1/* Induction variable canonicalization and loop peeling.
2 Copyright (C) 2004-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8Free Software Foundation; either version 3, or (at your option) any
9later version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/* This pass detects the loops that iterate a constant number of times,
21 adds a canonical induction variable (step -1, tested against 0)
22 and replaces the exit test. This enables the less powerful rtl
23 level analysis to use this information.
24
25 This might spoil the code in some cases (by increasing register pressure).
26 Note that in the case the new variable is not needed, ivopts will get rid
27 of it, so it might only be a problem when there are no other linear induction
28 variables. In that case the created optimization possibilities are likely
29 to pay up.
30
31 We also perform
32 - complete unrolling (or peeling) when the loops is rolling few enough
33 times
34 - simple peeling (i.e. copying few initial iterations prior the loop)
35 when number of iteration estimate is known (typically by the profile
36 info). */
37
38#include "config.h"
39#include "system.h"
40#include "coretypes.h"
41#include "backend.h"
42#include "tree.h"
43#include "gimple.h"
44#include "cfghooks.h"
45#include "tree-pass.h"
46#include "ssa.h"
47#include "cgraph.h"
48#include "gimple-pretty-print.h"
49#include "fold-const.h"
50#include "profile.h"
51#include "gimple-iterator.h"
52#include "gimple-fold.h"
53#include "tree-eh.h"
54#include "tree-cfg.h"
55#include "tree-ssa-loop-manip.h"
56#include "tree-ssa-loop-niter.h"
57#include "tree-ssa-loop.h"
58#include "tree-into-ssa.h"
59#include "cfgloop.h"
60#include "tree-chrec.h"
61#include "tree-scalar-evolution.h"
62#include "tree-inline.h"
63#include "tree-cfgcleanup.h"
64#include "builtins.h"
65#include "tree-ssa-sccvn.h"
66#include "tree-vectorizer.h" /* For find_loop_location */
67#include "dbgcnt.h"
68
69/* Specifies types of loops that may be unrolled. */
70
71enum unroll_level
72{
73 UL_SINGLE_ITER, /* Only loops that exit immediately in the first
74 iteration. */
75 UL_NO_GROWTH, /* Only loops whose unrolling will not cause increase
76 of code size. */
77 UL_ALL /* All suitable loops. */
78};
79
80/* Adds a canonical induction variable to LOOP iterating NITER times. EXIT
81 is the exit edge whose condition is replaced. The ssa versions of the new
82 IV before and after increment will be stored in VAR_BEFORE and VAR_AFTER
83 if they are not NULL. */
84
85void
86create_canonical_iv (class loop *loop, edge exit, tree niter,
87 tree *var_before = NULL, tree *var_after = NULL)
88{
89 edge in;
90 tree type, var;
91 gcond *cond;
92 gimple_stmt_iterator incr_at;
93 enum tree_code cmp;
94
95 if (dump_file && (dump_flags & TDF_DETAILS))
96 {
97 fprintf (stream: dump_file, format: "Added canonical iv to loop %d, ", loop->num);
98 print_generic_expr (dump_file, niter, TDF_SLIM);
99 fprintf (stream: dump_file, format: " iterations.\n");
100 }
101
102 cond = as_a <gcond *> (p: *gsi_last_bb (bb: exit->src));
103 in = EDGE_SUCC (exit->src, 0);
104 if (in == exit)
105 in = EDGE_SUCC (exit->src, 1);
106
107 /* Note that we do not need to worry about overflows, since
108 type of niter is always unsigned and all comparisons are
109 just for equality/nonequality -- i.e. everything works
110 with a modulo arithmetics. */
111
112 type = TREE_TYPE (niter);
113 niter = fold_build2 (PLUS_EXPR, type,
114 niter,
115 build_int_cst (type, 1));
116 incr_at = gsi_last_bb (bb: in->src);
117 create_iv (niter, PLUS_EXPR,
118 build_int_cst (type, -1),
119 NULL_TREE, loop,
120 &incr_at, false, var_before, &var);
121 if (var_after)
122 *var_after = var;
123
124 cmp = (exit->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
125 gimple_cond_set_code (gs: cond, code: cmp);
126 gimple_cond_set_lhs (gs: cond, lhs: var);
127 gimple_cond_set_rhs (gs: cond, rhs: build_int_cst (type, 0));
128 update_stmt (s: cond);
129}
130
131/* Describe size of loop as detected by tree_estimate_loop_size. */
132struct loop_size
133{
134 /* Number of instructions in the loop. */
135 int overall;
136
137 /* Number of instructions that will be likely optimized out in
138 peeled iterations of loop (i.e. computation based on induction
139 variable where induction variable starts at known constant.) */
140 int eliminated_by_peeling;
141
142 /* Same statistics for last iteration of loop: it is smaller because
143 instructions after exit are not executed. */
144 int last_iteration;
145 int last_iteration_eliminated_by_peeling;
146
147 /* If some IV computation will become constant. */
148 bool constant_iv;
149
150 /* Number of call stmts that are not a builtin and are pure or const
151 present on the hot path. */
152 int num_pure_calls_on_hot_path;
153 /* Number of call stmts that are not a builtin and are not pure nor const
154 present on the hot path. */
155 int num_non_pure_calls_on_hot_path;
156 /* Number of statements other than calls in the loop. */
157 int non_call_stmts_on_hot_path;
158 /* Number of branches seen on the hot path. */
159 int num_branches_on_hot_path;
160};
161
162/* Return true if OP in STMT will be constant after peeling LOOP. */
163
164static bool
165constant_after_peeling (tree op, gimple *stmt, class loop *loop)
166{
167 if (CONSTANT_CLASS_P (op))
168 return true;
169
170 /* Get at the actual SSA operand. */
171 if (handled_component_p (t: op)
172 && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
173 op = TREE_OPERAND (op, 0);
174
175 /* We can still fold accesses to constant arrays when index is known. */
176 if (TREE_CODE (op) != SSA_NAME)
177 {
178 tree base = op;
179
180 /* First make fast look if we see constant array inside. */
181 while (handled_component_p (t: base))
182 base = TREE_OPERAND (base, 0);
183 if ((DECL_P (base)
184 && ctor_for_folding (base) != error_mark_node)
185 || CONSTANT_CLASS_P (base))
186 {
187 /* If so, see if we understand all the indices. */
188 base = op;
189 while (handled_component_p (t: base))
190 {
191 if (TREE_CODE (base) == ARRAY_REF
192 && !constant_after_peeling (TREE_OPERAND (base, 1), stmt, loop))
193 return false;
194 base = TREE_OPERAND (base, 0);
195 }
196 return true;
197 }
198 return false;
199 }
200
201 /* Induction variables are constants when defined in loop. */
202 if (loop_containing_stmt (stmt) != loop)
203 return false;
204 tree ev = analyze_scalar_evolution (loop, op);
205 if (chrec_contains_undetermined (ev)
206 || chrec_contains_symbols (ev))
207 {
208 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (op)))
209 {
210 gassign *ass = nullptr;
211 gphi *phi = nullptr;
212 if (is_a <gassign *> (SSA_NAME_DEF_STMT (op)))
213 {
214 ass = as_a <gassign *> (SSA_NAME_DEF_STMT (op));
215 if (TREE_CODE (gimple_assign_rhs1 (ass)) == SSA_NAME)
216 phi = dyn_cast <gphi *>
217 (SSA_NAME_DEF_STMT (gimple_assign_rhs1 (ass)));
218 }
219 else if (is_a <gphi *> (SSA_NAME_DEF_STMT (op)))
220 {
221 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (op));
222 if (gimple_bb (g: phi) == loop->header)
223 {
224 tree def = gimple_phi_arg_def_from_edge
225 (gs: phi, e: loop_latch_edge (loop));
226 if (TREE_CODE (def) == SSA_NAME
227 && is_a <gassign *> (SSA_NAME_DEF_STMT (def)))
228 ass = as_a <gassign *> (SSA_NAME_DEF_STMT (def));
229 }
230 }
231 if (ass && phi)
232 {
233 tree rhs1 = gimple_assign_rhs1 (gs: ass);
234 if (gimple_assign_rhs_class (gs: ass) == GIMPLE_BINARY_RHS
235 && CONSTANT_CLASS_P (gimple_assign_rhs2 (ass))
236 && rhs1 == gimple_phi_result (gs: phi)
237 && gimple_bb (g: phi) == loop->header
238 && (gimple_phi_arg_def_from_edge (gs: phi, e: loop_latch_edge (loop))
239 == gimple_assign_lhs (gs: ass))
240 && (CONSTANT_CLASS_P (gimple_phi_arg_def_from_edge
241 (phi, loop_preheader_edge (loop)))))
242 return true;
243 }
244 }
245 return false;
246 }
247 return true;
248}
249
250/* Computes an estimated number of insns in LOOP.
