1/* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992-2023 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
11Software Foundation; either version 3, or (at your option) any later
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
22
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
26#include "backend.h"
27#include "target.h"
28#include "rtl.h"
29#include "tree.h"
30#include "df.h"
31#include "insn-config.h"
32#include "regs.h"
33#include "memmodel.h"
34#include "ira.h"
35#include "ira-int.h"
36#include "insn-attr.h"
37#include "cfgbuild.h"
38#include "sched-int.h"
39#include "cselib.h"
40#include "function-abi.h"
41
42#ifdef INSN_SCHEDULING
43
44/* Holds current parameters for the dependency analyzer. */
45struct sched_deps_info_def *sched_deps_info;
46
47/* The data is specific to the Haifa scheduler. */
48vec<haifa_deps_insn_data_def>
49 h_d_i_d = vNULL;
50
51/* Return the major type present in the DS. */
52enum reg_note
53ds_to_dk (ds_t ds)
54{
55 if (ds & DEP_TRUE)
56 return REG_DEP_TRUE;
57
58 if (ds & DEP_OUTPUT)
59 return REG_DEP_OUTPUT;
60
61 if (ds & DEP_CONTROL)
62 return REG_DEP_CONTROL;
63
64 gcc_assert (ds & DEP_ANTI);
65
66 return REG_DEP_ANTI;
67}
68
69/* Return equivalent dep_status. */
70ds_t
71dk_to_ds (enum reg_note dk)
72{
73 switch (dk)
74 {
75 case REG_DEP_TRUE:
76 return DEP_TRUE;
77
78 case REG_DEP_OUTPUT:
79 return DEP_OUTPUT;
80
81 case REG_DEP_CONTROL:
82 return DEP_CONTROL;
83
84 default:
85 gcc_assert (dk == REG_DEP_ANTI);
86 return DEP_ANTI;
87 }
88}
89
90/* Functions to operate with dependence information container - dep_t. */
91
92/* Init DEP with the arguments. */
93void
94init_dep_1 (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note type, ds_t ds)
95{
96 DEP_PRO (dep) = pro;
97 DEP_CON (dep) = con;
98 DEP_TYPE (dep) = type;
99 DEP_STATUS (dep) = ds;
100 DEP_COST (dep) = UNKNOWN_DEP_COST;
101 DEP_NONREG (dep) = 0;
102 DEP_MULTIPLE (dep) = 0;
103 DEP_REPLACE (dep) = NULL;
104 dep->unused = 0;
105}
106
107/* Init DEP with the arguments.
108 While most of the scheduler (including targets) only need the major type
109 of the dependency, it is convenient to hide full dep_status from them. */
110void
111init_dep (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note kind)
112{
113 ds_t ds;
114
115 if ((current_sched_info->flags & USE_DEPS_LIST))
116 ds = dk_to_ds (dk: kind);
117 else
118 ds = 0;
119
120 init_dep_1 (dep, pro, con, type: kind, ds);
121}
122
123/* Make a copy of FROM in TO. */
124static void
125copy_dep (dep_t to, dep_t from)
126{
127 memcpy (dest: to, src: from, n: sizeof (*to));
128}
129
130static void dump_ds (FILE *, ds_t);
131
132/* Define flags for dump_dep (). */
133
134/* Dump producer of the dependence. */
135#define DUMP_DEP_PRO (2)
136
137/* Dump consumer of the dependence. */
138#define DUMP_DEP_CON (4)
139
140/* Dump type of the dependence. */
141#define DUMP_DEP_TYPE (8)
142
143/* Dump status of the dependence. */
144#define DUMP_DEP_STATUS (16)
145
146/* Dump all information about the dependence. */
147#define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
148 |DUMP_DEP_STATUS)
149
150/* Dump DEP to DUMP.
151 FLAGS is a bit mask specifying what information about DEP needs
152 to be printed.
153 If FLAGS has the very first bit set, then dump all information about DEP
154 and propagate this bit into the callee dump functions. */
155static void
156dump_dep (FILE *dump, dep_t dep, int flags)
157{
158 if (flags & 1)
159 flags |= DUMP_DEP_ALL;
160
161 fprintf (stream: dump, format: "<");
162
163 if (flags & DUMP_DEP_PRO)
164 fprintf (stream: dump, format: "%d; ", INSN_UID (DEP_PRO (dep)));
165
166 if (flags & DUMP_DEP_CON)
167 fprintf (stream: dump, format: "%d; ", INSN_UID (DEP_CON (dep)));
168
169 if (flags & DUMP_DEP_TYPE)
170 {
171 char t;
172 enum reg_note type = DEP_TYPE (dep);
173
174 switch (type)
175 {
176 case REG_DEP_TRUE:
177 t = 't';
178 break;
179
180 case REG_DEP_OUTPUT:
181 t = 'o';
182 break;
183
184 case REG_DEP_CONTROL:
185 t = 'c';
186 break;
187
188 case REG_DEP_ANTI:
189 t = 'a';
190 break;
191
192 default:
193 gcc_unreachable ();
194 break;
195 }
196
197 fprintf (stream: dump, format: "%c; ", t);
198 }
199
200 if (flags & DUMP_DEP_STATUS)
201 {
202 if (current_sched_info->flags & USE_DEPS_LIST)
203 dump_ds (dump, DEP_STATUS (dep));
204 }
205
206 fprintf (stream: dump, format: ">");
207}
208
209/* Default flags for dump_dep (). */
210static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
211
212/* Dump all fields of DEP to STDERR. */
213void
214sd_debug_dep (dep_t dep)
215{
216 dump_dep (stderr, dep, flags: 1);
217 fprintf (stderr, format: "\n");
218}
219
220/* Determine whether DEP is a dependency link of a non-debug insn on a
221 debug insn. */
222
223static inline bool
224depl_on_debug_p (dep_link_t dep)
225{
226 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
227 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
228}
229
230/* Functions to operate with a single link from the dependencies lists -
231 dep_link_t. */
232
233/* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
234 PREV_NEXT_P. */
235static void
236attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
237{
238 dep_link_t next = *prev_nextp;
239
240 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
241 && DEP_LINK_NEXT (l) == NULL);
242
243 /* Init node being inserted. */
244 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
245 DEP_LINK_NEXT (l) = next;
246
247 /* Fix next node. */
248 if (next != NULL)
249 {
250 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
251
252 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
253 }
254
255 /* Fix prev node. */
256 *prev_nextp = l;
257}
258
259/* Add dep_link LINK to deps_list L. */
260static void
261add_to_deps_list (dep_link_t link, deps_list_t l)
262{
263 attach_dep_link (l: link, prev_nextp: &DEPS_LIST_FIRST (l));
264
265 /* Don't count debug deps. */
266 if (!depl_on_debug_p (dep: link))
267 ++DEPS_LIST_N_LINKS (l);
268}
269
270/* Detach dep_link L from the list. */
271static void
272detach_dep_link (dep_link_t l)
273{
274 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
275 dep_link_t next = DEP_LINK_NEXT (l);
276
277 *prev_nextp = next;
278
279 if (next != NULL)
280 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
281
282 DEP_LINK_PREV_NEXTP (l) = NULL;
283 DEP_LINK_NEXT (l) = NULL;
284}
285
286/* Remove link LINK from list LIST. */
287static void
288remove_from_deps_list (dep_link_t link, deps_list_t list)
289{
290 detach_dep_link (l: link);
291
292 /* Don't count debug deps. */
293 if (!depl_on_debug_p (dep: link))
294 --DEPS_LIST_N_LINKS (list);
295}
296
297/* Move link LINK from list FROM to list TO. */
298static void
299move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
300{
301 remove_from_deps_list (link, list: from);
302 add_to_deps_list (link, l: to);
303}
304
305/* Return true of LINK is not attached to any list. */
306static bool
307dep_link_is_detached_p (dep_link_t link)
308{
309 return DEP_LINK_PREV_NEXTP (link) == NULL;
310}
311
312/* Pool to hold all dependency nodes (dep_node_t). */
313static object_allocator<_dep_node> *dn_pool;
314
315/* Number of dep_nodes out there. */
316static int dn_pool_diff = 0;
317
318/* Create a dep_node. */
319static dep_node_t
320create_dep_node (void)
321{
322 dep_node_t n = dn_pool->allocate ();
323 dep_link_t back = DEP_NODE_BACK (n);
324 dep_link_t forw = DEP_NODE_FORW (n);
325
326 DEP_LINK_NODE (back) = n;
327 DEP_LINK_NEXT (back) = NULL;
328 DEP_LINK_PREV_NEXTP (back) = NULL;
329
330 DEP_LINK_NODE (forw) = n;
331 DEP_LINK_NEXT (forw) = NULL;
332 DEP_LINK_PREV_NEXTP (forw) = NULL;
333
334 ++dn_pool_diff;
335
336 return n;
337}
338
339/* Delete dep_node N. N must not be connected to any deps_list. */
340static void
341delete_dep_node (dep_node_t n)
342{
343 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
344 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
345
346 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
347
348 --dn_pool_diff;
349
350 dn_pool->remove (object: n);
351}
352
353/* Pool to hold dependencies lists (deps_list_t). */
354static object_allocator<_deps_list> *dl_pool;
355
356/* Number of deps_lists out there. */
357static int dl_pool_diff = 0;
358
359/* Functions to operate with dependences lists - deps_list_t. */
360
361/* Return true if list L is empty. */
362static bool
363deps_list_empty_p (deps_list_t l)
364{
365 return DEPS_LIST_N_LINKS (l) == 0;
366}
367
368/* Create a new deps_list. */
369static deps_list_t
370create_deps_list (void)
371{
372 deps_list_t l = dl_pool->allocate ();
373
374 DEPS_LIST_FIRST (l) = NULL;
375 DEPS_LIST_N_LINKS (l) = 0;
376
377 ++dl_pool_diff;
378 return l;
379}
380
381/* Free deps_list L. */
382static void
383free_deps_list (deps_list_t l)
384{
385 gcc_assert (deps_list_empty_p (l));
386
387 --dl_pool_diff;
388
389 dl_pool->remove (object: l);
390}
391
392/* Return true if there is no dep_nodes and deps_lists out there.
393 After the region is scheduled all the dependency nodes and lists
394 should [generally] be returned to pool. */
395bool
396deps_pools_are_empty_p (void)
397{
398 return dn_pool_diff == 0 && dl_pool_diff == 0;
399}
400
401/* Remove all elements from L. */
402static void
403clear_deps_list (deps_list_t l)
404{
405 do
406 {
407 dep_link_t link = DEPS_LIST_FIRST (l);
408
409 if (link == NULL)
410 break;
411
412 remove_from_deps_list (link, list: l);
413 }
414 while (1);
415}
416
417/* Decide whether a dependency should be treated as a hard or a speculative
418 dependency. */
419static bool
420dep_spec_p (dep_t dep)
421{
422 if (current_sched_info->flags & DO_SPECULATION)
423 {
424 if (DEP_STATUS (dep) & SPECULATIVE)
425 return true;
426 }
427 if (current_sched_info->flags & DO_PREDICATION)
428 {
429 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
430 return true;
431 }
432 if (DEP_REPLACE (dep) != NULL)
433 return true;
434 return false;
435}
436
437static regset reg_pending_sets;
438static regset reg_pending_clobbers;
439static regset reg_pending_uses;
440static regset reg_pending_control_uses;
441static enum reg_pending_barrier_mode reg_pending_barrier;
442
443/* Hard registers implicitly clobbered or used (or may be implicitly
444 clobbered or used) by the currently analyzed insn. For example,
445 insn in its constraint has one register class. Even if there is
446 currently no hard register in the insn, the particular hard
447 register will be in the insn after reload pass because the
448 constraint requires it. */
449static HARD_REG_SET implicit_reg_pending_clobbers;
450static HARD_REG_SET implicit_reg_pending_uses;
451
452/* To speed up the test for duplicate dependency links we keep a
453 record of dependencies created by add_dependence when the average
454 number of instructions in a basic block is very large.
455
456 Studies have shown that there is typically around 5 instructions between
457 branches for typical C code. So we can make a guess that the average
458 basic block is approximately 5 instructions long; we will choose 100X
459 the average size as a very large basic block.
460
461 Each insn has associated bitmaps for its dependencies. Each bitmap
462 has enough entries to represent a dependency on any other insn in
463 the insn chain. All bitmap for true dependencies cache is
464 allocated then the rest two ones are also allocated. */
465static bitmap true_dependency_cache = NULL;
466static bitmap output_dependency_cache = NULL;
467static bitmap anti_dependency_cache = NULL;
468static bitmap control_dependency_cache = NULL;
469static bitmap spec_dependency_cache = NULL;
470static int cache_size;
471
472/* True if we should mark added dependencies as a non-register deps. */
473static bool mark_as_hard;
474
475static bool deps_may_trap_p (const_rtx);
476static void add_dependence_1 (rtx_insn *, rtx_insn *, enum reg_note);
477static void add_dependence_list (rtx_insn *, rtx_insn_list *, int,
478 enum reg_note, bool);
479static void add_dependence_list_and_free (class deps_desc *, rtx_insn *,
480 rtx_insn_list **, int, enum reg_note,
481 bool);
482static void delete_all_dependences (rtx_insn *);
483static void chain_to_prev_insn (rtx_insn *);
484
485static void flush_pending_lists (class deps_desc *, rtx_insn *, int, int);
486static void sched_analyze_1 (class deps_desc *, rtx, rtx_insn *);
487static void sched_analyze_2 (class deps_desc *, rtx, rtx_insn *);
488static void sched_analyze_insn (class deps_desc *, rtx, rtx_insn *);
489
490static bool sched_has_condition_p (const rtx_insn *);
491static bool conditions_mutex_p (const_rtx, const_rtx, bool, bool);
492
493static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
494 rtx, rtx);
495static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
496
497static void check_dep (dep_t, bool);
498
499
500/* Return true if a load of the memory reference MEM can cause a trap. */
501
502static bool
503deps_may_trap_p (const_rtx mem)
504{
505 const_rtx addr = XEXP (mem, 0);
506
507 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
508 {
509 const_rtx t = get_reg_known_value (REGNO (addr));
510 if (t)
511 addr = t;
512 }
513 return rtx_addr_can_trap_p (addr);
514}
515
516
517/* Find the condition under which INSN is executed. If REV is not NULL,
518 it is set to TRUE when the returned comparison should be reversed
519 to get the actual condition. */
520static rtx
521sched_get_condition_with_rev_uncached (const rtx_insn *insn, bool *rev)
522{
523 rtx pat = PATTERN (insn);
524 rtx src;
525
526 if (rev)
527 *rev = false;
528
529 if (GET_CODE (pat) == COND_EXEC)
530 return COND_EXEC_TEST (pat);
531
532 if (!any_condjump_p (insn) || !onlyjump_p (insn))
533 return 0;
534
535 src = SET_SRC (pc_set (insn));
536
537 if (XEXP (src, 2) == pc_rtx)
538 return XEXP (src, 0);
539 else if (XEXP (src, 1) == pc_rtx)
540 {
541 rtx cond = XEXP (src, 0);
542 enum rtx_code revcode = reversed_comparison_code (cond, insn);
543
544 if (revcode == UNKNOWN)
545 return 0;
546
547 if (rev)
548 *rev = true;
549 return cond;
550 }
551
552 return 0;
553}
554
555/* Return the condition under which INSN does not execute (i.e. the
556 not-taken condition for a conditional branch), or NULL if we cannot
557 find such a condition. The caller should make a copy of the condition
558 before using it. */
559rtx
560sched_get_reverse_condition_uncached (const rtx_insn *insn)
561{
562 bool rev;
563 rtx cond = sched_get_condition_with_rev_uncached (insn, rev: &rev);
564 if (cond == NULL_RTX)
565 return cond;
566 if (!rev)
567 {
568 enum rtx_code revcode = reversed_comparison_code (cond, insn);
569 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
570 XEXP (cond, 0),
571 XEXP (cond, 1));
572 }
573 return cond;
574}
575
576/* Caching variant of sched_get_condition_with_rev_uncached.
577 We only do actual work the first time we come here for an insn; the
578 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
579static rtx
580sched_get_condition_with_rev (const rtx_insn *insn, bool *rev)
581{
582 bool tmp;
583
584 if (INSN_LUID (insn) == 0)
585 return sched_get_condition_with_rev_uncached (insn, rev);
586
587 if (INSN_CACHED_COND (insn) == const_true_rtx)
588 return NULL_RTX;
589
590 if (INSN_CACHED_COND (insn) != NULL_RTX)
591 {
592 if (rev)
593 *rev = INSN_REVERSE_COND (insn);
594 return INSN_CACHED_COND (insn);
595 }
596
597 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, rev: &tmp);
598 INSN_REVERSE_COND (insn) = tmp;
599
600 if (INSN_CACHED_COND (insn) == NULL_RTX)
601 {
602 INSN_CACHED_COND (insn) = const_true_rtx;
603 return NULL_RTX;
604 }
605
606 if (rev)
607 *rev = INSN_REVERSE_COND (insn);
608 return INSN_CACHED_COND (insn);
609}
610
611/* True when we can find a condition under which INSN is executed. */
612static bool
613sched_has_condition_p (const rtx_insn *insn)
614{
615 return !! sched_get_condition_with_rev (insn, NULL);
616}
617
618
619
620/* Return true if conditions COND1 and COND2 can never be both true. */
621static bool
622conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
623{
624 if (COMPARISON_P (cond1)
625 && COMPARISON_P (cond2)
626 && GET_CODE (cond1) ==
627 (rev1==rev2
628 ? reversed_comparison_code (cond2, NULL)
629 : GET_CODE (cond2))
630 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
631 && XEXP (cond1, 1) == XEXP (cond2, 1))
632 return true;
633 return false;
634}
635
636/* Return true if insn1 and insn2 can never depend on one another because
637 the conditions under which they are executed are mutually exclusive. */
638bool
639sched_insns_conditions_mutex_p (const rtx_insn *insn1, const rtx_insn *insn2)
640{
641 rtx cond1, cond2;
642 bool rev1 = false, rev2 = false;
643
644 /* df doesn't handle conditional lifetimes entirely correctly;
645 calls mess up the conditional lifetimes. */
646 if (!CALL_P (insn1) && !CALL_P (insn2))
647 {
648 cond1 = sched_get_condition_with_rev (insn: insn1, rev: &rev1);
649 cond2 = sched_get_condition_with_rev (insn: insn2, rev: &rev2);
650 if (cond1 && cond2
651 && conditions_mutex_p (cond1, cond2, rev1, rev2)
652 /* Make sure first instruction doesn't affect condition of second
653 instruction if switched. */
654 && !modified_in_p (cond1, insn2)
655 /* Make sure second instruction doesn't affect condition of first
656 instruction if switched. */
657 && !modified_in_p (cond2, insn1))
658 return true;
659 }
660 return false;
661}
662
663
664/* Return true if INSN can potentially be speculated with type DS. */
665bool
666sched_insn_is_legitimate_for_speculation_p (const rtx_insn *insn, ds_t ds)
667{
668 if (HAS_INTERNAL_DEP (insn))
669 return false;
670
671 if (!NONJUMP_INSN_P (insn))
672 return false;
673
674 if (SCHED_GROUP_P (insn))
675 return false;
676
677 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX_INSN (insn)))
678 return false;
679
680 if (side_effects_p (PATTERN (insn)))
681 return false;
682
683 if (ds & BE_IN_SPEC)
684 /* The following instructions, which depend on a speculatively scheduled
685 instruction, cannot be speculatively scheduled along. */
686 {
687 if (may_trap_or_fault_p (PATTERN (insn)))
688 /* If instruction might fault, it cannot be speculatively scheduled.
