1/* Shrink-wrapping related optimizations.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/* This file handles shrink-wrapping related optimizations. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "backend.h"
26#include "target.h"
27#include "rtl.h"
28#include "tree.h"
29#include "cfghooks.h"
30#include "df.h"
31#include "memmodel.h"
32#include "tm_p.h"
33#include "regs.h"
34#include "insn-config.h"
35#include "emit-rtl.h"
36#include "output.h"
37#include "tree-pass.h"
38#include "cfgrtl.h"
39#include "cfgbuild.h"
40#include "bb-reorder.h"
41#include "shrink-wrap.h"
42#include "regcprop.h"
43#include "rtl-iter.h"
44#include "valtrack.h"
45#include "function-abi.h"
46#include "print-rtl.h"
47
48/* Return true if INSN requires the stack frame to be set up.
49 PROLOGUE_USED contains the hard registers used in the function
50 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
51 prologue to set up for the function. */
52bool
53requires_stack_frame_p (rtx_insn *insn, HARD_REG_SET prologue_used,
54 HARD_REG_SET set_up_by_prologue)
55{
56 df_ref def, use;
57 HARD_REG_SET hardregs;
58 unsigned regno;
59
60 if (CALL_P (insn) && !FAKE_CALL_P (insn))
61 return !SIBLING_CALL_P (insn);
62
63 /* We need a frame to get the unique CFA expected by the unwinder. */
64 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
65 return true;
66
67 CLEAR_HARD_REG_SET (set&: hardregs);
68 FOR_EACH_INSN_DEF (def, insn)
69 {
70 rtx dreg = DF_REF_REG (def);
71
72 if (!REG_P (dreg))
73 continue;
74
75 add_to_hard_reg_set (regs: &hardregs, GET_MODE (dreg), REGNO (dreg));
76 }
77 if (hard_reg_set_intersect_p (x: hardregs, y: prologue_used))
78 return true;
79 hardregs &= ~crtl->abi->full_reg_clobbers ();
80 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
81 if (TEST_HARD_REG_BIT (set: hardregs, bit: regno)
82 && df_regs_ever_live_p (regno))
83 return true;
84
85 FOR_EACH_INSN_USE (use, insn)
86 {
87 rtx reg = DF_REF_REG (use);
88
89 if (!REG_P (reg))
90 continue;
91
92 add_to_hard_reg_set (regs: &hardregs, GET_MODE (reg),
93 REGNO (reg));
94 }
95 if (hard_reg_set_intersect_p (x: hardregs, y: set_up_by_prologue))
96 return true;
97
98 return false;
99}
100
101/* See whether there has a single live edge from BB, which dest uses
102 [REGNO, END_REGNO). Return the live edge if its dest bb has
103 one or two predecessors. Otherwise return NULL. */
104
105static edge
106live_edge_for_reg (basic_block bb, int regno, int end_regno)
107{
108 edge e, live_edge;
109 edge_iterator ei;
110 bitmap live;
111 int i;
112
113 live_edge = NULL;
114 FOR_EACH_EDGE (e, ei, bb->succs)
115 {
116 live = df_get_live_in (bb: e->dest);
117 for (i = regno; i < end_regno; i++)
118 if (REGNO_REG_SET_P (live, i))
119 {
120 if (live_edge && live_edge != e)
121 return NULL;
122 live_edge = e;
123 }
124 }
125
126 /* We can sometimes encounter dead code. Don't try to move it
127 into the exit block. */
128 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
129 return NULL;
130
131 /* Reject targets of abnormal edges. This is needed for correctness
132 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
133 exception edges even though it is generally treated as call-saved
134 for the majority of the compilation. Moving across abnormal edges
135 isn't going to be interesting for shrink-wrap usage anyway. */
136 if (live_edge->flags & EDGE_ABNORMAL)
137 return NULL;
138
139 /* When live_edge->dest->preds == 2, we can create a new block on
140 the edge to make it meet the requirement. */
141 if (EDGE_COUNT (live_edge->dest->preds) > 2)
142 return NULL;
143
144 return live_edge;
145}
146
147/* Try to move INSN from BB to a successor. Return true on success.
148 USES and DEFS are the set of registers that are used and defined
149 after INSN in BB. SPLIT_P indicates whether a live edge from BB
150 is splitted or not. */
151
152static bool
153move_insn_for_shrink_wrap (basic_block bb, rtx_insn *insn,
154 const_hard_reg_set uses,
155 const_hard_reg_set defs,
156 bool *split_p,
157 struct dead_debug_local *debug)
158{
159 rtx set, src, dest;
160 bitmap live_out, live_in, bb_uses = NULL, bb_defs = NULL;
161 unsigned int i, dregno, end_dregno;
162 unsigned int sregno = FIRST_PSEUDO_REGISTER;
163 unsigned int end_sregno = FIRST_PSEUDO_REGISTER;
164 basic_block next_block;
165 edge live_edge;
166 rtx_insn *dinsn;
167 df_ref def;
168
169 /* Look for a simple register assignment. We don't use single_set here
170 because we can't deal with any CLOBBERs, USEs, or REG_UNUSED secondary
171 destinations. */
172 if (!INSN_P (insn))
173 return false;
174 set = PATTERN (insn);
175 if (GET_CODE (set) != SET)
176 return false;
177 src = SET_SRC (set);
178 dest = SET_DEST (set);
179
180 /* For the destination, we want only a register. Also disallow STACK
181 or FRAME related adjustments. They are likely part of the prologue,
182 so keep them in the entry block. */
183 if (!REG_P (dest)
184 || dest == stack_pointer_rtx
185 || dest == frame_pointer_rtx
186 || dest == hard_frame_pointer_rtx)
187 return false;
188
189 /* For the source, we want one of:
190 (1) A (non-overlapping) register
191 (2) A constant,
192 (3) An expression involving no more than one register.
193
194 That last point comes from the code following, which was originally
195 written to handle only register move operations, and still only handles
196 a single source register when checking for overlaps. Happily, the
197 same checks can be applied to expressions like (plus reg const). */
198
199 if (CONSTANT_P (src))
200 ;
201 else if (!REG_P (src))
202 {
203 rtx src_inner = NULL_RTX;
204
205 if (can_throw_internal (insn))
206 return false;
207
208 subrtx_var_iterator::array_type array;
209 FOR_EACH_SUBRTX_VAR (iter, array, src, ALL)
210 {
211 rtx x = *iter;
212 switch (GET_RTX_CLASS (GET_CODE (x)))
213 {
214 case RTX_CONST_OBJ:
215 case RTX_COMPARE:
216 case RTX_COMM_COMPARE:
217 case RTX_BIN_ARITH:
218 case RTX_COMM_ARITH:
219 case RTX_UNARY:
220 case RTX_TERNARY:
221 /* Constant or expression. Continue. */
222 break;
223
224 case RTX_OBJ:
225 case RTX_EXTRA:
226 switch (GET_CODE (x))
227 {
228 case UNSPEC:
229 case SUBREG:
230 case STRICT_LOW_PART:
231 case PC:
232 case LO_SUM:
233 /* Ok. Continue. */
234 break;
235
236 case REG:
237 /* Fail if we see a second inner register. */
238 if (src_inner != NULL)
239 return false;
240 src_inner = x;
241 break;
242
243 default:
244 return false;
245 }
246 break;
247
248 default:
249 return false;
250 }
251 }
252
253 if (src_inner != NULL)
254 src = src_inner;
255 }
256
257 /* Make sure that the source register isn't defined later in BB. */
258 if (REG_P (src))
259 {
260 sregno = REGNO (src);
261 end_sregno = END_REGNO (x: src);
262 if (overlaps_hard_reg_set_p (regs: defs, GET_MODE (src), regno: sregno))
263 return false;
264 }
265
266 /* Make sure that the destination register isn't referenced later in BB. */
267 dregno = REGNO (dest);
268 end_dregno = END_REGNO (x: dest);
269 if (overlaps_hard_reg_set_p (regs: uses, GET_MODE (dest), regno: dregno)
270 || overlaps_hard_reg_set_p (regs: defs, GET_MODE (dest), regno: dregno))
271 return false;
272
273 /* See whether there is a successor block to which we could move INSN. */
274 live_edge = live_edge_for_reg (bb, regno: dregno, end_regno: end_dregno);
275 if (!live_edge)
276 return false;
277
278 next_block = live_edge->dest;
279 /* Create a new basic block on the edge. */