251 EXIT (if non-NULL) is an exite edge that will be eliminated in all but last
252 iteration of the loop.
253 EDGE_TO_CANCEL (if non-NULL) is an non-exit edge eliminated in the last iteration
254 of loop.
255 Return results in SIZE, estimate benefits for complete unrolling exiting by EXIT.
256 Stop estimating after UPPER_BOUND is met. Return true in this case. */
257
258static bool
259tree_estimate_loop_size (class loop *loop, edge exit, edge edge_to_cancel,
260 struct loop_size *size, int upper_bound)
261{
262 basic_block *body = get_loop_body (loop);
263 gimple_stmt_iterator gsi;
264 unsigned int i;
265 bool after_exit;
266 auto_vec<basic_block> path = get_loop_hot_path (loop);
267
268 size->overall = 0;
269 size->eliminated_by_peeling = 0;
270 size->last_iteration = 0;
271 size->last_iteration_eliminated_by_peeling = 0;
272 size->num_pure_calls_on_hot_path = 0;
273 size->num_non_pure_calls_on_hot_path = 0;
274 size->non_call_stmts_on_hot_path = 0;
275 size->num_branches_on_hot_path = 0;
276 size->constant_iv = 0;
277
278 if (dump_file && (dump_flags & TDF_DETAILS))
279 fprintf (stream: dump_file, format: "Estimating sizes for loop %i\n", loop->num);
280 for (i = 0; i < loop->num_nodes; i++)
281 {
282 if (edge_to_cancel && body[i] != edge_to_cancel->src
283 && dominated_by_p (CDI_DOMINATORS, body[i], edge_to_cancel->src))
284 after_exit = true;
285 else
286 after_exit = false;
287 if (dump_file && (dump_flags & TDF_DETAILS))
288 fprintf (stream: dump_file, format: " BB: %i, after_exit: %i\n", body[i]->index,
289 after_exit);
290
291 for (gsi = gsi_start_bb (bb: body[i]); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
292 {
293 gimple *stmt = gsi_stmt (i: gsi);
294 int num = estimate_num_insns (stmt, &eni_size_weights);
295 bool likely_eliminated = false;
296 bool likely_eliminated_last = false;
297 bool likely_eliminated_peeled = false;
298
299 if (dump_file && (dump_flags & TDF_DETAILS))
300 {
301 fprintf (stream: dump_file, format: " size: %3i ", num);
302 print_gimple_stmt (dump_file, gsi_stmt (i: gsi), 0);
303 }
304
305 /* Look for reasons why we might optimize this stmt away. */
306
307 if (!gimple_has_side_effects (stmt))
308 {
309 /* Exit conditional. */
310 if (exit && body[i] == exit->src
311 && stmt == *gsi_last_bb (bb: exit->src))
312 {
313 if (dump_file && (dump_flags & TDF_DETAILS))
314 fprintf (stream: dump_file, format: " Exit condition will be eliminated "
315 "in peeled copies.\n");
316 likely_eliminated_peeled = true;
317 }
318 if (edge_to_cancel && body[i] == edge_to_cancel->src
319 && stmt == *gsi_last_bb (bb: edge_to_cancel->src))
320 {
321 if (dump_file && (dump_flags & TDF_DETAILS))
322 fprintf (stream: dump_file, format: " Exit condition will be eliminated "
323 "in last copy.\n");
324 likely_eliminated_last = true;
325 }
326 /* Sets of IV variables */
327 if (gimple_code (g: stmt) == GIMPLE_ASSIGN
328 && constant_after_peeling (op: gimple_assign_lhs (gs: stmt), stmt, loop))
329 {
330 if (dump_file && (dump_flags & TDF_DETAILS))
331 fprintf (stream: dump_file, format: " Induction variable computation will"
332 " be folded away.\n");
333 likely_eliminated = true;
334 }
335 /* Assignments of IV variables. */
336 else if (gimple_code (g: stmt) == GIMPLE_ASSIGN
337 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
338 && constant_after_peeling (op: gimple_assign_rhs1 (gs: stmt),
339 stmt, loop)
340 && (gimple_assign_rhs_class (gs: stmt) != GIMPLE_BINARY_RHS
341 || constant_after_peeling (op: gimple_assign_rhs2 (gs: stmt),
342 stmt, loop))
343 && gimple_assign_rhs_class (gs: stmt) != GIMPLE_TERNARY_RHS)
344 {
345 size->constant_iv = true;
346 if (dump_file && (dump_flags & TDF_DETAILS))
347 fprintf (stream: dump_file,
348 format: " Constant expression will be folded away.\n");
349 likely_eliminated = true;
350 }
351 /* Conditionals. */
352 else if ((gimple_code (g: stmt) == GIMPLE_COND
353 && constant_after_peeling (op: gimple_cond_lhs (gs: stmt), stmt,
354 loop)
355 && constant_after_peeling (op: gimple_cond_rhs (gs: stmt), stmt,
356 loop)
357 /* We don't simplify all constant compares so make sure
358 they are not both constant already. See PR70288. */
359 && (! is_gimple_min_invariant (gimple_cond_lhs (gs: stmt))
360 || ! is_gimple_min_invariant
361 (gimple_cond_rhs (gs: stmt))))
362 || (gimple_code (g: stmt) == GIMPLE_SWITCH
363 && constant_after_peeling (op: gimple_switch_index (
364 gs: as_a <gswitch *>
365 (p: stmt)),
366 stmt, loop)
367 && ! is_gimple_min_invariant
368 (gimple_switch_index
369 (gs: as_a <gswitch *> (p: stmt)))))
370 {
371 if (dump_file && (dump_flags & TDF_DETAILS))
372 fprintf (stream: dump_file, format: " Constant conditional.\n");
373 likely_eliminated = true;
374 }
375 }
376
377 size->overall += num;
378 if (likely_eliminated || likely_eliminated_peeled)
379 size->eliminated_by_peeling += num;
380 if (!after_exit)
381 {
382 size->last_iteration += num;
383 if (likely_eliminated || likely_eliminated_last)
384 size->last_iteration_eliminated_by_peeling += num;
385 }
386 if ((size->overall * 3 / 2 - size->eliminated_by_peeling
387 - size->last_iteration_eliminated_by_peeling) > upper_bound)
388 {
389 free (ptr: body);
390 return true;
391 }
392 }
393 }
394 while (path.length ())
395 {
396 basic_block bb = path.pop ();
397 for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
398 {
399 gimple *stmt = gsi_stmt (i: gsi);
400 if (gimple_code (g: stmt) == GIMPLE_CALL
401 && !gimple_inexpensive_call_p (as_a <gcall *> (p: stmt)))
402 {
403 int flags = gimple_call_flags (stmt);
404 if (flags & (ECF_PURE | ECF_CONST))
405 size->num_pure_calls_on_hot_path++;
406 else
407 size->num_non_pure_calls_on_hot_path++;
408 size->num_branches_on_hot_path ++;
409 }
410 /* Count inexpensive calls as non-calls, because they will likely
411 expand inline. */
412 else if (gimple_code (g: stmt) != GIMPLE_DEBUG)
413 size->non_call_stmts_on_hot_path++;
414 if (((gimple_code (g: stmt) == GIMPLE_COND
415 && (!constant_after_peeling (op: gimple_cond_lhs (gs: stmt), stmt, loop)
416 || !constant_after_peeling (op: gimple_cond_rhs (gs: stmt), stmt,
417 loop)))
418 || (gimple_code (g: stmt) == GIMPLE_SWITCH
419 && !constant_after_peeling (op: gimple_switch_index (
420 gs: as_a <gswitch *> (p: stmt)),
421 stmt, loop)))
422 && (!exit || bb != exit->src))
423 size->num_branches_on_hot_path++;
424 }
425 }
426
427 if (dump_file && (dump_flags & TDF_DETAILS))
428 fprintf (stream: dump_file, format: "size: %i-%i, last_iteration: %i-%i\n", size->overall,
429 size->eliminated_by_peeling, size->last_iteration,
430 size->last_iteration_eliminated_by_peeling);
431
432 free (ptr: body);
433 return false;
434}
435
436/* Estimate number of insns of completely unrolled loop.