689 For control speculation it's obvious why and for data speculation
690 it's because the insn might get wrong input if speculation
691 wasn't successful. */
692 return false;
693
694 if ((ds & BE_IN_DATA)
695 && sched_has_condition_p (insn))
696 /* If this is a predicated instruction, then it cannot be
697 speculatively scheduled. See PR35659. */
698 return false;
699 }
700
701 return true;
702}
703
704/* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
705 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
706 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
707 This function is used to switch sd_iterator to the next list.
708 !!! For internal use only. Might consider moving it to sched-int.h. */
709void
710sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
711 deps_list_t *list_ptr, bool *resolved_p_ptr)
712{
713 sd_list_types_def types = *types_ptr;
714
715 if (types & SD_LIST_HARD_BACK)
716 {
717 *list_ptr = INSN_HARD_BACK_DEPS (insn);
718 *resolved_p_ptr = false;
719 *types_ptr = types & ~SD_LIST_HARD_BACK;
720 }
721 else if (types & SD_LIST_SPEC_BACK)
722 {
723 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
724 *resolved_p_ptr = false;
725 *types_ptr = types & ~SD_LIST_SPEC_BACK;
726 }
727 else if (types & SD_LIST_FORW)
728 {
729 *list_ptr = INSN_FORW_DEPS (insn);
730 *resolved_p_ptr = false;
731 *types_ptr = types & ~SD_LIST_FORW;
732 }
733 else if (types & SD_LIST_RES_BACK)
734 {
735 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
736 *resolved_p_ptr = true;
737 *types_ptr = types & ~SD_LIST_RES_BACK;
738 }
739 else if (types & SD_LIST_RES_FORW)
740 {
741 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
742 *resolved_p_ptr = true;
743 *types_ptr = types & ~SD_LIST_RES_FORW;
744 }
745 else
746 {
747 *list_ptr = NULL;
748 *resolved_p_ptr = false;
749 *types_ptr = SD_LIST_NONE;
750 }
751}
752
753/* Return the summary size of INSN's lists defined by LIST_TYPES. */
754int
755sd_lists_size (const_rtx insn, sd_list_types_def list_types)
756{
757 int size = 0;
758
759 while (list_types != SD_LIST_NONE)
760 {
761 deps_list_t list;
762 bool resolved_p;
763
764 sd_next_list (insn, types_ptr: &list_types, list_ptr: &list, resolved_p_ptr: &resolved_p);
765 if (list)
766 size += DEPS_LIST_N_LINKS (list);
767 }
768
769 return size;
770}
771
772/* Return true if INSN's lists defined by LIST_TYPES are all empty. */
773
774bool
775sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
776{
777 while (list_types != SD_LIST_NONE)
778 {
779 deps_list_t list;
780 bool resolved_p;
781
782 sd_next_list (insn, types_ptr: &list_types, list_ptr: &list, resolved_p_ptr: &resolved_p);
783 if (!deps_list_empty_p (l: list))
784 return false;
785 }
786
787 return true;
788}
789
790/* Initialize data for INSN. */
791void
792sd_init_insn (rtx_insn *insn)
793{
794 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
795 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
796 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
797 INSN_FORW_DEPS (insn) = create_deps_list ();
798 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
799
800 /* ??? It would be nice to allocate dependency caches here. */
801}
802
803/* Free data for INSN. */
804void
805sd_finish_insn (rtx_insn *insn)
806{
807 /* ??? It would be nice to deallocate dependency caches here. */
808
809 free_deps_list (INSN_HARD_BACK_DEPS (insn));
810 INSN_HARD_BACK_DEPS (insn) = NULL;
811
812 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
813 INSN_SPEC_BACK_DEPS (insn) = NULL;
814
815 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
816 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
817
818 free_deps_list (INSN_FORW_DEPS (insn));
819 INSN_FORW_DEPS (insn) = NULL;
820
821 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
822 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
823}
824
825/* Find a dependency between producer PRO and consumer CON.
826 Search through resolved dependency lists if RESOLVED_P is true.
827 If no such dependency is found return NULL,
828 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
829 with an iterator pointing to it. */
830static dep_t
831sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
832 sd_iterator_def *sd_it_ptr)
833{
834 sd_list_types_def pro_list_type;
835 sd_list_types_def con_list_type;
836 sd_iterator_def sd_it;
837 dep_t dep;
838 bool found_p = false;
839
840 if (resolved_p)
841 {
842 pro_list_type = SD_LIST_RES_FORW;
843 con_list_type = SD_LIST_RES_BACK;
844 }
845 else
846 {
847 pro_list_type = SD_LIST_FORW;
848 con_list_type = SD_LIST_BACK;
849 }
850
851 /* Walk through either back list of INSN or forw list of ELEM
852 depending on which one is shorter. */
853 if (sd_lists_size (insn: con, list_types: con_list_type) < sd_lists_size (insn: pro, list_types: pro_list_type))
854 {
855 /* Find the dep_link with producer PRO in consumer's back_deps. */
856 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
857 if (DEP_PRO (dep) == pro)
858 {
859 found_p = true;
860 break;
861 }
862 }
863 else
864 {
865 /* Find the dep_link with consumer CON in producer's forw_deps. */
866 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
867 if (DEP_CON (dep) == con)
868 {
869 found_p = true;
870 break;
871 }
872 }
873
874 if (found_p)
875 {
876 if (sd_it_ptr != NULL)
877 *sd_it_ptr = sd_it;
878
879 return dep;
880 }
881
882 return NULL;
883}
884
885/* Find a dependency between producer PRO and consumer CON.
886 Use dependency [if available] to check if dependency is present at all.
887 Search through resolved dependency lists if RESOLVED_P is true.
888 If the dependency or NULL if none found. */
889dep_t
890sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
891{
892 if (true_dependency_cache != NULL)
893 /* Avoiding the list walk below can cut compile times dramatically
894 for some code. */
895 {
896 int elem_luid = INSN_LUID (pro);
897 int insn_luid = INSN_LUID (con);
898
899 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
900 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
901 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
902 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
903 return NULL;
904 }
905
906 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
907}
908
909/* Add or update a dependence described by DEP.
910 MEM1 and MEM2, if non-null, correspond to memory locations in case of
911 data speculation.
912
913 The function returns a value indicating if an old entry has been changed
914 or a new entry has been added to insn's backward deps.
915
916 This function merely checks if producer and consumer is the same insn
917 and doesn't create a dep in this case. Actual manipulation of
918 dependence data structures is performed in add_or_update_dep_1. */
919static enum DEPS_ADJUST_RESULT
920maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
921{
922 rtx_insn *elem = DEP_PRO (dep);
923 rtx_insn *insn = DEP_CON (dep);
924
925 gcc_assert (INSN_P (insn) && INSN_P (elem));
926
927 /* Don't depend an insn on itself. */
928 if (insn == elem)
929 {
930 if (sched_deps_info->generate_spec_deps)
931 /* INSN has an internal dependence, which we can't overcome. */
932 HAS_INTERNAL_DEP (insn) = 1;
933
934 return DEP_NODEP;
935 }
936
937 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
938}
939
940/* Ask dependency caches what needs to be done for dependence DEP.
941 Return DEP_CREATED if new dependence should be created and there is no
942 need to try to find one searching the dependencies lists.
943 Return DEP_PRESENT if there already is a dependence described by DEP and
944 hence nothing is to be done.
945 Return DEP_CHANGED if there already is a dependence, but it should be
946 updated to incorporate additional information from DEP. */
947static enum DEPS_ADJUST_RESULT
948ask_dependency_caches (dep_t dep)
949{
950 int elem_luid = INSN_LUID (DEP_PRO (dep));
951 int insn_luid = INSN_LUID (DEP_CON (dep));
952
953 gcc_assert (true_dependency_cache != NULL
954 && output_dependency_cache != NULL
955 && anti_dependency_cache != NULL
956 && control_dependency_cache != NULL);
957
958 if (!(current_sched_info->flags & USE_DEPS_LIST))
959 {
960 enum reg_note present_dep_type;
961
962 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
963 present_dep_type = REG_DEP_TRUE;
964 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
965 present_dep_type = REG_DEP_OUTPUT;
966 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
967 present_dep_type = REG_DEP_ANTI;
968 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
969 present_dep_type = REG_DEP_CONTROL;
970 else
971 /* There is no existing dep so it should be created. */
972 return DEP_CREATED;
973
974 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
975 /* DEP does not add anything to the existing dependence. */
976 return DEP_PRESENT;
977 }
978 else
979 {
980 ds_t present_dep_types = 0;
981
982 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
983 present_dep_types |= DEP_TRUE;
984 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
985 present_dep_types |= DEP_OUTPUT;
986 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
987 present_dep_types |= DEP_ANTI;
988 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
989 present_dep_types |= DEP_CONTROL;
990
991 if (present_dep_types == 0)
992 /* There is no existing dep so it should be created. */
993 return DEP_CREATED;
994
995 if (!(current_sched_info->flags & DO_SPECULATION)
996 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
997 {
998 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
999 == present_dep_types)
1000 /* DEP does not add anything to the existing dependence. */
1001 return DEP_PRESENT;
1002 }
1003 else
1004 {
1005 /* Only true dependencies can be data speculative and
1006 only anti dependencies can be control speculative. */
1007 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1008 == present_dep_types);
1009
1010 /* if (DEP is SPECULATIVE) then
1011 ..we should update DEP_STATUS
1012 else
1013 ..we should reset existing dep to non-speculative. */
1014 }
1015 }
1016
1017 return DEP_CHANGED;
1018}
1019
1020/* Set dependency caches according to DEP. */
1021static void
1022set_dependency_caches (dep_t dep)
1023{
1024 int elem_luid = INSN_LUID (DEP_PRO (dep));
1025 int insn_luid = INSN_LUID (DEP_CON (dep));
1026
1027 if (!(current_sched_info->flags & USE_DEPS_LIST))
1028 {
1029 switch (DEP_TYPE (dep))
1030 {
1031 case REG_DEP_TRUE:
1032 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1033 break;
1034
1035 case REG_DEP_OUTPUT:
1036 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1037 break;
1038
1039 case REG_DEP_ANTI:
1040 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1041 break;
1042
1043 case REG_DEP_CONTROL:
1044 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1045 break;
1046
1047 default:
1048 gcc_unreachable ();
1049 }
1050 }
1051 else
1052 {
1053 ds_t ds = DEP_STATUS (dep);
1054
1055 if (ds & DEP_TRUE)
1056 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1057 if (ds & DEP_OUTPUT)
1058 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1059 if (ds & DEP_ANTI)
1060 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1061 if (ds & DEP_CONTROL)
1062 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1063
1064 if (ds & SPECULATIVE)
1065 {
1066 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1067 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1068 }
1069 }
1070}
1071
1072/* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1073 caches accordingly. */
1074static void
1075update_dependency_caches (dep_t dep, enum reg_note old_type)
1076{
1077 int elem_luid = INSN_LUID (DEP_PRO (dep));
1078 int insn_luid = INSN_LUID (DEP_CON (dep));
1079
1080 /* Clear corresponding cache entry because type of the link
1081 may have changed. Keep them if we use_deps_list. */
1082 if (!(current_sched_info->flags & USE_DEPS_LIST))
1083 {
1084 switch (old_type)
1085 {
1086 case REG_DEP_OUTPUT:
1087 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1088 break;
1089
1090 case REG_DEP_ANTI:
1091 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1092 break;
1093
1094 case REG_DEP_CONTROL:
1095 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1096 break;
1097
1098 default:
1099 gcc_unreachable ();
1100 }
1101 }
1102
1103 set_dependency_caches (dep);
1104}
1105
1106/* Convert a dependence pointed to by SD_IT to be non-speculative. */
1107static void
1108change_spec_dep_to_hard (sd_iterator_def sd_it)
1109{
1110 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1111 dep_link_t link = DEP_NODE_BACK (node);
1112 dep_t dep = DEP_NODE_DEP (node);
1113 rtx_insn *elem = DEP_PRO (dep);
1114 rtx_insn *insn = DEP_CON (dep);
1115
1116 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1117
1118 DEP_STATUS (dep) &= ~SPECULATIVE;
1119
1120 if (true_dependency_cache != NULL)
1121 /* Clear the cache entry. */
1122 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1123 INSN_LUID (elem));
1124}
1125
1126/* Update DEP to incorporate information from NEW_DEP.
1127 SD_IT points to DEP in case it should be moved to another list.
1128 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1129 data-speculative dependence should be updated. */
1130static enum DEPS_ADJUST_RESULT
1131update_dep (dep_t dep, dep_t new_dep,
1132 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1133 rtx mem1 ATTRIBUTE_UNUSED,
1134 rtx mem2 ATTRIBUTE_UNUSED)
1135{
1136 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1137 enum reg_note old_type = DEP_TYPE (dep);
1138 bool was_spec = dep_spec_p (dep);
1139
1140 DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1141 DEP_MULTIPLE (dep) = 1;
1142
1143 /* If this is a more restrictive type of dependence than the
1144 existing one, then change the existing dependence to this
1145 type. */
1146 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1147 {
1148 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1149 res = DEP_CHANGED;
1150 }
1151
1152 if (current_sched_info->flags & USE_DEPS_LIST)
1153 /* Update DEP_STATUS. */
1154 {
1155 ds_t dep_status = DEP_STATUS (dep);
1156 ds_t ds = DEP_STATUS (new_dep);
1157 ds_t new_status = ds | dep_status;
1158
1159 if (new_status & SPECULATIVE)
1160 {
1161 /* Either existing dep or a dep we're adding or both are
1162 speculative. */
1163 if (!(ds & SPECULATIVE)
1164 || !(dep_status & SPECULATIVE))
1165 /* The new dep can't be speculative. */
1166 new_status &= ~SPECULATIVE;
1167 else
1168 {
1169 /* Both are speculative. Merge probabilities. */
1170 if (mem1 != NULL)
1171 {
1172 dw_t dw;
1173
1174 dw = estimate_dep_weak (mem1, mem2);
1175 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1176 }
1177
1178 new_status = ds_merge (dep_status, ds);
1179 }
1180 }
1181
1182 ds = new_status;
1183
1184 if (dep_status != ds)
1185 {
1186 DEP_STATUS (dep) = ds;
1187 res = DEP_CHANGED;
1188 }
1189 }
1190
1191 if (was_spec && !dep_spec_p (dep))
1192 /* The old dep was speculative, but now it isn't. */
1193 change_spec_dep_to_hard (sd_it);
1194
1195 if (true_dependency_cache != NULL
1196 && res == DEP_CHANGED)
1197 update_dependency_caches (dep, old_type);
1198
1199 return res;
1200}
1201
1202/* Add or update a dependence described by DEP.
1203 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1204 data speculation.
1205
1206 The function returns a value indicating if an old entry has been changed
1207 or a new entry has been added to insn's backward deps or nothing has
1208 been updated at all. */
1209static enum DEPS_ADJUST_RESULT
1210add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1211 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1212{
1213 bool maybe_present_p = true;
1214 bool present_p = false;
1215
1216 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1217 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1218
1219 if (flag_checking)
1220 check_dep (new_dep, mem1 != NULL);
1221
1222 if (true_dependency_cache != NULL)
1223 {
1224 switch (ask_dependency_caches (dep: new_dep))
1225 {
1226 case DEP_PRESENT:
1227 dep_t present_dep;
1228 sd_iterator_def sd_it;
1229
1230 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1231 DEP_CON (new_dep),
1232 resolved_p, sd_it_ptr: &sd_it);
1233 DEP_MULTIPLE (present_dep) = 1;
1234 return DEP_PRESENT;
1235
1236 case DEP_CHANGED:
1237 maybe_present_p = true;
1238 present_p = true;
1239 break;
1240
1241 case DEP_CREATED:
1242 maybe_present_p = false;
1243 present_p = false;
1244 break;
1245
1246 default:
1247 gcc_unreachable ();
1248 break;
1249 }
1250 }
1251
1252 /* Check that we don't already have this dependence. */
1253 if (maybe_present_p)
1254 {
1255 dep_t present_dep;
1256 sd_iterator_def sd_it;
1257
1258 gcc_assert (true_dependency_cache == NULL || present_p);
1259
1260 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1261 DEP_CON (new_dep),
1262 resolved_p, sd_it_ptr: &sd_it);
1263
1264 if (present_dep != NULL)
1265 /* We found an existing dependency between ELEM and INSN. */
1266 return update_dep (dep: present_dep, new_dep, sd_it, mem1, mem2);
1267 else
1268 /* We didn't find a dep, it shouldn't present in the cache. */
1269 gcc_assert (!present_p);
1270 }
1271
1272 /* Might want to check one level of transitivity to save conses.
1273 This check should be done in maybe_add_or_update_dep_1.
1274 Since we made it to add_or_update_dep_1, we must create
1275 (or update) a link. */
1276
1277 if (mem1 != NULL_RTX)
1278 {
1279 gcc_assert (sched_deps_info->generate_spec_deps);
1280 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1281 estimate_dep_weak (mem1, mem2));
1282 }
1283
1284 sd_add_dep (new_dep, resolved_p);
1285
1286 return DEP_CREATED;
1287}
1288
1289/* Initialize BACK_LIST_PTR with consumer's backward list and
1290 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1291 initialize with lists that hold resolved deps. */
1292static void
1293get_back_and_forw_lists (dep_t dep, bool resolved_p,
1294 deps_list_t *back_list_ptr,
1295 deps_list_t *forw_list_ptr)
1296{
1297 rtx_insn *con = DEP_CON (dep);
1298
1299 if (!resolved_p)
1300 {
1301 if (dep_spec_p (dep))
1302 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1303 else
1304 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1305
1306 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1307 }
1308 else
1309 {
1310 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1311 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1312 }
1313}
1314
1315/* Add dependence described by DEP.
1316 If RESOLVED_P is true treat the dependence as a resolved one. */
1317void
1318sd_add_dep (dep_t dep, bool resolved_p)
1319{
1320 dep_node_t n = create_dep_node ();
1321 deps_list_t con_back_deps;
1322 deps_list_t pro_forw_deps;
1323 rtx_insn *elem = DEP_PRO (dep);
1324 rtx_insn *insn = DEP_CON (dep);
1325
1326 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1327
1328 if ((current_sched_info->flags & DO_SPECULATION) == 0
1329 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1330 DEP_STATUS (dep) &= ~SPECULATIVE;
1331
1332 copy_dep (DEP_NODE_DEP (n), from: dep);
1333
1334 get_back_and_forw_lists (dep, resolved_p, back_list_ptr: &con_back_deps, forw_list_ptr: &pro_forw_deps);
1335
1336 add_to_deps_list (DEP_NODE_BACK (n), l: con_back_deps);
1337
1338 if (flag_checking)
1339 check_dep (dep, false);
1340
1341 add_to_deps_list (DEP_NODE_FORW (n), l: pro_forw_deps);
1342
1343 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1344 in the bitmap caches of dependency information. */
1345 if (true_dependency_cache != NULL)
1346 set_dependency_caches (dep);
1347}
1348
1349/* Add or update backward dependence between INSN and ELEM
1350 with given type DEP_TYPE and dep_status DS.
1351 This function is a convenience wrapper. */
1352enum DEPS_ADJUST_RESULT
1353sd_add_or_update_dep (dep_t dep, bool resolved_p)
1354{
1355 return add_or_update_dep_1 (new_dep: dep, resolved_p, NULL_RTX, NULL_RTX);
1356}
1357
1358/* Resolved dependence pointed to by SD_IT.
1359 SD_IT will advance to the next element. */
1360void
1361sd_resolve_dep (sd_iterator_def sd_it)
1362{
1363 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1364 dep_t dep = DEP_NODE_DEP (node);
1365 rtx_insn *pro = DEP_PRO (dep);
1366 rtx_insn *con = DEP_CON (dep);
1367
1368 if (dep_spec_p (dep))
1369 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1370 INSN_RESOLVED_BACK_DEPS (con));
1371 else
1372 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1373 INSN_RESOLVED_BACK_DEPS (con));
1374
1375 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1376 INSN_RESOLVED_FORW_DEPS (pro));
1377}
1378
1379/* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1380 pointed to by SD_IT to unresolved state. */
1381void
1382sd_unresolve_dep (sd_iterator_def sd_it)
1383{
1384 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1385 dep_t dep = DEP_NODE_DEP (node);
1386 rtx_insn *pro = DEP_PRO (dep);
1387 rtx_insn *con = DEP_CON (dep);
1388
1389 if (dep_spec_p (dep))
1390 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1391 INSN_SPEC_BACK_DEPS (con));
1392 else
1393 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1394 INSN_HARD_BACK_DEPS (con));
1395
1396 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1397 INSN_FORW_DEPS (pro));
1398}
1399
1400/* Make TO depend on all the FROM's producers.
1401 If RESOLVED_P is true add dependencies to the resolved lists. */
1402void
1403sd_copy_back_deps (rtx_insn *to, rtx_insn *from, bool resolved_p)
1404{
1405 sd_list_types_def list_type;
1406 sd_iterator_def sd_it;
1407 dep_t dep;
1408
1409 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1410
1411 FOR_EACH_DEP (from, list_type, sd_it, dep)
1412 {
1413 dep_def _new_dep, *new_dep = &_new_dep;
1414
1415 copy_dep (to: new_dep, from: dep);
1416 DEP_CON (new_dep) = to;
1417 sd_add_dep (dep: new_dep, resolved_p);
1418 }
1419}
1420
1421/* Remove a dependency referred to by SD_IT.