280 if (EDGE_COUNT (next_block->preds) == 2)
281 {
282 /* split_edge for a block with only one successor is meaningless. */
283 if (EDGE_COUNT (bb->succs) == 1)
284 return false;
285
286 /* If DF_LIVE doesn't exist, i.e. at -O1, just give up. */
287 if (!df_live)
288 return false;
289
290 basic_block old_dest = live_edge->dest;
291 next_block = split_edge (live_edge);
292
293 /* We create a new basic block. Call df_grow_bb_info to make sure
294 all data structures are allocated. */
295 df_grow_bb_info (df_live);
296
297 bitmap_and (df_get_live_in (bb: next_block), df_get_live_out (bb),
298 df_get_live_in (bb: old_dest));
299 df_set_bb_dirty (next_block);
300
301 /* We should not split more than once for a function. */
302 if (*split_p)
303 return false;
304
305 *split_p = true;
306 }
307
308 /* At this point we are committed to moving INSN, but let's try to
309 move it as far as we can. */
310 do
311 {
312 if (MAY_HAVE_DEBUG_BIND_INSNS)
313 {
314 FOR_BB_INSNS_REVERSE (bb, dinsn)
315 if (DEBUG_BIND_INSN_P (dinsn))
316 {
317 df_ref use;
318 FOR_EACH_INSN_USE (use, dinsn)
319 if (refers_to_regno_p (dregno, end_dregno,
320 DF_REF_REG (use), (rtx *) NULL))
321 dead_debug_add (debug, use, DF_REF_REGNO (use));
322 }
323 else if (dinsn == insn)
324 break;
325 }
326 live_out = df_get_live_out (bb);
327 live_in = df_get_live_in (bb: next_block);
328 bb = next_block;
329
330 /* Check whether BB uses DEST or clobbers DEST. We need to add
331 INSN to BB if so. Either way, DEST is no longer live on entry,
332 except for any part that overlaps SRC (next loop). */
333 if (!*split_p)
334 {
335 bb_uses = &DF_LR_BB_INFO (bb)->use;
336 bb_defs = &DF_LR_BB_INFO (bb)->def;
337 }
338 if (df_live)
339 {
340 for (i = dregno; i < end_dregno; i++)
341 {
342 if (*split_p
343 || REGNO_REG_SET_P (bb_uses, i)
344 || REGNO_REG_SET_P (bb_defs, i)
345 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
346 next_block = NULL;
347 CLEAR_REGNO_REG_SET (live_out, i);
348 CLEAR_REGNO_REG_SET (live_in, i);
349 }
350
351 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
352 Either way, SRC is now live on entry. */
353 for (i = sregno; i < end_sregno; i++)
354 {
355 if (*split_p
356 || REGNO_REG_SET_P (bb_defs, i)
357 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
358 next_block = NULL;
359 SET_REGNO_REG_SET (live_out, i);
360 SET_REGNO_REG_SET (live_in, i);
361 }
362 }
363 else
364 {
365 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
366 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
367 at -O1, just give up searching NEXT_BLOCK. */
368 next_block = NULL;
369 for (i = dregno; i < end_dregno; i++)
370 {
371 CLEAR_REGNO_REG_SET (live_out, i);
372 CLEAR_REGNO_REG_SET (live_in, i);
373 }
374
375 for (i = sregno; i < end_sregno; i++)
376 {
377 SET_REGNO_REG_SET (live_out, i);
378 SET_REGNO_REG_SET (live_in, i);
379 }
380 }
381
382 /* If we don't need to add the move to BB, look for a single
383 successor block. */
384 if (next_block)
385 {
386 live_edge = live_edge_for_reg (bb: next_block, regno: dregno, end_regno: end_dregno);
387 if (!live_edge || EDGE_COUNT (live_edge->dest->preds) > 1)
388 break;
389 next_block = live_edge->dest;
390 }
391 }
392 while (next_block);
393
394 /* For the new created basic block, there is no dataflow info at all.
395 So skip the following dataflow update and check. */
396 if (!(*split_p))
397 {
398 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
399 (next loop). */
400 for (i = dregno; i < end_dregno; i++)
401 {
402 CLEAR_REGNO_REG_SET (bb_uses, i);
403 SET_REGNO_REG_SET (bb_defs, i);
404 }
405
406 /* BB now uses SRC. */
407 for (i = sregno; i < end_sregno; i++)
408 SET_REGNO_REG_SET (bb_uses, i);
409 }
410
411 /* Insert debug temps for dead REGs used in subsequent debug insns. */
412 if (debug->used && !bitmap_empty_p (map: debug->used))
413 FOR_EACH_INSN_DEF (def, insn)
414 dead_debug_insert_temp (debug, DF_REF_REGNO (def), insn,
415 DEBUG_TEMP_BEFORE_WITH_VALUE);
416
417 rtx_insn *insn_copy = emit_insn_after (PATTERN (insn), bb_note (bb));
418 /* Update the LABEL_NUSES count on any referenced labels. The ideal
419 solution here would be to actually move the instruction instead
420 of copying/deleting it as this loses some notations on the
421 insn. */
422 mark_jump_label (PATTERN (insn), insn_copy, 0);
423 delete_insn (insn);
424 return true;
425}
426
427/* Look for register copies in the first block of the function, and move
428 them down into successor blocks if the register is used only on one
429 path. This exposes more opportunities for shrink-wrapping. These
430 kinds of sets often occur when incoming argument registers are moved
431 to call-saved registers because their values are live across one or
432 more calls during the function. */
433
434static void
435prepare_shrink_wrap (basic_block entry_block)
436{
437 rtx_insn *insn, *curr;
438 rtx x;
439 HARD_REG_SET uses, defs;
440 df_ref def, use;
441 bool split_p = false;
442 unsigned int i;
443 struct dead_debug_local debug;
444
445 if (JUMP_P (BB_END (entry_block)))
446 {
447 /* To have more shrink-wrapping opportunities, prepare_shrink_wrap tries
448 to sink the copies from parameter to callee saved register out of
449 entry block. copyprop_hardreg_forward_bb_without_debug_insn is called
450 to release some dependences. */
451 copyprop_hardreg_forward_bb_without_debug_insn (bb: entry_block);
452 }
453
454 dead_debug_local_init (&debug, NULL, NULL);
455 CLEAR_HARD_REG_SET (set&: uses);
456 CLEAR_HARD_REG_SET (set&: defs);
457
458 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
459 if (NONDEBUG_INSN_P (insn)
460 && !move_insn_for_shrink_wrap (bb: entry_block, insn, uses, defs,
461 split_p: &split_p, debug: &debug))
462 {
463 /* Add all defined registers to DEFs. */
464 FOR_EACH_INSN_DEF (def, insn)
465 {
466 x = DF_REF_REG (def);
467 if (REG_P (x) && HARD_REGISTER_P (x))
468 for (i = REGNO (x); i < END_REGNO (x); i++)
469 SET_HARD_REG_BIT (set&: defs, bit: i);
470 }
471
472 /* Add all used registers to USESs. */
473 FOR_EACH_INSN_USE (use, insn)
474 {
475 x = DF_REF_REG (use);
476 if (REG_P (x) && HARD_REGISTER_P (x))
477 for (i = REGNO (x); i < END_REGNO (x); i++)
478 SET_HARD_REG_BIT (set&: uses, bit: i);
479 }
480 }
481
482 dead_debug_local_finish (&debug, NULL);
483}
484
485/* Return whether basic block PRO can get the prologue. It cannot if it
486 has incoming complex edges that need a prologue inserted (we make a new
487 block for the prologue, so those edges would need to be redirected, which
488 does not work). It also cannot if there exist registers live on entry
489 to PRO that are clobbered by the prologue. */
490
491static bool
492can_get_prologue (basic_block pro, HARD_REG_SET prologue_clobbered)
493{
494 edge e;
495 edge_iterator ei;
496 FOR_EACH_EDGE (e, ei, pro->preds)
497 if (e->flags & EDGE_COMPLEX
498 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
499 return false;
500
501 HARD_REG_SET live;
502 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (pro));
503 if (hard_reg_set_intersect_p (x: live, y: prologue_clobbered))
504 return false;
505
506 return true;
507}
508
509/* Return whether we can duplicate basic block BB for shrink wrapping. We
510 cannot if the block cannot be duplicated at all, or if any of its incoming
511 edges are complex and come from a block that does not require a prologue
512 (we cannot redirect such edges), or if the block is too big to copy.
