1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *
4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5 */
6
7#include <linux/types.h>
8#include <linux/string.h>
9#include <linux/kvm.h>
10#include <linux/kvm_host.h>
11#include <linux/highmem.h>
12#include <linux/gfp.h>
13#include <linux/slab.h>
14#include <linux/hugetlb.h>
15#include <linux/vmalloc.h>
16#include <linux/srcu.h>
17#include <linux/anon_inodes.h>
18#include <linux/file.h>
19#include <linux/debugfs.h>
20
21#include <asm/kvm_ppc.h>
22#include <asm/kvm_book3s.h>
23#include <asm/book3s/64/mmu-hash.h>
24#include <asm/hvcall.h>
25#include <asm/synch.h>
26#include <asm/ppc-opcode.h>
27#include <asm/cputable.h>
28#include <asm/pte-walk.h>
29
30#include "book3s.h"
31#include "book3s_hv.h"
32#include "trace_hv.h"
33
34//#define DEBUG_RESIZE_HPT 1
35
36#ifdef DEBUG_RESIZE_HPT
37#define resize_hpt_debug(resize, ...) \
38 do { \
39 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \
40 printk(__VA_ARGS__); \
41 } while (0)
42#else
43#define resize_hpt_debug(resize, ...) \
44 do { } while (0)
45#endif
46
47static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
48 long pte_index, unsigned long pteh,
49 unsigned long ptel, unsigned long *pte_idx_ret);
50
51struct kvm_resize_hpt {
52 /* These fields read-only after init */
53 struct kvm *kvm;
54 struct work_struct work;
55 u32 order;
56
57 /* These fields protected by kvm->arch.mmu_setup_lock */
58
59 /* Possible values and their usage:
60 * <0 an error occurred during allocation,
61 * -EBUSY allocation is in the progress,
62 * 0 allocation made successfully.
63 */
64 int error;
65
66 /* Private to the work thread, until error != -EBUSY,
67 * then protected by kvm->arch.mmu_setup_lock.
68 */
69 struct kvm_hpt_info hpt;
70};
71
72int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
73{
74 unsigned long hpt = 0;
75 int cma = 0;
76 struct page *page = NULL;
77 struct revmap_entry *rev;
78 unsigned long npte;
79
80 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
81 return -EINVAL;
82
83 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
84 if (page) {
85 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
86 memset((void *)hpt, 0, (1ul << order));
87 cma = 1;
88 }
89
90 if (!hpt)
91 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
92 |__GFP_NOWARN, order: order - PAGE_SHIFT);
93
94 if (!hpt)
95 return -ENOMEM;
96
97 /* HPTEs are 2**4 bytes long */
98 npte = 1ul << (order - 4);
99
100 /* Allocate reverse map array */
101 rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
102 if (!rev) {
103 if (cma)
104 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
105 else
106 free_pages(addr: hpt, order: order - PAGE_SHIFT);
107 return -ENOMEM;
108 }
109
110 info->order = order;
111 info->virt = hpt;
112 info->cma = cma;
113 info->rev = rev;
114
115 return 0;
116}
117
118void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
119{
120 atomic64_set(v: &kvm->arch.mmio_update, i: 0);
121 kvm->arch.hpt = *info;
122 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
123
124 pr_debug("KVM guest htab at %lx (order %ld), LPID %llx\n",
125 info->virt, (long)info->order, kvm->arch.lpid);
126}
127
128int kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
129{
130 int err = -EBUSY;
131 struct kvm_hpt_info info;
132
133 mutex_lock(&kvm->arch.mmu_setup_lock);
134 if (kvm->arch.mmu_ready) {
135 kvm->arch.mmu_ready = 0;
136 /* order mmu_ready vs. vcpus_running */
137 smp_mb();
138 if (atomic_read(v: &kvm->arch.vcpus_running)) {
139 kvm->arch.mmu_ready = 1;
140 goto out;
141 }
142 }
143 if (kvm_is_radix(kvm)) {
144 err = kvmppc_switch_mmu_to_hpt(kvm);
145 if (err)
146 goto out;
147 }
148
149 if (kvm->arch.hpt.order == order) {
150 /* We already have a suitable HPT */
151
152 /* Set the entire HPT to 0, i.e. invalid HPTEs */
153 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
154 /*
155 * Reset all the reverse-mapping chains for all memslots
156 */
157 kvmppc_rmap_reset(kvm);
158 err = 0;
159 goto out;
160 }
161
162 if (kvm->arch.hpt.virt) {
163 kvmppc_free_hpt(&kvm->arch.hpt);
164 kvmppc_rmap_reset(kvm);
165 }
166
167 err = kvmppc_allocate_hpt(info: &info, order);
168 if (err < 0)
169 goto out;
170 kvmppc_set_hpt(kvm, info: &info);
171
172out:
173 if (err == 0)
174 /* Ensure that each vcpu will flush its TLB on next entry. */
175 cpumask_setall(dstp: &kvm->arch.need_tlb_flush);
176
177 mutex_unlock(lock: &kvm->arch.mmu_setup_lock);
178 return err;
179}
180
181void kvmppc_free_hpt(struct kvm_hpt_info *info)
182{
183 vfree(addr: info->rev);
184 info->rev = NULL;
185 if (info->cma)
186 kvm_free_hpt_cma(virt_to_page((void *)info->virt),
187 1 << (info->order - PAGE_SHIFT));
188 else if (info->virt)
189 free_pages(addr: info->virt, order: info->order - PAGE_SHIFT);
190 info->virt = 0;
191 info->order = 0;
192}
193
194/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
195static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
196{
197 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
198}
199
200/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
201static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
202{
203 return (pgsize == 0x10000) ? 0x1000 : 0;
204}
205
206void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
207 unsigned long porder)
208{
209 unsigned long i;
210 unsigned long npages;
211 unsigned long hp_v, hp_r;
212 unsigned long addr, hash;
213 unsigned long psize;
214 unsigned long hp0, hp1;
215 unsigned long idx_ret;
216 long ret;
217 struct kvm *kvm = vcpu->kvm;
218
219 psize = 1ul << porder;
220 npages = memslot->npages >> (porder - PAGE_SHIFT);
221
222 /* VRMA can't be > 1TB */
223 if (npages > 1ul << (40 - porder))
224 npages = 1ul << (40 - porder);
225 /* Can't use more than 1 HPTE per HPTEG */
226 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
227 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
228
229 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
230 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
231 hp1 = hpte1_pgsize_encoding(psize) |
232 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
233
234 for (i = 0; i < npages; ++i) {
235 addr = i << porder;
236 /* can't use hpt_hash since va > 64 bits */
237 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
238 & kvmppc_hpt_mask(&kvm->arch.hpt);
239 /*
240 * We assume that the hash table is empty and no
241 * vcpus are using it at this stage. Since we create
242 * at most one HPTE per HPTEG, we just assume entry 7
243 * is available and use it.
244 */
245 hash = (hash << 3) + 7;
246 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
247 hp_r = hp1 | addr;
248 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
249 &idx_ret);
250 if (ret != H_SUCCESS) {
251 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
252 addr, ret);
253 break;
254 }
255 }
256}
257
258int kvmppc_mmu_hv_init(void)
259{
260 unsigned long nr_lpids;
261
262 if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
263 return -EINVAL;
264
265 if (cpu_has_feature(CPU_FTR_HVMODE)) {
266 if (WARN_ON(mfspr(SPRN_LPID) != 0))
267 return -EINVAL;
268 nr_lpids = 1UL << mmu_lpid_bits;
269 } else {
270 nr_lpids = 1UL << KVM_MAX_NESTED_GUESTS_SHIFT;
271 }
272
273 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
274 /* POWER7 has 10-bit LPIDs, POWER8 has 12-bit LPIDs */
275 if (cpu_has_feature(CPU_FTR_ARCH_207S))
276 WARN_ON(nr_lpids != 1UL << 12);
277 else
278 WARN_ON(nr_lpids != 1UL << 10);
279
280 /*
281 * Reserve the last implemented LPID use in partition
282 * switching for POWER7 and POWER8.