1422 SD_IT will point to the next dependence after removal. */
1423void
1424sd_delete_dep (sd_iterator_def sd_it)
1425{
1426 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1427 dep_t dep = DEP_NODE_DEP (n);
1428 rtx_insn *pro = DEP_PRO (dep);
1429 rtx_insn *con = DEP_CON (dep);
1430 deps_list_t con_back_deps;
1431 deps_list_t pro_forw_deps;
1432
1433 if (true_dependency_cache != NULL)
1434 {
1435 int elem_luid = INSN_LUID (pro);
1436 int insn_luid = INSN_LUID (con);
1437
1438 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1439 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1440 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1441 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1442
1443 if (current_sched_info->flags & DO_SPECULATION)
1444 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1445 }
1446
1447 get_back_and_forw_lists (dep, resolved_p: sd_it.resolved_p,
1448 back_list_ptr: &con_back_deps, forw_list_ptr: &pro_forw_deps);
1449
1450 remove_from_deps_list (DEP_NODE_BACK (n), list: con_back_deps);
1451 remove_from_deps_list (DEP_NODE_FORW (n), list: pro_forw_deps);
1452
1453 delete_dep_node (n);
1454}
1455
1456/* Dump size of the lists. */
1457#define DUMP_LISTS_SIZE (2)
1458
1459/* Dump dependencies of the lists. */
1460#define DUMP_LISTS_DEPS (4)
1461
1462/* Dump all information about the lists. */
1463#define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1464
1465/* Dump deps_lists of INSN specified by TYPES to DUMP.
1466 FLAGS is a bit mask specifying what information about the lists needs
1467 to be printed.
1468 If FLAGS has the very first bit set, then dump all information about
1469 the lists and propagate this bit into the callee dump functions. */
1470static void
1471dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1472{
1473 sd_iterator_def sd_it;
1474 dep_t dep;
1475 int all;
1476
1477 all = (flags & 1);
1478
1479 if (all)
1480 flags |= DUMP_LISTS_ALL;
1481
1482 fprintf (stream: dump, format: "[");
1483
1484 if (flags & DUMP_LISTS_SIZE)
1485 fprintf (stream: dump, format: "%d; ", sd_lists_size (insn, list_types: types));
1486
1487 if (flags & DUMP_LISTS_DEPS)
1488 {
1489 FOR_EACH_DEP (insn, types, sd_it, dep)
1490 {
1491 dump_dep (dump, dep, flags: dump_dep_flags | all);
1492 fprintf (stream: dump, format: " ");
1493 }
1494 }
1495}
1496
1497/* Dump all information about deps_lists of INSN specified by TYPES
1498 to STDERR. */
1499void
1500sd_debug_lists (rtx insn, sd_list_types_def types)
1501{
1502 dump_lists (stderr, insn, types, flags: 1);
1503 fprintf (stderr, format: "\n");
1504}
1505
1506/* A wrapper around add_dependence_1, to add a dependence of CON on
1507 PRO, with type DEP_TYPE. This function implements special handling
1508 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1509 the type to REG_DEP_ANTI if we can determine that predication is
1510 impossible; otherwise we add additional true dependencies on the
1511 INSN_COND_DEPS list of the jump (which PRO must be). */
1512void
1513add_dependence (rtx_insn *con, rtx_insn *pro, enum reg_note dep_type)
1514{
1515 if (dep_type == REG_DEP_CONTROL
1516 && !(current_sched_info->flags & DO_PREDICATION))
1517 dep_type = REG_DEP_ANTI;
1518
1519 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1520 so we must also make the insn dependent on the setter of the
1521 condition. */
1522 if (dep_type == REG_DEP_CONTROL)
1523 {
1524 rtx_insn *real_pro = pro;
1525 rtx_insn *other = real_insn_for_shadow (real_pro);
1526 rtx cond;
1527
1528 if (other != NULL_RTX)
1529 real_pro = other;
1530 cond = sched_get_reverse_condition_uncached (insn: real_pro);
1531 /* Verify that the insn does not use a different value in
1532 the condition register than the one that was present at
1533 the jump. */
1534 if (cond == NULL_RTX)
1535 dep_type = REG_DEP_ANTI;
1536 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1537 {
1538 HARD_REG_SET uses;
1539 CLEAR_HARD_REG_SET (set&: uses);
1540 note_uses (&PATTERN (insn: con), record_hard_reg_uses, &uses);
1541 if (TEST_HARD_REG_BIT (set: uses, REGNO (XEXP (cond, 0))))
1542 dep_type = REG_DEP_ANTI;
1543 }
1544 if (dep_type == REG_DEP_CONTROL)
1545 {
1546 if (sched_verbose >= 5)
1547 fprintf (stream: sched_dump, format: "making DEP_CONTROL for %d\n",
1548 INSN_UID (insn: real_pro));
1549 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1550 REG_DEP_TRUE, false);
1551 }
1552 }
1553
1554 add_dependence_1 (con, pro, dep_type);
1555}
1556
1557/* A convenience wrapper to operate on an entire list. HARD should be
1558 true if DEP_NONREG should be set on newly created dependencies. */
1559
1560static void
1561add_dependence_list (rtx_insn *insn, rtx_insn_list *list, int uncond,
1562 enum reg_note dep_type, bool hard)
1563{
1564 mark_as_hard = hard;
1565 for (; list; list = list->next ())
1566 {
1567 if (uncond || ! sched_insns_conditions_mutex_p (insn1: insn, insn2: list->insn ()))
1568 add_dependence (con: insn, pro: list->insn (), dep_type);
1569 }
1570 mark_as_hard = false;
1571}
1572
1573/* Similar, but free *LISTP at the same time, when the context
1574 is not readonly. HARD should be true if DEP_NONREG should be set on
1575 newly created dependencies. */
1576
1577static void
1578add_dependence_list_and_free (class deps_desc *deps, rtx_insn *insn,
1579 rtx_insn_list **listp,
1580 int uncond, enum reg_note dep_type, bool hard)
1581{
1582 add_dependence_list (insn, list: *listp, uncond, dep_type, hard);
1583
1584 /* We don't want to short-circuit dependencies involving debug
1585 insns, because they may cause actual dependencies to be
1586 disregarded. */
1587 if (deps->readonly || DEBUG_INSN_P (insn))
1588 return;
1589
1590 free_INSN_LIST_list (listp);
1591}
1592
1593/* Remove all occurrences of INSN from LIST. Return the number of
1594 occurrences removed. */
1595
1596static int
1597remove_from_dependence_list (rtx_insn *insn, rtx_insn_list **listp)
1598{
1599 int removed = 0;
1600
1601 while (*listp)
1602 {
1603 if ((*listp)->insn () == insn)
1604 {
1605 remove_free_INSN_LIST_node (listp);
1606 removed++;
1607 continue;
1608 }
1609
1610 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1611 }
1612
1613 return removed;
1614}
1615
1616/* Same as above, but process two lists at once. */
1617static int
1618remove_from_both_dependence_lists (rtx_insn *insn,
1619 rtx_insn_list **listp,
1620 rtx_expr_list **exprp)
1621{
1622 int removed = 0;
1623
1624 while (*listp)
1625 {
1626 if (XEXP (*listp, 0) == insn)
1627 {
1628 remove_free_INSN_LIST_node (listp);
1629 remove_free_EXPR_LIST_node (exprp);
1630 removed++;
1631 continue;
1632 }
1633
1634 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1635 exprp = (rtx_expr_list **)&XEXP (*exprp, 1);
1636 }
1637
1638 return removed;
1639}
1640
1641/* Clear all dependencies for an insn. */
1642static void
1643delete_all_dependences (rtx_insn *insn)
1644{
1645 sd_iterator_def sd_it;
1646 dep_t dep;
1647
1648 /* The below cycle can be optimized to clear the caches and back_deps
1649 in one call but that would provoke duplication of code from
1650 delete_dep (). */
1651
1652 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1653 sd_iterator_cond (it_ptr: &sd_it, dep_ptr: &dep);)
1654 sd_delete_dep (sd_it);
1655}
1656
1657/* All insns in a scheduling group except the first should only have
1658 dependencies on the previous insn in the group. So we find the
1659 first instruction in the scheduling group by walking the dependence
1660 chains backwards. Then we add the dependencies for the group to
1661 the previous nonnote insn. */
1662
1663static void
1664chain_to_prev_insn (rtx_insn *insn)
1665{
1666 sd_iterator_def sd_it;
1667 dep_t dep;
1668 rtx_insn *prev_nonnote;
1669
1670 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1671 {
1672 rtx_insn *i = insn;
1673 rtx_insn *pro = DEP_PRO (dep);
1674
1675 do
1676 {
1677 i = prev_nonnote_insn (i);
1678
1679 if (pro == i)
1680 goto next_link;
1681 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1682
1683 if (! sched_insns_conditions_mutex_p (insn1: i, insn2: pro))
1684 add_dependence (con: i, pro, DEP_TYPE (dep));
1685 next_link:;
1686 }
1687
1688 delete_all_dependences (insn);
1689
1690 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1691 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (insn: prev_nonnote)
1692 && ! sched_insns_conditions_mutex_p (insn1: insn, insn2: prev_nonnote))
1693 add_dependence (con: insn, pro: prev_nonnote, dep_type: REG_DEP_ANTI);
1694}
1695
1696/* Process an insn's memory dependencies. There are four kinds of
1697 dependencies:
1698
1699 (0) read dependence: read follows read
1700 (1) true dependence: read follows write
1701 (2) output dependence: write follows write
1702 (3) anti dependence: write follows read
1703
1704 We are careful to build only dependencies which actually exist, and
1705 use transitivity to avoid building too many links. */
1706
1707/* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1708 The MEM is a memory reference contained within INSN, which we are saving
1709 so that we can do memory aliasing on it. */
1710
1711static void
1712add_insn_mem_dependence (class deps_desc *deps, bool read_p,
1713 rtx_insn *insn, rtx mem)
1714{
1715 rtx_insn_list **insn_list;
1716 rtx_insn_list *insn_node;
1717 rtx_expr_list **mem_list;
1718 rtx_expr_list *mem_node;
1719
1720 gcc_assert (!deps->readonly);
1721 if (read_p)
1722 {
1723 insn_list = &deps->pending_read_insns;
1724 mem_list = &deps->pending_read_mems;
1725 if (!DEBUG_INSN_P (insn))
1726 deps->pending_read_list_length++;
1727 }
1728 else
1729 {
1730 insn_list = &deps->pending_write_insns;
1731 mem_list = &deps->pending_write_mems;
1732 deps->pending_write_list_length++;
1733 }
1734
1735 insn_node = alloc_INSN_LIST (insn, *insn_list);
1736 *insn_list = insn_node;
1737
1738 if (sched_deps_info->use_cselib)
1739 {
1740 mem = shallow_copy_rtx (mem);
1741 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1742 GET_MODE (mem), insn);
1743 }
1744 mem_node = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1745 *mem_list = mem_node;
1746}
1747
1748/* Make a dependency between every memory reference on the pending lists
1749 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1750 dependencies for a read operation, similarly with FOR_WRITE. */
1751
1752static void
1753flush_pending_lists (class deps_desc *deps, rtx_insn *insn, int for_read,
1754 int for_write)
1755{
1756 if (for_write)
1757 {
1758 add_dependence_list_and_free (deps, insn, listp: &deps->pending_read_insns,
1759 uncond: 1, dep_type: REG_DEP_ANTI, hard: true);
1760 if (!deps->readonly)
1761 {
1762 free_EXPR_LIST_list (&deps->pending_read_mems);
1763 deps->pending_read_list_length = 0;
1764 }
1765 }
1766
1767 add_dependence_list_and_free (deps, insn, listp: &deps->pending_write_insns, uncond: 1,
1768 dep_type: for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1769 hard: true);
1770
1771 add_dependence_list_and_free (deps, insn,
1772 listp: &deps->last_pending_memory_flush, uncond: 1,
1773 dep_type: for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1774 hard: true);
1775
1776 add_dependence_list_and_free (deps, insn, listp: &deps->pending_jump_insns, uncond: 1,
1777 dep_type: REG_DEP_ANTI, hard: true);
1778
1779 if (DEBUG_INSN_P (insn))
1780 {
1781 if (for_write)
1782 free_INSN_LIST_list (&deps->pending_read_insns);
1783 free_INSN_LIST_list (&deps->pending_write_insns);
1784 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1785 free_INSN_LIST_list (&deps->pending_jump_insns);
1786 }
1787
1788 if (!deps->readonly)
1789 {
1790 free_EXPR_LIST_list (&deps->pending_write_mems);
1791 deps->pending_write_list_length = 0;
1792
1793 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1794 deps->pending_flush_length = 1;
1795 }
1796 mark_as_hard = false;
1797}
1798
1799/* Instruction which dependencies we are analyzing. */
1800static rtx_insn *cur_insn = NULL;
1801
1802/* Implement hooks for haifa scheduler. */
1803
1804static void
1805haifa_start_insn (rtx_insn *insn)
1806{
1807 gcc_assert (insn && !cur_insn);
1808
1809 cur_insn = insn;
1810}
1811
1812static void
1813haifa_finish_insn (void)
1814{
1815 cur_insn = NULL;
1816}
1817
1818void
1819haifa_note_reg_set (int regno)
1820{
1821 SET_REGNO_REG_SET (reg_pending_sets, regno);
1822}
1823
1824void
1825haifa_note_reg_clobber (int regno)
1826{
1827 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1828}
1829
1830void
1831haifa_note_reg_use (int regno)
1832{
1833 SET_REGNO_REG_SET (reg_pending_uses, regno);
1834}
1835
1836static void
1837haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx_insn *pending_insn, ds_t ds)
1838{
1839 if (!(ds & SPECULATIVE))
1840 {
1841 mem = NULL_RTX;
1842 pending_mem = NULL_RTX;
1843 }
1844 else
1845 gcc_assert (ds & BEGIN_DATA);
1846
1847 {
1848 dep_def _dep, *dep = &_dep;
1849
1850 init_dep_1 (dep, pro: pending_insn, con: cur_insn, type: ds_to_dt (ds),
1851 ds: current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1852 DEP_NONREG (dep) = 1;
1853 maybe_add_or_update_dep_1 (dep, resolved_p: false, mem1: pending_mem, mem2: mem);
1854 }
1855
1856}
1857
1858static void
1859haifa_note_dep (rtx_insn *elem, ds_t ds)
1860{
1861 dep_def _dep;
1862 dep_t dep = &_dep;
1863
1864 init_dep (dep, pro: elem, con: cur_insn, kind: ds_to_dt (ds));
1865 if (mark_as_hard)
1866 DEP_NONREG (dep) = 1;
1867 maybe_add_or_update_dep_1 (dep, resolved_p: false, NULL_RTX, NULL_RTX);
1868}
1869
1870static void
1871note_reg_use (int r)
1872{
1873 if (sched_deps_info->note_reg_use)
1874 sched_deps_info->note_reg_use (r);
1875}
1876
1877static void
1878note_reg_set (int r)
1879{
1880 if (sched_deps_info->note_reg_set)
1881 sched_deps_info->note_reg_set (r);
1882}
1883
1884static void
1885note_reg_clobber (int r)
1886{
1887 if (sched_deps_info->note_reg_clobber)
1888 sched_deps_info->note_reg_clobber (r);
1889}
1890
1891static void
1892note_mem_dep (rtx m1, rtx m2, rtx_insn *e, ds_t ds)
1893{
1894 if (sched_deps_info->note_mem_dep)
1895 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1896}
1897
1898static void
1899note_dep (rtx_insn *e, ds_t ds)
1900{
1901 if (sched_deps_info->note_dep)
1902 sched_deps_info->note_dep (e, ds);
1903}
1904
1905/* Return corresponding to DS reg_note. */
1906enum reg_note
1907ds_to_dt (ds_t ds)
1908{
1909 if (ds & DEP_TRUE)
1910 return REG_DEP_TRUE;
1911 else if (ds & DEP_OUTPUT)
1912 return REG_DEP_OUTPUT;
1913 else if (ds & DEP_ANTI)
1914 return REG_DEP_ANTI;
1915 else
1916 {
1917 gcc_assert (ds & DEP_CONTROL);
1918 return REG_DEP_CONTROL;
1919 }
1920}
1921
1922
1923
1924/* Functions for computation of info needed for register pressure
1925 sensitive insn scheduling. */
1926
1927
1928/* Allocate and return reg_use_data structure for REGNO and INSN. */
1929static struct reg_use_data *
1930create_insn_reg_use (int regno, rtx_insn *insn)
1931{
1932 struct reg_use_data *use;
1933
1934 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1935 use->regno = regno;
1936 use->insn = insn;
1937 use->next_insn_use = INSN_REG_USE_LIST (insn);
1938 INSN_REG_USE_LIST (insn) = use;
1939 return use;
1940}
1941
1942/* Allocate reg_set_data structure for REGNO and INSN. */
1943static void
1944create_insn_reg_set (int regno, rtx insn)
1945{
1946 struct reg_set_data *set;
1947
1948 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1949 set->regno = regno;
1950 set->insn = insn;
1951 set->next_insn_set = INSN_REG_SET_LIST (insn);
1952 INSN_REG_SET_LIST (insn) = set;
1953}
1954
1955/* Set up insn register uses for INSN and dependency context DEPS. */
1956static void
1957setup_insn_reg_uses (class deps_desc *deps, rtx_insn *insn)
1958{
1959 unsigned i;
1960 reg_set_iterator rsi;
1961 struct reg_use_data *use, *use2, *next;
1962 struct deps_reg *reg_last;
1963
1964 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1965 {
1966 if (i < FIRST_PSEUDO_REGISTER
1967 && TEST_HARD_REG_BIT (ira_no_alloc_regs, bit: i))
1968 continue;
1969
1970 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1971 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1972 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1973 /* Ignore use which is not dying. */
1974 continue;
1975
1976 use = create_insn_reg_use (regno: i, insn);
1977 use->next_regno_use = use;
1978 reg_last = &deps->reg_last[i];
1979
1980 /* Create the cycle list of uses. */
1981 for (rtx_insn_list *list = reg_last->uses; list; list = list->next ())
1982 {
1983 use2 = create_insn_reg_use (regno: i, insn: list->insn ());
1984 next = use->next_regno_use;
1985 use->next_regno_use = use2;
1986 use2->next_regno_use = next;
1987 }
1988 }
1989}
1990
1991/* Register pressure info for the currently processed insn. */
1992static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1993
1994/* Return TRUE if INSN has the use structure for REGNO. */
1995static bool
1996insn_use_p (rtx insn, int regno)
1997{
1998 struct reg_use_data *use;
1999
2000 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2001 if (use->regno == regno)
2002 return true;
2003 return false;
2004}
2005
2006/* Update the register pressure info after birth of pseudo register REGNO
2007 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2008 the register is in clobber or unused after the insn. */
2009static void
2010mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2011{
2012 int incr, new_incr;
2013 enum reg_class cl;
2014
2015 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2016 cl = sched_regno_pressure_class[regno];
2017 if (cl != NO_REGS)
2018 {
2019 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2020 if (clobber_p)
2021 {
2022 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2023 reg_pressure_info[cl].clobber_increase = new_incr;
2024 }
2025 else if (unused_p)
2026 {
2027 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2028 reg_pressure_info[cl].unused_set_increase = new_incr;
2029 }
2030 else
2031 {
2032 new_incr = reg_pressure_info[cl].set_increase + incr;
2033 reg_pressure_info[cl].set_increase = new_incr;
2034 if (! insn_use_p (insn, regno))
2035 reg_pressure_info[cl].change += incr;
2036 create_insn_reg_set (regno, insn);
2037 }
2038 gcc_assert (new_incr < (1 << INCREASE_BITS));
2039 }
2040}
2041
2042/* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2043 hard registers involved in the birth. */
2044static void
2045mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2046 bool clobber_p, bool unused_p)
2047{
2048 enum reg_class cl;
2049 int new_incr, last = regno + nregs;
2050
2051 while (regno < last)
2052 {
2053 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2054 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, bit: regno))
2055 {
2056 cl = sched_regno_pressure_class[regno];
2057 if (cl != NO_REGS)
2058 {
2059 if (clobber_p)
2060 {
2061 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2062 reg_pressure_info[cl].clobber_increase = new_incr;
2063 }
2064 else if (unused_p)
2065 {
2066 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2067 reg_pressure_info[cl].unused_set_increase = new_incr;
2068 }
2069 else
2070 {
2071 new_incr = reg_pressure_info[cl].set_increase + 1;
2072 reg_pressure_info[cl].set_increase = new_incr;
2073 if (! insn_use_p (insn, regno))
2074 reg_pressure_info[cl].change += 1;
2075 create_insn_reg_set (regno, insn);
2076 }
2077 gcc_assert (new_incr < (1 << INCREASE_BITS));
2078 }
2079 }
2080 regno++;
2081 }
2082}
2083
2084/* Update the register pressure info after birth of pseudo or hard
2085 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2086 correspondingly that the register is in clobber or unused after the
2087 insn. */
2088static void
2089mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2090{
2091 int regno;
2092
2093 if (GET_CODE (reg) == SUBREG)
2094 reg = SUBREG_REG (reg);
2095
2096 if (! REG_P (reg))
2097 return;
2098
2099 regno = REGNO (reg);
2100 if (regno < FIRST_PSEUDO_REGISTER)
2101 mark_insn_hard_regno_birth (insn, regno, REG_NREGS (reg),
2102 clobber_p, unused_p);
2103 else
2104 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2105}
2106
2107/* Update the register pressure info after death of pseudo register
2108 REGNO. */
2109static void
2110mark_pseudo_death (int regno)
2111{
2112 int incr;
2113 enum reg_class cl;
2114
2115 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2116 cl = sched_regno_pressure_class[regno];
2117 if (cl != NO_REGS)
2118 {
2119 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2120 reg_pressure_info[cl].change -= incr;
2121 }
2122}
2123
2124/* Like mark_pseudo_death except that NREGS saying how many hard
2125 registers involved in the death. */
2126static void
2127mark_hard_regno_death (int regno, int nregs)
2128{
2129 enum reg_class cl;
2130 int last = regno + nregs;
2131
2132 while (regno < last)
2133 {
2134 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2135 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, bit: regno))
2136 {
2137 cl = sched_regno_pressure_class[regno];
2138 if (cl != NO_REGS)
2139 reg_pressure_info[cl].change -= 1;
2140 }
2141 regno++;
2142 }
2143}
2144
2145/* Update the register pressure info after death of pseudo or hard
2146 register REG. */
2147static void
2148mark_reg_death (rtx reg)
2149{
2150 int regno;
2151
2152 if (GET_CODE (reg) == SUBREG)
2153 reg = SUBREG_REG (reg);
2154
2155 if (! REG_P (reg))
2156 return;
2157
2158 regno = REGNO (reg);
2159 if (regno < FIRST_PSEUDO_REGISTER)
2160 mark_hard_regno_death (regno, REG_NREGS (reg));
2161 else
2162 mark_pseudo_death (regno);
2163}
2164
2165/* Process SETTER of REG. DATA is an insn containing the setter. */
2166static void
2167mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2168{
2169 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2170 return;
2171 mark_insn_reg_birth
2172 (insn: (rtx) data, reg, clobber_p: false,
2173 unused_p: find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2174}
2175
2176/* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2177static void
2178mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2179{
2180 if (GET_CODE (setter) == CLOBBER)
2181 mark_insn_reg_birth (insn: (rtx) data, reg, clobber_p: true, unused_p: false);
2182}
2183
2184/* Set up reg pressure info related to INSN. */
2185void
2186init_insn_reg_pressure_info (rtx_insn *insn)
2187{
2188 int i, len;
2189 enum reg_class cl;
2190 static struct reg_pressure_data *pressure_info;
2191 rtx link;
2192
2193 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2194
2195 if (! INSN_P (insn))
2196 return;
2197
2198 for (i = 0; i < ira_pressure_classes_num; i++)
2199 {
2200 cl = ira_pressure_classes[i];
2201 reg_pressure_info[cl].clobber_increase = 0;
2202 reg_pressure_info[cl].set_increase = 0;
2203 reg_pressure_info[cl].unused_set_increase = 0;
2204 reg_pressure_info[cl].change = 0;
2205 }
2206
2207 note_stores (insn, mark_insn_reg_clobber, insn);
2208
2209 note_stores (insn, mark_insn_reg_store, insn);
2210
2211 if (AUTO_INC_DEC)
2212 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2213 if (REG_NOTE_KIND (link) == REG_INC)
2214 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, data: insn);
2215
2216 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2217 if (REG_NOTE_KIND (link) == REG_DEAD)
2218 mark_reg_death (XEXP (link, 0));
2219
2220 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2221 pressure_info
2222 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2223 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2224 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2225 * sizeof (int), 1);
2226 for (i = 0; i < ira_pressure_classes_num; i++)
2227 {
2228 cl = ira_pressure_classes[i];
2229 pressure_info[i].clobber_increase
2230 = reg_pressure_info[cl].clobber_increase;
2231 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2232 pressure_info[i].unused_set_increase
2233 = reg_pressure_info[cl].unused_set_increase;
2234 pressure_info[i].change = reg_pressure_info[cl].change;
2235 }
2236}
2237
2238
2239
2240
2241/* Internal variable for sched_analyze_[12] () functions.
