1/* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 3, or (at your option)
9any later version.
10
11GCC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "rtl.h"
25#include "tree.h"
26#include "gimple.h"
27#include "cfghooks.h"
28#include "tree-pass.h"
29#include "ssa.h"
30#include "cgraph.h"
31#include "diagnostic-core.h"
32#include "fold-const.h"
33#include "calls.h"
34#include "except.h"
35#include "cfganal.h"
36#include "cfgcleanup.h"
37#include "tree-eh.h"
38#include "gimple-iterator.h"
39#include "tree-cfg.h"
40#include "tree-into-ssa.h"
41#include "tree-ssa.h"
42#include "tree-inline.h"
43#include "langhooks.h"
44#include "cfgloop.h"
45#include "gimple-low.h"
46#include "stringpool.h"
47#include "attribs.h"
48#include "asan.h"
49#include "gimplify.h"
50
51/* In some instances a tree and a gimple need to be stored in a same table,
52 i.e. in hash tables. This is a structure to do this. */
53typedef union {tree *tp; tree t; gimple *g;} treemple;
54
55/* Misc functions used in this file. */
56
57/* Remember and lookup EH landing pad data for arbitrary statements.
58 Really this means any statement that could_throw_p. We could
59 stuff this information into the stmt_ann data structure, but:
60
61 (1) We absolutely rely on this information being kept until
62 we get to rtl. Once we're done with lowering here, if we lose
63 the information there's no way to recover it!
64
65 (2) There are many more statements that *cannot* throw as
66 compared to those that can. We should be saving some amount
67 of space by only allocating memory for those that can throw. */
68
69/* Add statement T in function IFUN to landing pad NUM. */
70
71static void
72add_stmt_to_eh_lp_fn (struct function *ifun, gimple *t, int num)
73{
74 gcc_assert (num != 0);
75
76 if (!get_eh_throw_stmt_table (ifun))
77 set_eh_throw_stmt_table (ifun, hash_map<gimple *, int>::create_ggc (size: 31));
78
79 gcc_assert (!get_eh_throw_stmt_table (ifun)->put (t, num));
80}
81
82/* Add statement T in the current function (cfun) to EH landing pad NUM. */
83
84void
85add_stmt_to_eh_lp (gimple *t, int num)
86{
87 add_stmt_to_eh_lp_fn (cfun, t, num);
88}
89
90/* Add statement T to the single EH landing pad in REGION. */
91
92static void
93record_stmt_eh_region (eh_region region, gimple *t)
94{
95 if (region == NULL)
96 return;
97 if (region->type == ERT_MUST_NOT_THROW)
98 add_stmt_to_eh_lp_fn (cfun, t, num: -region->index);
99 else
100 {
101 eh_landing_pad lp = region->landing_pads;
102 if (lp == NULL)
103 lp = gen_eh_landing_pad (region);
104 else
105 gcc_assert (lp->next_lp == NULL);
106 add_stmt_to_eh_lp_fn (cfun, t, num: lp->index);
107 }
108}
109
110
111/* Remove statement T in function IFUN from its EH landing pad. */
112
113bool
114remove_stmt_from_eh_lp_fn (struct function *ifun, gimple *t)
115{
116 if (!get_eh_throw_stmt_table (ifun))
117 return false;
118
119 if (!get_eh_throw_stmt_table (ifun)->get (k: t))
120 return false;
121
122 get_eh_throw_stmt_table (ifun)->remove (k: t);
123 return true;
124}
125
126
127/* Remove statement T in the current function (cfun) from its
128 EH landing pad. */
129
130bool
131remove_stmt_from_eh_lp (gimple *t)
132{
133 return remove_stmt_from_eh_lp_fn (cfun, t);
134}
135
136/* Determine if statement T is inside an EH region in function IFUN.
137 Positive numbers indicate a landing pad index; negative numbers
138 indicate a MUST_NOT_THROW region index; zero indicates that the
139 statement is not recorded in the region table. */
140
141int
142lookup_stmt_eh_lp_fn (struct function *ifun, const gimple *t)
143{
144 if (ifun->eh->throw_stmt_table == NULL)
145 return 0;
146
147 int *lp_nr = ifun->eh->throw_stmt_table->get (k: const_cast <gimple *> (t));
148 return lp_nr ? *lp_nr : 0;
149}
150
151/* Likewise, but always use the current function. */
152
153int
154lookup_stmt_eh_lp (const gimple *t)
155{
156 /* We can get called from initialized data when -fnon-call-exceptions
157 is on; prevent crash. */
158 if (!cfun)
159 return 0;
160 return lookup_stmt_eh_lp_fn (cfun, t);
161}
162
163/* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
164 nodes and LABEL_DECL nodes. We will use this during the second phase to
165 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
166
167struct finally_tree_node
168{
169 /* When storing a GIMPLE_TRY, we have to record a gimple. However
170 when deciding whether a GOTO to a certain LABEL_DECL (which is a
171 tree) leaves the TRY block, its necessary to record a tree in
172 this field. Thus a treemple is used. */
173 treemple child;
174 gtry *parent;
175};
176
177/* Hashtable helpers. */
178
179struct finally_tree_hasher : free_ptr_hash <finally_tree_node>
180{
181 static inline hashval_t hash (const finally_tree_node *);
182 static inline bool equal (const finally_tree_node *,
183 const finally_tree_node *);
184};
185
186inline hashval_t
187finally_tree_hasher::hash (const finally_tree_node *v)
188{
189 return (intptr_t)v->child.t >> 4;
190}
191
192inline bool
193finally_tree_hasher::equal (const finally_tree_node *v,
194 const finally_tree_node *c)
195{
196 return v->child.t == c->child.t;
197}
198
199/* Note that this table is *not* marked GTY. It is short-lived. */
200static hash_table<finally_tree_hasher> *finally_tree;
201
202static void
203record_in_finally_tree (treemple child, gtry *parent)
204{
205 struct finally_tree_node *n;
206 finally_tree_node **slot;
207
208 n = XNEW (struct finally_tree_node);
209 n->child = child;
210 n->parent = parent;
211
212 slot = finally_tree->find_slot (value: n, insert: INSERT);
213 gcc_assert (!*slot);
214 *slot = n;
215}
216
217static void
218collect_finally_tree (gimple *stmt, gtry *region);
219
220/* Go through the gimple sequence. Works with collect_finally_tree to
221 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
222
223static void
224collect_finally_tree_1 (gimple_seq seq, gtry *region)
225{
226 gimple_stmt_iterator gsi;
227
228 for (gsi = gsi_start (seq); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
229 collect_finally_tree (stmt: gsi_stmt (i: gsi), region);
230}
231
232static void
233collect_finally_tree (gimple *stmt, gtry *region)
234{
235 treemple temp;
236
237 switch (gimple_code (g: stmt))
238 {
239 case GIMPLE_LABEL:
240 temp.t = gimple_label_label (gs: as_a <glabel *> (p: stmt));
241 record_in_finally_tree (child: temp, parent: region);
242 break;
243
244 case GIMPLE_TRY:
245 if (gimple_try_kind (gs: stmt) == GIMPLE_TRY_FINALLY)
246 {
247 temp.g = stmt;
248 record_in_finally_tree (child: temp, parent: region);
249 collect_finally_tree_1 (seq: gimple_try_eval (gs: stmt),
250 region: as_a <gtry *> (p: stmt));
251 collect_finally_tree_1 (seq: gimple_try_cleanup (gs: stmt), region);
252 }
253 else if (gimple_try_kind (gs: stmt) == GIMPLE_TRY_CATCH)
254 {
255 collect_finally_tree_1 (seq: gimple_try_eval (gs: stmt), region);
256 collect_finally_tree_1 (seq: gimple_try_cleanup (gs: stmt), region);
257 }
258 break;
259
260 case GIMPLE_CATCH:
261 collect_finally_tree_1 (seq: gimple_catch_handler (
262 catch_stmt: as_a <gcatch *> (p: stmt)),
263 region);
264 break;
265
266 case GIMPLE_EH_FILTER:
267 collect_finally_tree_1 (seq: gimple_eh_filter_failure (gs: stmt), region);
268 break;
269
270 case GIMPLE_EH_ELSE:
271 {
272 geh_else *eh_else_stmt = as_a <geh_else *> (p: stmt);
273 collect_finally_tree_1 (seq: gimple_eh_else_n_body (eh_else_stmt), region);
274 collect_finally_tree_1 (seq: gimple_eh_else_e_body (eh_else_stmt), region);
275 }
276 break;
277
278 default:
279 /* A type, a decl, or some kind of statement that we're not
280 interested in. Don't walk them. */
281 break;
282 }
283}
284
285
286/* Use the finally tree to determine if a jump from START to TARGET
287 would leave the try_finally node that START lives in. */
288
289static bool
290outside_finally_tree (treemple start, gimple *target)
291{
292 struct finally_tree_node n, *p;
293
294 do
295 {
296 n.child = start;
297 p = finally_tree->find (value: &n);
298 if (!p)
299 return true;
300 start.g = p->parent;
301 }
302 while (start.g != target);
303
304 return false;
305}
306
307/* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
308 nodes into a set of gotos, magic labels, and eh regions.
309 The eh region creation is straight-forward, but frobbing all the gotos
310 and such into shape isn't. */
311
312/* The sequence into which we record all EH stuff. This will be
313 placed at the end of the function when we're all done. */
314static gimple_seq eh_seq;
315
316/* Record whether an EH region contains something that can throw,
317 indexed by EH region number. */
318static bitmap eh_region_may_contain_throw_map;
319
320/* The GOTO_QUEUE is an array of GIMPLE_GOTO and GIMPLE_RETURN
321 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
322 The idea is to record a gimple statement for everything except for
323 the conditionals, which get their labels recorded. Since labels are
324 of type 'tree', we need this node to store both gimple and tree
325 objects. REPL_STMT is the sequence used to replace the goto/return
326 statement. CONT_STMT is used to store the statement that allows
327 the return/goto to jump to the original destination. */
328
329struct goto_queue_node
330{
331 treemple stmt;
332 location_t location;
333 gimple_seq repl_stmt;
334 gimple *cont_stmt;
335 int index;
336 /* This is used when index >= 0 to indicate that stmt is a label (as
337 opposed to a goto stmt). */
338 int is_label;
339};
340
341/* State of the world while lowering. */
342
343struct leh_state
344{
345 /* What's "current" while constructing the eh region tree. These
346 correspond to variables of the same name in cfun->eh, which we
347 don't have easy access to. */
348 eh_region cur_region;
349
350 /* What's "current" for the purposes of __builtin_eh_pointer. For
351 a CATCH, this is the associated TRY. For an EH_FILTER, this is
352 the associated ALLOWED_EXCEPTIONS, etc. */
353 eh_region ehp_region;
354
355 /* Processing of TRY_FINALLY requires a bit more state. This is
356 split out into a separate structure so that we don't have to
357 copy so much when processing other nodes. */
358 struct leh_tf_state *tf;
359
360 /* Outer non-clean up region. */
361 eh_region outer_non_cleanup;
362};
363
364struct leh_tf_state
365{
366 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
367 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
368 this so that outside_finally_tree can reliably reference the tree used
369 in the collect_finally_tree data structures. */
370 gtry *try_finally_expr;
371 gtry *top_p;
372
373 /* While lowering a top_p usually it is expanded into multiple statements,
374 thus we need the following field to store them. */
375 gimple_seq top_p_seq;
376
377 /* The state outside this try_finally node. */
378 struct leh_state *outer;
379
380 /* The exception region created for it. */
381 eh_region region;
382
383 /* The goto queue. */
384 struct goto_queue_node *goto_queue;
385 size_t goto_queue_size;
386 size_t goto_queue_active;
387
388 /* Pointer map to help in searching goto_queue when it is large. */
389 hash_map<gimple *, goto_queue_node *> *goto_queue_map;
390
391 /* The set of unique labels seen as entries in the goto queue. */
392 vec<tree> dest_array;
393
394 /* A label to be added at the end of the completed transformed
395 sequence. It will be set if may_fallthru was true *at one time*,
396 though subsequent transformations may have cleared that flag. */
397 tree fallthru_label;
398
399 /* True if it is possible to fall out the bottom of the try block.
400 Cleared if the fallthru is converted to a goto. */
401 bool may_fallthru;
402
403 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
404 bool may_return;
405
406 /* True if the finally block can receive an exception edge.
407 Cleared if the exception case is handled by code duplication. */
408 bool may_throw;
409};
410
411static gimple_seq lower_eh_must_not_throw (struct leh_state *, gtry *);
412
413/* Search for STMT in the goto queue. Return the replacement,
414 or null if the statement isn't in the queue. */
415
416#define LARGE_GOTO_QUEUE 20
417
418static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
419
420static gimple_seq
421find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
422{
423 unsigned int i;
424
425 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
426 {
427 for (i = 0; i < tf->goto_queue_active; i++)
428 if ( tf->goto_queue[i].stmt.g == stmt.g)
429 return tf->goto_queue[i].repl_stmt;
430 return NULL;
431 }
432
433 /* If we have a large number of entries in the goto_queue, create a
434 pointer map and use that for searching. */
435
436 if (!tf->goto_queue_map)
437 {
438 tf->goto_queue_map = new hash_map<gimple *, goto_queue_node *>;
439 for (i = 0; i < tf->goto_queue_active; i++)
440 {
441 bool existed = tf->goto_queue_map->put (k: tf->goto_queue[i].stmt.g,
442 v: &tf->goto_queue[i]);
443 gcc_assert (!existed);
444 }
445 }
446
447 goto_queue_node **slot = tf->goto_queue_map->get (k: stmt.g);
448 if (slot != NULL)
449 return ((*slot)->repl_stmt);
450
451 return NULL;
452}
453
454/* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
455 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
456 then we can just splat it in, otherwise we add the new stmts immediately
457 after the GIMPLE_COND and redirect. */
458
459static void
460replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
461 gimple_stmt_iterator *gsi)
462{
463 tree label;
464 gimple_seq new_seq;
465 treemple temp;
466 location_t loc = gimple_location (g: gsi_stmt (i: *gsi));
467
468 temp.tp = tp;
469 new_seq = find_goto_replacement (tf, stmt: temp);
470 if (!new_seq)
471 return;
472
473 if (gimple_seq_singleton_p (seq: new_seq)
474 && gimple_code (g: gimple_seq_first_stmt (s: new_seq)) == GIMPLE_GOTO)
475 {
476 *tp = gimple_goto_dest (gs: gimple_seq_first_stmt (s: new_seq));
477 return;
478 }
479
480 label = create_artificial_label (loc);
481 /* Set the new label for the GIMPLE_COND */
482 *tp = label;
483
484 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
485 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
486}
487
488/* The real work of replace_goto_queue. Returns with TSI updated to
489 point to the next statement. */
490
491static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
492
493static void
494replace_goto_queue_1 (gimple *stmt, struct leh_tf_state *tf,
495 gimple_stmt_iterator *gsi)
496{
497 gimple_seq seq;
498 treemple temp;
499 temp.g = NULL;
500
501 switch (gimple_code (g: stmt))
502 {
503 case GIMPLE_GOTO:
504 case GIMPLE_RETURN:
505 temp.g = stmt;
506 seq = find_goto_replacement (tf, stmt: temp);
507 if (seq)
508 {
509 gimple_stmt_iterator i;
510 seq = gimple_seq_copy (seq);
511 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (i: &i))
512 gimple_set_location (g: gsi_stmt (i), location: gimple_location (g: stmt));
513 gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
514 gsi_remove (gsi, false);
515 return;
516 }
517 break;
518
519 case GIMPLE_COND:
520 replace_goto_queue_cond_clause (tp: gimple_op_ptr (gs: stmt, i: 2), tf, gsi);
521 replace_goto_queue_cond_clause (tp: gimple_op_ptr (gs: stmt, i: 3), tf, gsi);
522 break;
523
524 case GIMPLE_TRY:
525 replace_goto_queue_stmt_list (gimple_try_eval_ptr (gs: stmt), tf);
526 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (gs: stmt), tf);
527 break;
528 case GIMPLE_CATCH:
529 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (
530 catch_stmt: as_a <gcatch *> (p: stmt)),
531 tf);
532 break;
533 case GIMPLE_EH_FILTER:
534 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (gs: stmt), tf);
535 break;
536 case GIMPLE_EH_ELSE:
537 {
538 geh_else *eh_else_stmt = as_a <geh_else *> (p: stmt);
539 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (eh_else_stmt),
540 tf);
541 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (eh_else_stmt),
542 tf);
543 }
544 break;
545
546 default:
547 /* These won't have gotos in them. */
548 break;
549 }
550
551 gsi_next (i: gsi);
552}
553
554/* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
555
556static void
557replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
558{
559 gimple_stmt_iterator gsi = gsi_start (seq&: *seq);
560
561 while (!gsi_end_p (i: gsi))
562 replace_goto_queue_1 (stmt: gsi_stmt (i: gsi), tf, gsi: &gsi);
563}
564
565/* Replace all goto queue members. */
566
567static void
568replace_goto_queue (struct leh_tf_state *tf)
569{
570 if (tf->goto_queue_active == 0)
571 return;
572 replace_goto_queue_stmt_list (seq: &tf->top_p_seq, tf);
573 replace_goto_queue_stmt_list (seq: &eh_seq, tf);
574}
575
576/* Add a new record to the goto queue contained in TF. NEW_STMT is the
577 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
578 a gimple return. */
579
580static void
581record_in_goto_queue (struct leh_tf_state *tf,
582 treemple new_stmt,
583 int index,
584 bool is_label,
585 location_t location)
586{
587 size_t active, size;
588 struct goto_queue_node *q;
589
590 gcc_assert (!tf->goto_queue_map);
591
592 active = tf->goto_queue_active;
593 size = tf->goto_queue_size;
594 if (active >= size)
595 {
596 size = (size ? size * 2 : 32);
597 tf->goto_queue_size = size;
598 tf->goto_queue
599 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
600 }
601
602 q = &tf->goto_queue[active];
603 tf->goto_queue_active = active + 1;
604
605 memset (s: q, c: 0, n: sizeof (*q));
606 q->stmt = new_stmt;
607 q->index = index;
608 q->location = location;
609 q->is_label = is_label;
610}
611
612/* Record the LABEL label in the goto queue contained in TF.
