1/* Vectorizer
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#ifndef GCC_TREE_VECTORIZER_H
22#define GCC_TREE_VECTORIZER_H
23
24typedef class _stmt_vec_info *stmt_vec_info;
25typedef struct _slp_tree *slp_tree;
26
27#include "tree-data-ref.h"
28#include "tree-hash-traits.h"
29#include "target.h"
30#include "internal-fn.h"
31#include "tree-ssa-operands.h"
32#include "gimple-match.h"
33
34/* Used for naming of new temporaries. */
35enum vect_var_kind {
36 vect_simple_var,
37 vect_pointer_var,
38 vect_scalar_var,
39 vect_mask_var
40};
41
42/* Defines type of operation. */
43enum operation_type {
44 unary_op = 1,
45 binary_op,
46 ternary_op
47};
48
49/* Define type of available alignment support. */
50enum dr_alignment_support {
51 dr_unaligned_unsupported,
52 dr_unaligned_supported,
53 dr_explicit_realign,
54 dr_explicit_realign_optimized,
55 dr_aligned
56};
57
58/* Define type of def-use cross-iteration cycle. */
59enum vect_def_type {
60 vect_uninitialized_def = 0,
61 vect_constant_def = 1,
62 vect_external_def,
63 vect_internal_def,
64 vect_induction_def,
65 vect_reduction_def,
66 vect_double_reduction_def,
67 vect_nested_cycle,
68 vect_first_order_recurrence,
69 vect_unknown_def_type
70};
71
72/* Define operation type of linear/non-linear induction variable. */
73enum vect_induction_op_type {
74 vect_step_op_add = 0,
75 vect_step_op_neg,
76 vect_step_op_mul,
77 vect_step_op_shl,
78 vect_step_op_shr
79};
80
81/* Define type of reduction. */
82enum vect_reduction_type {
83 TREE_CODE_REDUCTION,
84 COND_REDUCTION,
85 INTEGER_INDUC_COND_REDUCTION,
86 CONST_COND_REDUCTION,
87
88 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
89 to implement:
90
91 for (int i = 0; i < VF; ++i)
92 res = cond[i] ? val[i] : res; */
93 EXTRACT_LAST_REDUCTION,
94
95 /* Use a folding reduction within the loop to implement:
96
97 for (int i = 0; i < VF; ++i)
98 res = res OP val[i];
99
100 (with no reassocation). */
101 FOLD_LEFT_REDUCTION
102};
103
104#define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
105 || ((D) == vect_double_reduction_def) \
106 || ((D) == vect_nested_cycle))
107
108/* Structure to encapsulate information about a group of like
109 instructions to be presented to the target cost model. */
110struct stmt_info_for_cost {
111 int count;
112 enum vect_cost_for_stmt kind;
113 enum vect_cost_model_location where;
114 stmt_vec_info stmt_info;
115 slp_tree node;
116 tree vectype;
117 int misalign;
118};
119
120typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
121
122/* Maps base addresses to an innermost_loop_behavior and the stmt it was
123 derived from that gives the maximum known alignment for that base. */
124typedef hash_map<tree_operand_hash,
125 std::pair<stmt_vec_info, innermost_loop_behavior *> >
126 vec_base_alignments;
127
128/* Represents elements [START, START + LENGTH) of cyclical array OPS*
129 (i.e. OPS repeated to give at least START + LENGTH elements) */
130struct vect_scalar_ops_slice
131{
132 tree op (unsigned int i) const;
133 bool all_same_p () const;
134
135 vec<tree> *ops;
136 unsigned int start;
137 unsigned int length;
138};
139
140/* Return element I of the slice. */
141inline tree
142vect_scalar_ops_slice::op (unsigned int i) const
143{
144 return (*ops)[(i + start) % ops->length ()];
145}
146
147/* Hash traits for vect_scalar_ops_slice. */
148struct vect_scalar_ops_slice_hash : typed_noop_remove<vect_scalar_ops_slice>
149{
150 typedef vect_scalar_ops_slice value_type;
151 typedef vect_scalar_ops_slice compare_type;
152
153 static const bool empty_zero_p = true;
154
155 static void mark_deleted (value_type &s) { s.length = ~0U; }
156 static void mark_empty (value_type &s) { s.length = 0; }
157 static bool is_deleted (const value_type &s) { return s.length == ~0U; }
158 static bool is_empty (const value_type &s) { return s.length == 0; }
159 static hashval_t hash (const value_type &);
160 static bool equal (const value_type &, const compare_type &);
161};
162
163/************************************************************************
164 SLP
165 ************************************************************************/
166typedef vec<std::pair<unsigned, unsigned> > lane_permutation_t;
167typedef auto_vec<std::pair<unsigned, unsigned>, 16> auto_lane_permutation_t;
168typedef vec<unsigned> load_permutation_t;
169typedef auto_vec<unsigned, 16> auto_load_permutation_t;
170
171/* A computation tree of an SLP instance. Each node corresponds to a group of
172 stmts to be packed in a SIMD stmt. */
173struct _slp_tree {
174 _slp_tree ();
175 ~_slp_tree ();
176
177 void push_vec_def (gimple *def);
178 void push_vec_def (tree def) { vec_defs.quick_push (obj: def); }
179
180 /* Nodes that contain def-stmts of this node statements operands. */
181 vec<slp_tree> children;
182
183 /* A group of scalar stmts to be vectorized together. */
184 vec<stmt_vec_info> stmts;
185 /* A group of scalar operands to be vectorized together. */
186 vec<tree> ops;
187 /* The representative that should be used for analysis and
188 code generation. */
189 stmt_vec_info representative;
190
191 /* Load permutation relative to the stores, NULL if there is no
192 permutation. */
193 load_permutation_t load_permutation;
194 /* Lane permutation of the operands scalar lanes encoded as pairs
195 of { operand number, lane number }. The number of elements
196 denotes the number of output lanes. */
197 lane_permutation_t lane_permutation;
198
199 /* Selected SIMD clone's function info. First vector element
200 is SIMD clone's function decl, followed by a pair of trees (base + step)
201 for linear arguments (pair of NULLs for other arguments). */
202 vec<tree> simd_clone_info;
203
204 tree vectype;
205 /* Vectorized defs. */
206 vec<tree> vec_defs;
207 /* Number of vector stmts that are created to replace the group of scalar
208 stmts. It is calculated during the transformation phase as the number of
209 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
210 divided by vector size. */
211 unsigned int vec_stmts_size;
212
213 /* Reference count in the SLP graph. */
214 unsigned int refcnt;
215 /* The maximum number of vector elements for the subtree rooted
216 at this node. */
217 poly_uint64 max_nunits;
218 /* The DEF type of this node. */
219 enum vect_def_type def_type;
220 /* The number of scalar lanes produced by this node. */
221 unsigned int lanes;
222 /* The operation of this node. */
223 enum tree_code code;
224
225 int vertex;
226
227 /* If not NULL this is a cached failed SLP discovery attempt with
228 the lanes that failed during SLP discovery as 'false'. This is
229 a copy of the matches array. */
230 bool *failed;
231
232 /* Allocate from slp_tree_pool. */
233 static void *operator new (size_t);
234
235 /* Return memory to slp_tree_pool. */
236 static void operator delete (void *, size_t);
237
238 /* Linked list of nodes to release when we free the slp_tree_pool. */
239 slp_tree next_node;
240 slp_tree prev_node;
241};
242
243/* The enum describes the type of operations that an SLP instance
244 can perform. */
245
246enum slp_instance_kind {
247 slp_inst_kind_store,
248 slp_inst_kind_reduc_group,
249 slp_inst_kind_reduc_chain,
250 slp_inst_kind_bb_reduc,
251 slp_inst_kind_ctor
252};
253
254/* SLP instance is a sequence of stmts in a loop that can be packed into
255 SIMD stmts. */
256typedef class _slp_instance {
257public:
258 /* The root of SLP tree. */
259 slp_tree root;
260
261 /* For vector constructors, the constructor stmt that the SLP tree is built
262 from, NULL otherwise. */
263 vec<stmt_vec_info> root_stmts;
264
265 /* For slp_inst_kind_bb_reduc the defs that were not vectorized, NULL
266 otherwise. */
267 vec<tree> remain_defs;
268
269 /* The unrolling factor required to vectorized this SLP instance. */
270 poly_uint64 unrolling_factor;
271
272 /* The group of nodes that contain loads of this SLP instance. */
273 vec<slp_tree> loads;
274
275 /* The SLP node containing the reduction PHIs. */
276 slp_tree reduc_phis;
277
278 /* Vector cost of this entry to the SLP graph. */
279 stmt_vector_for_cost cost_vec;
280
281 /* If this instance is the main entry of a subgraph the set of
282 entries into the same subgraph, including itself. */
283 vec<_slp_instance *> subgraph_entries;
284
285 /* The type of operation the SLP instance is performing. */
286 slp_instance_kind kind;
287
288 dump_user_location_t location () const;
289} *slp_instance;
290
291
292/* Access Functions. */
293#define SLP_INSTANCE_TREE(S) (S)->root
294#define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
295#define SLP_INSTANCE_LOADS(S) (S)->loads
296#define SLP_INSTANCE_ROOT_STMTS(S) (S)->root_stmts
297#define SLP_INSTANCE_REMAIN_DEFS(S) (S)->remain_defs
298#define SLP_INSTANCE_KIND(S) (S)->kind
299
300#define SLP_TREE_CHILDREN(S) (S)->children
301#define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
302#define SLP_TREE_SCALAR_OPS(S) (S)->ops
303#define SLP_TREE_REF_COUNT(S) (S)->refcnt
304#define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
305#define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
306#define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
307#define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
308#define SLP_TREE_SIMD_CLONE_INFO(S) (S)->simd_clone_info
309#define SLP_TREE_DEF_TYPE(S) (S)->def_type
310#define SLP_TREE_VECTYPE(S) (S)->vectype
311#define SLP_TREE_REPRESENTATIVE(S) (S)->representative
312#define SLP_TREE_LANES(S) (S)->lanes
313#define SLP_TREE_CODE(S) (S)->code
314
315enum vect_partial_vector_style {
316 vect_partial_vectors_none,
317 vect_partial_vectors_while_ult,
318 vect_partial_vectors_avx512,
319 vect_partial_vectors_len
320};
321
322/* Key for map that records association between
323 scalar conditions and corresponding loop mask, and
324 is populated by vect_record_loop_mask. */
325
326struct scalar_cond_masked_key
327{
328 scalar_cond_masked_key (tree t, unsigned ncopies_)
329 : ncopies (ncopies_)
330 {
331 get_cond_ops_from_tree (t);
332 }
333
334 void get_cond_ops_from_tree (tree);
335
336 unsigned ncopies;
337 bool inverted_p;
338 tree_code code;
339 tree op0;
340 tree op1;
341};
342
343template<>
344struct default_hash_traits<scalar_cond_masked_key>
345{
346 typedef scalar_cond_masked_key compare_type;
347 typedef scalar_cond_masked_key value_type;
348
349 static inline hashval_t
350 hash (value_type v)
351 {
352 inchash::hash h;
353 h.add_int (v: v.code);
354 inchash::add_expr (v.op0, h, 0);
355 inchash::add_expr (v.op1, h, 0);
356 h.add_int (v: v.ncopies);
357 h.add_flag (flag: v.inverted_p);
358 return h.end ();
359 }
360
361 static inline bool
362 equal (value_type existing, value_type candidate)
363 {
364 return (existing.ncopies == candidate.ncopies
365 && existing.code == candidate.code
366 && existing.inverted_p == candidate.inverted_p
367 && operand_equal_p (existing.op0, candidate.op0, flags: 0)
368 && operand_equal_p (existing.op1, candidate.op1, flags: 0));
369 }
370
371 static const bool empty_zero_p = true;
372
373 static inline void
374 mark_empty (value_type &v)
375 {
376 v.ncopies = 0;
377 v.inverted_p = false;
378 }
379
380 static inline bool
381 is_empty (value_type v)
382 {
383 return v.ncopies == 0;
384 }
385
386 static inline void mark_deleted (value_type &) {}
387
388 static inline bool is_deleted (const value_type &)
389 {
390 return false;
391 }
392
393 static inline void remove (value_type &) {}
394};
395
396typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
397
398/* Key and map that records association between vector conditions and
399 corresponding loop mask, and is populated by prepare_vec_mask. */