2242 If it is nonzero, this means that sched_analyze_[12] looks
2243 at the most toplevel SET. */
2244static bool can_start_lhs_rhs_p;
2245
2246/* Extend reg info for the deps context DEPS given that
2247 we have just generated a register numbered REGNO. */
2248static void
2249extend_deps_reg_info (class deps_desc *deps, int regno)
2250{
2251 int max_regno = regno + 1;
2252
2253 gcc_assert (!reload_completed);
2254
2255 /* In a readonly context, it would not hurt to extend info,
2256 but it should not be needed. */
2257 if (reload_completed && deps->readonly)
2258 {
2259 deps->max_reg = max_regno;
2260 return;
2261 }
2262
2263 if (max_regno > deps->max_reg)
2264 {
2265 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2266 max_regno);
2267 memset (s: &deps->reg_last[deps->max_reg],
2268 c: 0, n: (max_regno - deps->max_reg)
2269 * sizeof (struct deps_reg));
2270 deps->max_reg = max_regno;
2271 }
2272}
2273
2274/* Extends REG_INFO_P if needed. */
2275void
2276maybe_extend_reg_info_p (void)
2277{
2278 /* Extend REG_INFO_P, if needed. */
2279 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2280 {
2281 size_t new_reg_info_p_size = max_regno + 128;
2282
2283 gcc_assert (!reload_completed && sel_sched_p ());
2284
2285 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2286 new_reg_info_p_size,
2287 reg_info_p_size,
2288 sizeof (*reg_info_p));
2289 reg_info_p_size = new_reg_info_p_size;
2290 }
2291}
2292
2293/* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2294 The type of the reference is specified by REF and can be SET,
2295 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2296
2297static void
2298sched_analyze_reg (class deps_desc *deps, int regno, machine_mode mode,
2299 enum rtx_code ref, rtx_insn *insn)
2300{
2301 /* We could emit new pseudos in renaming. Extend the reg structures. */
2302 if (!reload_completed && sel_sched_p ()
2303 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2304 extend_deps_reg_info (deps, regno);
2305
2306 maybe_extend_reg_info_p ();
2307
2308 /* A hard reg in a wide mode may really be multiple registers.
2309 If so, mark all of them just like the first. */
2310 if (regno < FIRST_PSEUDO_REGISTER)
2311 {
2312 int i = hard_regno_nregs (regno, mode);
2313 if (ref == SET)
2314 {
2315 while (--i >= 0)
2316 note_reg_set (r: regno + i);
2317 }
2318 else if (ref == USE)
2319 {
2320 while (--i >= 0)
2321 note_reg_use (r: regno + i);
2322 }
2323 else
2324 {
2325 while (--i >= 0)
2326 note_reg_clobber (r: regno + i);
2327 }
2328 }
2329
2330 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2331 it does not reload. Ignore these as they have served their
2332 purpose already. */
2333 else if (regno >= deps->max_reg)
2334 {
2335 enum rtx_code code = GET_CODE (PATTERN (insn));
2336 gcc_assert (code == USE || code == CLOBBER);
2337 }
2338
2339 else
2340 {
2341 if (ref == SET)
2342 note_reg_set (r: regno);
2343 else if (ref == USE)
2344 note_reg_use (r: regno);
2345 else
2346 note_reg_clobber (r: regno);
2347
2348 /* Pseudos that are REG_EQUIV to something may be replaced
2349 by that during reloading. We need only add dependencies for
2350 the address in the REG_EQUIV note. */
2351 if (!reload_completed && get_reg_known_equiv_p (regno))
2352 {
2353 rtx t = get_reg_known_value (regno);
2354 if (MEM_P (t))
2355 sched_analyze_2 (deps, XEXP (t, 0), insn);
2356 }
2357
2358 /* Don't let it cross a call after scheduling if it doesn't
2359 already cross one. */
2360 if (REG_N_CALLS_CROSSED (regno) == 0)
2361 {
2362 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2363 deps->sched_before_next_call
2364 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2365 else
2366 add_dependence_list (insn, list: deps->last_function_call, uncond: 1,
2367 dep_type: REG_DEP_ANTI, hard: false);
2368 }
2369 }
2370}
2371
2372/* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2373 rtx, X, creating all dependencies generated by the write to the
2374 destination of X, and reads of everything mentioned. */
2375
2376static void
2377sched_analyze_1 (class deps_desc *deps, rtx x, rtx_insn *insn)
2378{
2379 rtx dest = XEXP (x, 0);
2380 enum rtx_code code = GET_CODE (x);
2381 bool cslr_p = can_start_lhs_rhs_p;
2382
2383 can_start_lhs_rhs_p = false;
2384
2385 gcc_assert (dest);
2386 if (dest == 0)
2387 return;
2388
2389 if (cslr_p && sched_deps_info->start_lhs)
2390 sched_deps_info->start_lhs (dest);
2391
2392 if (GET_CODE (dest) == PARALLEL)
2393 {
2394 int i;
2395
2396 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2397 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2398 sched_analyze_1 (deps,
2399 gen_rtx_CLOBBER (VOIDmode,
2400 XEXP (XVECEXP (dest, 0, i), 0)),
2401 insn);
2402
2403 if (cslr_p && sched_deps_info->finish_lhs)
2404 sched_deps_info->finish_lhs ();
2405
2406 if (code == SET)
2407 {
2408 can_start_lhs_rhs_p = cslr_p;
2409
2410 sched_analyze_2 (deps, SET_SRC (x), insn);
2411
2412 can_start_lhs_rhs_p = false;
2413 }
2414
2415 return;
2416 }
2417
2418 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2419 || GET_CODE (dest) == ZERO_EXTRACT)
2420 {
2421 if (GET_CODE (dest) == STRICT_LOW_PART
2422 || GET_CODE (dest) == ZERO_EXTRACT
2423 || read_modify_subreg_p (dest))
2424 {
2425 /* These both read and modify the result. We must handle
2426 them as writes to get proper dependencies for following
2427 instructions. We must handle them as reads to get proper
2428 dependencies from this to previous instructions.
2429 Thus we need to call sched_analyze_2. */
2430
2431 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2432 }
2433 if (GET_CODE (dest) == ZERO_EXTRACT)
2434 {
2435 /* The second and third arguments are values read by this insn. */
2436 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2437 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2438 }
2439 dest = XEXP (dest, 0);
2440 }
2441
2442 if (REG_P (dest))
2443 {
2444 int regno = REGNO (dest);
2445 machine_mode mode = GET_MODE (dest);
2446
2447 sched_analyze_reg (deps, regno, mode, ref: code, insn);
2448
2449#ifdef STACK_REGS
2450 /* Treat all writes to a stack register as modifying the TOS. */
2451 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2452 {
2453 /* Avoid analyzing the same register twice. */
2454 if (regno != FIRST_STACK_REG)
2455 sched_analyze_reg (deps, FIRST_STACK_REG, mode, ref: code, insn);
2456
2457 add_to_hard_reg_set (regs: &implicit_reg_pending_uses, mode,
2458 FIRST_STACK_REG);
2459 }
2460#endif
2461 }
2462 else if (MEM_P (dest))
2463 {
2464 /* Writing memory. */
2465 rtx t = dest;
2466
2467 if (sched_deps_info->use_cselib)
2468 {
2469 machine_mode address_mode = get_address_mode (mem: dest);
2470
2471 t = shallow_copy_rtx (dest);
2472 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2473 GET_MODE (t), insn);
2474 XEXP (t, 0)
2475 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2476 insn);
2477 }
2478 t = canon_rtx (t);
2479
2480 /* Pending lists can't get larger with a readonly context. */
2481 if (!deps->readonly
2482 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2483 >= param_max_pending_list_length))
2484 {
2485 /* Flush all pending reads and writes to prevent the pending lists
2486 from getting any larger. Insn scheduling runs too slowly when
2487 these lists get long. When compiling GCC with itself,
2488 this flush occurs 8 times for sparc, and 10 times for m88k using
2489 the default value of 32. */
2490 flush_pending_lists (deps, insn, for_read: false, for_write: true);
2491 }
2492 else
2493 {
2494 rtx_insn_list *pending;
2495 rtx_expr_list *pending_mem;
2496
2497 pending = deps->pending_read_insns;
2498 pending_mem = deps->pending_read_mems;
2499 while (pending)
2500 {
2501 if (anti_dependence (pending_mem->element (), t)
2502 && ! sched_insns_conditions_mutex_p (insn1: insn, insn2: pending->insn ()))
2503 note_mem_dep (m1: t, m2: pending_mem->element (), e: pending->insn (),
2504 DEP_ANTI);
2505
2506 pending = pending->next ();
2507 pending_mem = pending_mem->next ();
2508 }
2509
2510 pending = deps->pending_write_insns;
2511 pending_mem = deps->pending_write_mems;
2512 while (pending)
2513 {
2514 if (output_dependence (pending_mem->element (), t)
2515 && ! sched_insns_conditions_mutex_p (insn1: insn, insn2: pending->insn ()))
2516 note_mem_dep (m1: t, m2: pending_mem->element (),
2517 e: pending->insn (),
2518 DEP_OUTPUT);
2519
2520 pending = pending->next ();
2521 pending_mem = pending_mem-> next ();
2522 }
2523
2524 add_dependence_list (insn, list: deps->last_pending_memory_flush, uncond: 1,
2525 dep_type: REG_DEP_ANTI, hard: true);
2526 add_dependence_list (insn, list: deps->pending_jump_insns, uncond: 1,
2527 dep_type: REG_DEP_CONTROL, hard: true);
2528
2529 if (!deps->readonly)
2530 add_insn_mem_dependence (deps, read_p: false, insn, mem: dest);
2531 }
2532 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2533 }
2534
2535 if (cslr_p && sched_deps_info->finish_lhs)
2536 sched_deps_info->finish_lhs ();
2537
2538 /* Analyze reads. */
2539 if (GET_CODE (x) == SET)
2540 {
2541 can_start_lhs_rhs_p = cslr_p;
2542
2543 sched_analyze_2 (deps, SET_SRC (x), insn);
2544
2545 can_start_lhs_rhs_p = false;
2546 }
2547}
2548
2549/* Analyze the uses of memory and registers in rtx X in INSN. */
2550static void
2551sched_analyze_2 (class deps_desc *deps, rtx x, rtx_insn *insn)
2552{
2553 int i;
2554 int j;
2555 enum rtx_code code;
2556 const char *fmt;
2557 bool cslr_p = can_start_lhs_rhs_p;
2558
2559 can_start_lhs_rhs_p = false;
2560
2561 gcc_assert (x);
2562 if (x == 0)
2563 return;
2564
2565 if (cslr_p && sched_deps_info->start_rhs)
2566 sched_deps_info->start_rhs (x);
2567
2568 code = GET_CODE (x);
2569
2570 switch (code)
2571 {
2572 CASE_CONST_ANY:
2573 case SYMBOL_REF:
2574 case CONST:
2575 case LABEL_REF:
2576 /* Ignore constants. */
2577 if (cslr_p && sched_deps_info->finish_rhs)
2578 sched_deps_info->finish_rhs ();
2579
2580 return;
2581
2582 case REG:
2583 {
2584 int regno = REGNO (x);
2585 machine_mode mode = GET_MODE (x);
2586
2587 sched_analyze_reg (deps, regno, mode, ref: USE, insn);
2588
2589#ifdef STACK_REGS
2590 /* Treat all reads of a stack register as modifying the TOS. */
2591 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2592 {
2593 /* Avoid analyzing the same register twice. */
2594 if (regno != FIRST_STACK_REG)
2595 sched_analyze_reg (deps, FIRST_STACK_REG, mode, ref: USE, insn);
2596 sched_analyze_reg (deps, FIRST_STACK_REG, mode, ref: SET, insn);
2597 }
2598#endif
2599
2600 if (cslr_p && sched_deps_info->finish_rhs)
2601 sched_deps_info->finish_rhs ();
2602
2603 return;
2604 }
2605
2606 case MEM:
2607 {
2608 if (DEBUG_INSN_P (insn) && sched_deps_info->use_cselib)
2609 {
2610 machine_mode address_mode = get_address_mode (mem: x);
2611
2612 cselib_lookup_from_insn (XEXP (x, 0), address_mode, 1,
2613 GET_MODE (x), insn);
2614 }
2615 else if (!DEBUG_INSN_P (insn))
2616 {
2617 /* Reading memory. */
2618 rtx_insn_list *u;
2619 rtx_insn_list *pending;
2620 rtx_expr_list *pending_mem;
2621 rtx t = x;
2622
2623 if (sched_deps_info->use_cselib)
2624 {
2625 machine_mode address_mode = get_address_mode (mem: t);
2626
2627 t = shallow_copy_rtx (t);
2628 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2629 GET_MODE (t), insn);
2630 XEXP (t, 0)
2631 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2632 insn);
2633 }
2634
2635 t = canon_rtx (t);
2636 pending = deps->pending_read_insns;
2637 pending_mem = deps->pending_read_mems;
2638 while (pending)
2639 {
2640 if (read_dependence (pending_mem->element (), t)
2641 && ! sched_insns_conditions_mutex_p (insn1: insn,
2642 insn2: pending->insn ()))
2643 note_mem_dep (m1: t, m2: pending_mem->element (),
2644 e: pending->insn (),
2645 DEP_ANTI);
2646
2647 pending = pending->next ();
2648 pending_mem = pending_mem->next ();
2649 }
2650
2651 pending = deps->pending_write_insns;
2652 pending_mem = deps->pending_write_mems;
2653 while (pending)
2654 {
2655 if (true_dependence (pending_mem->element (), VOIDmode, t)
2656 && ! sched_insns_conditions_mutex_p (insn1: insn,
2657 insn2: pending->insn ()))
2658 note_mem_dep (m1: t, m2: pending_mem->element (),
2659 e: pending->insn (),
2660 ds: sched_deps_info->generate_spec_deps
2661 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2662
2663 pending = pending->next ();
2664 pending_mem = pending_mem->next ();
2665 }
2666
2667 for (u = deps->last_pending_memory_flush; u; u = u->next ())
2668 add_dependence (con: insn, pro: u->insn (), dep_type: REG_DEP_ANTI);
2669
2670 for (u = deps->pending_jump_insns; u; u = u->next ())
2671 if (deps_may_trap_p (mem: x))
2672 {
2673 if ((sched_deps_info->generate_spec_deps)
2674 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2675 {
2676 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2677 MAX_DEP_WEAK);
2678
2679 note_dep (e: u->insn (), ds);
2680 }
2681 else
2682 add_dependence (con: insn, pro: u->insn (), dep_type: REG_DEP_CONTROL);
2683 }
2684 }
2685
2686 /* Always add these dependencies to pending_reads, since
2687 this insn may be followed by a write. */
2688 if (!deps->readonly)
2689 {
2690 if ((deps->pending_read_list_length
2691 + deps->pending_write_list_length)
2692 >= param_max_pending_list_length
2693 && !DEBUG_INSN_P (insn))
2694 flush_pending_lists (deps, insn, for_read: true, for_write: true);
2695 add_insn_mem_dependence (deps, read_p: true, insn, mem: x);
2696 }
2697
2698 sched_analyze_2 (deps, XEXP (x, 0), insn);
2699
2700 if (cslr_p && sched_deps_info->finish_rhs)
2701 sched_deps_info->finish_rhs ();
2702
2703 return;
2704 }
2705
2706 /* Force pending stores to memory in case a trap handler needs them.