613 TF is not null. */
614
615static void
616record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
617 location_t location)
618{
619 int index;
620 treemple temp, new_stmt;
621
622 if (!label)
623 return;
624
625 /* Computed and non-local gotos do not get processed. Given
626 their nature we can neither tell whether we've escaped the
627 finally block nor redirect them if we knew. */
628 if (TREE_CODE (label) != LABEL_DECL)
629 return;
630
631 /* No need to record gotos that don't leave the try block. */
632 temp.t = label;
633 if (!outside_finally_tree (start: temp, target: tf->try_finally_expr))
634 return;
635
636 if (! tf->dest_array.exists ())
637 {
638 tf->dest_array.create (nelems: 10);
639 tf->dest_array.quick_push (obj: label);
640 index = 0;
641 }
642 else
643 {
644 int n = tf->dest_array.length ();
645 for (index = 0; index < n; ++index)
646 if (tf->dest_array[index] == label)
647 break;
648 if (index == n)
649 tf->dest_array.safe_push (obj: label);
650 }
651
652 /* In the case of a GOTO we want to record the destination label,
653 since with a GIMPLE_COND we have an easy access to the then/else
654 labels. */
655 new_stmt = stmt;
656 record_in_goto_queue (tf, new_stmt, index, is_label: true, location);
657}
658
659/* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
660 node, and if so record that fact in the goto queue associated with that
661 try_finally node. */
662
663static void
664maybe_record_in_goto_queue (struct leh_state *state, gimple *stmt)
665{
666 struct leh_tf_state *tf = state->tf;
667 treemple new_stmt;
668
669 if (!tf)
670 return;
671
672 switch (gimple_code (g: stmt))
673 {
674 case GIMPLE_COND:
675 {
676 gcond *cond_stmt = as_a <gcond *> (p: stmt);
677 new_stmt.tp = gimple_op_ptr (gs: cond_stmt, i: 2);
678 record_in_goto_queue_label (tf, stmt: new_stmt,
679 label: gimple_cond_true_label (gs: cond_stmt),
680 EXPR_LOCATION (*new_stmt.tp));
681 new_stmt.tp = gimple_op_ptr (gs: cond_stmt, i: 3);
682 record_in_goto_queue_label (tf, stmt: new_stmt,
683 label: gimple_cond_false_label (gs: cond_stmt),
684 EXPR_LOCATION (*new_stmt.tp));
685 }
686 break;
687 case GIMPLE_GOTO:
688 new_stmt.g = stmt;
689 record_in_goto_queue_label (tf, stmt: new_stmt, label: gimple_goto_dest (gs: stmt),
690 location: gimple_location (g: stmt));
691 break;
692
693 case GIMPLE_RETURN:
694 tf->may_return = true;
695 new_stmt.g = stmt;
696 record_in_goto_queue (tf, new_stmt, index: -1, is_label: false, location: gimple_location (g: stmt));
697 break;
698
699 default:
700 gcc_unreachable ();
701 }
702}
703
704
705#if CHECKING_P
706/* We do not process GIMPLE_SWITCHes for now. As long as the original source
707 was in fact structured, and we've not yet done jump threading, then none
708 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
709
710static void
711verify_norecord_switch_expr (struct leh_state *state,
712 gswitch *switch_expr)
713{
714 struct leh_tf_state *tf = state->tf;
715 size_t i, n;
716
717 if (!tf)
718 return;
719
720 n = gimple_switch_num_labels (gs: switch_expr);
721
722 for (i = 0; i < n; ++i)
723 {
724 treemple temp;
725 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
726 temp.t = lab;
727 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
728 }
729}
730#else
731#define verify_norecord_switch_expr(state, switch_expr)
732#endif
733
734/* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
735 non-null, insert it before the new branch. */
736
737static void
738do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
739{
740 gimple *x;
741
742 /* In the case of a return, the queue node must be a gimple statement. */
743 gcc_assert (!q->is_label);
744
745 /* Note that the return value may have already been computed, e.g.,
746
747 int x;
748 int foo (void)
749 {
750 x = 0;
751 try {
752 return x;
753 } finally {
754 x++;
755 }
756 }
757
758 should return 0, not 1. We don't have to do anything to make
759 this happens because the return value has been placed in the
760 RESULT_DECL already. */
761
762 q->cont_stmt = q->stmt.g;
763
764 if (mod)
765 gimple_seq_add_seq (&q->repl_stmt, mod);
766
767 x = gimple_build_goto (dest: finlab);
768 gimple_set_location (g: x, location: q->location);
769 gimple_seq_add_stmt (&q->repl_stmt, x);
770}
771
772/* Similar, but easier, for GIMPLE_GOTO. */
773
774static void
775do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
776 struct leh_tf_state *tf)
777{
778 ggoto *x;
779
780 gcc_assert (q->is_label);
781
782 q->cont_stmt = gimple_build_goto (dest: tf->dest_array[q->index]);
783
784 if (mod)
785 gimple_seq_add_seq (&q->repl_stmt, mod);
786
787 x = gimple_build_goto (dest: finlab);
788 gimple_set_location (g: x, location: q->location);
789 gimple_seq_add_stmt (&q->repl_stmt, x);
790}
791
792/* Emit a standard landing pad sequence into SEQ for REGION. */
793
794static void
795emit_post_landing_pad (gimple_seq *seq, eh_region region)
796{
797 eh_landing_pad lp = region->landing_pads;
798 glabel *x;
799
800 if (lp == NULL)
801 lp = gen_eh_landing_pad (region);
802
803 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
804 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
805
806 x = gimple_build_label (label: lp->post_landing_pad);
807 gimple_seq_add_stmt (seq, x);
808}
809
810/* Emit a RESX statement into SEQ for REGION. */
811
812static void
813emit_resx (gimple_seq *seq, eh_region region)
814{
815 gresx *x = gimple_build_resx (region->index);
816 gimple_seq_add_stmt (seq, x);
817 if (region->outer)
818 record_stmt_eh_region (region: region->outer, t: x);
819}
820
821/* Note that the current EH region may contain a throw, or a
822 call to a function which itself may contain a throw. */
823
824static void
825note_eh_region_may_contain_throw (eh_region region)
826{
827 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
828 {
829 if (region->type == ERT_MUST_NOT_THROW)
830 break;
831 region = region->outer;
832 if (region == NULL)
833 break;
834 }
835}
836
837/* Check if REGION has been marked as containing a throw. If REGION is
838 NULL, this predicate is false. */
839
840static inline bool
841eh_region_may_contain_throw (eh_region r)
842{
843 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
844}
845
846/* We want to transform
847 try { body; } catch { stuff; }
848 to
849 normal_sequence:
850 body;
851 over:
852 eh_sequence:
853 landing_pad:
854 stuff;
855 goto over;
856
857 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
858 should be placed before the second operand, or NULL. OVER is
859 an existing label that should be put at the exit, or NULL. */
860
861static gimple_seq
862frob_into_branch_around (gtry *tp, eh_region region, tree over)
863{
864 gimple *x;
865 gimple_seq cleanup, result;
866 location_t loc = gimple_location (g: tp);
867
868 cleanup = gimple_try_cleanup (gs: tp);
869 result = gimple_try_eval (gs: tp);
870
871 if (region)
872 emit_post_landing_pad (seq: &eh_seq, region);
873
874 if (gimple_seq_may_fallthru (cleanup))
875 {
876 if (!over)
877 over = create_artificial_label (loc);
878 x = gimple_build_goto (dest: over);
879 gimple_set_location (g: x, location: loc);
880 gimple_seq_add_stmt (&cleanup, x);
881 }
882 gimple_seq_add_seq (&eh_seq, cleanup);
883
884 if (over)
885 {
886 x = gimple_build_label (label: over);
887 gimple_seq_add_stmt (&result, x);
888 }
889 return result;
890}
891
892/* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
893 Make sure to record all new labels found. */
894
895static gimple_seq
896lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
897 location_t loc)
898{
899 gtry *region = NULL;
900 gimple_seq new_seq;
901 gimple_stmt_iterator gsi;
902
903 new_seq = copy_gimple_seq_and_replace_locals (seq);
904
905 for (gsi = gsi_start (seq&: new_seq); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
906 {
907 gimple *stmt = gsi_stmt (i: gsi);
908 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
909 {
910 tree block = gimple_block (g: stmt);
911 gimple_set_location (g: stmt, location: loc);
912 gimple_set_block (g: stmt, block);
913 }
914 }
915
916 if (outer_state->tf)
917 region = outer_state->tf->try_finally_expr;
918 collect_finally_tree_1 (seq: new_seq, region);
919
920 return new_seq;
921}
922
923/* A subroutine of lower_try_finally. Create a fallthru label for
924 the given try_finally state. The only tricky bit here is that
925 we have to make sure to record the label in our outer context. */
926
927static tree
928lower_try_finally_fallthru_label (struct leh_tf_state *tf)
929{
930 tree label = tf->fallthru_label;
931 treemple temp;
932
933 if (!label)
934 {
935 label = create_artificial_label (gimple_location (g: tf->try_finally_expr));
936 tf->fallthru_label = label;
937 if (tf->outer->tf)
938 {
939 temp.t = label;
940 record_in_finally_tree (child: temp, parent: tf->outer->tf->try_finally_expr);
941 }
942 }
943 return label;
944}
945
946/* A subroutine of lower_try_finally. If FINALLY consits of a
947 GIMPLE_EH_ELSE node, return it. */
948
949static inline geh_else *
950get_eh_else (gimple_seq finally)
951{
952 gimple *x = gimple_seq_first_stmt (s: finally);
953 if (gimple_code (g: x) == GIMPLE_EH_ELSE)
954 {
955 gcc_assert (gimple_seq_singleton_p (finally));
956 return as_a <geh_else *> (p: x);
957 }
958 return NULL;
959}
960
961/* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
962 langhook returns non-null, then the language requires that the exception
963 path out of a try_finally be treated specially. To wit: the code within
964 the finally block may not itself throw an exception. We have two choices
965 here. First we can duplicate the finally block and wrap it in a
966 must_not_throw region. Second, we can generate code like
967
968 try {
969 finally_block;
970 } catch {
971 if (fintmp == eh_edge)
972 protect_cleanup_actions;
973 }
974
975 where "fintmp" is the temporary used in the switch statement generation
976 alternative considered below. For the nonce, we always choose the first
977 option.
978
979 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
980
981static void
982honor_protect_cleanup_actions (struct leh_state *outer_state,
983 struct leh_state *this_state,
984 struct leh_tf_state *tf)
985{
986 gimple_seq finally = gimple_try_cleanup (gs: tf->top_p);
987
988 /* EH_ELSE doesn't come from user code; only compiler generated stuff.
989 It does need to be handled here, so as to separate the (different)
990 EH path from the normal path. But we should not attempt to wrap
991 it with a must-not-throw node (which indeed gets in the way). */
992 if (geh_else *eh_else = get_eh_else (finally))
993 {
994 gimple_try_set_cleanup (try_stmt: tf->top_p, cleanup: gimple_eh_else_n_body (eh_else_stmt: eh_else));
995 finally = gimple_eh_else_e_body (eh_else_stmt: eh_else);
996
997 /* Let the ELSE see the exception that's being processed, but
998 since the cleanup is outside the try block, process it with
999 outer_state, otherwise it may be used as a cleanup for
1000 itself, and Bad Things (TM) ensue. */
1001 eh_region save_ehp = outer_state->ehp_region;
1002 outer_state->ehp_region = this_state->cur_region;
1003 lower_eh_constructs_1 (state: outer_state, seq: &finally);
1004 outer_state->ehp_region = save_ehp;
1005 }
1006 else
1007 {
1008 /* First check for nothing to do. */
1009 if (lang_hooks.eh_protect_cleanup_actions == NULL)
1010 return;
1011 tree actions = lang_hooks.eh_protect_cleanup_actions ();
1012 if (actions == NULL)
1013 return;
1014
1015 if (this_state)
1016 finally = lower_try_finally_dup_block (seq: finally, outer_state,
1017 loc: gimple_location (g: tf->try_finally_expr));
1018
1019 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1020 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1021 to be in an enclosing scope, but needs to be implemented at this level
1022 to avoid a nesting violation (see wrap_temporary_cleanups in
1023 cp/decl.cc). Since it's logically at an outer level, we should call
1024 terminate before we get to it, so strip it away before adding the
1025 MUST_NOT_THROW filter. */
1026 gimple_stmt_iterator gsi = gsi_start (seq&: finally);
1027 gimple *x = gsi_stmt (i: gsi);
1028 if (gimple_code (g: x) == GIMPLE_TRY
1029 && gimple_try_kind (gs: x) == GIMPLE_TRY_CATCH
1030 && gimple_try_catch_is_cleanup (gs: x))
1031 {
1032 gsi_insert_seq_before (&gsi, gimple_try_eval (gs: x), GSI_SAME_STMT);
1033 gsi_remove (&gsi, false);
1034 }
1035
1036 /* Wrap the block with protect_cleanup_actions as the action. */
1037 geh_mnt *eh_mnt = gimple_build_eh_must_not_throw (actions);
1038 gtry *try_stmt = gimple_build_try (finally,
1039 gimple_seq_alloc_with_stmt (stmt: eh_mnt),
1040 GIMPLE_TRY_CATCH);
1041 finally = lower_eh_must_not_throw (outer_state, try_stmt);
1042 }
1043
1044 /* Drop all of this into the exception sequence. */
1045 emit_post_landing_pad (seq: &eh_seq, region: tf->region);
1046 gimple_seq_add_seq (&eh_seq, finally);
1047 if (gimple_seq_may_fallthru (finally))
1048 emit_resx (seq: &eh_seq, region: tf->region);
1049
1050 /* Having now been handled, EH isn't to be considered with
1051 the rest of the outgoing edges. */
1052 tf->may_throw = false;
1053}
1054
1055/* A subroutine of lower_try_finally. We have determined that there is
1056 no fallthru edge out of the finally block. This means that there is
1057 no outgoing edge corresponding to any incoming edge. Restructure the
1058 try_finally node for this special case. */
1059
1060static void
1061lower_try_finally_nofallthru (struct leh_state *state,
1062 struct leh_tf_state *tf)
1063{
1064 tree lab;
1065 gimple *x;
1066 geh_else *eh_else;
1067 gimple_seq finally;
1068 struct goto_queue_node *q, *qe;
1069
1070 lab = create_artificial_label (gimple_location (g: tf->try_finally_expr));
1071
1072 /* We expect that tf->top_p is a GIMPLE_TRY. */
1073 finally = gimple_try_cleanup (gs: tf->top_p);
1074 tf->top_p_seq = gimple_try_eval (gs: tf->top_p);
1075
1076 x = gimple_build_label (label: lab);
1077 gimple_seq_add_stmt (&tf->top_p_seq, x);
1078
1079 q = tf->goto_queue;
1080 qe = q + tf->goto_queue_active;
1081 for (; q < qe; ++q)
1082 if (q->index < 0)
1083 do_return_redirection (q, finlab: lab, NULL);
1084 else
1085 do_goto_redirection (q, finlab: lab, NULL, tf);
1086
1087 replace_goto_queue (tf);
1088
1089 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1090 eh_else = get_eh_else (finally);
1091 if (eh_else)
1092 {
1093 finally = gimple_eh_else_n_body (eh_else_stmt: eh_else);
1094 lower_eh_constructs_1 (state, seq: &finally);
1095 gimple_seq_add_seq (&tf->top_p_seq, finally);
1096
1097 if (tf->may_throw)
1098 {
1099 finally = gimple_eh_else_e_body (eh_else_stmt: eh_else);
1100 lower_eh_constructs_1 (state, seq: &finally);
1101
1102 emit_post_landing_pad (seq: &eh_seq, region: tf->region);
1103 gimple_seq_add_seq (&eh_seq, finally);
1104 }
1105 }
1106 else
1107 {
1108 lower_eh_constructs_1 (state, seq: &finally);
1109 gimple_seq_add_seq (&tf->top_p_seq, finally);
1110
1111 if (tf->may_throw)
1112 {
1113 emit_post_landing_pad (seq: &eh_seq, region: tf->region);
1114
1115 x = gimple_build_goto (dest: lab);
1116 gimple_set_location (g: x, location: gimple_location (g: tf->try_finally_expr));
1117 gimple_seq_add_stmt (&eh_seq, x);
1118 }
1119 }
1120}
1121
1122/* A subroutine of lower_try_finally. We have determined that there is
1123 exactly one destination of the finally block. Restructure the
1124 try_finally node for this special case. */
1125
1126static void
1127lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1128{
1129 struct goto_queue_node *q, *qe;
1130 geh_else *eh_else;
1131 glabel *label_stmt;
1132 gimple *x;
1133 gimple_seq finally;
1134 gimple_stmt_iterator gsi;
1135 tree finally_label;
1136 location_t loc = gimple_location (g: tf->try_finally_expr);
1137
1138 finally = gimple_try_cleanup (gs: tf->top_p);
1139 tf->top_p_seq = gimple_try_eval (gs: tf->top_p);
1140
1141 /* Since there's only one destination, and the destination edge can only
1142 either be EH or non-EH, that implies that all of our incoming edges
1143 are of the same type. Therefore we can lower EH_ELSE immediately. */
1144 eh_else = get_eh_else (finally);
1145 if (eh_else)
1146 {
1147 if (tf->may_throw)
1148 finally = gimple_eh_else_e_body (eh_else_stmt: eh_else);
1149 else
1150 finally = gimple_eh_else_n_body (eh_else_stmt: eh_else);
1151 }
1152
1153 lower_eh_constructs_1 (state, seq: &finally);
1154
1155 for (gsi = gsi_start (seq&: finally); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
1156 {
1157 gimple *stmt = gsi_stmt (i: gsi);
1158 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1159 {
1160 tree block = gimple_block (g: stmt);
1161 gimple_set_location (g: stmt, location: gimple_location (g: tf->try_finally_expr));
1162 gimple_set_block (g: stmt, block);
1163 }
1164 }
1165
1166 if (tf->may_throw)
1167 {
1168 /* Only reachable via the exception edge. Add the given label to
1169 the head of the FINALLY block. Append a RESX at the end. */
1170 emit_post_landing_pad (seq: &eh_seq, region: tf->region);
1171 gimple_seq_add_seq (&eh_seq, finally);
1172 emit_resx (seq: &eh_seq, region: tf->region);
1173 return;
1174 }
1175
1176 if (tf->may_fallthru)
1177 {
1178 /* Only reachable via the fallthru edge. Do nothing but let
1179 the two blocks run together; we'll fall out the bottom. */
1180 gimple_seq_add_seq (&tf->top_p_seq, finally);
1181 return;
1182 }
1183
1184 finally_label = create_artificial_label (loc);
1185 label_stmt = gimple_build_label (label: finally_label);
1186 gimple_seq_add_stmt (&tf->top_p_seq, label_stmt);
1187
1188 gimple_seq_add_seq (&tf->top_p_seq, finally);
1189
1190 q = tf->goto_queue;
1191 qe = q + tf->goto_queue_active;
1192
1193 if (tf->may_return)
1194 {
1195 /* Reachable by return expressions only. Redirect them. */
1196 for (; q < qe; ++q)
1197 do_return_redirection (q, finlab: finally_label, NULL);
1198 replace_goto_queue (tf);
1199 }
1200 else
1201 {
1202 /* Reachable by goto expressions only. Redirect them. */
1203 for (; q < qe; ++q)
1204 do_goto_redirection (q, finlab: finally_label, NULL, tf);
1205 replace_goto_queue (tf);
1206
1207 if (tf->dest_array[0] == tf->fallthru_label)
1208 {
1209 /* Reachable by goto to fallthru label only. Redirect it
1210 to the new label (already created, sadly), and do not
1211 emit the final branch out, or the fallthru label. */
1212 tf->fallthru_label = NULL;
1213 return;
1214 }
1215 }
1216
1217 /* Place the original return/goto to the original destination
1218 immediately after the finally block. */
1219 x = tf->goto_queue[0].cont_stmt;
1220 gimple_seq_add_stmt (&tf->top_p_seq, x);
1221 maybe_record_in_goto_queue (state, stmt: x);
1222}
1223
1224/* A subroutine of lower_try_finally. There are multiple edges incoming
1225 and outgoing from the finally block. Implement this by duplicating the
1226 finally block for every destination. */
1227
1228static void
1229lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1230{
1231 gimple_seq finally;
1232 gimple_seq new_stmt;
1233 gimple_seq seq;
1234 gimple *x;
1235 geh_else *eh_else;
1236 tree tmp;
1237 location_t tf_loc = gimple_location (g: tf->try_finally_expr);
1238
1239 finally = gimple_try_cleanup (gs: tf->top_p);
1240
1241 /* Notice EH_ELSE, and simplify some of the remaining code
1242 by considering FINALLY to be the normal return path only. */
1243 eh_else = get_eh_else (finally);
1244 if (eh_else)
1245 finally = gimple_eh_else_n_body (eh_else_stmt: eh_else);
1246
1247 tf->top_p_seq = gimple_try_eval (gs: tf->top_p);
1248 new_stmt = NULL;
1249
1250 if (tf->may_fallthru)
1251 {
1252 seq = lower_try_finally_dup_block (seq: finally, outer_state: state, loc: tf_loc);
1253 lower_eh_constructs_1 (state, seq: &seq);
1254 gimple_seq_add_seq (&new_stmt, seq);
1255
1256 tmp = lower_try_finally_fallthru_label (tf);
1257 x = gimple_build_goto (dest: tmp);
1258 gimple_set_location (g: x, location: tf_loc);
1259 gimple_seq_add_stmt (&new_stmt, x);
1260 }
1261
1262 if (tf->may_throw)
1263 {
1264 /* We don't need to copy the EH path of EH_ELSE,
1265 since it is only emitted once. */
1266 if (eh_else)
1267 seq = gimple_eh_else_e_body (eh_else_stmt: eh_else);
1268 else
1269 seq = lower_try_finally_dup_block (seq: finally, outer_state: state, loc: tf_loc);
1270 lower_eh_constructs_1 (state, seq: &seq);
1271