400
401typedef pair_hash<tree_operand_hash, tree_operand_hash> tree_cond_mask_hash;
402typedef hash_set<tree_cond_mask_hash> vec_cond_masked_set_type;
403
404/* Describes two objects whose addresses must be unequal for the vectorized
405 loop to be valid. */
406typedef std::pair<tree, tree> vec_object_pair;
407
408/* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
409 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
410class vec_lower_bound {
411public:
412 vec_lower_bound () {}
413 vec_lower_bound (tree e, bool u, poly_uint64 m)
414 : expr (e), unsigned_p (u), min_value (m) {}
415
416 tree expr;
417 bool unsigned_p;
418 poly_uint64 min_value;
419};
420
421/* Vectorizer state shared between different analyses like vector sizes
422 of the same CFG region. */
423class vec_info_shared {
424public:
425 vec_info_shared();
426 ~vec_info_shared();
427
428 void save_datarefs();
429 void check_datarefs();
430
431 /* The number of scalar stmts. */
432 unsigned n_stmts;
433
434 /* All data references. Freed by free_data_refs, so not an auto_vec. */
435 vec<data_reference_p> datarefs;
436 vec<data_reference> datarefs_copy;
437
438 /* The loop nest in which the data dependences are computed. */
439 auto_vec<loop_p> loop_nest;
440
441 /* All data dependences. Freed by free_dependence_relations, so not
442 an auto_vec. */
443 vec<ddr_p> ddrs;
444};
445
446/* Vectorizer state common between loop and basic-block vectorization. */
447class vec_info {
448public:
449 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
450 enum vec_kind { bb, loop };
451
452 vec_info (vec_kind, vec_info_shared *);
453 ~vec_info ();
454
455 stmt_vec_info add_stmt (gimple *);
456 stmt_vec_info add_pattern_stmt (gimple *, stmt_vec_info);
457 stmt_vec_info lookup_stmt (gimple *);
458 stmt_vec_info lookup_def (tree);
459 stmt_vec_info lookup_single_use (tree);
460 class dr_vec_info *lookup_dr (data_reference *);
461 void move_dr (stmt_vec_info, stmt_vec_info);
462 void remove_stmt (stmt_vec_info);
463 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
464 void insert_on_entry (stmt_vec_info, gimple *);
465 void insert_seq_on_entry (stmt_vec_info, gimple_seq);
466
467 /* The type of vectorization. */
468 vec_kind kind;
469
470 /* Shared vectorizer state. */
471 vec_info_shared *shared;
472
473 /* The mapping of GIMPLE UID to stmt_vec_info. */
474 vec<stmt_vec_info> stmt_vec_infos;
475 /* Whether the above mapping is complete. */
476 bool stmt_vec_info_ro;
477
478 /* Whether we've done a transform we think OK to not update virtual
479 SSA form. */
480 bool any_known_not_updated_vssa;
481
482 /* The SLP graph. */
483 auto_vec<slp_instance> slp_instances;
484
485 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
486 known alignment for that base. */
487 vec_base_alignments base_alignments;
488
489 /* All interleaving chains of stores, represented by the first
490 stmt in the chain. */
491 auto_vec<stmt_vec_info> grouped_stores;
492
493 /* The set of vector modes used in the vectorized region. */
494 mode_set used_vector_modes;
495
496 /* The argument we should pass to related_vector_mode when looking up
497 the vector mode for a scalar mode, or VOIDmode if we haven't yet
498 made any decisions about which vector modes to use. */
499 machine_mode vector_mode;
500
501private:
502 stmt_vec_info new_stmt_vec_info (gimple *stmt);
503 void set_vinfo_for_stmt (gimple *, stmt_vec_info, bool = true);
504 void free_stmt_vec_infos ();
505 void free_stmt_vec_info (stmt_vec_info);
506};
507
508class _loop_vec_info;
509class _bb_vec_info;
510
511template<>
512template<>
513inline bool
514is_a_helper <_loop_vec_info *>::test (vec_info *i)
515{
516 return i->kind == vec_info::loop;
517}
518
519template<>
520template<>
521inline bool
522is_a_helper <_bb_vec_info *>::test (vec_info *i)
523{
524 return i->kind == vec_info::bb;
525}
526
527/* In general, we can divide the vector statements in a vectorized loop
528 into related groups ("rgroups") and say that for each rgroup there is
529 some nS such that the rgroup operates on nS values from one scalar
530 iteration followed by nS values from the next. That is, if VF is the
531 vectorization factor of the loop, the rgroup operates on a sequence:
532
533 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
534
535 where (i,j) represents a scalar value with index j in a scalar
536 iteration with index i.
537
538 [ We use the term "rgroup" to emphasise that this grouping isn't
539 necessarily the same as the grouping of statements used elsewhere.
540 For example, if we implement a group of scalar loads using gather
541 loads, we'll use a separate gather load for each scalar load, and
542 thus each gather load will belong to its own rgroup. ]
543
544 In general this sequence will occupy nV vectors concatenated
545 together. If these vectors have nL lanes each, the total number
546 of scalar values N is given by:
547
548 N = nS * VF = nV * nL
549
550 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
551 are compile-time constants but VF and nL can be variable (if the target
552 supports variable-length vectors).
553
554 In classical vectorization, each iteration of the vector loop would
555 handle exactly VF iterations of the original scalar loop. However,
556 in vector loops that are able to operate on partial vectors, a
557 particular iteration of the vector loop might handle fewer than VF
558 iterations of the scalar loop. The vector lanes that correspond to
559 iterations of the scalar loop are said to be "active" and the other
560 lanes are said to be "inactive".
561
562 In such vector loops, many rgroups need to be controlled to ensure
563 that they have no effect for the inactive lanes. Conceptually, each
564 such rgroup needs a sequence of booleans in the same order as above,
565 but with each (i,j) replaced by a boolean that indicates whether
566 iteration i is active. This sequence occupies nV vector controls
567 that again have nL lanes each. Thus the control sequence as a whole
568 consists of VF independent booleans that are each repeated nS times.
569
570 Taking mask-based approach as a partially-populated vectors example.
571 We make the simplifying assumption that if a sequence of nV masks is
572 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
573 VIEW_CONVERTing it. This holds for all current targets that support
574 fully-masked loops. For example, suppose the scalar loop is:
575
576 float *f;
577 double *d;
578 for (int i = 0; i < n; ++i)
579 {
580 f[i * 2 + 0] += 1.0f;
581 f[i * 2 + 1] += 2.0f;
582 d[i] += 3.0;
583 }
584
585 and suppose that vectors have 256 bits. The vectorized f accesses
586 will belong to one rgroup and the vectorized d access to another:
587
588 f rgroup: nS = 2, nV = 1, nL = 8
589 d rgroup: nS = 1, nV = 1, nL = 4
590 VF = 4
591
592 [ In this simple example the rgroups do correspond to the normal
593 SLP grouping scheme. ]
594
595 If only the first three lanes are active, the masks we need are:
596
597 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
598 d rgroup: 1 | 1 | 1 | 0
599
600 Here we can use a mask calculated for f's rgroup for d's, but not
601 vice versa.
602
603 Thus for each value of nV, it is enough to provide nV masks, with the
604 mask being calculated based on the highest nL (or, equivalently, based
605 on the highest nS) required by any rgroup with that nV. We therefore
606 represent the entire collection of masks as a two-level table, with the
607 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
608 the second being indexed by the mask index 0 <= i < nV. */
609
610/* The controls (like masks or lengths) needed by rgroups with nV vectors,
611 according to the description above. */
612struct rgroup_controls {
613 /* The largest nS for all rgroups that use these controls.
614 For vect_partial_vectors_avx512 this is the constant nscalars_per_iter
615 for all members of the group. */
616 unsigned int max_nscalars_per_iter;
617
618 /* For the largest nS recorded above, the loop controls divide each scalar
619 into FACTOR equal-sized pieces. This is useful if we need to split
620 element-based accesses into byte-based accesses.
621 For vect_partial_vectors_avx512 this records nV instead. */
622 unsigned int factor;
623
624 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
625 For mask-based controls, it is the type of the masks in CONTROLS.
626 For length-based controls, it can be any vector type that has the
627 specified number of elements; the type of the elements doesn't matter. */
628 tree type;
629
630 /* When there is no uniformly used LOOP_VINFO_RGROUP_COMPARE_TYPE this
631 is the rgroup specific type used. */
632 tree compare_type;
633
634 /* A vector of nV controls, in iteration order. */
635 vec<tree> controls;
636
637 /* In case of len_load and len_store with a bias there is only one
638 rgroup. This holds the adjusted loop length for the this rgroup. */
639 tree bias_adjusted_ctrl;
640};
641
642struct vec_loop_masks
643{
644 bool is_empty () const { return mask_set.is_empty (); }
645
646 /* Set to record vectype, nvector pairs. */
647 hash_set<pair_hash <nofree_ptr_hash <tree_node>,
648 int_hash<unsigned, 0>>> mask_set;
649
650 /* rgroup_controls used for the partial vector scheme. */
651 auto_vec<rgroup_controls> rgc_vec;
652};
653
654typedef auto_vec<rgroup_controls> vec_loop_lens;
655
656typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
657
658/* Information about a reduction accumulator from the main loop that could
659 conceivably be reused as the input to a reduction in an epilogue loop. */
660struct vect_reusable_accumulator {
661 /* The final value of the accumulator, which forms the input to the
662 reduction operation. */
663 tree reduc_input;
664
665 /* The stmt_vec_info that describes the reduction (i.e. the one for
666 which is_reduc_info is true). */
667 stmt_vec_info reduc_info;
668};
669
670/*-----------------------------------------------------------------*/
671/* Info on vectorized loops. */
672/*-----------------------------------------------------------------*/
673typedef class _loop_vec_info : public vec_info {
674public:
675 _loop_vec_info (class loop *, vec_info_shared *);
676 ~_loop_vec_info ();
677
678 /* The loop to which this info struct refers to. */
679 class loop *loop;
680
681 /* The loop basic blocks. */
682 basic_block *bbs;
683
684 /* Number of latch executions. */
685 tree num_itersm1;
686 /* Number of iterations. */
687 tree num_iters;
688 /* Number of iterations of the original loop. */
689 tree num_iters_unchanged;
690 /* Condition under which this loop is analyzed and versioned. */
691 tree num_iters_assumptions;
692
693 /* The cost of the vector code. */
694 class vector_costs *vector_costs;
695
696 /* The cost of the scalar code. */
697 class vector_costs *scalar_costs;
698
699 /* Threshold of number of iterations below which vectorization will not be
700 performed. It is calculated from MIN_PROFITABLE_ITERS and
701 param_min_vect_loop_bound. */
702 unsigned int th;
703
704 /* When applying loop versioning, the vector form should only be used
705 if the number of scalar iterations is >= this value, on top of all
706 the other requirements. Ignored when loop versioning is not being
707 used. */
708 poly_uint64 versioning_threshold;
709
710 /* Unrolling factor */
711 poly_uint64 vectorization_factor;
712
713 /* If this loop is an epilogue loop whose main loop can be skipped,
714 MAIN_LOOP_EDGE is the edge from the main loop to this loop's
715 preheader. SKIP_MAIN_LOOP_EDGE is then the edge that skips the
716 main loop and goes straight to this loop's preheader.