2707 Also force pending loads from memory; loads and stores can segfault
2708 and the signal handler won't be triggered if the trap insn was moved
2709 above load or store insn. */
2710 case TRAP_IF:
2711 flush_pending_lists (deps, insn, for_read: true, for_write: true);
2712 break;
2713
2714 case PREFETCH:
2715 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2716 reg_pending_barrier = TRUE_BARRIER;
2717 /* Prefetch insn contains addresses only. So if the prefetch
2718 address has no registers, there will be no dependencies on
2719 the prefetch insn. This is wrong with result code
2720 correctness point of view as such prefetch can be moved below
2721 a jump insn which usually generates MOVE_BARRIER preventing
2722 to move insns containing registers or memories through the
2723 barrier. It is also wrong with generated code performance
2724 point of view as prefetch withouth dependecies will have a
2725 tendency to be issued later instead of earlier. It is hard
2726 to generate accurate dependencies for prefetch insns as
2727 prefetch has only the start address but it is better to have
2728 something than nothing. */
2729 if (!deps->readonly)
2730 {
2731 rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2732 if (sched_deps_info->use_cselib)
2733 cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2734 add_insn_mem_dependence (deps, read_p: true, insn, mem: x);
2735 }
2736 break;
2737
2738 case UNSPEC_VOLATILE:
2739 flush_pending_lists (deps, insn, for_read: true, for_write: true);
2740 /* FALLTHRU */
2741
2742 case ASM_OPERANDS:
2743 case ASM_INPUT:
2744 {
2745 /* Traditional and volatile asm instructions must be considered to use
2746 and clobber all hard registers, all pseudo-registers and all of
2747 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2748
2749 Consider for instance a volatile asm that changes the fpu rounding
2750 mode. An insn should not be moved across this even if it only uses
2751 pseudo-regs because it might give an incorrectly rounded result. */
2752 if ((code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2753 && !DEBUG_INSN_P (insn))
2754 reg_pending_barrier = TRUE_BARRIER;
2755
2756 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2757 We cannot just fall through here since then we would be confused
2758 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2759 traditional asms unlike their normal usage. */
2760
2761 if (code == ASM_OPERANDS)
2762 {
2763 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2764 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2765
2766 if (cslr_p && sched_deps_info->finish_rhs)
2767 sched_deps_info->finish_rhs ();
2768
2769 return;
2770 }
2771 break;
2772 }
2773
2774 case PRE_DEC:
2775 case POST_DEC:
2776 case PRE_INC:
2777 case POST_INC:
2778 /* These both read and modify the result. We must handle them as writes
2779 to get proper dependencies for following instructions. We must handle
2780 them as reads to get proper dependencies from this to previous
2781 instructions. Thus we need to pass them to both sched_analyze_1
2782 and sched_analyze_2. We must call sched_analyze_2 first in order
2783 to get the proper antecedent for the read. */
2784 sched_analyze_2 (deps, XEXP (x, 0), insn);
2785 sched_analyze_1 (deps, x, insn);
2786
2787 if (cslr_p && sched_deps_info->finish_rhs)
2788 sched_deps_info->finish_rhs ();
2789
2790 return;
2791
2792 case POST_MODIFY:
2793 case PRE_MODIFY:
2794 /* op0 = op0 + op1 */
2795 sched_analyze_2 (deps, XEXP (x, 0), insn);
2796 sched_analyze_2 (deps, XEXP (x, 1), insn);
2797 sched_analyze_1 (deps, x, insn);
2798
2799 if (cslr_p && sched_deps_info->finish_rhs)
2800 sched_deps_info->finish_rhs ();
2801
2802 return;
2803
2804 default:
2805 break;
2806 }
2807
2808 /* Other cases: walk the insn. */
2809 fmt = GET_RTX_FORMAT (code);
2810 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2811 {
2812 if (fmt[i] == 'e')
2813 sched_analyze_2 (deps, XEXP (x, i), insn);
2814 else if (fmt[i] == 'E')
2815 for (j = 0; j < XVECLEN (x, i); j++)
2816 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2817 }
2818
2819 if (cslr_p && sched_deps_info->finish_rhs)
2820 sched_deps_info->finish_rhs ();
2821}
2822
2823/* Try to group two fusible insns together to prevent scheduler
2824 from scheduling them apart. */
2825
2826static void
2827sched_macro_fuse_insns (rtx_insn *insn)
2828{
2829 rtx_insn *prev;
2830 /* No target hook would return true for debug insn as any of the
2831 hook operand, and with very large sequences of only debug insns
2832 where on each we call sched_macro_fuse_insns it has quadratic
2833 compile time complexity. */
2834 if (DEBUG_INSN_P (insn))
2835 return;
2836 prev = prev_nonnote_nondebug_insn_bb (insn);
2837 if (!prev)
2838 return;
2839
2840 if (any_condjump_p (insn))
2841 {
2842 unsigned int condreg1, condreg2;
2843 rtx cc_reg_1;
2844 if (targetm.fixed_condition_code_regs (&condreg1, &condreg2))
2845 {
2846 cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
2847 if (reg_referenced_p (cc_reg_1, PATTERN (insn))
2848 && modified_in_p (cc_reg_1, prev))
2849 {
2850 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2851 SCHED_GROUP_P (insn) = 1;
2852 return;
2853 }
2854 }
2855 }
2856
2857 if (single_set (insn) && single_set (insn: prev))
2858 {
2859 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2860 SCHED_GROUP_P (insn) = 1;
2861 }
2862}
2863
2864/* Get the implicit reg pending clobbers for INSN and save them in TEMP. */
2865void
2866get_implicit_reg_pending_clobbers (HARD_REG_SET *temp, rtx_insn *insn)
2867{
2868 extract_insn (insn);
2869 preprocess_constraints (insn);
2870 alternative_mask preferred = get_preferred_alternatives (insn);
2871 ira_implicitly_set_insn_hard_regs (temp, preferred);
2872 *temp &= ~ira_no_alloc_regs;
2873}
2874
2875/* Analyze an INSN with pattern X to find all dependencies. */
2876static void
2877sched_analyze_insn (class deps_desc *deps, rtx x, rtx_insn *insn)
2878{
2879 RTX_CODE code = GET_CODE (x);
2880 rtx link;
2881 unsigned i;
2882 reg_set_iterator rsi;
2883
2884 if (! reload_completed)
2885 {
2886 HARD_REG_SET temp;
2887 get_implicit_reg_pending_clobbers (temp: &temp, insn);
2888 implicit_reg_pending_clobbers |= temp;
2889 }
2890
2891 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2892 && code == SET);
2893
2894 /* Group compare and branch insns for macro-fusion. */
2895 if (!deps->readonly
2896 && targetm.sched.macro_fusion_p
2897 && targetm.sched.macro_fusion_p ())
2898 sched_macro_fuse_insns (insn);
2899
2900 if (may_trap_p (x))
2901 /* Avoid moving trapping instructions across function calls that might
2902 not always return. */
2903 add_dependence_list (insn, list: deps->last_function_call_may_noreturn,
2904 uncond: 1, dep_type: REG_DEP_ANTI, hard: true);
2905
2906 /* We must avoid creating a situation in which two successors of the
2907 current block have different unwind info after scheduling. If at any
2908 point the two paths re-join this leads to incorrect unwind info. */
2909 /* ??? There are certain situations involving a forced frame pointer in
2910 which, with extra effort, we could fix up the unwind info at a later
2911 CFG join. However, it seems better to notice these cases earlier
2912 during prologue generation and avoid marking the frame pointer setup
2913 as frame-related at all. */
2914 if (RTX_FRAME_RELATED_P (insn))
2915 {
2916 /* Make sure prologue insn is scheduled before next jump. */
2917 deps->sched_before_next_jump
2918 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2919
2920 /* Make sure epilogue insn is scheduled after preceding jumps. */
2921 add_dependence_list (insn, list: deps->last_pending_memory_flush, uncond: 1,
2922 dep_type: REG_DEP_ANTI, hard: true);
2923 add_dependence_list (insn, list: deps->pending_jump_insns, uncond: 1, dep_type: REG_DEP_ANTI,
2924 hard: true);
2925 }
2926
2927 if (code == COND_EXEC)
2928 {
2929 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2930
2931 /* ??? Should be recording conditions so we reduce the number of
2932 false dependencies. */
2933 x = COND_EXEC_CODE (x);
2934 code = GET_CODE (x);
2935 }
2936 if (code == SET || code == CLOBBER)
2937 {
2938 sched_analyze_1 (deps, x, insn);
2939
2940 /* Bare clobber insns are used for letting life analysis, reg-stack
2941 and others know that a value is dead. Depend on the last call
2942 instruction so that reg-stack won't get confused. */
2943 if (code == CLOBBER)
2944 add_dependence_list (insn, list: deps->last_function_call, uncond: 1,
2945 dep_type: REG_DEP_OUTPUT, hard: true);
2946 }
2947 else if (code == PARALLEL)
2948 {
2949 for (i = XVECLEN (x, 0); i--;)
2950 {
2951 rtx sub = XVECEXP (x, 0, i);
2952 code = GET_CODE (sub);
2953
2954 if (code == COND_EXEC)
2955 {
2956 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2957 sub = COND_EXEC_CODE (sub);
2958 code = GET_CODE (sub);
2959 }
2960 else if (code == SET || code == CLOBBER)
2961 sched_analyze_1 (deps, x: sub, insn);
2962 else
2963 sched_analyze_2 (deps, x: sub, insn);
2964 }
2965 }
2966 else
2967 sched_analyze_2 (deps, x, insn);
2968
2969 /* Mark registers CLOBBERED or used by called function. */
2970 if (CALL_P (insn))
2971 {
2972 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2973 {
2974 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2975 sched_analyze_1 (deps, XEXP (link, 0), insn);
2976 else if (GET_CODE (XEXP (link, 0)) != SET)
2977 sched_analyze_2 (deps, XEXP (link, 0), insn);
2978 }
2979 /* Don't schedule anything after a tail call, tail call needs
2980 to use at least all call-saved registers. */
2981 if (SIBLING_CALL_P (insn))
2982 reg_pending_barrier = TRUE_BARRIER;
2983 else if (find_reg_note (insn, REG_SETJMP, NULL))
2984 reg_pending_barrier = MOVE_BARRIER;
2985 }
2986
2987 if (JUMP_P (insn))
2988 {
2989 rtx_insn *next = next_nonnote_nondebug_insn (insn);
2990 /* ??? For tablejumps, the barrier may appear not immediately after
2991 the jump, but after a label and a jump_table_data insn. */
2992 if (next && LABEL_P (next) && NEXT_INSN (insn: next)
2993 && JUMP_TABLE_DATA_P (NEXT_INSN (next)))
2994 next = NEXT_INSN (insn: NEXT_INSN (insn: next));
2995 if (next && BARRIER_P (next))
2996 reg_pending_barrier = MOVE_BARRIER;
2997 else
2998 {
2999 rtx_insn_list *pending;
3000 rtx_expr_list *pending_mem;
3001
3002 if (sched_deps_info->compute_jump_reg_dependencies)
3003 {
3004 (*sched_deps_info->compute_jump_reg_dependencies)
3005 (insn, reg_pending_control_uses);
3006
3007 /* Make latency of jump equal to 0 by using anti-dependence. */
3008 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3009 {
3010 struct deps_reg *reg_last = &deps->reg_last[i];
3011 add_dependence_list (insn, list: reg_last->sets, uncond: 0, dep_type: REG_DEP_ANTI,
3012 hard: false);
3013 add_dependence_list (insn, list: reg_last->implicit_sets,
3014 uncond: 0, dep_type: REG_DEP_ANTI, hard: false);
3015 add_dependence_list (insn, list: reg_last->clobbers, uncond: 0,
3016 dep_type: REG_DEP_ANTI, hard: false);
3017 }
3018 }
3019
3020 /* All memory writes and volatile reads must happen before the
3021 jump. Non-volatile reads must happen before the jump iff
3022 the result is needed by the above register used mask. */
3023
3024 pending = deps->pending_write_insns;
3025 pending_mem = deps->pending_write_mems;
3026 while (pending)
3027 {
3028 if (! sched_insns_conditions_mutex_p (insn1: insn, insn2: pending->insn ()))
3029 add_dependence (con: insn, pro: pending->insn (),
3030 dep_type: REG_DEP_OUTPUT);
3031 pending = pending->next ();
3032 pending_mem = pending_mem->next ();
3033 }
3034
3035 pending = deps->pending_read_insns;
3036 pending_mem = deps->pending_read_mems;
3037 while (pending)
3038 {
3039 if (MEM_VOLATILE_P (pending_mem->element ())
3040 && ! sched_insns_conditions_mutex_p (insn1: insn, insn2: pending->insn ()))
3041 add_dependence (con: insn, pro: pending->insn (),
3042 dep_type: REG_DEP_OUTPUT);
3043 pending = pending->next ();
3044 pending_mem = pending_mem->next ();
3045 }
3046
3047 add_dependence_list (insn, list: deps->last_pending_memory_flush, uncond: 1,
3048 dep_type: REG_DEP_ANTI, hard: true);
3049 add_dependence_list (insn, list: deps->pending_jump_insns, uncond: 1,
3050 dep_type: REG_DEP_ANTI, hard: true);
3051 }
3052 }
3053
3054 /* If this instruction can throw an exception, then moving it changes
3055 where block boundaries fall. This is mighty confusing elsewhere.
3056 Therefore, prevent such an instruction from being moved. Same for
3057 non-jump instructions that define block boundaries.
3058 ??? Unclear whether this is still necessary in EBB mode. If not,
3059 add_branch_dependences should be adjusted for RGN mode instead. */
3060 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
3061 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
3062 reg_pending_barrier = MOVE_BARRIER;
3063
3064 if (sched_pressure != SCHED_PRESSURE_NONE)
3065 {
3066 setup_insn_reg_uses (deps, insn);
3067 init_insn_reg_pressure_info (insn);
3068 }
3069
3070 /* Add register dependencies for insn. */
3071 if (DEBUG_INSN_P (insn))
3072 {
3073 rtx_insn *prev = deps->last_debug_insn;
3074 rtx_insn_list *u;
3075
3076 if (!deps->readonly)
3077 deps->last_debug_insn = insn;
3078
3079 if (prev)
3080 add_dependence (con: insn, pro: prev, dep_type: REG_DEP_ANTI);
3081
3082 add_dependence_list (insn, list: deps->last_function_call, uncond: 1,
3083 dep_type: REG_DEP_ANTI, hard: false);
3084
3085 if (!sel_sched_p ())
3086 for (u = deps->last_pending_memory_flush; u; u = u->next ())
3087 add_dependence (con: insn, pro: u->insn (), dep_type: REG_DEP_ANTI);
3088
3089 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3090 {
3091 struct deps_reg *reg_last = &deps->reg_last[i];
3092 add_dependence_list (insn, list: reg_last->sets, uncond: 1, dep_type: REG_DEP_ANTI, hard: false);
3093 /* There's no point in making REG_DEP_CONTROL dependencies for
3094 debug insns. */
3095 add_dependence_list (insn, list: reg_last->clobbers, uncond: 1, dep_type: REG_DEP_ANTI,
3096 hard: false);
3097
3098 if (!deps->readonly)
3099 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3100 }
3101 CLEAR_REG_SET (reg_pending_uses);
3102
3103 /* Quite often, a debug insn will refer to stuff in the
3104 previous instruction, but the reason we want this
3105 dependency here is to make sure the scheduler doesn't
3106 gratuitously move a debug insn ahead. This could dirty
3107 DF flags and cause additional analysis that wouldn't have
3108 occurred in compilation without debug insns, and such
3109 additional analysis can modify the generated code. */
3110 prev = PREV_INSN (insn);
3111
3112 if (prev && NONDEBUG_INSN_P (prev))
3113 add_dependence (con: insn, pro: prev, dep_type: REG_DEP_ANTI);
3114 }
3115 else
3116 {
3117 regset_head set_or_clobbered;
3118
3119 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3120 {
3121 struct deps_reg *reg_last = &deps->reg_last[i];
3122 add_dependence_list (insn, list: reg_last->sets, uncond: 0, dep_type: REG_DEP_TRUE, hard: false);
3123 add_dependence_list (insn, list: reg_last->implicit_sets, uncond: 0, dep_type: REG_DEP_ANTI,
3124 hard: false);
3125 add_dependence_list (insn, list: reg_last->clobbers, uncond: 0, dep_type: REG_DEP_TRUE,
3126 hard: false);
3127
3128 if (!deps->readonly)
3129 {
3130 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3131 reg_last->uses_length++;
3132 }
3133 }
3134
3135 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3136 if (TEST_HARD_REG_BIT (set: implicit_reg_pending_uses, bit: i))
3137 {
3138 struct deps_reg *reg_last = &deps->reg_last[i];
3139 add_dependence_list (insn, list: reg_last->sets, uncond: 0, dep_type: REG_DEP_TRUE, hard: false);
3140 add_dependence_list (insn, list: reg_last->implicit_sets, uncond: 0,
3141 dep_type: REG_DEP_ANTI, hard: false);
3142 add_dependence_list (insn, list: reg_last->clobbers, uncond: 0, dep_type: REG_DEP_TRUE,
3143 hard: false);
3144
3145 if (!deps->readonly)
3146 {
3147 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3148 reg_last->uses_length++;
3149 }
3150 }
3151
3152 if (targetm.sched.exposed_pipeline)
3153 {
3154 INIT_REG_SET (&set_or_clobbered);
3155 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3156 reg_pending_sets);
3157 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3158 {
3159 struct deps_reg *reg_last = &deps->reg_last[i];
3160 rtx list;
3161 for (list = reg_last->uses; list; list = XEXP (list, 1))
3162 {
3163 rtx other = XEXP (list, 0);
3164 if (INSN_CACHED_COND (other) != const_true_rtx
3165 && refers_to_regno_p (regnum: i, INSN_CACHED_COND (other)))
3166 INSN_CACHED_COND (other) = const_true_rtx;
3167 }
3168 }
3169 }
3170
3171 /* If the current insn is conditional, we can't free any
3172 of the lists. */
3173 if (sched_has_condition_p (insn))
3174 {
3175 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3176 {
3177 struct deps_reg *reg_last = &deps->reg_last[i];
3178 add_dependence_list (insn, list: reg_last->sets, uncond: 0, dep_type: REG_DEP_OUTPUT,
3179 hard: false);
3180 add_dependence_list (insn, list: reg_last->implicit_sets, uncond: 0,
3181 dep_type: REG_DEP_ANTI, hard: false);
3182 add_dependence_list (insn, list: reg_last->uses, uncond: 0, dep_type: REG_DEP_ANTI,
3183 hard: false);
3184 add_dependence_list (insn, list: reg_last->control_uses, uncond: 0,
3185 dep_type: REG_DEP_CONTROL, hard: false);
3186
3187 if (!deps->readonly)
3188 {
3189 reg_last->clobbers
3190 = alloc_INSN_LIST (insn, reg_last->clobbers);
3191 reg_last->clobbers_length++;
3192 }
3193 }
3194 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3195 {
3196 struct deps_reg *reg_last = &deps->reg_last[i];
3197 add_dependence_list (insn, list: reg_last->sets, uncond: 0, dep_type: REG_DEP_OUTPUT,
3198 hard: false);
3199 add_dependence_list (insn, list: reg_last->implicit_sets, uncond: 0,
3200 dep_type: REG_DEP_ANTI, hard: false);
3201 add_dependence_list (insn, list: reg_last->clobbers, uncond: 0, dep_type: REG_DEP_OUTPUT,
3202 hard: false);
3203 add_dependence_list (insn, list: reg_last->uses, uncond: 0, dep_type: REG_DEP_ANTI,
3204 hard: false);
3205 add_dependence_list (insn, list: reg_last->control_uses, uncond: 0,
3206 dep_type: REG_DEP_CONTROL, hard: false);
3207
3208 if (!deps->readonly)
3209 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3210 }
3211 }
3212 else
3213 {
3214 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3215 {
3216 struct deps_reg *reg_last = &deps->reg_last[i];
3217 if (reg_last->uses_length >= param_max_pending_list_length
3218 || reg_last->clobbers_length >= param_max_pending_list_length)
