1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5 *
6 * KVM Xen emulation
7 */
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include "x86.h"
11#include "xen.h"
12#include "hyperv.h"
13#include "lapic.h"
14
15#include <linux/eventfd.h>
16#include <linux/kvm_host.h>
17#include <linux/sched/stat.h>
18
19#include <trace/events/kvm.h>
20#include <xen/interface/xen.h>
21#include <xen/interface/vcpu.h>
22#include <xen/interface/version.h>
23#include <xen/interface/event_channel.h>
24#include <xen/interface/sched.h>
25
26#include <asm/xen/cpuid.h>
27
28#include "cpuid.h"
29#include "trace.h"
30
31static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
32static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
33static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
34
35DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
36
37static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
38{
39 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
40 struct pvclock_wall_clock *wc;
41 gpa_t gpa = gfn_to_gpa(gfn);
42 u32 *wc_sec_hi;
43 u32 wc_version;
44 u64 wall_nsec;
45 int ret = 0;
46 int idx = srcu_read_lock(ssp: &kvm->srcu);
47
48 if (gfn == KVM_XEN_INVALID_GFN) {
49 kvm_gpc_deactivate(gpc);
50 goto out;
51 }
52
53 do {
54 ret = kvm_gpc_activate(gpc, gpa, PAGE_SIZE);
55 if (ret)
56 goto out;
57
58 /*
59 * This code mirrors kvm_write_wall_clock() except that it writes
60 * directly through the pfn cache and doesn't mark the page dirty.
61 */
62 wall_nsec = kvm_get_wall_clock_epoch(kvm);
63
64 /* It could be invalid again already, so we need to check */
65 read_lock_irq(&gpc->lock);
66
67 if (gpc->valid)
68 break;
69
70 read_unlock_irq(&gpc->lock);
71 } while (1);
72
73 /* Paranoia checks on the 32-bit struct layout */
74 BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
75 BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
76 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
77
78#ifdef CONFIG_X86_64
79 /* Paranoia checks on the 64-bit struct layout */
80 BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
81 BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
82
83 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
84 struct shared_info *shinfo = gpc->khva;
85
86 wc_sec_hi = &shinfo->wc_sec_hi;
87 wc = &shinfo->wc;
88 } else
89#endif
90 {
91 struct compat_shared_info *shinfo = gpc->khva;
92
93 wc_sec_hi = &shinfo->arch.wc_sec_hi;
94 wc = &shinfo->wc;
95 }
96
97 /* Increment and ensure an odd value */
98 wc_version = wc->version = (wc->version + 1) | 1;
99 smp_wmb();
100
101 wc->nsec = do_div(wall_nsec, NSEC_PER_SEC);
102 wc->sec = (u32)wall_nsec;
103 *wc_sec_hi = wall_nsec >> 32;
104 smp_wmb();
105
106 wc->version = wc_version + 1;
107 read_unlock_irq(&gpc->lock);
108
109 kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
110
111out:
112 srcu_read_unlock(ssp: &kvm->srcu, idx);
113 return ret;
114}
115
116void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
117{
118 if (atomic_read(v: &vcpu->arch.xen.timer_pending) > 0) {
119 struct kvm_xen_evtchn e;
120
121 e.vcpu_id = vcpu->vcpu_id;
122 e.vcpu_idx = vcpu->vcpu_idx;
123 e.port = vcpu->arch.xen.timer_virq;
124 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
125
126 kvm_xen_set_evtchn(xe: &e, kvm: vcpu->kvm);
127
128 vcpu->arch.xen.timer_expires = 0;
129 atomic_set(v: &vcpu->arch.xen.timer_pending, i: 0);
130 }
131}
132
133static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
134{
135 struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
136 arch.xen.timer);
137 struct kvm_xen_evtchn e;
138 int rc;
139
140 if (atomic_read(v: &vcpu->arch.xen.timer_pending))
141 return HRTIMER_NORESTART;
142
143 e.vcpu_id = vcpu->vcpu_id;
144 e.vcpu_idx = vcpu->vcpu_idx;
145 e.port = vcpu->arch.xen.timer_virq;
146 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
147
148 rc = kvm_xen_set_evtchn_fast(xe: &e, kvm: vcpu->kvm);
149 if (rc != -EWOULDBLOCK) {
150 vcpu->arch.xen.timer_expires = 0;
151 return HRTIMER_NORESTART;
152 }
153
154 atomic_inc(v: &vcpu->arch.xen.timer_pending);
155 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
156 kvm_vcpu_kick(vcpu);
157
158 return HRTIMER_NORESTART;
159}
160
161static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns)
162{
163 /*
164 * Avoid races with the old timer firing. Checking timer_expires
165 * to avoid calling hrtimer_cancel() will only have false positives
166 * so is fine.
167 */
168 if (vcpu->arch.xen.timer_expires)
169 hrtimer_cancel(timer: &vcpu->arch.xen.timer);
170
171 atomic_set(v: &vcpu->arch.xen.timer_pending, i: 0);
172 vcpu->arch.xen.timer_expires = guest_abs;
173
174 if (delta_ns <= 0) {
175 xen_timer_callback(timer: &vcpu->arch.xen.timer);
176 } else {
177 ktime_t ktime_now = ktime_get();
178 hrtimer_start(timer: &vcpu->arch.xen.timer,
179 ktime_add_ns(ktime_now, delta_ns),
180 mode: HRTIMER_MODE_ABS_HARD);
181 }
182}
183
184static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
185{
186 hrtimer_cancel(timer: &vcpu->arch.xen.timer);
187 vcpu->arch.xen.timer_expires = 0;
188 atomic_set(v: &vcpu->arch.xen.timer_pending, i: 0);
189}
190
191static void kvm_xen_init_timer(struct kvm_vcpu *vcpu)
192{
193 hrtimer_init(timer: &vcpu->arch.xen.timer, CLOCK_MONOTONIC,
194 mode: HRTIMER_MODE_ABS_HARD);
195 vcpu->arch.xen.timer.function = xen_timer_callback;
196}
197
198static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic)
199{
200 struct kvm_vcpu_xen *vx = &v->arch.xen;
201 struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache;
202 struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache;
203 size_t user_len, user_len1, user_len2;
204 struct vcpu_runstate_info rs;
205 unsigned long flags;
206 size_t times_ofs;
207 uint8_t *update_bit = NULL;
208 uint64_t entry_time;
209 uint64_t *rs_times;
210 int *rs_state;
211
212 /*
213 * The only difference between 32-bit and 64-bit versions of the
214 * runstate struct is the alignment of uint64_t in 32-bit, which
215 * means that the 64-bit version has an additional 4 bytes of
216 * padding after the first field 'state'. Let's be really really
217 * paranoid about that, and matching it with our internal data
218 * structures that we memcpy into it...