283 */
284 nr_lpids -= 1;
285 }
286
287 kvmppc_init_lpid(nr_lpids);
288
289 return 0;
290}
291
292static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
293 long pte_index, unsigned long pteh,
294 unsigned long ptel, unsigned long *pte_idx_ret)
295{
296 long ret;
297
298 preempt_disable();
299 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
300 kvm->mm->pgd, false, pte_idx_ret);
301 preempt_enable();
302 if (ret == H_TOO_HARD) {
303 /* this can't happen */
304 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
305 ret = H_RESOURCE; /* or something */
306 }
307 return ret;
308
309}
310
311static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
312 gva_t eaddr)
313{
314 u64 mask;
315 int i;
316
317 for (i = 0; i < vcpu->arch.slb_nr; i++) {
318 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
319 continue;
320
321 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
322 mask = ESID_MASK_1T;
323 else
324 mask = ESID_MASK;
325
326 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
327 return &vcpu->arch.slb[i];
328 }
329 return NULL;
330}
331
332static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
333 unsigned long ea)
334{
335 unsigned long ra_mask;
336
337 ra_mask = kvmppc_actual_pgsz(v, r) - 1;
338 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
339}
340
341static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
342 struct kvmppc_pte *gpte, bool data, bool iswrite)
343{
344 struct kvm *kvm = vcpu->kvm;
345 struct kvmppc_slb *slbe;
346 unsigned long slb_v;
347 unsigned long pp, key;
348 unsigned long v, orig_v, gr;
349 __be64 *hptep;
350 long int index;
351 int virtmode = __kvmppc_get_msr_hv(vcpu) & (data ? MSR_DR : MSR_IR);
352
353 if (kvm_is_radix(vcpu->kvm))
354 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
355
356 /* Get SLB entry */
357 if (virtmode) {
358 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
359 if (!slbe)
360 return -EINVAL;
361 slb_v = slbe->origv;
362 } else {
363 /* real mode access */
364 slb_v = vcpu->kvm->arch.vrma_slb_v;
365 }
366
367 preempt_disable();
368 /* Find the HPTE in the hash table */
369 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
370 HPTE_V_VALID | HPTE_V_ABSENT);
371 if (index < 0) {
372 preempt_enable();
373 return -ENOENT;
374 }
375 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
376 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
377 if (cpu_has_feature(CPU_FTR_ARCH_300))
378 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
379 gr = kvm->arch.hpt.rev[index].guest_rpte;
380
381 unlock_hpte(hptep, orig_v);
382 preempt_enable();
383
384 gpte->eaddr = eaddr;
385 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
386
387 /* Get PP bits and key for permission check */
388 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
389 key = (__kvmppc_get_msr_hv(vcpu) & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
390 key &= slb_v;
391
392 /* Calculate permissions */
393 gpte->may_read = hpte_read_permission(pp, key);
394 gpte->may_write = hpte_write_permission(pp, key);
395 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
396
397 /* Storage key permission check for POWER7 */
398 if (data && virtmode) {
399 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
400 if (amrfield & 1)
401 gpte->may_read = 0;
402 if (amrfield & 2)
403 gpte->may_write = 0;
404 }
405
406 /* Get the guest physical address */
407 gpte->raddr = kvmppc_mmu_get_real_addr(v, r: gr, ea: eaddr);
408 return 0;
409}
410
411/*
412 * Quick test for whether an instruction is a load or a store.
413 * If the instruction is a load or a store, then this will indicate
414 * which it is, at least on server processors. (Embedded processors
415 * have some external PID instructions that don't follow the rule
416 * embodied here.) If the instruction isn't a load or store, then
417 * this doesn't return anything useful.
418 */
419static int instruction_is_store(ppc_inst_t instr)
420{
421 unsigned int mask;
422 unsigned int suffix;
423
424 mask = 0x10000000;
425 suffix = ppc_inst_val(instr);
426 if (ppc_inst_prefixed(instr))
427 suffix = ppc_inst_suffix(instr);
428 else if ((suffix & 0xfc000000) == 0x7c000000)
429 mask = 0x100; /* major opcode 31 */
430 return (suffix & mask) != 0;
431}
432
433int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
434 unsigned long gpa, gva_t ea, int is_store)
435{
436 ppc_inst_t last_inst;
437 bool is_prefixed = !!(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
438
439 /*
440 * Fast path - check if the guest physical address corresponds to a
441 * device on the FAST_MMIO_BUS, if so we can avoid loading the
442 * instruction all together, then we can just handle it and return.
443 */
444 if (is_store) {
445 int idx, ret;
446
447 idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
448 ret = kvm_io_bus_write(vcpu, bus_idx: KVM_FAST_MMIO_BUS, addr: (gpa_t) gpa, len: 0,
449 NULL);
450 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx);
451 if (!ret) {
452 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + (is_prefixed ? 8 : 4));
453 return RESUME_GUEST;
454 }
455 }
456
457 /*
458 * If we fail, we just return to the guest and try executing it again.
459 */
460 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
461 EMULATE_DONE)
462 return RESUME_GUEST;
463
464 /*
465 * WARNING: We do not know for sure whether the instruction we just
466 * read from memory is the same that caused the fault in the first
467 * place.
468 *
469 * If the fault is prefixed but the instruction is not or vice
470 * versa, try again so that we don't advance pc the wrong amount.
471 */
472 if (ppc_inst_prefixed(last_inst) != is_prefixed)
473 return RESUME_GUEST;
474
475 /*
476 * If the instruction we read is neither an load or a store,
477 * then it can't access memory, so we don't need to worry about
478 * enforcing access permissions. So, assuming it is a load or
479 * store, we just check that its direction (load or store) is
480 * consistent with the original fault, since that's what we
481 * checked the access permissions against. If there is a mismatch
482 * we just return and retry the instruction.
483 */
484
485 if (instruction_is_store(last_inst) != !!is_store)
486 return RESUME_GUEST;
487
488 /*
489 * Emulated accesses are emulated by looking at the hash for
490 * translation once, then performing the access later. The
491 * translation could be invalidated in the meantime in which
492 * point performing the subsequent memory access on the old
493 * physical address could possibly be a security hole for the
494 * guest (but not the host).
495 *
496 * This is less of an issue for MMIO stores since they aren't
497 * globally visible. It could be an issue for MMIO loads to
498 * a certain extent but we'll ignore it for now.
499 */
500
501 vcpu->arch.paddr_accessed = gpa;
502 vcpu->arch.vaddr_accessed = ea;
503 return kvmppc_emulate_mmio(vcpu);
504}
505
506int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
507 unsigned long ea, unsigned long dsisr)
508{
509 struct kvm *kvm = vcpu->kvm;
510 unsigned long hpte[3], r;
511 unsigned long hnow_v, hnow_r;
512 __be64 *hptep;
513 unsigned long mmu_seq, psize, pte_size;
514 unsigned long gpa_base, gfn_base;
515 unsigned long gpa, gfn, hva, pfn, hpa;
516 struct kvm_memory_slot *memslot;
517 unsigned long *rmap;
518 struct revmap_entry *rev;
519 struct page *page;
520 long index, ret;
521 bool is_ci;
522 bool writing, write_ok;
523 unsigned int shift;
524 unsigned long rcbits;
525 long mmio_update;
526 pte_t pte, *ptep;
527
528 if (kvm_is_radix(kvm))
529 return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
530
531 /*
532 * Real-mode code has already searched the HPT and found the
533 * entry we're interested in. Lock the entry and check that
534 * it hasn't changed. If it has, just return and re-execute the
535 * instruction.