1272 emit_post_landing_pad (seq: &eh_seq, region: tf->region);
1273 gimple_seq_add_seq (&eh_seq, seq);
1274 emit_resx (seq: &eh_seq, region: tf->region);
1275 }
1276
1277 if (tf->goto_queue)
1278 {
1279 struct goto_queue_node *q, *qe;
1280 int return_index, index;
1281 struct labels_s
1282 {
1283 struct goto_queue_node *q;
1284 tree label;
1285 } *labels;
1286
1287 return_index = tf->dest_array.length ();
1288 labels = XCNEWVEC (struct labels_s, return_index + 1);
1289
1290 q = tf->goto_queue;
1291 qe = q + tf->goto_queue_active;
1292 for (; q < qe; q++)
1293 {
1294 index = q->index < 0 ? return_index : q->index;
1295
1296 if (!labels[index].q)
1297 labels[index].q = q;
1298 }
1299
1300 for (index = 0; index < return_index + 1; index++)
1301 {
1302 tree lab;
1303
1304 q = labels[index].q;
1305 if (! q)
1306 continue;
1307
1308 lab = labels[index].label
1309 = create_artificial_label (tf_loc);
1310
1311 if (index == return_index)
1312 do_return_redirection (q, finlab: lab, NULL);
1313 else
1314 do_goto_redirection (q, finlab: lab, NULL, tf);
1315
1316 x = gimple_build_label (label: lab);
1317 gimple_seq_add_stmt (&new_stmt, x);
1318
1319 seq = lower_try_finally_dup_block (seq: finally, outer_state: state, loc: q->location);
1320 lower_eh_constructs_1 (state, seq: &seq);
1321 gimple_seq_add_seq (&new_stmt, seq);
1322
1323 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1324 maybe_record_in_goto_queue (state, stmt: q->cont_stmt);
1325 }
1326
1327 for (q = tf->goto_queue; q < qe; q++)
1328 {
1329 tree lab;
1330
1331 index = q->index < 0 ? return_index : q->index;
1332
1333 if (labels[index].q == q)
1334 continue;
1335
1336 lab = labels[index].label;
1337
1338 if (index == return_index)
1339 do_return_redirection (q, finlab: lab, NULL);
1340 else
1341 do_goto_redirection (q, finlab: lab, NULL, tf);
1342 }
1343
1344 replace_goto_queue (tf);
1345 free (ptr: labels);
1346 }
1347
1348 /* Need to link new stmts after running replace_goto_queue due
1349 to not wanting to process the same goto stmts twice. */
1350 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1351}
1352
1353/* A subroutine of lower_try_finally. There are multiple edges incoming
1354 and outgoing from the finally block. Implement this by instrumenting
1355 each incoming edge and creating a switch statement at the end of the
1356 finally block that branches to the appropriate destination. */
1357
1358static void
1359lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1360{
1361 struct goto_queue_node *q, *qe;
1362 tree finally_tmp, finally_label;
1363 int return_index, eh_index, fallthru_index;
1364 int nlabels, ndests, j, last_case_index;
1365 tree last_case;
1366 auto_vec<tree> case_label_vec;
1367 gimple_seq switch_body = NULL;
1368 gimple *x;
1369 geh_else *eh_else;
1370 tree tmp;
1371 gimple *switch_stmt;
1372 gimple_seq finally;
1373 hash_map<tree, gimple *> *cont_map = NULL;
1374 /* The location of the TRY_FINALLY stmt. */
1375 location_t tf_loc = gimple_location (g: tf->try_finally_expr);
1376 /* The location of the finally block. */
1377 location_t finally_loc;
1378
1379 finally = gimple_try_cleanup (gs: tf->top_p);
1380 eh_else = get_eh_else (finally);
1381
1382 /* Mash the TRY block to the head of the chain. */
1383 tf->top_p_seq = gimple_try_eval (gs: tf->top_p);
1384
1385 /* The location of the finally is either the last stmt in the finally
1386 block or the location of the TRY_FINALLY itself. */
1387 x = gimple_seq_last_stmt (s: finally);
1388 finally_loc = x ? gimple_location (g: x) : tf_loc;
1389
1390 /* Prepare for switch statement generation. */
1391 nlabels = tf->dest_array.length ();
1392 return_index = nlabels;
1393 eh_index = return_index + tf->may_return;
1394 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1395 ndests = fallthru_index + tf->may_fallthru;
1396
1397 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1398 finally_label = create_artificial_label (finally_loc);
1399
1400 /* We use vec::quick_push on case_label_vec throughout this function,
1401 since we know the size in advance and allocate precisely as muce
1402 space as needed. */
1403 case_label_vec.create (nelems: ndests);
1404 last_case = NULL;
1405 last_case_index = 0;
1406
1407 /* Begin inserting code for getting to the finally block. Things
1408 are done in this order to correspond to the sequence the code is
1409 laid out. */
1410
1411 if (tf->may_fallthru)
1412 {
1413 x = gimple_build_assign (finally_tmp,
1414 build_int_cst (integer_type_node,
1415 fallthru_index));
1416 gimple_set_location (g: x, location: finally_loc);
1417 gimple_seq_add_stmt (&tf->top_p_seq, x);
1418
1419 tmp = build_int_cst (integer_type_node, fallthru_index);
1420 last_case = build_case_label (tmp, NULL,
1421 create_artificial_label (finally_loc));
1422 case_label_vec.quick_push (obj: last_case);
1423 last_case_index++;
1424
1425 x = gimple_build_label (CASE_LABEL (last_case));
1426 gimple_seq_add_stmt (&switch_body, x);
1427
1428 tmp = lower_try_finally_fallthru_label (tf);
1429 x = gimple_build_goto (dest: tmp);
1430 gimple_set_location (g: x, location: finally_loc);
1431 gimple_seq_add_stmt (&switch_body, x);
1432 }
1433
1434 /* For EH_ELSE, emit the exception path (plus resx) now, then
1435 subsequently we only need consider the normal path. */
1436 if (eh_else)
1437 {
1438 if (tf->may_throw)
1439 {
1440 finally = gimple_eh_else_e_body (eh_else_stmt: eh_else);
1441 lower_eh_constructs_1 (state, seq: &finally);
1442
1443 emit_post_landing_pad (seq: &eh_seq, region: tf->region);
1444 gimple_seq_add_seq (&eh_seq, finally);
1445 emit_resx (seq: &eh_seq, region: tf->region);
1446 }
1447
1448 finally = gimple_eh_else_n_body (eh_else_stmt: eh_else);
1449 }
1450 else if (tf->may_throw)
1451 {
1452 emit_post_landing_pad (seq: &eh_seq, region: tf->region);
1453
1454 x = gimple_build_assign (finally_tmp,
1455 build_int_cst (integer_type_node, eh_index));
1456 gimple_seq_add_stmt (&eh_seq, x);
1457
1458 x = gimple_build_goto (dest: finally_label);
1459 gimple_set_location (g: x, location: tf_loc);
1460 gimple_seq_add_stmt (&eh_seq, x);
1461
1462 tmp = build_int_cst (integer_type_node, eh_index);
1463 last_case = build_case_label (tmp, NULL,
1464 create_artificial_label (tf_loc));
1465 case_label_vec.quick_push (obj: last_case);
1466 last_case_index++;
1467
1468 x = gimple_build_label (CASE_LABEL (last_case));
1469 gimple_seq_add_stmt (&eh_seq, x);
1470 emit_resx (seq: &eh_seq, region: tf->region);
1471 }
1472
1473 x = gimple_build_label (label: finally_label);
1474 gimple_seq_add_stmt (&tf->top_p_seq, x);
1475
1476 lower_eh_constructs_1 (state, seq: &finally);
1477 gimple_seq_add_seq (&tf->top_p_seq, finally);
1478
1479 /* Redirect each incoming goto edge. */
1480 q = tf->goto_queue;
1481 qe = q + tf->goto_queue_active;
1482 j = last_case_index + tf->may_return;
1483 /* Prepare the assignments to finally_tmp that are executed upon the
1484 entrance through a particular edge. */
1485 for (; q < qe; ++q)
1486 {
1487 gimple_seq mod = NULL;
1488 int switch_id;
1489 unsigned int case_index;
1490
1491 if (q->index < 0)
1492 {
1493 x = gimple_build_assign (finally_tmp,
1494 build_int_cst (integer_type_node,
1495 return_index));
1496 gimple_seq_add_stmt (&mod, x);
1497 do_return_redirection (q, finlab: finally_label, mod);
1498 switch_id = return_index;
1499 }
1500 else
1501 {
1502 x = gimple_build_assign (finally_tmp,
1503 build_int_cst (integer_type_node, q->index));
1504 gimple_seq_add_stmt (&mod, x);
1505 do_goto_redirection (q, finlab: finally_label, mod, tf);
1506 switch_id = q->index;
1507 }
1508
1509 case_index = j + q->index;
1510 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1511 {
1512 tree case_lab;
1513 tmp = build_int_cst (integer_type_node, switch_id);
1514 case_lab = build_case_label (tmp, NULL,
1515 create_artificial_label (tf_loc));
1516 /* We store the cont_stmt in the pointer map, so that we can recover
1517 it in the loop below. */
1518 if (!cont_map)
1519 cont_map = new hash_map<tree, gimple *>;
1520 cont_map->put (k: case_lab, v: q->cont_stmt);
1521 case_label_vec.quick_push (obj: case_lab);
1522 }
1523 }
1524 for (j = last_case_index; j < last_case_index + nlabels; j++)
1525 {
1526 gimple *cont_stmt;
1527
1528 last_case = case_label_vec[j];
1529
1530 gcc_assert (last_case);
1531 gcc_assert (cont_map);
1532
1533 cont_stmt = *cont_map->get (k: last_case);
1534
1535 x = gimple_build_label (CASE_LABEL (last_case));
1536 gimple_seq_add_stmt (&switch_body, x);
1537 gimple_seq_add_stmt (&switch_body, cont_stmt);
1538 maybe_record_in_goto_queue (state, stmt: cont_stmt);
1539 }
1540 if (cont_map)
1541 delete cont_map;
1542
1543 replace_goto_queue (tf);
1544
1545 /* Make sure that the last case is the default label, as one is required.
1546 Then sort the labels, which is also required in GIMPLE. */
1547 CASE_LOW (last_case) = NULL;
1548 tree tem = case_label_vec.pop ();
1549 gcc_assert (tem == last_case);
1550 sort_case_labels (case_label_vec);
1551
1552 /* Build the switch statement, setting last_case to be the default
1553 label. */
1554 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1555 case_label_vec);
1556 gimple_set_location (g: switch_stmt, location: finally_loc);
1557
1558 /* Need to link SWITCH_STMT after running replace_goto_queue
1559 due to not wanting to process the same goto stmts twice. */
1560 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1561 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1562}
1563
1564/* Decide whether or not we are going to duplicate the finally block.
1565 There are several considerations.
1566
1567 Second, we'd like to prevent egregious code growth. One way to
1568 do this is to estimate the size of the finally block, multiply
1569 that by the number of copies we'd need to make, and compare against
1570 the estimate of the size of the switch machinery we'd have to add. */
1571
1572static bool
1573decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1574{
1575 int f_estimate, sw_estimate;
1576 geh_else *eh_else;
1577
1578 /* If there's an EH_ELSE involved, the exception path is separate
1579 and really doesn't come into play for this computation. */
1580 eh_else = get_eh_else (finally);
1581 if (eh_else)
1582 {
1583 ndests -= may_throw;
1584 finally = gimple_eh_else_n_body (eh_else_stmt: eh_else);
1585 }
1586
1587 if (!optimize)
1588 {
1589 gimple_stmt_iterator gsi;
1590
1591 if (ndests == 1)
1592 return true;
1593
1594 for (gsi = gsi_start (seq&: finally); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
1595 {
1596 /* Duplicate __builtin_stack_restore in the hope of eliminating it
1597 on the EH paths and, consequently, useless cleanups. */
1598 gimple *stmt = gsi_stmt (i: gsi);
1599 if (!is_gimple_debug (gs: stmt)
1600 && !gimple_clobber_p (s: stmt)
1601 && !gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1602 return false;
1603 }
1604 return true;
1605 }
1606
1607 /* Finally estimate N times, plus N gotos. */
1608 f_estimate = estimate_num_insns_seq (finally, &eni_size_weights);
1609 f_estimate = (f_estimate + 1) * ndests;
1610
1611 /* Switch statement (cost 10), N variable assignments, N gotos. */
1612 sw_estimate = 10 + 2 * ndests;
1613
1614 /* Optimize for size clearly wants our best guess. */
1615 if (optimize_function_for_size_p (cfun))
1616 return f_estimate < sw_estimate;
1617
1618 /* ??? These numbers are completely made up so far. */
1619 if (optimize > 1)
1620 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1621 else
1622 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1623}
1624
1625/* REG is current region of a LEH state.
1626 is the enclosing region for a possible cleanup region, or the region
1627 itself. Returns TRUE if such a region would be unreachable.
1628
1629 Cleanup regions within a must-not-throw region aren't actually reachable
1630 even if there are throwing stmts within them, because the personality
1631 routine will call terminate before unwinding. */
1632
1633static bool
1634cleanup_is_dead_in (leh_state *state)
1635{
1636 if (flag_checking)
1637 {
1638 eh_region reg = state->cur_region;
1639 while (reg && reg->type == ERT_CLEANUP)
1640 reg = reg->outer;
1641
1642 gcc_assert (reg == state->outer_non_cleanup);
1643 }
1644
1645 eh_region reg = state->outer_non_cleanup;
1646 return (reg && reg->type == ERT_MUST_NOT_THROW);
1647}
1648
1649/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1650 to a sequence of labels and blocks, plus the exception region trees
1651 that record all the magic. This is complicated by the need to
1652 arrange for the FINALLY block to be executed on all exits. */
1653
1654static gimple_seq
1655lower_try_finally (struct leh_state *state, gtry *tp)
1656{
1657 struct leh_tf_state this_tf;
1658 struct leh_state this_state;
1659 int ndests;
1660 gimple_seq old_eh_seq;
1661
1662 /* Process the try block. */
1663
1664 memset (s: &this_tf, c: 0, n: sizeof (this_tf));
1665 this_tf.try_finally_expr = tp;
1666 this_tf.top_p = tp;
1667 this_tf.outer = state;
1668 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state))
1669 {
1670 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1671 this_state.cur_region = this_tf.region;
1672 }
1673 else
1674 {
1675 this_tf.region = NULL;
1676 this_state.cur_region = state->cur_region;
1677 }
1678
1679 this_state.outer_non_cleanup = state->outer_non_cleanup;
1680 this_state.ehp_region = state->ehp_region;
1681 this_state.tf = &this_tf;
1682
1683 old_eh_seq = eh_seq;
1684 eh_seq = NULL;
1685
1686 lower_eh_constructs_1 (state: &this_state, seq: gimple_try_eval_ptr (gs: tp));
1687
1688 /* Determine if the try block is escaped through the bottom. */
1689 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (gs: tp));
1690
1691 /* Determine if any exceptions are possible within the try block. */
1692 if (this_tf.region)
1693 this_tf.may_throw = eh_region_may_contain_throw (r: this_tf.region);
1694 if (this_tf.may_throw)
1695 honor_protect_cleanup_actions (outer_state: state, this_state: &this_state, tf: &this_tf);
1696
1697 /* Determine how many edges (still) reach the finally block. Or rather,
1698 how many destinations are reached by the finally block. Use this to
1699 determine how we process the finally block itself. */
1700
1701 ndests = this_tf.dest_array.length ();
1702 ndests += this_tf.may_fallthru;
1703 ndests += this_tf.may_return;
1704 ndests += this_tf.may_throw;
1705
1706 /* If the FINALLY block is not reachable, dike it out. */
1707 if (ndests == 0)
1708 {
1709 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (gs: tp));
1710 gimple_try_set_cleanup (try_stmt: tp, NULL);
1711 }
1712 /* If the finally block doesn't fall through, then any destination
1713 we might try to impose there isn't reached either. There may be
1714 some minor amount of cleanup and redirection still needed. */
1715 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (gs: tp)))
1716 lower_try_finally_nofallthru (state, tf: &this_tf);
1717
1718 /* We can easily special-case redirection to a single destination. */
1719 else if (ndests == 1)
1720 lower_try_finally_onedest (state, tf: &this_tf);
1721 else if (decide_copy_try_finally (ndests, may_throw: this_tf.may_throw,
1722 finally: gimple_try_cleanup (gs: tp)))
1723 lower_try_finally_copy (state, tf: &this_tf);
1724 else
1725 lower_try_finally_switch (state, tf: &this_tf);
1726
1727 /* If someone requested we add a label at the end of the transformed
1728 block, do so. */
1729 if (this_tf.fallthru_label)
1730 {
1731 /* This must be reached only if ndests == 0. */
1732 gimple *x = gimple_build_label (label: this_tf.fallthru_label);
1733 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1734 }
1735
1736 this_tf.dest_array.release ();
1737 free (ptr: this_tf.goto_queue);
1738 if (this_tf.goto_queue_map)
1739 delete this_tf.goto_queue_map;
1740
1741 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1742 If there was no old eh_seq, then the append is trivially already done. */
1743 if (old_eh_seq)
1744 {
1745 if (eh_seq == NULL)
1746 eh_seq = old_eh_seq;
1747 else
1748 {
1749 gimple_seq new_eh_seq = eh_seq;
1750 eh_seq = old_eh_seq;
1751 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1752 }
1753 }
1754
1755 return this_tf.top_p_seq;
1756}
1757
1758/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1759 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1760 exception region trees that records all the magic. */
1761
1762static gimple_seq
1763lower_catch (struct leh_state *state, gtry *tp)
1764{
1765 eh_region try_region = NULL;
1766 struct leh_state this_state = *state;
1767 gimple_stmt_iterator gsi;
1768 tree out_label;
1769 gimple_seq new_seq, cleanup;
1770 gimple *x;
1771 geh_dispatch *eh_dispatch;
1772 location_t try_catch_loc = gimple_location (g: tp);
1773 location_t catch_loc = UNKNOWN_LOCATION;
1774
1775 if (flag_exceptions)
1776 {
1777 try_region = gen_eh_region_try (state->cur_region);
1778 this_state.cur_region = try_region;
1779 this_state.outer_non_cleanup = this_state.cur_region;
1780 }
1781
1782 lower_eh_constructs_1 (state: &this_state, seq: gimple_try_eval_ptr (gs: tp));
1783
1784 if (!eh_region_may_contain_throw (r: try_region))
1785 return gimple_try_eval (gs: tp);
1786
1787 new_seq = NULL;
1788 eh_dispatch = gimple_build_eh_dispatch (try_region->index);
1789 gimple_seq_add_stmt (&new_seq, eh_dispatch);
1790 emit_resx (seq: &new_seq, region: try_region);
1791
1792 this_state.cur_region = state->cur_region;
1793 this_state.outer_non_cleanup = state->outer_non_cleanup;
1794 this_state.ehp_region = try_region;
1795
1796 /* Add eh_seq from lowering EH in the cleanup sequence after the cleanup
1797 itself, so that e.g. for coverage purposes the nested cleanups don't
1798 appear before the cleanup body. See PR64634 for details. */
1799 gimple_seq old_eh_seq = eh_seq;
1800 eh_seq = NULL;
1801
1802 out_label = NULL;
1803 cleanup = gimple_try_cleanup (gs: tp);
1804 for (gsi = gsi_start (seq&: cleanup);
1805 !gsi_end_p (i: gsi);
1806 gsi_next (i: &gsi))
1807 {
1808 eh_catch c;
1809 gcatch *catch_stmt;
1810 gimple_seq handler;
1811
1812 catch_stmt = as_a <gcatch *> (p: gsi_stmt (i: gsi));
1813 if (catch_loc == UNKNOWN_LOCATION)
1814 catch_loc = gimple_location (g: catch_stmt);
1815 c = gen_eh_region_catch (try_region, gimple_catch_types (catch_stmt));
1816
1817 handler = gimple_catch_handler (catch_stmt);
1818 lower_eh_constructs_1 (state: &this_state, seq: &handler);
1819
1820 c->label = create_artificial_label (UNKNOWN_LOCATION);
1821 x = gimple_build_label (label: c->label);
1822 gimple_seq_add_stmt (&new_seq, x);
1823
1824 gimple_seq_add_seq (&new_seq, handler);
1825
1826 if (gimple_seq_may_fallthru (new_seq))
1827 {
1828 if (!out_label)
1829 out_label = create_artificial_label (try_catch_loc);
1830
1831 x = gimple_build_goto (dest: out_label);
1832 gimple_seq_add_stmt (&new_seq, x);
1833 }
1834 if (!c->type_list)
1835 break;
1836 }
1837
1838 /* Try to set a location on the dispatching construct to avoid inheriting
1839 the location of the previous statement. */
1840 gimple_set_location (g: eh_dispatch, location: catch_loc);
1841
1842 gimple_try_set_cleanup (try_stmt: tp, cleanup: new_seq);
1843
1844 gimple_seq new_eh_seq = eh_seq;
1845 eh_seq = old_eh_seq;
1846 gimple_seq ret_seq = frob_into_branch_around (tp, region: try_region, over: out_label);
1847 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1848 return ret_seq;
1849}
1850
1851/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1852 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1853 region trees that record all the magic. */
1854
1855static gimple_seq
1856lower_eh_filter (struct leh_state *state, gtry *tp)
1857{
1858 struct leh_state this_state = *state;
1859 eh_region this_region = NULL;
1860 gimple *inner, *x;
1861 gimple_seq new_seq;
1862
1863 inner = gimple_seq_first_stmt (s: gimple_try_cleanup (gs: tp));
1864
1865 if (flag_exceptions)
1866 {
1867 this_region = gen_eh_region_allowed (state->cur_region,
1868 gimple_eh_filter_types (gs: inner));
1869 this_state.cur_region = this_region;
1870 this_state.outer_non_cleanup = this_state.cur_region;
1871 }
1872
1873 lower_eh_constructs_1 (state: &this_state, seq: gimple_try_eval_ptr (gs: tp));
1874
1875 if (!eh_region_may_contain_throw (r: this_region))