219 */
220 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
221 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
222 BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
223#ifdef CONFIG_X86_64
224 /*
225 * The 64-bit structure has 4 bytes of padding before 'state_entry_time'
226 * so each subsequent field is shifted by 4, and it's 4 bytes longer.
227 */
228 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
229 offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
230 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
231 offsetof(struct compat_vcpu_runstate_info, time) + 4);
232 BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4);
233#endif
234 /*
235 * The state field is in the same place at the start of both structs,
236 * and is the same size (int) as vx->current_runstate.
237 */
238 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
239 offsetof(struct compat_vcpu_runstate_info, state));
240 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
241 sizeof(vx->current_runstate));
242 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
243 sizeof(vx->current_runstate));
244
245 /*
246 * The state_entry_time field is 64 bits in both versions, and the
247 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86
248 * is little-endian means that it's in the last *byte* of the word.
249 * That detail is important later.
250 */
251 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
252 sizeof(uint64_t));
253 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
254 sizeof(uint64_t));
255 BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80);
256
257 /*
258 * The time array is four 64-bit quantities in both versions, matching
259 * the vx->runstate_times and immediately following state_entry_time.
260 */
261 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
262 offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t));
263 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
264 offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t));
265 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
266 sizeof_field(struct compat_vcpu_runstate_info, time));
267 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
268 sizeof(vx->runstate_times));
269
270 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
271 user_len = sizeof(struct vcpu_runstate_info);
272 times_ofs = offsetof(struct vcpu_runstate_info,
273 state_entry_time);
274 } else {
275 user_len = sizeof(struct compat_vcpu_runstate_info);
276 times_ofs = offsetof(struct compat_vcpu_runstate_info,
277 state_entry_time);
278 }
279
280 /*
281 * There are basically no alignment constraints. The guest can set it
282 * up so it crosses from one page to the next, and at arbitrary byte
283 * alignment (and the 32-bit ABI doesn't align the 64-bit integers
284 * anyway, even if the overall struct had been 64-bit aligned).
285 */
286 if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) {
287 user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK);
288 user_len2 = user_len - user_len1;
289 } else {
290 user_len1 = user_len;
291 user_len2 = 0;
292 }
293 BUG_ON(user_len1 + user_len2 != user_len);
294
295 retry:
296 /*
297 * Attempt to obtain the GPC lock on *both* (if there are two)
298 * gfn_to_pfn caches that cover the region.
299 */
300 if (atomic) {
301 local_irq_save(flags);
302 if (!read_trylock(&gpc1->lock)) {
303 local_irq_restore(flags);
304 return;
305 }
306 } else {
307 read_lock_irqsave(&gpc1->lock, flags);
308 }
309 while (!kvm_gpc_check(gpc: gpc1, len: user_len1)) {
310 read_unlock_irqrestore(&gpc1->lock, flags);
311
312 /* When invoked from kvm_sched_out() we cannot sleep */
313 if (atomic)
314 return;
315
316 if (kvm_gpc_refresh(gpc: gpc1, len: user_len1))
317 return;
318
319 read_lock_irqsave(&gpc1->lock, flags);
320 }
321
322 if (likely(!user_len2)) {
323 /*
324 * Set up three pointers directly to the runstate_info
325 * struct in the guest (via the GPC).
326 *
327 * • @rs_state → state field
328 * • @rs_times → state_entry_time field.
329 * • @update_bit → last byte of state_entry_time, which
330 * contains the XEN_RUNSTATE_UPDATE bit.
331 */
332 rs_state = gpc1->khva;
333 rs_times = gpc1->khva + times_ofs;
334 if (v->kvm->arch.xen.runstate_update_flag)
335 update_bit = ((void *)(&rs_times[1])) - 1;
336 } else {
337 /*
338 * The guest's runstate_info is split across two pages and we
339 * need to hold and validate both GPCs simultaneously. We can
340 * declare a lock ordering GPC1 > GPC2 because nothing else
341 * takes them more than one at a time. Set a subclass on the
342 * gpc1 lock to make lockdep shut up about it.
343 */
344 lock_set_subclass(lock: &gpc1->lock.dep_map, subclass: 1, _THIS_IP_);
345 if (atomic) {
346 if (!read_trylock(&gpc2->lock)) {
347 read_unlock_irqrestore(&gpc1->lock, flags);
348 return;
349 }
350 } else {
351 read_lock(&gpc2->lock);
352 }
353
354 if (!kvm_gpc_check(gpc: gpc2, len: user_len2)) {
355 read_unlock(&gpc2->lock);
356 read_unlock_irqrestore(&gpc1->lock, flags);
357
358 /* When invoked from kvm_sched_out() we cannot sleep */
359 if (atomic)
360 return;
361
362 /*
363 * Use kvm_gpc_activate() here because if the runstate
364 * area was configured in 32-bit mode and only extends
365 * to the second page now because the guest changed to
366 * 64-bit mode, the second GPC won't have been set up.
367 */
368 if (kvm_gpc_activate(gpc: gpc2, gpa: gpc1->gpa + user_len1,
369 len: user_len2))
370 return;
371
372 /*
373 * We dropped the lock on GPC1 so we have to go all the
374 * way back and revalidate that too.
375 */
376 goto retry;
377 }
378
379 /*
380 * In this case, the runstate_info struct will be assembled on
381 * the kernel stack (compat or not as appropriate) and will
382 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three
383 * rs pointers accordingly.
384 */
385 rs_times = &rs.state_entry_time;
386
387 /*
388 * The rs_state pointer points to the start of what we'll
389 * copy to the guest, which in the case of a compat guest
390 * is the 32-bit field that the compiler thinks is padding.
391 */
392 rs_state = ((void *)rs_times) - times_ofs;
393
394 /*
395 * The update_bit is still directly in the guest memory,
396 * via one GPC or the other.
397 */
398 if (v->kvm->arch.xen.runstate_update_flag) {
399 if (user_len1 >= times_ofs + sizeof(uint64_t))
400 update_bit = gpc1->khva + times_ofs +
401 sizeof(uint64_t) - 1;
402 else
403 update_bit = gpc2->khva + times_ofs +
404 sizeof(uint64_t) - 1 - user_len1;
405 }
406
407#ifdef CONFIG_X86_64
408 /*
409 * Don't leak kernel memory through the padding in the 64-bit
410 * version of the struct.