437 It is (NUNROLL + 1) * size of loop body with taking into account
438 the fact that in last copy everything after exit conditional
439 is dead and that some instructions will be eliminated after
440 peeling.
441
442 Loop body is likely going to simplify further, this is difficult
443 to guess, we just decrease the result by 1/3. */
444
445static unsigned HOST_WIDE_INT
446estimated_unrolled_size (struct loop_size *size,
447 unsigned HOST_WIDE_INT nunroll)
448{
449 HOST_WIDE_INT unr_insns = ((nunroll)
450 * (HOST_WIDE_INT) (size->overall
451 - size->eliminated_by_peeling));
452 if (!nunroll)
453 unr_insns = 0;
454 unr_insns += size->last_iteration - size->last_iteration_eliminated_by_peeling;
455
456 unr_insns = unr_insns * 2 / 3;
457 if (unr_insns <= 0)
458 unr_insns = 1;
459
460 return unr_insns;
461}
462
463/* Loop LOOP is known to not loop. See if there is an edge in the loop
464 body that can be remove to make the loop to always exit and at
465 the same time it does not make any code potentially executed
466 during the last iteration dead.
467
468 After complete unrolling we still may get rid of the conditional
469 on the exit in the last copy even if we have no idea what it does.
470 This is quite common case for loops of form
471
472 int a[5];
473 for (i=0;i<b;i++)
474 a[i]=0;
475
476 Here we prove the loop to iterate 5 times but we do not know
477 it from induction variable.
478
479 For now we handle only simple case where there is exit condition
480 just before the latch block and the latch block contains no statements
481 with side effect that may otherwise terminate the execution of loop
482 (such as by EH or by terminating the program or longjmp).
483
484 In the general case we may want to cancel the paths leading to statements
485 loop-niter identified as having undefined effect in the last iteration.
486 The other cases are hopefully rare and will be cleaned up later. */
487
488static edge
489loop_edge_to_cancel (class loop *loop)
490{
491 unsigned i;
492 edge edge_to_cancel;
493 gimple_stmt_iterator gsi;
494
495 /* We want only one predecestor of the loop. */
496 if (EDGE_COUNT (loop->latch->preds) > 1)
497 return NULL;
498
499 auto_vec<edge> exits = get_loop_exit_edges (loop);
500
501 FOR_EACH_VEC_ELT (exits, i, edge_to_cancel)
502 {
503 /* Find the other edge than the loop exit
504 leaving the conditoinal. */
505 if (EDGE_COUNT (edge_to_cancel->src->succs) != 2)
506 continue;
507 if (EDGE_SUCC (edge_to_cancel->src, 0) == edge_to_cancel)
508 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 1);
509 else
510 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 0);
511
512 /* We only can handle conditionals. */
513 if (!(edge_to_cancel->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
514 continue;
515
516 /* We should never have conditionals in the loop latch. */
517 gcc_assert (edge_to_cancel->dest != loop->header);
518
519 /* Check that it leads to loop latch. */
520 if (edge_to_cancel->dest != loop->latch)
521 continue;
522
523 /* Verify that the code in loop latch does nothing that may end program
524 execution without really reaching the exit. This may include
525 non-pure/const function calls, EH statements, volatile ASMs etc. */
526 for (gsi = gsi_start_bb (bb: loop->latch); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
527 if (gimple_has_side_effects (gsi_stmt (i: gsi)))
528 return NULL;
529 return edge_to_cancel;
530 }
531 return NULL;
532}
533
534/* Remove all tests for exits that are known to be taken after LOOP was
535 peeled NPEELED times. Put gcc_unreachable before every statement
536 known to not be executed. */
537
538static bool
539remove_exits_and_undefined_stmts (class loop *loop, unsigned int npeeled)
540{
541 class nb_iter_bound *elt;
542 bool changed = false;
543
544 for (elt = loop->bounds; elt; elt = elt->next)
545 {
546 /* If statement is known to be undefined after peeling, turn it
547 into unreachable (or trap when debugging experience is supposed
548 to be good). */
549 if (!elt->is_exit
550 && wi::ltu_p (x: elt->bound, y: npeeled))
551 {
552 gimple_stmt_iterator gsi = gsi_for_stmt (elt->stmt);
553 location_t loc = gimple_location (g: elt->stmt);
554 gcall *stmt = gimple_build_builtin_unreachable (loc);
555 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
556 split_block (gimple_bb (g: stmt), stmt);
557 changed = true;
558 if (dump_file && (dump_flags & TDF_DETAILS))
559 {
560 fprintf (stream: dump_file, format: "Forced statement unreachable: ");
561 print_gimple_stmt (dump_file, elt->stmt, 0);
562 }
563 }
564 /* If we know the exit will be taken after peeling, update. */
565 else if (elt->is_exit
566 && wi::leu_p (x: elt->bound, y: npeeled))
567 {
568 basic_block bb = gimple_bb (g: elt->stmt);
569 edge exit_edge = EDGE_SUCC (bb, 0);
570
571 if (dump_file && (dump_flags & TDF_DETAILS))
572 {
573 fprintf (stream: dump_file, format: "Forced exit to be taken: ");
574 print_gimple_stmt (dump_file, elt->stmt, 0);
575 }
576 if (!loop_exit_edge_p (loop, exit_edge))
577 exit_edge = EDGE_SUCC (bb, 1);
578 exit_edge->probability = profile_probability::always ();
579 gcc_checking_assert (loop_exit_edge_p (loop, exit_edge));
580 gcond *cond_stmt = as_a <gcond *> (p: elt->stmt);
581 if (exit_edge->flags & EDGE_TRUE_VALUE)
582 gimple_cond_make_true (gs: cond_stmt);
583 else
584 gimple_cond_make_false (gs: cond_stmt);
585 update_stmt (s: cond_stmt);
586 changed = true;
587 }
588 }
589 return changed;
590}
591
592/* Remove all exits that are known to be never taken because of the loop bound
593 discovered. */
594
595static bool
596remove_redundant_iv_tests (class loop *loop)
597{
598 class nb_iter_bound *elt;
599 bool changed = false;
600
601 if (!loop->any_upper_bound)
602 return false;
603 for (elt = loop->bounds; elt; elt = elt->next)
604 {
605 /* Exit is pointless if it won't be taken before loop reaches
606 upper bound. */
607 if (elt->is_exit && loop->any_upper_bound
608 && wi::ltu_p (x: loop->nb_iterations_upper_bound, y: elt->bound))
609 {
610 basic_block bb = gimple_bb (g: elt->stmt);
611 edge exit_edge = EDGE_SUCC (bb, 0);
612 class tree_niter_desc niter;
613
614 if (!loop_exit_edge_p (loop, exit_edge))
615 exit_edge = EDGE_SUCC (bb, 1);
616
617 /* Only when we know the actual number of iterations, not
618 just a bound, we can remove the exit. */
619 if (!number_of_iterations_exit (loop, exit_edge,
620 niter: &niter, false, every_iteration: false)
621 || !integer_onep (niter.assumptions)
622 || !integer_zerop (niter.may_be_zero)
623 || !niter.niter
624 || TREE_CODE (niter.niter) != INTEGER_CST
625 || !wi::ltu_p (x: widest_int::from (x: loop->nb_iterations_upper_bound,
626 sgn: SIGNED),
627 y: wi::to_widest (t: niter.niter)))
628 continue;
629
630 if (dump_file && (dump_flags & TDF_DETAILS))
631 {
632 fprintf (stream: dump_file, format: "Removed pointless exit: ");
633 print_gimple_stmt (dump_file, elt->stmt, 0);
634 }
635 gcond *cond_stmt = as_a <gcond *> (p: elt->stmt);
636 if (exit_edge->flags & EDGE_TRUE_VALUE)
637 gimple_cond_make_false (gs: cond_stmt);
638 else
639 gimple_cond_make_true (gs: cond_stmt);
640 update_stmt (s: cond_stmt);
641 changed = true;
642 }
643 }
644 return changed;
645}
646
647/* Stores loops that will be unlooped and edges that will be removed
648 after we process whole loop tree. */
649static vec<loop_p> loops_to_unloop;
650static vec<int> loops_to_unloop_nunroll;
651static vec<edge> edges_to_remove;
652/* Stores loops that has been peeled. */
653static bitmap peeled_loops;
654
655/* Cancel all fully unrolled loops by putting __builtin_unreachable
656 on the latch edge.