536 */
537 if (ea != vcpu->arch.pgfault_addr)
538 return RESUME_GUEST;
539
540 if (vcpu->arch.pgfault_cache) {
541 mmio_update = atomic64_read(v: &kvm->arch.mmio_update);
542 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
543 r = vcpu->arch.pgfault_cache->rpte;
544 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
545 r);
546 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
547 gfn_base = gpa_base >> PAGE_SHIFT;
548 gpa = gpa_base | (ea & (psize - 1));
549 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
550 dsisr & DSISR_ISSTORE);
551 }
552 }
553 index = vcpu->arch.pgfault_index;
554 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
555 rev = &kvm->arch.hpt.rev[index];
556 preempt_disable();
557 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
558 cpu_relax();
559 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
560 hpte[1] = be64_to_cpu(hptep[1]);
561 hpte[2] = r = rev->guest_rpte;
562 unlock_hpte(hptep, hpte[0]);
563 preempt_enable();
564
565 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
566 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
567 hpte[1] = hpte_new_to_old_r(hpte[1]);
568 }
569 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
570 hpte[1] != vcpu->arch.pgfault_hpte[1])
571 return RESUME_GUEST;
572
573 /* Translate the logical address and get the page */
574 psize = kvmppc_actual_pgsz(hpte[0], r);
575 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
576 gfn_base = gpa_base >> PAGE_SHIFT;
577 gpa = gpa_base | (ea & (psize - 1));
578 gfn = gpa >> PAGE_SHIFT;
579 memslot = gfn_to_memslot(kvm, gfn);
580
581 trace_kvm_page_fault_enter(vcpu, hptep: hpte, memslot, ea, dsisr);
582
583 /* No memslot means it's an emulated MMIO region */
584 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
585 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
586 dsisr & DSISR_ISSTORE);
587
588 /*
589 * This should never happen, because of the slot_is_aligned()
590 * check in kvmppc_do_h_enter().
591 */
592 if (gfn_base < memslot->base_gfn)
593 return -EFAULT;
594
595 /* used to check for invalidations in progress */
596 mmu_seq = kvm->mmu_invalidate_seq;
597 smp_rmb();
598
599 ret = -EFAULT;
600 page = NULL;
601 writing = (dsisr & DSISR_ISSTORE) != 0;
602 /* If writing != 0, then the HPTE must allow writing, if we get here */
603 write_ok = writing;
604 hva = gfn_to_hva_memslot(slot: memslot, gfn);
605
606 /*
607 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
608 * do it with !atomic && !async, which is how we call it.
609 * We always ask for write permission since the common case
610 * is that the page is writable.
611 */
612 if (get_user_page_fast_only(addr: hva, gup_flags: FOLL_WRITE, pagep: &page)) {
613 write_ok = true;
614 } else {
615 /* Call KVM generic code to do the slow-path check */
616 pfn = __gfn_to_pfn_memslot(slot: memslot, gfn, atomic: false, interruptible: false, NULL,
617 write_fault: writing, writable: &write_ok, NULL);
618 if (is_error_noslot_pfn(pfn))
619 return -EFAULT;
620 page = NULL;
621 if (pfn_valid(pfn)) {
622 page = pfn_to_page(pfn);
623 if (PageReserved(page))
624 page = NULL;
625 }
626 }
627
628 /*
629 * Read the PTE from the process' radix tree and use that
630 * so we get the shift and attribute bits.
631 */
632 spin_lock(lock: &kvm->mmu_lock);
633 ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
634 pte = __pte(val: 0);
635 if (ptep)
636 pte = READ_ONCE(*ptep);
637 spin_unlock(lock: &kvm->mmu_lock);
638 /*
639 * If the PTE disappeared temporarily due to a THP
640 * collapse, just return and let the guest try again.
641 */
642 if (!pte_present(a: pte)) {
643 if (page)
644 put_page(page);
645 return RESUME_GUEST;
646 }
647 hpa = pte_pfn(pte) << PAGE_SHIFT;
648 pte_size = PAGE_SIZE;
649 if (shift)
650 pte_size = 1ul << shift;
651 is_ci = pte_ci(pte);
652
653 if (psize > pte_size)
654 goto out_put;
655 if (pte_size > psize)
656 hpa |= hva & (pte_size - psize);
657
658 /* Check WIMG vs. the actual page we're accessing */
659 if (!hpte_cache_flags_ok(r, is_ci)) {
660 if (is_ci)
661 goto out_put;
662 /*
663 * Allow guest to map emulated device memory as
664 * uncacheable, but actually make it cacheable.
665 */
666 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
667 }
668
669 /*
670 * Set the HPTE to point to hpa.
671 * Since the hpa is at PAGE_SIZE granularity, make sure we
672 * don't mask out lower-order bits if psize < PAGE_SIZE.
673 */
674 if (psize < PAGE_SIZE)
675 psize = PAGE_SIZE;
676 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
677 if (hpte_is_writable(r) && !write_ok)
678 r = hpte_make_readonly(r);
679 ret = RESUME_GUEST;
680 preempt_disable();
681 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
682 cpu_relax();
683 hnow_v = be64_to_cpu(hptep[0]);
684 hnow_r = be64_to_cpu(hptep[1]);
685 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
686 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
687 hnow_r = hpte_new_to_old_r(hnow_r);
688 }
689
690 /*
691 * If the HPT is being resized, don't update the HPTE,
692 * instead let the guest retry after the resize operation is complete.
693 * The synchronization for mmu_ready test vs. set is provided
694 * by the HPTE lock.
695 */
696 if (!kvm->arch.mmu_ready)
697 goto out_unlock;
698
699 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
700 rev->guest_rpte != hpte[2])
701 /* HPTE has been changed under us; let the guest retry */
702 goto out_unlock;
703 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
704
705 /* Always put the HPTE in the rmap chain for the page base address */
706 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
707 lock_rmap(rmap);
708
709 /* Check if we might have been invalidated; let the guest retry if so */
710 ret = RESUME_GUEST;
711 if (mmu_invalidate_retry(kvm: vcpu->kvm, mmu_seq)) {
712 unlock_rmap(rmap);
713 goto out_unlock;
714 }
715
716 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
717 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
718 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
719
720 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
721 /* HPTE was previously valid, so we need to invalidate it */
722 unlock_rmap(rmap);
723 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
724 kvmppc_invalidate_hpte(kvm, hptep, index);
725 /* don't lose previous R and C bits */
726 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
727 } else {
728 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
729 }
730
731 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
732 r = hpte_old_to_new_r(hpte[0], r);
733 hpte[0] = hpte_old_to_new_v(hpte[0]);
734 }
735 hptep[1] = cpu_to_be64(r);
736 eieio();
737 __unlock_hpte(hptep, hpte[0]);
738 asm volatile("ptesync" : : : "memory");
739 preempt_enable();
740 if (page && hpte_is_writable(r))
741 set_page_dirty_lock(page);
742
743 out_put:
744 trace_kvm_page_fault_exit(vcpu, hptep: hpte, ret);
745
746 if (page)
747 put_page(page);
748 return ret;
749
750 out_unlock:
751 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
752 preempt_enable();
753 goto out_put;
754}
755
756void kvmppc_rmap_reset(struct kvm *kvm)
757{
758 struct kvm_memslots *slots;
759 struct kvm_memory_slot *memslot;
760 int srcu_idx, bkt;
761
762 srcu_idx = srcu_read_lock(ssp: &kvm->srcu);
763 slots = kvm_memslots(kvm);
764 kvm_for_each_memslot(memslot, bkt, slots) {
765 /* Mutual exclusion with kvm_unmap_hva_range etc. */
766 spin_lock(lock: &kvm->mmu_lock);
767 /*
768 * This assumes it is acceptable to lose reference and
769 * change bits across a reset.
770 */
771 memset(memslot->arch.rmap, 0,
772 memslot->npages * sizeof(*memslot->arch.rmap));
773 spin_unlock(lock: &kvm->mmu_lock);
774 }
775 srcu_read_unlock(ssp: &kvm->srcu, idx: srcu_idx);
776}
777
778/* Must be called with both HPTE and rmap locked */
779static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
780 struct kvm_memory_slot *memslot,
781 unsigned long *rmapp, unsigned long gfn)
782{
783 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
784 struct revmap_entry *rev = kvm->arch.hpt.rev;
785 unsigned long j, h;
786 unsigned long ptel, psize, rcbits;
787
788 j = rev[i].forw;
789 if (j == i) {
790 /* chain is now empty */
791 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
792 } else {
793 /* remove i from chain */
794 h = rev[i].back;
795 rev[h].forw = j;
796 rev[j].back = h;
797 rev[i].forw = rev[i].back = i;
798 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
799 }
800
801 /* Now check and modify the HPTE */
802 ptel = rev[i].guest_rpte;
803 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
804 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
805 hpte_rpn(ptel, psize) == gfn) {
806 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
807 kvmppc_invalidate_hpte(kvm, hptep, i);
808 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
809 /* Harvest R and C */
810 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
811 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
812 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
813 kvmppc_update_dirty_map(memslot, gfn, psize);
814 if (rcbits & ~rev[i].guest_rpte) {
815 rev[i].guest_rpte = ptel | rcbits;
816 note_hpte_modification(kvm, &rev[i]);
817 }
818 }
819}
820
821static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
822 unsigned long gfn)
823{
824 unsigned long i;
825 __be64 *hptep;
826 unsigned long *rmapp;
827
828 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
829 for (;;) {
830 lock_rmap(rmapp);
831 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
832 unlock_rmap(rmapp);
833 break;
834 }
835
836 /*
837 * To avoid an ABBA deadlock with the HPTE lock bit,
838 * we can't spin on the HPTE lock while holding the
839 * rmap chain lock.