411 */
412 memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time));
413#endif
414 }
415
416 /*
417 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the
418 * state_entry_time field, directly in the guest. We need to set
419 * that (and write-barrier) before writing to the rest of the
420 * structure, and clear it last. Just as Xen does, we address the
421 * single *byte* in which it resides because it might be in a
422 * different cache line to the rest of the 64-bit word, due to
423 * the (lack of) alignment constraints.
424 */
425 entry_time = vx->runstate_entry_time;
426 if (update_bit) {
427 entry_time |= XEN_RUNSTATE_UPDATE;
428 *update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56;
429 smp_wmb();
430 }
431
432 /*
433 * Now assemble the actual structure, either on our kernel stack
434 * or directly in the guest according to how the rs_state and
435 * rs_times pointers were set up above.
436 */
437 *rs_state = vx->current_runstate;
438 rs_times[0] = entry_time;
439 memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
440
441 /* For the split case, we have to then copy it to the guest. */
442 if (user_len2) {
443 memcpy(gpc1->khva, rs_state, user_len1);
444 memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2);
445 }
446 smp_wmb();
447
448 /* Finally, clear the XEN_RUNSTATE_UPDATE bit. */
449 if (update_bit) {
450 entry_time &= ~XEN_RUNSTATE_UPDATE;
451 *update_bit = entry_time >> 56;
452 smp_wmb();
453 }
454
455 if (user_len2)
456 read_unlock(&gpc2->lock);
457
458 read_unlock_irqrestore(&gpc1->lock, flags);
459
460 mark_page_dirty_in_slot(kvm: v->kvm, memslot: gpc1->memslot, gfn: gpc1->gpa >> PAGE_SHIFT);
461 if (user_len2)
462 mark_page_dirty_in_slot(kvm: v->kvm, memslot: gpc2->memslot, gfn: gpc2->gpa >> PAGE_SHIFT);
463}
464
465void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
466{
467 struct kvm_vcpu_xen *vx = &v->arch.xen;
468 u64 now = get_kvmclock_ns(kvm: v->kvm);
469 u64 delta_ns = now - vx->runstate_entry_time;
470 u64 run_delay = current->sched_info.run_delay;
471
472 if (unlikely(!vx->runstate_entry_time))
473 vx->current_runstate = RUNSTATE_offline;
474
475 /*
476 * Time waiting for the scheduler isn't "stolen" if the
477 * vCPU wasn't running anyway.
478 */
479 if (vx->current_runstate == RUNSTATE_running) {
480 u64 steal_ns = run_delay - vx->last_steal;
481
482 delta_ns -= steal_ns;
483
484 vx->runstate_times[RUNSTATE_runnable] += steal_ns;
485 }
486 vx->last_steal = run_delay;
487
488 vx->runstate_times[vx->current_runstate] += delta_ns;
489 vx->current_runstate = state;
490 vx->runstate_entry_time = now;
491
492 if (vx->runstate_cache.active)
493 kvm_xen_update_runstate_guest(v, atomic: state == RUNSTATE_runnable);
494}
495
496static void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
497{
498 struct kvm_lapic_irq irq = { };
499 int r;
500
501 irq.dest_id = v->vcpu_id;
502 irq.vector = v->arch.xen.upcall_vector;
503 irq.dest_mode = APIC_DEST_PHYSICAL;
504 irq.shorthand = APIC_DEST_NOSHORT;
505 irq.delivery_mode = APIC_DM_FIXED;
506 irq.level = 1;
507
508 /* The fast version will always work for physical unicast */
509 WARN_ON_ONCE(!kvm_irq_delivery_to_apic_fast(v->kvm, NULL, &irq, &r, NULL));
510}
511
512/*
513 * On event channel delivery, the vcpu_info may not have been accessible.
514 * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
515 * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
516 * Do so now that we can sleep in the context of the vCPU to bring the
517 * page in, and refresh the pfn cache for it.
518 */
519void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
520{
521 unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
522 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
523 unsigned long flags;
524
525 if (!evtchn_pending_sel)
526 return;
527
528 /*
529 * Yes, this is an open-coded loop. But that's just what put_user()
530 * does anyway. Page it in and retry the instruction. We're just a
531 * little more honest about it.
532 */
533 read_lock_irqsave(&gpc->lock, flags);
534 while (!kvm_gpc_check(gpc, len: sizeof(struct vcpu_info))) {
535 read_unlock_irqrestore(&gpc->lock, flags);
536
537 if (kvm_gpc_refresh(gpc, len: sizeof(struct vcpu_info)))
538 return;
539
540 read_lock_irqsave(&gpc->lock, flags);
541 }
542
543 /* Now gpc->khva is a valid kernel address for the vcpu_info */
544 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
545 struct vcpu_info *vi = gpc->khva;
546
547 asm volatile(LOCK_PREFIX "orq %0, %1\n"
548 "notq %0\n"
549 LOCK_PREFIX "andq %0, %2\n"
550 : "=r" (evtchn_pending_sel),
551 "+m" (vi->evtchn_pending_sel),
552 "+m" (v->arch.xen.evtchn_pending_sel)
553 : "0" (evtchn_pending_sel));
554 WRITE_ONCE(vi->evtchn_upcall_pending, 1);
555 } else {
556 u32 evtchn_pending_sel32 = evtchn_pending_sel;
557 struct compat_vcpu_info *vi = gpc->khva;
558
559 asm volatile(LOCK_PREFIX "orl %0, %1\n"
560 "notl %0\n"
561 LOCK_PREFIX "andl %0, %2\n"
562 : "=r" (evtchn_pending_sel32),
563 "+m" (vi->evtchn_pending_sel),
564 "+m" (v->arch.xen.evtchn_pending_sel)
565 : "0" (evtchn_pending_sel32));
566 WRITE_ONCE(vi->evtchn_upcall_pending, 1);
567 }
568 read_unlock_irqrestore(&gpc->lock, flags);
569
570 /* For the per-vCPU lapic vector, deliver it as MSI. */
571 if (v->arch.xen.upcall_vector)
572 kvm_xen_inject_vcpu_vector(v);
573
574 mark_page_dirty_in_slot(kvm: v->kvm, memslot: gpc->memslot, gfn: gpc->gpa >> PAGE_SHIFT);
575}
576
577int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
578{
579 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
580 unsigned long flags;
581 u8 rc = 0;
582
583 /*
584 * If the global upcall vector (HVMIRQ_callback_vector) is set and
585 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
586 */
587
588 /* No need for compat handling here */
589 BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
590 offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
591 BUILD_BUG_ON(sizeof(rc) !=
592 sizeof_field(struct vcpu_info, evtchn_upcall_pending));
593 BUILD_BUG_ON(sizeof(rc) !=
594 sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
595
596 read_lock_irqsave(&gpc->lock, flags);
597 while (!kvm_gpc_check(gpc, len: sizeof(struct vcpu_info))) {
598 read_unlock_irqrestore(&gpc->lock, flags);
599
600 /*
601 * This function gets called from kvm_vcpu_block() after setting the
602 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
603 * from a HLT. So we really mustn't sleep. If the page ended up absent
604 * at that point, just return 1 in order to trigger an immediate wake,
605 * and we'll end up getting called again from a context where we *can*
606 * fault in the page and wait for it.
