1/* Define per-register tables for data flow info and register allocation.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#ifndef GCC_REGS_H
21#define GCC_REGS_H
22
23#define REG_BYTES(R) mode_size[(int) GET_MODE (R)]
24
25/* When you only have the mode of a pseudo register before it has a hard
26 register chosen for it, this reports the size of each hard register
27 a pseudo in such a mode would get allocated to. A target may
28 override this. */
29
30#ifndef REGMODE_NATURAL_SIZE
31#define REGMODE_NATURAL_SIZE(MODE) UNITS_PER_WORD
32#endif
33
34/* Maximum register number used in this function, plus one. */
35
36extern int max_regno;
37
38/* REG_N_REFS and REG_N_SETS are initialized by a call to
39 regstat_init_n_sets_and_refs from the current values of
40 DF_REG_DEF_COUNT and DF_REG_USE_COUNT. REG_N_REFS and REG_N_SETS
41 should only be used if a pass need to change these values in some
42 magical way or the pass needs to have accurate values for these
43 and is not using incremental df scanning.
44
45 At the end of a pass that uses REG_N_REFS and REG_N_SETS, a call
46 should be made to regstat_free_n_sets_and_refs.
47
48 Local alloc seems to play pretty loose with these values.
49 REG_N_REFS is set to 0 if the register is used in an asm.
50 Furthermore, local_alloc calls regclass to hack both REG_N_REFS and
51 REG_N_SETS for three address insns. Other passes seem to have
52 other special values. */
53
54
55
56/* Structure to hold values for REG_N_SETS (i) and REG_N_REFS (i). */
57
58struct regstat_n_sets_and_refs_t
59{
60 int sets; /* # of times (REG n) is set */
61 int refs; /* # of times (REG n) is used or set */
62};
63
64extern struct regstat_n_sets_and_refs_t *regstat_n_sets_and_refs;
65
66/* Indexed by n, gives number of times (REG n) is used or set. */
67inline int
68REG_N_REFS (int regno)
69{
70 return regstat_n_sets_and_refs[regno].refs;
71}
72
73/* Indexed by n, gives number of times (REG n) is used or set. */
74#define SET_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs = V)
75#define INC_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs += V)
76
77/* Indexed by n, gives number of times (REG n) is set. */
78inline int
79REG_N_SETS (int regno)
80{
81 return regstat_n_sets_and_refs[regno].sets;
82}
83
84/* Indexed by n, gives number of times (REG n) is set. */
85#define SET_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets = V)
86#define INC_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets += V)
87
88/* Given a REG, return TRUE if the reg is a PARM_DECL, FALSE otherwise. */
89extern bool reg_is_parm_p (rtx);
90
91/* Functions defined in regstat.cc. */
92extern void regstat_init_n_sets_and_refs (void);
93extern void regstat_free_n_sets_and_refs (void);
94extern void regstat_compute_ri (void);
95extern void regstat_free_ri (void);
96extern bitmap regstat_get_setjmp_crosses (void);
97extern void regstat_compute_calls_crossed (void);
98extern void regstat_free_calls_crossed (void);
99extern void dump_reg_info (FILE *);
100
101/* Register information indexed by register number. This structure is
102 initialized by calling regstat_compute_ri and is destroyed by
103 calling regstat_free_ri. */
104struct reg_info_t
105{
106 int freq; /* # estimated frequency (REG n) is used or set */
107 int deaths; /* # of times (REG n) dies */
108 int calls_crossed; /* # of calls (REG n) is live across */
109 int basic_block; /* # of basic blocks (REG n) is used in */
110};
111
112extern struct reg_info_t *reg_info_p;
113
114/* The number allocated elements of reg_info_p. */
115extern size_t reg_info_p_size;
116
117/* Estimate frequency of references to register N. */
118
119#define REG_FREQ(N) (reg_info_p[N].freq)
120
121/* The weights for each insn varies from 0 to REG_FREQ_BASE.
122 This constant does not need to be high, as in infrequently executed
123 regions we want to count instructions equivalently to optimize for
124 size instead of speed. */
125#define REG_FREQ_MAX 1000
126
127/* Compute register frequency from the BB frequency. When optimizing for size,
128 or profile driven feedback is available and the function is never executed,
129 frequency is always equivalent. Otherwise rescale the basic block
130 frequency. */
131#define REG_FREQ_FROM_BB(bb) ((optimize_function_for_size_p (cfun) \
132 || !cfun->cfg->count_max.initialized_p ()) \
133 ? REG_FREQ_MAX \
134 : ((bb)->count.to_frequency (cfun) \
135 * REG_FREQ_MAX / BB_FREQ_MAX) \
136 ? ((bb)->count.to_frequency (cfun) \
137 * REG_FREQ_MAX / BB_FREQ_MAX) \
138 : 1)
139
140/* Indexed by N, gives number of insns in which register N dies.