1876 return gimple_try_eval (gs: tp);
1877
1878 this_state.cur_region = state->cur_region;
1879 this_state.ehp_region = this_region;
1880
1881 new_seq = NULL;
1882 x = gimple_build_eh_dispatch (this_region->index);
1883 gimple_set_location (g: x, location: gimple_location (g: tp));
1884 gimple_seq_add_stmt (&new_seq, x);
1885 emit_resx (seq: &new_seq, region: this_region);
1886
1887 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1888 x = gimple_build_label (label: this_region->u.allowed.label);
1889 gimple_seq_add_stmt (&new_seq, x);
1890
1891 lower_eh_constructs_1 (state: &this_state, seq: gimple_eh_filter_failure_ptr (gs: inner));
1892 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (gs: inner));
1893
1894 gimple_try_set_cleanup (try_stmt: tp, cleanup: new_seq);
1895
1896 return frob_into_branch_around (tp, region: this_region, NULL);
1897}
1898
1899/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1900 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1901 plus the exception region trees that record all the magic. */
1902
1903static gimple_seq
1904lower_eh_must_not_throw (struct leh_state *state, gtry *tp)
1905{
1906 struct leh_state this_state = *state;
1907
1908 if (flag_exceptions)
1909 {
1910 gimple *inner = gimple_seq_first_stmt (s: gimple_try_cleanup (gs: tp));
1911 eh_region this_region;
1912
1913 this_region = gen_eh_region_must_not_throw (state->cur_region);
1914 this_region->u.must_not_throw.failure_decl
1915 = gimple_eh_must_not_throw_fndecl (
1916 eh_mnt_stmt: as_a <geh_mnt *> (p: inner));
1917 this_region->u.must_not_throw.failure_loc
1918 = LOCATION_LOCUS (gimple_location (tp));
1919
1920 /* In order to get mangling applied to this decl, we must mark it
1921 used now. Otherwise, pass_ipa_free_lang_data won't think it
1922 needs to happen. */
1923 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1924
1925 this_state.cur_region = this_region;
1926 this_state.outer_non_cleanup = this_state.cur_region;
1927 }
1928
1929 lower_eh_constructs_1 (state: &this_state, seq: gimple_try_eval_ptr (gs: tp));
1930
1931 return gimple_try_eval (gs: tp);
1932}
1933
1934/* Implement a cleanup expression. This is similar to try-finally,
1935 except that we only execute the cleanup block for exception edges. */
1936
1937static gimple_seq
1938lower_cleanup (struct leh_state *state, gtry *tp)
1939{
1940 struct leh_state this_state = *state;
1941 eh_region this_region = NULL;
1942 struct leh_tf_state fake_tf;
1943 gimple_seq result;
1944 bool cleanup_dead = cleanup_is_dead_in (state);
1945
1946 if (flag_exceptions && !cleanup_dead)
1947 {
1948 this_region = gen_eh_region_cleanup (state->cur_region);
1949 this_state.cur_region = this_region;
1950 this_state.outer_non_cleanup = state->outer_non_cleanup;
1951 }
1952
1953 lower_eh_constructs_1 (state: &this_state, seq: gimple_try_eval_ptr (gs: tp));
1954
1955 if (cleanup_dead || !eh_region_may_contain_throw (r: this_region))
1956 return gimple_try_eval (gs: tp);
1957
1958 /* Build enough of a try-finally state so that we can reuse
1959 honor_protect_cleanup_actions. */
1960 memset (s: &fake_tf, c: 0, n: sizeof (fake_tf));
1961 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1962 fake_tf.outer = state;
1963 fake_tf.region = this_region;
1964 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (gs: tp));
1965 fake_tf.may_throw = true;
1966
1967 honor_protect_cleanup_actions (outer_state: state, NULL, tf: &fake_tf);
1968
1969 if (fake_tf.may_throw)
1970 {
1971 /* In this case honor_protect_cleanup_actions had nothing to do,
1972 and we should process this normally. */
1973 lower_eh_constructs_1 (state, seq: gimple_try_cleanup_ptr (gs: tp));
1974 result = frob_into_branch_around (tp, region: this_region,
1975 over: fake_tf.fallthru_label);
1976 }
1977 else
1978 {
1979 /* In this case honor_protect_cleanup_actions did nearly all of
1980 the work. All we have left is to append the fallthru_label. */
1981
1982 result = gimple_try_eval (gs: tp);
1983 if (fake_tf.fallthru_label)
1984 {
1985 gimple *x = gimple_build_label (label: fake_tf.fallthru_label);
1986 gimple_seq_add_stmt (&result, x);
1987 }
1988 }
1989 return result;
1990}
1991
1992/* Main loop for lowering eh constructs. Also moves gsi to the next
1993 statement. */
1994
1995static void
1996lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1997{
1998 gimple_seq replace;
1999 gimple *x;
2000 gimple *stmt = gsi_stmt (i: *gsi);
2001
2002 switch (gimple_code (g: stmt))
2003 {
2004 case GIMPLE_CALL:
2005 {
2006 tree fndecl = gimple_call_fndecl (gs: stmt);
2007 tree rhs, lhs;
2008
2009 if (fndecl && fndecl_built_in_p (node: fndecl, klass: BUILT_IN_NORMAL))
2010 switch (DECL_FUNCTION_CODE (decl: fndecl))
2011 {
2012 case BUILT_IN_EH_POINTER:
2013 /* The front end may have generated a call to
2014 __builtin_eh_pointer (0) within a catch region. Replace
2015 this zero argument with the current catch region number. */
2016 if (state->ehp_region)
2017 {
2018 tree nr = build_int_cst (integer_type_node,
2019 state->ehp_region->index);
2020 gimple_call_set_arg (gs: stmt, index: 0, arg: nr);
2021 }
2022 else
2023 {
2024 /* The user has dome something silly. Remove it. */
2025 rhs = null_pointer_node;
2026 goto do_replace;
2027 }
2028 break;
2029
2030 case BUILT_IN_EH_FILTER:
2031 /* ??? This should never appear, but since it's a builtin it
2032 is accessible to abuse by users. Just remove it and
2033 replace the use with the arbitrary value zero. */
2034 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
2035 do_replace:
2036 lhs = gimple_call_lhs (gs: stmt);
2037 x = gimple_build_assign (lhs, rhs);
2038 gsi_insert_before (gsi, x, GSI_SAME_STMT);
2039 /* FALLTHRU */
2040
2041 case BUILT_IN_EH_COPY_VALUES:
2042 /* Likewise this should not appear. Remove it. */
2043 gsi_remove (gsi, true);
2044 return;
2045
2046 default:
2047 break;
2048 }
2049 }
2050 /* FALLTHRU */
2051
2052 case GIMPLE_ASSIGN:
2053 /* If the stmt can throw, use a new temporary for the assignment
2054 to a LHS. This makes sure the old value of the LHS is
2055 available on the EH edge. Only do so for statements that
2056 potentially fall through (no noreturn calls e.g.), otherwise
2057 this new assignment might create fake fallthru regions. */
2058 if (stmt_could_throw_p (cfun, stmt)
2059 && gimple_has_lhs (stmt)
2060 && gimple_stmt_may_fallthru (stmt)
2061 && !tree_could_throw_p (gimple_get_lhs (stmt))
2062 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2063 {
2064 tree lhs = gimple_get_lhs (stmt);
2065 tree tmp = create_tmp_var (TREE_TYPE (lhs));
2066 gimple *s = gimple_build_assign (lhs, tmp);
2067 gimple_set_location (g: s, location: gimple_location (g: stmt));
2068 gimple_set_block (g: s, block: gimple_block (g: stmt));
2069 gimple_set_lhs (stmt, tmp);
2070 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2071 }
2072 /* Look for things that can throw exceptions, and record them. */
2073 if (state->cur_region && stmt_could_throw_p (cfun, stmt))
2074 {
2075 record_stmt_eh_region (region: state->cur_region, t: stmt);
2076 note_eh_region_may_contain_throw (region: state->cur_region);
2077 }
2078 break;
2079
2080 case GIMPLE_COND:
2081 case GIMPLE_GOTO:
2082 case GIMPLE_RETURN:
2083 maybe_record_in_goto_queue (state, stmt);
2084 break;
2085
2086 case GIMPLE_SWITCH:
2087 verify_norecord_switch_expr (state, switch_expr: as_a <gswitch *> (p: stmt));
2088 break;
2089
2090 case GIMPLE_TRY:
2091 {
2092 gtry *try_stmt = as_a <gtry *> (p: stmt);
2093 if (gimple_try_kind (gs: try_stmt) == GIMPLE_TRY_FINALLY)
2094 replace = lower_try_finally (state, tp: try_stmt);
2095 else
2096 {
2097 x = gimple_seq_first_stmt (s: gimple_try_cleanup (gs: try_stmt));
2098 if (!x)
2099 {
2100 replace = gimple_try_eval (gs: try_stmt);
2101 lower_eh_constructs_1 (state, seq: &replace);
2102 }
2103 else
2104 switch (gimple_code (g: x))
2105 {
2106 case GIMPLE_CATCH:
2107 replace = lower_catch (state, tp: try_stmt);
2108 break;
2109 case GIMPLE_EH_FILTER:
2110 replace = lower_eh_filter (state, tp: try_stmt);
2111 break;
2112 case GIMPLE_EH_MUST_NOT_THROW:
2113 replace = lower_eh_must_not_throw (state, tp: try_stmt);
2114 break;
2115 case GIMPLE_EH_ELSE:
2116 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2117 gcc_unreachable ();
2118 default:
2119 replace = lower_cleanup (state, tp: try_stmt);
2120 break;
2121 }
2122 }
2123 }
2124
2125 /* Remove the old stmt and insert the transformed sequence
2126 instead. */
2127 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2128 gsi_remove (gsi, true);
2129
2130 /* Return since we don't want gsi_next () */
2131 return;
2132
2133 case GIMPLE_EH_ELSE:
2134 /* We should be eliminating this in lower_try_finally et al. */
2135 gcc_unreachable ();
2136
2137 default:
2138 /* A type, a decl, or some kind of statement that we're not
2139 interested in. Don't walk them. */
2140 break;
2141 }
2142
2143 gsi_next (i: gsi);
2144}
2145
2146/* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2147
2148static void
2149lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2150{
2151 gimple_stmt_iterator gsi;
2152 for (gsi = gsi_start (seq&: *pseq); !gsi_end_p (i: gsi);)
2153 lower_eh_constructs_2 (state, gsi: &gsi);
2154}
2155
2156namespace {
2157
2158const pass_data pass_data_lower_eh =
2159{
2160 .type: GIMPLE_PASS, /* type */
2161 .name: "eh", /* name */
2162 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
2163 .tv_id: TV_TREE_EH, /* tv_id */
2164 PROP_gimple_lcf, /* properties_required */
2165 PROP_gimple_leh, /* properties_provided */
2166 .properties_destroyed: 0, /* properties_destroyed */
2167 .todo_flags_start: 0, /* todo_flags_start */
2168 .todo_flags_finish: 0, /* todo_flags_finish */
2169};
2170
2171class pass_lower_eh : public gimple_opt_pass
2172{
2173public:
2174 pass_lower_eh (gcc::context *ctxt)
2175 : gimple_opt_pass (pass_data_lower_eh, ctxt)
2176 {}
2177
2178 /* opt_pass methods: */
2179 unsigned int execute (function *) final override;
2180
2181}; // class pass_lower_eh
2182
2183unsigned int
2184pass_lower_eh::execute (function *fun)
2185{
2186 struct leh_state null_state;
2187 gimple_seq bodyp;
2188
2189 bodyp = gimple_body (current_function_decl);
2190 if (bodyp == NULL)
2191 return 0;
2192
2193 finally_tree = new hash_table<finally_tree_hasher> (31);
2194 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2195 memset (s: &null_state, c: 0, n: sizeof (null_state));
2196
2197 collect_finally_tree_1 (seq: bodyp, NULL);
2198 lower_eh_constructs_1 (state: &null_state, pseq: &bodyp);
2199 gimple_set_body (current_function_decl, bodyp);
2200
2201 /* We assume there's a return statement, or something, at the end of
2202 the function, and thus ploping the EH sequence afterward won't
2203 change anything. */
2204 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2205 gimple_seq_add_seq (&bodyp, eh_seq);
2206
2207 /* We assume that since BODYP already existed, adding EH_SEQ to it
2208 didn't change its value, and we don't have to re-set the function. */
2209 gcc_assert (bodyp == gimple_body (current_function_decl));
2210
2211 delete finally_tree;
2212 finally_tree = NULL;
2213 BITMAP_FREE (eh_region_may_contain_throw_map);
2214 eh_seq = NULL;
2215
2216 /* If this function needs a language specific EH personality routine
2217 and the frontend didn't already set one do so now. */
2218 if (function_needs_eh_personality (fun) == eh_personality_lang
2219 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2220 DECL_FUNCTION_PERSONALITY (current_function_decl)
2221 = lang_hooks.eh_personality ();
2222
2223 return 0;
2224}
2225
2226} // anon namespace
2227
2228gimple_opt_pass *
2229make_pass_lower_eh (gcc::context *ctxt)
2230{
2231 return new pass_lower_eh (ctxt);
2232}
2233
2234/* Create the multiple edges from an EH_DISPATCH statement to all of
2235 the possible handlers for its EH region. Return true if there's
2236 no fallthru edge; false if there is. */
2237
2238bool
2239make_eh_dispatch_edges (geh_dispatch *stmt)
2240{
2241 eh_region r;
2242 eh_catch c;
2243 basic_block src, dst;
2244
2245 r = get_eh_region_from_number (gimple_eh_dispatch_region (eh_dispatch_stmt: stmt));
2246 src = gimple_bb (g: stmt);
2247
2248 switch (r->type)
2249 {
2250 case ERT_TRY:
2251 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2252 {
2253 dst = label_to_block (cfun, c->label);
2254 make_edge (src, dst, 0);
2255
2256 /* A catch-all handler doesn't have a fallthru. */
2257 if (c->type_list == NULL)
2258 return false;
2259 }
2260 break;
2261
2262 case ERT_ALLOWED_EXCEPTIONS:
2263 dst = label_to_block (cfun, r->u.allowed.label);
2264 make_edge (src, dst, 0);
2265 break;
2266
2267 default:
2268 gcc_unreachable ();
2269 }
2270
2271 return true;
2272}
2273
2274/* Create the single EH edge from STMT to its nearest landing pad,
2275 if there is such a landing pad within the current function. */
2276
2277edge
2278make_eh_edge (gimple *stmt)
2279{
2280 basic_block src, dst;
2281 eh_landing_pad lp;
2282 int lp_nr;
2283
2284 lp_nr = lookup_stmt_eh_lp (t: stmt);
2285 if (lp_nr <= 0)
2286 return NULL;
2287
2288 lp = get_eh_landing_pad_from_number (lp_nr);
2289 gcc_assert (lp != NULL);
2290
2291 src = gimple_bb (g: stmt);
2292 dst = label_to_block (cfun, lp->post_landing_pad);
2293 return make_edge (src, dst, EDGE_EH);
2294}
2295
2296/* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2297 do not actually perform the final edge redirection.
2298
2299 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2300 we intend to change the destination EH region as well; this means
2301 EH_LANDING_PAD_NR must already be set on the destination block label.
2302 If false, we're being called from generic cfg manipulation code and we
2303 should preserve our place within the region tree. */
2304
2305static void
2306redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2307{
2308 eh_landing_pad old_lp, new_lp;
2309 basic_block old_bb;
2310 gimple *throw_stmt;
2311 int old_lp_nr, new_lp_nr;
2312 tree old_label, new_label;
2313 edge_iterator ei;
2314 edge e;
2315
2316 old_bb = edge_in->dest;
2317 old_label = gimple_block_label (old_bb);
2318 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2319 gcc_assert (old_lp_nr > 0);
2320 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2321
2322 throw_stmt = *gsi_last_bb (bb: edge_in->src);
2323 gcc_checking_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2324
2325 new_label = gimple_block_label (new_bb);
2326
2327 /* Look for an existing region that might be using NEW_BB already. */
2328 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2329 if (new_lp_nr)
2330 {
2331 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2332 gcc_assert (new_lp);
2333
2334 /* Unless CHANGE_REGION is true, the new and old landing pad
2335 had better be associated with the same EH region. */
2336 gcc_assert (change_region || new_lp->region == old_lp->region);
2337 }
2338 else
2339 {
2340 new_lp = NULL;
2341 gcc_assert (!change_region);
2342 }
2343
2344 /* Notice when we redirect the last EH edge away from OLD_BB. */
2345 FOR_EACH_EDGE (e, ei, old_bb->preds)
2346 if (e != edge_in && (e->flags & EDGE_EH))
2347 break;
2348
2349 if (new_lp)
2350 {
2351 /* NEW_LP already exists. If there are still edges into OLD_LP,
2352 there's nothing to do with the EH tree. If there are no more
2353 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2354 If CHANGE_REGION is true, then our caller is expecting to remove
2355 the landing pad. */
2356 if (e == NULL && !change_region)
2357 remove_eh_landing_pad (old_lp);
2358 }
2359 else
2360 {
2361 /* No correct landing pad exists. If there are no more edges
2362 into OLD_LP, then we can simply re-use the existing landing pad.
2363 Otherwise, we have to create a new landing pad. */
2364 if (e == NULL)
2365 {
2366 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2367 new_lp = old_lp;
2368 }
2369 else
2370 new_lp = gen_eh_landing_pad (old_lp->region);
2371 new_lp->post_landing_pad = new_label;
2372 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2373 }
2374
2375 /* Maybe move the throwing statement to the new region. */
2376 if (old_lp != new_lp)
2377 {
2378 remove_stmt_from_eh_lp (t: throw_stmt);
2379 add_stmt_to_eh_lp (t: throw_stmt, num: new_lp->index);
2380 }
2381}
2382
2383/* Redirect EH edge E to NEW_BB. */
2384
2385edge
2386redirect_eh_edge (edge edge_in, basic_block new_bb)
2387{
2388 redirect_eh_edge_1 (edge_in, new_bb, change_region: false);
2389 return ssa_redirect_edge (edge_in, new_bb);
2390}
2391
2392/* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2393 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2394 The actual edge update will happen in the caller. */
2395
2396void
2397redirect_eh_dispatch_edge (geh_dispatch *stmt, edge e, basic_block new_bb)
2398{
2399 tree new_lab = gimple_block_label (new_bb);
2400 bool any_changed = false;
2401 basic_block old_bb;
2402 eh_region r;
2403 eh_catch c;
2404
2405 r = get_eh_region_from_number (gimple_eh_dispatch_region (eh_dispatch_stmt: stmt));
2406 switch (r->type)
2407 {
2408 case ERT_TRY:
2409 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2410 {
2411 old_bb = label_to_block (cfun, c->label);
2412 if (old_bb == e->dest)
2413 {
2414 c->label = new_lab;
2415 any_changed = true;
2416 }
2417 }
2418 break;
2419
2420 case ERT_ALLOWED_EXCEPTIONS:
2421 old_bb = label_to_block (cfun, r->u.allowed.label);
2422 gcc_assert (old_bb == e->dest);
2423 r->u.allowed.label = new_lab;
2424 any_changed = true;
2425 break;
2426
2427 default:
2428 gcc_unreachable ();
2429 }
2430
2431 gcc_assert (any_changed);
2432}
2433
2434/* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2435
2436bool
2437operation_could_trap_helper_p (enum tree_code op,
2438 bool fp_operation,
2439 bool honor_trapv,
2440 bool honor_nans,
2441 bool honor_snans,
2442 tree divisor,
2443 bool *handled)
2444{
2445 *handled = true;
2446 switch (op)
2447 {
2448 case TRUNC_DIV_EXPR:
2449 case CEIL_DIV_EXPR:
2450 case FLOOR_DIV_EXPR:
2451 case ROUND_DIV_EXPR:
2452 case EXACT_DIV_EXPR:
2453 case CEIL_MOD_EXPR:
2454 case FLOOR_MOD_EXPR:
2455 case ROUND_MOD_EXPR:
2456 case TRUNC_MOD_EXPR:
2457 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2458 return true;
2459 if (TREE_CODE (divisor) == VECTOR_CST)
2460 {
2461 /* Inspired by initializer_each_zero_or_onep. */
2462 unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (t: divisor);
2463 if (VECTOR_CST_STEPPED_P (divisor)
2464 && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (divisor))
2465 .is_constant (const_value: &nelts))
2466 return true;
2467 for (unsigned int i = 0; i < nelts; ++i)
2468 {
2469 tree elt = vector_cst_elt (divisor, i);
2470 if (integer_zerop (elt))
2471 return true;
2472 }
2473 }
2474 return false;
2475
2476 case RDIV_EXPR:
2477 if (fp_operation)
2478 {
2479 if (honor_snans)
2480 return true;
2481 return flag_trapping_math;
2482 }
2483 /* Fixed point operations also use RDIV_EXPR. */
2484 if (!TREE_CONSTANT (divisor) || fixed_zerop (divisor))
2485 return true;
2486 return false;
2487
2488 case LT_EXPR:
2489 case LE_EXPR:
2490 case GT_EXPR:
2491 case GE_EXPR:
2492 case LTGT_EXPR:
2493 /* MIN/MAX similar as LT/LE/GT/GE. */
2494 case MIN_EXPR:
2495 case MAX_EXPR:
2496 /* Some floating point comparisons may trap. */
2497 return honor_nans;
2498
2499 case EQ_EXPR:
2500 case NE_EXPR:
2501 case UNORDERED_EXPR:
2502 case ORDERED_EXPR:
2503 case UNLT_EXPR:
2504 case UNLE_EXPR:
2505 case UNGT_EXPR:
2506 case UNGE_EXPR:
2507 case UNEQ_EXPR:
2508 return honor_snans;
2509
2510 case NEGATE_EXPR:
2511 case ABS_EXPR:
2512 case CONJ_EXPR:
2513 /* These operations don't trap with floating point. */
2514 if (honor_trapv)
2515 return true;
2516 return false;
2517
2518 case ABSU_EXPR:
2519 /* ABSU_EXPR never traps. */
2520 return false;
2521
2522 case PLUS_EXPR:
2523 case MINUS_EXPR:
2524 case MULT_EXPR:
2525 /* Any floating arithmetic may trap. */
2526 if (fp_operation && flag_trapping_math)
2527 return true;
2528 if (honor_trapv)
2529 return true;
2530 return false;
2531
2532 case COMPLEX_EXPR:
2533 case CONSTRUCTOR:
2534 /* Constructing an object cannot trap. */
2535 return false;
2536
2537 case COND_EXPR:
2538 case VEC_COND_EXPR:
2539 /* Whether *COND_EXPR can trap depends on whether the
2540 first argument can trap, so signal it as not handled.