607 */
608 if (in_atomic() || !task_is_running(current))
609 return 1;
610
611 if (kvm_gpc_refresh(gpc, len: sizeof(struct vcpu_info))) {
612 /*
613 * If this failed, userspace has screwed up the
614 * vcpu_info mapping. No interrupts for you.
615 */
616 return 0;
617 }
618 read_lock_irqsave(&gpc->lock, flags);
619 }
620
621 rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
622 read_unlock_irqrestore(&gpc->lock, flags);
623 return rc;
624}
625
626int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
627{
628 int r = -ENOENT;
629
630
631 switch (data->type) {
632 case KVM_XEN_ATTR_TYPE_LONG_MODE:
633 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
634 r = -EINVAL;
635 } else {
636 mutex_lock(&kvm->arch.xen.xen_lock);
637 kvm->arch.xen.long_mode = !!data->u.long_mode;
638 mutex_unlock(lock: &kvm->arch.xen.xen_lock);
639 r = 0;
640 }
641 break;
642
643 case KVM_XEN_ATTR_TYPE_SHARED_INFO:
644 mutex_lock(&kvm->arch.xen.xen_lock);
645 r = kvm_xen_shared_info_init(kvm, gfn: data->u.shared_info.gfn);
646 mutex_unlock(lock: &kvm->arch.xen.xen_lock);
647 break;
648
649 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
650 if (data->u.vector && data->u.vector < 0x10)
651 r = -EINVAL;
652 else {
653 mutex_lock(&kvm->arch.xen.xen_lock);
654 kvm->arch.xen.upcall_vector = data->u.vector;
655 mutex_unlock(lock: &kvm->arch.xen.xen_lock);
656 r = 0;
657 }
658 break;
659
660 case KVM_XEN_ATTR_TYPE_EVTCHN:
661 r = kvm_xen_setattr_evtchn(kvm, data);
662 break;
663
664 case KVM_XEN_ATTR_TYPE_XEN_VERSION:
665 mutex_lock(&kvm->arch.xen.xen_lock);
666 kvm->arch.xen.xen_version = data->u.xen_version;
667 mutex_unlock(lock: &kvm->arch.xen.xen_lock);
668 r = 0;
669 break;
670
671 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
672 if (!sched_info_on()) {
673 r = -EOPNOTSUPP;
674 break;
675 }
676 mutex_lock(&kvm->arch.xen.xen_lock);
677 kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag;
678 mutex_unlock(lock: &kvm->arch.xen.xen_lock);
679 r = 0;
680 break;
681
682 default:
683 break;
684 }
685
686 return r;
687}
688
689int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
690{
691 int r = -ENOENT;
692
693 mutex_lock(&kvm->arch.xen.xen_lock);
694
695 switch (data->type) {
696 case KVM_XEN_ATTR_TYPE_LONG_MODE:
697 data->u.long_mode = kvm->arch.xen.long_mode;
698 r = 0;
699 break;
700
701 case KVM_XEN_ATTR_TYPE_SHARED_INFO:
702 if (kvm->arch.xen.shinfo_cache.active)
703 data->u.shared_info.gfn = gpa_to_gfn(gpa: kvm->arch.xen.shinfo_cache.gpa);
704 else
705 data->u.shared_info.gfn = KVM_XEN_INVALID_GFN;
706 r = 0;
707 break;
708
709 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
710 data->u.vector = kvm->arch.xen.upcall_vector;
711 r = 0;
712 break;
713
714 case KVM_XEN_ATTR_TYPE_XEN_VERSION:
715 data->u.xen_version = kvm->arch.xen.xen_version;
716 r = 0;
717 break;
718
719 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
720 if (!sched_info_on()) {
721 r = -EOPNOTSUPP;
722 break;
723 }
724 data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag;
725 r = 0;
726 break;
727
728 default:
729 break;
730 }
731
732 mutex_unlock(lock: &kvm->arch.xen.xen_lock);
733 return r;
734}
735
736int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
737{
738 int idx, r = -ENOENT;
739
740 mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
741 idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
742
743 switch (data->type) {
744 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
745 /* No compat necessary here. */
746 BUILD_BUG_ON(sizeof(struct vcpu_info) !=
747 sizeof(struct compat_vcpu_info));
748 BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
749 offsetof(struct compat_vcpu_info, time));
750
751 if (data->u.gpa == KVM_XEN_INVALID_GPA) {
752 kvm_gpc_deactivate(gpc: &vcpu->arch.xen.vcpu_info_cache);
753 r = 0;
754 break;
755 }
756
757 r = kvm_gpc_activate(gpc: &vcpu->arch.xen.vcpu_info_cache,
758 gpa: data->u.gpa, len: sizeof(struct vcpu_info));
759 if (!r)
760 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
761
762 break;
763
764 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
765 if (data->u.gpa == KVM_XEN_INVALID_GPA) {
766 kvm_gpc_deactivate(gpc: &vcpu->arch.xen.vcpu_time_info_cache);
767 r = 0;
768 break;
769 }
770
771 r = kvm_gpc_activate(gpc: &vcpu->arch.xen.vcpu_time_info_cache,
772 gpa: data->u.gpa,
773 len: sizeof(struct pvclock_vcpu_time_info));
774 if (!r)
775 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
776 break;
777
778 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: {
779 size_t sz, sz1, sz2;
780
781 if (!sched_info_on()) {
782 r = -EOPNOTSUPP;
783 break;
784 }
785 if (data->u.gpa == KVM_XEN_INVALID_GPA) {
786 r = 0;
787 deactivate_out:
788 kvm_gpc_deactivate(gpc: &vcpu->arch.xen.runstate_cache);
789 kvm_gpc_deactivate(gpc: &vcpu->arch.xen.runstate2_cache);
790 break;
791 }
792
793 /*
794 * If the guest switches to 64-bit mode after setting the runstate
795 * address, that's actually OK. kvm_xen_update_runstate_guest()
796 * will cope.