840 */
841 i = *rmapp & KVMPPC_RMAP_INDEX;
842 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
843 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
844 /* unlock rmap before spinning on the HPTE lock */
845 unlock_rmap(rmapp);
846 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
847 cpu_relax();
848 continue;
849 }
850
851 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
852 unlock_rmap(rmapp);
853 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
854 }
855}
856
857bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range)
858{
859 gfn_t gfn;
860
861 if (kvm_is_radix(kvm)) {
862 for (gfn = range->start; gfn < range->end; gfn++)
863 kvm_unmap_radix(kvm, range->slot, gfn);
864 } else {
865 for (gfn = range->start; gfn < range->end; gfn++)
866 kvm_unmap_rmapp(kvm, memslot: range->slot, gfn);
867 }
868
869 return false;
870}
871
872void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
873 struct kvm_memory_slot *memslot)
874{
875 unsigned long gfn;
876 unsigned long n;
877 unsigned long *rmapp;
878
879 gfn = memslot->base_gfn;
880 rmapp = memslot->arch.rmap;
881 if (kvm_is_radix(kvm)) {
882 kvmppc_radix_flush_memslot(kvm, memslot);
883 return;
884 }
885
886 for (n = memslot->npages; n; --n, ++gfn) {
887 /*
888 * Testing the present bit without locking is OK because
889 * the memslot has been marked invalid already, and hence
890 * no new HPTEs referencing this page can be created,
891 * thus the present bit can't go from 0 to 1.
892 */
893 if (*rmapp & KVMPPC_RMAP_PRESENT)
894 kvm_unmap_rmapp(kvm, memslot, gfn);
895 ++rmapp;
896 }
897}
898
899static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
900 unsigned long gfn)
901{
902 struct revmap_entry *rev = kvm->arch.hpt.rev;
903 unsigned long head, i, j;
904 __be64 *hptep;
905 bool ret = false;
906 unsigned long *rmapp;
907
908 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
909 retry:
910 lock_rmap(rmapp);
911 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
912 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
913 ret = true;
914 }
915 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
916 unlock_rmap(rmapp);
917 return ret;
918 }
919
920 i = head = *rmapp & KVMPPC_RMAP_INDEX;
921 do {
922 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
923 j = rev[i].forw;
924
925 /* If this HPTE isn't referenced, ignore it */
926 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
927 continue;
928
929 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
930 /* unlock rmap before spinning on the HPTE lock */
931 unlock_rmap(rmapp);
932 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
933 cpu_relax();
934 goto retry;
935 }
936
937 /* Now check and modify the HPTE */
938 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
939 (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
940 kvmppc_clear_ref_hpte(kvm, hptep, i);
941 if (!(rev[i].guest_rpte & HPTE_R_R)) {
942 rev[i].guest_rpte |= HPTE_R_R;
943 note_hpte_modification(kvm, &rev[i]);
944 }
945 ret = true;
946 }
947 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
948 } while ((i = j) != head);
949
950 unlock_rmap(rmapp);
951 return ret;
952}
953
954bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
955{
956 gfn_t gfn;
957 bool ret = false;
958
959 if (kvm_is_radix(kvm)) {
960 for (gfn = range->start; gfn < range->end; gfn++)
961 ret |= kvm_age_radix(kvm, range->slot, gfn);
962 } else {
963 for (gfn = range->start; gfn < range->end; gfn++)
964 ret |= kvm_age_rmapp(kvm, memslot: range->slot, gfn);
965 }
966
967 return ret;
968}
969
970static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
971 unsigned long gfn)
972{
973 struct revmap_entry *rev = kvm->arch.hpt.rev;
974 unsigned long head, i, j;
975 unsigned long *hp;
976 bool ret = true;
977 unsigned long *rmapp;
978
979 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
980 if (*rmapp & KVMPPC_RMAP_REFERENCED)
981 return true;
982
983 lock_rmap(rmapp);
984 if (*rmapp & KVMPPC_RMAP_REFERENCED)
985 goto out;
986
987 if (*rmapp & KVMPPC_RMAP_PRESENT) {
988 i = head = *rmapp & KVMPPC_RMAP_INDEX;
989 do {
990 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
991 j = rev[i].forw;
992 if (be64_to_cpu(hp[1]) & HPTE_R_R)
993 goto out;
994 } while ((i = j) != head);
995 }
996 ret = false;
997
998 out:
999 unlock_rmap(rmapp);
1000 return ret;
1001}
1002
1003bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
1004{
1005 WARN_ON(range->start + 1 != range->end);
1006
1007 if (kvm_is_radix(kvm))
1008 return kvm_test_age_radix(kvm, range->slot, range->start);
1009 else
1010 return kvm_test_age_rmapp(kvm, memslot: range->slot, gfn: range->start);
1011}
1012
1013bool kvm_set_spte_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
1014{
1015 WARN_ON(range->start + 1 != range->end);
1016
1017 if (kvm_is_radix(kvm))
1018 kvm_unmap_radix(kvm, range->slot, range->start);
1019 else
1020 kvm_unmap_rmapp(kvm, memslot: range->slot, gfn: range->start);
1021
1022 return false;
1023}
1024
1025static int vcpus_running(struct kvm *kvm)
1026{
1027 return atomic_read(v: &kvm->arch.vcpus_running) != 0;
1028}
1029
1030/*
1031 * Returns the number of system pages that are dirty.
1032 * This can be more than 1 if we find a huge-page HPTE.
1033 */
1034static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1035{
1036 struct revmap_entry *rev = kvm->arch.hpt.rev;
1037 unsigned long head, i, j;
1038 unsigned long n;
1039 unsigned long v, r;
1040 __be64 *hptep;
1041 int npages_dirty = 0;
1042
1043 retry:
1044 lock_rmap(rmapp);
1045 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1046 unlock_rmap(rmapp);
1047 return npages_dirty;
1048 }
1049
1050 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1051 do {
1052 unsigned long hptep1;
1053 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1054 j = rev[i].forw;
1055
1056 /*
1057 * Checking the C (changed) bit here is racy since there
1058 * is no guarantee about when the hardware writes it back.
1059 * If the HPTE is not writable then it is stable since the
1060 * page can't be written to, and we would have done a tlbie
1061 * (which forces the hardware to complete any writeback)
1062 * when making the HPTE read-only.
1063 * If vcpus are running then this call is racy anyway
1064 * since the page could get dirtied subsequently, so we
1065 * expect there to be a further call which would pick up
1066 * any delayed C bit writeback.
1067 * Otherwise we need to do the tlbie even if C==0 in
1068 * order to pick up any delayed writeback of C.