2541 Whether lhs is floating or not doesn't matter. */
2542 *handled = false;
2543 return false;
2544
2545 default:
2546 /* Any floating arithmetic may trap. */
2547 if (fp_operation && flag_trapping_math)
2548 return true;
2549
2550 *handled = false;
2551 return false;
2552 }
2553}
2554
2555/* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2556 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2557 type operands that may trap. If OP is a division operator, DIVISOR contains
2558 the value of the divisor. */
2559
2560bool
2561operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2562 tree divisor)
2563{
2564 bool honor_nans = (fp_operation && flag_trapping_math
2565 && !flag_finite_math_only);
2566 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2567 bool handled;
2568
2569 /* This function cannot tell whether or not COND_EXPR could trap,
2570 because that depends on its condition op. */
2571 gcc_assert (op != COND_EXPR);
2572
2573 if (TREE_CODE_CLASS (op) != tcc_comparison
2574 && TREE_CODE_CLASS (op) != tcc_unary
2575 && TREE_CODE_CLASS (op) != tcc_binary)
2576 return false;
2577
2578 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2579 honor_nans, honor_snans, divisor,
2580 handled: &handled);
2581}
2582
2583
2584/* Returns true if it is possible to prove that the index of
2585 an array access REF (an ARRAY_REF expression) falls into the
2586 array bounds. */
2587
2588static bool
2589in_array_bounds_p (tree ref)
2590{
2591 tree idx = TREE_OPERAND (ref, 1);
2592 tree min, max;
2593
2594 if (TREE_CODE (idx) != INTEGER_CST)
2595 return false;
2596
2597 min = array_ref_low_bound (ref);
2598 max = array_ref_up_bound (ref);
2599 if (!min
2600 || !max
2601 || TREE_CODE (min) != INTEGER_CST
2602 || TREE_CODE (max) != INTEGER_CST)
2603 return false;
2604
2605 if (tree_int_cst_lt (t1: idx, t2: min)
2606 || tree_int_cst_lt (t1: max, t2: idx))
2607 return false;
2608
2609 return true;
2610}
2611
2612/* Returns true if it is possible to prove that the range of
2613 an array access REF (an ARRAY_RANGE_REF expression) falls
2614 into the array bounds. */
2615
2616static bool
2617range_in_array_bounds_p (tree ref)
2618{
2619 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
2620 tree range_min, range_max, min, max;
2621
2622 range_min = TYPE_MIN_VALUE (domain_type);
2623 range_max = TYPE_MAX_VALUE (domain_type);
2624 if (!range_min
2625 || !range_max
2626 || TREE_CODE (range_min) != INTEGER_CST
2627 || TREE_CODE (range_max) != INTEGER_CST)
2628 return false;
2629
2630 min = array_ref_low_bound (ref);
2631 max = array_ref_up_bound (ref);
2632 if (!min
2633 || !max
2634 || TREE_CODE (min) != INTEGER_CST
2635 || TREE_CODE (max) != INTEGER_CST)
2636 return false;
2637
2638 if (tree_int_cst_lt (t1: range_min, t2: min)
2639 || tree_int_cst_lt (t1: max, t2: range_max))
2640 return false;
2641
2642 return true;
2643}
2644
2645/* Return true if EXPR can trap, as in dereferencing an invalid pointer
2646 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2647 This routine expects only GIMPLE lhs or rhs input. */
2648
2649bool
2650tree_could_trap_p (tree expr)
2651{
2652 enum tree_code code;
2653 bool fp_operation = false;
2654 bool honor_trapv = false;
2655 tree t, base, div = NULL_TREE;
2656
2657 if (!expr)
2658 return false;
2659
2660 /* In COND_EXPR and VEC_COND_EXPR only the condition may trap, but
2661 they won't appear as operands in GIMPLE form, so this is just for the
2662 GENERIC uses where it needs to recurse on the operands and so
2663 *COND_EXPR itself doesn't trap. */
2664 if (TREE_CODE (expr) == COND_EXPR || TREE_CODE (expr) == VEC_COND_EXPR)
2665 return false;
2666
2667 code = TREE_CODE (expr);
2668 t = TREE_TYPE (expr);
2669
2670 if (t)
2671 {
2672 if (COMPARISON_CLASS_P (expr))
2673 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2674 else
2675 fp_operation = FLOAT_TYPE_P (t);
2676 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2677 }
2678
2679 if (TREE_CODE_CLASS (code) == tcc_binary)
2680 div = TREE_OPERAND (expr, 1);
2681 if (operation_could_trap_p (op: code, fp_operation, honor_trapv, divisor: div))
2682 return true;
2683
2684 restart:
2685 switch (code)
2686 {
2687 case COMPONENT_REF:
2688 case REALPART_EXPR:
2689 case IMAGPART_EXPR:
2690 case BIT_FIELD_REF:
2691 case VIEW_CONVERT_EXPR:
2692 case WITH_SIZE_EXPR:
2693 expr = TREE_OPERAND (expr, 0);
2694 code = TREE_CODE (expr);
2695 goto restart;
2696
2697 case ARRAY_RANGE_REF:
2698 base = TREE_OPERAND (expr, 0);
2699 if (tree_could_trap_p (expr: base))
2700 return true;
2701 if (TREE_THIS_NOTRAP (expr))
2702 return false;
2703 return !range_in_array_bounds_p (ref: expr);
2704
2705 case ARRAY_REF:
2706 base = TREE_OPERAND (expr, 0);
2707 if (tree_could_trap_p (expr: base))
2708 return true;
2709 if (TREE_THIS_NOTRAP (expr))
2710 return false;
2711 return !in_array_bounds_p (ref: expr);
2712
2713 case TARGET_MEM_REF:
2714 case MEM_REF:
2715 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
2716 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
2717 return true;
2718 if (TREE_THIS_NOTRAP (expr))
2719 return false;
2720 /* We cannot prove that the access is in-bounds when we have
2721 variable-index TARGET_MEM_REFs. */
2722 if (code == TARGET_MEM_REF
2723 && (TMR_INDEX (expr) || TMR_INDEX2 (expr)))
2724 return true;
2725 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2726 {
2727 tree base = TREE_OPERAND (TREE_OPERAND (expr, 0), 0);
2728 poly_offset_int off = mem_ref_offset (expr);
2729 if (maybe_lt (a: off, b: 0))
2730 return true;
2731 if (TREE_CODE (base) == STRING_CST)
2732 return maybe_le (TREE_STRING_LENGTH (base), b: off);
2733 tree size = DECL_SIZE_UNIT (base);
2734 if (size == NULL_TREE
2735 || !poly_int_tree_p (t: size)
2736 || maybe_le (a: wi::to_poly_offset (t: size), b: off))
2737 return true;
2738 /* Now we are sure the first byte of the access is inside
2739 the object. */
2740 return false;
2741 }
2742 return true;
2743
2744 case INDIRECT_REF:
2745 return !TREE_THIS_NOTRAP (expr);
2746
2747 case ASM_EXPR:
2748 return TREE_THIS_VOLATILE (expr);
2749
2750 case CALL_EXPR:
2751 /* Internal function calls do not trap. */
2752 if (CALL_EXPR_FN (expr) == NULL_TREE)
2753 return false;
2754 t = get_callee_fndecl (expr);
2755 /* Assume that indirect and calls to weak functions may trap. */
2756 if (!t || !DECL_P (t))
2757 return true;
2758 if (DECL_WEAK (t))
2759 return tree_could_trap_p (expr: t);
2760 return false;
2761
2762 case FUNCTION_DECL:
2763 /* Assume that accesses to weak functions may trap, unless we know
2764 they are certainly defined in current TU or in some other
2765 LTO partition. */
2766 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2767 {
2768 cgraph_node *node = cgraph_node::get (decl: expr);
2769 if (node)
2770 node = node->function_symbol ();
2771 return !(node && node->in_other_partition);
2772 }
2773 return false;
2774
2775 case VAR_DECL:
2776 /* Assume that accesses to weak vars may trap, unless we know
2777 they are certainly defined in current TU or in some other
2778 LTO partition. */
2779 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2780 {
2781 varpool_node *node = varpool_node::get (decl: expr);
2782 if (node)
2783 node = node->ultimate_alias_target ();
2784 return !(node && node->in_other_partition);
2785 }
2786 return false;
2787
2788 default:
2789 return false;
2790 }
2791}
2792
2793/* Return non-NULL if there is an integer operation with trapping overflow
2794 we can rewrite into non-trapping. Called via walk_tree from
2795 rewrite_to_non_trapping_overflow. */
2796
2797static tree
2798find_trapping_overflow (tree *tp, int *walk_subtrees, void *data)
2799{
2800 if (EXPR_P (*tp)
2801 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (*tp))
2802 && !operation_no_trapping_overflow (TREE_TYPE (*tp), TREE_CODE (*tp)))
2803 return *tp;
2804 if (IS_TYPE_OR_DECL_P (*tp)
2805 || (TREE_CODE (*tp) == SAVE_EXPR && data == NULL))
2806 *walk_subtrees = 0;
2807 return NULL_TREE;
2808}
2809
2810/* Rewrite selected operations into unsigned arithmetics, so that they
2811 don't trap on overflow. */
2812
2813static tree
2814replace_trapping_overflow (tree *tp, int *walk_subtrees, void *data)
2815{
2816 if (find_trapping_overflow (tp, walk_subtrees, data))
2817 {
2818 tree type = TREE_TYPE (*tp);
2819 tree utype = unsigned_type_for (type);
2820 *walk_subtrees = 0;
2821 int len = TREE_OPERAND_LENGTH (*tp);
2822 for (int i = 0; i < len; ++i)
2823 walk_tree (&TREE_OPERAND (*tp, i), replace_trapping_overflow,
2824 data, (hash_set<tree> *) data);
2825
2826 if (TREE_CODE (*tp) == ABS_EXPR)
2827 {
2828 TREE_SET_CODE (*tp, ABSU_EXPR);
2829 TREE_TYPE (*tp) = utype;
2830 *tp = fold_convert (type, *tp);
2831 }
2832 else
2833 {
2834 TREE_TYPE (*tp) = utype;
2835 len = TREE_OPERAND_LENGTH (*tp);
2836 for (int i = 0; i < len; ++i)
2837 TREE_OPERAND (*tp, i)
2838 = fold_convert (utype, TREE_OPERAND (*tp, i));
2839 *tp = fold_convert (type, *tp);
2840 }
2841 }
2842 return NULL_TREE;
2843}
2844
2845/* If any subexpression of EXPR can trap due to -ftrapv, rewrite it
2846 using unsigned arithmetics to avoid traps in it. */
2847
2848tree
2849rewrite_to_non_trapping_overflow (tree expr)
2850{
2851 if (!flag_trapv)
2852 return expr;
2853 hash_set<tree> pset;
2854 if (!walk_tree (&expr, find_trapping_overflow, &pset, &pset))
2855 return expr;
2856 expr = unshare_expr (expr);
2857 pset.empty ();
2858 walk_tree (&expr, replace_trapping_overflow, &pset, &pset);
2859 return expr;
2860}
2861
2862/* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2863 an assignment or a conditional) may throw. */
2864
2865static bool
2866stmt_could_throw_1_p (gassign *stmt)
2867{
2868 enum tree_code code = gimple_assign_rhs_code (gs: stmt);
2869 bool honor_nans = false;
2870 bool honor_snans = false;
2871 bool fp_operation = false;
2872 bool honor_trapv = false;
2873 tree t;
2874 size_t i;
2875 bool handled, ret;
2876
2877 if (TREE_CODE_CLASS (code) == tcc_comparison
2878 || TREE_CODE_CLASS (code) == tcc_unary
2879 || TREE_CODE_CLASS (code) == tcc_binary)
2880 {
2881 if (TREE_CODE_CLASS (code) == tcc_comparison)
2882 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2883 else
2884 t = TREE_TYPE (gimple_assign_lhs (stmt));
2885 fp_operation = FLOAT_TYPE_P (t);
2886 if (fp_operation)
2887 {
2888 honor_nans = flag_trapping_math && !flag_finite_math_only;
2889 honor_snans = flag_signaling_nans != 0;
2890 }
2891 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2892 honor_trapv = true;
2893 }
2894
2895 /* First check the LHS. */
2896 if (tree_could_trap_p (expr: gimple_assign_lhs (gs: stmt)))
2897 return true;
2898
2899 /* Check if the main expression may trap. */
2900 ret = operation_could_trap_helper_p (op: code, fp_operation, honor_trapv,
2901 honor_nans, honor_snans,
2902 divisor: gimple_assign_rhs2 (gs: stmt),
2903 handled: &handled);
2904 if (handled)
2905 return ret;
2906
2907 /* If the expression does not trap, see if any of the individual operands may
2908 trap. */
2909 for (i = 1; i < gimple_num_ops (gs: stmt); i++)
2910 if (tree_could_trap_p (expr: gimple_op (gs: stmt, i)))
2911 return true;
2912
2913 return false;
2914}
2915
2916
2917/* Return true if statement STMT within FUN could throw an exception. */
2918
2919bool
2920stmt_could_throw_p (function *fun, gimple *stmt)
2921{
2922 if (!flag_exceptions)
2923 return false;
2924
2925 /* The only statements that can throw an exception are assignments,
2926 conditionals, calls, resx, and asms. */
2927 switch (gimple_code (g: stmt))
2928 {
2929 case GIMPLE_RESX:
2930 return true;
2931
2932 case GIMPLE_CALL:
2933 return !gimple_call_nothrow_p (s: as_a <gcall *> (p: stmt));
2934
2935 case GIMPLE_COND:
2936 {
2937 if (fun && !fun->can_throw_non_call_exceptions)
2938 return false;
2939 gcond *cond = as_a <gcond *> (p: stmt);
2940 tree lhs = gimple_cond_lhs (gs: cond);
2941 return operation_could_trap_p (op: gimple_cond_code (gs: cond),
2942 FLOAT_TYPE_P (TREE_TYPE (lhs)),
2943 honor_trapv: false, NULL_TREE);
2944 }
2945
2946 case GIMPLE_ASSIGN:
2947 if ((fun && !fun->can_throw_non_call_exceptions)
2948 || gimple_clobber_p (s: stmt))
2949 return false;
2950 return stmt_could_throw_1_p (stmt: as_a <gassign *> (p: stmt));
2951
2952 case GIMPLE_ASM:
2953 if (fun && !fun->can_throw_non_call_exceptions)
2954 return false;
2955 return gimple_asm_volatile_p (asm_stmt: as_a <gasm *> (p: stmt));
2956
2957 default:
2958 return false;
2959 }
2960}
2961
2962/* Return true if STMT in function FUN must be assumed necessary because of
2963 non-call exceptions. */
2964
2965bool
2966stmt_unremovable_because_of_non_call_eh_p (function *fun, gimple *stmt)
2967{
2968 return (fun->can_throw_non_call_exceptions
2969 && !fun->can_delete_dead_exceptions
2970 && stmt_could_throw_p (fun, stmt));
2971}
2972
2973/* Return true if expression T could throw an exception. */
2974
2975bool
2976tree_could_throw_p (tree t)
2977{
2978 if (!flag_exceptions)
2979 return false;
2980 if (TREE_CODE (t) == MODIFY_EXPR)
2981 {
2982 if (cfun->can_throw_non_call_exceptions
2983 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2984 return true;
2985 t = TREE_OPERAND (t, 1);
2986 }
2987
2988 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2989 t = TREE_OPERAND (t, 0);
2990 if (TREE_CODE (t) == CALL_EXPR)
2991 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2992 if (cfun->can_throw_non_call_exceptions)
2993 return tree_could_trap_p (expr: t);
2994 return false;
2995}
2996
2997/* Return true if STMT can throw an exception that is not caught within its
2998 function FUN. FUN can be NULL but the function is extra conservative
2999 then. */
3000
3001bool
3002stmt_can_throw_external (function *fun, gimple *stmt)
3003{
3004 int lp_nr;
3005
3006 if (!stmt_could_throw_p (fun, stmt))
3007 return false;
3008 if (!fun)
3009 return true;
3010
3011 lp_nr = lookup_stmt_eh_lp_fn (ifun: fun, t: stmt);
3012 return lp_nr == 0;
3013}
3014
3015/* Return true if STMT can throw an exception that is caught within its
3016 function FUN. */
3017
3018bool
3019stmt_can_throw_internal (function *fun, gimple *stmt)
3020{
3021 int lp_nr;
3022
3023 gcc_checking_assert (fun);
3024 if (!stmt_could_throw_p (fun, stmt))
3025 return false;
3026
3027 lp_nr = lookup_stmt_eh_lp_fn (ifun: fun, t: stmt);
3028 return lp_nr > 0;
3029}
3030
3031/* Given a statement STMT in IFUN, if STMT can no longer throw, then
3032 remove any entry it might have from the EH table. Return true if
3033 any change was made. */
3034
3035bool
3036maybe_clean_eh_stmt_fn (struct function *ifun, gimple *stmt)
3037{
3038 if (stmt_could_throw_p (fun: ifun, stmt))
3039 return false;
3040 return remove_stmt_from_eh_lp_fn (ifun, t: stmt);
3041}
3042
3043/* Likewise, but always use the current function. */
3044
3045bool
3046maybe_clean_eh_stmt (gimple *stmt)
3047{
3048 return maybe_clean_eh_stmt_fn (cfun, stmt);
3049}
3050
3051/* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
3052 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
3053 in the table if it should be in there. Return TRUE if a replacement was
3054 done that my require an EH edge purge. */
3055
3056bool
3057maybe_clean_or_replace_eh_stmt (gimple *old_stmt, gimple *new_stmt)
3058{
3059 int lp_nr = lookup_stmt_eh_lp (t: old_stmt);
3060
3061 if (lp_nr != 0)
3062 {
3063 bool new_stmt_could_throw = stmt_could_throw_p (cfun, stmt: new_stmt);
3064
3065 if (new_stmt == old_stmt && new_stmt_could_throw)
3066 return false;
3067
3068 remove_stmt_from_eh_lp (t: old_stmt);
3069 if (new_stmt_could_throw)
3070 {
3071 add_stmt_to_eh_lp (t: new_stmt, num: lp_nr);
3072 return false;
3073 }
3074 else
3075 return true;
3076 }
3077
3078 return false;
3079}
3080
3081/* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
3082 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
3083 operand is the return value of duplicate_eh_regions. */
3084
3085bool
3086maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple *new_stmt,
3087 struct function *old_fun, gimple *old_stmt,
3088 hash_map<void *, void *> *map,
3089 int default_lp_nr)
3090{
3091 int old_lp_nr, new_lp_nr;
3092
3093 if (!stmt_could_throw_p (fun: new_fun, stmt: new_stmt))
3094 return false;
3095
3096 old_lp_nr = lookup_stmt_eh_lp_fn (ifun: old_fun, t: old_stmt);
3097 if (old_lp_nr == 0)
3098 {
3099 if (default_lp_nr == 0)
3100 return false;
3101 new_lp_nr = default_lp_nr;
3102 }
3103 else if (old_lp_nr > 0)
3104 {
3105 eh_landing_pad old_lp, new_lp;
3106
3107 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
3108 new_lp = static_cast<eh_landing_pad> (*map->get (k: old_lp));
3109 new_lp_nr = new_lp->index;
3110 }
3111 else
3112 {
3113 eh_region old_r, new_r;
3114
3115 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
3116 new_r = static_cast<eh_region> (*map->get (k: old_r));
3117 new_lp_nr = -new_r->index;
3118 }
3119
3120 add_stmt_to_eh_lp_fn (ifun: new_fun, t: new_stmt, num: new_lp_nr);
3121 return true;
3122}
3123
3124/* Similar, but both OLD_STMT and NEW_STMT are within the current function,
3125 and thus no remapping is required. */
3126
3127bool
3128maybe_duplicate_eh_stmt (gimple *new_stmt, gimple *old_stmt)
3129{
3130 int lp_nr;
3131
3132 if (!stmt_could_throw_p (cfun, stmt: new_stmt))
3133 return false;
3134
3135 lp_nr = lookup_stmt_eh_lp (t: old_stmt);
3136 if (lp_nr == 0)
3137 return false;
3138
3139 add_stmt_to_eh_lp (t: new_stmt, num: lp_nr);
3140 return true;
3141}
3142
3143/* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
3144 GIMPLE_TRY) that are similar enough to be considered the same. Currently
3145 this only handles handlers consisting of a single call, as that's the
3146 important case for C++: a destructor call for a particular object showing
3147 up in multiple handlers. */
3148
3149static bool
3150same_handler_p (gimple_seq oneh, gimple_seq twoh)
3151{
3152 gimple_stmt_iterator gsi;
3153 gimple *ones, *twos;
3154 unsigned int ai;
3155
3156 gsi = gsi_start (seq&: oneh);
3157 if (!gsi_one_before_end_p (i: gsi))
3158 return false;
3159 ones = gsi_stmt (i: gsi);
3160
3161 gsi = gsi_start (seq&: twoh);
3162 if (!gsi_one_before_end_p (i: gsi))
3163 return false;
3164 twos = gsi_stmt (i: gsi);
3165
3166 if (!is_gimple_call (gs: ones)
3167 || !is_gimple_call (gs: twos)
3168 || gimple_call_lhs (gs: ones)
3169 || gimple_call_lhs (gs: twos)
3170 || gimple_call_chain (gs: ones)
3171 || gimple_call_chain (gs: twos)
3172 || !gimple_call_same_target_p (ones, twos)
3173 || gimple_call_num_args (gs: ones) != gimple_call_num_args (gs: twos))
3174 return false;
3175
3176 for (ai = 0; ai < gimple_call_num_args (gs: ones); ++ai)
3177 if (!operand_equal_p (gimple_call_arg (gs: ones, index: ai),
3178 gimple_call_arg (gs: twos, index: ai), flags: 0))
3179 return false;
3180
3181 return true;
3182}
3183
3184/* Optimize
3185 try { A() } finally { try { ~B() } catch { ~A() } }
3186 try { ... } finally { ~A() }
3187 into
3188 try { A() } catch { ~B() }
3189 try { ~B() ... } finally { ~A() }
3190
3191 This occurs frequently in C++, where A is a local variable and B is a
3192 temporary used in the initializer for A. */
3193
3194static void
3195optimize_double_finally (gtry *one, gtry *two)
3196{
3197 gimple *oneh;
3198 gimple_stmt_iterator gsi;
3199 gimple_seq cleanup;
3200
3201 cleanup = gimple_try_cleanup (gs: one);
3202 gsi = gsi_start (seq&: cleanup);
3203 if (!gsi_one_before_end_p (i: gsi))
3204 return;
3205
3206 oneh = gsi_stmt (i: gsi);
3207 if (gimple_code (g: oneh) != GIMPLE_TRY
3208 || gimple_try_kind (gs: oneh) != GIMPLE_TRY_CATCH)
3209 return;
3210
3211 if (same_handler_p (oneh: gimple_try_cleanup (gs: oneh), twoh: gimple_try_cleanup (gs: two)))
3212 {
3213 gimple_seq seq = gimple_try_eval (gs: oneh);
3214
3215 gimple_try_set_cleanup (try_stmt: one, cleanup: seq);
3216 gimple_try_set_kind (gs: one, kind: GIMPLE_TRY_CATCH);
3217 seq = copy_gimple_seq_and_replace_locals (seq);
3218 gimple_seq_add_seq (&seq, gimple_try_eval (gs: two));
3219 gimple_try_set_eval (try_stmt: two, eval: seq);
3220 }
3221}
3222
3223/* Perform EH refactoring optimizations that are simpler to do when code
3224 flow has been lowered but EH structures haven't. */
3225
3226static void
3227refactor_eh_r (gimple_seq seq)
3228{
3229 gimple_stmt_iterator gsi;
3230 gimple *one, *two;
3231
3232 one = NULL;
3233 two = NULL;
3234 gsi = gsi_start (seq);
3235 while (1)
3236 {
3237 one = two;
3238 if (gsi_end_p (i: gsi))
3239 two = NULL;
3240 else
3241 two = gsi_stmt (i: gsi);
3242 if (one && two)
3243 if (gtry *try_one = dyn_cast <gtry *> (p: one))
3244 if (gtry *try_two = dyn_cast <gtry *> (p: two))
3245 if (gimple_try_kind (gs: try_one) == GIMPLE_TRY_FINALLY
3246 && gimple_try_kind (gs: try_two) == GIMPLE_TRY_FINALLY)
3247 optimize_double_finally (one: try_one, two: try_two);
3248 if (one)
3249 switch (gimple_code (g: one))
3250 {
3251 case GIMPLE_TRY:
3252 refactor_eh_r (seq: gimple_try_eval (gs: one));
3253 refactor_eh_r (seq: gimple_try_cleanup (gs: one));
3254 break;
3255 case GIMPLE_CATCH:
3256 refactor_eh_r (seq: gimple_catch_handler (catch_stmt: as_a <gcatch *> (p: one)));
3257 break;
3258 case GIMPLE_EH_FILTER:
3259 refactor_eh_r (seq: gimple_eh_filter_failure (gs: one));
3260 break;
3261 case GIMPLE_EH_ELSE:
3262 {
3263 geh_else *eh_else_stmt = as_a <geh_else *> (p: one);
3264 refactor_eh_r (seq: gimple_eh_else_n_body (eh_else_stmt));
3265 refactor_eh_r (seq: gimple_eh_else_e_body (eh_else_stmt));
3266 }
3267 break;
3268 default:
3269 break;
3270 }
3271 if (two)
3272 gsi_next (i: &gsi);
3273 else
3274 break;
3275 }
3276}
3277
3278namespace {
3279
3280const pass_data pass_data_refactor_eh =
3281{
3282 .type: GIMPLE_PASS, /* type */
3283 .name: "ehopt", /* name */
3284 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3285 .tv_id: TV_TREE_EH, /* tv_id */
3286 PROP_gimple_lcf, /* properties_required */
3287 .properties_provided: 0, /* properties_provided */
3288 .properties_destroyed: 0, /* properties_destroyed */
3289 .todo_flags_start: 0, /* todo_flags_start */
3290 .todo_flags_finish: 0, /* todo_flags_finish */
3291};
3292
3293class pass_refactor_eh : public gimple_opt_pass
3294{
3295public:
3296 pass_refactor_eh (gcc::context *ctxt)
3297 : gimple_opt_pass (pass_data_refactor_eh, ctxt)
3298 {}
3299
3300 /* opt_pass methods: */
3301 bool gate (function *) final override { return flag_exceptions != 0; }
3302 unsigned int execute (function *) final override
3303 {
3304 refactor_eh_r (seq: gimple_body (current_function_decl));
3305 return 0;
3306 }
3307
3308}; // class pass_refactor_eh
3309
3310} // anon namespace
3311
3312gimple_opt_pass *
3313make_pass_refactor_eh (gcc::context *ctxt)
3314{
3315 return new pass_refactor_eh (ctxt);
3316}
3317
3318/* At the end of gimple optimization, we can lower RESX. */
3319
3320static bool
3321lower_resx (basic_block bb, gresx *stmt,
3322 hash_map<eh_region, tree> *mnt_map)
3323{
3324 int lp_nr;
3325 eh_region src_r, dst_r;
3326 gimple_stmt_iterator gsi;
3327 gcall *x;
3328 tree fn, src_nr;
3329 bool ret = false;
3330
3331 lp_nr = lookup_stmt_eh_lp (t: stmt);
3332 if (lp_nr != 0)
3333 dst_r = get_eh_region_from_lp_number (lp_nr);
3334 else
3335 dst_r = NULL;
3336
3337 src_r = get_eh_region_from_number (gimple_resx_region (resx_stmt: stmt));
3338 gsi = gsi_last_bb (bb);
3339
3340 if (src_r == NULL)
3341 {
3342 /* We can wind up with no source region when pass_cleanup_eh shows
3343 that there are no entries into an eh region and deletes it, but
3344 then the block that contains the resx isn't removed. This can
3345 happen without optimization when the switch statement created by
3346 lower_try_finally_switch isn't simplified to remove the eh case.