797 */
798 if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode)
799 sz = sizeof(struct vcpu_runstate_info);
800 else
801 sz = sizeof(struct compat_vcpu_runstate_info);
802
803 /* How much fits in the (first) page? */
804 sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK);
805 r = kvm_gpc_activate(gpc: &vcpu->arch.xen.runstate_cache,
806 gpa: data->u.gpa, len: sz1);
807 if (r)
808 goto deactivate_out;
809
810 /* Either map the second page, or deactivate the second GPC */
811 if (sz1 >= sz) {
812 kvm_gpc_deactivate(gpc: &vcpu->arch.xen.runstate2_cache);
813 } else {
814 sz2 = sz - sz1;
815 BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK);
816 r = kvm_gpc_activate(gpc: &vcpu->arch.xen.runstate2_cache,
817 gpa: data->u.gpa + sz1, len: sz2);
818 if (r)
819 goto deactivate_out;
820 }
821
822 kvm_xen_update_runstate_guest(v: vcpu, atomic: false);
823 break;
824 }
825 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
826 if (!sched_info_on()) {
827 r = -EOPNOTSUPP;
828 break;
829 }
830 if (data->u.runstate.state > RUNSTATE_offline) {
831 r = -EINVAL;
832 break;
833 }
834
835 kvm_xen_update_runstate(v: vcpu, state: data->u.runstate.state);
836 r = 0;
837 break;
838
839 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
840 if (!sched_info_on()) {
841 r = -EOPNOTSUPP;
842 break;
843 }
844 if (data->u.runstate.state > RUNSTATE_offline) {
845 r = -EINVAL;
846 break;
847 }
848 if (data->u.runstate.state_entry_time !=
849 (data->u.runstate.time_running +
850 data->u.runstate.time_runnable +
851 data->u.runstate.time_blocked +
852 data->u.runstate.time_offline)) {
853 r = -EINVAL;
854 break;
855 }
856 if (get_kvmclock_ns(kvm: vcpu->kvm) <
857 data->u.runstate.state_entry_time) {
858 r = -EINVAL;
859 break;
860 }
861
862 vcpu->arch.xen.current_runstate = data->u.runstate.state;
863 vcpu->arch.xen.runstate_entry_time =
864 data->u.runstate.state_entry_time;
865 vcpu->arch.xen.runstate_times[RUNSTATE_running] =
866 data->u.runstate.time_running;
867 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
868 data->u.runstate.time_runnable;
869 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
870 data->u.runstate.time_blocked;
871 vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
872 data->u.runstate.time_offline;
873 vcpu->arch.xen.last_steal = current->sched_info.run_delay;
874 r = 0;
875 break;
876
877 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
878 if (!sched_info_on()) {
879 r = -EOPNOTSUPP;
880 break;
881 }
882 if (data->u.runstate.state > RUNSTATE_offline &&
883 data->u.runstate.state != (u64)-1) {
884 r = -EINVAL;
885 break;
886 }
887 /* The adjustment must add up */
888 if (data->u.runstate.state_entry_time !=
889 (data->u.runstate.time_running +
890 data->u.runstate.time_runnable +
891 data->u.runstate.time_blocked +
892 data->u.runstate.time_offline)) {
893 r = -EINVAL;
894 break;
895 }
896
897 if (get_kvmclock_ns(kvm: vcpu->kvm) <
898 (vcpu->arch.xen.runstate_entry_time +
899 data->u.runstate.state_entry_time)) {
900 r = -EINVAL;
901 break;
902 }
903
904 vcpu->arch.xen.runstate_entry_time +=
905 data->u.runstate.state_entry_time;
906 vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
907 data->u.runstate.time_running;
908 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
909 data->u.runstate.time_runnable;
910 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
911 data->u.runstate.time_blocked;
912 vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
913 data->u.runstate.time_offline;
914
915 if (data->u.runstate.state <= RUNSTATE_offline)
916 kvm_xen_update_runstate(v: vcpu, state: data->u.runstate.state);
917 else if (vcpu->arch.xen.runstate_cache.active)
918 kvm_xen_update_runstate_guest(v: vcpu, atomic: false);
919 r = 0;
920 break;
921
922 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
923 if (data->u.vcpu_id >= KVM_MAX_VCPUS)
924 r = -EINVAL;
925 else {
926 vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
927 r = 0;
928 }
929 break;
930
931 case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
932 if (data->u.timer.port &&
933 data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
934 r = -EINVAL;
935 break;
936 }
937
938 if (!vcpu->arch.xen.timer.function)
939 kvm_xen_init_timer(vcpu);
940
941 /* Stop the timer (if it's running) before changing the vector */
942 kvm_xen_stop_timer(vcpu);
943 vcpu->arch.xen.timer_virq = data->u.timer.port;
944
945 /* Start the timer if the new value has a valid vector+expiry. */
946 if (data->u.timer.port && data->u.timer.expires_ns)
947 kvm_xen_start_timer(vcpu, guest_abs: data->u.timer.expires_ns,
948 delta_ns: data->u.timer.expires_ns -
949 get_kvmclock_ns(kvm: vcpu->kvm));
950
951 r = 0;
952 break;
953
954 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
955 if (data->u.vector && data->u.vector < 0x10)
956 r = -EINVAL;
957 else {
958 vcpu->arch.xen.upcall_vector = data->u.vector;
959 r = 0;
960 }
961 break;
962
963 default:
964 break;
965 }
966
967 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx);
968 mutex_unlock(lock: &vcpu->kvm->arch.xen.xen_lock);
969 return r;
970}
971
972int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
973{
974 int r = -ENOENT;
975
976 mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
977
978 switch (data->type) {
979 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
980 if (vcpu->arch.xen.vcpu_info_cache.active)
981 data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
982 else
983 data->u.gpa = KVM_XEN_INVALID_GPA;
984 r = 0;
985 break;
986
987 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
988 if (vcpu->arch.xen.vcpu_time_info_cache.active)
989 data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
990 else
991 data->u.gpa = KVM_XEN_INVALID_GPA;
992 r = 0;
993 break;
994
995 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
996 if (!sched_info_on()) {
997 r = -EOPNOTSUPP;
998 break;
999 }
1000 if (vcpu->arch.xen.runstate_cache.active) {
1001 data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
1002 r = 0;
1003 }
1004 break;
1005
1006 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
1007 if (!sched_info_on()) {
1008 r = -EOPNOTSUPP;
1009 break;
1010 }
1011 data->u.runstate.state = vcpu->arch.xen.current_runstate;
1012 r = 0;
1013 break;
1014
1015 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
1016 if (!sched_info_on()) {
1017 r = -EOPNOTSUPP;
1018 break;
1019 }
1020 data->u.runstate.state = vcpu->arch.xen.current_runstate;
1021 data->u.runstate.state_entry_time =
1022 vcpu->arch.xen.runstate_entry_time;
1023 data->u.runstate.time_running =
1024 vcpu->arch.xen.runstate_times[RUNSTATE_running];
1025 data->u.runstate.time_runnable =
1026 vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
1027 data->u.runstate.time_blocked =
1028 vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
1029 data->u.runstate.time_offline =
1030 vcpu->arch.xen.runstate_times[RUNSTATE_offline];
1031 r = 0;
1032 break;
1033
1034 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1035 r = -EINVAL;
1036 break;
1037
1038 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1039 data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
1040 r = 0;
1041 break;
1042
1043 case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1044 /*
1045 * Ensure a consistent snapshot of state is captured, with a
1046 * timer either being pending, or the event channel delivered
1047 * to the corresponding bit in the shared_info. Not still
1048 * lurking in the timer_pending flag for deferred delivery.