3219 {
3220 add_dependence_list_and_free (deps, insn, listp: &reg_last->sets, uncond: 0,
3221 dep_type: REG_DEP_OUTPUT, hard: false);
3222 add_dependence_list_and_free (deps, insn,
3223 listp: &reg_last->implicit_sets, uncond: 0,
3224 dep_type: REG_DEP_ANTI, hard: false);
3225 add_dependence_list_and_free (deps, insn, listp: &reg_last->uses, uncond: 0,
3226 dep_type: REG_DEP_ANTI, hard: false);
3227 add_dependence_list_and_free (deps, insn,
3228 listp: &reg_last->control_uses, uncond: 0,
3229 dep_type: REG_DEP_ANTI, hard: false);
3230 add_dependence_list_and_free (deps, insn,
3231 listp: &reg_last->clobbers, uncond: 0,
3232 dep_type: REG_DEP_OUTPUT, hard: false);
3233
3234 if (!deps->readonly)
3235 {
3236 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3237 reg_last->clobbers_length = 0;
3238 reg_last->uses_length = 0;
3239 }
3240 }
3241 else
3242 {
3243 add_dependence_list (insn, list: reg_last->sets, uncond: 0, dep_type: REG_DEP_OUTPUT,
3244 hard: false);
3245 add_dependence_list (insn, list: reg_last->implicit_sets, uncond: 0,
3246 dep_type: REG_DEP_ANTI, hard: false);
3247 add_dependence_list (insn, list: reg_last->uses, uncond: 0, dep_type: REG_DEP_ANTI,
3248 hard: false);
3249 add_dependence_list (insn, list: reg_last->control_uses, uncond: 0,
3250 dep_type: REG_DEP_CONTROL, hard: false);
3251 }
3252
3253 if (!deps->readonly)
3254 {
3255 reg_last->clobbers_length++;
3256 reg_last->clobbers
3257 = alloc_INSN_LIST (insn, reg_last->clobbers);
3258 }
3259 }
3260 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3261 {
3262 struct deps_reg *reg_last = &deps->reg_last[i];
3263
3264 add_dependence_list_and_free (deps, insn, listp: &reg_last->sets, uncond: 0,
3265 dep_type: REG_DEP_OUTPUT, hard: false);
3266 add_dependence_list_and_free (deps, insn,
3267 listp: &reg_last->implicit_sets,
3268 uncond: 0, dep_type: REG_DEP_ANTI, hard: false);
3269 add_dependence_list_and_free (deps, insn, listp: &reg_last->clobbers, uncond: 0,
3270 dep_type: REG_DEP_OUTPUT, hard: false);
3271 add_dependence_list_and_free (deps, insn, listp: &reg_last->uses, uncond: 0,
3272 dep_type: REG_DEP_ANTI, hard: false);
3273 add_dependence_list (insn, list: reg_last->control_uses, uncond: 0,
3274 dep_type: REG_DEP_CONTROL, hard: false);
3275
3276 if (!deps->readonly)
3277 {
3278 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3279 reg_last->uses_length = 0;
3280 reg_last->clobbers_length = 0;
3281 }
3282 }
3283 }
3284 if (!deps->readonly)
3285 {
3286 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3287 {
3288 struct deps_reg *reg_last = &deps->reg_last[i];
3289 reg_last->control_uses
3290 = alloc_INSN_LIST (insn, reg_last->control_uses);
3291 }
3292 }
3293 }
3294
3295 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3296 if (TEST_HARD_REG_BIT (set: implicit_reg_pending_clobbers, bit: i))
3297 {
3298 struct deps_reg *reg_last = &deps->reg_last[i];
3299 add_dependence_list (insn, list: reg_last->sets, uncond: 0, dep_type: REG_DEP_ANTI, hard: false);
3300 add_dependence_list (insn, list: reg_last->clobbers, uncond: 0, dep_type: REG_DEP_ANTI, hard: false);
3301 add_dependence_list (insn, list: reg_last->uses, uncond: 0, dep_type: REG_DEP_ANTI, hard: false);
3302 add_dependence_list (insn, list: reg_last->control_uses, uncond: 0, dep_type: REG_DEP_ANTI,
3303 hard: false);
3304
3305 if (!deps->readonly)
3306 reg_last->implicit_sets
3307 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3308 }
3309
3310 if (!deps->readonly)
3311 {
3312 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3313 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3314 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3315 IOR_REG_SET_HRS (&deps->reg_last_in_use,
3316 implicit_reg_pending_uses
3317 | implicit_reg_pending_clobbers);
3318
3319 /* Set up the pending barrier found. */
3320 deps->last_reg_pending_barrier = reg_pending_barrier;
3321 }
3322
3323 CLEAR_REG_SET (reg_pending_uses);
3324 CLEAR_REG_SET (reg_pending_clobbers);
3325 CLEAR_REG_SET (reg_pending_sets);
3326 CLEAR_REG_SET (reg_pending_control_uses);
3327 CLEAR_HARD_REG_SET (set&: implicit_reg_pending_clobbers);
3328 CLEAR_HARD_REG_SET (set&: implicit_reg_pending_uses);
3329
3330 /* Add dependencies if a scheduling barrier was found. */
3331 if (reg_pending_barrier)
3332 {
3333 /* In the case of barrier the most added dependencies are not
3334 real, so we use anti-dependence here. */
3335 if (sched_has_condition_p (insn))
3336 {
3337 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3338 {
3339 struct deps_reg *reg_last = &deps->reg_last[i];
3340 add_dependence_list (insn, list: reg_last->uses, uncond: 0, dep_type: REG_DEP_ANTI,
3341 hard: true);
3342 add_dependence_list (insn, list: reg_last->sets, uncond: 0,
3343 dep_type: reg_pending_barrier == TRUE_BARRIER
3344 ? REG_DEP_TRUE : REG_DEP_ANTI, hard: true);
3345 add_dependence_list (insn, list: reg_last->implicit_sets, uncond: 0,
3346 dep_type: REG_DEP_ANTI, hard: true);
3347 add_dependence_list (insn, list: reg_last->clobbers, uncond: 0,
3348 dep_type: reg_pending_barrier == TRUE_BARRIER
3349 ? REG_DEP_TRUE : REG_DEP_ANTI, hard: true);
3350 }
3351 }
3352 else
3353 {
3354 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3355 {
3356 struct deps_reg *reg_last = &deps->reg_last[i];
3357 add_dependence_list_and_free (deps, insn, listp: &reg_last->uses, uncond: 0,
3358 dep_type: REG_DEP_ANTI, hard: true);
3359 add_dependence_list_and_free (deps, insn,
3360 listp: &reg_last->control_uses, uncond: 0,
3361 dep_type: REG_DEP_CONTROL, hard: true);
3362 add_dependence_list_and_free (deps, insn, listp: &reg_last->sets, uncond: 0,
3363 dep_type: reg_pending_barrier == TRUE_BARRIER
3364 ? REG_DEP_TRUE : REG_DEP_ANTI,
3365 hard: true);
3366 add_dependence_list_and_free (deps, insn,
3367 listp: &reg_last->implicit_sets, uncond: 0,
3368 dep_type: REG_DEP_ANTI, hard: true);
3369 add_dependence_list_and_free (deps, insn, listp: &reg_last->clobbers, uncond: 0,
3370 dep_type: reg_pending_barrier == TRUE_BARRIER
3371 ? REG_DEP_TRUE : REG_DEP_ANTI,
3372 hard: true);
3373
3374 if (!deps->readonly)
3375 {
3376 reg_last->uses_length = 0;
3377 reg_last->clobbers_length = 0;
3378 }
3379 }
3380 }
3381
3382 if (!deps->readonly)
3383 for (i = 0; i < (unsigned)deps->max_reg; i++)
3384 {
3385 struct deps_reg *reg_last = &deps->reg_last[i];
3386 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3387 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3388 }
3389
3390 /* Don't flush pending lists on speculative checks for
3391 selective scheduling. */
3392 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3393 flush_pending_lists (deps, insn, for_read: true, for_write: true);
3394
3395 reg_pending_barrier = NOT_A_BARRIER;
3396 }
3397
3398 /* If a post-call group is still open, see if it should remain so.
3399 This insn must be a simple move of a hard reg to a pseudo or
3400 vice-versa.
3401
3402 We must avoid moving these insns for correctness on targets
3403 with small register classes, and for special registers like
3404 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3405 hard regs for all targets. */
3406
3407 if (deps->in_post_call_group_p)
3408 {
3409 rtx tmp, set = single_set (insn);
3410 int src_regno, dest_regno;
3411
3412 if (set == NULL)
3413 {
3414 if (DEBUG_INSN_P (insn))
3415 /* We don't want to mark debug insns as part of the same
3416 sched group. We know they really aren't, but if we use
3417 debug insns to tell that a call group is over, we'll
3418 get different code if debug insns are not there and
3419 instructions that follow seem like they should be part
3420 of the call group.
3421
3422 Also, if we did, chain_to_prev_insn would move the
3423 deps of the debug insn to the call insn, modifying
3424 non-debug post-dependency counts of the debug insn
3425 dependencies and otherwise messing with the scheduling
3426 order.
3427
3428 Instead, let such debug insns be scheduled freely, but
3429 keep the call group open in case there are insns that
3430 should be part of it afterwards. Since we grant debug
3431 insns higher priority than even sched group insns, it
3432 will all turn out all right. */
3433 goto debug_dont_end_call_group;
3434 else
3435 goto end_call_group;
3436 }
3437
3438 tmp = SET_DEST (set);
3439 if (GET_CODE (tmp) == SUBREG)
3440 tmp = SUBREG_REG (tmp);
3441 if (REG_P (tmp))
3442 dest_regno = REGNO (tmp);
3443 else
3444 goto end_call_group;
3445
3446 tmp = SET_SRC (set);
3447 if (GET_CODE (tmp) == SUBREG)
3448 tmp = SUBREG_REG (tmp);
3449 if ((GET_CODE (tmp) == PLUS
3450 || GET_CODE (tmp) == MINUS)
3451 && REG_P (XEXP (tmp, 0))
3452 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3453 && dest_regno == STACK_POINTER_REGNUM)
3454 src_regno = STACK_POINTER_REGNUM;
3455 else if (REG_P (tmp))
3456 src_regno = REGNO (tmp);
3457 else
3458 goto end_call_group;
3459
3460 if (src_regno < FIRST_PSEUDO_REGISTER
3461 || dest_regno < FIRST_PSEUDO_REGISTER)
3462 {
3463 if (!deps->readonly
3464 && deps->in_post_call_group_p == post_call_initial)
3465 deps->in_post_call_group_p = post_call;
3466
3467 if (!sel_sched_p () || sched_emulate_haifa_p)
3468 {
3469 SCHED_GROUP_P (insn) = 1;
3470 CANT_MOVE (insn) = 1;
3471 }
3472 }
3473 else
3474 {
3475 end_call_group:
3476 if (!deps->readonly)
3477 deps->in_post_call_group_p = not_post_call;
3478 }
3479 }
3480
3481 debug_dont_end_call_group:
3482 if ((current_sched_info->flags & DO_SPECULATION)
3483 && !sched_insn_is_legitimate_for_speculation_p (insn, ds: 0))
3484 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3485 be speculated. */
3486 {
3487 if (sel_sched_p ())
3488 sel_mark_hard_insn (insn);
3489 else
3490 {
3491 sd_iterator_def sd_it;
3492 dep_t dep;
3493
3494 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3495 sd_iterator_cond (it_ptr: &sd_it, dep_ptr: &dep);)
3496 change_spec_dep_to_hard (sd_it);
3497 }
3498 }
3499
3500 /* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
3501 honor their original ordering. */
3502 if (find_reg_note (insn, REG_ARGS_SIZE, NULL))
3503 {
3504 if (deps->last_args_size)
3505 add_dependence (con: insn, pro: deps->last_args_size, dep_type: REG_DEP_OUTPUT);
3506 if (!deps->readonly)
3507 deps->last_args_size = insn;
3508 }
3509
3510 /* We must not mix prologue and epilogue insns. See PR78029. */
3511 if (prologue_contains (insn))
3512 {
3513 add_dependence_list (insn, list: deps->last_epilogue, uncond: true, dep_type: REG_DEP_ANTI, hard: true);
3514 if (!deps->readonly)
3515 {
3516 if (deps->last_logue_was_epilogue)
3517 free_INSN_LIST_list (&deps->last_prologue);
3518 deps->last_prologue = alloc_INSN_LIST (insn, deps->last_prologue);
3519 deps->last_logue_was_epilogue = false;
3520 }
3521 }
3522
3523 if (epilogue_contains (insn))
3524 {
3525 add_dependence_list (insn, list: deps->last_prologue, uncond: true, dep_type: REG_DEP_ANTI, hard: true);
3526 if (!deps->readonly)
3527 {
3528 if (!deps->last_logue_was_epilogue)
3529 free_INSN_LIST_list (&deps->last_epilogue);
3530 deps->last_epilogue = alloc_INSN_LIST (insn, deps->last_epilogue);
3531 deps->last_logue_was_epilogue = true;
3532 }
3533 }
3534}
3535
3536/* Return TRUE if INSN might not always return normally (e.g. call exit,
3537 longjmp, loop forever, ...). */
3538/* FIXME: Why can't this function just use flags_from_decl_or_type and
3539 test for ECF_NORETURN? */
3540static bool
3541call_may_noreturn_p (rtx_insn *insn)
3542{
3543 rtx call;
3544
3545 /* const or pure calls that aren't looping will always return. */
3546 if (RTL_CONST_OR_PURE_CALL_P (insn)
3547 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3548 return false;
3549
3550 call = get_call_rtx_from (insn);
3551 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3552 {
3553 rtx symbol = XEXP (XEXP (call, 0), 0);
3554 if (SYMBOL_REF_DECL (symbol)
3555 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3556 {
3557 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3558 == BUILT_IN_NORMAL)
3559 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3560 {
3561 case BUILT_IN_BCMP:
3562 case BUILT_IN_BCOPY:
3563 case BUILT_IN_BZERO:
3564 case BUILT_IN_INDEX:
3565 case BUILT_IN_MEMCHR:
3566 case BUILT_IN_MEMCMP:
3567 case BUILT_IN_MEMCPY:
3568 case BUILT_IN_MEMMOVE:
3569 case BUILT_IN_MEMPCPY:
3570 case BUILT_IN_MEMSET:
3571 case BUILT_IN_RINDEX:
3572 case BUILT_IN_STPCPY:
3573 case BUILT_IN_STPNCPY:
3574 case BUILT_IN_STRCAT:
3575 case BUILT_IN_STRCHR:
3576 case BUILT_IN_STRCMP:
3577 case BUILT_IN_STRCPY:
3578 case BUILT_IN_STRCSPN:
3579 case BUILT_IN_STRLEN:
3580 case BUILT_IN_STRNCAT:
3581 case BUILT_IN_STRNCMP:
3582 case BUILT_IN_STRNCPY:
3583 case BUILT_IN_STRPBRK:
3584 case BUILT_IN_STRRCHR:
3585 case BUILT_IN_STRSPN:
3586 case BUILT_IN_STRSTR:
3587 /* Assume certain string/memory builtins always return. */
3588 return false;
3589 default:
3590 break;
3591 }
3592 }
3593 }
3594
3595 /* For all other calls assume that they might not always return. */
3596 return true;
3597}
3598
3599/* Return true if INSN should be made dependent on the previous instruction
3600 group, and if all INSN's dependencies should be moved to the first
3601 instruction of that group. */
3602
3603static bool
3604chain_to_prev_insn_p (rtx_insn *insn)
3605{
3606 /* INSN forms a group with the previous instruction. */
3607 if (SCHED_GROUP_P (insn))
3608 return true;
3609
3610 /* If the previous instruction clobbers a register R and this one sets
3611 part of R, the clobber was added specifically to help us track the
3612 liveness of R. There's no point scheduling the clobber and leaving
3613 INSN behind, especially if we move the clobber to another block. */
3614 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
3615 if (prev
3616 && INSN_P (prev)
3617 && BLOCK_FOR_INSN (insn: prev) == BLOCK_FOR_INSN (insn)
3618 && GET_CODE (PATTERN (prev)) == CLOBBER)
3619 {
3620 rtx x = XEXP (PATTERN (prev), 0);
3621 if (set_of (x, insn))
3622 return true;
3623 }
3624
3625 return false;
3626}
3627
3628/* Analyze INSN with DEPS as a context. */
3629void
3630deps_analyze_insn (class deps_desc *deps, rtx_insn *insn)
3631{
3632 if (sched_deps_info->start_insn)
3633 sched_deps_info->start_insn (insn);
3634
3635 /* Record the condition for this insn. */
3636 if (NONDEBUG_INSN_P (insn))
3637 {
3638 rtx t;
3639 sched_get_condition_with_rev (insn, NULL);
3640 t = INSN_CACHED_COND (insn);
3641 INSN_COND_DEPS (insn) = NULL;
3642 if (reload_completed
3643 && (current_sched_info->flags & DO_PREDICATION)
3644 && COMPARISON_P (t)
3645 && REG_P (XEXP (t, 0))
3646 && CONSTANT_P (XEXP (t, 1)))
3647 {
3648 unsigned int regno;
3649 int nregs;
3650 rtx_insn_list *cond_deps = NULL;
3651 t = XEXP (t, 0);
3652 regno = REGNO (t);
3653 nregs = REG_NREGS (t);
3654 while (nregs-- > 0)
3655 {
3656 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3657 cond_deps = concat_INSN_LIST (reg_last->sets, cond_deps);
3658 cond_deps = concat_INSN_LIST (reg_last->clobbers, cond_deps);
3659 cond_deps = concat_INSN_LIST (reg_last->implicit_sets, cond_deps);
3660 }
3661 INSN_COND_DEPS (insn) = cond_deps;
3662 }
3663 }
3664
3665 if (JUMP_P (insn))
3666 {
3667 /* Make each JUMP_INSN (but not a speculative check)
3668 a scheduling barrier for memory references. */
3669 if (!deps->readonly
3670 && !(sel_sched_p ()
3671 && sel_insn_is_speculation_check (insn)))
3672 {
3673 /* Keep the list a reasonable size. */
3674 if (deps->pending_flush_length++ >= param_max_pending_list_length)
3675 flush_pending_lists (deps, insn, for_read: true, for_write: true);
3676 else
3677 deps->pending_jump_insns
3678 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3679 }
3680
3681 /* For each insn which shouldn't cross a jump, add a dependence. */
3682 add_dependence_list_and_free (deps, insn,
3683 listp: &deps->sched_before_next_jump, uncond: 1,
3684 dep_type: REG_DEP_ANTI, hard: true);
3685
3686 sched_analyze_insn (deps, x: PATTERN (insn), insn);
3687 }
3688 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3689 {
3690 sched_analyze_insn (deps, x: PATTERN (insn), insn);
3691 }
3692 else if (CALL_P (insn))
3693 {
3694 int i;
3695
3696 CANT_MOVE (insn) = 1;
3697
3698 if (!reload_completed)
3699 {
3700 /* Scheduling across calls may increase register pressure by extending
3701 live ranges of pseudos over the call. Worse, in presence of setjmp
3702 it may incorrectly move up an assignment over a longjmp. */
3703 reg_pending_barrier = MOVE_BARRIER;
3704 }
3705 else if (find_reg_note (insn, REG_SETJMP, NULL))
3706 {
3707 /* This is setjmp. Assume that all registers, not just
3708 hard registers, may be clobbered by this call. */
3709 reg_pending_barrier = MOVE_BARRIER;
3710 }
3711 else
3712 {
3713 function_abi callee_abi = insn_callee_abi (insn);
3714 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3715 /* A call may read and modify global register variables. */
3716 if (global_regs[i])
3717 {
3718 SET_REGNO_REG_SET (reg_pending_sets, i);
3719 SET_HARD_REG_BIT (set&: implicit_reg_pending_uses, bit: i);
3720 }
3721 /* Other call-clobbered hard regs may be clobbered.
3722 Since we only have a choice between 'might be clobbered'
3723 and 'definitely not clobbered', we must include all
3724 partly call-clobbered registers here. */
3725 else if (callee_abi.clobbers_at_least_part_of_reg_p (regno: i))
3726 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3727 /* We don't know what set of fixed registers might be used
3728 by the function, but it is certain that the stack pointer
3729 is among them, but be conservative. */
3730 else if (fixed_regs[i])
3731 SET_HARD_REG_BIT (set&: implicit_reg_pending_uses, bit: i);
3732 /* The frame pointer is normally not used by the function
3733 itself, but by the debugger. */
3734 /* ??? MIPS o32 is an exception. It uses the frame pointer
3735 in the macro expansion of jal but does not represent this
3736 fact in the call_insn rtl. */
3737 else if (i == FRAME_POINTER_REGNUM
3738 || (i == HARD_FRAME_POINTER_REGNUM
3739 && (! reload_completed || frame_pointer_needed)))
3740 SET_HARD_REG_BIT (set&: implicit_reg_pending_uses, bit: i);
3741 }
3742
3743 /* For each insn which shouldn't cross a call, add a dependence
3744 between that insn and this call insn. */
3745 add_dependence_list_and_free (deps, insn,
3746 listp: &deps->sched_before_next_call, uncond: 1,
3747 dep_type: REG_DEP_ANTI, hard: true);
3748
3749 sched_analyze_insn (deps, x: PATTERN (insn), insn);
3750
3751 /* If CALL would be in a sched group, then this will violate
3752 convention that sched group insns have dependencies only on the
3753 previous instruction.
