
3049 /* Avoid non-deterministic behavior. */
3050 return (e1->src->index < e2->src->index) ? e1 : e2;
3051}
3052
3053/* Convert stack register references in one block. Return true if the CFG
3054 has been modified in the process. */
3055
3056static bool
3057convert_regs_1 (basic_block block)
3058{
3059 struct stack_def regstack;
3060 block_info bi = BLOCK_INFO (block);
3061 int reg;
3062 rtx_insn *insn, *next;
3063 bool control_flow_insn_deleted = false;
3064 bool cfg_altered = false;
3065 int debug_insns_with_starting_stack = 0;
3066
3067 /* Choose an initial stack layout, if one hasn't already been chosen. */
3068 if (bi->stack_in.top == -2)
3069 {
3070 edge e, beste = NULL;
3071 edge_iterator ei;
3072
3073 /* Select the best incoming edge (typically the most frequent) to
3074 use as a template for this basic block. */
3075 FOR_EACH_EDGE (e, ei, block->preds)
3076 if (BLOCK_INFO (e->src)->done)
3077 beste = better_edge (e1: beste, e2: e);
3078
3079 if (beste)
3080 propagate_stack (e: beste);
3081 else
3082 {
3083 /* No predecessors. Create an arbitrary input stack. */
3084 bi->stack_in.top = -1;
3085 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
3086 if (TEST_HARD_REG_BIT (set: bi->stack_in.reg_set, bit: reg))
3087 bi->stack_in.reg[++bi->stack_in.top] = reg;
3088 }
3089 }
3090
3091 if (dump_file)
3092 {
3093 fprintf (stream: dump_file, format: "\nBasic block %d\nInput stack: ", block->index);
3094 print_stack (file: dump_file, s: &bi->stack_in);
3095 }
3096
3097 /* Process all insns in this block. Keep track of NEXT so that we
3098 don't process insns emitted while substituting in INSN. */
3099 current_block = block;
3100 next = BB_HEAD (block);
3101 regstack = bi->stack_in;
3102 starting_stack_p = true;
3103
3104 do
3105 {
3106 insn = next;
3107 next = NEXT_INSN (insn);
3108
3109 /* Ensure we have not missed a block boundary. */
3110 gcc_assert (next);
3111 if (insn == BB_END (block))
3112 next = NULL;
3113
3114 /* Don't bother processing unless there is a stack reg
3115 mentioned or if it's a CALL_INSN. */
3116 if (DEBUG_BIND_INSN_P (insn))
3117 {
3118 if (starting_stack_p)
3119 debug_insns_with_starting_stack++;
3120 else
3121 {
3122 subst_all_stack_regs_in_debug_insn (insn, regstack: &regstack);
3123
3124 /* Nothing must ever die at a debug insn. If something
3125 is referenced in it that becomes dead, it should have
3126 died before and the reference in the debug insn
3127 should have been removed so as to avoid changing code
3128 generation. */
3129 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
3130 }
3131 }
3132 else if (stack_regs_mentioned (insn)
3133 || CALL_P (insn))
3134 {
3135 if (dump_file)
3136 {
3137 fprintf (stream: dump_file, format: " insn %d input stack: ",
3138 INSN_UID (insn));
3139 print_stack (file: dump_file, s: &regstack);
3140 }
3141 if (subst_stack_regs (insn, regstack: &regstack))
3142 control_flow_insn_deleted = true;
3143 starting_stack_p = false;
3144 }
3145 }
3146 while (next);
3147
3148 if (debug_insns_with_starting_stack)
3149 {
3150 /* Since it's the first non-debug instruction that determines
3151 the stack requirements of the current basic block, we refrain
3152 from updating debug insns before it in the loop above, and
3153 fix them up here. */
3154 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
3155 insn = NEXT_INSN (insn))
3156 {
3157 if (!DEBUG_BIND_INSN_P (insn))
3158 continue;
3159
3160 debug_insns_with_starting_stack--;
3161 subst_all_stack_regs_in_debug_insn (insn, regstack: &bi->stack_in);
3162 }
3163 }
3164
3165 if (dump_file)
3166 {
3167 fprintf (stream: dump_file, format: "Expected live registers [");
3168 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3169 if (TEST_HARD_REG_BIT (set: bi->out_reg_set, bit: reg))
3170 fprintf (stream: dump_file, format: " %d", reg);
3171 fprintf (stream: dump_file, format: " ]\nOutput stack: ");
3172 print_stack (file: dump_file, s: &regstack);
3173 }
3174
3175 insn = BB_END (block);
3176 if (JUMP_P (insn))
3177 insn = PREV_INSN (insn);
3178