1069 */
1070 hptep1 = be64_to_cpu(hptep[1]);
1071 if (!(hptep1 & HPTE_R_C) &&
1072 (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1073 continue;
1074
1075 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1076 /* unlock rmap before spinning on the HPTE lock */
1077 unlock_rmap(rmapp);
1078 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1079 cpu_relax();
1080 goto retry;
1081 }
1082
1083 /* Now check and modify the HPTE */
1084 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1085 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1086 continue;
1087 }
1088
1089 /* need to make it temporarily absent so C is stable */
1090 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1091 kvmppc_invalidate_hpte(kvm, hptep, i);
1092 v = be64_to_cpu(hptep[0]);
1093 r = be64_to_cpu(hptep[1]);
1094 if (r & HPTE_R_C) {
1095 hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1096 if (!(rev[i].guest_rpte & HPTE_R_C)) {
1097 rev[i].guest_rpte |= HPTE_R_C;
1098 note_hpte_modification(kvm, &rev[i]);
1099 }
1100 n = kvmppc_actual_pgsz(v, r);
1101 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1102 if (n > npages_dirty)
1103 npages_dirty = n;
1104 eieio();
1105 }
1106 v &= ~HPTE_V_ABSENT;
1107 v |= HPTE_V_VALID;
1108 __unlock_hpte(hptep, v);
1109 } while ((i = j) != head);
1110
1111 unlock_rmap(rmapp);
1112 return npages_dirty;
1113}
1114
1115void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1116 struct kvm_memory_slot *memslot,
1117 unsigned long *map)
1118{
1119 unsigned long gfn;
1120
1121 if (!vpa->dirty || !vpa->pinned_addr)
1122 return;
1123 gfn = vpa->gpa >> PAGE_SHIFT;
1124 if (gfn < memslot->base_gfn ||
1125 gfn >= memslot->base_gfn + memslot->npages)
1126 return;
1127
1128 vpa->dirty = false;
1129 if (map)
1130 __set_bit_le(nr: gfn - memslot->base_gfn, addr: map);
1131}
1132
1133long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1134 struct kvm_memory_slot *memslot, unsigned long *map)
1135{
1136 unsigned long i;
1137 unsigned long *rmapp;
1138
1139 preempt_disable();
1140 rmapp = memslot->arch.rmap;
1141 for (i = 0; i < memslot->npages; ++i) {
1142 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1143 /*
1144 * Note that if npages > 0 then i must be a multiple of npages,
1145 * since we always put huge-page HPTEs in the rmap chain
1146 * corresponding to their page base address.
1147 */
1148 if (npages)
1149 set_dirty_bits(map, i, npages);
1150 ++rmapp;
1151 }
1152 preempt_enable();
1153 return 0;
1154}
1155
1156void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1157 unsigned long *nb_ret)
1158{
1159 struct kvm_memory_slot *memslot;
1160 unsigned long gfn = gpa >> PAGE_SHIFT;
1161 struct page *page, *pages[1];
1162 int npages;
1163 unsigned long hva, offset;
1164 int srcu_idx;
1165
1166 srcu_idx = srcu_read_lock(ssp: &kvm->srcu);
1167 memslot = gfn_to_memslot(kvm, gfn);
1168 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1169 goto err;
1170 hva = gfn_to_hva_memslot(slot: memslot, gfn);
1171 npages = get_user_pages_fast(start: hva, nr_pages: 1, gup_flags: FOLL_WRITE, pages);
1172 if (npages < 1)
1173 goto err;
1174 page = pages[0];
1175 srcu_read_unlock(ssp: &kvm->srcu, idx: srcu_idx);
1176
1177 offset = gpa & (PAGE_SIZE - 1);
1178 if (nb_ret)
1179 *nb_ret = PAGE_SIZE - offset;
1180 return page_address(page) + offset;
1181
1182 err:
1183 srcu_read_unlock(ssp: &kvm->srcu, idx: srcu_idx);
1184 return NULL;
1185}
1186
1187void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1188 bool dirty)
1189{
1190 struct page *page = virt_to_page(va);
1191 struct kvm_memory_slot *memslot;
1192 unsigned long gfn;
1193 int srcu_idx;
1194
1195 put_page(page);
1196
1197 if (!dirty)
1198 return;
1199
1200 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1201 gfn = gpa >> PAGE_SHIFT;
1202 srcu_idx = srcu_read_lock(ssp: &kvm->srcu);
1203 memslot = gfn_to_memslot(kvm, gfn);
1204 if (memslot && memslot->dirty_bitmap)
1205 set_bit_le(nr: gfn - memslot->base_gfn, addr: memslot->dirty_bitmap);
1206 srcu_read_unlock(ssp: &kvm->srcu, idx: srcu_idx);
1207}
1208
1209/*
1210 * HPT resizing
1211 */
1212static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1213{
1214 int rc;
1215
1216 rc = kvmppc_allocate_hpt(info: &resize->hpt, order: resize->order);
1217 if (rc < 0)
1218 return rc;
1219
1220 resize_hpt_debug(resize, "%s(): HPT @ 0x%lx\n", __func__,
1221 resize->hpt.virt);
1222
1223 return 0;
1224}
1225
1226static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1227 unsigned long idx)
1228{
1229 struct kvm *kvm = resize->kvm;
1230 struct kvm_hpt_info *old = &kvm->arch.hpt;
1231 struct kvm_hpt_info *new = &resize->hpt;
1232 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1233 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1234 __be64 *hptep, *new_hptep;
1235 unsigned long vpte, rpte, guest_rpte;
1236 int ret;
1237 struct revmap_entry *rev;
1238 unsigned long apsize, avpn, pteg, hash;
1239 unsigned long new_idx, new_pteg, replace_vpte;
1240 int pshift;
1241
1242 hptep = (__be64 *)(old->virt + (idx << 4));
1243
1244 /* Guest is stopped, so new HPTEs can't be added or faulted
1245 * in, only unmapped or altered by host actions. So, it's
1246 * safe to check this before we take the HPTE lock */
1247 vpte = be64_to_cpu(hptep[0]);
1248 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1249 return 0; /* nothing to do */
1250
1251 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1252 cpu_relax();
1253
1254 vpte = be64_to_cpu(hptep[0]);
1255
1256 ret = 0;
1257 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1258 /* Nothing to do */
1259 goto out;
1260
1261 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1262 rpte = be64_to_cpu(hptep[1]);
1263 vpte = hpte_new_to_old_v(vpte, rpte);
1264 }
1265
1266 /* Unmap */
1267 rev = &old->rev[idx];
1268 guest_rpte = rev->guest_rpte;
1269
1270 ret = -EIO;
1271 apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1272 if (!apsize)
1273 goto out;
1274
1275 if (vpte & HPTE_V_VALID) {
1276 unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1277 int srcu_idx = srcu_read_lock(ssp: &kvm->srcu);
1278 struct kvm_memory_slot *memslot =
1279 __gfn_to_memslot(slots: kvm_memslots(kvm), gfn);
1280
1281 if (memslot) {
1282 unsigned long *rmapp;
1283 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1284
1285 lock_rmap(rmapp);
1286 kvmppc_unmap_hpte(kvm, i: idx, memslot, rmapp, gfn);
1287 unlock_rmap(rmapp);
1288 }
1289
1290 srcu_read_unlock(ssp: &kvm->srcu, idx: srcu_idx);
1291 }
1292
1293 /* Reload PTE after unmap */
1294 vpte = be64_to_cpu(hptep[0]);
1295 BUG_ON(vpte & HPTE_V_VALID);
1296 BUG_ON(!(vpte & HPTE_V_ABSENT));
1297
1298 ret = 0;
1299 if (!(vpte & HPTE_V_BOLTED))
1300 goto out;
1301
1302 rpte = be64_to_cpu(hptep[1]);
1303
1304 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1305 vpte = hpte_new_to_old_v(vpte, rpte);
1306 rpte = hpte_new_to_old_r(rpte);
1307 }
1308
1309 pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1310 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1311 pteg = idx / HPTES_PER_GROUP;
1312 if (vpte & HPTE_V_SECONDARY)
1313 pteg = ~pteg;
1314
1315 if (!(vpte & HPTE_V_1TB_SEG)) {
1316 unsigned long offset, vsid;
1317
1318 /* We only have 28 - 23 bits of offset in avpn */
1319 offset = (avpn & 0x1f) << 23;
1320 vsid = avpn >> 5;
1321 /* We can find more bits from the pteg value */
1322 if (pshift < 23)
1323 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1324
1325 hash = vsid ^ (offset >> pshift);
1326 } else {
1327 unsigned long offset, vsid;
1328
1329 /* We only have 40 - 23 bits of seg_off in avpn */
1330 offset = (avpn & 0x1ffff) << 23;
1331 vsid = avpn >> 17;
1332 if (pshift < 23)