141 Note that if register N is live around loops, it can die
142 in transitions between basic blocks, and that is not counted here.
143 So this is only a reliable indicator of how many regions of life there are
144 for registers that are contained in one basic block. */
145
146#define REG_N_DEATHS(N) (reg_info_p[N].deaths)
147
148/* Get the number of consecutive words required to hold pseudo-reg N. */
149
150#define PSEUDO_REGNO_SIZE(N) \
151 ((GET_MODE_SIZE (PSEUDO_REGNO_MODE (N)) + UNITS_PER_WORD - 1) \
152 / UNITS_PER_WORD)
153
154/* Get the number of bytes required to hold pseudo-reg N. */
155
156#define PSEUDO_REGNO_BYTES(N) \
157 GET_MODE_SIZE (PSEUDO_REGNO_MODE (N))
158
159/* Get the machine mode of pseudo-reg N. */
160
161#define PSEUDO_REGNO_MODE(N) GET_MODE (regno_reg_rtx[N])
162
163/* Indexed by N, gives number of CALL_INSNS across which (REG n) is live. */
164
165#define REG_N_CALLS_CROSSED(N) (reg_info_p[N].calls_crossed)
166
167/* Indexed by n, gives number of basic block that (REG n) is used in.
168 If the value is REG_BLOCK_GLOBAL (-1),
169 it means (REG n) is used in more than one basic block.
170 REG_BLOCK_UNKNOWN (0) means it hasn't been seen yet so we don't know.
171 This information remains valid for the rest of the compilation
172 of the current function; it is used to control register allocation. */
173
174#define REG_BLOCK_UNKNOWN 0
175#define REG_BLOCK_GLOBAL -1
176
177#define REG_BASIC_BLOCK(N) (reg_info_p[N].basic_block)
178
179/* Vector of substitutions of register numbers,
180 used to map pseudo regs into hardware regs.
181
182 This can't be folded into reg_n_info without changing all of the
183 machine dependent directories, since the reload functions
184 in the machine dependent files access it. */
185
186extern short *reg_renumber;
187
188/* Flag set by local-alloc or global-alloc if they decide to allocate
189 something in a call-clobbered register. */
190
191extern int caller_save_needed;
192
193/* Select a register mode required for caller save of hard regno REGNO. */
194#ifndef HARD_REGNO_CALLER_SAVE_MODE
195#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
196 choose_hard_reg_mode (REGNO, NREGS, NULL)
197#endif
198
199/* Target-dependent globals. */
200struct target_regs {
201 /* For each starting hard register, the number of consecutive hard
202 registers that a given machine mode occupies. */
203 unsigned char x_hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
204
205 /* The max value found in x_hard_regno_nregs. */
206 unsigned char x_hard_regno_max_nregs;
207
208 /* For each hard register, the widest mode object that it can contain.
209 This will be a MODE_INT mode if the register can hold integers. Otherwise
210 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
211 register. */
212 machine_mode x_reg_raw_mode[FIRST_PSEUDO_REGISTER];
213
214 /* Vector indexed by machine mode saying whether there are regs of
215 that mode. */
216 bool x_have_regs_of_mode[MAX_MACHINE_MODE];
217
218 /* 1 if the corresponding class contains a register of the given mode. */
219 char x_contains_reg_of_mode[N_REG_CLASSES][MAX_MACHINE_MODE];
220
221 /* 1 if the corresponding class contains a register of the given mode
222 which is not global and can therefore be allocated. */
223 char x_contains_allocatable_reg_of_mode[N_REG_CLASSES][MAX_MACHINE_MODE];
224
225 /* Record for each mode whether we can move a register directly to or
226 from an object of that mode in memory. If we can't, we won't try
227 to use that mode directly when accessing a field of that mode. */
228 char x_direct_load[NUM_MACHINE_MODES];
229 char x_direct_store[NUM_MACHINE_MODES];
230
231 /* Record for each mode whether we can float-extend from memory. */
232 bool x_float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
233};
234
235extern struct target_regs default_target_regs;
236#if SWITCHABLE_TARGET
237extern struct target_regs *this_target_regs;
238#else
239#define this_target_regs (&default_target_regs)
240#endif
241#define hard_regno_max_nregs \
242 (this_target_regs->x_hard_regno_max_nregs)