717
718 Both fields are null otherwise. */
719 edge main_loop_edge;
720 edge skip_main_loop_edge;
721
722 /* If this loop is an epilogue loop that might be skipped after executing
723 the main loop, this edge is the one that skips the epilogue. */
724 edge skip_this_loop_edge;
725
726 /* The vectorized form of a standard reduction replaces the original
727 scalar code's final result (a loop-closed SSA PHI) with the result
728 of a vector-to-scalar reduction operation. After vectorization,
729 this variable maps these vector-to-scalar results to information
730 about the reductions that generated them. */
731 hash_map<tree, vect_reusable_accumulator> reusable_accumulators;
732
733 /* The number of times that the target suggested we unroll the vector loop
734 in order to promote more ILP. This value will be used to re-analyze the
735 loop for vectorization and if successful the value will be folded into
736 vectorization_factor (and therefore exactly divides
737 vectorization_factor). */
738 unsigned int suggested_unroll_factor;
739
740 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
741 if there is no particular limit. */
742 unsigned HOST_WIDE_INT max_vectorization_factor;
743
744 /* The masks that a fully-masked loop should use to avoid operating
745 on inactive scalars. */
746 vec_loop_masks masks;
747
748 /* The lengths that a loop with length should use to avoid operating
749 on inactive scalars. */
750 vec_loop_lens lens;
751
752 /* Set of scalar conditions that have loop mask applied. */
753 scalar_cond_masked_set_type scalar_cond_masked_set;
754
755 /* Set of vector conditions that have loop mask applied. */
756 vec_cond_masked_set_type vec_cond_masked_set;
757
758 /* If we are using a loop mask to align memory addresses, this variable
759 contains the number of vector elements that we should skip in the
760 first iteration of the vector loop (i.e. the number of leading
761 elements that should be false in the first mask). */
762 tree mask_skip_niters;
763
764 /* The type that the loop control IV should be converted to before
765 testing which of the VF scalars are active and inactive.
766 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
767 tree rgroup_compare_type;
768
769 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
770 the loop should not be vectorized, if constant non-zero, simd_if_cond
771 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
772 should be versioned on that condition, using scalar loop if the condition
773 is false and vectorized loop otherwise. */
774 tree simd_if_cond;
775
776 /* The type that the vector loop control IV should have when
777 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
778 tree rgroup_iv_type;
779
780 /* The style used for implementing partial vectors when
781 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
782 vect_partial_vector_style partial_vector_style;
783
784 /* Unknown DRs according to which loop was peeled. */
785 class dr_vec_info *unaligned_dr;
786
787 /* peeling_for_alignment indicates whether peeling for alignment will take
788 place, and what the peeling factor should be:
789 peeling_for_alignment = X means:
790 If X=0: Peeling for alignment will not be applied.
791 If X>0: Peel first X iterations.
792 If X=-1: Generate a runtime test to calculate the number of iterations
793 to be peeled, using the dataref recorded in the field
794 unaligned_dr. */
795 int peeling_for_alignment;
796
797 /* The mask used to check the alignment of pointers or arrays. */
798 int ptr_mask;
799
800 /* Data Dependence Relations defining address ranges that are candidates
801 for a run-time aliasing check. */
802 auto_vec<ddr_p> may_alias_ddrs;
803
804 /* Data Dependence Relations defining address ranges together with segment
805 lengths from which the run-time aliasing check is built. */
806 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
807
808 /* Check that the addresses of each pair of objects is unequal. */
809 auto_vec<vec_object_pair> check_unequal_addrs;
810
811 /* List of values that are required to be nonzero. This is used to check
812 whether things like "x[i * n] += 1;" are safe and eventually gets added
813 to the checks for lower bounds below. */
814 auto_vec<tree> check_nonzero;
815
816 /* List of values that need to be checked for a minimum value. */
817 auto_vec<vec_lower_bound> lower_bounds;
818
819 /* Statements in the loop that have data references that are candidates for a
820 runtime (loop versioning) misalignment check. */
821 auto_vec<stmt_vec_info> may_misalign_stmts;
822
823 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
824 auto_vec<stmt_vec_info> reductions;
825
826 /* All reduction chains in the loop, represented by the first
827 stmt in the chain. */
828 auto_vec<stmt_vec_info> reduction_chains;
829
830 /* Cost vector for a single scalar iteration. */
831 auto_vec<stmt_info_for_cost> scalar_cost_vec;
832
833 /* Map of IV base/step expressions to inserted name in the preheader. */
834 hash_map<tree_operand_hash, tree> *ivexpr_map;
835
836 /* Map of OpenMP "omp simd array" scan variables to corresponding
837 rhs of the store of the initializer. */
838 hash_map<tree, tree> *scan_map;
839
840 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
841 applied to the loop, i.e., no unrolling is needed, this is 1. */
842 poly_uint64 slp_unrolling_factor;
843
844 /* The factor used to over weight those statements in an inner loop
845 relative to the loop being vectorized. */
846 unsigned int inner_loop_cost_factor;
847
848 /* Is the loop vectorizable? */
849 bool vectorizable;
850
851 /* Records whether we still have the option of vectorizing this loop
852 using partially-populated vectors; in other words, whether it is
853 still possible for one iteration of the vector loop to handle
854 fewer than VF scalars. */
855 bool can_use_partial_vectors_p;
856
857 /* True if we've decided to use partially-populated vectors, so that
858 the vector loop can handle fewer than VF scalars. */
859 bool using_partial_vectors_p;
860
861 /* True if we've decided to use a decrementing loop control IV that counts
862 scalars. This can be done for any loop that:
863
864 (a) uses length "controls"; and
865 (b) can iterate more than once. */
866 bool using_decrementing_iv_p;
867
868 /* True if we've decided to use output of select_vl to adjust IV of
869 both loop control and data reference pointer. This is only true
870 for single-rgroup control. */
871 bool using_select_vl_p;
872
873 /* True if we've decided to use partially-populated vectors for the
874 epilogue of loop. */
875 bool epil_using_partial_vectors_p;
876
877 /* The bias for len_load and len_store. For now, only 0 and -1 are
878 supported. -1 must be used when a backend does not support
879 len_load/len_store with a length of zero. */
880 signed char partial_load_store_bias;
881
882 /* When we have grouped data accesses with gaps, we may introduce invalid
883 memory accesses. We peel the last iteration of the loop to prevent
884 this. */
885 bool peeling_for_gaps;
886
887 /* When the number of iterations is not a multiple of the vector size
888 we need to peel off iterations at the end to form an epilogue loop. */
889 bool peeling_for_niter;
890
891 /* List of loop additional IV conditionals found in the loop. */
892 auto_vec<gcond *> conds;
893
894 /* Main loop IV cond. */
895 gcond* loop_iv_cond;
896
897 /* True if there are no loop carried data dependencies in the loop.
898 If loop->safelen <= 1, then this is always true, either the loop
899 didn't have any loop carried data dependencies, or the loop is being
900 vectorized guarded with some runtime alias checks, or couldn't
901 be vectorized at all, but then this field shouldn't be used.
902 For loop->safelen >= 2, the user has asserted that there are no
903 backward dependencies, but there still could be loop carried forward
904 dependencies in such loops. This flag will be false if normal
905 vectorizer data dependency analysis would fail or require versioning
906 for alias, but because of loop->safelen >= 2 it has been vectorized
907 even without versioning for alias. E.g. in:
908 #pragma omp simd
909 for (int i = 0; i < m; i++)
910 a[i] = a[i + k] * c;
911 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
912 DTRT even for k > 0 && k < m, but without safelen we would not
913 vectorize this, so this field would be false. */
914 bool no_data_dependencies;
915
916 /* Mark loops having masked stores. */
917 bool has_mask_store;
918
919 /* Queued scaling factor for the scalar loop. */
920 profile_probability scalar_loop_scaling;
921
922 /* If if-conversion versioned this loop before conversion, this is the
923 loop version without if-conversion. */
924 class loop *scalar_loop;
925
926 /* For loops being epilogues of already vectorized loops
927 this points to the original vectorized loop. Otherwise NULL. */
928 _loop_vec_info *orig_loop_info;
929
930 /* Used to store loop_vec_infos of epilogues of this loop during
931 analysis. */
932 vec<_loop_vec_info *> epilogue_vinfos;
933
934 /* The controlling loop IV for the current loop when vectorizing. This IV
935 controls the natural exits of the loop. */
936 edge vec_loop_iv_exit;
937
938 /* The controlling loop IV for the epilogue loop when vectorizing. This IV
939 controls the natural exits of the loop. */
940 edge vec_epilogue_loop_iv_exit;
941
942 /* The controlling loop IV for the scalar loop being vectorized. This IV
943 controls the natural exits of the loop. */
944 edge scalar_loop_iv_exit;
945} *loop_vec_info;
946
947/* Access Functions. */
948#define LOOP_VINFO_LOOP(L) (L)->loop
949#define LOOP_VINFO_IV_EXIT(L) (L)->vec_loop_iv_exit
950#define LOOP_VINFO_EPILOGUE_IV_EXIT(L) (L)->vec_epilogue_loop_iv_exit
951#define LOOP_VINFO_SCALAR_IV_EXIT(L) (L)->scalar_loop_iv_exit
952#define LOOP_VINFO_BBS(L) (L)->bbs
953#define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
954#define LOOP_VINFO_NITERS(L) (L)->num_iters
955/* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
956 prologue peeling retain total unchanged scalar loop iterations for
957 cost model. */
958#define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
959#define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
960#define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
961#define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
962#define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
963#define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
964#define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
965#define LOOP_VINFO_USING_DECREMENTING_IV_P(L) (L)->using_decrementing_iv_p
966#define LOOP_VINFO_USING_SELECT_VL_P(L) (L)->using_select_vl_p
967#define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
968 (L)->epil_using_partial_vectors_p
969#define LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS(L) (L)->partial_load_store_bias
970#define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
971#define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
972#define LOOP_VINFO_MASKS(L) (L)->masks
973#define LOOP_VINFO_LENS(L) (L)->lens
974#define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
975#define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
976#define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
977#define LOOP_VINFO_PARTIAL_VECTORS_STYLE(L) (L)->partial_vector_style
978#define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
979#define LOOP_VINFO_N_STMTS(L) (L)->shared->n_stmts
980#define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
981#define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
982#define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
983#define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
984#define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
985#define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
986#define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
987#define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
988#define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
989#define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
990#define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
991#define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
992#define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
993#define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
994#define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
995#define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
996#define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
997#define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
998#define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
999#define LOOP_VINFO_LOOP_CONDS(L) (L)->conds
1000#define LOOP_VINFO_LOOP_IV_COND(L) (L)->loop_iv_cond
1001#define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
1002#define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
1003#define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
1004#define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
1005#define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
1006#define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
1007#define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
1008#define LOOP_VINFO_INNER_LOOP_COST_FACTOR(L) (L)->inner_loop_cost_factor
1009
1010#define LOOP_VINFO_FULLY_MASKED_P(L) \
1011 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
1012 && !LOOP_VINFO_MASKS (L).is_empty ())
1013
1014#define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
1015 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
1016 && !LOOP_VINFO_LENS (L).is_empty ())
1017
1018#define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
1019 ((L)->may_misalign_stmts.length () > 0)
1020#define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
1021 ((L)->comp_alias_ddrs.length () > 0 \
1022 || (L)->check_unequal_addrs.length () > 0 \
1023 || (L)->lower_bounds.length () > 0)
1024#define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
1025 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
1026#define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
1027 (LOOP_VINFO_SIMD_IF_COND (L))
1028#define LOOP_REQUIRES_VERSIONING(L) \
1029 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
1030 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
1031 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
1032 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
1033
1034#define LOOP_VINFO_NITERS_KNOWN_P(L) \
1035 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
1036
1037#define LOOP_VINFO_EPILOGUE_P(L) \
1038 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
1039
1040#define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
1041 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
1042
1043/* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
1044 value signifies success, and a NULL value signifies failure, supporting
1045 propagating an opt_problem * describing the failure back up the call
1046 stack. */
1047typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
1048
1049inline loop_vec_info
1050loop_vec_info_for_loop (class loop *loop)
1051{
1052 return (loop_vec_info) loop->aux;
1053}
1054
1055struct slp_root
1056{
1057 slp_root (slp_instance_kind kind_, vec<stmt_vec_info> stmts_,
1058 vec<stmt_vec_info> roots_, vec<tree> remain_ = vNULL)
1059 : kind(kind_), stmts(stmts_), roots(roots_), remain(remain_) {}
1060 slp_instance_kind kind;
1061 vec<stmt_vec_info> stmts;
1062 vec<stmt_vec_info> roots;
1063 vec<tree> remain;
1064};
1065
1066typedef class _bb_vec_info : public vec_info
1067{
1068public:
1069 _bb_vec_info (vec<basic_block> bbs, vec_info_shared *);
1070 ~_bb_vec_info ();
1071
1072 /* The region we are operating on. bbs[0] is the entry, excluding
1073 its PHI nodes. In the future we might want to track an explicit
1074 entry edge to cover bbs[0] PHI nodes and have a region entry
1075 insert location. */
1076 vec<basic_block> bbs;
1077
1078 vec<slp_root> roots;
1079} *bb_vec_info;
1080
1081#define BB_VINFO_BB(B) (B)->bb
1082#define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
1083#define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
1084#define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
1085#define BB_VINFO_DDRS(B) (B)->shared->ddrs
1086
1087/*-----------------------------------------------------------------*/
1088/* Info on vectorized defs. */
1089/*-----------------------------------------------------------------*/
1090enum stmt_vec_info_type {
1091 undef_vec_info_type = 0,
1092 load_vec_info_type,
1093 store_vec_info_type,
1094 shift_vec_info_type,
1095 op_vec_info_type,
1096 call_vec_info_type,
1097 call_simd_clone_vec_info_type,
1098 assignment_vec_info_type,
1099 condition_vec_info_type,
1100 comparison_vec_info_type,
1101 reduc_vec_info_type,
1102 induc_vec_info_type,
1103 type_promotion_vec_info_type,
1104 type_demotion_vec_info_type,
1105 type_conversion_vec_info_type,
1106 cycle_phi_info_type,
1107 lc_phi_info_type,
1108 phi_info_type,
1109 recurr_info_type,
1110 loop_exit_ctrl_vec_info_type
1111};
1112
1113/* Indicates whether/how a variable is used in the scope of loop/basic
1114 block. */
1115enum vect_relevant {
1116 vect_unused_in_scope = 0,
1117
1118 /* The def is only used outside the loop. */
1119 vect_used_only_live,
1120 /* The def is in the inner loop, and the use is in the outer loop, and the
1121 use is a reduction stmt. */
1122 vect_used_in_outer_by_reduction,
1123 /* The def is in the inner loop, and the use is in the outer loop (and is
1124 not part of reduction). */
1125 vect_used_in_outer,
1126
1127 /* defs that feed computations that end up (only) in a reduction. These
1128 defs may be used by non-reduction stmts, but eventually, any
1129 computations/values that are affected by these defs are used to compute
1130 a reduction (i.e. don't get stored to memory, for example). We use this
1131 to identify computations that we can change the order in which they are
1132 computed. */
1133 vect_used_by_reduction,
1134
1135 vect_used_in_scope
1136};
1137
1138/* The type of vectorization that can be applied to the stmt: regular loop-based
1139 vectorization; pure SLP - the stmt is a part of SLP instances and does not
1140 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
1141 a part of SLP instance and also must be loop-based vectorized, since it has
1142 uses outside SLP sequences.