513 PRO is the basic block before which we would put the prologue, MAX_SIZE is
514 the maximum size block we allow to be copied. */
515
516static bool
517can_dup_for_shrink_wrapping (basic_block bb, basic_block pro, unsigned max_size)
518{
519 if (!can_duplicate_block_p (bb))
520 return false;
521
522 edge e;
523 edge_iterator ei;
524 FOR_EACH_EDGE (e, ei, bb->preds)
525 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
526 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
527 return false;
528
529 unsigned size = 0;
530
531 rtx_insn *insn;
532 FOR_BB_INSNS (bb, insn)
533 if (NONDEBUG_INSN_P (insn))
534 {
535 size += get_attr_min_length (insn);
536 if (size > max_size)
537 return false;
538 }
539
540 return true;
541}
542
543/* Do whatever needs to be done for exits that run without prologue.
544 Sibcalls need nothing done. Normal exits get a simple_return inserted. */
545
546static void
547handle_simple_exit (edge e)
548{
549
550 if (e->flags & EDGE_SIBCALL)
551 {
552 /* Tell function.cc to take no further action on this edge. */
553 e->flags |= EDGE_IGNORE;
554
555 e->flags &= ~EDGE_FALLTHRU;
556 emit_barrier_after_bb (bb: e->src);
557 return;
558 }
559
560 /* If the basic block the edge comes from has multiple successors,
561 split the edge. */
562 if (EDGE_COUNT (e->src->succs) > 1)
563 {
564 basic_block old_bb = e->src;
565 rtx_insn *end = BB_END (old_bb);
566 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
567 basic_block new_bb = create_basic_block (note, note, old_bb);
568 BB_COPY_PARTITION (new_bb, old_bb);
569 BB_END (old_bb) = end;
570
571 redirect_edge_succ (e, new_bb);
572 new_bb->count = e->count ();
573 e->flags |= EDGE_FALLTHRU;
574
575 e = make_single_succ_edge (new_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
576 }
577
578 e->flags &= ~EDGE_FALLTHRU;
579 rtx_jump_insn *ret = emit_jump_insn_after (targetm.gen_simple_return (),
580 BB_END (e->src));
581 JUMP_LABEL (ret) = simple_return_rtx;
582 emit_barrier_after_bb (bb: e->src);
583
584 if (dump_file)
585 fprintf (stream: dump_file, format: "Made simple_return with UID %d in bb %d\n",
586 INSN_UID (insn: ret), e->src->index);
587}
588
589/* Try to perform a kind of shrink-wrapping, making sure the
590 prologue/epilogue is emitted only around those parts of the
591 function that require it.
592
593 There will be exactly one prologue, and it will be executed either
594 zero or one time, on any path. Depending on where the prologue is
595 placed, some of the basic blocks can be reached via both paths with
596 and without a prologue. Such blocks will be duplicated here, and the
597 edges changed to match.
598
599 Paths that go to the exit without going through the prologue will use
600 a simple_return instead of the epilogue. We maximize the number of
601 those, making sure to only duplicate blocks that can be duplicated.
602 If the prologue can then still be placed in multiple locations, we
603 place it as early as possible.
604
605 An example, where we duplicate blocks with control flow (legend:
606 _B_egin, _R_eturn and _S_imple_return; edges without arrowhead should
607 be taken to point down or to the right, to simplify the diagram; here,
608 block 3 needs a prologue, the rest does not):
609
610
611 B B
612 | |
613 2 2
614 |\ |\
615 | 3 becomes | 3
616 |/ | \
617 4 7 4
618 |\ |\ |\
619 | 5 | 8 | 5
620 |/ |/ |/
621 6 9 6
622 | | |
623 R S R
624
625
626 (bb 4 is duplicated to 7, and so on; the prologue is inserted on the
627 edge 2->3).
628
629 Another example, where part of a loop is duplicated (again, bb 3 is
630 the only block that needs a prologue):
631
632
633 B 3<-- B ->3<--
634 | | | | | | |
635 | v | becomes | | v |
636 2---4--- 2---5-- 4---
637 | | |
638 R S R
639
640
641 (bb 4 is duplicated to 5; the prologue is inserted on the edge 5->3).
642
643 ENTRY_EDGE is the edge where the prologue will be placed, possibly
644 changed by this function. PROLOGUE_SEQ is the prologue we will insert. */
645
646void
647try_shrink_wrapping (edge *entry_edge, rtx_insn *prologue_seq)
648{
649 /* If we cannot shrink-wrap, are told not to shrink-wrap, or it makes
650 no sense to shrink-wrap: then do not shrink-wrap! */
651
652 if (!SHRINK_WRAPPING_ENABLED)
653 return;
654
655 if (crtl->profile && !targetm.profile_before_prologue ())
656 return;
657
658 if (crtl->calls_eh_return)
659 return;
660
661 bool empty_prologue = true;
662 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
663 if (!(NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END))
664 {
665 empty_prologue = false;
666 break;
667 }
668 if (empty_prologue)
669 return;
670
671 /* Move some code down to expose more shrink-wrapping opportunities. */
672
673 basic_block entry = (*entry_edge)->dest;
674 prepare_shrink_wrap (entry_block: entry);
675
676 if (dump_file)
677 fprintf (stream: dump_file, format: "Attempting shrink-wrapping optimization.\n");
678
679 /* Compute the registers set and used in the prologue. */
680
681 HARD_REG_SET prologue_clobbered, prologue_used;
682 CLEAR_HARD_REG_SET (set&: prologue_clobbered);
683 CLEAR_HARD_REG_SET (set&: prologue_used);
684 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
685 if (NONDEBUG_INSN_P (insn))
686 {
687 HARD_REG_SET this_used;
688 CLEAR_HARD_REG_SET (set&: this_used);
689 note_uses (&PATTERN (insn), record_hard_reg_uses, &this_used);
690 this_used &= ~prologue_clobbered;
691 prologue_used |= this_used;
692 note_stores (insn, record_hard_reg_sets, &prologue_clobbered);
693 }
694 CLEAR_HARD_REG_BIT (set&: prologue_clobbered, STACK_POINTER_REGNUM);
695 if (frame_pointer_needed)
696 CLEAR_HARD_REG_BIT (set&: prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
697
698 /* Find out what registers are set up by the prologue; any use of these
699 cannot happen before the prologue. */
700
701 struct hard_reg_set_container set_up_by_prologue;
702 CLEAR_HARD_REG_SET (set&: set_up_by_prologue.set);
703 add_to_hard_reg_set (regs: &set_up_by_prologue.set, Pmode, STACK_POINTER_REGNUM);
704 add_to_hard_reg_set (regs: &set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
705 if (frame_pointer_needed)
706 add_to_hard_reg_set (regs: &set_up_by_prologue.set, Pmode,
707 HARD_FRAME_POINTER_REGNUM);
708 if (pic_offset_table_rtx
709 && (unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
710 add_to_hard_reg_set (regs: &set_up_by_prologue.set, Pmode,
711 PIC_OFFSET_TABLE_REGNUM);
712 if (crtl->drap_reg)
713 add_to_hard_reg_set (regs: &set_up_by_prologue.set,
714 GET_MODE (crtl->drap_reg),
715 REGNO (crtl->drap_reg));
716 if (targetm.set_up_by_prologue)
717 targetm.set_up_by_prologue (&set_up_by_prologue);
718
719 /* We will insert the prologue before the basic block PRO. PRO should
720 dominate all basic blocks that need the prologue to be executed
721 before them. First, make PRO the "tightest wrap" possible. */
722
723 calculate_dominance_info (CDI_DOMINATORS);
724
725 basic_block pro = 0;
726
727 basic_block bb;
728 edge e;
729 edge_iterator ei;
730 FOR_EACH_BB_FN (bb, cfun)
731 {
732 rtx_insn *insn;
733 FOR_BB_INSNS (bb, insn)
734 if (NONDEBUG_INSN_P (insn)
735 && requires_stack_frame_p (insn, prologue_used,
736 set_up_by_prologue: set_up_by_prologue.set))
737 {
738 if (dump_file)
739 {
740 fprintf (stream: dump_file, format: "Block %d needs prologue due to insn %d:\n",
741 bb->index, INSN_UID (insn));
742 print_rtl_single (dump_file, insn);
743 }
744 pro = nearest_common_dominator (CDI_DOMINATORS, pro, bb);
745 break;
746 }
747 }
748
749 /* If nothing needs a prologue, just put it at the start. This really
750 shouldn't happen, but we cannot fix it here. */
751
752 if (pro == 0)
753 {
754 if (dump_file)
755 fprintf(stream: dump_file, format: "Nothing needs a prologue, but it isn't empty; "
756 "putting it at the start.\n");
757 pro = entry;
758 }
759
760 if (dump_file)
761 fprintf (stream: dump_file, format: "After wrapping required blocks, PRO is now %d\n",
762 pro->index);
763
764 /* Now see if we can put the prologue at the start of PRO. Putting it
765 there might require duplicating a block that cannot be duplicated,
766 or in some cases we cannot insert the prologue there at all. If PRO
767 wont't do, try again with the immediate dominator of PRO, and so on.