3347
3348 Resolve this by expanding the resx node to an abort. */
3349
3350 fn = builtin_decl_implicit (fncode: BUILT_IN_TRAP);
3351 x = gimple_build_call (fn, 0);
3352 gimple_call_set_ctrl_altering (s: x, ctrl_altering_p: true);
3353 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3354
3355 while (EDGE_COUNT (bb->succs) > 0)
3356 remove_edge (EDGE_SUCC (bb, 0));
3357 }
3358 else if (dst_r)
3359 {
3360 /* When we have a destination region, we resolve this by copying
3361 the excptr and filter values into place, and changing the edge
3362 to immediately after the landing pad. */
3363 edge e;
3364
3365 if (lp_nr < 0)
3366 {
3367 basic_block new_bb;
3368 tree lab;
3369
3370 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3371 the failure decl into a new block, if needed. */
3372 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3373
3374 tree *slot = mnt_map->get (k: dst_r);
3375 if (slot == NULL)
3376 {
3377 gimple_stmt_iterator gsi2;
3378
3379 new_bb = create_empty_bb (bb);
3380 new_bb->count = bb->count;
3381 add_bb_to_loop (new_bb, bb->loop_father);
3382 lab = gimple_block_label (new_bb);
3383 gsi2 = gsi_start_bb (bb: new_bb);
3384
3385 /* Handle failure fns that expect either no arguments or the
3386 exception pointer. */
3387 fn = dst_r->u.must_not_throw.failure_decl;
3388 if (TYPE_ARG_TYPES (TREE_TYPE (fn)) != void_list_node)
3389 {
3390 tree epfn = builtin_decl_implicit (fncode: BUILT_IN_EH_POINTER);
3391 src_nr = build_int_cst (integer_type_node, src_r->index);
3392 x = gimple_build_call (epfn, 1, src_nr);
3393 tree var = create_tmp_var (ptr_type_node);
3394 var = make_ssa_name (var, stmt: x);
3395 gimple_call_set_lhs (gs: x, lhs: var);
3396 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3397 x = gimple_build_call (fn, 1, var);
3398 }
3399 else
3400 x = gimple_build_call (fn, 0);
3401 gimple_set_location (g: x, location: dst_r->u.must_not_throw.failure_loc);
3402 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3403
3404 mnt_map->put (k: dst_r, v: lab);
3405 }
3406 else
3407 {
3408 lab = *slot;
3409 new_bb = label_to_block (cfun, lab);
3410 }
3411
3412 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3413 e = make_single_succ_edge (bb, new_bb, EDGE_FALLTHRU);
3414 }
3415 else
3416 {
3417 edge_iterator ei;
3418 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3419
3420 fn = builtin_decl_implicit (fncode: BUILT_IN_EH_COPY_VALUES);
3421 src_nr = build_int_cst (integer_type_node, src_r->index);
3422 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3423 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3424
3425 /* Update the flags for the outgoing edge. */
3426 e = single_succ_edge (bb);
3427 gcc_assert (e->flags & EDGE_EH);
3428 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3429 e->probability = profile_probability::always ();
3430
3431 /* If there are no more EH users of the landing pad, delete it. */
3432 FOR_EACH_EDGE (e, ei, e->dest->preds)
3433 if (e->flags & EDGE_EH)
3434 break;
3435 if (e == NULL)
3436 {
3437 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3438 remove_eh_landing_pad (lp);
3439 }
3440 }
3441
3442 ret = true;
3443 }
3444 else
3445 {
3446 tree var;
3447
3448 /* When we don't have a destination region, this exception escapes
3449 up the call chain. We resolve this by generating a call to the
3450 _Unwind_Resume library function. */
3451
3452 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3453 with no arguments for C++. Check for that. */
3454 if (src_r->use_cxa_end_cleanup)
3455 {
3456 fn = builtin_decl_implicit (fncode: BUILT_IN_CXA_END_CLEANUP);
3457 x = gimple_build_call (fn, 0);
3458 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3459 }
3460 else
3461 {
3462 fn = builtin_decl_implicit (fncode: BUILT_IN_EH_POINTER);
3463 src_nr = build_int_cst (integer_type_node, src_r->index);
3464 x = gimple_build_call (fn, 1, src_nr);
3465 var = create_tmp_var (ptr_type_node);
3466 var = make_ssa_name (var, stmt: x);
3467 gimple_call_set_lhs (gs: x, lhs: var);
3468 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3469
3470 /* When exception handling is delegated to a caller function, we
3471 have to guarantee that shadow memory variables living on stack
3472 will be cleaner before control is given to a parent function. */
3473 if (sanitize_flags_p (flag: SANITIZE_ADDRESS))
3474 {
3475 tree decl
3476 = builtin_decl_implicit (fncode: BUILT_IN_ASAN_HANDLE_NO_RETURN);
3477 gimple *g = gimple_build_call (decl, 0);
3478 gimple_set_location (g, location: gimple_location (g: stmt));
3479 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3480 }
3481
3482 fn = builtin_decl_implicit (fncode: BUILT_IN_UNWIND_RESUME);
3483 x = gimple_build_call (fn, 1, var);
3484 gimple_call_set_ctrl_altering (s: x, ctrl_altering_p: true);
3485 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3486 }
3487
3488 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3489 }
3490
3491 gsi_remove (&gsi, true);
3492
3493 return ret;
3494}
3495
3496namespace {
3497
3498const pass_data pass_data_lower_resx =
3499{
3500 .type: GIMPLE_PASS, /* type */
3501 .name: "resx", /* name */
3502 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3503 .tv_id: TV_TREE_EH, /* tv_id */
3504 PROP_gimple_lcf, /* properties_required */
3505 .properties_provided: 0, /* properties_provided */
3506 .properties_destroyed: 0, /* properties_destroyed */
3507 .todo_flags_start: 0, /* todo_flags_start */
3508 .todo_flags_finish: 0, /* todo_flags_finish */
3509};
3510
3511class pass_lower_resx : public gimple_opt_pass
3512{
3513public:
3514 pass_lower_resx (gcc::context *ctxt)
3515 : gimple_opt_pass (pass_data_lower_resx, ctxt)
3516 {}
3517
3518 /* opt_pass methods: */
3519 bool gate (function *) final override { return flag_exceptions != 0; }
3520 unsigned int execute (function *) final override;
3521
3522}; // class pass_lower_resx
3523
3524unsigned
3525pass_lower_resx::execute (function *fun)
3526{
3527 basic_block bb;
3528 bool dominance_invalidated = false;
3529 bool any_rewritten = false;
3530
3531 hash_map<eh_region, tree> mnt_map;
3532
3533 FOR_EACH_BB_FN (bb, fun)
3534 {
3535 if (gresx *last = safe_dyn_cast <gresx *> (p: *gsi_last_bb (bb)))
3536 {
3537 dominance_invalidated |= lower_resx (bb, stmt: last, mnt_map: &mnt_map);
3538 any_rewritten = true;
3539 }
3540 }
3541
3542 if (dominance_invalidated)
3543 {
3544 free_dominance_info (CDI_DOMINATORS);
3545 free_dominance_info (CDI_POST_DOMINATORS);
3546 }
3547
3548 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3549}
3550
3551} // anon namespace
3552
3553gimple_opt_pass *
3554make_pass_lower_resx (gcc::context *ctxt)
3555{
3556 return new pass_lower_resx (ctxt);
3557}
3558
3559/* Try to optimize var = {v} {CLOBBER} stmts followed just by
3560 external throw. */
3561
3562static void
3563optimize_clobbers (basic_block bb)
3564{
3565 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3566 bool any_clobbers = false;
3567 bool seen_stack_restore = false;
3568 edge_iterator ei;
3569 edge e;
3570
3571 /* Only optimize anything if the bb contains at least one clobber,
3572 ends with resx (checked by caller), optionally contains some
3573 debug stmts or labels, or at most one __builtin_stack_restore
3574 call, and has an incoming EH edge. */
3575 for (gsi_prev (i: &gsi); !gsi_end_p (i: gsi); gsi_prev (i: &gsi))
3576 {
3577 gimple *stmt = gsi_stmt (i: gsi);
3578 if (is_gimple_debug (gs: stmt))
3579 continue;
3580 if (gimple_clobber_p (s: stmt))
3581 {
3582 any_clobbers = true;
3583 continue;
3584 }
3585 if (!seen_stack_restore
3586 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3587 {
3588 seen_stack_restore = true;
3589 continue;
3590 }
3591 if (gimple_code (g: stmt) == GIMPLE_LABEL)
3592 break;
3593 return;
3594 }
3595 if (!any_clobbers)
3596 return;
3597 FOR_EACH_EDGE (e, ei, bb->preds)
3598 if (e->flags & EDGE_EH)
3599 break;
3600 if (e == NULL)
3601 return;
3602 gsi = gsi_last_bb (bb);
3603 for (gsi_prev (i: &gsi); !gsi_end_p (i: gsi); gsi_prev (i: &gsi))
3604 {
3605 gimple *stmt = gsi_stmt (i: gsi);
3606 if (!gimple_clobber_p (s: stmt))
3607 continue;
3608 unlink_stmt_vdef (stmt);
3609 gsi_remove (&gsi, true);
3610 release_defs (stmt);
3611 }
3612}
3613
3614/* Try to sink var = {v} {CLOBBER} stmts followed just by
3615 internal throw to successor BB.
3616 SUNK, if not NULL, is an array of sequences indexed by basic-block
3617 index to sink to and to pick up sinking opportunities from.
3618 If FOUND_OPPORTUNITY is not NULL then do not perform the optimization
3619 but set *FOUND_OPPORTUNITY to true. */
3620
3621static int
3622sink_clobbers (basic_block bb,
3623 gimple_seq *sunk = NULL, bool *found_opportunity = NULL)
3624{
3625 edge e;
3626 edge_iterator ei;
3627 gimple_stmt_iterator gsi, dgsi;
3628 basic_block succbb;
3629 bool any_clobbers = false;
3630 unsigned todo = 0;
3631
3632 /* Only optimize if BB has a single EH successor and
3633 all predecessor edges are EH too. */
3634 if (!single_succ_p (bb)
3635 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3636 return 0;
3637
3638 FOR_EACH_EDGE (e, ei, bb->preds)
3639 {
3640 if ((e->flags & EDGE_EH) == 0)
3641 return 0;
3642 }
3643
3644 /* And BB contains only CLOBBER stmts before the final
3645 RESX. */
3646 gsi = gsi_last_bb (bb);
3647 for (gsi_prev (i: &gsi); !gsi_end_p (i: gsi); gsi_prev (i: &gsi))
3648 {
3649 gimple *stmt = gsi_stmt (i: gsi);
3650 if (is_gimple_debug (gs: stmt))
3651 continue;
3652 if (gimple_code (g: stmt) == GIMPLE_LABEL)
3653 break;
3654 if (!gimple_clobber_p (s: stmt))
3655 return 0;
3656 any_clobbers = true;
3657 }
3658 if (!any_clobbers && (!sunk || gimple_seq_empty_p (s: sunk[bb->index])))
3659 return 0;
3660
3661 /* If this was a dry run, tell it we found clobbers to sink. */
3662 if (found_opportunity)
3663 {
3664 *found_opportunity = true;
3665 return 0;
3666 }
3667
3668 edge succe = single_succ_edge (bb);
3669 succbb = succe->dest;
3670
3671 /* See if there is a virtual PHI node to take an updated virtual
3672 operand from. */
3673 gphi *vphi = NULL;
3674 for (gphi_iterator gpi = gsi_start_phis (succbb);
3675 !gsi_end_p (i: gpi); gsi_next (i: &gpi))
3676 {
3677 tree res = gimple_phi_result (gs: gpi.phi ());
3678 if (virtual_operand_p (op: res))
3679 {
3680 vphi = gpi.phi ();
3681 break;
3682 }
3683 }
3684
3685 gimple *first_sunk = NULL;
3686 gimple *last_sunk = NULL;
3687 if (sunk && !(succbb->flags & BB_VISITED))
3688 dgsi = gsi_start (seq&: sunk[succbb->index]);
3689 else
3690 dgsi = gsi_after_labels (bb: succbb);
3691 gsi = gsi_last_bb (bb);
3692 for (gsi_prev (i: &gsi); !gsi_end_p (i: gsi); gsi_prev (i: &gsi))
3693 {
3694 gimple *stmt = gsi_stmt (i: gsi);
3695 tree lhs;
3696 if (is_gimple_debug (gs: stmt))
3697 continue;
3698 if (gimple_code (g: stmt) == GIMPLE_LABEL)
3699 break;
3700 lhs = gimple_assign_lhs (gs: stmt);
3701 /* Unfortunately we don't have dominance info updated at this
3702 point, so checking if
3703 dominated_by_p (CDI_DOMINATORS, succbb,
3704 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3705 would be too costly. Thus, avoid sinking any clobbers that
3706 refer to non-(D) SSA_NAMEs. */
3707 if (TREE_CODE (lhs) == MEM_REF
3708 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3709 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3710 {
3711 unlink_stmt_vdef (stmt);
3712 gsi_remove (&gsi, true);
3713 release_defs (stmt);
3714 continue;
3715 }
3716
3717 /* As we do not change stmt order when sinking across a
3718 forwarder edge we can keep virtual operands in place. */
3719 gsi_remove (&gsi, false);
3720 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3721 if (!first_sunk)
3722 first_sunk = stmt;
3723 last_sunk = stmt;
3724 }
3725 if (sunk && !gimple_seq_empty_p (s: sunk[bb->index]))
3726 {
3727 if (!first_sunk)
3728 first_sunk = gsi_stmt (i: gsi_last (seq&: sunk[bb->index]));
3729 last_sunk = gsi_stmt (i: gsi_start (seq&: sunk[bb->index]));
3730 gsi_insert_seq_before_without_update (&dgsi,
3731 sunk[bb->index], GSI_NEW_STMT);
3732 sunk[bb->index] = NULL;
3733 }
3734 if (first_sunk)
3735 {
3736 /* Adjust virtual operands if we sunk across a virtual PHI. */
3737 if (vphi)
3738 {
3739 imm_use_iterator iter;
3740 use_operand_p use_p;
3741 gimple *use_stmt;
3742 tree phi_def = gimple_phi_result (gs: vphi);
3743 FOR_EACH_IMM_USE_STMT (use_stmt, iter, phi_def)
3744 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3745 SET_USE (use_p, gimple_vdef (first_sunk));
3746 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (phi_def))
3747 {
3748 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (first_sunk)) = 1;
3749 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (phi_def) = 0;
3750 }
3751 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe),
3752 gimple_vuse (last_sunk));
3753 SET_USE (gimple_vuse_op (last_sunk), phi_def);
3754 }
3755 /* If there isn't a single predecessor but no virtual PHI node
3756 arrange for virtual operands to be renamed. */
3757 else if (!single_pred_p (bb: succbb)
3758 && TREE_CODE (gimple_vuse (last_sunk)) == SSA_NAME)
3759 {
3760 mark_virtual_operand_for_renaming (gimple_vuse (g: last_sunk));
3761 todo |= TODO_update_ssa_only_virtuals;
3762 }
3763 }
3764
3765 return todo;
3766}
3767
3768/* At the end of inlining, we can lower EH_DISPATCH. Return true when
3769 we have found some duplicate labels and removed some edges. */
3770
3771static bool
3772lower_eh_dispatch (basic_block src, geh_dispatch *stmt)
3773{
3774 gimple_stmt_iterator gsi;
3775 int region_nr;
3776 eh_region r;
3777 tree filter, fn;
3778 gimple *x;
3779 bool redirected = false;
3780
3781 region_nr = gimple_eh_dispatch_region (eh_dispatch_stmt: stmt);
3782 r = get_eh_region_from_number (region_nr);
3783
3784 gsi = gsi_last_bb (bb: src);
3785
3786 switch (r->type)
3787 {
3788 case ERT_TRY:
3789 {
3790 auto_vec<tree> labels;
3791 tree default_label = NULL;
3792 eh_catch c;
3793 edge_iterator ei;
3794 edge e;
3795 hash_set<tree> seen_values;
3796
3797 /* Collect the labels for a switch. Zero the post_landing_pad
3798 field becase we'll no longer have anything keeping these labels
3799 in existence and the optimizer will be free to merge these
3800 blocks at will. */
3801 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3802 {
3803 tree tp_node, flt_node, lab = c->label;
3804 bool have_label = false;
3805
3806 c->label = NULL;
3807 tp_node = c->type_list;
3808 flt_node = c->filter_list;
3809
3810 if (tp_node == NULL)
3811 {
3812 default_label = lab;
3813 break;
3814 }
3815 do
3816 {
3817 /* Filter out duplicate labels that arise when this handler
3818 is shadowed by an earlier one. When no labels are
3819 attached to the handler anymore, we remove
3820 the corresponding edge and then we delete unreachable
3821 blocks at the end of this pass. */
3822 if (! seen_values.contains (TREE_VALUE (flt_node)))
3823 {
3824 tree t = build_case_label (TREE_VALUE (flt_node),
3825 NULL, lab);
3826 labels.safe_push (obj: t);
3827 seen_values.add (TREE_VALUE (flt_node));
3828 have_label = true;
3829 }
3830
3831 tp_node = TREE_CHAIN (tp_node);
3832 flt_node = TREE_CHAIN (flt_node);
3833 }
3834 while (tp_node);
3835 if (! have_label)
3836 {
3837 remove_edge (find_edge (src, label_to_block (cfun, lab)));
3838 redirected = true;
3839 }
3840 }
3841
3842 /* Clean up the edge flags. */
3843 FOR_EACH_EDGE (e, ei, src->succs)
3844 {
3845 if (e->flags & EDGE_FALLTHRU)
3846 {
3847 /* If there was no catch-all, use the fallthru edge. */
3848 if (default_label == NULL)
3849 default_label = gimple_block_label (e->dest);
3850 e->flags &= ~EDGE_FALLTHRU;
3851 }
3852 }
3853 gcc_assert (default_label != NULL);
3854
3855 /* Don't generate a switch if there's only a default case.