1143
1144 In the loop context the meanings of pure and hybrid SLP are slightly
1145 different. By saying that pure SLP is applied to the loop, we mean that we
1146 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
1147 vectorized without doing any conceptual unrolling, cause we don't pack
1148 together stmts from different iterations, only within a single iteration.
1149 Loop hybrid SLP means that we exploit both intra-iteration and
1150 inter-iteration parallelism (e.g., number of elements in the vector is 4
1151 and the slp-group-size is 2, in which case we don't have enough parallelism
1152 within an iteration, so we obtain the rest of the parallelism from subsequent
1153 iterations by unrolling the loop by 2). */
1154enum slp_vect_type {
1155 loop_vect = 0,
1156 pure_slp,
1157 hybrid
1158};
1159
1160/* Says whether a statement is a load, a store of a vectorized statement
1161 result, or a store of an invariant value. */
1162enum vec_load_store_type {
1163 VLS_LOAD,
1164 VLS_STORE,
1165 VLS_STORE_INVARIANT
1166};
1167
1168/* Describes how we're going to vectorize an individual load or store,
1169 or a group of loads or stores. */
1170enum vect_memory_access_type {
1171 /* An access to an invariant address. This is used only for loads. */
1172 VMAT_INVARIANT,
1173
1174 /* A simple contiguous access. */
1175 VMAT_CONTIGUOUS,
1176
1177 /* A contiguous access that goes down in memory rather than up,
1178 with no additional permutation. This is used only for stores
1179 of invariants. */
1180 VMAT_CONTIGUOUS_DOWN,
1181
1182 /* A simple contiguous access in which the elements need to be permuted
1183 after loading or before storing. Only used for loop vectorization;
1184 SLP uses separate permutes. */
1185 VMAT_CONTIGUOUS_PERMUTE,
1186
1187 /* A simple contiguous access in which the elements need to be reversed
1188 after loading or before storing. */
1189 VMAT_CONTIGUOUS_REVERSE,
1190
1191 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
1192 VMAT_LOAD_STORE_LANES,
1193
1194 /* An access in which each scalar element is loaded or stored
1195 individually. */
1196 VMAT_ELEMENTWISE,
1197
1198 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
1199 SLP accesses. Each unrolled iteration uses a contiguous load
1200 or store for the whole group, but the groups from separate iterations
1201 are combined in the same way as for VMAT_ELEMENTWISE. */
1202 VMAT_STRIDED_SLP,
1203
1204 /* The access uses gather loads or scatter stores. */
1205 VMAT_GATHER_SCATTER
1206};
1207
1208class dr_vec_info {
1209public:
1210 /* The data reference itself. */
1211 data_reference *dr;
1212 /* The statement that contains the data reference. */
1213 stmt_vec_info stmt;
1214 /* The analysis group this DR belongs to when doing BB vectorization.
1215 DRs of the same group belong to the same conditional execution context. */
1216 unsigned group;
1217 /* The misalignment in bytes of the reference, or -1 if not known. */
1218 int misalignment;
1219 /* The byte alignment that we'd ideally like the reference to have,
1220 and the value that misalignment is measured against. */
1221 poly_uint64 target_alignment;
1222 /* If true the alignment of base_decl needs to be increased. */
1223 bool base_misaligned;
1224 tree base_decl;
1225
1226 /* Stores current vectorized loop's offset. To be added to the DR's
1227 offset to calculate current offset of data reference. */
1228 tree offset;
1229};
1230
1231typedef struct data_reference *dr_p;
1232
1233class _stmt_vec_info {
1234public:
1235
1236 enum stmt_vec_info_type type;
1237
1238 /* Indicates whether this stmts is part of a computation whose result is
1239 used outside the loop. */
1240 bool live;
1241
1242 /* Stmt is part of some pattern (computation idiom) */
1243 bool in_pattern_p;
1244
1245 /* True if the statement was created during pattern recognition as
1246 part of the replacement for RELATED_STMT. This implies that the
1247 statement isn't part of any basic block, although for convenience
1248 its gimple_bb is the same as for RELATED_STMT. */
1249 bool pattern_stmt_p;
1250
1251 /* Is this statement vectorizable or should it be skipped in (partial)
1252 vectorization. */
1253 bool vectorizable;
1254
1255 /* The stmt to which this info struct refers to. */
1256 gimple *stmt;
1257
1258 /* The vector type to be used for the LHS of this statement. */
1259 tree vectype;
1260
1261 /* The vectorized stmts. */
1262 vec<gimple *> vec_stmts;
1263
1264 /* The following is relevant only for stmts that contain a non-scalar
1265 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1266 at most one such data-ref. */
1267
1268 dr_vec_info dr_aux;
1269
1270 /* Information about the data-ref relative to this loop
1271 nest (the loop that is being considered for vectorization). */
1272 innermost_loop_behavior dr_wrt_vec_loop;
1273
1274 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1275 this information is still available in vect_update_ivs_after_vectorizer
1276 where we may not be able to re-analyze the PHI nodes evolution as
1277 peeling for the prologue loop can make it unanalyzable. The evolution
1278 part is still correct after peeling, but the base may have changed from
1279 the version here. */
1280 tree loop_phi_evolution_base_unchanged;
1281 tree loop_phi_evolution_part;
1282 enum vect_induction_op_type loop_phi_evolution_type;
1283
1284 /* Used for various bookkeeping purposes, generally holding a pointer to
1285 some other stmt S that is in some way "related" to this stmt.
1286 Current use of this field is:
1287 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1288 true): S is the "pattern stmt" that represents (and replaces) the
1289 sequence of stmts that constitutes the pattern. Similarly, the
1290 related_stmt of the "pattern stmt" points back to this stmt (which is
1291 the last stmt in the original sequence of stmts that constitutes the
1292 pattern). */
1293 stmt_vec_info related_stmt;
1294
1295 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1296 The sequence is attached to the original statement rather than the
1297 pattern statement. */
1298 gimple_seq pattern_def_seq;
1299
1300 /* Selected SIMD clone's function info. First vector element
1301 is SIMD clone's function decl, followed by a pair of trees (base + step)
1302 for linear arguments (pair of NULLs for other arguments). */
1303 vec<tree> simd_clone_info;
1304
1305 /* Classify the def of this stmt. */
1306 enum vect_def_type def_type;
1307
1308 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1309 enum slp_vect_type slp_type;
1310
1311 /* Interleaving and reduction chains info. */
1312 /* First element in the group. */
1313 stmt_vec_info first_element;
1314 /* Pointer to the next element in the group. */
1315 stmt_vec_info next_element;
1316 /* The size of the group. */
1317 unsigned int size;
1318 /* For stores, number of stores from this group seen. We vectorize the last
1319 one. */
1320 unsigned int store_count;
1321 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1322 is 1. */
1323 unsigned int gap;
1324
1325 /* The minimum negative dependence distance this stmt participates in
1326 or zero if none. */
1327 unsigned int min_neg_dist;
1328
1329 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1330 of the loop induction variable and computation of array indexes. relevant
1331 indicates whether the stmt needs to be vectorized. */
1332 enum vect_relevant relevant;
1333
1334 /* For loads if this is a gather, for stores if this is a scatter. */
1335 bool gather_scatter_p;
1336
1337 /* True if this is an access with loop-invariant stride. */
1338 bool strided_p;
1339
1340 /* For both loads and stores. */
1341 unsigned simd_lane_access_p : 3;
1342
1343 /* Classifies how the load or store is going to be implemented
1344 for loop vectorization. */
1345 vect_memory_access_type memory_access_type;
1346
1347 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1348 tree induc_cond_initial_val;
1349
1350 /* If not NULL the value to be added to compute final reduction value. */
1351 tree reduc_epilogue_adjustment;
1352
1353 /* On a reduction PHI the reduction type as detected by
1354 vect_is_simple_reduction and vectorizable_reduction. */
1355 enum vect_reduction_type reduc_type;
1356
1357 /* The original reduction code, to be used in the epilogue. */
1358 code_helper reduc_code;
1359 /* An internal function we should use in the epilogue. */
1360 internal_fn reduc_fn;
1361
1362 /* On a stmt participating in the reduction the index of the operand
1363 on the reduction SSA cycle. */
1364 int reduc_idx;
1365
1366 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1367 On the def returned by vect_force_simple_reduction the
1368 corresponding PHI. */
1369 stmt_vec_info reduc_def;
1370
1371 /* The vector input type relevant for reduction vectorization. */
1372 tree reduc_vectype_in;
1373
1374 /* The vector type for performing the actual reduction. */
1375 tree reduc_vectype;
1376
1377 /* If IS_REDUC_INFO is true and if the vector code is performing
1378 N scalar reductions in parallel, this variable gives the initial
1379 scalar values of those N reductions. */
1380 vec<tree> reduc_initial_values;
1381
1382 /* If IS_REDUC_INFO is true and if the vector code is performing
1383 N scalar reductions in parallel, this variable gives the vectorized code's
1384 final (scalar) result for each of those N reductions. In other words,
1385 REDUC_SCALAR_RESULTS[I] replaces the original scalar code's loop-closed
1386 SSA PHI for reduction number I. */
1387 vec<tree> reduc_scalar_results;
1388
1389 /* Only meaningful if IS_REDUC_INFO. If non-null, the reduction is
1390 being performed by an epilogue loop and we have decided to reuse
1391 this accumulator from the main loop. */
1392 vect_reusable_accumulator *reused_accumulator;
1393
1394 /* Whether we force a single cycle PHI during reduction vectorization. */
1395 bool force_single_cycle;
1396
1397 /* Whether on this stmt reduction meta is recorded. */
1398 bool is_reduc_info;
1399
1400 /* If nonzero, the lhs of the statement could be truncated to this
1401 many bits without affecting any users of the result. */
1402 unsigned int min_output_precision;
1403
1404 /* If nonzero, all non-boolean input operands have the same precision,
1405 and they could each be truncated to this many bits without changing
1406 the result. */
1407 unsigned int min_input_precision;
1408
1409 /* If OPERATION_BITS is nonzero, the statement could be performed on
1410 an integer with the sign and number of bits given by OPERATION_SIGN
1411 and OPERATION_BITS without changing the result. */
1412 unsigned int operation_precision;
1413 signop operation_sign;
1414
1415 /* If the statement produces a boolean result, this value describes
1416 how we should choose the associated vector type. The possible
1417 values are:
1418
1419 - an integer precision N if we should use the vector mask type
1420 associated with N-bit integers. This is only used if all relevant
1421 input booleans also want the vector mask type for N-bit integers,
1422 or if we can convert them into that form by pattern-matching.