768
769 The blocks that need duplicating are those reachable from PRO but
770 not dominated by it. We keep in BB_WITH a bitmap of the blocks
771 reachable from PRO that we already found, and in VEC a stack of
772 those we still need to consider (to find successors). */
773
774 auto_bitmap bb_with;
775 bitmap_set_bit (bb_with, pro->index);
776
777 vec<basic_block> vec;
778 vec.create (n_basic_blocks_for_fn (cfun));
779 vec.quick_push (obj: pro);
780
781 unsigned max_grow_size = get_uncond_jump_length ();
782 max_grow_size *= param_max_grow_copy_bb_insns;
783
784 basic_block checked_pro = NULL;
785
786 while (pro != entry)
787 {
788 if (pro != checked_pro)
789 {
790 while (pro != entry && !can_get_prologue (pro, prologue_clobbered))
791 {
792 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
793
794 if (bitmap_set_bit (bb_with, pro->index))
795 vec.quick_push (obj: pro);
796 }
797 checked_pro = pro;
798 }
799
800 if (vec.is_empty ())
801 break;
802
803 basic_block bb = vec.pop ();
804 if (!can_dup_for_shrink_wrapping (bb, pro, max_size: max_grow_size))
805 while (!dominated_by_p (CDI_DOMINATORS, bb, pro))
806 {
807 gcc_assert (pro != entry);
808
809 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
810
811 if (bitmap_set_bit (bb_with, pro->index))
812 vec.quick_push (obj: pro);
813 }
814
815 FOR_EACH_EDGE (e, ei, bb->succs)
816 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
817 && bitmap_set_bit (bb_with, e->dest->index))
818 vec.quick_push (obj: e->dest);
819 }
820
821 if (dump_file)
822 fprintf (stream: dump_file, format: "Avoiding non-duplicatable blocks, PRO is now %d\n",
823 pro->index);
824
825 /* If we can move PRO back without having to duplicate more blocks, do so.
826 We do this because putting the prologue earlier is better for scheduling.
827
828 We can move back to a block PRE if every path from PRE will eventually
829 need a prologue, that is, PRO is a post-dominator of PRE. PRE needs
830 to dominate every block reachable from itself. We keep in BB_TMP a
831 bitmap of the blocks reachable from PRE that we already found, and in
832 VEC a stack of those we still need to consider.
833
834 Any block reachable from PRE is also reachable from all predecessors
835 of PRE, so if we find we need to move PRE back further we can leave
836 everything not considered so far on the stack. Any block dominated
837 by PRE is also dominated by all other dominators of PRE, so anything
838 found good for some PRE does not need to be reconsidered later.
839
840 We don't need to update BB_WITH because none of the new blocks found
841 can jump to a block that does not need the prologue. */
842
843 if (pro != entry)
844 {
845 calculate_dominance_info (CDI_POST_DOMINATORS);
846
847 auto_bitmap bb_tmp;
848 bitmap_copy (bb_tmp, bb_with);
849 basic_block last_ok = pro;
850 vec.truncate (size: 0);
851
852 while (pro != entry)
853 {
854 basic_block pre = get_immediate_dominator (CDI_DOMINATORS, pro);
855 if (!dominated_by_p (CDI_POST_DOMINATORS, pre, pro))
856 break;
857
858 if (bitmap_set_bit (bb_tmp, pre->index))
859 vec.quick_push (obj: pre);
860
861 bool ok = true;
862 while (!vec.is_empty ())
863 {
864 if (!dominated_by_p (CDI_DOMINATORS, vec.last (), pre))
865 {
866 ok = false;
867 break;
868 }
869
870 basic_block bb = vec.pop ();
871 FOR_EACH_EDGE (e, ei, bb->succs)
872 if (bitmap_set_bit (bb_tmp, e->dest->index))
873 vec.quick_push (obj: e->dest);
874 }
875
876 if (ok && can_get_prologue (pro: pre, prologue_clobbered))
877 last_ok = pre;
878
879 pro = pre;
880 }
881
882 pro = last_ok;
883
884 free_dominance_info (CDI_POST_DOMINATORS);
885 }
886
887 vec.release ();
888
889 if (dump_file)
890 fprintf (stream: dump_file, format: "Bumping back to anticipatable blocks, PRO is now %d\n",
891 pro->index);
892
893 if (pro == entry)
894 {
895 free_dominance_info (CDI_DOMINATORS);
896 return;
897 }
898
899 /* Compute what fraction of the frequency and count of the blocks that run
900 both with and without prologue are for running with prologue. This gives
901 the correct answer for reducible flow graphs; for irreducible flow graphs
902 our profile is messed up beyond repair anyway. */
903
904 profile_count num = profile_count::zero ();
905 profile_count den = profile_count::zero ();
906
907 FOR_EACH_EDGE (e, ei, pro->preds)
908 if (!dominated_by_p (CDI_DOMINATORS, e->src, pro))
909 {
910 if (e->count ().initialized_p ())
911 num += e->count ();
912 if (e->src->count.initialized_p ())
913 den += e->src->count;
914 }
915
916 /* All is okay, so do it. */
917
918 crtl->shrink_wrapped = true;
919 if (dump_file)
920 fprintf (stream: dump_file, format: "Performing shrink-wrapping.\n");
921
922 /* Copy the blocks that can run both with and without prologue. The
923 originals run with prologue, the copies without. Store a pointer to
924 the copy in the ->aux field of the original. */
925
926 FOR_EACH_BB_FN (bb, cfun)
927 if (bitmap_bit_p (bb_with, bb->index)
928 && !dominated_by_p (CDI_DOMINATORS, bb, pro))
929 {
930 basic_block dup = duplicate_block (bb, 0, 0);
931
932 bb->aux = dup;
933
934 if (JUMP_P (BB_END (dup)) && !any_condjump_p (BB_END (dup)))
935 emit_barrier_after_bb (bb: dup);
936
937 if (EDGE_COUNT (dup->succs) == 0)
938 emit_barrier_after_bb (bb: dup);
939
940 if (dump_file)
941 fprintf (stream: dump_file, format: "Duplicated %d to %d\n", bb->index, dup->index);
942
943 if (num == profile_count::zero () || den.nonzero_p ())
944 bb->count = bb->count.apply_scale (num, den);
945 dup->count -= bb->count;
946 }
947
948 /* Now change the edges to point to the copies, where appropriate. */
949
950 FOR_EACH_BB_FN (bb, cfun)
951 if (!dominated_by_p (CDI_DOMINATORS, bb, pro))
952 {
953 basic_block src = bb;
954 if (bitmap_bit_p (bb_with, bb->index))
955 src = (basic_block) bb->aux;
956
957 FOR_EACH_EDGE (e, ei, src->succs)
958 {
959 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
960 continue;
961
962 if (bitmap_bit_p (bb_with, e->dest->index)
963 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
964 {
965 if (dump_file)
966 fprintf (stream: dump_file, format: "Redirecting edge %d->%d to %d\n",
967 e->src->index, e->dest->index,
968 ((basic_block) e->dest->aux)->index);
969 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
970 }
971 else if (e->flags & EDGE_FALLTHRU
972 && bitmap_bit_p (bb_with, bb->index))
973 force_nonfallthru (e);
974 }
975 }
976
977 /* Also redirect the function entry edge if necessary. */
978
979 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
980 if (bitmap_bit_p (bb_with, e->dest->index)
981 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
982 {
983 basic_block split_bb = split_edge (e);
984 e = single_succ_edge (bb: split_bb);
985 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
986 }
987
988 /* Make a simple_return for those exits that run without prologue. */
989
990 FOR_EACH_BB_REVERSE_FN (bb, cfun)
991 if (!bitmap_bit_p (bb_with, bb->index))
992 FOR_EACH_EDGE (e, ei, bb->succs)
993 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
994 handle_simple_exit (e);
995
996 /* Finally, we want a single edge to put the prologue on. Make a new
997 block before the PRO block; the edge beteen them is the edge we want.