657 We do it after all unrolling since unlooping moves basic blocks
658 across loop boundaries trashing loop closed SSA form as well
659 as SCEV info needed to be intact during unrolling.
660
661 IRRED_INVALIDATED is used to bookkeep if information about
662 irreducible regions may become invalid as a result
663 of the transformation.
664 LOOP_CLOSED_SSA_INVALIDATED is used to bookkepp the case
665 when we need to go into loop closed SSA form. */
666
667void
668unloop_loops (vec<class loop *> &loops_to_unloop,
669 vec<int> &loops_to_unloop_nunroll,
670 bitmap loop_closed_ssa_invalidated,
671 bool *irred_invalidated)
672{
673 while (loops_to_unloop.length ())
674 {
675 class loop *loop = loops_to_unloop.pop ();
676 int n_unroll = loops_to_unloop_nunroll.pop ();
677 basic_block latch = loop->latch;
678 edge latch_edge = loop_latch_edge (loop);
679 int flags = latch_edge->flags;
680 location_t locus = latch_edge->goto_locus;
681 gcall *stmt;
682 gimple_stmt_iterator gsi;
683
684 remove_exits_and_undefined_stmts (loop, npeeled: n_unroll);
685
686 /* Unloop destroys the latch edge. */
687 unloop (loop, irred_invalidated, loop_closed_ssa_invalidated);
688
689 /* Create new basic block for the latch edge destination and wire
690 it in. */
691 stmt = gimple_build_builtin_unreachable (locus);
692 latch_edge = make_edge (latch, create_basic_block (NULL, NULL, latch), flags);
693 latch_edge->probability = profile_probability::never ();
694 latch_edge->flags |= flags;
695 latch_edge->goto_locus = locus;
696
697 add_bb_to_loop (latch_edge->dest, current_loops->tree_root);
698 latch_edge->dest->count = profile_count::zero ();
699 set_immediate_dominator (CDI_DOMINATORS, latch_edge->dest, latch_edge->src);
700
701 gsi = gsi_start_bb (bb: latch_edge->dest);
702 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
703 }
704
705 /* Remove edges in peeled copies. Given remove_path removes dominated
706 regions we need to cope with removal of already removed paths. */
707 unsigned i;
708 edge e;
709 auto_vec<int, 20> src_bbs;
710 src_bbs.reserve_exact (nelems: edges_to_remove.length ());
711 FOR_EACH_VEC_ELT (edges_to_remove, i, e)
712 src_bbs.quick_push (obj: e->src->index);
713 FOR_EACH_VEC_ELT (edges_to_remove, i, e)
714 if (BASIC_BLOCK_FOR_FN (cfun, src_bbs[i]))
715 {
716 bool ok = remove_path (e, irred_invalidated,
717 loop_closed_ssa_invalidated);
718 gcc_assert (ok);
719 }
720 edges_to_remove.release ();
721}
722
723/* Tries to unroll LOOP completely, i.e. NITER times.
724 UL determines which loops we are allowed to unroll.
725 EXIT is the exit of the loop that should be eliminated.
726 MAXITER specfy bound on number of iterations, -1 if it is
727 not known or too large for HOST_WIDE_INT. The location
728 LOCUS corresponding to the loop is used when emitting
729 a summary of the unroll to the dump file. */
730
731static bool
732try_unroll_loop_completely (class loop *loop,
733 edge exit, tree niter, bool may_be_zero,
734 enum unroll_level ul,
735 HOST_WIDE_INT maxiter,
736 dump_user_location_t locus, bool allow_peel)
737{
738 unsigned HOST_WIDE_INT n_unroll = 0;
739 bool n_unroll_found = false;
740 edge edge_to_cancel = NULL;
741
742 /* See if we proved number of iterations to be low constant.
743
744 EXIT is an edge that will be removed in all but last iteration of
745 the loop.
746
747 EDGE_TO_CACNEL is an edge that will be removed from the last iteration
748 of the unrolled sequence and is expected to make the final loop not
749 rolling.
750
751 If the number of execution of loop is determined by standard induction
752 variable test, then EXIT and EDGE_TO_CANCEL are the two edges leaving
753 from the iv test. */
754 if (tree_fits_uhwi_p (niter))
755 {
756 n_unroll = tree_to_uhwi (niter);
757 n_unroll_found = true;
758 edge_to_cancel = EDGE_SUCC (exit->src, 0);
759 if (edge_to_cancel == exit)
760 edge_to_cancel = EDGE_SUCC (exit->src, 1);
761 }
762 /* We do not know the number of iterations and thus we cannot eliminate
763 the EXIT edge. */
764 else
765 exit = NULL;
766
767 /* See if we can improve our estimate by using recorded loop bounds. */
768 if ((maxiter == 0 || ul != UL_SINGLE_ITER)
769 && maxiter >= 0
770 && (!n_unroll_found || (unsigned HOST_WIDE_INT)maxiter < n_unroll))
771 {
772 n_unroll = maxiter;
773 n_unroll_found = true;
774 /* Loop terminates before the IV variable test, so we cannot
775 remove it in the last iteration. */
776 edge_to_cancel = NULL;
777 /* If we do not allow peeling and we iterate just allow cases
778 that do not grow code. */
779 if (!allow_peel && maxiter != 0)
780 ul = UL_NO_GROWTH;
781 }
782
783 if (!n_unroll_found)
784 return false;
785
786 if (!loop->unroll
787 && n_unroll > (unsigned) param_max_completely_peel_times)
788 {
789 if (dump_file && (dump_flags & TDF_DETAILS))
790 fprintf (stream: dump_file, format: "Not unrolling loop %d "
791 "(--param max-completely-peel-times limit reached).\n",
792 loop->num);
793 return false;
794 }
795
796 if (!edge_to_cancel)
797 edge_to_cancel = loop_edge_to_cancel (loop);
798
799 if (n_unroll)
800 {
801 if (ul == UL_SINGLE_ITER)
802 return false;
803
804 if (loop->unroll)
805 {
806 /* If the unrolling factor is too large, bail out. */
807 if (n_unroll > (unsigned)loop->unroll)
808 {
809 if (dump_file && (dump_flags & TDF_DETAILS))
810 fprintf (stream: dump_file,
811 format: "Not unrolling loop %d: "
812 "user didn't want it unrolled completely.\n",
813 loop->num);
814 return false;
815 }
816 }
817 else
818 {
819 struct loop_size size;
820 /* EXIT can be removed only if we are sure it passes first N_UNROLL
821 iterations. */
822 bool remove_exit = (exit && niter
823 && TREE_CODE (niter) == INTEGER_CST
824 && wi::leu_p (x: n_unroll, y: wi::to_widest (t: niter)));
825 bool large
826 = tree_estimate_loop_size
827 (loop, exit: remove_exit ? exit : NULL, edge_to_cancel, size: &size,
828 param_max_completely_peeled_insns);
829 if (large)
830 {
831 if (dump_file && (dump_flags & TDF_DETAILS))
832 fprintf (stream: dump_file, format: "Not unrolling loop %d: it is too large.\n",
833 loop->num);
834 return false;
835 }
836
837 unsigned HOST_WIDE_INT ninsns = size.overall;
838 unsigned HOST_WIDE_INT unr_insns
839 = estimated_unrolled_size (size: &size, nunroll: n_unroll);
840 if (dump_file && (dump_flags & TDF_DETAILS))
841 {
842 fprintf (stream: dump_file, format: " Loop size: %d\n", (int) ninsns);
843 fprintf (stream: dump_file, format: " Estimated size after unrolling: %d\n",
844 (int) unr_insns);
845 }
846
847 /* If the code is going to shrink, we don't need to be extra
848 cautious on guessing if the unrolling is going to be
849 profitable. */
850 if (unr_insns
851 /* If there is IV variable that will become constant, we
852 save one instruction in the loop prologue we do not
853 account otherwise. */
854 <= ninsns + (size.constant_iv != false))
855 ;
856 /* We unroll only inner loops, because we do not consider it
857 profitable otheriwse. We still can cancel loopback edge
858 of not rolling loop; this is always a good idea. */
859 else if (ul == UL_NO_GROWTH)
860 {
861 if (dump_file && (dump_flags & TDF_DETAILS))
862 fprintf (stream: dump_file, format: "Not unrolling loop %d: size would grow.\n",
863 loop->num);
864 return false;
865 }
866 /* Outer loops tend to be less interesting candidates for
867 complete unrolling unless we can do a lot of propagation
868 into the inner loop body. For now we disable outer loop
869 unrolling when the code would grow. */
870 else if (loop->inner)
871 {
872 if (dump_file && (dump_flags & TDF_DETAILS))