3856 This is common in the form of try { A; } catch (...) { B; }. */
3857 if (!labels.exists ())
3858 {
3859 e = single_succ_edge (bb: src);
3860 e->flags |= EDGE_FALLTHRU;
3861 }
3862 else
3863 {
3864 fn = builtin_decl_implicit (fncode: BUILT_IN_EH_FILTER);
3865 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3866 region_nr));
3867 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3868 filter = make_ssa_name (var: filter, stmt: x);
3869 gimple_call_set_lhs (gs: x, lhs: filter);
3870 gimple_set_location (g: x, location: gimple_location (g: stmt));
3871 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3872
3873 /* Turn the default label into a default case. */
3874 default_label = build_case_label (NULL, NULL, default_label);
3875 sort_case_labels (labels);
3876
3877 x = gimple_build_switch (filter, default_label, labels);
3878 gimple_set_location (g: x, location: gimple_location (g: stmt));
3879 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3880 }
3881 }
3882 break;
3883
3884 case ERT_ALLOWED_EXCEPTIONS:
3885 {
3886 edge b_e = BRANCH_EDGE (src);
3887 edge f_e = FALLTHRU_EDGE (src);
3888
3889 fn = builtin_decl_implicit (fncode: BUILT_IN_EH_FILTER);
3890 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3891 region_nr));
3892 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3893 filter = make_ssa_name (var: filter, stmt: x);
3894 gimple_call_set_lhs (gs: x, lhs: filter);
3895 gimple_set_location (g: x, location: gimple_location (g: stmt));
3896 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3897
3898 r->u.allowed.label = NULL;
3899 x = gimple_build_cond (EQ_EXPR, filter,
3900 build_int_cst (TREE_TYPE (filter),
3901 r->u.allowed.filter),
3902 NULL_TREE, NULL_TREE);
3903 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3904
3905 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3906 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3907 }
3908 break;
3909
3910 default:
3911 gcc_unreachable ();
3912 }
3913
3914 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3915 gsi_remove (&gsi, true);
3916 return redirected;
3917}
3918
3919namespace {
3920
3921const pass_data pass_data_lower_eh_dispatch =
3922{
3923 .type: GIMPLE_PASS, /* type */
3924 .name: "ehdisp", /* name */
3925 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3926 .tv_id: TV_TREE_EH, /* tv_id */
3927 PROP_gimple_lcf, /* properties_required */
3928 .properties_provided: 0, /* properties_provided */
3929 .properties_destroyed: 0, /* properties_destroyed */
3930 .todo_flags_start: 0, /* todo_flags_start */
3931 .todo_flags_finish: 0, /* todo_flags_finish */
3932};
3933
3934class pass_lower_eh_dispatch : public gimple_opt_pass
3935{
3936public:
3937 pass_lower_eh_dispatch (gcc::context *ctxt)
3938 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
3939 {}
3940
3941 /* opt_pass methods: */
3942 bool gate (function *fun) final override
3943 {
3944 return fun->eh->region_tree != NULL;
3945 }
3946 unsigned int execute (function *) final override;
3947
3948}; // class pass_lower_eh_dispatch
3949
3950unsigned
3951pass_lower_eh_dispatch::execute (function *fun)
3952{
3953 basic_block bb;
3954 int flags = 0;
3955 bool redirected = false;
3956 bool any_resx_to_process = false;
3957
3958 assign_filter_values ();
3959
3960 FOR_EACH_BB_FN (bb, fun)
3961 {
3962 gimple *last = *gsi_last_bb (bb);
3963 if (last == NULL)
3964 continue;
3965 if (gimple_code (g: last) == GIMPLE_EH_DISPATCH)
3966 {
3967 redirected |= lower_eh_dispatch (src: bb,
3968 stmt: as_a <geh_dispatch *> (p: last));
3969 flags |= TODO_update_ssa_only_virtuals;
3970 }
3971 else if (gimple_code (g: last) == GIMPLE_RESX)
3972 {
3973 if (stmt_can_throw_external (fun, stmt: last))
3974 optimize_clobbers (bb);
3975 else if (!any_resx_to_process)
3976 sink_clobbers (bb, NULL, found_opportunity: &any_resx_to_process);
3977 }
3978 bb->flags &= ~BB_VISITED;
3979 }
3980 if (redirected)
3981 {
3982 free_dominance_info (CDI_DOMINATORS);
3983 delete_unreachable_blocks ();
3984 }
3985
3986 if (any_resx_to_process)
3987 {
3988 /* Make sure to catch all secondary sinking opportunities by processing
3989 blocks in RPO order and after all CFG modifications from lowering
3990 and unreachable block removal. */
3991 int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (fun));
3992 int rpo_n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
3993 gimple_seq *sunk = XCNEWVEC (gimple_seq, last_basic_block_for_fn (fun));
3994 for (int i = 0; i < rpo_n; ++i)
3995 {
3996 bb = BASIC_BLOCK_FOR_FN (fun, rpo[i]);
3997 gimple *last = *gsi_last_bb (bb);
3998 if (last
3999 && gimple_code (g: last) == GIMPLE_RESX
4000 && !stmt_can_throw_external (fun, stmt: last))
4001 flags |= sink_clobbers (bb, sunk);
4002 /* If there were any clobbers sunk into this BB, insert them now. */
4003 if (!gimple_seq_empty_p (s: sunk[bb->index]))
4004 {
4005 gimple_stmt_iterator gsi = gsi_after_labels (bb);
4006 gsi_insert_seq_before (&gsi, sunk[bb->index], GSI_NEW_STMT);
4007 sunk[bb->index] = NULL;
4008 }
4009 bb->flags |= BB_VISITED;
4010 }
4011 free (ptr: rpo);
4012 free (ptr: sunk);
4013 }
4014
4015 return flags;
4016}
4017
4018} // anon namespace
4019
4020gimple_opt_pass *
4021make_pass_lower_eh_dispatch (gcc::context *ctxt)
4022{
4023 return new pass_lower_eh_dispatch (ctxt);
4024}
4025
4026/* Walk statements, see what regions and, optionally, landing pads
4027 are really referenced.
4028
4029 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
4030 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
4031
4032 Passing NULL for LP_REACHABLE is valid, in this case only reachable
4033 regions are marked.
4034
4035 The caller is responsible for freeing the returned sbitmaps. */
4036
4037static void
4038mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
4039{
4040 sbitmap r_reachable, lp_reachable;
4041 basic_block bb;
4042 bool mark_landing_pads = (lp_reachablep != NULL);
4043 gcc_checking_assert (r_reachablep != NULL);
4044
4045 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
4046 bitmap_clear (r_reachable);
4047 *r_reachablep = r_reachable;
4048
4049 if (mark_landing_pads)
4050 {
4051 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
4052 bitmap_clear (lp_reachable);
4053 *lp_reachablep = lp_reachable;
4054 }
4055 else
4056 lp_reachable = NULL;
4057
4058 FOR_EACH_BB_FN (bb, cfun)
4059 {
4060 gimple_stmt_iterator gsi;
4061
4062 for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
4063 {
4064 gimple *stmt = gsi_stmt (i: gsi);
4065
4066 if (mark_landing_pads)
4067 {
4068 int lp_nr = lookup_stmt_eh_lp (t: stmt);
4069
4070 /* Negative LP numbers are MUST_NOT_THROW regions which
4071 are not considered BB enders. */
4072 if (lp_nr < 0)
4073 bitmap_set_bit (map: r_reachable, bitno: -lp_nr);
4074
4075 /* Positive LP numbers are real landing pads, and BB enders. */
4076 else if (lp_nr > 0)
4077 {
4078 gcc_assert (gsi_one_before_end_p (gsi));
4079 eh_region region = get_eh_region_from_lp_number (lp_nr);
4080 bitmap_set_bit (map: r_reachable, bitno: region->index);
4081 bitmap_set_bit (map: lp_reachable, bitno: lp_nr);
4082 }
4083 }
4084
4085 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
4086 switch (gimple_code (g: stmt))
4087 {
4088 case GIMPLE_RESX:
4089 bitmap_set_bit (map: r_reachable,
4090 bitno: gimple_resx_region (resx_stmt: as_a <gresx *> (p: stmt)));
4091 break;
4092 case GIMPLE_EH_DISPATCH:
4093 bitmap_set_bit (map: r_reachable,
4094 bitno: gimple_eh_dispatch_region (
4095 eh_dispatch_stmt: as_a <geh_dispatch *> (p: stmt)));
4096 break;
4097 case GIMPLE_CALL:
4098 if (gimple_call_builtin_p (stmt, BUILT_IN_EH_COPY_VALUES))
4099 for (int i = 0; i < 2; ++i)
4100 {
4101 tree rt = gimple_call_arg (gs: stmt, index: i);
4102 HOST_WIDE_INT ri = tree_to_shwi (rt);
4103
4104 gcc_assert (ri == (int)ri);
4105 bitmap_set_bit (map: r_reachable, bitno: ri);
4106 }
4107 break;
4108 default:
4109 break;
4110 }
4111 }
4112 }
4113}
4114
4115/* Remove unreachable handlers and unreachable landing pads. */
4116
4117static void
4118remove_unreachable_handlers (void)
4119{
4120 sbitmap r_reachable, lp_reachable;
4121 eh_region region;
4122 eh_landing_pad lp;
4123 unsigned i;
4124
4125 mark_reachable_handlers (r_reachablep: &r_reachable, lp_reachablep: &lp_reachable);
4126
4127 if (dump_file)
4128 {
4129 fprintf (stream: dump_file, format: "Before removal of unreachable regions:\n");
4130 dump_eh_tree (dump_file, cfun);
4131 fprintf (stream: dump_file, format: "Reachable regions: ");
4132 dump_bitmap_file (dump_file, r_reachable);
4133 fprintf (stream: dump_file, format: "Reachable landing pads: ");
4134 dump_bitmap_file (dump_file, lp_reachable);
4135 }
4136
4137 if (dump_file)
4138 {
4139 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
4140 if (region && !bitmap_bit_p (map: r_reachable, bitno: region->index))
4141 fprintf (stream: dump_file,
4142 format: "Removing unreachable region %d\n",
4143 region->index);
4144 }
4145
4146 remove_unreachable_eh_regions (r_reachable);
4147
4148 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
4149 if (lp && !bitmap_bit_p (map: lp_reachable, bitno: lp->index))
4150 {
4151 if (dump_file)
4152 fprintf (stream: dump_file,
4153 format: "Removing unreachable landing pad %d\n",
4154 lp->index);
4155 remove_eh_landing_pad (lp);
4156 }
4157
4158 if (dump_file)
4159 {
4160 fprintf (stream: dump_file, format: "\n\nAfter removal of unreachable regions:\n");
4161 dump_eh_tree (dump_file, cfun);
4162 fprintf (stream: dump_file, format: "\n\n");
4163 }
4164
4165 sbitmap_free (map: r_reachable);
4166 sbitmap_free (map: lp_reachable);
4167
4168 if (flag_checking)
4169 verify_eh_tree (cfun);
4170}
4171
4172/* Remove unreachable handlers if any landing pads have been removed after
4173 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
4174
4175void
4176maybe_remove_unreachable_handlers (void)
4177{
4178 eh_landing_pad lp;
4179 unsigned i;
4180
4181 if (cfun->eh == NULL)
4182 return;
4183
4184 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
4185 if (lp
4186 && (lp->post_landing_pad == NULL_TREE
4187 || label_to_block (cfun, lp->post_landing_pad) == NULL))
4188 {
4189 remove_unreachable_handlers ();
4190 return;
4191 }
4192}
4193
4194/* Remove regions that do not have landing pads. This assumes
4195 that remove_unreachable_handlers has already been run, and
4196 that we've just manipulated the landing pads since then.
4197
4198 Preserve regions with landing pads and regions that prevent
4199 exceptions from propagating further, even if these regions
4200 are not reachable. */
4201
4202static void
4203remove_unreachable_handlers_no_lp (void)
4204{
4205 eh_region region;
4206 sbitmap r_reachable;
4207 unsigned i;
4208
4209 mark_reachable_handlers (r_reachablep: &r_reachable, /*lp_reachablep=*/NULL);
4210
4211 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
4212 {
4213 if (! region)
4214 continue;
4215
4216 if (region->landing_pads != NULL
4217 || region->type == ERT_MUST_NOT_THROW)
4218 bitmap_set_bit (map: r_reachable, bitno: region->index);
4219
4220 if (dump_file
4221 && !bitmap_bit_p (map: r_reachable, bitno: region->index))
4222 fprintf (stream: dump_file,
4223 format: "Removing unreachable region %d\n",
4224 region->index);
4225 }
4226
4227 remove_unreachable_eh_regions (r_reachable);
4228
4229 sbitmap_free (map: r_reachable);
4230}
4231
4232/* Undo critical edge splitting on an EH landing pad. Earlier, we
4233 optimisticaly split all sorts of edges, including EH edges. The
4234 optimization passes in between may not have needed them; if not,
4235 we should undo the split.
4236
4237 Recognize this case by having one EH edge incoming to the BB and
4238 one normal edge outgoing; BB should be empty apart from the
4239 post_landing_pad label.
4240
4241 Note that this is slightly different from the empty handler case
4242 handled by cleanup_empty_eh, in that the actual handler may yet
4243 have actual code but the landing pad has been separated from the
4244 handler. As such, cleanup_empty_eh relies on this transformation
4245 having been done first. */
4246
4247static bool
4248unsplit_eh (eh_landing_pad lp)
4249{
4250 basic_block bb = label_to_block (cfun, lp->post_landing_pad);
4251 gimple_stmt_iterator gsi;
4252 edge e_in, e_out;
4253
4254 /* Quickly check the edge counts on BB for singularity. */
4255 if (!single_pred_p (bb) || !single_succ_p (bb))
4256 return false;
4257 e_in = single_pred_edge (bb);
4258 e_out = single_succ_edge (bb);
4259
4260 /* Input edge must be EH and output edge must be normal. */
4261 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
4262 return false;
4263
4264 /* The block must be empty except for the labels and debug insns. */
4265 gsi = gsi_after_labels (bb);
4266 if (!gsi_end_p (i: gsi) && is_gimple_debug (gs: gsi_stmt (i: gsi)))
4267 gsi_next_nondebug (i: &gsi);
4268 if (!gsi_end_p (i: gsi))
4269 return false;
4270
4271 /* The destination block must not already have a landing pad
4272 for a different region. */
4273 for (gsi = gsi_start_bb (bb: e_out->dest); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
4274 {
4275 glabel *label_stmt = dyn_cast <glabel *> (p: gsi_stmt (i: gsi));
4276 tree lab;
4277 int lp_nr;
4278
4279 if (!label_stmt)
4280 break;
4281 lab = gimple_label_label (gs: label_stmt);
4282 lp_nr = EH_LANDING_PAD_NR (lab);
4283 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4284 return false;
4285 }
4286
4287 /* The new destination block must not already be a destination of
4288 the source block, lest we merge fallthru and eh edges and get
4289 all sorts of confused. */
4290 if (find_edge (e_in->src, e_out->dest))
4291 return false;
4292
4293 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4294 thought this should have been cleaned up by a phicprop pass, but
4295 that doesn't appear to handle virtuals. Propagate by hand. */
4296 if (!gimple_seq_empty_p (s: phi_nodes (bb)))
4297 {
4298 for (gphi_iterator gpi = gsi_start_phis (bb); !gsi_end_p (i: gpi); )
4299 {
4300 gimple *use_stmt;
4301 gphi *phi = gpi.phi ();
4302 tree lhs = gimple_phi_result (gs: phi);
4303 tree rhs = gimple_phi_arg_def (gs: phi, index: 0);
4304 use_operand_p use_p;
4305 imm_use_iterator iter;
4306
4307 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4308 {
4309 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4310 SET_USE (use_p, rhs);
4311 }
4312
4313 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
4314 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
4315
4316 remove_phi_node (&gpi, true);
4317 }
4318 }
4319
4320 if (dump_file && (dump_flags & TDF_DETAILS))
4321 fprintf (stream: dump_file, format: "Unsplit EH landing pad %d to block %i.\n",
4322 lp->index, e_out->dest->index);
4323
4324 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4325 a successor edge, humor it. But do the real CFG change with the
4326 predecessor of E_OUT in order to preserve the ordering of arguments
4327 to the PHI nodes in E_OUT->DEST. */
4328 redirect_eh_edge_1 (edge_in: e_in, new_bb: e_out->dest, change_region: false);
4329 redirect_edge_pred (e_out, e_in->src);
4330 e_out->flags = e_in->flags;
4331 e_out->probability = e_in->probability;
4332 remove_edge (e_in);
4333
4334 return true;
4335}
4336
4337/* Examine each landing pad block and see if it matches unsplit_eh. */
4338
4339static bool
4340unsplit_all_eh (void)
4341{
4342 bool changed = false;
4343 eh_landing_pad lp;
4344 int i;
4345
4346 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, ix: i, ptr: &lp); ++i)
4347 if (lp)
4348 changed |= unsplit_eh (lp);
4349
4350 return changed;
4351}
4352
4353/* Wrapper around unsplit_all_eh that makes it usable everywhere. */
4354
4355void
4356unsplit_eh_edges (void)
4357{
4358 bool changed;
4359
4360 /* unsplit_all_eh can die looking up unreachable landing pads. */
4361 maybe_remove_unreachable_handlers ();
4362
4363 changed = unsplit_all_eh ();
4364
4365 /* If EH edges have been unsplit, delete unreachable forwarder blocks. */
4366 if (changed)
4367 {
4368 free_dominance_info (CDI_DOMINATORS);
4369 free_dominance_info (CDI_POST_DOMINATORS);
4370 delete_unreachable_blocks ();
4371 }
4372}
4373
4374/* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4375 to OLD_BB to NEW_BB; return true on success, false on failure.