998 Then redirect those edges into PRO that come from blocks without the
999 prologue, to point to the new block instead. The new prologue block
1000 is put at the end of the insn chain. */
1001
1002 basic_block new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
1003 BB_COPY_PARTITION (new_bb, pro);
1004 new_bb->count = profile_count::zero ();
1005 if (dump_file)
1006 fprintf (stream: dump_file, format: "Made prologue block %d\n", new_bb->index);
1007
1008 for (ei = ei_start (pro->preds); (e = ei_safe_edge (i: ei)); )
1009 {
1010 if (bitmap_bit_p (bb_with, e->src->index)
1011 || dominated_by_p (CDI_DOMINATORS, e->src, pro))
1012 {
1013 ei_next (i: &ei);
1014 continue;
1015 }
1016
1017 new_bb->count += e->count ();
1018
1019 redirect_edge_and_branch_force (e, new_bb);
1020 if (dump_file)
1021 fprintf (stream: dump_file, format: "Redirected edge from %d\n", e->src->index);
1022 }
1023
1024 *entry_edge = make_single_succ_edge (new_bb, pro, EDGE_FALLTHRU);
1025 force_nonfallthru (*entry_edge);
1026
1027 free_dominance_info (CDI_DOMINATORS);
1028}
1029
1030/* Separate shrink-wrapping
1031
1032 Instead of putting all of the prologue and epilogue in one spot, we
1033 can put parts of it in places where those components are executed less
1034 frequently. The following code does this, for prologue and epilogue
1035 components that can be put in more than one location, and where those
1036 components can be executed more than once (the epilogue component will
1037 always be executed before the prologue component is executed a second
1038 time).
1039
1040 What exactly is a component is target-dependent. The more usual
1041 components are simple saves/restores to/from the frame of callee-saved
1042 registers. This code treats components abstractly (as an sbitmap),
1043 letting the target handle all details.
1044
1045 Prologue components are placed in such a way that for every component
1046 the prologue is executed as infrequently as possible. We do this by
1047 walking the dominator tree, comparing the cost of placing a prologue
1048 component before a block to the sum of costs determined for all subtrees
1049 of that block.
1050
1051 From this placement, we then determine for each component all blocks
1052 where at least one of this block's dominators (including itself) will
1053 get a prologue inserted. That then is how the components are placed.
1054 We could place the epilogue components a bit smarter (we can save a
1055 bit of code size sometimes); this is a possible future improvement.
1056
1057 Prologues and epilogues are preferably placed into a block, either at
1058 the beginning or end of it, if it is needed for all predecessor resp.
1059 successor edges; or placed on the edge otherwise.
1060
1061 If the placement of any prologue/epilogue leads to a situation we cannot
1062 handle (for example, an abnormal edge would need to be split, or some
1063 targets want to use some specific registers that may not be available
1064 where we want to put them), separate shrink-wrapping for the components
1065 in that prologue/epilogue is aborted. */
1066
1067
1068/* Print the sbitmap COMPONENTS to the DUMP_FILE if not empty, with the
1069 label LABEL. */
1070static void
1071dump_components (const char *label, sbitmap components)
1072{
1073 if (bitmap_empty_p (components))
1074 return;
1075
1076 fprintf (stream: dump_file, format: " [%s", label);
1077
1078 for (unsigned int j = 0; j < components->n_bits; j++)
1079 if (bitmap_bit_p (map: components, bitno: j))
1080 fprintf (stream: dump_file, format: " %u", j);
1081
1082 fprintf (stream: dump_file, format: "]");
1083}
1084
1085/* The data we collect for each bb. */
1086struct sw {
1087 /* What components does this BB need? */
1088 sbitmap needs_components;
1089
1090 /* What components does this BB have? This is the main decision this
1091 pass makes. */
1092 sbitmap has_components;
1093
1094 /* The components for which we placed code at the start of the BB (instead
1095 of on all incoming edges). */
1096 sbitmap head_components;
1097
1098 /* The components for which we placed code at the end of the BB (instead
1099 of on all outgoing edges). */
1100 sbitmap tail_components;
1101
1102 /* The frequency of executing the prologue for this BB, if a prologue is
1103 placed on this BB. This is a pessimistic estimate (no prologue is
1104 needed for edges from blocks that have the component under consideration
1105 active already). */
1106 gcov_type own_cost;
1107
1108 /* The frequency of executing the prologue for this BB and all BBs
1109 dominated by it. */
1110 gcov_type total_cost;
1111};
1112
1113/* A helper function for accessing the pass-specific info. */
1114static inline struct sw *
1115SW (basic_block bb)
1116{
1117 gcc_assert (bb->aux);
1118 return (struct sw *) bb->aux;
1119}
1120
1121/* Create the pass-specific data structures for separately shrink-wrapping
1122 with components COMPONENTS. */
1123static void
1124init_separate_shrink_wrap (sbitmap components)
1125{
1126 basic_block bb;
1127 FOR_ALL_BB_FN (bb, cfun)
1128 {
1129 bb->aux = xcalloc (1, sizeof (struct sw));
1130
1131 SW (bb)->needs_components = targetm.shrink_wrap.components_for_bb (bb);
1132
1133 /* Mark all basic blocks without successor as needing all components.
1134 This avoids problems in at least cfgcleanup, sel-sched, and
1135 regrename (largely to do with all paths to such a block still
1136 needing the same dwarf CFI info). */
1137 if (EDGE_COUNT (bb->succs) == 0)
1138 bitmap_copy (SW (bb)->needs_components, components);
1139
1140 if (dump_file)
1141 {
1142 fprintf (stream: dump_file, format: "bb %d components:", bb->index);
1143 dump_components (label: "has", components: SW (bb)->needs_components);
1144 fprintf (stream: dump_file, format: "\n");
1145 }
1146
1147 SW (bb)->has_components = sbitmap_alloc (SBITMAP_SIZE (components));
1148 SW (bb)->head_components = sbitmap_alloc (SBITMAP_SIZE (components));
1149 SW (bb)->tail_components = sbitmap_alloc (SBITMAP_SIZE (components));
1150 bitmap_clear (SW (bb)->has_components);
1151 }
1152}
1153
1154/* Destroy the pass-specific data. */
1155static void
1156fini_separate_shrink_wrap (void)
1157{
1158 basic_block bb;
1159 FOR_ALL_BB_FN (bb, cfun)
1160 if (bb->aux)
1161 {
1162 sbitmap_free (map: SW (bb)->needs_components);
1163 sbitmap_free (map: SW (bb)->has_components);
1164 sbitmap_free (map: SW (bb)->head_components);
1165 sbitmap_free (map: SW (bb)->tail_components);
1166 free (ptr: bb->aux);
1167 bb->aux = 0;
1168 }
1169}
1170
1171/* Place the prologue for component WHICH, in the basic blocks dominated
1172 by HEAD. Do a DFS over the dominator tree, and set bit WHICH in the
1173 HAS_COMPONENTS of a block if either the block has that bit set in
1174 NEEDS_COMPONENTS, or it is cheaper to place the prologue here than in all
1175 dominator subtrees separately. */
1176static void
1177place_prologue_for_one_component (unsigned int which, basic_block head)
1178{
1179 /* The block we are currently dealing with. */
1180 basic_block bb = head;
1181 /* Is this the first time we visit this block, i.e. have we just gone
1182 down the tree. */
1183 bool first_visit = true;
1184
1185 /* Walk the dominator tree, visit one block per iteration of this loop.