873 fprintf (stream: dump_file, format: "Not unrolling loop %d: "
874 "it is not innermost and code would grow.\n",
875 loop->num);
876 return false;
877 }
878 /* If there is call on a hot path through the loop, then
879 there is most probably not much to optimize. */
880 else if (size.num_non_pure_calls_on_hot_path)
881 {
882 if (dump_file && (dump_flags & TDF_DETAILS))
883 fprintf (stream: dump_file, format: "Not unrolling loop %d: "
884 "contains call and code would grow.\n",
885 loop->num);
886 return false;
887 }
888 /* If there is pure/const call in the function, then we can
889 still optimize the unrolled loop body if it contains some
890 other interesting code than the calls and code storing or
891 cumulating the return value. */
892 else if (size.num_pure_calls_on_hot_path
893 /* One IV increment, one test, one ivtmp store and
894 one useful stmt. That is about minimal loop
895 doing pure call. */
896 && (size.non_call_stmts_on_hot_path
897 <= 3 + size.num_pure_calls_on_hot_path))
898 {
899 if (dump_file && (dump_flags & TDF_DETAILS))
900 fprintf (stream: dump_file, format: "Not unrolling loop %d: "
901 "contains just pure calls and code would grow.\n",
902 loop->num);
903 return false;
904 }
905 /* Complete unrolling is major win when control flow is
906 removed and one big basic block is created. If the loop
907 contains control flow the optimization may still be a win
908 because of eliminating the loop overhead but it also may
909 blow the branch predictor tables. Limit number of
910 branches on the hot path through the peeled sequence. */
911 else if (size.num_branches_on_hot_path * (int)n_unroll
912 > param_max_peel_branches)
913 {
914 if (dump_file && (dump_flags & TDF_DETAILS))
915 fprintf (stream: dump_file, format: "Not unrolling loop %d: "
916 "number of branches on hot path in the unrolled "
917 "sequence reaches --param max-peel-branches limit.\n",
918 loop->num);
919 return false;
920 }
921 else if (unr_insns
922 > (unsigned) param_max_completely_peeled_insns)
923 {
924 if (dump_file && (dump_flags & TDF_DETAILS))
925 fprintf (stream: dump_file, format: "Not unrolling loop %d: "
926 "number of insns in the unrolled sequence reaches "
927 "--param max-completely-peeled-insns limit.\n",
928 loop->num);
929 return false;
930 }
931 }
932
933 if (!dbg_cnt (index: gimple_unroll))
934 return false;
935
936 initialize_original_copy_tables ();
937 auto_sbitmap wont_exit (n_unroll + 1);
938 if (exit && niter
939 && TREE_CODE (niter) == INTEGER_CST
940 && wi::leu_p (x: n_unroll, y: wi::to_widest (t: niter)))
941 {
942 bitmap_ones (wont_exit);
943 if (wi::eq_p (x: wi::to_widest (t: niter), y: n_unroll)
944 || edge_to_cancel)
945 bitmap_clear_bit (map: wont_exit, bitno: 0);
946 }
947 else
948 {
949 exit = NULL;
950 bitmap_clear (wont_exit);
951 }
952 if (may_be_zero)
953 bitmap_clear_bit (map: wont_exit, bitno: 1);
954
955 /* If loop was originally estimated to iterate too many times,
956 reduce the profile to avoid new profile inconsistencies. */
957 scale_loop_profile (loop, profile_probability::always (), n_unroll);
958
959 if (!gimple_duplicate_loop_body_to_header_edge (
960 loop, loop_preheader_edge (loop), n_unroll, wont_exit, exit,
961 &edges_to_remove,
962 DLTHE_FLAG_UPDATE_FREQ | DLTHE_FLAG_COMPLETTE_PEEL))
963 {
964 free_original_copy_tables ();
965 if (dump_file && (dump_flags & TDF_DETAILS))
966 fprintf (stream: dump_file, format: "Failed to duplicate the loop\n");
967 return false;
968 }
969
970 free_original_copy_tables ();
971 }
972 else
973 scale_loop_profile (loop, profile_probability::always (), 0);
974
975 /* Remove the conditional from the last copy of the loop. */
976 if (edge_to_cancel)
977 {
978 gcond *cond = as_a <gcond *> (p: *gsi_last_bb (bb: edge_to_cancel->src));
979 force_edge_cold (edge_to_cancel, true);
980 if (edge_to_cancel->flags & EDGE_TRUE_VALUE)
981 gimple_cond_make_false (gs: cond);
982 else
983 gimple_cond_make_true (gs: cond);
984 update_stmt (s: cond);
985 /* Do not remove the path, as doing so may remove outer loop and
986 confuse bookkeeping code in tree_unroll_loops_completely. */
987 }
988
989 /* Store the loop for later unlooping and exit removal. */
990 loops_to_unloop.safe_push (obj: loop);
991 loops_to_unloop_nunroll.safe_push (obj: n_unroll);
992
993 if (dump_enabled_p ())
994 {
995 if (!n_unroll)
996 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus,
997 "loop turned into non-loop; it never loops\n");
998 else
999 {
1000 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus,
1001 "loop with %d iterations completely unrolled",
1002 (int) n_unroll);
1003 if (loop->header->count.initialized_p ())
1004 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS,
1005 " (header execution count %d)",
1006 (int)loop->header->count.to_gcov_type ());
1007 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, "\n");
1008 }
1009 }
1010
1011 if (dump_file && (dump_flags & TDF_DETAILS))
1012 {
1013 if (exit)
1014 fprintf (stream: dump_file, format: "Exit condition of peeled iterations was "
1015 "eliminated.\n");
1016 if (edge_to_cancel)
1017 fprintf (stream: dump_file, format: "Last iteration exit edge was proved true.\n");
1018 else
1019 fprintf (stream: dump_file, format: "Latch of last iteration was marked by "
1020 "__builtin_unreachable ().\n");
1021 }
1022
1023 return true;
1024}
1025
1026/* Return number of instructions after peeling. */
1027static unsigned HOST_WIDE_INT
1028estimated_peeled_sequence_size (struct loop_size *size,
1029 unsigned HOST_WIDE_INT npeel)
1030{
1031 return MAX (npeel * (HOST_WIDE_INT) (size->overall
1032 - size->eliminated_by_peeling), 1);
1033}
1034
1035/* Update loop estimates after peeling LOOP by NPEEL.
1036 If PRECISE is false only likely exists were duplicated and thus
1037 do not update any estimates that are supposed to be always reliable. */
1038void
1039adjust_loop_info_after_peeling (class loop *loop, int npeel, bool precise)
1040{
1041 if (loop->any_estimate)
1042 {
1043 /* Since peeling is mostly about loops where first few
1044 iterations are special, it is not quite correct to
1045 assume that the remaining iterations will behave
1046 the same way. However we do not have better info
1047 so update the esitmate, since it is likely better
1048 than keeping it as it is.
1049
1050 Remove it if it looks wrong.
1051
1052 TODO: We likely want to special case the situation where
1053 peeling is optimizing out exit edges and only update
1054 estimates here. */
1055 if (wi::leu_p (x: npeel, y: loop->nb_iterations_estimate))
1056 loop->nb_iterations_estimate -= npeel;
1057 else
1058 loop->any_estimate = false;
1059 }
1060 if (loop->any_upper_bound && precise)
1061 {
1062 if (wi::leu_p (x: npeel, y: loop->nb_iterations_upper_bound))
1063 loop->nb_iterations_upper_bound -= npeel;
1064 else
1065 {
1066 /* Peeling maximal number of iterations or more
1067 makes no sense and is a bug.
1068 We should peel completely. */
1069 gcc_unreachable ();
1070 }
1071 }
1072 if (loop->any_likely_upper_bound)
1073 {
1074 if (wi::leu_p (x: npeel, y: loop->nb_iterations_likely_upper_bound))
1075 loop->nb_iterations_likely_upper_bound -= npeel;
1076 else
1077 {
1078 loop->any_estimate = true;
1079 loop->nb_iterations_estimate = 0;
1080 loop->nb_iterations_likely_upper_bound = 0;
1081 }
1082 }
1083}
1084
1085/* If the loop is expected to iterate N times and is
1086 small enough, duplicate the loop body N+1 times before
1087 the loop itself. This way the hot path will never
1088 enter the loop.