1423
1424 - ~0U if we considered choosing a vector mask type but decided
1425 to treat the boolean as a normal integer type instead.
1426
1427 - 0 otherwise. This means either that the operation isn't one that
1428 could have a vector mask type (and so should have a normal vector
1429 type instead) or that we simply haven't made a choice either way. */
1430 unsigned int mask_precision;
1431
1432 /* True if this is only suitable for SLP vectorization. */
1433 bool slp_vect_only_p;
1434
1435 /* True if this is a pattern that can only be handled by SLP
1436 vectorization. */
1437 bool slp_vect_pattern_only_p;
1438};
1439
1440/* Information about a gather/scatter call. */
1441struct gather_scatter_info {
1442 /* The internal function to use for the gather/scatter operation,
1443 or IFN_LAST if a built-in function should be used instead. */
1444 internal_fn ifn;
1445
1446 /* The FUNCTION_DECL for the built-in gather/scatter function,
1447 or null if an internal function should be used instead. */
1448 tree decl;
1449
1450 /* The loop-invariant base value. */
1451 tree base;
1452
1453 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1454 tree offset;
1455
1456 /* Each offset element should be multiplied by this amount before
1457 being added to the base. */
1458 int scale;
1459
1460 /* The definition type for the vectorized offset. */
1461 enum vect_def_type offset_dt;
1462
1463 /* The type of the vectorized offset. */
1464 tree offset_vectype;
1465
1466 /* The type of the scalar elements after loading or before storing. */
1467 tree element_type;
1468
1469 /* The type of the scalar elements being loaded or stored. */
1470 tree memory_type;
1471};
1472
1473/* Access Functions. */
1474#define STMT_VINFO_TYPE(S) (S)->type
1475#define STMT_VINFO_STMT(S) (S)->stmt
1476#define STMT_VINFO_RELEVANT(S) (S)->relevant
1477#define STMT_VINFO_LIVE_P(S) (S)->live
1478#define STMT_VINFO_VECTYPE(S) (S)->vectype
1479#define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1480#define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1481#define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1482#define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1483#define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1484#define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1485#define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1486#define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1487#define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1488#define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1489#define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1490
1491#define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1492#define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1493#define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1494#define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1495#define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1496#define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1497#define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1498 (S)->dr_wrt_vec_loop.base_misalignment
1499#define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1500 (S)->dr_wrt_vec_loop.offset_alignment
1501#define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1502 (S)->dr_wrt_vec_loop.step_alignment
1503
1504#define STMT_VINFO_DR_INFO(S) \
1505 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1506
1507#define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1508#define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1509#define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1510#define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1511#define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1512#define STMT_VINFO_GROUPED_ACCESS(S) \
1513 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1514#define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1515#define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1516#define STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE(S) (S)->loop_phi_evolution_type
1517#define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1518#define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1519#define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1520#define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1521#define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1522#define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1523#define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1524#define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1525#define STMT_VINFO_SLP_VECT_ONLY_PATTERN(S) (S)->slp_vect_pattern_only_p
1526
1527#define DR_GROUP_FIRST_ELEMENT(S) \
1528 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1529#define DR_GROUP_NEXT_ELEMENT(S) \
1530 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1531#define DR_GROUP_SIZE(S) \
1532 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1533#define DR_GROUP_STORE_COUNT(S) \
1534 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1535#define DR_GROUP_GAP(S) \
1536 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1537
1538#define REDUC_GROUP_FIRST_ELEMENT(S) \
1539 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1540#define REDUC_GROUP_NEXT_ELEMENT(S) \
1541 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1542#define REDUC_GROUP_SIZE(S) \
1543 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1544
1545#define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1546
1547#define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1548#define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1549#define STMT_SLP_TYPE(S) (S)->slp_type
1550
1551/* Contains the scalar or vector costs for a vec_info. */
1552class vector_costs
1553{
1554public:
1555 vector_costs (vec_info *, bool);
1556 virtual ~vector_costs () {}
1557
1558 /* Update the costs in response to adding COUNT copies of a statement.
1559
1560 - WHERE specifies whether the cost occurs in the loop prologue,
1561 the loop body, or the loop epilogue.
1562 - KIND is the kind of statement, which is always meaningful.
1563 - STMT_INFO or NODE, if nonnull, describe the statement that will be
1564 vectorized.
1565 - VECTYPE, if nonnull, is the vector type that the vectorized
1566 statement will operate on. Note that this should be used in
1567 preference to STMT_VINFO_VECTYPE (STMT_INFO) since the latter
1568 is not correct for SLP.
1569 - for unaligned_load and unaligned_store statements, MISALIGN is
1570 the byte misalignment of the load or store relative to the target's
1571 preferred alignment for VECTYPE, or DR_MISALIGNMENT_UNKNOWN
1572 if the misalignment is not known.
1573
1574 Return the calculated cost as well as recording it. The return
1575 value is used for dumping purposes. */
1576 virtual unsigned int add_stmt_cost (int count, vect_cost_for_stmt kind,
1577 stmt_vec_info stmt_info,
1578 slp_tree node,
1579 tree vectype, int misalign,
1580 vect_cost_model_location where);
1581
1582 /* Finish calculating the cost of the code. The results can be
1583 read back using the functions below.
1584
1585 If the costs describe vector code, SCALAR_COSTS gives the costs
1586 of the corresponding scalar code, otherwise it is null. */
1587 virtual void finish_cost (const vector_costs *scalar_costs);
1588
1589 /* The costs in THIS and OTHER both describe ways of vectorizing
1590 a main loop. Return true if the costs described by THIS are
1591 cheaper than the costs described by OTHER. Return false if any
1592 of the following are true:
1593
1594 - THIS and OTHER are of equal cost
1595 - OTHER is better than THIS
1596 - we can't be sure about the relative costs of THIS and OTHER. */
1597 virtual bool better_main_loop_than_p (const vector_costs *other) const;
1598
1599 /* Likewise, but the costs in THIS and OTHER both describe ways of
1600 vectorizing an epilogue loop of MAIN_LOOP. */
1601 virtual bool better_epilogue_loop_than_p (const vector_costs *other,
1602 loop_vec_info main_loop) const;
1603
1604 unsigned int prologue_cost () const;
1605 unsigned int body_cost () const;
1606 unsigned int epilogue_cost () const;
1607 unsigned int outside_cost () const;
1608 unsigned int total_cost () const;
1609 unsigned int suggested_unroll_factor () const;
1610
1611protected:
1612 unsigned int record_stmt_cost (stmt_vec_info, vect_cost_model_location,
1613 unsigned int);
1614 unsigned int adjust_cost_for_freq (stmt_vec_info, vect_cost_model_location,
1615 unsigned int);
1616 int compare_inside_loop_cost (const vector_costs *) const;
1617 int compare_outside_loop_cost (const vector_costs *) const;
1618
1619 /* The region of code that we're considering vectorizing. */
1620 vec_info *m_vinfo;
1621
1622 /* True if we're costing the scalar code, false if we're costing
1623 the vector code. */
1624 bool m_costing_for_scalar;
1625
1626 /* The costs of the three regions, indexed by vect_cost_model_location. */
1627 unsigned int m_costs[3];
1628
1629 /* The suggested unrolling factor determined at finish_cost. */
1630 unsigned int m_suggested_unroll_factor;
1631
1632 /* True if finish_cost has been called. */
1633 bool m_finished;
1634};
1635
1636/* Create costs for VINFO. COSTING_FOR_SCALAR is true if the costs
1637 are for scalar code, false if they are for vector code. */
1638
1639inline
1640vector_costs::vector_costs (vec_info *vinfo, bool costing_for_scalar)
1641 : m_vinfo (vinfo),
1642 m_costing_for_scalar (costing_for_scalar),
1643 m_costs (),
1644 m_suggested_unroll_factor(1),
1645 m_finished (false)
1646{
1647}
1648
1649/* Return the cost of the prologue code (in abstract units). */
1650
1651inline unsigned int
1652vector_costs::prologue_cost () const
1653{
1654 gcc_checking_assert (m_finished);
1655 return m_costs[vect_prologue];
1656}
1657
1658/* Return the cost of the body code (in abstract units). */
1659
1660inline unsigned int
1661vector_costs::body_cost () const
1662{
1663 gcc_checking_assert (m_finished);
1664 return m_costs[vect_body];
1665}
1666
1667/* Return the cost of the epilogue code (in abstract units). */
1668
1669inline unsigned int
1670vector_costs::epilogue_cost () const
1671{
1672 gcc_checking_assert (m_finished);
1673 return m_costs[vect_epilogue];
1674}
1675
1676/* Return the cost of the prologue and epilogue code (in abstract units). */
1677
1678inline unsigned int
1679vector_costs::outside_cost () const
1680{
1681 return prologue_cost () + epilogue_cost ();
1682}
1683
1684/* Return the cost of the prologue, body and epilogue code
1685 (in abstract units). */
1686
1687inline unsigned int
1688vector_costs::total_cost () const
1689{
1690 return body_cost () + outside_cost ();
1691}
1692
1693/* Return the suggested unroll factor. */
1694
1695inline unsigned int
1696vector_costs::suggested_unroll_factor () const
1697{
1698 gcc_checking_assert (m_finished);
1699 return m_suggested_unroll_factor;
1700}
1701
1702#define VECT_MAX_COST 1000
1703
1704/* The maximum number of intermediate steps required in multi-step type
1705 conversion. */
1706#define MAX_INTERM_CVT_STEPS 3
1707
1708#define MAX_VECTORIZATION_FACTOR INT_MAX
1709
1710/* Nonzero if TYPE represents a (scalar) boolean type or type
1711 in the middle-end compatible with it (unsigned precision 1 integral
1712 types). Used to determine which types should be vectorized as
1713 VECTOR_BOOLEAN_TYPE_P. */
1714
1715#define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1716 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1717 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1718 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1719 && TYPE_PRECISION (TYPE) == 1 \
1720 && TYPE_UNSIGNED (TYPE)))
1721
1722inline bool
1723nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1724{
1725 return (loop->inner
1726 && (loop->inner == (gimple_bb (g: stmt_info->stmt))->loop_father));
1727}
1728
1729/* PHI is either a scalar reduction phi or a scalar induction phi.