4376
4377 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4378 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4379 Virtual PHIs may be deleted and marked for renaming. */
4380
4381static bool
4382cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
4383 edge old_bb_out, bool change_region)
4384{
4385 gphi_iterator ngsi, ogsi;
4386 edge_iterator ei;
4387 edge e;
4388 bitmap ophi_handled;
4389
4390 /* The destination block must not be a regular successor for any
4391 of the preds of the landing pad. Thus, avoid turning
4392 <..>
4393 | \ EH
4394 | <..>
4395 | /
4396 <..>
4397 into
4398 <..>
4399 | | EH
4400 <..>
4401 which CFG verification would choke on. See PR45172 and PR51089. */
4402 if (!single_pred_p (bb: new_bb))
4403 FOR_EACH_EDGE (e, ei, old_bb->preds)
4404 if (find_edge (e->src, new_bb))
4405 return false;
4406
4407 FOR_EACH_EDGE (e, ei, old_bb->preds)
4408 redirect_edge_var_map_clear (e);
4409
4410 ophi_handled = BITMAP_ALLOC (NULL);
4411
4412 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4413 for the edges we're going to move. */
4414 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (i: ngsi); gsi_next (i: &ngsi))
4415 {
4416 gphi *ophi, *nphi = ngsi.phi ();
4417 tree nresult, nop;
4418
4419 nresult = gimple_phi_result (gs: nphi);
4420 nop = gimple_phi_arg_def (gs: nphi, index: old_bb_out->dest_idx);
4421
4422 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4423 the source ssa_name. */
4424 ophi = NULL;
4425 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (i: ogsi); gsi_next (i: &ogsi))
4426 {
4427 ophi = ogsi.phi ();
4428 if (gimple_phi_result (gs: ophi) == nop)
4429 break;
4430 ophi = NULL;
4431 }
4432
4433 /* If we did find the corresponding PHI, copy those inputs. */
4434 if (ophi)
4435 {
4436 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4437 if (!has_single_use (var: nop))
4438 {
4439 imm_use_iterator imm_iter;
4440 use_operand_p use_p;
4441
4442 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4443 {
4444 if (!gimple_debug_bind_p (USE_STMT (use_p))
4445 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4446 || gimple_bb (USE_STMT (use_p)) != new_bb))
4447 goto fail;
4448 }
4449 }
4450 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4451 FOR_EACH_EDGE (e, ei, old_bb->preds)
4452 {
4453 location_t oloc;
4454 tree oop;
4455
4456 if ((e->flags & EDGE_EH) == 0)
4457 continue;
4458 oop = gimple_phi_arg_def (gs: ophi, index: e->dest_idx);
4459 oloc = gimple_phi_arg_location (phi: ophi, i: e->dest_idx);
4460 redirect_edge_var_map_add (e, nresult, oop, oloc);
4461 }
4462 }
4463 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4464 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4465 variable is unchanged from input to the block and we can simply
4466 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4467 else
4468 {
4469 location_t nloc
4470 = gimple_phi_arg_location (phi: nphi, i: old_bb_out->dest_idx);
4471 FOR_EACH_EDGE (e, ei, old_bb->preds)
4472 redirect_edge_var_map_add (e, nresult, nop, nloc);
4473 }
4474 }
4475
4476 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4477 we don't know what values from the other edges into NEW_BB to use. */
4478 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (i: ogsi); gsi_next (i: &ogsi))
4479 {
4480 gphi *ophi = ogsi.phi ();
4481 tree oresult = gimple_phi_result (gs: ophi);
4482 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4483 goto fail;
4484 }
4485
4486 /* Finally, move the edges and update the PHIs. */
4487 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (i: ei)); )
4488 if (e->flags & EDGE_EH)
4489 {
4490 /* ??? CFG manipluation routines do not try to update loop
4491 form on edge redirection. Do so manually here for now. */
4492 /* If we redirect a loop entry or latch edge that will either create
4493 a multiple entry loop or rotate the loop. If the loops merge
4494 we may have created a loop with multiple latches.
4495 All of this isn't easily fixed thus cancel the affected loop
4496 and mark the other loop as possibly having multiple latches. */
4497 if (e->dest == e->dest->loop_father->header)
4498 {
4499 mark_loop_for_removal (e->dest->loop_father);
4500 new_bb->loop_father->latch = NULL;
4501 loops_state_set (flags: LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4502 }
4503 redirect_eh_edge_1 (edge_in: e, new_bb, change_region);
4504 redirect_edge_succ (e, new_bb);
4505 flush_pending_stmts (e);
4506 }
4507 else
4508 ei_next (i: &ei);
4509
4510 BITMAP_FREE (ophi_handled);
4511 return true;
4512
4513 fail:
4514 FOR_EACH_EDGE (e, ei, old_bb->preds)
4515 redirect_edge_var_map_clear (e);
4516 BITMAP_FREE (ophi_handled);
4517 return false;
4518}
4519
4520/* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4521 old region to NEW_REGION at BB. */
4522
4523static void
4524cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4525 eh_landing_pad lp, eh_region new_region)
4526{
4527 gimple_stmt_iterator gsi;
4528 eh_landing_pad *pp;
4529
4530 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4531 continue;
4532 *pp = lp->next_lp;
4533
4534 lp->region = new_region;
4535 lp->next_lp = new_region->landing_pads;
4536 new_region->landing_pads = lp;
4537
4538 /* Delete the RESX that was matched within the empty handler block. */
4539 gsi = gsi_last_bb (bb);
4540 unlink_stmt_vdef (gsi_stmt (i: gsi));
4541 gsi_remove (&gsi, true);
4542
4543 /* Clean up E_OUT for the fallthru. */
4544 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4545 e_out->probability = profile_probability::always ();
4546}
4547
4548/* A subroutine of cleanup_empty_eh. Handle more complex cases of
4549 unsplitting than unsplit_eh was prepared to handle, e.g. when
4550 multiple incoming edges and phis are involved. */
4551
4552static bool
4553cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4554{
4555 gimple_stmt_iterator gsi;
4556 tree lab;
4557
4558 /* We really ought not have totally lost everything following
4559 a landing pad label. Given that BB is empty, there had better
4560 be a successor. */
4561 gcc_assert (e_out != NULL);
4562
4563 /* The destination block must not already have a landing pad
4564 for a different region. */
4565 lab = NULL;
4566 for (gsi = gsi_start_bb (bb: e_out->dest); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
4567 {
4568 glabel *stmt = dyn_cast <glabel *> (p: gsi_stmt (i: gsi));
4569 int lp_nr;
4570
4571 if (!stmt)
4572 break;
4573 lab = gimple_label_label (gs: stmt);
4574 lp_nr = EH_LANDING_PAD_NR (lab);
4575 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4576 return false;
4577 }
4578
4579 /* Attempt to move the PHIs into the successor block. */
4580 if (cleanup_empty_eh_merge_phis (new_bb: e_out->dest, old_bb: bb, old_bb_out: e_out, change_region: false))
4581 {
4582 if (dump_file && (dump_flags & TDF_DETAILS))
4583 fprintf (stream: dump_file,
4584 format: "Unsplit EH landing pad %d to block %i "
4585 "(via cleanup_empty_eh).\n",
4586 lp->index, e_out->dest->index);
4587 return true;
4588 }
4589
4590 return false;
4591}
4592
4593/* Return true if edge E_FIRST is part of an empty infinite loop
4594 or leads to such a loop through a series of single successor
4595 empty bbs. */
4596
4597static bool
4598infinite_empty_loop_p (edge e_first)
4599{
4600 bool inf_loop = false;
4601 edge e;
4602
4603 if (e_first->dest == e_first->src)
4604 return true;
4605
4606 e_first->src->aux = (void *) 1;
4607 for (e = e_first; single_succ_p (bb: e->dest); e = single_succ_edge (bb: e->dest))
4608 {
4609 gimple_stmt_iterator gsi;
4610 if (e->dest->aux)
4611 {
4612 inf_loop = true;
4613 break;
4614 }
4615 e->dest->aux = (void *) 1;
4616 gsi = gsi_after_labels (bb: e->dest);
4617 if (!gsi_end_p (i: gsi) && is_gimple_debug (gs: gsi_stmt (i: gsi)))
4618 gsi_next_nondebug (i: &gsi);
4619 if (!gsi_end_p (i: gsi))
4620 break;
4621 }
4622 e_first->src->aux = NULL;
4623 for (e = e_first; e->dest->aux; e = single_succ_edge (bb: e->dest))
4624 e->dest->aux = NULL;
4625
4626 return inf_loop;
4627}
4628
4629/* Examine the block associated with LP to determine if it's an empty
4630 handler for its EH region. If so, attempt to redirect EH edges to
4631 an outer region. Return true the CFG was updated in any way. This
4632 is similar to jump forwarding, just across EH edges. */
4633
4634static bool
4635cleanup_empty_eh (eh_landing_pad lp)
4636{
4637 basic_block bb = label_to_block (cfun, lp->post_landing_pad);
4638 gimple_stmt_iterator gsi;
4639 gimple *resx;
4640 eh_region new_region;
4641 edge_iterator ei;
4642 edge e, e_out;
4643 bool has_non_eh_pred;
4644 bool ret = false;
4645 int new_lp_nr;
4646
4647 /* There can be zero or one edges out of BB. This is the quickest test. */
4648 switch (EDGE_COUNT (bb->succs))
4649 {
4650 case 0:
4651 e_out = NULL;
4652 break;
4653 case 1:
4654 e_out = single_succ_edge (bb);
4655 break;
4656 default:
4657 return false;
4658 }
4659
4660 gsi = gsi_last_nondebug_bb (bb);
4661 resx = gsi_stmt (i: gsi);
4662 if (resx && is_gimple_resx (gs: resx))
4663 {
4664 if (stmt_can_throw_external (cfun, stmt: resx))
4665 optimize_clobbers (bb);
4666 else if (sink_clobbers (bb))
4667 ret = true;
4668 }
4669
4670 gsi = gsi_after_labels (bb);
4671
4672 /* Make sure to skip debug statements. */
4673 if (!gsi_end_p (i: gsi) && is_gimple_debug (gs: gsi_stmt (i: gsi)))
4674 gsi_next_nondebug (i: &gsi);
4675
4676 /* If the block is totally empty, look for more unsplitting cases. */
4677 if (gsi_end_p (i: gsi))
4678 {
4679 /* For the degenerate case of an infinite loop bail out.
4680 If bb has no successors and is totally empty, which can happen e.g.
4681 because of incorrect noreturn attribute, bail out too. */
4682 if (e_out == NULL
4683 || infinite_empty_loop_p (e_first: e_out))
4684 return ret;
4685
4686 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4687 }
4688
4689 /* The block should consist only of a single RESX statement, modulo a
4690 preceding call to __builtin_stack_restore if there is no outgoing
4691 edge, since the call can be eliminated in this case. */
4692 resx = gsi_stmt (i: gsi);
4693 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4694 {
4695 gsi_next_nondebug (i: &gsi);
4696 resx = gsi_stmt (i: gsi);
4697 }
4698 if (!is_gimple_resx (gs: resx))
4699 return ret;
4700 gcc_assert (gsi_one_nondebug_before_end_p (gsi));
4701
4702 /* Determine if there are non-EH edges, or resx edges into the handler. */
4703 has_non_eh_pred = false;
4704 FOR_EACH_EDGE (e, ei, bb->preds)
4705 if (!(e->flags & EDGE_EH))
4706 has_non_eh_pred = true;
4707
4708 /* Find the handler that's outer of the empty handler by looking at
4709 where the RESX instruction was vectored. */
4710 new_lp_nr = lookup_stmt_eh_lp (t: resx);
4711 new_region = get_eh_region_from_lp_number (new_lp_nr);
4712
4713 /* If there's no destination region within the current function,
4714 redirection is trivial via removing the throwing statements from
4715 the EH region, removing the EH edges, and allowing the block
4716 to go unreachable. */
4717 if (new_region == NULL)
4718 {
4719 gcc_assert (e_out == NULL);
4720 for (ei = ei_start (bb->preds); (e = ei_safe_edge (i: ei)); )
4721 if (e->flags & EDGE_EH)
4722 {
4723 gimple *stmt = *gsi_last_bb (bb: e->src);
4724 remove_stmt_from_eh_lp (t: stmt);
4725 remove_edge (e);
4726 }
4727 else
4728 ei_next (i: &ei);
4729 goto succeed;
4730 }
4731
4732 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4733 to handle the abort and allow the blocks to go unreachable. */
4734 if (new_region->type == ERT_MUST_NOT_THROW)
4735 {
4736 for (ei = ei_start (bb->preds); (e = ei_safe_edge (i: ei)); )
4737 if (e->flags & EDGE_EH)
4738 {
4739 gimple *stmt = *gsi_last_bb (bb: e->src);
4740 remove_stmt_from_eh_lp (t: stmt);
4741 add_stmt_to_eh_lp (t: stmt, num: new_lp_nr);
4742 remove_edge (e);
4743 }
4744 else
4745 ei_next (i: &ei);
4746 goto succeed;
4747 }
4748
4749 /* Try to redirect the EH edges and merge the PHIs into the destination
4750 landing pad block. If the merge succeeds, we'll already have redirected
4751 all the EH edges. The handler itself will go unreachable if there were
4752 no normal edges. */
4753 if (cleanup_empty_eh_merge_phis (new_bb: e_out->dest, old_bb: bb, old_bb_out: e_out, change_region: true))
4754 goto succeed;
4755
4756 /* Finally, if all input edges are EH edges, then we can (potentially)
4757 reduce the number of transfers from the runtime by moving the landing
4758 pad from the original region to the new region. This is a win when
4759 we remove the last CLEANUP region along a particular exception
4760 propagation path. Since nothing changes except for the region with
4761 which the landing pad is associated, the PHI nodes do not need to be
4762 adjusted at all. */
4763 if (!has_non_eh_pred)
4764 {
4765 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4766 if (dump_file && (dump_flags & TDF_DETAILS))
4767 fprintf (stream: dump_file, format: "Empty EH handler %i moved to EH region %i.\n",
4768 lp->index, new_region->index);
4769
4770 /* ??? The CFG didn't change, but we may have rendered the
4771 old EH region unreachable. Trigger a cleanup there. */
4772 return true;
4773 }
4774
4775 return ret;
4776
4777 succeed:
4778 if (dump_file && (dump_flags & TDF_DETAILS))
4779 fprintf (stream: dump_file, format: "Empty EH handler %i removed.\n", lp->index);
4780 remove_eh_landing_pad (lp);
4781 return true;
4782}
4783
4784/* Do a post-order traversal of the EH region tree. Examine each
4785 post_landing_pad block and see if we can eliminate it as empty. */
4786
4787static bool
4788cleanup_all_empty_eh (void)
4789{
4790 bool changed = false;
4791 eh_landing_pad lp;
4792 int i;
4793
4794 /* The post-order traversal may lead to quadraticness in the redirection
4795 of incoming EH edges from inner LPs, so first try to walk the region
4796 tree from inner to outer LPs in order to eliminate these edges. */
4797 for (i = vec_safe_length (cfun->eh->lp_array) - 1; i >= 1; --i)
4798 {
4799 lp = (*cfun->eh->lp_array)[i];
4800 if (lp)
4801 changed |= cleanup_empty_eh (lp);
4802 }
4803
4804 /* Now do the post-order traversal to eliminate outer empty LPs. */
4805 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, ix: i, ptr: &lp); ++i)
4806 if (lp)
4807 changed |= cleanup_empty_eh (lp);
4808
4809 return changed;
4810}
4811
4812/* Perform cleanups and lowering of exception handling
4813 1) cleanups regions with handlers doing nothing are optimized out
4814 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4815 3) Info about regions that are containing instructions, and regions
4816 reachable via local EH edges is collected
4817 4) Eh tree is pruned for regions no longer necessary.
4818
4819 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4820 Unify those that have the same failure decl and locus.
4821*/
4822
4823static unsigned int
4824execute_cleanup_eh_1 (void)
4825{
4826 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4827 looking up unreachable landing pads. */
4828 remove_unreachable_handlers ();
4829
4830 /* Watch out for the region tree vanishing due to all unreachable. */
4831 if (cfun->eh->region_tree)
4832 {
4833 bool changed = false;
4834
4835 if (optimize)
4836 changed |= unsplit_all_eh ();
4837 changed |= cleanup_all_empty_eh ();
4838
4839 if (changed)
4840 {
4841 free_dominance_info (CDI_DOMINATORS);
4842 free_dominance_info (CDI_POST_DOMINATORS);
4843
4844 /* We delayed all basic block deletion, as we may have performed
4845 cleanups on EH edges while non-EH edges were still present. */
4846 delete_unreachable_blocks ();
4847
4848 /* We manipulated the landing pads. Remove any region that no
4849 longer has a landing pad. */
4850 remove_unreachable_handlers_no_lp ();
4851
4852 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4853 }
4854 }
4855
4856 return 0;
4857}
4858
4859namespace {
4860
4861const pass_data pass_data_cleanup_eh =
4862{
4863 .type: GIMPLE_PASS, /* type */
4864 .name: "ehcleanup", /* name */
4865 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
4866 .tv_id: TV_TREE_EH, /* tv_id */
4867 PROP_gimple_lcf, /* properties_required */
4868 .properties_provided: 0, /* properties_provided */
4869 .properties_destroyed: 0, /* properties_destroyed */
4870 .todo_flags_start: 0, /* todo_flags_start */
4871 .todo_flags_finish: 0, /* todo_flags_finish */
4872};
4873
4874class pass_cleanup_eh : public gimple_opt_pass
4875{
4876public:
4877 pass_cleanup_eh (gcc::context *ctxt)
4878 : gimple_opt_pass (pass_data_cleanup_eh, ctxt)
4879 {}
4880
4881 /* opt_pass methods: */
4882 opt_pass * clone () final override { return new pass_cleanup_eh (m_ctxt); }
4883 bool gate (function *fun) final override
4884 {
4885 return fun->eh != NULL && fun->eh->region_tree != NULL;
4886 }
4887
4888 unsigned int execute (function *) final override;
4889
4890}; // class pass_cleanup_eh
4891
4892unsigned int
4893pass_cleanup_eh::execute (function *fun)
4894{
4895 int ret = execute_cleanup_eh_1 ();
4896
4897 /* If the function no longer needs an EH personality routine
4898 clear it. This exposes cross-language inlining opportunities
4899 and avoids references to a never defined personality routine. */
4900 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4901 && function_needs_eh_personality (fun) != eh_personality_lang)
4902 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4903
4904 return ret;
4905}
4906
4907} // anon namespace
4908
4909gimple_opt_pass *
4910make_pass_cleanup_eh (gcc::context *ctxt)
4911{
4912 return new pass_cleanup_eh (ctxt);
4913}
4914
4915/* Disable warnings about missing quoting in GCC diagnostics for
4916 the verification errors. Their format strings don't follow GCC
4917 diagnostic conventions but are only used for debugging. */
4918#if __GNUC__ >= 10
4919# pragma GCC diagnostic push
4920# pragma GCC diagnostic ignored "-Wformat-diag"
4921#endif
4922
4923/* Verify that BB containing STMT as the last statement, has precisely the
4924 edge that make_eh_edge would create. */
4925
4926DEBUG_FUNCTION bool
4927verify_eh_edges (gimple *stmt)
4928{
4929 basic_block bb = gimple_bb (g: stmt);
4930 eh_landing_pad lp = NULL;
4931 int lp_nr;
4932 edge_iterator ei;
4933 edge e, eh_edge;
4934
4935 lp_nr = lookup_stmt_eh_lp (t: stmt);
4936 if (lp_nr > 0)
4937 lp = get_eh_landing_pad_from_number (lp_nr);
4938
4939 eh_edge = NULL;
4940 FOR_EACH_EDGE (e, ei, bb->succs)
4941 {
4942 if (e->flags & EDGE_EH)
4943 {
4944 if (eh_edge)
4945 {
4946 error ("BB %i has multiple EH edges", bb->index);
4947 return true;
4948 }
4949 else
4950 eh_edge = e;
4951 }
4952 }
4953
4954 if (lp == NULL)
4955 {
4956 if (eh_edge)
4957 {
4958 error ("BB %i cannot throw but has an EH edge", bb->index);
4959 return true;
4960 }
4961 return false;
4962 }
4963
4964 if (!stmt_could_throw_p (cfun, stmt))
4965 {
4966 error ("BB %i last statement has incorrectly set lp", bb->index);
4967 return true;
4968 }
4969
4970 if (eh_edge == NULL)
4971 {
4972 error ("BB %i is missing an EH edge", bb->index);
4973 return true;
4974 }
4975
4976 if (eh_edge->dest != label_to_block (cfun, lp->post_landing_pad))
4977 {
4978 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4979 return true;
4980 }
4981
4982 return false;
4983}
4984
4985/* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4986
4987DEBUG_FUNCTION bool
4988verify_eh_dispatch_edge (geh_dispatch *stmt)
4989{
4990 eh_region r;
4991 eh_catch c;
4992 basic_block src, dst;
4993 bool want_fallthru = true;
4994 edge_iterator ei;
4995 edge e, fall_edge;
4996
4997 r = get_eh_region_from_number (gimple_eh_dispatch_region (eh_dispatch_stmt: stmt));
4998 src = gimple_bb (g: stmt);
4999
5000 FOR_EACH_EDGE (e, ei, src->succs)
5001 gcc_assert (e->aux == NULL);
5002
5003 switch (r->type)
5004 {
5005 case ERT_TRY:
5006 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5007 {
5008 dst = label_to_block (cfun, c->label);
5009 e = find_edge (src, dst);
5010 if (e == NULL)
5011 {
5012 error ("BB %i is missing an edge", src->index);
5013 return true;
5014 }
5015 e->aux = (void *)e;
5016
5017 /* A catch-all handler doesn't have a fallthru. */
5018 if (c->type_list == NULL)
5019 {
5020 want_fallthru = false;
5021 break;
5022 }
5023 }
5024 break;
5025
5026 case ERT_ALLOWED_EXCEPTIONS:
5027 dst = label_to_block (cfun, r->u.allowed.label);
5028 e = find_edge (src, dst);
5029 if (e == NULL)
5030 {
5031 error ("BB %i is missing an edge", src->index);
5032 return true;
5033 }
5034 e->aux = (void *)e;
5035 break;
5036
5037 default:
5038 gcc_unreachable ();
5039 }
5040
5041 fall_edge = NULL;
5042 FOR_EACH_EDGE (e, ei, src->succs)
5043 {
5044 if (e->flags & EDGE_FALLTHRU)
5045 {
5046 if (fall_edge != NULL)
5047 {
5048 error ("BB %i too many fallthru edges", src->index);
5049 return true;
5050 }
5051 fall_edge = e;
5052 }
5053 else if (e->aux)
5054 e->aux = NULL;
5055 else
5056 {
5057 error ("BB %i has incorrect edge", src->index);
5058 return true;
5059 }
5060 }
5061 if ((fall_edge != NULL) ^ want_fallthru)
5062 {
5063 error ("BB %i has incorrect fallthru edge", src->index);
5064 return true;
5065 }
5066
5067 return false;
5068}
5069
5070#if __GNUC__ >= 10
5071# pragma GCC diagnostic pop
5072#endif
5073

source code of gcc/tree-eh.cc