1089 Parameters are the same as for try_unroll_loops_completely */
1090
1091static bool
1092try_peel_loop (class loop *loop,
1093 edge exit, tree niter, bool may_be_zero,
1094 HOST_WIDE_INT maxiter)
1095{
1096 HOST_WIDE_INT npeel;
1097 struct loop_size size;
1098 int peeled_size;
1099
1100 if (!flag_peel_loops
1101 || param_max_peel_times <= 0
1102 || !peeled_loops)
1103 return false;
1104
1105 if (bitmap_bit_p (peeled_loops, loop->num))
1106 {
1107 if (dump_file)
1108 fprintf (stream: dump_file, format: "Not peeling: loop is already peeled\n");
1109 return false;
1110 }
1111
1112 /* We don't peel loops that will be unrolled as this can duplicate a
1113 loop more times than the user requested. */
1114 if (loop->unroll)
1115 {
1116 if (dump_file)
1117 fprintf (stream: dump_file, format: "Not peeling: user didn't want it peeled.\n");
1118 return false;
1119 }
1120
1121 /* Peel only innermost loops.
1122 While the code is perfectly capable of peeling non-innermost loops,
1123 the heuristics would probably need some improvements. */
1124 if (loop->inner)
1125 {
1126 if (dump_file)
1127 fprintf (stream: dump_file, format: "Not peeling: outer loop\n");
1128 return false;
1129 }
1130
1131 if (!optimize_loop_for_speed_p (loop))
1132 {
1133 if (dump_file)
1134 fprintf (stream: dump_file, format: "Not peeling: cold loop\n");
1135 return false;
1136 }
1137
1138 /* Check if there is an estimate on the number of iterations. */
1139 npeel = estimated_loop_iterations_int (loop);
1140 if (npeel < 0)
1141 npeel = likely_max_loop_iterations_int (loop);
1142 if (npeel < 0)
1143 {
1144 if (dump_file)
1145 fprintf (stream: dump_file, format: "Not peeling: number of iterations is not "
1146 "estimated\n");
1147 return false;
1148 }
1149 if (maxiter >= 0 && maxiter <= npeel)
1150 {
1151 if (dump_file)
1152 fprintf (stream: dump_file, format: "Not peeling: upper bound is known so can "
1153 "unroll completely\n");
1154 return false;
1155 }
1156
1157 /* We want to peel estimated number of iterations + 1 (so we never
1158 enter the loop on quick path). Check against PARAM_MAX_PEEL_TIMES
1159 and be sure to avoid overflows. */
1160 if (npeel > param_max_peel_times - 1)
1161 {
1162 if (dump_file)
1163 fprintf (stream: dump_file, format: "Not peeling: rolls too much "
1164 "(%i + 1 > --param max-peel-times)\n", (int) npeel);
1165 return false;
1166 }
1167 npeel++;
1168
1169 /* Check peeled loops size. */
1170 tree_estimate_loop_size (loop, exit, NULL, size: &size,
1171 param_max_peeled_insns);
1172 if ((peeled_size = estimated_peeled_sequence_size (size: &size, npeel: (int) npeel))
1173 > param_max_peeled_insns)
1174 {
1175 if (dump_file)
1176 fprintf (stream: dump_file, format: "Not peeling: peeled sequence size is too large "
1177 "(%i insns > --param max-peel-insns)", peeled_size);
1178 return false;
1179 }
1180
1181 if (!dbg_cnt (index: gimple_unroll))
1182 return false;
1183
1184 /* Duplicate possibly eliminating the exits. */
1185 initialize_original_copy_tables ();
1186 auto_sbitmap wont_exit (npeel + 1);
1187 if (exit && niter
1188 && TREE_CODE (niter) == INTEGER_CST
1189 && wi::leu_p (x: npeel, y: wi::to_widest (t: niter)))
1190 {
1191 bitmap_ones (wont_exit);
1192 bitmap_clear_bit (map: wont_exit, bitno: 0);
1193 }
1194 else
1195 {
1196 exit = NULL;
1197 bitmap_clear (wont_exit);
1198 }
1199 if (may_be_zero)
1200 bitmap_clear_bit (map: wont_exit, bitno: 1);
1201
1202 if (!gimple_duplicate_loop_body_to_header_edge (
1203 loop, loop_preheader_edge (loop), npeel, wont_exit, exit,
1204 &edges_to_remove, DLTHE_FLAG_UPDATE_FREQ))
1205 {
1206 free_original_copy_tables ();
1207 return false;
1208 }
1209 free_original_copy_tables ();
1210 if (dump_file && (dump_flags & TDF_DETAILS))
1211 {
1212 fprintf (stream: dump_file, format: "Peeled loop %d, %i times.\n",
1213 loop->num, (int) npeel);
1214 }
1215 adjust_loop_info_after_peeling (loop, npeel, precise: true);
1216
1217 bitmap_set_bit (peeled_loops, loop->num);
1218 return true;
1219}
1220/* Adds a canonical induction variable to LOOP if suitable.
1221 CREATE_IV is true if we may create a new iv. UL determines
1222 which loops we are allowed to completely unroll. If TRY_EVAL is true, we try
1223 to determine the number of iterations of a loop by direct evaluation.
1224 Returns true if cfg is changed. */
1225
1226static bool
1227canonicalize_loop_induction_variables (class loop *loop,
1228 bool create_iv, enum unroll_level ul,
1229 bool try_eval, bool allow_peel)
1230{
1231 edge exit = NULL;
1232 tree niter;
1233 HOST_WIDE_INT maxiter;
1234 bool modified = false;
1235 class tree_niter_desc niter_desc;
1236 bool may_be_zero = false;
1237
1238 /* For unrolling allow conditional constant or zero iterations, thus
1239 perform loop-header copying on-the-fly. */
1240 exit = single_exit (loop);
1241 niter = chrec_dont_know;
1242 if (exit && number_of_iterations_exit (loop, exit, niter: &niter_desc, false))
1243 {
1244 niter = niter_desc.niter;
1245 may_be_zero
1246 = niter_desc.may_be_zero && !integer_zerop (niter_desc.may_be_zero);
1247 }
1248 if (TREE_CODE (niter) != INTEGER_CST)
1249 {
1250 /* For non-constant niter fold may_be_zero into niter again. */
1251 if (may_be_zero)
1252 {
1253 if (COMPARISON_CLASS_P (niter_desc.may_be_zero))
1254 niter = fold_build3 (COND_EXPR, TREE_TYPE (niter),
1255 niter_desc.may_be_zero,
1256 build_int_cst (TREE_TYPE (niter), 0), niter);
1257 else
1258 niter = chrec_dont_know;
1259 may_be_zero = false;
1260 }
1261
1262 /* If the loop has more than one exit, try checking all of them
1263 for # of iterations determinable through scev. */
1264 if (!exit)
1265 niter = find_loop_niter (loop, &exit);
1266
1267 /* Finally if everything else fails, try brute force evaluation. */
1268 if (try_eval
1269 && (chrec_contains_undetermined (niter)
1270 || TREE_CODE (niter) != INTEGER_CST))
1271 niter = find_loop_niter_by_eval (loop, &exit);
1272
1273 if (TREE_CODE (niter) != INTEGER_CST)
1274 exit = NULL;
1275 }
1276
1277 /* We work exceptionally hard here to estimate the bound
1278 by find_loop_niter_by_eval. Be sure to keep it for future. */
1279 if (niter && TREE_CODE (niter) == INTEGER_CST)
1280 {
1281 auto_vec<edge> exits = get_loop_exit_edges (loop);
1282 record_niter_bound (loop, wi::to_widest (t: niter),
1283 exit == single_likely_exit (loop, exits), true);
1284 }
1285
1286 /* Force re-computation of loop bounds so we can remove redundant exits. */
1287 maxiter = max_loop_iterations_int (loop);
1288
1289 if (dump_file && (dump_flags & TDF_DETAILS)
1290 && TREE_CODE (niter) == INTEGER_CST)
1291 {
1292 fprintf (stream: dump_file, format: "Loop %d iterates ", loop->num);
1293 print_generic_expr (dump_file, niter, TDF_SLIM);
1294 fprintf (stream: dump_file, format: " times.\n");
1295 }
1296 if (dump_file && (dump_flags & TDF_DETAILS)
1297 && maxiter >= 0)
1298 {
1299 fprintf (stream: dump_file, format: "Loop %d iterates at most %i times.\n", loop->num,
1300 (int)maxiter);
1301 }
1302 if (dump_file && (dump_flags & TDF_DETAILS)
1303 && likely_max_loop_iterations_int (loop) >= 0)
1304 {
1305 fprintf (stream: dump_file, format: "Loop %d likely iterates at most %i times.\n",
1306 loop->num, (int)likely_max_loop_iterations_int (loop));
1307 }
1308
1309 /* Remove exits that are known to be never taken based on loop bound.