3179 /* If the function is declared to return a value, but it returns one
3180 in only some cases, some registers might come live here. Emit
3181 necessary moves for them. */
3182
3183 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3184 {
3185 if (TEST_HARD_REG_BIT (set: bi->out_reg_set, bit: reg)
3186 && ! TEST_HARD_REG_BIT (set: regstack.reg_set, bit: reg))
3187 {
3188 rtx set;
3189
3190 if (dump_file)
3191 fprintf (stream: dump_file, format: "Emitting insn initializing reg %d\n", reg);
3192
3193 set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
3194 insn = emit_insn_after (set, insn);
3195 if (subst_stack_regs (insn, regstack: &regstack))
3196 control_flow_insn_deleted = true;
3197 }
3198 }
3199
3200 /* Amongst the insns possibly deleted during the substitution process above,
3201 might have been the only trapping insn in the block. We purge the now
3202 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3203 called at the end of convert_regs. The order in which we process the
3204 blocks ensures that we never delete an already processed edge.
3205
3206 Note that, at this point, the CFG may have been damaged by the emission
3207 of instructions after an abnormal call, which moves the basic block end
3208 (and is the reason why we call fixup_abnormal_edges later). So we must
3209 be sure that the trapping insn has been deleted before trying to purge
3210 dead edges, otherwise we risk purging valid edges.
3211
3212 ??? We are normally supposed not to delete trapping insns, so we pretend
3213 that the insns deleted above don't actually trap. It would have been
3214 better to detect this earlier and avoid creating the EH edge in the first
3215 place, still, but we don't have enough information at that time. */
3216
3217 if (control_flow_insn_deleted && purge_dead_edges (block))
3218 cfg_altered = true;
3219
3220 /* Something failed if the stack lives don't match. If we had malformed
3221 asms, we zapped the instruction itself, but that didn't produce the
3222 same pattern of register kills as before. */
3223
3224 gcc_assert (regstack.reg_set == bi->out_reg_set || any_malformed_asm);
3225 bi->stack_out = regstack;
3226 bi->done = true;
3227
3228 return cfg_altered;
3229}
3230
3231/* Convert registers in all blocks reachable from BLOCK. Return true if the
3232 CFG has been modified in the process. */
3233
3234static bool
3235convert_regs_2 (basic_block block)
3236{
3237 basic_block *stack, *sp;
3238 bool cfg_altered = false;
3239
3240 /* We process the blocks in a top-down manner, in a way such that one block
3241 is only processed after all its predecessors. The number of predecessors
3242 of every block has already been computed. */
3243
3244 stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3245 sp = stack;
3246
3247 *sp++ = block;
3248
3249 do
3250 {
3251 edge e;
3252 edge_iterator ei;
3253
3254 block = *--sp;
3255
3256 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3257 some dead EH outgoing edge after the deletion of the trapping
3258 insn inside the block. Since the number of predecessors of
3259 BLOCK's successors was computed based on the initial edge set,
3260 we check the necessity to process some of these successors
3261 before such an edge deletion may happen. However, there is
3262 a pitfall: if BLOCK is the only predecessor of a successor and
3263 the edge between them happens to be deleted, the successor
3264 becomes unreachable and should not be processed. The problem
3265 is that there is no way to preventively detect this case so we
3266 stack the successor in all cases and hand over the task of
3267 fixing up the discrepancy to convert_regs_1. */
3268
3269 FOR_EACH_EDGE (e, ei, block->succs)
3270 if (! (e->flags & EDGE_DFS_BACK))
3271 {
3272 BLOCK_INFO (e->dest)->predecessors--;
3273 if (!BLOCK_INFO (e->dest)->predecessors)
3274 *sp++ = e->dest;
3275 }
3276
3277 if (convert_regs_1 (block))
3278 cfg_altered = true;
3279 }
3280 while (sp != stack);
3281
3282 free (ptr: stack);
3283
3284 return cfg_altered;
3285}
3286
3287/* Traverse all basic blocks in a function, converting the register