1730 Return the initial value of the variable on entry to the containing
1731 loop. */
1732
1733inline tree
1734vect_phi_initial_value (gphi *phi)
1735{
1736 basic_block bb = gimple_bb (g: phi);
1737 edge pe = loop_preheader_edge (bb->loop_father);
1738 gcc_assert (pe->dest == bb);
1739 return PHI_ARG_DEF_FROM_EDGE (phi, pe);
1740}
1741
1742/* Return true if STMT_INFO should produce a vector mask type rather than
1743 a normal nonmask type. */
1744
1745inline bool
1746vect_use_mask_type_p (stmt_vec_info stmt_info)
1747{
1748 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1749}
1750
1751/* Return TRUE if a statement represented by STMT_INFO is a part of a
1752 pattern. */
1753
1754inline bool
1755is_pattern_stmt_p (stmt_vec_info stmt_info)
1756{
1757 return stmt_info->pattern_stmt_p;
1758}
1759
1760/* If STMT_INFO is a pattern statement, return the statement that it
1761 replaces, otherwise return STMT_INFO itself. */
1762
1763inline stmt_vec_info
1764vect_orig_stmt (stmt_vec_info stmt_info)
1765{
1766 if (is_pattern_stmt_p (stmt_info))
1767 return STMT_VINFO_RELATED_STMT (stmt_info);
1768 return stmt_info;
1769}
1770
1771/* Return the later statement between STMT1_INFO and STMT2_INFO. */
1772
1773inline stmt_vec_info
1774get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1775{
1776 if (gimple_uid (g: vect_orig_stmt (stmt_info: stmt1_info)->stmt)
1777 > gimple_uid (g: vect_orig_stmt (stmt_info: stmt2_info)->stmt))
1778 return stmt1_info;
1779 else
1780 return stmt2_info;
1781}
1782
1783/* If STMT_INFO has been replaced by a pattern statement, return the
1784 replacement statement, otherwise return STMT_INFO itself. */
1785
1786inline stmt_vec_info
1787vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1788{
1789 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1790 return STMT_VINFO_RELATED_STMT (stmt_info);
1791 return stmt_info;
1792}
1793
1794/* Return true if BB is a loop header. */
1795
1796inline bool
1797is_loop_header_bb_p (basic_block bb)
1798{
1799 if (bb == (bb->loop_father)->header)
1800 return true;
1801 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1802 return false;
1803}
1804
1805/* Return pow2 (X). */
1806
1807inline int
1808vect_pow2 (int x)
1809{
1810 int i, res = 1;
1811
1812 for (i = 0; i < x; i++)
1813 res *= 2;
1814
1815 return res;
1816}
1817
1818/* Alias targetm.vectorize.builtin_vectorization_cost. */
1819
1820inline int
1821builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1822 tree vectype, int misalign)
1823{
1824 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1825 vectype, misalign);
1826}
1827
1828/* Get cost by calling cost target builtin. */
1829
1830inline
1831int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1832{
1833 return builtin_vectorization_cost (type_of_cost, NULL, misalign: 0);
1834}
1835
1836/* Alias targetm.vectorize.init_cost. */
1837
1838inline vector_costs *
1839init_cost (vec_info *vinfo, bool costing_for_scalar)
1840{
1841 return targetm.vectorize.create_costs (vinfo, costing_for_scalar);
1842}
1843
1844extern void dump_stmt_cost (FILE *, int, enum vect_cost_for_stmt,
1845 stmt_vec_info, slp_tree, tree, int, unsigned,
1846 enum vect_cost_model_location);
1847
1848/* Alias targetm.vectorize.add_stmt_cost. */
1849
1850inline unsigned
1851add_stmt_cost (vector_costs *costs, int count,
1852 enum vect_cost_for_stmt kind,
1853 stmt_vec_info stmt_info, slp_tree node,
1854 tree vectype, int misalign,
1855 enum vect_cost_model_location where)
1856{
1857 unsigned cost = costs->add_stmt_cost (count, kind, stmt_info, node, vectype,
1858 misalign, where);
1859 if (dump_file && (dump_flags & TDF_DETAILS))
1860 dump_stmt_cost (dump_file, count, kind, stmt_info, node, vectype, misalign,
1861 cost, where);
1862 return cost;
1863}
1864
1865inline unsigned
1866add_stmt_cost (vector_costs *costs, int count, enum vect_cost_for_stmt kind,
1867 enum vect_cost_model_location where)
1868{
1869 gcc_assert (kind == cond_branch_taken || kind == cond_branch_not_taken
1870 || kind == scalar_stmt);
1871 return add_stmt_cost (costs, count, kind, NULL, NULL, NULL_TREE, misalign: 0, where);
1872}
1873
1874/* Alias targetm.vectorize.add_stmt_cost. */
1875
1876inline unsigned
1877add_stmt_cost (vector_costs *costs, stmt_info_for_cost *i)
1878{
1879 return add_stmt_cost (costs, count: i->count, kind: i->kind, stmt_info: i->stmt_info, node: i->node,
1880 vectype: i->vectype, misalign: i->misalign, where: i->where);
1881}
1882
1883/* Alias targetm.vectorize.finish_cost. */
1884
1885inline void
1886finish_cost (vector_costs *costs, const vector_costs *scalar_costs,
1887 unsigned *prologue_cost, unsigned *body_cost,
1888 unsigned *epilogue_cost, unsigned *suggested_unroll_factor = NULL)
1889{
1890 costs->finish_cost (scalar_costs);
1891 *prologue_cost = costs->prologue_cost ();
1892 *body_cost = costs->body_cost ();
1893 *epilogue_cost = costs->epilogue_cost ();
1894 if (suggested_unroll_factor)
1895 *suggested_unroll_factor = costs->suggested_unroll_factor ();
1896}
1897
1898inline void
1899add_stmt_costs (vector_costs *costs, stmt_vector_for_cost *cost_vec)
1900{
1901 stmt_info_for_cost *cost;
1902 unsigned i;
1903 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1904 add_stmt_cost (costs, count: cost->count, kind: cost->kind, stmt_info: cost->stmt_info,
1905 node: cost->node, vectype: cost->vectype, misalign: cost->misalign, where: cost->where);
1906}
1907
1908/*-----------------------------------------------------------------*/
1909/* Info on data references alignment. */
1910/*-----------------------------------------------------------------*/
1911#define DR_MISALIGNMENT_UNKNOWN (-1)
1912#define DR_MISALIGNMENT_UNINITIALIZED (-2)
1913
1914inline void
1915set_dr_misalignment (dr_vec_info *dr_info, int val)
1916{
1917 dr_info->misalignment = val;
1918}
1919
1920extern int dr_misalignment (dr_vec_info *dr_info, tree vectype,
1921 poly_int64 offset = 0);
1922
1923#define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1924
1925/* Only defined once DR_MISALIGNMENT is defined. */
1926inline const poly_uint64
1927dr_target_alignment (dr_vec_info *dr_info)
1928{
1929 if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt))
1930 dr_info = STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt));
1931 return dr_info->target_alignment;
1932}
1933#define DR_TARGET_ALIGNMENT(DR) dr_target_alignment (DR)
1934
1935inline void
1936set_dr_target_alignment (dr_vec_info *dr_info, poly_uint64 val)
1937{
1938 dr_info->target_alignment = val;
1939}
1940#define SET_DR_TARGET_ALIGNMENT(DR, VAL) set_dr_target_alignment (DR, VAL)
1941
1942/* Return true if data access DR_INFO is aligned to the targets
1943 preferred alignment for VECTYPE (which may be less than a full vector). */
1944
1945inline bool
1946aligned_access_p (dr_vec_info *dr_info, tree vectype)
1947{
1948 return (dr_misalignment (dr_info, vectype) == 0);
1949}
1950
1951/* Return TRUE if the (mis-)alignment of the data access is known with
1952 respect to the targets preferred alignment for VECTYPE, and FALSE
1953 otherwise. */
1954
1955inline bool
1956known_alignment_for_access_p (dr_vec_info *dr_info, tree vectype)
1957{
1958 return (dr_misalignment (dr_info, vectype) != DR_MISALIGNMENT_UNKNOWN);
1959}
1960
1961/* Return the minimum alignment in bytes that the vectorized version
1962 of DR_INFO is guaranteed to have. */
1963
1964inline unsigned int
1965vect_known_alignment_in_bytes (dr_vec_info *dr_info, tree vectype)
1966{
1967 int misalignment = dr_misalignment (dr_info, vectype);
1968 if (misalignment == DR_MISALIGNMENT_UNKNOWN)
1969 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1970 else if (misalignment == 0)
1971 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1972 return misalignment & -misalignment;
1973}
1974
1975/* Return the behavior of DR_INFO with respect to the vectorization context
1976 (which for outer loop vectorization might not be the behavior recorded
1977 in DR_INFO itself). */
1978
1979inline innermost_loop_behavior *
1980vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
1981{
1982 stmt_vec_info stmt_info = dr_info->stmt;
1983 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (p: vinfo);
1984 if (loop_vinfo == NULL
1985 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1986 return &DR_INNERMOST (dr_info->dr);
1987 else
1988 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1989}
1990
1991/* Return the offset calculated by adding the offset of this DR_INFO to the
1992 corresponding data_reference's offset. If CHECK_OUTER then use
1993 vect_dr_behavior to select the appropriate data_reference to use. */
1994
1995inline tree
1996get_dr_vinfo_offset (vec_info *vinfo,
1997 dr_vec_info *dr_info, bool check_outer = false)
1998{
1999 innermost_loop_behavior *base;
2000 if (check_outer)
2001 base = vect_dr_behavior (vinfo, dr_info);
2002 else
2003 base = &dr_info->dr->innermost;
2004
2005 tree offset = base->offset;
2006
2007 if (!dr_info->offset)
2008 return offset;
2009
2010 offset = fold_convert (sizetype, offset);
2011 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
2012 dr_info->offset);
2013}
2014
2015
2016/* Return the vect cost model for LOOP. */
2017inline enum vect_cost_model
2018loop_cost_model (loop_p loop)
2019{
2020 if (loop != NULL
2021 && loop->force_vectorize
2022 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
2023 return flag_simd_cost_model;
2024 return flag_vect_cost_model;
2025}
2026
2027/* Return true if the vect cost model is unlimited. */
2028inline bool
2029unlimited_cost_model (loop_p loop)
2030{
2031 return loop_cost_model (loop) == VECT_COST_MODEL_UNLIMITED;
2032}
2033
2034/* Return true if the loop described by LOOP_VINFO is fully-masked and
2035 if the first iteration should use a partial mask in order to achieve
2036 alignment. */
2037
2038inline bool
2039vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
2040{
2041 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
2042 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
2043}
2044
2045/* Return the number of vectors of type VECTYPE that are needed to get
2046 NUNITS elements. NUNITS should be based on the vectorization factor,
2047 so it is always a known multiple of the number of elements in VECTYPE. */
2048
2049inline unsigned int
2050vect_get_num_vectors (poly_uint64 nunits, tree vectype)
2051{
2052 return exact_div (a: nunits, b: TYPE_VECTOR_SUBPARTS (node: vectype)).to_constant ();
2053}
2054
2055/* Return the number of copies needed for loop vectorization when
2056 a statement operates on vectors of type VECTYPE. This is the
2057 vectorization factor divided by the number of elements in
2058 VECTYPE and is always known at compile time. */
2059
2060inline unsigned int
2061vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
2062{
2063 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
2064}
2065
2066/* Update maximum unit count *MAX_NUNITS so that it accounts for
2067 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
2068
2069inline void
2070vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
2071{
2072 /* All unit counts have the form vec_info::vector_size * X for some
2073 rational X, so two unit sizes must have a common multiple.