1310 Needs to be called after compilation of max_loop_iterations_int that
1311 populates the loop bounds. */
1312 modified |= remove_redundant_iv_tests (loop);
1313
1314 dump_user_location_t locus = find_loop_location (loop);
1315 if (try_unroll_loop_completely (loop, exit, niter, may_be_zero, ul,
1316 maxiter, locus, allow_peel))
1317 return true;
1318
1319 if (create_iv
1320 && niter && !chrec_contains_undetermined (niter)
1321 && exit && just_once_each_iteration_p (loop, exit->src))
1322 {
1323 tree iv_niter = niter;
1324 if (may_be_zero)
1325 {
1326 if (COMPARISON_CLASS_P (niter_desc.may_be_zero))
1327 iv_niter = fold_build3 (COND_EXPR, TREE_TYPE (iv_niter),
1328 niter_desc.may_be_zero,
1329 build_int_cst (TREE_TYPE (iv_niter), 0),
1330 iv_niter);
1331 else
1332 iv_niter = NULL_TREE;
1333 }
1334 if (iv_niter)
1335 create_canonical_iv (loop, exit, niter: iv_niter);
1336 }
1337
1338 if (ul == UL_ALL)
1339 modified |= try_peel_loop (loop, exit, niter, may_be_zero, maxiter);
1340
1341 return modified;
1342}
1343
1344/* The main entry point of the pass. Adds canonical induction variables
1345 to the suitable loops. */
1346
1347unsigned int
1348canonicalize_induction_variables (void)
1349{
1350 bool changed = false;
1351 bool irred_invalidated = false;
1352 bitmap loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL);
1353
1354 estimate_numbers_of_iterations (cfun);
1355
1356 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1357 {
1358 changed |= canonicalize_loop_induction_variables (loop,
1359 create_iv: true, ul: UL_SINGLE_ITER,
1360 try_eval: true, allow_peel: false);
1361 }
1362 gcc_assert (!need_ssa_update_p (cfun));
1363
1364 unloop_loops (loops_to_unloop, loops_to_unloop_nunroll,
1365 loop_closed_ssa_invalidated, irred_invalidated: &irred_invalidated);
1366 loops_to_unloop.release ();
1367 loops_to_unloop_nunroll.release ();
1368 if (irred_invalidated
1369 && loops_state_satisfies_p (flags: LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1370 mark_irreducible_loops ();
1371
1372 /* Clean up the information about numbers of iterations, since brute force
1373 evaluation could reveal new information. */
1374 free_numbers_of_iterations_estimates (cfun);
1375 scev_reset ();
1376
1377 if (!bitmap_empty_p (map: loop_closed_ssa_invalidated))
1378 {
1379 gcc_checking_assert (loops_state_satisfies_p (LOOP_CLOSED_SSA));
1380 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1381 }
1382 BITMAP_FREE (loop_closed_ssa_invalidated);
1383
1384 if (changed)
1385 return TODO_cleanup_cfg;
1386 return 0;
1387}
1388
1389/* Process loops from innermost to outer, stopping at the innermost
1390 loop we unrolled. */
1391
1392static bool
1393tree_unroll_loops_completely_1 (bool may_increase_size, bool unroll_outer,
1394 bitmap father_bbs, class loop *loop)
1395{
1396 class loop *loop_father;
1397 bool changed = false;
1398 class loop *inner;
1399 enum unroll_level ul;
1400 unsigned num = number_of_loops (cfun);
1401
1402 /* Process inner loops first. Don't walk loops added by the recursive
1403 calls because SSA form is not up-to-date. They can be handled in the
1404 next iteration. */
1405 bitmap child_father_bbs = NULL;
1406 for (inner = loop->inner; inner != NULL; inner = inner->next)
1407 if ((unsigned) inner->num < num)
1408 {
1409 if (!child_father_bbs)
1410 child_father_bbs = BITMAP_ALLOC (NULL);
1411 if (tree_unroll_loops_completely_1 (may_increase_size, unroll_outer,
1412 father_bbs: child_father_bbs, loop: inner))
1413 {
1414 bitmap_ior_into (father_bbs, child_father_bbs);
1415 bitmap_clear (child_father_bbs);
1416 changed = true;
1417 }
1418 }
1419 if (child_father_bbs)
1420 BITMAP_FREE (child_father_bbs);
1421
1422 /* If we changed an inner loop we cannot process outer loops in this
1423 iteration because SSA form is not up-to-date. Continue with
1424 siblings of outer loops instead. */
1425 if (changed)
1426 {
1427 /* If we are recorded as father clear all other fathers that
1428 are necessarily covered already to avoid redundant work. */
1429 if (bitmap_bit_p (father_bbs, loop->header->index))
1430 {
1431 bitmap_clear (father_bbs);
1432 bitmap_set_bit (father_bbs, loop->header->index);
1433 }
1434 return true;
1435 }
1436
1437 /* Don't unroll #pragma omp simd loops until the vectorizer
1438 attempts to vectorize those. */
1439 if (loop->force_vectorize)
1440 return false;
1441
1442 /* Try to unroll this loop. */
1443 loop_father = loop_outer (loop);
1444 if (!loop_father)
1445 return false;
1446
1447 if (loop->unroll > 1)
1448 ul = UL_ALL;
1449 else if (may_increase_size && optimize_loop_nest_for_speed_p (loop)
1450 /* Unroll outermost loops only if asked to do so or they do
1451 not cause code growth. */
1452 && (unroll_outer || loop_outer (loop: loop_father)))
1453 ul = UL_ALL;
1454 else
1455 ul = UL_NO_GROWTH;
1456
1457 if (canonicalize_loop_induction_variables
1458 (loop, create_iv: false, ul, try_eval: !flag_tree_loop_ivcanon, allow_peel: unroll_outer))
1459 {
1460 /* If we'll continue unrolling, we need to propagate constants
1461 within the new basic blocks to fold away induction variable
1462 computations; otherwise, the size might blow up before the
1463 iteration is complete and the IR eventually cleaned up. */
1464 if (loop_outer (loop: loop_father))
1465 {
1466 /* Once we process our father we will have processed
1467 the fathers of our children as well, so avoid doing
1468 redundant work and clear fathers we've gathered sofar. */
1469 bitmap_clear (father_bbs);
1470 bitmap_set_bit (father_bbs, loop_father->header->index);
1471 }
1472 else if (unroll_outer)
1473 /* Trigger scalar cleanup once any outermost loop gets unrolled. */
1474 cfun->pending_TODOs |= PENDING_TODO_force_next_scalar_cleanup;
1475
1476 return true;
1477 }
1478
1479 return false;
1480}
1481
1482/* Unroll LOOPS completely if they iterate just few times. Unless
1483 MAY_INCREASE_SIZE is true, perform the unrolling only if the
1484 size of the code does not increase. */
1485
1486static unsigned int
1487tree_unroll_loops_completely (bool may_increase_size, bool unroll_outer)
1488{
1489 bitmap father_bbs = BITMAP_ALLOC (NULL);
1490 bool changed;
1491 int iteration = 0;
1492 bool irred_invalidated = false;
1493
1494 estimate_numbers_of_iterations (cfun);
1495
1496 do
1497 {
1498 changed = false;
1499 bitmap loop_closed_ssa_invalidated = NULL;
1500
1501 if (loops_state_satisfies_p (flags: LOOP_CLOSED_SSA))
1502 loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL);
1503
1504 free_numbers_of_iterations_estimates (cfun);
1505 estimate_numbers_of_iterations (cfun);
1506
1507 changed = tree_unroll_loops_completely_1 (may_increase_size,
1508 unroll_outer, father_bbs,
1509 current_loops->tree_root);
1510 if (changed)
1511 {
1512 unsigned i;
1513
1514 unloop_loops (loops_to_unloop,
1515 loops_to_unloop_nunroll,
1516 loop_closed_ssa_invalidated,
1517 irred_invalidated: &irred_invalidated);
1518 loops_to_unloop.release ();
1519 loops_to_unloop_nunroll.release ();
1520
1521 /* We cannot use TODO_update_ssa_no_phi because VOPS gets confused. */
1522 if (loop_closed_ssa_invalidated
1523 && !bitmap_empty_p (map: loop_closed_ssa_invalidated))
1524 rewrite_into_loop_closed_ssa (loop_closed_ssa_invalidated,
1525 TODO_update_ssa);
1526 else
1527 update_ssa (TODO_update_ssa);
1528
1529 /* father_bbs is a bitmap of loop father header BB indices.