3288 references in each insn from the "flat" register file that gcc uses,
3289 to the stack-like registers the 387 uses. */
3290
3291static void
3292convert_regs (void)
3293{
3294 bool cfg_altered = false;
3295 bool inserted;
3296 basic_block b;
3297 edge e;
3298 edge_iterator ei;
3299
3300 /* Initialize uninitialized registers on function entry. */
3301 inserted = convert_regs_entry ();
3302
3303 /* Construct the desired stack for function exit. */
3304 convert_regs_exit ();
3305 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = true;
3306
3307 /* ??? Future: process inner loops first, and give them arbitrary
3308 initial stacks which emit_swap_insn can modify. This ought to
3309 prevent double fxch that often appears at the head of a loop. */
3310
3311 /* Process all blocks reachable from all entry points. */
3312 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3313 if (convert_regs_2 (block: e->dest))
3314 cfg_altered = true;
3315
3316 /* ??? Process all unreachable blocks. Though there's no excuse
3317 for keeping these even when not optimizing. */
3318 FOR_EACH_BB_FN (b, cfun)
3319 {
3320 block_info bi = BLOCK_INFO (b);
3321
3322 if (!bi->done && convert_regs_2 (block: b))
3323 cfg_altered = true;
3324 }
3325
3326 /* We must fix up abnormal edges before inserting compensation code
3327 because both mechanisms insert insns on edges. */
3328 if (fixup_abnormal_edges ())
3329 inserted = true;
3330
3331 if (compensate_edges ())
3332 inserted = true;
3333
3334 clear_aux_for_blocks ();
3335
3336 if (inserted)
3337 commit_edge_insertions ();
3338
3339 if (cfg_altered)
3340 cleanup_cfg (0);
3341
3342 if (dump_file)
3343 fputc (c: '\n', stream: dump_file);
3344}
3345
3346/* Convert register usage from "flat" register file usage to a "stack
3347 register file. FILE is the dump file, if used.
3348
3349 Construct a CFG and run life analysis. Then convert each insn one
3350 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3351 code duplication created when the converter inserts pop insns on
3352 the edges. */
3353
3354static bool
3355reg_to_stack (void)
3356{
3357 basic_block bb;
3358 int i;
3359 int max_uid;
3360
3361 /* Clean up previous run. */
3362 stack_regs_mentioned_data.release ();
3363
3364 /* See if there is something to do. Flow analysis is quite
3365 expensive so we might save some compilation time. */
3366 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3367 if (df_regs_ever_live_p (i))
3368 break;
3369 if (i > LAST_STACK_REG)
3370 return false;
3371
3372 df_note_add_problem ();
3373 df_analyze ();
3374
3375 mark_dfs_back_edges ();
3376
3377 /* Set up block info for each basic block. */
3378 alloc_aux_for_blocks (sizeof (struct block_info_def));
3379 FOR_EACH_BB_FN (bb, cfun)
3380 {
3381 block_info bi = BLOCK_INFO (bb);
3382 edge_iterator ei;
3383 edge e;
3384 int reg;
3385
3386 FOR_EACH_EDGE (e, ei, bb->preds)
3387 if (!(e->flags & EDGE_DFS_BACK)
3388 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3389 bi->predecessors++;
3390
3391 /* Set current register status at last instruction `uninitialized'. */
3392 bi->stack_in.top = -2;
3393
3394 /* Copy live_at_end and live_at_start into temporaries. */
3395 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3396 {
3397 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3398 SET_HARD_REG_BIT (set&: bi->out_reg_set, bit: reg);
3399 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3400 SET_HARD_REG_BIT (set&: bi->stack_in.reg_set, bit: reg);
3401 }
3402 }
3403
3404 /* Create the replacement registers up front. */
3405 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3406 {
3407 machine_mode mode;
3408 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
3409 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3410 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
3411 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3412 }
3413
3414 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3415
3416 /* A QNaN for initializing uninitialized variables.