1333 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1334
1335 hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1336 }
1337
1338 new_pteg = hash & new_hash_mask;
1339 if (vpte & HPTE_V_SECONDARY)
1340 new_pteg = ~hash & new_hash_mask;
1341
1342 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1343 new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1344
1345 replace_vpte = be64_to_cpu(new_hptep[0]);
1346 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1347 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1348 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1349 }
1350
1351 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1352 BUG_ON(new->order >= old->order);
1353
1354 if (replace_vpte & HPTE_V_BOLTED) {
1355 if (vpte & HPTE_V_BOLTED)
1356 /* Bolted collision, nothing we can do */
1357 ret = -ENOSPC;
1358 /* Discard the new HPTE */
1359 goto out;
1360 }
1361
1362 /* Discard the previous HPTE */
1363 }
1364
1365 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1366 rpte = hpte_old_to_new_r(vpte, rpte);
1367 vpte = hpte_old_to_new_v(vpte);
1368 }
1369
1370 new_hptep[1] = cpu_to_be64(rpte);
1371 new->rev[new_idx].guest_rpte = guest_rpte;
1372 /* No need for a barrier, since new HPT isn't active */
1373 new_hptep[0] = cpu_to_be64(vpte);
1374 unlock_hpte(new_hptep, vpte);
1375
1376out:
1377 unlock_hpte(hptep, vpte);
1378 return ret;
1379}
1380
1381static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1382{
1383 struct kvm *kvm = resize->kvm;
1384 unsigned long i;
1385 int rc;
1386
1387 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1388 rc = resize_hpt_rehash_hpte(resize, idx: i);
1389 if (rc != 0)
1390 return rc;
1391 }
1392
1393 return 0;
1394}
1395
1396static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1397{
1398 struct kvm *kvm = resize->kvm;
1399 struct kvm_hpt_info hpt_tmp;
1400
1401 /* Exchange the pending tables in the resize structure with
1402 * the active tables */
1403
1404 resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1405
1406 spin_lock(lock: &kvm->mmu_lock);
1407 asm volatile("ptesync" : : : "memory");
1408
1409 hpt_tmp = kvm->arch.hpt;
1410 kvmppc_set_hpt(kvm, info: &resize->hpt);
1411 resize->hpt = hpt_tmp;
1412
1413 spin_unlock(lock: &kvm->mmu_lock);
1414
1415 synchronize_srcu_expedited(ssp: &kvm->srcu);
1416
1417 if (cpu_has_feature(CPU_FTR_ARCH_300))
1418 kvmppc_setup_partition_table(kvm);
1419
1420 resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1421}
1422
1423static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1424{
1425 if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1426 return;
1427
1428 if (!resize)
1429 return;
1430
1431 if (resize->error != -EBUSY) {
1432 if (resize->hpt.virt)
1433 kvmppc_free_hpt(&resize->hpt);
1434 kfree(objp: resize);
1435 }
1436
1437 if (kvm->arch.resize_hpt == resize)
1438 kvm->arch.resize_hpt = NULL;
1439}
1440
1441static void resize_hpt_prepare_work(struct work_struct *work)
1442{
1443 struct kvm_resize_hpt *resize = container_of(work,
1444 struct kvm_resize_hpt,
1445 work);
1446 struct kvm *kvm = resize->kvm;
1447 int err = 0;
1448
1449 if (WARN_ON(resize->error != -EBUSY))
1450 return;
1451
1452 mutex_lock(&kvm->arch.mmu_setup_lock);
1453
1454 /* Request is still current? */
1455 if (kvm->arch.resize_hpt == resize) {
1456 /* We may request large allocations here:
1457 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1458 */
1459 mutex_unlock(lock: &kvm->arch.mmu_setup_lock);
1460
1461 resize_hpt_debug(resize, "%s(): order = %d\n", __func__,
1462 resize->order);
1463
1464 err = resize_hpt_allocate(resize);
1465
1466 /* We have strict assumption about -EBUSY
1467 * when preparing for HPT resize.
1468 */
1469 if (WARN_ON(err == -EBUSY))
1470 err = -EINPROGRESS;
1471
1472 mutex_lock(&kvm->arch.mmu_setup_lock);
1473 /* It is possible that kvm->arch.resize_hpt != resize
1474 * after we grab kvm->arch.mmu_setup_lock again.
1475 */
1476 }
1477
1478 resize->error = err;
1479
1480 if (kvm->arch.resize_hpt != resize)
1481 resize_hpt_release(kvm, resize);
1482
1483 mutex_unlock(lock: &kvm->arch.mmu_setup_lock);
1484}
1485
1486int kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1487 struct kvm_ppc_resize_hpt *rhpt)
1488{
1489 unsigned long flags = rhpt->flags;
1490 unsigned long shift = rhpt->shift;
1491 struct kvm_resize_hpt *resize;
1492 int ret;
1493
1494 if (flags != 0 || kvm_is_radix(kvm))
1495 return -EINVAL;
1496
1497 if (shift && ((shift < 18) || (shift > 46)))
1498 return -EINVAL;
1499
1500 mutex_lock(&kvm->arch.mmu_setup_lock);
1501
1502 resize = kvm->arch.resize_hpt;
1503
1504 if (resize) {
1505 if (resize->order == shift) {
1506 /* Suitable resize in progress? */
1507 ret = resize->error;
1508 if (ret == -EBUSY)
1509 ret = 100; /* estimated time in ms */
1510 else if (ret)
1511 resize_hpt_release(kvm, resize);
1512
1513 goto out;
1514 }
1515
1516 /* not suitable, cancel it */
1517 resize_hpt_release(kvm, resize);
1518 }
1519
1520 ret = 0;
1521 if (!shift)
1522 goto out; /* nothing to do */
1523
1524 /* start new resize */
1525
1526 resize = kzalloc(size: sizeof(*resize), GFP_KERNEL);
1527 if (!resize) {
1528 ret = -ENOMEM;
1529 goto out;
1530 }
1531
1532 resize->error = -EBUSY;
1533 resize->order = shift;
1534 resize->kvm = kvm;
1535 INIT_WORK(&resize->work, resize_hpt_prepare_work);
1536 kvm->arch.resize_hpt = resize;
1537
1538 schedule_work(work: &resize->work);
1539
1540 ret = 100; /* estimated time in ms */
1541
1542out:
1543 mutex_unlock(lock: &kvm->arch.mmu_setup_lock);
1544 return ret;
1545}
1546
1547static void resize_hpt_boot_vcpu(void *opaque)
1548{
1549 /* Nothing to do, just force a KVM exit */
1550}
1551
1552int kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1553 struct kvm_ppc_resize_hpt *rhpt)
1554{
1555 unsigned long flags = rhpt->flags;
1556 unsigned long shift = rhpt->shift;
1557 struct kvm_resize_hpt *resize;
1558 int ret;
1559
1560 if (flags != 0 || kvm_is_radix(kvm))
1561 return -EINVAL;
1562
1563 if (shift && ((shift < 18) || (shift > 46)))
1564 return -EINVAL;
1565
1566 mutex_lock(&kvm->arch.mmu_setup_lock);
1567
1568 resize = kvm->arch.resize_hpt;
1569
1570 /* This shouldn't be possible */
1571 ret = -EIO;
1572 if (WARN_ON(!kvm->arch.mmu_ready))
1573 goto out_no_hpt;
1574
1575 /* Stop VCPUs from running while we mess with the HPT */
1576 kvm->arch.mmu_ready = 0;
1577 smp_mb();
1578
1579 /* Boot all CPUs out of the guest so they re-read
1580 * mmu_ready */
1581 on_each_cpu(func: resize_hpt_boot_vcpu, NULL, wait: 1);
1582
1583 ret = -ENXIO;
1584 if (!resize || (resize->order != shift))
1585 goto out;
1586
1587 ret = resize->error;
1588 if (ret)
1589 goto out;
1590
1591 ret = resize_hpt_rehash(resize);
1592 if (ret)
1593 goto out;
1594
1595 resize_hpt_pivot(resize);
1596
1597out:
1598 /* Let VCPUs run again */
1599 kvm->arch.mmu_ready = 1;
1600 smp_mb();
1601out_no_hpt:
1602 resize_hpt_release(kvm, resize);
1603 mutex_unlock(lock: &kvm->arch.mmu_setup_lock);
1604 return ret;
1605}
1606
1607/*
1608 * Functions for reading and writing the hash table via reads and
1609 * writes on a file descriptor.
1610 *
1611 * Reads return the guest view of the hash table, which has to be
1612 * pieced together from the real hash table and the guest_rpte
1613 * values in the revmap array.
1614 *
1615 * On writes, each HPTE written is considered in turn, and if it
1616 * is valid, it is written to the HPT as if an H_ENTER with the
1617 * exact flag set was done. When the invalid count is non-zero
1618 * in the header written to the stream, the kernel will make
1619 * sure that that many HPTEs are invalid, and invalidate them
1620 * if not.