1049 * Purely as an optimisation, if the timer_expires field is
1050 * zero, that means the timer isn't active (or even in the
1051 * timer_pending flag) and there is no need to cancel it.
1052 */
1053 if (vcpu->arch.xen.timer_expires) {
1054 hrtimer_cancel(timer: &vcpu->arch.xen.timer);
1055 kvm_xen_inject_timer_irqs(vcpu);
1056 }
1057
1058 data->u.timer.port = vcpu->arch.xen.timer_virq;
1059 data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
1060 data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
1061
1062 /*
1063 * The hrtimer may trigger and raise the IRQ immediately,
1064 * while the returned state causes it to be set up and
1065 * raised again on the destination system after migration.
1066 * That's fine, as the guest won't even have had a chance
1067 * to run and handle the interrupt. Asserting an already
1068 * pending event channel is idempotent.
1069 */
1070 if (vcpu->arch.xen.timer_expires)
1071 hrtimer_start_expires(timer: &vcpu->arch.xen.timer,
1072 mode: HRTIMER_MODE_ABS_HARD);
1073
1074 r = 0;
1075 break;
1076
1077 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1078 data->u.vector = vcpu->arch.xen.upcall_vector;
1079 r = 0;
1080 break;
1081
1082 default:
1083 break;
1084 }
1085
1086 mutex_unlock(lock: &vcpu->kvm->arch.xen.xen_lock);
1087 return r;
1088}
1089
1090int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
1091{
1092 struct kvm *kvm = vcpu->kvm;
1093 u32 page_num = data & ~PAGE_MASK;
1094 u64 page_addr = data & PAGE_MASK;
1095 bool lm = is_long_mode(vcpu);
1096
1097 /* Latch long_mode for shared_info pages etc. */
1098 vcpu->kvm->arch.xen.long_mode = lm;
1099
1100 /*
1101 * If Xen hypercall intercept is enabled, fill the hypercall
1102 * page with VMCALL/VMMCALL instructions since that's what
1103 * we catch. Else the VMM has provided the hypercall pages
1104 * with instructions of its own choosing, so use those.
1105 */
1106 if (kvm_xen_hypercall_enabled(kvm)) {
1107 u8 instructions[32];
1108 int i;
1109
1110 if (page_num)
1111 return 1;
1112
1113 /* mov imm32, %eax */
1114 instructions[0] = 0xb8;
1115
1116 /* vmcall / vmmcall */
1117 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
1118
1119 /* ret */
1120 instructions[8] = 0xc3;
1121
1122 /* int3 to pad */
1123 memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
1124
1125 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
1126 *(u32 *)&instructions[1] = i;
1127 if (kvm_vcpu_write_guest(vcpu,
1128 gpa: page_addr + (i * sizeof(instructions)),
1129 data: instructions, len: sizeof(instructions)))
1130 return 1;
1131 }
1132 } else {
1133 /*
1134 * Note, truncation is a non-issue as 'lm' is guaranteed to be
1135 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
1136 */
1137 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
1138 : kvm->arch.xen_hvm_config.blob_addr_32;
1139 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1140 : kvm->arch.xen_hvm_config.blob_size_32;
1141 u8 *page;
1142 int ret;
1143
1144 if (page_num >= blob_size)
1145 return 1;
1146
1147 blob_addr += page_num * PAGE_SIZE;
1148
1149 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
1150 if (IS_ERR(ptr: page))
1151 return PTR_ERR(ptr: page);
1152
1153 ret = kvm_vcpu_write_guest(vcpu, gpa: page_addr, data: page, PAGE_SIZE);
1154 kfree(objp: page);
1155 if (ret)
1156 return 1;
1157 }
1158 return 0;
1159}
1160
1161int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
1162{
1163 /* Only some feature flags need to be *enabled* by userspace */
1164 u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
1165 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
1166
1167 if (xhc->flags & ~permitted_flags)
1168 return -EINVAL;
1169
1170 /*
1171 * With hypercall interception the kernel generates its own
1172 * hypercall page so it must not be provided.