3417
3418 ??? We can't load from constant memory in PIC mode, because
3419 we're inserting these instructions before the prologue and
3420 the PIC register hasn't been set up. In that case, fall back
3421 on zero, which we can get from `fldz'. */
3422
3423 if ((flag_pic && !TARGET_64BIT)
3424 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3425 not_a_num = CONST0_RTX (SFmode);
3426 else
3427 {
3428 REAL_VALUE_TYPE r;
3429
3430 real_nan (&r, "", 1, SFmode);
3431 not_a_num = const_double_from_real_value (r, SFmode);
3432 not_a_num = force_const_mem (SFmode, not_a_num);
3433 }
3434
3435 /* Allocate a cache for stack_regs_mentioned. */
3436 max_uid = get_max_uid ();
3437 stack_regs_mentioned_data.create (nelems: max_uid + 1);
3438 memset (s: stack_regs_mentioned_data.address (),
3439 c: 0, n: sizeof (char) * (max_uid + 1));
3440
3441 convert_regs ();
3442 any_malformed_asm = false;
3443
3444 free_aux_for_blocks ();
3445 return true;
3446}
3447#endif /* STACK_REGS */
3448
3449namespace {
3450
3451const pass_data pass_data_stack_regs =
3452{
3453 .type: RTL_PASS, /* type */
3454 .name: "*stack_regs", /* name */
3455 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3456 .tv_id: TV_REG_STACK, /* tv_id */
3457 .properties_required: 0, /* properties_required */
3458 .properties_provided: 0, /* properties_provided */
3459 .properties_destroyed: 0, /* properties_destroyed */
3460 .todo_flags_start: 0, /* todo_flags_start */
3461 .todo_flags_finish: 0, /* todo_flags_finish */
3462};
3463
3464class pass_stack_regs : public rtl_opt_pass
3465{
3466public:
3467 pass_stack_regs (gcc::context *ctxt)
3468 : rtl_opt_pass (pass_data_stack_regs, ctxt)
3469 {}
3470
3471 /* opt_pass methods: */
3472 bool gate (function *) final override
3473 {
3474#ifdef STACK_REGS
3475 return true;
3476#else
3477 return false;
3478#endif
3479 }
3480
3481}; // class pass_stack_regs
3482
3483} // anon namespace
3484
3485rtl_opt_pass *
3486make_pass_stack_regs (gcc::context *ctxt)
3487{
3488 return new pass_stack_regs (ctxt);
3489}
3490
3491/* Convert register usage from flat register file usage to a stack
3492 register file. */
3493static unsigned int
3494rest_of_handle_stack_regs (void)
3495{
3496#ifdef STACK_REGS
3497 if (reg_to_stack ())
3498 df_insn_rescan_all ();
3499 regstack_completed = 1;
3500#endif
3501 return 0;
3502}
3503
3504namespace {
3505
3506const pass_data pass_data_stack_regs_run =
3507{
3508 .type: RTL_PASS, /* type */
3509 .name: "stack", /* name */
3510 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3511 .tv_id: TV_REG_STACK, /* tv_id */
3512 .properties_required: 0, /* properties_required */
3513 .properties_provided: 0, /* properties_provided */
3514 .properties_destroyed: 0, /* properties_destroyed */
3515 .todo_flags_start: 0, /* todo_flags_start */
3516 TODO_df_finish, /* todo_flags_finish */
3517};
3518
3519class pass_stack_regs_run : public rtl_opt_pass
3520{
3521public:
3522 pass_stack_regs_run (gcc::context *ctxt)
3523 : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3524 {}
3525
3526 /* opt_pass methods: */
3527 unsigned int execute (function *) final override
3528 {
3529 return rest_of_handle_stack_regs ();
3530 }
3531
3532}; // class pass_stack_regs_run
3533
3534} // anon namespace
3535
3536rtl_opt_pass *
3537make_pass_stack_regs_run (gcc::context *ctxt)
3538{
3539 return new pass_stack_regs_run (ctxt);
3540}
3541

source code of gcc/reg-stack.cc