1621 */
1622
1623struct kvm_htab_ctx {
1624 unsigned long index;
1625 unsigned long flags;
1626 struct kvm *kvm;
1627 int first_pass;
1628};
1629
1630#define HPTE_SIZE (2 * sizeof(unsigned long))
1631
1632/*
1633 * Returns 1 if this HPT entry has been modified or has pending
1634 * R/C bit changes.
1635 */
1636static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1637{
1638 unsigned long rcbits_unset;
1639
1640 if (revp->guest_rpte & HPTE_GR_MODIFIED)
1641 return 1;
1642
1643 /* Also need to consider changes in reference and changed bits */
1644 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1645 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1646 (be64_to_cpu(hptp[1]) & rcbits_unset))
1647 return 1;
1648
1649 return 0;
1650}
1651
1652static long record_hpte(unsigned long flags, __be64 *hptp,
1653 unsigned long *hpte, struct revmap_entry *revp,
1654 int want_valid, int first_pass)
1655{
1656 unsigned long v, r, hr;
1657 unsigned long rcbits_unset;
1658 int ok = 1;
1659 int valid, dirty;
1660
1661 /* Unmodified entries are uninteresting except on the first pass */
1662 dirty = hpte_dirty(revp, hptp);
1663 if (!first_pass && !dirty)
1664 return 0;
1665
1666 valid = 0;
1667 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1668 valid = 1;
1669 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1670 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1671 valid = 0;
1672 }
1673 if (valid != want_valid)
1674 return 0;
1675
1676 v = r = 0;
1677 if (valid || dirty) {
1678 /* lock the HPTE so it's stable and read it */
1679 preempt_disable();
1680 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1681 cpu_relax();
1682 v = be64_to_cpu(hptp[0]);
1683 hr = be64_to_cpu(hptp[1]);
1684 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1685 v = hpte_new_to_old_v(v, hr);
1686 hr = hpte_new_to_old_r(hr);
1687 }
1688
1689 /* re-evaluate valid and dirty from synchronized HPTE value */
1690 valid = !!(v & HPTE_V_VALID);
1691 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1692
1693 /* Harvest R and C into guest view if necessary */
1694 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1695 if (valid && (rcbits_unset & hr)) {
1696 revp->guest_rpte |= (hr &
1697 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1698 dirty = 1;
1699 }
1700
1701 if (v & HPTE_V_ABSENT) {
1702 v &= ~HPTE_V_ABSENT;
1703 v |= HPTE_V_VALID;
1704 valid = 1;
1705 }
1706 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1707 valid = 0;
1708
1709 r = revp->guest_rpte;
1710 /* only clear modified if this is the right sort of entry */
1711 if (valid == want_valid && dirty) {
1712 r &= ~HPTE_GR_MODIFIED;
1713 revp->guest_rpte = r;
1714 }
1715 unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1716 preempt_enable();
1717 if (!(valid == want_valid && (first_pass || dirty)))
1718 ok = 0;
1719 }
1720 hpte[0] = cpu_to_be64(v);
1721 hpte[1] = cpu_to_be64(r);
1722 return ok;
1723}
1724
1725static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1726 size_t count, loff_t *ppos)
1727{
1728 struct kvm_htab_ctx *ctx = file->private_data;
1729 struct kvm *kvm = ctx->kvm;
1730 struct kvm_get_htab_header hdr;
1731 __be64 *hptp;
1732 struct revmap_entry *revp;
1733 unsigned long i, nb, nw;
1734 unsigned long __user *lbuf;
1735 struct kvm_get_htab_header __user *hptr;
1736 unsigned long flags;
1737 int first_pass;
1738 unsigned long hpte[2];
1739
1740 if (!access_ok(buf, count))
1741 return -EFAULT;
1742 if (kvm_is_radix(kvm))
1743 return 0;
1744
1745 first_pass = ctx->first_pass;
1746 flags = ctx->flags;
1747
1748 i = ctx->index;
1749 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1750 revp = kvm->arch.hpt.rev + i;
1751 lbuf = (unsigned long __user *)buf;
1752
1753 nb = 0;
1754 while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1755 /* Initialize header */
1756 hptr = (struct kvm_get_htab_header __user *)buf;
1757 hdr.n_valid = 0;
1758 hdr.n_invalid = 0;
1759 nw = nb;
1760 nb += sizeof(hdr);
1761 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1762
1763 /* Skip uninteresting entries, i.e. clean on not-first pass */
1764 if (!first_pass) {
1765 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1766 !hpte_dirty(revp, hptp)) {
1767 ++i;
1768 hptp += 2;
1769 ++revp;
1770 }
1771 }
1772 hdr.index = i;
1773
1774 /* Grab a series of valid entries */
1775 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1776 hdr.n_valid < 0xffff &&
1777 nb + HPTE_SIZE < count &&
1778 record_hpte(flags, hptp, hpte, revp, want_valid: 1, first_pass)) {
1779 /* valid entry, write it out */
1780 ++hdr.n_valid;
1781 if (__put_user(hpte[0], lbuf) ||
1782 __put_user(hpte[1], lbuf + 1))
1783 return -EFAULT;
1784 nb += HPTE_SIZE;
1785 lbuf += 2;
1786 ++i;
1787 hptp += 2;
1788 ++revp;
1789 }
1790 /* Now skip invalid entries while we can */
1791 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1792 hdr.n_invalid < 0xffff &&
1793 record_hpte(flags, hptp, hpte, revp, want_valid: 0, first_pass)) {
1794 /* found an invalid entry */
1795 ++hdr.n_invalid;
1796 ++i;
1797 hptp += 2;
1798 ++revp;
1799 }
1800
1801 if (hdr.n_valid || hdr.n_invalid) {
1802 /* write back the header */
1803 if (__copy_to_user(to: hptr, from: &hdr, n: sizeof(hdr)))
1804 return -EFAULT;
1805 nw = nb;
1806 buf = (char __user *)lbuf;
1807 } else {
1808 nb = nw;
1809 }
1810
1811 /* Check if we've wrapped around the hash table */
1812 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1813 i = 0;
1814 ctx->first_pass = 0;
1815 break;
1816 }
1817 }
1818
1819 ctx->index = i;
1820
1821 return nb;
1822}
1823
1824static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1825 size_t count, loff_t *ppos)
1826{
1827 struct kvm_htab_ctx *ctx = file->private_data;
1828 struct kvm *kvm = ctx->kvm;
1829 struct kvm_get_htab_header hdr;
1830 unsigned long i, j;
1831 unsigned long v, r;
1832 unsigned long __user *lbuf;
1833 __be64 *hptp;
1834 unsigned long tmp[2];
1835 ssize_t nb;
1836 long int err, ret;
1837 int mmu_ready;
1838 int pshift;
1839
1840 if (!access_ok(buf, count))
1841 return -EFAULT;
1842 if (kvm_is_radix(kvm))
1843 return -EINVAL;
1844
1845 /* lock out vcpus from running while we're doing this */
1846 mutex_lock(&kvm->arch.mmu_setup_lock);
1847 mmu_ready = kvm->arch.mmu_ready;
1848 if (mmu_ready) {
1849 kvm->arch.mmu_ready = 0; /* temporarily */
1850 /* order mmu_ready vs. vcpus_running */
1851 smp_mb();
1852 if (atomic_read(v: &kvm->arch.vcpus_running)) {
1853 kvm->arch.mmu_ready = 1;
1854 mutex_unlock(lock: &kvm->arch.mmu_setup_lock);
1855 return -EBUSY;
1856 }
1857 }
1858
1859 err = 0;
1860 for (nb = 0; nb + sizeof(hdr) <= count; ) {
1861 err = -EFAULT;
1862 if (__copy_from_user(to: &hdr, from: buf, n: sizeof(hdr)))
1863 break;
1864
1865 err = 0;
1866 if (nb + hdr.n_valid * HPTE_SIZE > count)
1867 break;
1868
1869 nb += sizeof(hdr);
1870 buf += sizeof(hdr);
1871
1872 err = -EINVAL;
1873 i = hdr.index;
1874 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1875 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1876 break;
1877
1878 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1879 lbuf = (unsigned long __user *)buf;