1186 Each basic block is visited twice: once before visiting any children
1187 of the block, and once after visiting all of them (leaf nodes are
1188 visited only once). As an optimization, we do not visit subtrees
1189 that can no longer influence the prologue placement. */
1190 for (;;)
1191 {
1192 /* First visit of a block: set the (children) cost accumulator to zero;
1193 if the block does not have the component itself, walk down. */
1194 if (first_visit)
1195 {
1196 /* Initialize the cost. The cost is the block execution frequency
1197 that does not come from backedges. Calculating this by simply
1198 adding the cost of all edges that aren't backedges does not
1199 work: this does not always add up to the block frequency at
1200 all, and even if it does, rounding error makes for bad
1201 decisions. */
1202 SW (bb)->own_cost = bb->count.to_frequency (cfun);
1203
1204 edge e;
1205 edge_iterator ei;
1206 FOR_EACH_EDGE (e, ei, bb->preds)
1207 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1208 {
1209 if (SW (bb)->own_cost > EDGE_FREQUENCY (e))
1210 SW (bb)->own_cost -= EDGE_FREQUENCY (e);
1211 else
1212 SW (bb)->own_cost = 0;
1213 }
1214
1215 SW (bb)->total_cost = 0;
1216
1217 if (!bitmap_bit_p (map: SW (bb)->needs_components, bitno: which)
1218 && first_dom_son (CDI_DOMINATORS, bb))
1219 {
1220 bb = first_dom_son (CDI_DOMINATORS, bb);
1221 continue;
1222 }
1223 }
1224
1225 /* If this block does need the component itself, or it is cheaper to
1226 put the prologue here than in all the descendants that need it,
1227 mark it so. If this block's immediate post-dominator is dominated
1228 by this block, and that needs the prologue, we can put it on this
1229 block as well (earlier is better). */
1230 if (bitmap_bit_p (map: SW (bb)->needs_components, bitno: which)
1231 || SW (bb)->total_cost > SW (bb)->own_cost)
1232 {
1233 SW (bb)->total_cost = SW (bb)->own_cost;
1234 bitmap_set_bit (map: SW (bb)->has_components, bitno: which);
1235 }
1236 else
1237 {
1238 basic_block kid = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1239 if (dominated_by_p (CDI_DOMINATORS, kid, bb)
1240 && bitmap_bit_p (map: SW (bb: kid)->has_components, bitno: which))
1241 {
1242 SW (bb)->total_cost = SW (bb)->own_cost;
1243 bitmap_set_bit (map: SW (bb)->has_components, bitno: which);
1244 }
1245 }
1246
1247 /* We are back where we started, so we are done now. */
1248 if (bb == head)
1249 return;
1250
1251 /* We now know the cost of the subtree rooted at the current block.
1252 Accumulate this cost in the parent. */
1253 basic_block parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1254 SW (bb: parent)->total_cost += SW (bb)->total_cost;
1255
1256 /* Don't walk the tree down unless necessary. */
1257 if (next_dom_son (CDI_DOMINATORS, bb)
1258 && SW (bb: parent)->total_cost <= SW (bb: parent)->own_cost)
1259 {
1260 bb = next_dom_son (CDI_DOMINATORS, bb);
1261 first_visit = true;
1262 }
1263 else
1264 {
1265 bb = parent;
1266 first_visit = false;
1267 }
1268 }
1269}
1270
1271/* Set HAS_COMPONENTS in every block to the maximum it can be set to without
1272 setting it on any path from entry to exit where it was not already set
1273 somewhere (or, for blocks that have no path to the exit, consider only
1274 paths from the entry to the block itself). Return whether any changes
1275 were made to some HAS_COMPONENTS. */
1276static bool
1277spread_components (sbitmap components)
1278{
1279 basic_block entry_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1280 basic_block exit_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
1281
1282 /* A stack of all blocks left to consider, and a bitmap of all blocks
1283 on that stack. */
1284 vec<basic_block> todo;
1285 todo.create (n_basic_blocks_for_fn (cfun));
1286 auto_bitmap seen;
1287
1288 auto_sbitmap old (SBITMAP_SIZE (components));
1289
1290 /* Find for every block the components that are *not* needed on some path
1291 from the entry to that block. Do this with a flood fill from the entry
1292 block. Every block can be visited at most as often as the number of
1293 components (plus one), and usually much less often. */
1294
1295 if (dump_file)
1296 fprintf (stream: dump_file, format: "Spreading down...\n");
1297
1298 basic_block bb;
1299 FOR_ALL_BB_FN (bb, cfun)
1300 bitmap_clear (SW (bb)->head_components);
1301
1302 bitmap_copy (SW (bb: entry_block)->head_components, components);
1303
1304 edge e;
1305 edge_iterator ei;
1306
1307 todo.quick_push (obj: single_succ (bb: entry_block));
1308 bitmap_set_bit (seen, single_succ (bb: entry_block)->index);
1309 while (!todo.is_empty ())
1310 {
1311 bb = todo.pop ();
1312
1313 bitmap_copy (old, SW (bb)->head_components);
1314
1315 FOR_EACH_EDGE (e, ei, bb->preds)
1316 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components,
1317 SW (bb: e->src)->head_components);
1318
1319 bitmap_and_compl (SW (bb)->head_components, SW (bb)->head_components,
1320 SW (bb)->has_components);
1321
1322 if (!bitmap_equal_p (old, SW (bb)->head_components))
1323 FOR_EACH_EDGE (e, ei, bb->succs)
1324 if (bitmap_set_bit (seen, e->dest->index))
1325 todo.quick_push (obj: e->dest);
1326
1327 bitmap_clear_bit (seen, bb->index);
1328 }
1329
1330 /* Find for every block the components that are *not* needed on some reverse
1331 path from the exit to that block. */
1332
1333 if (dump_file)
1334 fprintf (stream: dump_file, format: "Spreading up...\n");
1335
1336 /* First, mark all blocks not reachable from the exit block as not needing
1337 any component on any path to the exit. Mark everything, and then clear
1338 again by a flood fill. */
1339
1340 FOR_ALL_BB_FN (bb, cfun)
1341 bitmap_copy (SW (bb)->tail_components, components);
1342
1343 FOR_EACH_EDGE (e, ei, exit_block->preds)
1344 {
1345 todo.quick_push (obj: e->src);
1346 bitmap_set_bit (seen, e->src->index);
1347 }
1348
1349 while (!todo.is_empty ())
1350 {
1351 bb = todo.pop ();
1352
1353 if (!bitmap_empty_p (SW (bb)->tail_components))
1354 FOR_EACH_EDGE (e, ei, bb->preds)
1355 if (bitmap_set_bit (seen, e->src->index))
1356 todo.quick_push (obj: e->src);
1357
1358 bitmap_clear (SW (bb)->tail_components);
1359
1360 bitmap_clear_bit (seen, bb->index);
1361 }
1362
1363 /* And then, flood fill backwards to find for every block the components
1364 not needed on some path to the exit. */
1365
1366 bitmap_copy (SW (bb: exit_block)->tail_components, components);
1367
1368 FOR_EACH_EDGE (e, ei, exit_block->preds)
1369 {
1370 todo.quick_push (obj: e->src);
1371 bitmap_set_bit (seen, e->src->index);
1372 }
1373
1374 while (!todo.is_empty ())
1375 {
1376 bb = todo.pop ();
1377
1378 bitmap_copy (old, SW (bb)->tail_components);
1379
1380 FOR_EACH_EDGE (e, ei, bb->succs)
1381 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components,
1382 SW (bb: e->dest)->tail_components);
1383
1384 bitmap_and_compl (SW (bb)->tail_components, SW (bb)->tail_components,
1385 SW (bb)->has_components);
1386
1387 if (!bitmap_equal_p (old, SW (bb)->tail_components))
1388 FOR_EACH_EDGE (e, ei, bb->preds)
1389 if (bitmap_set_bit (seen, e->src->index))
1390 todo.quick_push (obj: e->src);
1391
1392 bitmap_clear_bit (seen, bb->index);
1393 }
1394
1395 todo.release ();
1396
1397 /* Finally, mark everything not needed both forwards and backwards. */
1398
1399 bool did_changes = false;
1400
1401 FOR_EACH_BB_FN (bb, cfun)
1402 {
1403 bitmap_copy (old, SW (bb)->has_components);
1404
1405 bitmap_and (SW (bb)->head_components, SW (bb)->head_components,
1406 SW (bb)->tail_components);
1407 bitmap_and_compl (SW (bb)->has_components, components,
1408 SW (bb)->head_components);
1409
1410 if (!did_changes && !bitmap_equal_p (old, SW (bb)->has_components))
1411 did_changes = true;
1412 }
1413
1414 FOR_ALL_BB_FN (bb, cfun)
1415 {