243#define reg_raw_mode \
244 (this_target_regs->x_reg_raw_mode)
245#define have_regs_of_mode \
246 (this_target_regs->x_have_regs_of_mode)
247#define contains_reg_of_mode \
248 (this_target_regs->x_contains_reg_of_mode)
249#define contains_allocatable_reg_of_mode \
250 (this_target_regs->x_contains_allocatable_reg_of_mode)
251#define direct_load \
252 (this_target_regs->x_direct_load)
253#define direct_store \
254 (this_target_regs->x_direct_store)
255#define float_extend_from_mem \
256 (this_target_regs->x_float_extend_from_mem)
257
258/* Return the number of hard registers in (reg:MODE REGNO). */
259
260ALWAYS_INLINE unsigned char
261hard_regno_nregs (unsigned int regno, machine_mode mode)
262{
263 return this_target_regs->x_hard_regno_nregs[regno][mode];
264}
265
266/* Return an exclusive upper bound on the registers occupied by hard
267 register (reg:MODE REGNO). */
268
269inline unsigned int
270end_hard_regno (machine_mode mode, unsigned int regno)
271{
272 return regno + hard_regno_nregs (regno, mode);
273}
274
275/* Add to REGS all the registers required to store a value of mode MODE
276 in register REGNO. */
277
278inline void
279add_to_hard_reg_set (HARD_REG_SET *regs, machine_mode mode,
280 unsigned int regno)
281{
282 unsigned int end_regno;
283
284 end_regno = end_hard_regno (mode, regno);
285 do
286 SET_HARD_REG_BIT (set&: *regs, bit: regno);
287 while (++regno < end_regno);
288}
289
290/* Likewise, but remove the registers. */
291
292inline void
293remove_from_hard_reg_set (HARD_REG_SET *regs, machine_mode mode,
294 unsigned int regno)
295{
296 unsigned int end_regno;
297
298 end_regno = end_hard_regno (mode, regno);
299 do
300 CLEAR_HARD_REG_BIT (set&: *regs, bit: regno);
301 while (++regno < end_regno);
302}
303
304/* Return true if REGS contains the whole of (reg:MODE REGNO). */
305
306inline bool
307in_hard_reg_set_p (const_hard_reg_set regs, machine_mode mode,
308 unsigned int regno)
309{
310 unsigned int end_regno;
311
312 gcc_assert (HARD_REGISTER_NUM_P (regno));
313
314 if (!TEST_HARD_REG_BIT (set: regs, bit: regno))
315 return false;
316
317 end_regno = end_hard_regno (mode, regno);
318
319 if (!HARD_REGISTER_NUM_P (end_regno - 1))
320 return false;
321
322 while (++regno < end_regno)
323 if (!TEST_HARD_REG_BIT (set: regs, bit: regno))
324 return false;
325
326 return true;
327}
328
329/* Return true if (reg:MODE REGNO) includes an element of REGS. */
330
331inline bool
332overlaps_hard_reg_set_p (const_hard_reg_set regs, machine_mode mode,
333 unsigned int regno)
334{
335 unsigned int end_regno;
336
337 if (TEST_HARD_REG_BIT (set: regs, bit: regno))
338 return true;
339
340 end_regno = end_hard_regno (mode, regno);
341 while (++regno < end_regno)
342 if (TEST_HARD_REG_BIT (set: regs, bit: regno))
343 return true;
344
345 return false;
346}
347
348/* Like add_to_hard_reg_set, but use a REGNO/NREGS range instead of
349 REGNO and MODE. */
350
351inline void
352add_range_to_hard_reg_set (HARD_REG_SET *regs, unsigned int regno,
353 int nregs)
354{
355 while (nregs-- > 0)
356 SET_HARD_REG_BIT (set&: *regs, bit: regno + nregs);
357}
358
359/* Likewise, but remove the registers. */
360
361inline void
362remove_range_from_hard_reg_set (HARD_REG_SET *regs, unsigned int regno,
363 int nregs)
364{
365 while (nregs-- > 0)
366 CLEAR_HARD_REG_BIT (set&: *regs, bit: regno + nregs);
367}
368
369/* Like overlaps_hard_reg_set_p, but use a REGNO/NREGS range instead of
370 REGNO and MODE. */
371inline bool
372range_overlaps_hard_reg_set_p (const_hard_reg_set set, unsigned regno,
373 int nregs)
374{
375 while (nregs-- > 0)
376 if (TEST_HARD_REG_BIT (set, bit: regno + nregs))
377 return true;
378 return false;
379}
380
381/* Like in_hard_reg_set_p, but use a REGNO/NREGS range instead of
382 REGNO and MODE. */
383inline bool
384range_in_hard_reg_set_p (const_hard_reg_set set, unsigned regno, int nregs)
385{
386 while (nregs-- > 0)
387 if (!TEST_HARD_REG_BIT (set, bit: regno + nregs))
388 return false;
389 return true;
390}
391
392#endif /* GCC_REGS_H */
393

source code of gcc/regs.h