2074 Everything is a multiple of the initial value of 1. */
2075 *max_nunits = force_common_multiple (a: *max_nunits, b: nunits);
2076}
2077
2078/* Update maximum unit count *MAX_NUNITS so that it accounts for
2079 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
2080 if we haven't yet recorded any vector types. */
2081
2082inline void
2083vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
2084{
2085 vect_update_max_nunits (max_nunits, nunits: TYPE_VECTOR_SUBPARTS (node: vectype));
2086}
2087
2088/* Return the vectorization factor that should be used for costing
2089 purposes while vectorizing the loop described by LOOP_VINFO.
2090 Pick a reasonable estimate if the vectorization factor isn't
2091 known at compile time. */
2092
2093inline unsigned int
2094vect_vf_for_cost (loop_vec_info loop_vinfo)
2095{
2096 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2097}
2098
2099/* Estimate the number of elements in VEC_TYPE for costing purposes.
2100 Pick a reasonable estimate if the exact number isn't known at
2101 compile time. */
2102
2103inline unsigned int
2104vect_nunits_for_cost (tree vec_type)
2105{
2106 return estimated_poly_value (x: TYPE_VECTOR_SUBPARTS (node: vec_type));
2107}
2108
2109/* Return the maximum possible vectorization factor for LOOP_VINFO. */
2110
2111inline unsigned HOST_WIDE_INT
2112vect_max_vf (loop_vec_info loop_vinfo)
2113{
2114 unsigned HOST_WIDE_INT vf;
2115 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (const_value: &vf))
2116 return vf;
2117 return MAX_VECTORIZATION_FACTOR;
2118}
2119
2120/* Return the size of the value accessed by unvectorized data reference
2121 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
2122 for the associated gimple statement, since that guarantees that DR_INFO
2123 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
2124 here includes things like V1SI, which can be vectorized in the same way
2125 as a plain SI.) */
2126
2127inline unsigned int
2128vect_get_scalar_dr_size (dr_vec_info *dr_info)
2129{
2130 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
2131}
2132
2133/* Return true if LOOP_VINFO requires a runtime check for whether the
2134 vector loop is profitable. */
2135
2136inline bool
2137vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
2138{
2139 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
2140 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2141 && th >= vect_vf_for_cost (loop_vinfo));
2142}
2143
2144/* Source location + hotness information. */
2145extern dump_user_location_t vect_location;
2146
2147/* A macro for calling:
2148 dump_begin_scope (MSG, vect_location);
2149 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
2150 and then calling
2151 dump_end_scope ();
2152 once the object goes out of scope, thus capturing the nesting of
2153 the scopes.
2154
2155 These scopes affect dump messages within them: dump messages at the
2156 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
2157 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
2158
2159#define DUMP_VECT_SCOPE(MSG) \
2160 AUTO_DUMP_SCOPE (MSG, vect_location)
2161
2162/* A sentinel class for ensuring that the "vect_location" global gets
2163 reset at the end of a scope.
2164
2165 The "vect_location" global is used during dumping and contains a
2166 location_t, which could contain references to a tree block via the
2167 ad-hoc data. This data is used for tracking inlining information,
2168 but it's not a GC root; it's simply assumed that such locations never
2169 get accessed if the blocks are optimized away.
2170
2171 Hence we need to ensure that such locations are purged at the end
2172 of any operations using them (e.g. via this class). */
2173
2174class auto_purge_vect_location
2175{
2176 public:
2177 ~auto_purge_vect_location ();
2178};
2179
2180/*-----------------------------------------------------------------*/
2181/* Function prototypes. */
2182/*-----------------------------------------------------------------*/
2183
2184/* Simple loop peeling and versioning utilities for vectorizer's purposes -
2185 in tree-vect-loop-manip.cc. */
2186extern void vect_set_loop_condition (class loop *, edge, loop_vec_info,
2187 tree, tree, tree, bool);
2188extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge,
2189 const_edge);
2190class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *, edge,
2191 class loop *, edge,
2192 edge, edge *, bool = true);
2193class loop *vect_loop_versioning (loop_vec_info, gimple *);
2194extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
2195 tree *, tree *, tree *, int, bool, bool,
2196 tree *);
2197extern tree vect_get_main_loop_result (loop_vec_info, tree, tree);
2198extern void vect_prepare_for_masked_peels (loop_vec_info);
2199extern dump_user_location_t find_loop_location (class loop *);
2200extern bool vect_can_advance_ivs_p (loop_vec_info);
2201extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
2202extern edge vec_init_loop_exit_info (class loop *);
2203
2204/* In tree-vect-stmts.cc. */
2205extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
2206 poly_uint64 = 0);
2207extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
2208extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
2209extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
2210extern tree get_mask_type_for_scalar_type (vec_info *, tree, slp_tree);
2211extern tree get_same_sized_vectype (tree, tree);
2212extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
2213extern bool vect_get_loop_mask_type (loop_vec_info);
2214extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2215 stmt_vec_info * = NULL, gimple ** = NULL);
2216extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2217 tree *, stmt_vec_info * = NULL,
2218 gimple ** = NULL);
2219extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
2220 unsigned, tree *, slp_tree *,
2221 enum vect_def_type *,
2222 tree *, stmt_vec_info * = NULL);
2223extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
2224extern bool supportable_widening_operation (vec_info*, code_helper,
2225 stmt_vec_info, tree, tree,
2226 code_helper*, code_helper*,
2227 int*, vec<tree> *);
2228extern bool supportable_narrowing_operation (code_helper, tree, tree,
2229 code_helper *, int *,
2230 vec<tree> *);
2231
2232extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2233 enum vect_cost_for_stmt, stmt_vec_info,
2234 tree, int, enum vect_cost_model_location);
2235extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2236 enum vect_cost_for_stmt, slp_tree,
2237 tree, int, enum vect_cost_model_location);
2238extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2239 enum vect_cost_for_stmt,
2240 enum vect_cost_model_location);
2241
2242/* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
2243
2244inline unsigned
2245record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
2246 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
2247 int misalign, enum vect_cost_model_location where)
2248{
2249 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
2250 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
2251}
2252
2253extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
2254extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
2255 gimple_stmt_iterator *);
2256extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
2257extern tree vect_get_store_rhs (stmt_vec_info);
2258void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
2259 tree op, vec<tree> *, tree = NULL);
2260void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2261 tree, vec<tree> *,
2262 tree = NULL, vec<tree> * = NULL,
2263 tree = NULL, vec<tree> * = NULL,
2264 tree = NULL, vec<tree> * = NULL);
2265void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2266 tree, vec<tree> *, tree,
2267 tree = NULL, vec<tree> * = NULL, tree = NULL,
2268 tree = NULL, vec<tree> * = NULL, tree = NULL,
2269 tree = NULL, vec<tree> * = NULL, tree = NULL);
2270extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
2271 gimple_stmt_iterator *);
2272extern tree vect_get_slp_vect_def (slp_tree, unsigned);
2273extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
2274 gimple_stmt_iterator *,
2275 slp_tree, slp_instance);
2276extern void vect_remove_stores (vec_info *, stmt_vec_info);
2277extern bool vect_nop_conversion_p (stmt_vec_info);
2278extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
2279 slp_tree,
2280 slp_instance, stmt_vector_for_cost *);
2281extern void vect_get_load_cost (vec_info *, stmt_vec_info, int,
2282 dr_alignment_support, int, bool,
2283 unsigned int *, unsigned int *,
2284 stmt_vector_for_cost *,
2285 stmt_vector_for_cost *, bool);
2286extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
2287 dr_alignment_support, int,
2288 unsigned int *, stmt_vector_for_cost *);
2289extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
2290extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
2291extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
2292extern void optimize_mask_stores (class loop*);
2293extern tree vect_gen_while (gimple_seq *, tree, tree, tree,
2294 const char * = nullptr);
2295extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
2296extern opt_result vect_get_vector_types_for_stmt (vec_info *,
2297 stmt_vec_info, tree *,
2298 tree *, unsigned int = 0);
2299extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
2300
2301/* In tree-vect-data-refs.cc. */
2302extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
2303extern enum dr_alignment_support vect_supportable_dr_alignment
2304 (vec_info *, dr_vec_info *, tree, int);
2305extern tree vect_get_smallest_scalar_type (stmt_vec_info, tree);
2306extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
2307extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
2308extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
2309extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
2310extern bool vect_slp_analyze_instance_alignment (vec_info *, slp_instance);
2311extern opt_result vect_analyze_data_ref_accesses (vec_info *, vec<int> *);
2312extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
2313extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
2314 tree, int, internal_fn *, tree *);
2315extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
2316 gather_scatter_info *);
2317extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
2318 vec<data_reference_p> *,
2319 vec<int> *, int);
2320extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
2321extern void vect_record_base_alignments (vec_info *);
2322extern tree vect_create_data_ref_ptr (vec_info *,
2323 stmt_vec_info, tree, class loop *, tree,
2324 tree *, gimple_stmt_iterator *,
2325 gimple **, bool,
2326 tree = NULL_TREE);
2327extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
2328 stmt_vec_info, tree);
2329extern void vect_copy_ref_info (tree, tree);
2330extern tree vect_create_destination_var (tree, tree);
2331extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
2332extern internal_fn vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2333extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
2334extern internal_fn vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2335extern void vect_permute_store_chain (vec_info *, vec<tree> &,
2336 unsigned int, stmt_vec_info,
2337 gimple_stmt_iterator *, vec<tree> *);
2338extern tree vect_setup_realignment (vec_info *,
2339 stmt_vec_info, gimple_stmt_iterator *,
2340 tree *, enum dr_alignment_support, tree,
2341 class loop **);
2342extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
2343 int, gimple_stmt_iterator *);
2344extern void vect_record_grouped_load_vectors (vec_info *,
2345 stmt_vec_info, vec<tree>);
2346extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
2347extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
2348 const char * = NULL);
2349extern tree vect_create_addr_base_for_vector_ref (vec_info *,
2350 stmt_vec_info, gimple_seq *,
2351 tree);
2352
2353/* In tree-vect-loop.cc. */
2354extern tree neutral_op_for_reduction (tree, code_helper, tree, bool = true);
2355extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
2356bool vect_rgroup_iv_might_wrap_p (loop_vec_info, rgroup_controls *);
2357/* Used in tree-vect-loop-manip.cc */
2358extern opt_result vect_determine_partial_vectors_and_peeling (loop_vec_info);
2359/* Used in gimple-loop-interchange.c and tree-parloops.cc. */
2360extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
2361 enum tree_code);