3754
3755 Of course one can say: "Hey! What about head of the sched group?"
3756 And I will answer: "Basic principles (one dep per insn) are always
3757 the same." */
3758 gcc_assert (!SCHED_GROUP_P (insn));
3759
3760 /* In the absence of interprocedural alias analysis, we must flush
3761 all pending reads and writes, and start new dependencies starting
3762 from here. But only flush writes for constant calls (which may
3763 be passed a pointer to something we haven't written yet). */
3764 flush_pending_lists (deps, insn, for_read: true, for_write: ! RTL_CONST_OR_PURE_CALL_P (insn));
3765
3766 if (!deps->readonly)
3767 {
3768 /* Remember the last function call for limiting lifetimes. */
3769 free_INSN_LIST_list (&deps->last_function_call);
3770 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3771
3772 if (call_may_noreturn_p (insn))
3773 {
3774 /* Remember the last function call that might not always return
3775 normally for limiting moves of trapping insns. */
3776 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3777 deps->last_function_call_may_noreturn
3778 = alloc_INSN_LIST (insn, NULL_RTX);
3779 }
3780
3781 /* Before reload, begin a post-call group, so as to keep the
3782 lifetimes of hard registers correct. */
3783 if (! reload_completed)
3784 deps->in_post_call_group_p = post_call;
3785 }
3786 }
3787
3788 if (sched_deps_info->use_cselib)
3789 cselib_process_insn (insn);
3790
3791 if (sched_deps_info->finish_insn)
3792 sched_deps_info->finish_insn ();
3793
3794 /* Fixup the dependencies in the sched group. */
3795 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3796 && chain_to_prev_insn_p (insn)
3797 && !sel_sched_p ())
3798 chain_to_prev_insn (insn);
3799}
3800
3801/* Initialize DEPS for the new block beginning with HEAD. */
3802void
3803deps_start_bb (class deps_desc *deps, rtx_insn *head)
3804{
3805 gcc_assert (!deps->readonly);
3806
3807 /* Before reload, if the previous block ended in a call, show that
3808 we are inside a post-call group, so as to keep the lifetimes of
3809 hard registers correct. */
3810 if (! reload_completed && !LABEL_P (head))
3811 {
3812 rtx_insn *insn = prev_nonnote_nondebug_insn (head);
3813
3814 if (insn && CALL_P (insn))
3815 deps->in_post_call_group_p = post_call_initial;
3816 }
3817}
3818
3819/* Analyze every insn between HEAD and TAIL inclusive, creating backward
3820 dependencies for each insn. */
3821void
3822sched_analyze (class deps_desc *deps, rtx_insn *head, rtx_insn *tail)
3823{
3824 rtx_insn *insn;
3825
3826 if (sched_deps_info->use_cselib)
3827 cselib_init (CSELIB_RECORD_MEMORY);
3828
3829 deps_start_bb (deps, head);
3830
3831 for (insn = head;; insn = NEXT_INSN (insn))
3832 {
3833 if (INSN_P (insn))
3834 {
3835 /* And initialize deps_lists. */
3836 sd_init_insn (insn);
3837 /* Clean up SCHED_GROUP_P which may be set by last
3838 scheduler pass. */
3839 if (SCHED_GROUP_P (insn))
3840 SCHED_GROUP_P (insn) = 0;
3841 }
3842
3843 deps_analyze_insn (deps, insn);
3844
3845 if (insn == tail)
3846 {
3847 if (sched_deps_info->use_cselib)
3848 cselib_finish ();
3849 return;
3850 }
3851 }
3852}
3853
3854/* Helper for sched_free_deps ().
3855 Delete INSN's (RESOLVED_P) backward dependencies. */
3856static void
3857delete_dep_nodes_in_back_deps (rtx_insn *insn, bool resolved_p)
3858{
3859 sd_iterator_def sd_it;
3860 dep_t dep;
3861 sd_list_types_def types;
3862
3863 if (resolved_p)
3864 types = SD_LIST_RES_BACK;
3865 else
3866 types = SD_LIST_BACK;
3867
3868 for (sd_it = sd_iterator_start (insn, types);
3869 sd_iterator_cond (it_ptr: &sd_it, dep_ptr: &dep);)
3870 {
3871 dep_link_t link = *sd_it.linkp;
3872 dep_node_t node = DEP_LINK_NODE (link);
3873 deps_list_t back_list;
3874 deps_list_t forw_list;
3875
3876 get_back_and_forw_lists (dep, resolved_p, back_list_ptr: &back_list, forw_list_ptr: &forw_list);
3877 remove_from_deps_list (link, list: back_list);
3878 delete_dep_node (n: node);
3879 }
3880}
3881
3882/* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3883 deps_lists. */
3884void
3885sched_free_deps (rtx_insn *head, rtx_insn *tail, bool resolved_p)
3886{
3887 rtx_insn *insn;
3888 rtx_insn *next_tail = NEXT_INSN (insn: tail);
3889
3890 /* We make two passes since some insns may be scheduled before their
3891 dependencies are resolved. */
3892 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3893 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3894 {
3895 /* Clear forward deps and leave the dep_nodes to the
3896 corresponding back_deps list. */
3897 if (resolved_p)
3898 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3899 else
3900 clear_deps_list (INSN_FORW_DEPS (insn));
3901 }
3902 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3903 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3904 {
3905 /* Clear resolved back deps together with its dep_nodes. */
3906 delete_dep_nodes_in_back_deps (insn, resolved_p);
3907
3908 sd_finish_insn (insn);
3909 }
3910}
3911
3912/* Initialize variables for region data dependence analysis.
3913 When LAZY_REG_LAST is true, do not allocate reg_last array
3914 of class deps_desc immediately. */
3915
3916void
3917init_deps (class deps_desc *deps, bool lazy_reg_last)
3918{
3919 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3920
3921 deps->max_reg = max_reg;
3922 if (lazy_reg_last)
3923 deps->reg_last = NULL;
3924 else
3925 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3926 INIT_REG_SET (&deps->reg_last_in_use);
3927
3928 deps->pending_read_insns = 0;
3929 deps->pending_read_mems = 0;
3930 deps->pending_write_insns = 0;
3931 deps->pending_write_mems = 0;
3932 deps->pending_jump_insns = 0;
3933 deps->pending_read_list_length = 0;
3934 deps->pending_write_list_length = 0;
3935 deps->pending_flush_length = 0;
3936 deps->last_pending_memory_flush = 0;
3937 deps->last_function_call = 0;
3938 deps->last_function_call_may_noreturn = 0;
3939 deps->sched_before_next_call = 0;
3940 deps->sched_before_next_jump = 0;
3941 deps->in_post_call_group_p = not_post_call;
3942 deps->last_debug_insn = 0;
3943 deps->last_args_size = 0;
3944 deps->last_prologue = 0;
3945 deps->last_epilogue = 0;
3946 deps->last_logue_was_epilogue = false;
3947 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3948 deps->readonly = 0;
3949}
3950
3951/* Init only reg_last field of DEPS, which was not allocated before as
3952 we inited DEPS lazily. */
3953void
3954init_deps_reg_last (class deps_desc *deps)
3955{
3956 gcc_assert (deps && deps->max_reg > 0);
3957 gcc_assert (deps->reg_last == NULL);
3958
3959 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3960}
3961
3962
3963/* Free insn lists found in DEPS. */
3964
3965void
3966free_deps (class deps_desc *deps)
3967{
3968 unsigned i;
3969 reg_set_iterator rsi;
3970
3971 /* We set max_reg to 0 when this context was already freed. */
3972 if (deps->max_reg == 0)
3973 {
3974 gcc_assert (deps->reg_last == NULL);
3975 return;
3976 }
3977 deps->max_reg = 0;
3978
3979 free_INSN_LIST_list (&deps->pending_read_insns);
3980 free_EXPR_LIST_list (&deps->pending_read_mems);
3981 free_INSN_LIST_list (&deps->pending_write_insns);
3982 free_EXPR_LIST_list (&deps->pending_write_mems);
3983 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3984
3985 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3986 times. For a testcase with 42000 regs and 8000 small basic blocks,
3987 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3988 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3989 {
3990 struct deps_reg *reg_last = &deps->reg_last[i];
3991 if (reg_last->uses)
3992 free_INSN_LIST_list (&reg_last->uses);
3993 if (reg_last->sets)
3994 free_INSN_LIST_list (&reg_last->sets);
3995 if (reg_last->implicit_sets)
3996 free_INSN_LIST_list (&reg_last->implicit_sets);
3997 if (reg_last->control_uses)
3998 free_INSN_LIST_list (&reg_last->control_uses);
3999 if (reg_last->clobbers)
4000 free_INSN_LIST_list (&reg_last->clobbers);
4001 }
4002 CLEAR_REG_SET (&deps->reg_last_in_use);
4003
4004 /* As we initialize reg_last lazily, it is possible that we didn't allocate
4005 it at all. */
4006 free (ptr: deps->reg_last);
4007 deps->reg_last = NULL;
4008
4009 deps = NULL;
4010}
4011
4012/* Remove INSN from dependence contexts DEPS. */
4013void
4014remove_from_deps (class deps_desc *deps, rtx_insn *insn)
4015{
4016 int removed;
4017 unsigned i;
4018 reg_set_iterator rsi;
4019
4020 removed = remove_from_both_dependence_lists (insn, listp: &deps->pending_read_insns,
4021 exprp: &deps->pending_read_mems);
4022 if (!DEBUG_INSN_P (insn))
4023 deps->pending_read_list_length -= removed;
4024 removed = remove_from_both_dependence_lists (insn, listp: &deps->pending_write_insns,
4025 exprp: &deps->pending_write_mems);
4026 deps->pending_write_list_length -= removed;
4027
4028 removed = remove_from_dependence_list (insn, listp: &deps->pending_jump_insns);
4029 deps->pending_flush_length -= removed;
4030 removed = remove_from_dependence_list (insn, listp: &deps->last_pending_memory_flush);
4031 deps->pending_flush_length -= removed;
4032
4033 unsigned to_clear = -1U;
4034 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
4035 {
4036 if (to_clear != -1U)
4037 {
4038 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4039 to_clear = -1U;
4040 }
4041 struct deps_reg *reg_last = &deps->reg_last[i];
4042 if (reg_last->uses)
4043 remove_from_dependence_list (insn, listp: &reg_last->uses);
4044 if (reg_last->sets)
4045 remove_from_dependence_list (insn, listp: &reg_last->sets);
4046 if (reg_last->implicit_sets)
4047 remove_from_dependence_list (insn, listp: &reg_last->implicit_sets);
4048 if (reg_last->clobbers)
4049 remove_from_dependence_list (insn, listp: &reg_last->clobbers);
4050 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
4051 && !reg_last->clobbers)
4052 to_clear = i;
4053 }
4054 if (to_clear != -1U)
4055 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4056
4057 if (CALL_P (insn))
4058 {
4059 remove_from_dependence_list (insn, listp: &deps->last_function_call);
4060 remove_from_dependence_list (insn,
4061 listp: &deps->last_function_call_may_noreturn);
4062 }
4063 remove_from_dependence_list (insn, listp: &deps->sched_before_next_call);
4064}
4065
4066/* Init deps data vector. */
4067static void
4068init_deps_data_vector (void)
4069{
4070 int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
4071 if (reserve > 0 && ! h_d_i_d.space (nelems: reserve))
4072 h_d_i_d.safe_grow_cleared (len: 3 * sched_max_luid / 2, exact: true);
4073}
4074
4075/* If it is profitable to use them, initialize or extend (depending on
4076 GLOBAL_P) dependency data. */
4077void
4078sched_deps_init (bool global_p)
4079{
4080 /* Average number of insns in the basic block.
4081 '+ 1' is used to make it nonzero. */
4082 int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
4083
4084 init_deps_data_vector ();
4085
4086 /* We use another caching mechanism for selective scheduling, so
4087 we don't use this one. */
4088 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
4089 {
4090 /* ?!? We could save some memory by computing a per-region luid mapping
4091 which could reduce both the number of vectors in the cache and the
4092 size of each vector. Instead we just avoid the cache entirely unless
4093 the average number of instructions in a basic block is very high. See
4094 the comment before the declaration of true_dependency_cache for
4095 what we consider "very high". */
4096 cache_size = 0;
4097 extend_dependency_caches (sched_max_luid, true);
4098 }
4099
4100 if (global_p)
4101 {
4102 dl_pool = new object_allocator<_deps_list> ("deps_list");
4103 /* Allocate lists for one block at a time. */
4104 dn_pool = new object_allocator<_dep_node> ("dep_node");
4105 /* Allocate nodes for one block at a time. */
4106 }
4107}
4108
4109
4110/* Create or extend (depending on CREATE_P) dependency caches to
4111 size N. */
4112void
4113extend_dependency_caches (int n, bool create_p)
4114{
4115 if (create_p || true_dependency_cache)
4116 {
4117 int i, luid = cache_size + n;
4118
4119 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4120 luid);
4121 output_dependency_cache = XRESIZEVEC (bitmap_head,
4122 output_dependency_cache, luid);
4123 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4124 luid);
4125 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4126 luid);
4127
4128 if (current_sched_info->flags & DO_SPECULATION)
4129 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4130 luid);
4131
4132 for (i = cache_size; i < luid; i++)
4133 {
4134 bitmap_initialize (head: &true_dependency_cache[i], obstack: 0);
4135 bitmap_initialize (head: &output_dependency_cache[i], obstack: 0);
4136 bitmap_initialize (head: &anti_dependency_cache[i], obstack: 0);
4137 bitmap_initialize (head: &control_dependency_cache[i], obstack: 0);
4138
4139 if (current_sched_info->flags & DO_SPECULATION)
4140 bitmap_initialize (head: &spec_dependency_cache[i], obstack: 0);
4141 }
4142 cache_size = luid;
4143 }
4144}
4145
4146/* Finalize dependency information for the whole function. */
4147void
4148sched_deps_finish (void)
4149{
4150 gcc_assert (deps_pools_are_empty_p ());
4151 delete dn_pool;
4152 delete dl_pool;
4153 dn_pool = NULL;
4154 dl_pool = NULL;
4155
4156 h_d_i_d.release ();
4157 cache_size = 0;
4158
4159 if (true_dependency_cache)
4160 {
4161 int i;
4162
4163 for (i = 0; i < cache_size; i++)
4164 {
4165 bitmap_clear (&true_dependency_cache[i]);
4166 bitmap_clear (&output_dependency_cache[i]);
4167 bitmap_clear (&anti_dependency_cache[i]);
4168 bitmap_clear (&control_dependency_cache[i]);
4169
4170 if (sched_deps_info->generate_spec_deps)
4171 bitmap_clear (&spec_dependency_cache[i]);
4172 }
4173 free (ptr: true_dependency_cache);
4174 true_dependency_cache = NULL;
4175 free (ptr: output_dependency_cache);
4176 output_dependency_cache = NULL;
4177 free (ptr: anti_dependency_cache);
4178 anti_dependency_cache = NULL;
4179 free (ptr: control_dependency_cache);
4180 control_dependency_cache = NULL;
4181
4182 if (sched_deps_info->generate_spec_deps)
4183 {
4184 free (ptr: spec_dependency_cache);
4185 spec_dependency_cache = NULL;
4186 }
4187
4188 }
4189}
4190
4191/* Initialize some global variables needed by the dependency analysis
4192 code. */
4193
4194void
4195init_deps_global (void)
4196{
4197 CLEAR_HARD_REG_SET (set&: implicit_reg_pending_clobbers);
4198 CLEAR_HARD_REG_SET (set&: implicit_reg_pending_uses);
4199 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4200 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4201 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4202 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4203 reg_pending_barrier = NOT_A_BARRIER;
4204
4205 if (!sel_sched_p () || sched_emulate_haifa_p)
4206 {
4207 sched_deps_info->start_insn = haifa_start_insn;
4208 sched_deps_info->finish_insn = haifa_finish_insn;
4209
4210 sched_deps_info->note_reg_set = haifa_note_reg_set;
4211 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4212 sched_deps_info->note_reg_use = haifa_note_reg_use;
4213
4214 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4215 sched_deps_info->note_dep = haifa_note_dep;
4216 }
4217}
4218
4219/* Free everything used by the dependency analysis code. */
4220
4221void
4222finish_deps_global (void)
4223{
4224 FREE_REG_SET (reg_pending_sets);
4225 FREE_REG_SET (reg_pending_clobbers);
4226 FREE_REG_SET (reg_pending_uses);
4227 FREE_REG_SET (reg_pending_control_uses);
4228}
4229
4230/* Estimate the weakness of dependence between MEM1 and MEM2. */
4231dw_t
4232estimate_dep_weak (rtx mem1, rtx mem2)
4233{
4234 if (mem1 == mem2)
4235 /* MEMs are the same - don't speculate. */
4236 return MIN_DEP_WEAK;
4237
4238 rtx r1 = XEXP (mem1, 0);
4239 rtx r2 = XEXP (mem2, 0);
4240
4241 if (sched_deps_info->use_cselib)
4242 {
4243 /* We cannot call rtx_equal_for_cselib_p because the VALUEs might be
4244 dangling at this point, since we never preserve them. Instead we
4245 canonicalize manually to get stable VALUEs out of hashing. */
4246 if (GET_CODE (r1) == VALUE && CSELIB_VAL_PTR (r1))
4247 r1 = canonical_cselib_val (CSELIB_VAL_PTR (r1))->val_rtx;
4248 if (GET_CODE (r2) == VALUE && CSELIB_VAL_PTR (r2))
4249 r2 = canonical_cselib_val (CSELIB_VAL_PTR (r2))->val_rtx;
4250 }
4251
4252 if (r1 == r2
4253 || (REG_P (r1) && REG_P (r2) && REGNO (r1) == REGNO (r2)))
4254 /* Again, MEMs are the same. */
4255 return MIN_DEP_WEAK;
4256 else if ((REG_P (r1) && !REG_P (r2)) || (!REG_P (r1) && REG_P (r2)))
4257 /* Different addressing modes - reason to be more speculative,
4258 than usual. */
4259 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4260 else
4261 /* We can't say anything about the dependence. */
4262 return UNCERTAIN_DEP_WEAK;
4263}
4264
4265/* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4266 This function can handle same INSN and ELEM (INSN == ELEM).
4267 It is a convenience wrapper. */
4268static void
4269add_dependence_1 (rtx_insn *insn, rtx_insn *elem, enum reg_note dep_type)
4270{
4271 ds_t ds;
4272 bool internal;
4273
4274 if (dep_type == REG_DEP_TRUE)
4275 ds = DEP_TRUE;
4276 else if (dep_type == REG_DEP_OUTPUT)
4277 ds = DEP_OUTPUT;
4278 else if (dep_type == REG_DEP_CONTROL)
4279 ds = DEP_CONTROL;
4280 else
4281 {
4282 gcc_assert (dep_type == REG_DEP_ANTI);
4283 ds = DEP_ANTI;
4284 }
4285
4286 /* When add_dependence is called from inside sched-deps.cc, we expect
4287 cur_insn to be non-null. */
4288 internal = cur_insn != NULL;
4289 if (internal)
4290 gcc_assert (insn == cur_insn);
4291 else
4292 cur_insn = insn;
4293
4294 note_dep (e: elem, ds);
4295 if (!internal)
4296 cur_insn = NULL;
4297}
4298
4299/* Return weakness of speculative type TYPE in the dep_status DS,
4300 without checking to prevent ICEs on malformed input. */
4301static dw_t
4302get_dep_weak_1 (ds_t ds, ds_t type)
4303{
4304 ds = ds & type;
4305
4306 switch (type)
4307 {
4308 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4309 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4310 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4311 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4312 default: gcc_unreachable ();
4313 }
4314
4315 return (dw_t) ds;
4316}
4317
4318/* Return weakness of speculative type TYPE in the dep_status DS. */
4319dw_t
4320get_dep_weak (ds_t ds, ds_t type)
4321{
4322 dw_t dw = get_dep_weak_1 (ds, type);
4323
4324 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4325 return dw;
4326}
4327
4328/* Return the dep_status, which has the same parameters as DS, except for
4329 speculative type TYPE, that will have weakness DW. */
4330ds_t
4331set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4332{
4333 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4334
4335 ds &= ~type;
4336 switch (type)
4337 {
4338 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4339 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4340 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4341 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4342 default: gcc_unreachable ();
4343 }
4344 return ds;
4345}
4346
4347/* Return the join of two dep_statuses DS1 and DS2.