1530 Translate that to what non-root loops these BBs belong to now. */
1531 bitmap_iterator bi;
1532 bitmap fathers = BITMAP_ALLOC (NULL);
1533 EXECUTE_IF_SET_IN_BITMAP (father_bbs, 0, i, bi)
1534 {
1535 basic_block unrolled_loop_bb = BASIC_BLOCK_FOR_FN (cfun, i);
1536 if (! unrolled_loop_bb)
1537 continue;
1538 if (loop_outer (loop: unrolled_loop_bb->loop_father))
1539 bitmap_set_bit (fathers,
1540 unrolled_loop_bb->loop_father->num);
1541 }
1542 bitmap_clear (father_bbs);
1543 /* Propagate the constants within the new basic blocks. */
1544 EXECUTE_IF_SET_IN_BITMAP (fathers, 0, i, bi)
1545 {
1546 loop_p father = get_loop (cfun, num: i);
1547 bitmap exit_bbs = BITMAP_ALLOC (NULL);
1548 loop_exit *exit = father->exits->next;
1549 while (exit->e)
1550 {
1551 bitmap_set_bit (exit_bbs, exit->e->dest->index);
1552 exit = exit->next;
1553 }
1554 do_rpo_vn (cfun, loop_preheader_edge (father), exit_bbs);
1555 }
1556 BITMAP_FREE (fathers);
1557
1558 /* Clean up the information about numbers of iterations, since
1559 complete unrolling might have invalidated it. */
1560 scev_reset ();
1561
1562 /* This will take care of removing completely unrolled loops
1563 from the loop structures so we can continue unrolling now
1564 innermost loops. */
1565 if (cleanup_tree_cfg ())
1566 update_ssa (TODO_update_ssa_only_virtuals);
1567
1568 if (flag_checking && loops_state_satisfies_p (flags: LOOP_CLOSED_SSA))
1569 verify_loop_closed_ssa (true);
1570 }
1571 if (loop_closed_ssa_invalidated)
1572 BITMAP_FREE (loop_closed_ssa_invalidated);
1573 }
1574 while (changed
1575 && ++iteration <= param_max_unroll_iterations);
1576
1577 BITMAP_FREE (father_bbs);
1578
1579 if (irred_invalidated
1580 && loops_state_satisfies_p (flags: LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1581 mark_irreducible_loops ();
1582
1583 return 0;
1584}
1585
1586/* Canonical induction variable creation pass. */
1587
1588namespace {
1589
1590const pass_data pass_data_iv_canon =
1591{
1592 .type: GIMPLE_PASS, /* type */
1593 .name: "ivcanon", /* name */
1594 .optinfo_flags: OPTGROUP_LOOP, /* optinfo_flags */
1595 .tv_id: TV_TREE_LOOP_IVCANON, /* tv_id */
1596 .properties_required: ( PROP_cfg | PROP_ssa ), /* properties_required */
1597 .properties_provided: 0, /* properties_provided */
1598 .properties_destroyed: 0, /* properties_destroyed */
1599 .todo_flags_start: 0, /* todo_flags_start */
1600 .todo_flags_finish: 0, /* todo_flags_finish */
1601};
1602
1603class pass_iv_canon : public gimple_opt_pass
1604{
1605public:
1606 pass_iv_canon (gcc::context *ctxt)
1607 : gimple_opt_pass (pass_data_iv_canon, ctxt)
1608 {}
1609
1610 /* opt_pass methods: */
1611 bool gate (function *) final override { return flag_tree_loop_ivcanon != 0; }
1612 unsigned int execute (function *fun) final override;
1613
1614}; // class pass_iv_canon
1615
1616unsigned int
1617pass_iv_canon::execute (function *fun)
1618{
1619 if (number_of_loops (fn: fun) <= 1)
1620 return 0;
1621
1622 return canonicalize_induction_variables ();
1623}
1624
1625} // anon namespace
1626
1627gimple_opt_pass *
1628make_pass_iv_canon (gcc::context *ctxt)
1629{
1630 return new pass_iv_canon (ctxt);
1631}
1632
1633/* Complete unrolling of loops. */
1634
1635namespace {
1636
1637const pass_data pass_data_complete_unroll =
1638{
1639 .type: GIMPLE_PASS, /* type */
1640 .name: "cunroll", /* name */
1641 .optinfo_flags: OPTGROUP_LOOP, /* optinfo_flags */
1642 .tv_id: TV_COMPLETE_UNROLL, /* tv_id */
1643 .properties_required: ( PROP_cfg | PROP_ssa ), /* properties_required */
1644 .properties_provided: 0, /* properties_provided */
1645 .properties_destroyed: 0, /* properties_destroyed */
1646 .todo_flags_start: 0, /* todo_flags_start */
1647 .todo_flags_finish: 0, /* todo_flags_finish */
1648};
1649
1650class pass_complete_unroll : public gimple_opt_pass
1651{
1652public:
1653 pass_complete_unroll (gcc::context *ctxt)
1654 : gimple_opt_pass (pass_data_complete_unroll, ctxt)
1655 {}
1656
1657 /* opt_pass methods: */
1658 unsigned int execute (function *) final override;
1659
1660}; // class pass_complete_unroll
1661
1662unsigned int
1663pass_complete_unroll::execute (function *fun)
1664{
1665 if (number_of_loops (fn: fun) <= 1)
1666 return 0;
1667
1668 /* If we ever decide to run loop peeling more than once, we will need to
1669 track loops already peeled in loop structures themselves to avoid
1670 re-peeling the same loop multiple times. */
1671 if (flag_peel_loops)
1672 peeled_loops = BITMAP_ALLOC (NULL);
1673 unsigned int val = tree_unroll_loops_completely (flag_cunroll_grow_size,
1674 unroll_outer: true);
1675 if (peeled_loops)
1676 {
1677 BITMAP_FREE (peeled_loops);
1678 peeled_loops = NULL;
1679 }
1680 return val;
1681}
1682
1683} // anon namespace
1684
1685gimple_opt_pass *
1686make_pass_complete_unroll (gcc::context *ctxt)
1687{
1688 return new pass_complete_unroll (ctxt);
1689}
1690
1691/* Complete unrolling of inner loops. */
1692
1693namespace {
1694
1695const pass_data pass_data_complete_unrolli =
1696{
1697 .type: GIMPLE_PASS, /* type */
1698 .name: "cunrolli", /* name */
1699 .optinfo_flags: OPTGROUP_LOOP, /* optinfo_flags */
1700 .tv_id: TV_COMPLETE_UNROLL, /* tv_id */
1701 .properties_required: ( PROP_cfg | PROP_ssa ), /* properties_required */
1702 .properties_provided: 0, /* properties_provided */
1703 .properties_destroyed: 0, /* properties_destroyed */
1704 .todo_flags_start: 0, /* todo_flags_start */
1705 .todo_flags_finish: 0, /* todo_flags_finish */
1706};
1707
1708class pass_complete_unrolli : public gimple_opt_pass
1709{
1710public:
1711 pass_complete_unrolli (gcc::context *ctxt)
1712 : gimple_opt_pass (pass_data_complete_unrolli, ctxt)
1713 {}
1714
1715 /* opt_pass methods: */
1716 bool gate (function *) final override { return optimize >= 2; }
1717 unsigned int execute (function *) final override;
1718
1719}; // class pass_complete_unrolli
1720
1721unsigned int
1722pass_complete_unrolli::execute (function *fun)
1723{
1724 unsigned ret = 0;
1725
1726 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
1727 if (number_of_loops (fn: fun) > 1)
1728 {
1729 scev_initialize ();
1730 ret = tree_unroll_loops_completely (optimize >= 3, unroll_outer: false);
1731 scev_finalize ();
1732 }
1733 loop_optimizer_finalize ();
1734
1735 return ret;
1736}
1737
1738} // anon namespace
1739
1740gimple_opt_pass *
1741make_pass_complete_unrolli (gcc::context *ctxt)
1742{
1743 return new pass_complete_unrolli (ctxt);
1744}
1745
1746
1747

source code of gcc/tree-ssa-loop-ivcanon.cc