1880 for (j = 0; j < hdr.n_valid; ++j) {
1881 __be64 hpte_v;
1882 __be64 hpte_r;
1883
1884 err = -EFAULT;
1885 if (__get_user(hpte_v, lbuf) ||
1886 __get_user(hpte_r, lbuf + 1))
1887 goto out;
1888 v = be64_to_cpu(hpte_v);
1889 r = be64_to_cpu(hpte_r);
1890 err = -EINVAL;
1891 if (!(v & HPTE_V_VALID))
1892 goto out;
1893 pshift = kvmppc_hpte_base_page_shift(v, r);
1894 if (pshift <= 0)
1895 goto out;
1896 lbuf += 2;
1897 nb += HPTE_SIZE;
1898
1899 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1900 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1901 err = -EIO;
1902 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1903 tmp);
1904 if (ret != H_SUCCESS) {
1905 pr_err("%s ret %ld i=%ld v=%lx r=%lx\n", __func__, ret, i, v, r);
1906 goto out;
1907 }
1908 if (!mmu_ready && is_vrma_hpte(v)) {
1909 unsigned long senc, lpcr;
1910
1911 senc = slb_pgsize_encoding(1ul << pshift);
1912 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1913 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1914 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1915 lpcr = senc << (LPCR_VRMASD_SH - 4);
1916 kvmppc_update_lpcr(kvm, lpcr,
1917 LPCR_VRMASD);
1918 } else {
1919 kvmppc_setup_partition_table(kvm);
1920 }
1921 mmu_ready = 1;
1922 }
1923 ++i;
1924 hptp += 2;
1925 }
1926
1927 for (j = 0; j < hdr.n_invalid; ++j) {
1928 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1929 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1930 ++i;
1931 hptp += 2;
1932 }
1933 err = 0;
1934 }
1935
1936 out:
1937 /* Order HPTE updates vs. mmu_ready */
1938 smp_wmb();
1939 kvm->arch.mmu_ready = mmu_ready;
1940 mutex_unlock(lock: &kvm->arch.mmu_setup_lock);
1941
1942 if (err)
1943 return err;
1944 return nb;
1945}
1946
1947static int kvm_htab_release(struct inode *inode, struct file *filp)
1948{
1949 struct kvm_htab_ctx *ctx = filp->private_data;
1950
1951 filp->private_data = NULL;
1952 if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1953 atomic_dec(v: &ctx->kvm->arch.hpte_mod_interest);
1954 kvm_put_kvm(kvm: ctx->kvm);
1955 kfree(objp: ctx);
1956 return 0;
1957}
1958
1959static const struct file_operations kvm_htab_fops = {
1960 .read = kvm_htab_read,
1961 .write = kvm_htab_write,
1962 .llseek = default_llseek,
1963 .release = kvm_htab_release,
1964};
1965
1966int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1967{
1968 int ret;
1969 struct kvm_htab_ctx *ctx;
1970 int rwflag;
1971
1972 /* reject flags we don't recognize */
1973 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1974 return -EINVAL;
1975 ctx = kzalloc(size: sizeof(*ctx), GFP_KERNEL);
1976 if (!ctx)
1977 return -ENOMEM;
1978 kvm_get_kvm(kvm);
1979 ctx->kvm = kvm;
1980 ctx->index = ghf->start_index;
1981 ctx->flags = ghf->flags;
1982 ctx->first_pass = 1;
1983
1984 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1985 ret = anon_inode_getfd(name: "kvm-htab", fops: &kvm_htab_fops, priv: ctx, flags: rwflag | O_CLOEXEC);
1986 if (ret < 0) {
1987 kfree(objp: ctx);
1988 kvm_put_kvm_no_destroy(kvm);
1989 return ret;
1990 }
1991
1992 if (rwflag == O_RDONLY) {
1993 mutex_lock(&kvm->slots_lock);
1994 atomic_inc(v: &kvm->arch.hpte_mod_interest);
1995 /* make sure kvmppc_do_h_enter etc. see the increment */
1996 synchronize_srcu_expedited(ssp: &kvm->srcu);
1997 mutex_unlock(lock: &kvm->slots_lock);
1998 }
1999
2000 return ret;
2001}
2002
2003struct debugfs_htab_state {
2004 struct kvm *kvm;
2005 struct mutex mutex;
2006 unsigned long hpt_index;
2007 int chars_left;
2008 int buf_index;
2009 char buf[64];
2010};
2011
2012static int debugfs_htab_open(struct inode *inode, struct file *file)
2013{
2014 struct kvm *kvm = inode->i_private;
2015 struct debugfs_htab_state *p;
2016
2017 p = kzalloc(size: sizeof(*p), GFP_KERNEL);
2018 if (!p)
2019 return -ENOMEM;
2020
2021 kvm_get_kvm(kvm);
2022 p->kvm = kvm;
2023 mutex_init(&p->mutex);
2024 file->private_data = p;
2025
2026 return nonseekable_open(inode, filp: file);
2027}
2028
2029static int debugfs_htab_release(struct inode *inode, struct file *file)
2030{
2031 struct debugfs_htab_state *p = file->private_data;
2032
2033 kvm_put_kvm(kvm: p->kvm);
2034 kfree(objp: p);
2035 return 0;
2036}
2037
2038static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2039 size_t len, loff_t *ppos)
2040{
2041 struct debugfs_htab_state *p = file->private_data;
2042 ssize_t ret, r;
2043 unsigned long i, n;
2044 unsigned long v, hr, gr;
2045 struct kvm *kvm;
2046 __be64 *hptp;
2047
2048 kvm = p->kvm;
2049 if (kvm_is_radix(kvm))
2050 return 0;
2051
2052 ret = mutex_lock_interruptible(&p->mutex);
2053 if (ret)
2054 return ret;
2055
2056 if (p->chars_left) {
2057 n = p->chars_left;
2058 if (n > len)
2059 n = len;
2060 r = copy_to_user(to: buf, from: p->buf + p->buf_index, n);
2061 n -= r;
2062 p->chars_left -= n;
2063 p->buf_index += n;
2064 buf += n;
2065 len -= n;
2066 ret = n;
2067 if (r) {
2068 if (!n)
2069 ret = -EFAULT;
2070 goto out;
2071 }
2072 }
2073
2074 i = p->hpt_index;
2075 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2076 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2077 ++i, hptp += 2) {
2078 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2079 continue;
2080
2081 /* lock the HPTE so it's stable and read it */
2082 preempt_disable();
2083 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2084 cpu_relax();
2085 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2086 hr = be64_to_cpu(hptp[1]);
2087 gr = kvm->arch.hpt.rev[i].guest_rpte;
2088 unlock_hpte(hptp, v);
2089 preempt_enable();
2090
2091 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2092 continue;
2093
2094 n = scnprintf(buf: p->buf, size: sizeof(p->buf),
2095 fmt: "%6lx %.16lx %.16lx %.16lx\n",
2096 i, v, hr, gr);
2097 p->chars_left = n;
2098 if (n > len)
2099 n = len;
2100 r = copy_to_user(to: buf, from: p->buf, n);
2101 n -= r;
2102 p->chars_left -= n;
2103 p->buf_index = n;
2104 buf += n;
2105 len -= n;
2106 ret += n;
2107 if (r) {
2108 if (!ret)
2109 ret = -EFAULT;
2110 goto out;
2111 }
2112 }
2113 p->hpt_index = i;
2114
2115 out:
2116 mutex_unlock(lock: &p->mutex);
2117 return ret;
2118}
2119
2120static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2121 size_t len, loff_t *ppos)
2122{
2123 return -EACCES;
2124}
2125
2126static const struct file_operations debugfs_htab_fops = {
2127 .owner = THIS_MODULE,
2128 .open = debugfs_htab_open,
2129 .release = debugfs_htab_release,
2130 .read = debugfs_htab_read,
2131 .write = debugfs_htab_write,
2132 .llseek = generic_file_llseek,
2133};
2134
2135void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2136{
2137 debugfs_create_file(name: "htab", mode: 0400, parent: kvm->debugfs_dentry, data: kvm,
2138 fops: &debugfs_htab_fops);
2139}
2140
2141void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2142{
2143 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2144
2145 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */
2146
2147 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2148
2149 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2150}
2151

source code of linux/arch/powerpc/kvm/book3s_64_mmu_hv.c