1173 */
1174 if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
1175 (xhc->blob_addr_32 || xhc->blob_addr_64 ||
1176 xhc->blob_size_32 || xhc->blob_size_64))
1177 return -EINVAL;
1178
1179 mutex_lock(&kvm->arch.xen.xen_lock);
1180
1181 if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
1182 static_branch_inc(&kvm_xen_enabled.key);
1183 else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
1184 static_branch_slow_dec_deferred(&kvm_xen_enabled);
1185
1186 memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
1187
1188 mutex_unlock(lock: &kvm->arch.xen.xen_lock);
1189 return 0;
1190}
1191
1192static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1193{
1194 kvm_rax_write(vcpu, val: result);
1195 return kvm_skip_emulated_instruction(vcpu);
1196}
1197
1198static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1199{
1200 struct kvm_run *run = vcpu->run;
1201
1202 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
1203 return 1;
1204
1205 return kvm_xen_hypercall_set_result(vcpu, result: run->xen.u.hcall.result);
1206}
1207
1208static inline int max_evtchn_port(struct kvm *kvm)
1209{
1210 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1211 return EVTCHN_2L_NR_CHANNELS;
1212 else
1213 return COMPAT_EVTCHN_2L_NR_CHANNELS;
1214}
1215
1216static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
1217 evtchn_port_t *ports)
1218{
1219 struct kvm *kvm = vcpu->kvm;
1220 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1221 unsigned long *pending_bits;
1222 unsigned long flags;
1223 bool ret = true;
1224 int idx, i;
1225
1226 idx = srcu_read_lock(ssp: &kvm->srcu);
1227 read_lock_irqsave(&gpc->lock, flags);
1228 if (!kvm_gpc_check(gpc, PAGE_SIZE))
1229 goto out_rcu;
1230
1231 ret = false;
1232 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1233 struct shared_info *shinfo = gpc->khva;
1234 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1235 } else {
1236 struct compat_shared_info *shinfo = gpc->khva;
1237 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1238 }
1239
1240 for (i = 0; i < nr_ports; i++) {
1241 if (test_bit(ports[i], pending_bits)) {
1242 ret = true;
1243 break;
1244 }
1245 }
1246
1247 out_rcu:
1248 read_unlock_irqrestore(&gpc->lock, flags);
1249 srcu_read_unlock(ssp: &kvm->srcu, idx);
1250
1251 return ret;
1252}
1253
1254static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
1255 u64 param, u64 *r)
1256{
1257 struct sched_poll sched_poll;
1258 evtchn_port_t port, *ports;
1259 struct x86_exception e;
1260 int i;
1261
1262 if (!lapic_in_kernel(vcpu) ||
1263 !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1264 return false;
1265
1266 if (IS_ENABLED(CONFIG_64BIT) && !longmode) {
1267 struct compat_sched_poll sp32;
1268
1269 /* Sanity check that the compat struct definition is correct */
1270 BUILD_BUG_ON(sizeof(sp32) != 16);
1271
1272 if (kvm_read_guest_virt(vcpu, addr: param, val: &sp32, bytes: sizeof(sp32), exception: &e)) {
1273 *r = -EFAULT;
1274 return true;
1275 }
1276
1277 /*
1278 * This is a 32-bit pointer to an array of evtchn_port_t which
1279 * are uint32_t, so once it's converted no further compat
1280 * handling is needed.
1281 */
1282 sched_poll.ports = (void *)(unsigned long)(sp32.ports);
1283 sched_poll.nr_ports = sp32.nr_ports;
1284 sched_poll.timeout = sp32.timeout;
1285 } else {
1286 if (kvm_read_guest_virt(vcpu, addr: param, val: &sched_poll,
1287 bytes: sizeof(sched_poll), exception: &e)) {
1288 *r = -EFAULT;
1289 return true;
1290 }
1291 }
1292
1293 if (unlikely(sched_poll.nr_ports > 1)) {
1294 /* Xen (unofficially) limits number of pollers to 128 */
1295 if (sched_poll.nr_ports > 128) {
1296 *r = -EINVAL;
1297 return true;
1298 }
1299
1300 ports = kmalloc_array(n: sched_poll.nr_ports,
1301 size: sizeof(*ports), GFP_KERNEL);
1302 if (!ports) {
1303 *r = -ENOMEM;
1304 return true;
1305 }
1306 } else
1307 ports = &port;
1308
1309 if (kvm_read_guest_virt(vcpu, addr: (gva_t)sched_poll.ports, val: ports,
1310 bytes: sched_poll.nr_ports * sizeof(*ports), exception: &e)) {
1311 *r = -EFAULT;
1312 return true;
1313 }
1314
1315 for (i = 0; i < sched_poll.nr_ports; i++) {
1316 if (ports[i] >= max_evtchn_port(kvm: vcpu->kvm)) {
1317 *r = -EINVAL;
1318 goto out;
1319 }
1320 }
1321
1322 if (sched_poll.nr_ports == 1)
1323 vcpu->arch.xen.poll_evtchn = port;
1324 else
1325 vcpu->arch.xen.poll_evtchn = -1;
1326
1327 set_bit(nr: vcpu->vcpu_idx, addr: vcpu->kvm->arch.xen.poll_mask);
1328
1329 if (!wait_pending_event(vcpu, nr_ports: sched_poll.nr_ports, ports)) {
1330 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
1331
1332 if (sched_poll.timeout)
1333 mod_timer(timer: &vcpu->arch.xen.poll_timer,
1334 expires: jiffies + nsecs_to_jiffies(n: sched_poll.timeout));
1335
1336 kvm_vcpu_halt(vcpu);
1337
1338 if (sched_poll.timeout)
1339 del_timer(timer: &vcpu->arch.xen.poll_timer);
1340
1341 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1342 }
1343
1344 vcpu->arch.xen.poll_evtchn = 0;
1345 *r = 0;
1346out:
1347 /* Really, this is only needed in case of timeout */
1348 clear_bit(nr: vcpu->vcpu_idx, addr: vcpu->kvm->arch.xen.poll_mask);
1349
1350 if (unlikely(sched_poll.nr_ports > 1))
1351 kfree(objp: ports);
1352 return true;
1353}
1354
1355static void cancel_evtchn_poll(struct timer_list *t)
1356{
1357 struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer);
1358
1359 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1360 kvm_vcpu_kick(vcpu);
1361}
1362
1363static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1364 int cmd, u64 param, u64 *r)
1365{
1366 switch (cmd) {
1367 case SCHEDOP_poll:
1368 if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1369 return true;
1370 fallthrough;
1371 case SCHEDOP_yield:
1372 kvm_vcpu_on_spin(vcpu, yield_to_kernel_mode: true);
1373 *r = 0;
1374 return true;
1375 default:
1376 break;
1377 }
1378
1379 return false;
1380}
1381
1382struct compat_vcpu_set_singleshot_timer {
1383 uint64_t timeout_abs_ns;
1384 uint32_t flags;
1385} __attribute__((packed));
1386
1387static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1388 int vcpu_id, u64 param, u64 *r)
1389{
1390 struct vcpu_set_singleshot_timer oneshot;
1391 struct x86_exception e;
1392 s64 delta;
1393
1394 if (!kvm_xen_timer_enabled(vcpu))
1395 return false;
1396
1397 switch (cmd) {
1398 case VCPUOP_set_singleshot_timer:
1399 if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1400 *r = -EINVAL;
1401 return true;
1402 }
1403
1404 /*
1405 * The only difference for 32-bit compat is the 4 bytes of
1406 * padding after the interesting part of the structure. So
1407 * for a faithful emulation of Xen we have to *try* to copy
1408 * the padding and return -EFAULT if we can't. Otherwise we
1409 * might as well just have copied the 12-byte 32-bit struct.