1416 if (dump_file)
1417 {
1418 fprintf (stream: dump_file, format: "bb %d components:", bb->index);
1419 dump_components (label: "has", components: SW (bb)->has_components);
1420 fprintf (stream: dump_file, format: "\n");
1421 }
1422 }
1423
1424 return did_changes;
1425}
1426
1427/* If we cannot handle placing some component's prologues or epilogues where
1428 we decided we should place them, unmark that component in COMPONENTS so
1429 that it is not wrapped separately. */
1430static void
1431disqualify_problematic_components (sbitmap components)
1432{
1433 auto_sbitmap pro (SBITMAP_SIZE (components));
1434 auto_sbitmap epi (SBITMAP_SIZE (components));
1435
1436 basic_block bb;
1437 FOR_EACH_BB_FN (bb, cfun)
1438 {
1439 edge e;
1440 edge_iterator ei;
1441 FOR_EACH_EDGE (e, ei, bb->succs)
1442 {
1443 /* Find which components we want pro/epilogues for here. */
1444 bitmap_and_compl (epi, SW (bb: e->src)->has_components,
1445 SW (bb: e->dest)->has_components);
1446 bitmap_and_compl (pro, SW (bb: e->dest)->has_components,
1447 SW (bb: e->src)->has_components);
1448
1449 /* Ask the target what it thinks about things. */
1450 if (!bitmap_empty_p (epi))
1451 targetm.shrink_wrap.disqualify_components (components, e, epi,
1452 false);
1453 if (!bitmap_empty_p (pro))
1454 targetm.shrink_wrap.disqualify_components (components, e, pro,
1455 true);
1456
1457 /* If this edge doesn't need splitting, we're fine. */
1458 if (single_pred_p (bb: e->dest)
1459 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1460 continue;
1461
1462 /* If the edge can be split, that is fine too. */
1463 if ((e->flags & EDGE_ABNORMAL) == 0)
1464 continue;
1465
1466 /* We also can handle sibcalls. */
1467 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1468 {
1469 gcc_assert (e->flags & EDGE_SIBCALL);
1470 continue;
1471 }
1472
1473 /* Remove from consideration those components we would need
1474 pro/epilogues for on edges where we cannot insert them. */
1475 bitmap_and_compl (components, components, epi);
1476 bitmap_and_compl (components, components, pro);
1477
1478 if (dump_file && !bitmap_subset_p (epi, components))
1479 {
1480 fprintf (stream: dump_file, format: " BAD epi %d->%d", e->src->index,
1481 e->dest->index);
1482 if (e->flags & EDGE_EH)
1483 fprintf (stream: dump_file, format: " for EH");
1484 dump_components (label: "epi", components: epi);
1485 fprintf (stream: dump_file, format: "\n");
1486 }
1487
1488 if (dump_file && !bitmap_subset_p (pro, components))
1489 {
1490 fprintf (stream: dump_file, format: " BAD pro %d->%d", e->src->index,
1491 e->dest->index);
1492 if (e->flags & EDGE_EH)
1493 fprintf (stream: dump_file, format: " for EH");
1494 dump_components (label: "pro", components: pro);
1495 fprintf (stream: dump_file, format: "\n");
1496 }
1497 }
1498 }
1499}
1500
1501/* Place code for prologues and epilogues for COMPONENTS where we can put
1502 that code at the start of basic blocks. */
1503static void
1504emit_common_heads_for_components (sbitmap components)
1505{
1506 auto_sbitmap pro (SBITMAP_SIZE (components));
1507 auto_sbitmap epi (SBITMAP_SIZE (components));
1508 auto_sbitmap tmp (SBITMAP_SIZE (components));
1509
1510 basic_block bb;
1511 FOR_ALL_BB_FN (bb, cfun)
1512 bitmap_clear (SW (bb)->head_components);
1513
1514 FOR_EACH_BB_FN (bb, cfun)
1515 {
1516 /* Find which prologue resp. epilogue components are needed for all
1517 predecessor edges to this block. */
1518
1519 /* First, select all possible components. */
1520 bitmap_copy (epi, components);
1521 bitmap_copy (pro, components);
1522
1523 edge e;
1524 edge_iterator ei;
1525 FOR_EACH_EDGE (e, ei, bb->preds)
1526 {
1527 if (e->flags & EDGE_ABNORMAL)
1528 {
1529 bitmap_clear (epi);
1530 bitmap_clear (pro);
1531 break;
1532 }
1533
1534 /* Deselect those epilogue components that should not be inserted
1535 for this edge. */
1536 bitmap_and_compl (tmp, SW (bb: e->src)->has_components,
1537 SW (bb: e->dest)->has_components);
1538 bitmap_and (epi, epi, tmp);
1539
1540 /* Similar, for the prologue. */
1541 bitmap_and_compl (tmp, SW (bb: e->dest)->has_components,
1542 SW (bb: e->src)->has_components);
1543 bitmap_and (pro, pro, tmp);
1544 }
1545
1546 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1547 fprintf (stream: dump_file, format: " bb %d", bb->index);
1548
1549 if (dump_file && !bitmap_empty_p (epi))
1550 dump_components (label: "epi", components: epi);
1551 if (dump_file && !bitmap_empty_p (pro))
1552 dump_components (label: "pro", components: pro);
1553
1554 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1555 fprintf (stream: dump_file, format: "\n");
1556
1557 /* Place code after the BB note. */
1558 if (!bitmap_empty_p (pro))
1559 {
1560 start_sequence ();
1561 targetm.shrink_wrap.emit_prologue_components (pro);
1562 rtx_insn *seq = get_insns ();
1563 end_sequence ();
1564 record_prologue_seq (seq);
1565
1566 emit_insn_after (seq, bb_note (bb));
1567
1568 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, pro);
1569 }
1570
1571 if (!bitmap_empty_p (epi))
1572 {
1573 start_sequence ();
1574 targetm.shrink_wrap.emit_epilogue_components (epi);
1575 rtx_insn *seq = get_insns ();
1576 end_sequence ();
1577 record_epilogue_seq (seq);
1578
1579 emit_insn_after (seq, bb_note (bb));
1580
1581 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, epi);
1582 }
1583 }
1584}
1585
1586/* Place code for prologues and epilogues for COMPONENTS where we can put
1587 that code at the end of basic blocks. */
1588static void
1589emit_common_tails_for_components (sbitmap components)
1590{
1591 auto_sbitmap pro (SBITMAP_SIZE (components));
1592 auto_sbitmap epi (SBITMAP_SIZE (components));
1593 auto_sbitmap tmp (SBITMAP_SIZE (components));
1594
1595 basic_block bb;
1596 FOR_ALL_BB_FN (bb, cfun)
1597 bitmap_clear (SW (bb)->tail_components);
1598
1599 FOR_EACH_BB_FN (bb, cfun)
1600 {
1601 /* Find which prologue resp. epilogue components are needed for all
1602 successor edges from this block. */
1603 if (EDGE_COUNT (bb->succs) == 0)
1604 continue;
1605
1606 /* First, select all possible components. */
1607 bitmap_copy (epi, components);
1608 bitmap_copy (pro, components);
1609
1610 edge e;
1611 edge_iterator ei;
1612 FOR_EACH_EDGE (e, ei, bb->succs)
1613 {
1614 if (e->flags & EDGE_ABNORMAL)
1615 {
1616 bitmap_clear (epi);
1617 bitmap_clear (pro);
1618 break;
1619 }
1620
1621 /* Deselect those epilogue components that should not be inserted
1622 for this edge, and also those that are already put at the head
1623 of the successor block. */
1624 bitmap_and_compl (tmp, SW (bb: e->src)->has_components,
1625 SW (bb: e->dest)->has_components);
1626 bitmap_and_compl (tmp, tmp, SW (bb: e->dest)->head_components);
1627 bitmap_and (epi, epi, tmp);
1628
1629 /* Similarly, for the prologue. */
1630 bitmap_and_compl (tmp, SW (bb: e->dest)->has_components,
1631 SW (bb: e->src)->has_components);
1632 bitmap_and_compl (tmp, tmp, SW (bb: e->dest)->head_components);
1633 bitmap_and (pro, pro, tmp);
1634 }
1635
1636 /* If the last insn of this block is a control flow insn we cannot
1637 put anything after it. We can put our code before it instead,
1638 but only if that jump insn is a simple jump. */
1639 rtx_insn *last_insn = BB_END (bb);
1640 if (control_flow_insn_p (last_insn) && !simplejump_p (last_insn))
1641 {
1642 bitmap_clear (epi);
1643 bitmap_clear (pro);
1644 }
1645
1646 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1647 fprintf (stream: dump_file, format: " bb %d", bb->index);
1648
1649 if (dump_file && !bitmap_empty_p (epi))
1650 dump_components (label: "epi", components: epi);
1651 if (dump_file && !bitmap_empty_p (pro))
1652 dump_components (label: "pro", components: pro);
1653
1654 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1655 fprintf (stream: dump_file, format: "\n");