4348 If MAX_P is true then choose the greater probability,
4349 otherwise multiply probabilities.
4350 This function assumes that both DS1 and DS2 contain speculative bits. */
4351static ds_t
4352ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4353{
4354 ds_t ds, t;
4355
4356 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4357
4358 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4359
4360 t = FIRST_SPEC_TYPE;
4361 do
4362 {
4363 if ((ds1 & t) && !(ds2 & t))
4364 ds |= ds1 & t;
4365 else if (!(ds1 & t) && (ds2 & t))
4366 ds |= ds2 & t;
4367 else if ((ds1 & t) && (ds2 & t))
4368 {
4369 dw_t dw1 = get_dep_weak (ds: ds1, type: t);
4370 dw_t dw2 = get_dep_weak (ds: ds2, type: t);
4371 ds_t dw;
4372
4373 if (!max_p)
4374 {
4375 dw = ((ds_t) dw1) * ((ds_t) dw2);
4376 dw /= MAX_DEP_WEAK;
4377 if (dw < MIN_DEP_WEAK)
4378 dw = MIN_DEP_WEAK;
4379 }
4380 else
4381 {
4382 if (dw1 >= dw2)
4383 dw = dw1;
4384 else
4385 dw = dw2;
4386 }
4387
4388 ds = set_dep_weak (ds, type: t, dw: (dw_t) dw);
4389 }
4390
4391 if (t == LAST_SPEC_TYPE)
4392 break;
4393 t <<= SPEC_TYPE_SHIFT;
4394 }
4395 while (1);
4396
4397 return ds;
4398}
4399
4400/* Return the join of two dep_statuses DS1 and DS2.
4401 This function assumes that both DS1 and DS2 contain speculative bits. */
4402ds_t
4403ds_merge (ds_t ds1, ds_t ds2)
4404{
4405 return ds_merge_1 (ds1, ds2, max_p: false);
4406}
4407
4408/* Return the join of two dep_statuses DS1 and DS2. */
4409ds_t
4410ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4411{
4412 ds_t new_status = ds | ds2;
4413
4414 if (new_status & SPECULATIVE)
4415 {
4416 if ((ds && !(ds & SPECULATIVE))
4417 || (ds2 && !(ds2 & SPECULATIVE)))
4418 /* Then this dep can't be speculative. */
4419 new_status &= ~SPECULATIVE;
4420 else
4421 {
4422 /* Both are speculative. Merging probabilities. */
4423 if (mem1)
4424 {
4425 dw_t dw;
4426
4427 dw = estimate_dep_weak (mem1, mem2);
4428 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4429 }
4430
4431 if (!ds)
4432 new_status = ds2;
4433 else if (!ds2)
4434 new_status = ds;
4435 else
4436 new_status = ds_merge (ds1: ds2, ds2: ds);
4437 }
4438 }
4439
4440 return new_status;
4441}
4442
4443/* Return the join of DS1 and DS2. Use maximum instead of multiplying
4444 probabilities. */
4445ds_t
4446ds_max_merge (ds_t ds1, ds_t ds2)
4447{
4448 if (ds1 == 0 && ds2 == 0)
4449 return 0;
4450
4451 if (ds1 == 0 && ds2 != 0)
4452 return ds2;
4453
4454 if (ds1 != 0 && ds2 == 0)
4455 return ds1;
4456
4457 return ds_merge_1 (ds1, ds2, max_p: true);
4458}
4459
4460/* Return the probability of speculation success for the speculation
4461 status DS. */
4462dw_t
4463ds_weak (ds_t ds)
4464{
4465 ds_t res = 1, dt;
4466 int n = 0;
4467
4468 dt = FIRST_SPEC_TYPE;
4469 do
4470 {
4471 if (ds & dt)
4472 {
4473 res *= (ds_t) get_dep_weak (ds, type: dt);
4474 n++;
4475 }
4476
4477 if (dt == LAST_SPEC_TYPE)
4478 break;
4479 dt <<= SPEC_TYPE_SHIFT;
4480 }
4481 while (1);
4482
4483 gcc_assert (n);
4484 while (--n)
4485 res /= MAX_DEP_WEAK;
4486
4487 if (res < MIN_DEP_WEAK)
4488 res = MIN_DEP_WEAK;
4489
4490 gcc_assert (res <= MAX_DEP_WEAK);
4491
4492 return (dw_t) res;
4493}
4494
4495/* Return a dep status that contains all speculation types of DS. */
4496ds_t
4497ds_get_speculation_types (ds_t ds)
4498{
4499 if (ds & BEGIN_DATA)
4500 ds |= BEGIN_DATA;
4501 if (ds & BE_IN_DATA)
4502 ds |= BE_IN_DATA;
4503 if (ds & BEGIN_CONTROL)
4504 ds |= BEGIN_CONTROL;
4505 if (ds & BE_IN_CONTROL)
4506 ds |= BE_IN_CONTROL;
4507
4508 return ds & SPECULATIVE;
4509}
4510
4511/* Return a dep status that contains maximal weakness for each speculation
4512 type present in DS. */
4513ds_t
4514ds_get_max_dep_weak (ds_t ds)
4515{
4516 if (ds & BEGIN_DATA)
4517 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4518 if (ds & BE_IN_DATA)
4519 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4520 if (ds & BEGIN_CONTROL)
4521 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4522 if (ds & BE_IN_CONTROL)
4523 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4524
4525 return ds;
4526}
4527
4528/* Dump information about the dependence status S. */
4529static void
4530dump_ds (FILE *f, ds_t s)
4531{
4532 fprintf (stream: f, format: "{");
4533
4534 if (s & BEGIN_DATA)
4535 fprintf (stream: f, format: "BEGIN_DATA: %d; ", get_dep_weak_1 (ds: s, BEGIN_DATA));
4536 if (s & BE_IN_DATA)
4537 fprintf (stream: f, format: "BE_IN_DATA: %d; ", get_dep_weak_1 (ds: s, BE_IN_DATA));
4538 if (s & BEGIN_CONTROL)
4539 fprintf (stream: f, format: "BEGIN_CONTROL: %d; ", get_dep_weak_1 (ds: s, BEGIN_CONTROL));
4540 if (s & BE_IN_CONTROL)
4541 fprintf (stream: f, format: "BE_IN_CONTROL: %d; ", get_dep_weak_1 (ds: s, BE_IN_CONTROL));
4542
4543 if (s & HARD_DEP)
4544 fprintf (stream: f, format: "HARD_DEP; ");
4545
4546 if (s & DEP_TRUE)
4547 fprintf (stream: f, format: "DEP_TRUE; ");
4548 if (s & DEP_OUTPUT)
4549 fprintf (stream: f, format: "DEP_OUTPUT; ");
4550 if (s & DEP_ANTI)
4551 fprintf (stream: f, format: "DEP_ANTI; ");
4552 if (s & DEP_CONTROL)
4553 fprintf (stream: f, format: "DEP_CONTROL; ");
4554
4555 fprintf (stream: f, format: "}");
4556}
4557
4558DEBUG_FUNCTION void
4559debug_ds (ds_t s)
4560{
4561 dump_ds (stderr, s);
4562 fprintf (stderr, format: "\n");
4563}
4564
4565/* Verify that dependence type and status are consistent.
4566 If RELAXED_P is true, then skip dep_weakness checks. */
4567static void
4568check_dep (dep_t dep, bool relaxed_p)
4569{
4570 enum reg_note dt = DEP_TYPE (dep);
4571 ds_t ds = DEP_STATUS (dep);
4572
4573 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4574
4575 if (!(current_sched_info->flags & USE_DEPS_LIST))
4576 {
4577 gcc_assert (ds == 0);
4578 return;
4579 }
4580
4581 /* Check that dependence type contains the same bits as the status. */
4582 if (dt == REG_DEP_TRUE)
4583 gcc_assert (ds & DEP_TRUE);
4584 else if (dt == REG_DEP_OUTPUT)
4585 gcc_assert ((ds & DEP_OUTPUT)
4586 && !(ds & DEP_TRUE));
4587 else if (dt == REG_DEP_ANTI)
4588 gcc_assert ((ds & DEP_ANTI)
4589 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4590 else
4591 gcc_assert (dt == REG_DEP_CONTROL
4592 && (ds & DEP_CONTROL)
4593 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4594
4595 /* HARD_DEP cannot appear in dep_status of a link. */
4596 gcc_assert (!(ds & HARD_DEP));
4597
4598 /* Check that dependence status is set correctly when speculation is not
4599 supported. */
4600 if (!sched_deps_info->generate_spec_deps)
4601 gcc_assert (!(ds & SPECULATIVE));
4602 else if (ds & SPECULATIVE)
4603 {
4604 if (!relaxed_p)
4605 {
4606 ds_t type = FIRST_SPEC_TYPE;
4607
4608 /* Check that dependence weakness is in proper range. */
4609 do
4610 {
4611 if (ds & type)
4612 get_dep_weak (ds, type);
4613
4614 if (type == LAST_SPEC_TYPE)
4615 break;
4616 type <<= SPEC_TYPE_SHIFT;
4617 }
4618 while (1);
4619 }
4620
4621 if (ds & BEGIN_SPEC)
4622 {
4623 /* Only true dependence can be data speculative. */
4624 if (ds & BEGIN_DATA)
4625 gcc_assert (ds & DEP_TRUE);
4626
4627 /* Control dependencies in the insn scheduler are represented by
4628 anti-dependencies, therefore only anti dependence can be
4629 control speculative. */
4630 if (ds & BEGIN_CONTROL)
4631 gcc_assert (ds & DEP_ANTI);
4632 }
4633 else
4634 {
4635 /* Subsequent speculations should resolve true dependencies. */
4636 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4637 }
4638
4639 /* Check that true and anti dependencies can't have other speculative
4640 statuses. */
4641 if (ds & DEP_TRUE)
4642 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4643 /* An output dependence can't be speculative at all. */
4644 gcc_assert (!(ds & DEP_OUTPUT));
4645 if (ds & DEP_ANTI)
4646 gcc_assert (ds & BEGIN_CONTROL);
4647 }
4648}
4649
4650/* The following code discovers opportunities to switch a memory reference
4651 and an increment by modifying the address. We ensure that this is done
4652 only for dependencies that are only used to show a single register
4653 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4654 instruction involved is subject to only one dep that can cause a pattern
4655 change.
4656
4657 When we discover a suitable dependency, we fill in the dep_replacement
4658 structure to show how to modify the memory reference. */
4659
4660/* Holds information about a pair of memory reference and register increment
4661 insns which depend on each other, but could possibly be interchanged. */
4662struct mem_inc_info
4663{
4664 rtx_insn *inc_insn;
4665 rtx_insn *mem_insn;
4666
4667 rtx *mem_loc;
4668 /* A register occurring in the memory address for which we wish to break
4669 the dependence. This must be identical to the destination register of
4670 the increment. */
4671 rtx mem_reg0;
4672 /* Any kind of index that is added to that register. */
4673 rtx mem_index;
4674 /* The constant offset used in the memory address. */
4675 HOST_WIDE_INT mem_constant;
4676 /* The constant added in the increment insn. Negated if the increment is
4677 after the memory address. */
4678 HOST_WIDE_INT inc_constant;
4679 /* The source register used in the increment. May be different from mem_reg0
4680 if the increment occurs before the memory address. */
4681 rtx inc_input;
4682};
4683
4684/* Verify that the memory location described in MII can be replaced with
4685 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4686 insn remains unchanged by this function. */
4687
4688static rtx
4689attempt_change (struct mem_inc_info *mii, rtx new_addr)
4690{
4691 rtx mem = *mii->mem_loc;
4692 rtx new_mem;
4693
4694 if (!targetm.new_address_profitable_p (mem, mii->mem_insn, new_addr))
4695 return NULL_RTX;
4696
4697 /* Jump through a lot of hoops to keep the attributes up to date. We
4698 do not want to call one of the change address variants that take
4699 an offset even though we know the offset in many cases. These
4700 assume you are changing where the address is pointing by the
4701 offset. */
4702 new_mem = replace_equiv_address_nv (mem, new_addr);
4703 if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4704 {
4705 if (sched_verbose >= 5)
4706 fprintf (stream: sched_dump, format: "validation failure\n");
4707 return NULL_RTX;
4708 }
4709
4710 /* Put back the old one. */
4711 validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4712
4713 return new_mem;
4714}
4715
4716/* Return true if INSN is of a form "a = b op c" where a and b are
4717 regs. op is + if c is a reg and +|- if c is a const. Fill in
4718 informantion in MII about what is found.
4719 BEFORE_MEM indicates whether the increment is found before or after
4720 a corresponding memory reference. */
4721
4722static bool
4723parse_add_or_inc (struct mem_inc_info *mii, rtx_insn *insn, bool before_mem)
4724{
4725 rtx pat = single_set (insn);
4726 rtx src, cst;
4727 bool regs_equal;
4728
4729 if (RTX_FRAME_RELATED_P (insn) || !pat)
4730 return false;
4731
4732 /* Do not allow breaking data dependencies for insns that are marked
4733 with REG_STACK_CHECK. */
4734 if (find_reg_note (insn, REG_STACK_CHECK, NULL))
4735 return false;
4736
4737 /* Result must be single reg. */
4738 if (!REG_P (SET_DEST (pat)))
4739 return false;
4740
4741 if (GET_CODE (SET_SRC (pat)) != PLUS)
4742 return false;
4743
4744 mii->inc_insn = insn;
4745 src = SET_SRC (pat);
4746 mii->inc_input = XEXP (src, 0);
4747
4748 if (!REG_P (XEXP (src, 0)))
4749 return false;
4750
4751 if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4752 return false;
4753
4754 cst = XEXP (src, 1);
4755 if (!CONST_INT_P (cst))
4756 return false;
4757 mii->inc_constant = INTVAL (cst);
4758
4759 regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4760
4761 if (!before_mem)
4762 {
4763 mii->inc_constant = -mii->inc_constant;
4764 if (!regs_equal)
4765 return false;
4766 }
4767
4768 if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4769 {
4770 /* Note that the sign has already been reversed for !before_mem. */
4771 if (STACK_GROWS_DOWNWARD)
4772 return mii->inc_constant > 0;
4773 else
4774 return mii->inc_constant < 0;
4775 }
4776 return true;
4777}
4778
4779/* Once a suitable mem reference has been found and the corresponding data
4780 in MII has been filled in, this function is called to find a suitable
4781 add or inc insn involving the register we found in the memory
4782 reference. */
4783
4784static bool
4785find_inc (struct mem_inc_info *mii, bool backwards)
4786{
4787 sd_iterator_def sd_it;
4788 dep_t dep;
4789
4790 sd_it = sd_iterator_start (insn: mii->mem_insn,
4791 types: backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
4792 while (sd_iterator_cond (it_ptr: &sd_it, dep_ptr: &dep))
4793 {
4794 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4795 rtx_insn *pro = DEP_PRO (dep);
4796 rtx_insn *con = DEP_CON (dep);
4797 rtx_insn *inc_cand = backwards ? pro : con;
4798 if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4799 goto next;
4800 if (parse_add_or_inc (mii, insn: inc_cand, before_mem: backwards))
4801 {
4802 struct dep_replacement *desc;
4803 df_ref def;
4804 rtx newaddr, newmem;
4805
4806 if (sched_verbose >= 5)
4807 fprintf (stream: sched_dump, format: "candidate mem/inc pair: %d %d\n",
4808 INSN_UID (insn: mii->mem_insn), INSN_UID (insn: inc_cand));
4809
4810 /* Need to assure that none of the operands of the inc
4811 instruction are assigned to by the mem insn. */
4812 FOR_EACH_INSN_DEF (def, mii->mem_insn)
4813 if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4814 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4815 {
4816 if (sched_verbose >= 5)
4817 fprintf (stream: sched_dump,
4818 format: "inc conflicts with store failure.\n");
4819 goto next;
4820 }
4821
4822 newaddr = mii->inc_input;
4823 if (mii->mem_index != NULL_RTX)
4824 newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4825 mii->mem_index);
4826 newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4827 mii->mem_constant + mii->inc_constant);
4828 newmem = attempt_change (mii, new_addr: newaddr);
4829 if (newmem == NULL_RTX)
4830 goto next;
4831 if (sched_verbose >= 5)
4832 fprintf (stream: sched_dump, format: "successful address replacement\n");
4833 desc = XCNEW (struct dep_replacement);
4834 DEP_REPLACE (dep) = desc;
4835 desc->loc = mii->mem_loc;
4836 desc->newval = newmem;
4837 desc->orig = *desc->loc;
4838 desc->insn = mii->mem_insn;
4839 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4840 INSN_SPEC_BACK_DEPS (con));
4841 if (backwards)
4842 {
4843 FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4844 add_dependence_1 (insn: mii->mem_insn, DEP_PRO (dep),
4845 dep_type: REG_DEP_TRUE);
4846 }
4847 else
4848 {
4849 FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4850 add_dependence_1 (DEP_CON (dep), elem: mii->mem_insn,
4851 dep_type: REG_DEP_ANTI);
4852 }
4853 return true;
4854 }
4855 next:
4856 sd_iterator_next (it_ptr: &sd_it);
4857 }
4858 return false;
4859}
4860
4861/* A recursive function that walks ADDRESS_OF_X to find memory references
4862 which could be modified during scheduling. We call find_inc for each
4863 one we find that has a recognizable form. MII holds information about
4864 the pair of memory/increment instructions.
4865 We ensure that every instruction with a memory reference (which will be
4866 the location of the replacement) is assigned at most one breakable
4867 dependency. */
4868
4869static bool
4870find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4871{
4872 rtx x = *address_of_x;
4873 enum rtx_code code = GET_CODE (x);
4874 const char *const fmt = GET_RTX_FORMAT (code);
4875 int i;
4876
4877 if (code == MEM)
4878 {
4879 rtx reg0 = XEXP (x, 0);
4880
4881 mii->mem_loc = address_of_x;
4882 mii->mem_index = NULL_RTX;
4883 mii->mem_constant = 0;
4884 if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4885 {
4886 mii->mem_constant = INTVAL (XEXP (reg0, 1));
4887 reg0 = XEXP (reg0, 0);
4888 }
4889 if (GET_CODE (reg0) == PLUS)
4890 {
4891 mii->mem_index = XEXP (reg0, 1);
4892 reg0 = XEXP (reg0, 0);
4893 }
4894 if (REG_P (reg0))
4895 {
4896 df_ref use;
4897 int occurrences = 0;
4898
4899 /* Make sure this reg appears only once in this insn. Can't use
4900 count_occurrences since that only works for pseudos. */
4901 FOR_EACH_INSN_USE (use, mii->mem_insn)
4902 if (reg_overlap_mentioned_p (reg0, DF_REF_REG (use)))
4903 if (++occurrences > 1)
4904 {
4905 if (sched_verbose >= 5)
4906 fprintf (stream: sched_dump, format: "mem count failure\n");
4907 return false;
4908 }
4909
4910 mii->mem_reg0 = reg0;
4911 return find_inc (mii, backwards: true) || find_inc (mii, backwards: false);
4912 }
4913 return false;
4914 }
4915
4916 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4917 {
4918 /* If REG occurs inside a MEM used in a bit-field reference,
4919 that is unacceptable. */
4920 return false;
4921 }
4922
4923 /* Time for some deep diving. */
4924 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4925 {
4926 if (fmt[i] == 'e')
4927 {
4928 if (find_mem (mii, address_of_x: &XEXP (x, i)))
4929 return true;
4930 }
4931 else if (fmt[i] == 'E')
4932 {
4933 int j;
4934 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4935 if (find_mem (mii, address_of_x: &XVECEXP (x, i, j)))
4936 return true;
4937 }
4938 }
4939 return false;
4940}
4941
4942
4943/* Examine the instructions between HEAD and TAIL and try to find
4944 dependencies that can be broken by modifying one of the patterns. */
4945
4946void
4947find_modifiable_mems (rtx_insn *head, rtx_insn *tail)
4948{
4949 rtx_insn *insn, *next_tail = NEXT_INSN (insn: tail);
4950 int success_in_block = 0;
4951
4952 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4953 {
4954 struct mem_inc_info mii;
4955
4956 if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4957 continue;
4958
4959 mii.mem_insn = insn;
4960 if (find_mem (mii: &mii, address_of_x: &PATTERN (insn)))
4961 success_in_block++;
4962 }
4963 if (success_in_block && sched_verbose >= 5)
4964 fprintf (stream: sched_dump, format: "%d candidates for address modification found.\n",
4965 success_in_block);
4966}
4967
4968#endif /* INSN_SCHEDULING */
4969

source code of gcc/sched-deps.cc