2362extern bool needs_fold_left_reduction_p (tree, code_helper);
2363/* Drive for loop analysis stage. */
2364extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
2365extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
2366extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
2367 tree *, bool);
2368extern tree vect_halve_mask_nunits (tree, machine_mode);
2369extern tree vect_double_mask_nunits (tree, machine_mode);
2370extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
2371 unsigned int, tree, tree);
2372extern tree vect_get_loop_mask (loop_vec_info, gimple_stmt_iterator *,
2373 vec_loop_masks *,
2374 unsigned int, tree, unsigned int);
2375extern void vect_record_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2376 tree, unsigned int);
2377extern tree vect_get_loop_len (loop_vec_info, gimple_stmt_iterator *,
2378 vec_loop_lens *, unsigned int, tree,
2379 unsigned int, unsigned int);
2380extern gimple_seq vect_gen_len (tree, tree, tree, tree);
2381extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
2382extern bool reduction_fn_for_scalar_code (code_helper, internal_fn *);
2383
2384/* Drive for loop transformation stage. */
2385extern class loop *vect_transform_loop (loop_vec_info, gimple *);
2386struct vect_loop_form_info
2387{
2388 tree number_of_iterations;
2389 tree number_of_iterationsm1;
2390 tree assumptions;
2391 auto_vec<gcond *> conds;
2392 gcond *inner_loop_cond;
2393 edge loop_exit;
2394};
2395extern opt_result vect_analyze_loop_form (class loop *, vect_loop_form_info *);
2396extern loop_vec_info vect_create_loop_vinfo (class loop *, vec_info_shared *,
2397 const vect_loop_form_info *,
2398 loop_vec_info = nullptr);
2399extern bool vectorizable_live_operation (vec_info *, stmt_vec_info,
2400 slp_tree, slp_instance, int,
2401 bool, stmt_vector_for_cost *);
2402extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
2403 slp_tree, slp_instance,
2404 stmt_vector_for_cost *);
2405extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
2406 gimple **, slp_tree,
2407 stmt_vector_for_cost *);
2408extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
2409 gimple_stmt_iterator *,
2410 gimple **, slp_tree);
2411extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
2412 gimple **,
2413 slp_tree, slp_instance);
2414extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
2415 gimple **, slp_tree);
2416extern bool vectorizable_phi (vec_info *, stmt_vec_info, gimple **, slp_tree,
2417 stmt_vector_for_cost *);
2418extern bool vectorizable_recurr (loop_vec_info, stmt_vec_info,
2419 gimple **, slp_tree, stmt_vector_for_cost *);
2420extern bool vect_emulated_vector_p (tree);
2421extern bool vect_can_vectorize_without_simd_p (tree_code);
2422extern bool vect_can_vectorize_without_simd_p (code_helper);
2423extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
2424 stmt_vector_for_cost *,
2425 stmt_vector_for_cost *,
2426 stmt_vector_for_cost *);
2427extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
2428
2429/* Nonlinear induction. */
2430extern tree vect_peel_nonlinear_iv_init (gimple_seq*, tree, tree,
2431 tree, enum vect_induction_op_type);
2432
2433/* In tree-vect-slp.cc. */
2434extern void vect_slp_init (void);
2435extern void vect_slp_fini (void);
2436extern void vect_free_slp_instance (slp_instance);
2437extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, const vec<tree> &,
2438 gimple_stmt_iterator *, poly_uint64,
2439 bool, unsigned *,
2440 unsigned * = nullptr, bool = false);
2441extern bool vect_slp_analyze_operations (vec_info *);
2442extern void vect_schedule_slp (vec_info *, const vec<slp_instance> &);
2443extern opt_result vect_analyze_slp (vec_info *, unsigned);
2444extern bool vect_make_slp_decision (loop_vec_info);
2445extern void vect_detect_hybrid_slp (loop_vec_info);
2446extern void vect_optimize_slp (vec_info *);
2447extern void vect_gather_slp_loads (vec_info *);
2448extern void vect_get_slp_defs (slp_tree, vec<tree> *);
2449extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
2450 unsigned n = -1U);
2451extern bool vect_slp_if_converted_bb (basic_block bb, loop_p orig_loop);
2452extern bool vect_slp_function (function *);
2453extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
2454extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
2455extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
2456extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
2457 unsigned int * = NULL,
2458 tree * = NULL, tree * = NULL);
2459extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
2460 const vec<tree> &, unsigned int, vec<tree> &);
2461extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
2462extern slp_tree vect_create_new_slp_node (unsigned, tree_code);
2463extern void vect_free_slp_tree (slp_tree);
2464extern bool compatible_calls_p (gcall *, gcall *);
2465extern int vect_slp_child_index_for_operand (const gimple *, int op, bool);
2466
2467/* In tree-vect-patterns.cc. */
2468extern void
2469vect_mark_pattern_stmts (vec_info *, stmt_vec_info, gimple *, tree);
2470extern bool vect_get_range_info (tree, wide_int*, wide_int*);
2471
2472/* Pattern recognition functions.
2473 Additional pattern recognition functions can (and will) be added
2474 in the future. */
2475void vect_pattern_recog (vec_info *);
2476
2477/* In tree-vectorizer.cc. */
2478unsigned vectorize_loops (void);
2479void vect_free_loop_info_assumptions (class loop *);
2480gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
2481bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
2482
2483/* SLP Pattern matcher types, tree-vect-slp-patterns.cc. */
2484
2485/* Forward declaration of possible two operands operation that can be matched
2486 by the complex numbers pattern matchers. */
2487enum _complex_operation : unsigned;
2488
2489/* All possible load permute values that could result from the partial data-flow
2490 analysis. */
2491typedef enum _complex_perm_kinds {
2492 PERM_UNKNOWN,
2493 PERM_EVENODD,
2494 PERM_ODDEVEN,
2495 PERM_ODDODD,
2496 PERM_EVENEVEN,
2497 /* Can be combined with any other PERM values. */
2498 PERM_TOP
2499} complex_perm_kinds_t;
2500
2501/* Cache from nodes to the load permutation they represent. */
2502typedef hash_map <slp_tree, complex_perm_kinds_t>
2503 slp_tree_to_load_perm_map_t;
2504
2505/* Cache from nodes pair to being compatible or not. */
2506typedef pair_hash <nofree_ptr_hash <_slp_tree>,
2507 nofree_ptr_hash <_slp_tree>> slp_node_hash;
2508typedef hash_map <slp_node_hash, bool> slp_compat_nodes_map_t;
2509
2510
2511/* Vector pattern matcher base class. All SLP pattern matchers must inherit
2512 from this type. */
2513
2514class vect_pattern
2515{
2516 protected:
2517 /* The number of arguments that the IFN requires. */
2518 unsigned m_num_args;
2519
2520 /* The internal function that will be used when a pattern is created. */
2521 internal_fn m_ifn;
2522
2523 /* The current node being inspected. */
2524 slp_tree *m_node;
2525
2526 /* The list of operands to be the children for the node produced when the
2527 internal function is created. */
2528 vec<slp_tree> m_ops;
2529
2530 /* Default constructor where NODE is the root of the tree to inspect. */
2531 vect_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
2532 {
2533 this->m_ifn = ifn;
2534 this->m_node = node;
2535 this->m_ops.create (nelems: 0);
2536 if (m_ops)
2537 this->m_ops.safe_splice (src: *m_ops);
2538 }
2539
2540 public:
2541
2542 /* Create a new instance of the pattern matcher class of the given type. */
2543 static vect_pattern* recognize (slp_tree_to_load_perm_map_t *,
2544 slp_compat_nodes_map_t *, slp_tree *);
2545
2546 /* Build the pattern from the data collected so far. */
2547 virtual void build (vec_info *) = 0;
2548
2549 /* Default destructor. */
2550 virtual ~vect_pattern ()
2551 {
2552 this->m_ops.release ();
2553 }
2554};
2555
2556/* Function pointer to create a new pattern matcher from a generic type. */
2557typedef vect_pattern* (*vect_pattern_decl_t) (slp_tree_to_load_perm_map_t *,
2558 slp_compat_nodes_map_t *,
2559 slp_tree *);
2560
2561/* List of supported pattern matchers. */
2562extern vect_pattern_decl_t slp_patterns[];
2563
2564/* Number of supported pattern matchers. */
2565extern size_t num__slp_patterns;
2566
2567/* ----------------------------------------------------------------------
2568 Target support routines
2569 -----------------------------------------------------------------------
2570 The following routines are provided to simplify costing decisions in
2571 target code. Please add more as needed. */
2572
2573/* Return true if an operaton of kind KIND for STMT_INFO represents
2574 the extraction of an element from a vector in preparation for
2575 storing the element to memory. */
2576inline bool
2577vect_is_store_elt_extraction (vect_cost_for_stmt kind, stmt_vec_info stmt_info)
2578{
2579 return (kind == vec_to_scalar
2580 && STMT_VINFO_DATA_REF (stmt_info)
2581 && DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info)));
2582}
2583
2584/* Return true if STMT_INFO represents part of a reduction. */
2585inline bool
2586vect_is_reduction (stmt_vec_info stmt_info)
2587{
2588 return STMT_VINFO_REDUC_IDX (stmt_info) >= 0;
2589}
2590
2591/* If STMT_INFO describes a reduction, return the vect_reduction_type
2592 of the reduction it describes, otherwise return -1. */
2593inline int
2594vect_reduc_type (vec_info *vinfo, stmt_vec_info stmt_info)
2595{
2596 if (loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (p: vinfo))
2597 if (STMT_VINFO_REDUC_DEF (stmt_info))
2598 {
2599 stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
2600 return int (STMT_VINFO_REDUC_TYPE (reduc_info));
2601 }
2602 return -1;
2603}
2604
2605/* If STMT_INFO is a COND_EXPR that includes an embedded comparison, return the
2606 scalar type of the values being compared. Return null otherwise. */
2607inline tree
2608vect_embedded_comparison_type (stmt_vec_info stmt_info)
2609{
2610 if (auto *assign = dyn_cast<gassign *> (p: stmt_info->stmt))
2611 if (gimple_assign_rhs_code (gs: assign) == COND_EXPR)
2612 {
2613 tree cond = gimple_assign_rhs1 (gs: assign);
2614 if (COMPARISON_CLASS_P (cond))
2615 return TREE_TYPE (TREE_OPERAND (cond, 0));
2616 }
2617 return NULL_TREE;
2618}
2619
2620/* If STMT_INFO is a comparison or contains an embedded comparison, return the
2621 scalar type of the values being compared. Return null otherwise. */
2622inline tree
2623vect_comparison_type (stmt_vec_info stmt_info)
2624{
2625 if (auto *assign = dyn_cast<gassign *> (p: stmt_info->stmt))
2626 if (TREE_CODE_CLASS (gimple_assign_rhs_code (assign)) == tcc_comparison)
2627 return TREE_TYPE (gimple_assign_rhs1 (assign));
2628 return vect_embedded_comparison_type (stmt_info);
2629}
2630
2631/* Return true if STMT_INFO extends the result of a load. */
2632inline bool
2633vect_is_extending_load (class vec_info *vinfo, stmt_vec_info stmt_info)
2634{
2635 /* Although this is quite large for an inline function, this part
2636 at least should be inline. */
2637 gassign *assign = dyn_cast <gassign *> (p: stmt_info->stmt);
2638 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2639 return false;
2640
2641 tree rhs = gimple_assign_rhs1 (gs: stmt_info->stmt);
2642 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2643 tree rhs_type = TREE_TYPE (rhs);
2644 if (!INTEGRAL_TYPE_P (lhs_type)
2645 || !INTEGRAL_TYPE_P (rhs_type)
2646 || TYPE_PRECISION (lhs_type) <= TYPE_PRECISION (rhs_type))
2647 return false;
2648
2649 stmt_vec_info def_stmt_info = vinfo->lookup_def (rhs);
2650 return (def_stmt_info
2651 && STMT_VINFO_DATA_REF (def_stmt_info)
2652 && DR_IS_READ (STMT_VINFO_DATA_REF (def_stmt_info)));
2653}
2654
2655/* Return true if STMT_INFO is an integer truncation. */
2656inline bool
2657vect_is_integer_truncation (stmt_vec_info stmt_info)
2658{
2659 gassign *assign = dyn_cast <gassign *> (p: stmt_info->stmt);
2660 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2661 return false;
2662
2663 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2664 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
2665 return (INTEGRAL_TYPE_P (lhs_type)
2666 && INTEGRAL_TYPE_P (rhs_type)
2667 && TYPE_PRECISION (lhs_type) < TYPE_PRECISION (rhs_type));
2668}
2669
2670/* Build a GIMPLE_ASSIGN or GIMPLE_CALL with the tree_code,
2671 or internal_fn contained in ch, respectively. */
2672gimple * vect_gimple_build (tree, code_helper, tree, tree = NULL_TREE);
2673#endif /* GCC_TREE_VECTORIZER_H */
2674

source code of gcc/tree-vectorizer.h