1656
1657 /* Put the code at the end of the BB, but before any final jump. */
1658 if (!bitmap_empty_p (epi))
1659 {
1660 start_sequence ();
1661 targetm.shrink_wrap.emit_epilogue_components (epi);
1662 rtx_insn *seq = get_insns ();
1663 end_sequence ();
1664 record_epilogue_seq (seq);
1665
1666 if (control_flow_insn_p (last_insn))
1667 emit_insn_before (seq, last_insn);
1668 else
1669 emit_insn_after (seq, last_insn);
1670
1671 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, epi);
1672 }
1673
1674 if (!bitmap_empty_p (pro))
1675 {
1676 start_sequence ();
1677 targetm.shrink_wrap.emit_prologue_components (pro);
1678 rtx_insn *seq = get_insns ();
1679 end_sequence ();
1680 record_prologue_seq (seq);
1681
1682 if (control_flow_insn_p (last_insn))
1683 emit_insn_before (seq, last_insn);
1684 else
1685 emit_insn_after (seq, last_insn);
1686
1687 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, pro);
1688 }
1689 }
1690}
1691
1692/* Place prologues and epilogues for COMPONENTS on edges, if we haven't already
1693 placed them inside blocks directly. */
1694static void
1695insert_prologue_epilogue_for_components (sbitmap components)
1696{
1697 auto_sbitmap pro (SBITMAP_SIZE (components));
1698 auto_sbitmap epi (SBITMAP_SIZE (components));
1699
1700 basic_block bb;
1701 FOR_EACH_BB_FN (bb, cfun)
1702 {
1703 if (!bb->aux)
1704 continue;
1705
1706 edge e;
1707 edge_iterator ei;
1708 FOR_EACH_EDGE (e, ei, bb->succs)
1709 {
1710 /* Find which pro/epilogue components are needed on this edge. */
1711 bitmap_and_compl (epi, SW (bb: e->src)->has_components,
1712 SW (bb: e->dest)->has_components);
1713 bitmap_and_compl (pro, SW (bb: e->dest)->has_components,
1714 SW (bb: e->src)->has_components);
1715 bitmap_and (epi, epi, components);
1716 bitmap_and (pro, pro, components);
1717
1718 /* Deselect those we already have put at the head or tail of the
1719 edge's dest resp. src. */
1720 bitmap_and_compl (epi, epi, SW (bb: e->dest)->head_components);
1721 bitmap_and_compl (pro, pro, SW (bb: e->dest)->head_components);
1722 bitmap_and_compl (epi, epi, SW (bb: e->src)->tail_components);
1723 bitmap_and_compl (pro, pro, SW (bb: e->src)->tail_components);
1724
1725 if (!bitmap_empty_p (epi) || !bitmap_empty_p (pro))
1726 {
1727 if (dump_file)
1728 {
1729 fprintf (stream: dump_file, format: " %d->%d", e->src->index,
1730 e->dest->index);
1731 dump_components (label: "epi", components: epi);
1732 dump_components (label: "pro", components: pro);
1733 if (e->flags & EDGE_SIBCALL)
1734 fprintf (stream: dump_file, format: " (SIBCALL)");
1735 else if (e->flags & EDGE_ABNORMAL)
1736 fprintf (stream: dump_file, format: " (ABNORMAL)");
1737 fprintf (stream: dump_file, format: "\n");
1738 }
1739
1740 /* Put the epilogue components in place. */
1741 start_sequence ();
1742 targetm.shrink_wrap.emit_epilogue_components (epi);
1743 rtx_insn *seq = get_insns ();
1744 end_sequence ();
1745 record_epilogue_seq (seq);
1746
1747 if (e->flags & EDGE_SIBCALL)
1748 {
1749 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun));
1750
1751 rtx_insn *insn = BB_END (e->src);
1752 gcc_assert (CALL_P (insn) && SIBLING_CALL_P (insn));
1753 emit_insn_before (seq, insn);
1754 }
1755 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1756 {
1757 gcc_assert (e->flags & EDGE_FALLTHRU);
1758 basic_block new_bb = split_edge (e);
1759 emit_insn_after (seq, BB_END (new_bb));
1760 }
1761 else
1762 insert_insn_on_edge (seq, e);
1763
1764 /* Put the prologue components in place. */
1765 start_sequence ();
1766 targetm.shrink_wrap.emit_prologue_components (pro);
1767 seq = get_insns ();
1768 end_sequence ();
1769 record_prologue_seq (seq);
1770
1771 insert_insn_on_edge (seq, e);
1772 }
1773 }
1774 }
1775
1776 commit_edge_insertions ();
1777}
1778
1779bool
1780use_shrink_wrapping_separate (void)
1781{
1782 if (!(SHRINK_WRAPPING_ENABLED && flag_shrink_wrap_separate
1783 && optimize_function_for_speed_p (cfun)
1784 && targetm.shrink_wrap.get_separate_components))
1785 return false;
1786
1787 /* We don't handle "strange" functions. */
1788 if (cfun->calls_alloca
1789 || cfun->calls_setjmp
1790 || cfun->can_throw_non_call_exceptions
1791 || crtl->calls_eh_return
1792 || crtl->has_nonlocal_goto
1793 || crtl->saves_all_registers)
1794 return false;
1795
1796 return true;
1797}
1798
1799/* The main entry point to this subpass. FIRST_BB is where the prologue
1800 would be normally put. */
1801void
1802try_shrink_wrapping_separate (basic_block first_bb)
1803{
1804 if (!use_shrink_wrapping_separate ())
1805 return;
1806
1807 /* Ask the target what components there are. If it returns NULL, don't
1808 do anything. */
1809 sbitmap components = targetm.shrink_wrap.get_separate_components ();
1810 if (!components)
1811 return;
1812
1813 /* We need LIVE info, not defining anything in the entry block and not
1814 using anything in the exit block. A block then needs a component if
1815 the register for that component is in the IN or GEN or KILL set for
1816 that block. */
1817 df_scan->local_flags |= DF_SCAN_EMPTY_ENTRY_EXIT;
1818 df_update_entry_exit_and_calls ();
1819 df_live_add_problem ();
1820 df_live_set_all_dirty ();
1821 df_analyze ();
1822
1823 calculate_dominance_info (CDI_DOMINATORS);
1824 calculate_dominance_info (CDI_POST_DOMINATORS);
1825
1826 init_separate_shrink_wrap (components);
1827
1828 sbitmap_iterator sbi;
1829 unsigned int j;
1830 EXECUTE_IF_SET_IN_BITMAP (components, 0, j, sbi)
1831 place_prologue_for_one_component (which: j, head: first_bb);
1832
1833 /* Try to minimize the number of saves and restores. Do this as long as
1834 it changes anything. This does not iterate more than a few times. */
1835 int spread_times = 0;
1836 while (spread_components (components))
1837 {
1838 spread_times++;
1839
1840 if (dump_file)
1841 fprintf (stream: dump_file, format: "Now spread %d times.\n", spread_times);
1842 }
1843
1844 disqualify_problematic_components (components);
1845
1846 /* Don't separately shrink-wrap anything where the "main" prologue will
1847 go; the target code can often optimize things if it is presented with
1848 all components together (say, if it generates store-multiple insns). */
1849 bitmap_and_compl (components, components, SW (bb: first_bb)->has_components);
1850
1851 if (bitmap_empty_p (components))
1852 {
1853 if (dump_file)
1854 fprintf (stream: dump_file, format: "Not wrapping anything separately.\n");
1855 }
1856 else
1857 {
1858 if (dump_file)
1859 {
1860 fprintf (stream: dump_file, format: "The components we wrap separately are");
1861 dump_components (label: "sep", components);
1862 fprintf (stream: dump_file, format: "\n");
1863
1864 fprintf (stream: dump_file, format: "... Inserting common heads...\n");
1865 }
1866
1867 emit_common_heads_for_components (components);
1868
1869 if (dump_file)
1870 fprintf (stream: dump_file, format: "... Inserting common tails...\n");
1871
1872 emit_common_tails_for_components (components);
1873
1874 if (dump_file)
1875 fprintf (stream: dump_file, format: "... Inserting the more difficult ones...\n");
1876
1877 insert_prologue_epilogue_for_components (components);
1878
1879 if (dump_file)
1880 fprintf (stream: dump_file, format: "... Done.\n");
1881
1882 targetm.shrink_wrap.set_handled_components (components);
1883
1884 crtl->shrink_wrapped_separate = true;
1885 }
1886
1887 fini_separate_shrink_wrap ();
1888
1889 sbitmap_free (map: components);
1890 free_dominance_info (CDI_DOMINATORS);
1891 free_dominance_info (CDI_POST_DOMINATORS);
1892
1893 /* All done. */
1894 df_scan->local_flags &= ~DF_SCAN_EMPTY_ENTRY_EXIT;
1895 df_update_entry_exit_and_calls ();
1896 df_live_set_all_dirty ();
1897 df_analyze ();
1898}
1899

source code of gcc/shrink-wrap.cc