1410 */
1411 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1412 offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1413 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1414 sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1415 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1416 offsetof(struct vcpu_set_singleshot_timer, flags));
1417 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1418 sizeof_field(struct vcpu_set_singleshot_timer, flags));
1419
1420 if (kvm_read_guest_virt(vcpu, addr: param, val: &oneshot, bytes: longmode ? sizeof(oneshot) :
1421 sizeof(struct compat_vcpu_set_singleshot_timer), exception: &e)) {
1422 *r = -EFAULT;
1423 return true;
1424 }
1425
1426 /* A delta <= 0 results in an immediate callback, which is what we want */
1427 delta = oneshot.timeout_abs_ns - get_kvmclock_ns(kvm: vcpu->kvm);
1428 kvm_xen_start_timer(vcpu, guest_abs: oneshot.timeout_abs_ns, delta_ns: delta);
1429 *r = 0;
1430 return true;
1431
1432 case VCPUOP_stop_singleshot_timer:
1433 if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1434 *r = -EINVAL;
1435 return true;
1436 }
1437 kvm_xen_stop_timer(vcpu);
1438 *r = 0;
1439 return true;
1440 }
1441
1442 return false;
1443}
1444
1445static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1446 u64 *r)
1447{
1448 if (!kvm_xen_timer_enabled(vcpu))
1449 return false;
1450
1451 if (timeout) {
1452 uint64_t guest_now = get_kvmclock_ns(kvm: vcpu->kvm);
1453 int64_t delta = timeout - guest_now;
1454
1455 /* Xen has a 'Linux workaround' in do_set_timer_op() which
1456 * checks for negative absolute timeout values (caused by
1457 * integer overflow), and for values about 13 days in the
1458 * future (2^50ns) which would be caused by jiffies
1459 * overflow. For those cases, it sets the timeout 100ms in
1460 * the future (not *too* soon, since if a guest really did
1461 * set a long timeout on purpose we don't want to keep
1462 * churning CPU time by waking it up).
1463 */
1464 if (unlikely((int64_t)timeout < 0 ||
1465 (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
1466 delta = 100 * NSEC_PER_MSEC;
1467 timeout = guest_now + delta;
1468 }
1469
1470 kvm_xen_start_timer(vcpu, guest_abs: timeout, delta_ns: delta);
1471 } else {
1472 kvm_xen_stop_timer(vcpu);
1473 }
1474
1475 *r = 0;
1476 return true;
1477}
1478
1479int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1480{
1481 bool longmode;
1482 u64 input, params[6], r = -ENOSYS;
1483 bool handled = false;
1484 u8 cpl;
1485
1486 input = (u64)kvm_register_read(vcpu, reg: VCPU_REGS_RAX);
1487
1488 /* Hyper-V hypercalls get bit 31 set in EAX */
1489 if ((input & 0x80000000) &&
1490 kvm_hv_hypercall_enabled(vcpu))
1491 return kvm_hv_hypercall(vcpu);
1492
1493 longmode = is_64_bit_hypercall(vcpu);
1494 if (!longmode) {
1495 params[0] = (u32)kvm_rbx_read(vcpu);
1496 params[1] = (u32)kvm_rcx_read(vcpu);
1497 params[2] = (u32)kvm_rdx_read(vcpu);
1498 params[3] = (u32)kvm_rsi_read(vcpu);
1499 params[4] = (u32)kvm_rdi_read(vcpu);
1500 params[5] = (u32)kvm_rbp_read(vcpu);
1501 }
1502#ifdef CONFIG_X86_64
1503 else {
1504 params[0] = (u64)kvm_rdi_read(vcpu);
1505 params[1] = (u64)kvm_rsi_read(vcpu);
1506 params[2] = (u64)kvm_rdx_read(vcpu);
1507 params[3] = (u64)kvm_r10_read(vcpu);
1508 params[4] = (u64)kvm_r8_read(vcpu);
1509 params[5] = (u64)kvm_r9_read(vcpu);
1510 }
1511#endif
1512 cpl = static_call(kvm_x86_get_cpl)(vcpu);
1513 trace_kvm_xen_hypercall(cpl, nr: input, a0: params[0], a1: params[1], a2: params[2],
1514 a3: params[3], a4: params[4], a5: params[5]);
1515
1516 /*
1517 * Only allow hypercall acceleration for CPL0. The rare hypercalls that
1518 * are permitted in guest userspace can be handled by the VMM.
1519 */
1520 if (unlikely(cpl > 0))
1521 goto handle_in_userspace;
1522
1523 switch (input) {
1524 case __HYPERVISOR_xen_version:
1525 if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1526 r = vcpu->kvm->arch.xen.xen_version;
1527 handled = true;
1528 }
1529 break;
1530 case __HYPERVISOR_event_channel_op:
1531 if (params[0] == EVTCHNOP_send)
1532 handled = kvm_xen_hcall_evtchn_send(vcpu, param: params[1], r: &r);
1533 break;
1534 case __HYPERVISOR_sched_op:
1535 handled = kvm_xen_hcall_sched_op(vcpu, longmode, cmd: params[0],
1536 param: params[1], r: &r);
1537 break;
1538 case __HYPERVISOR_vcpu_op:
1539 handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, cmd: params[0], vcpu_id: params[1],
1540 param: params[2], r: &r);
1541 break;
1542 case __HYPERVISOR_set_timer_op: {
1543 u64 timeout = params[0];
1544 /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1545 if (!longmode)
1546 timeout |= params[1] << 32;
1547 handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, r: &r);
1548 break;
1549 }
1550 default:
1551 break;
1552 }
1553
1554 if (handled)
1555 return kvm_xen_hypercall_set_result(vcpu, result: r);
1556
1557handle_in_userspace:
1558 vcpu->run->exit_reason = KVM_EXIT_XEN;
1559 vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1560 vcpu->run->xen.u.hcall.longmode = longmode;
1561 vcpu->run->xen.u.hcall.cpl = cpl;
1562 vcpu->run->xen.u.hcall.input = input;
1563 vcpu->run->xen.u.hcall.params[0] = params[0];
1564 vcpu->run->xen.u.hcall.params[1] = params[1];
1565 vcpu->run->xen.u.hcall.params[2] = params[2];
1566 vcpu->run->xen.u.hcall.params[3] = params[3];
1567 vcpu->run->xen.u.hcall.params[4] = params[4];
1568 vcpu->run->xen.u.hcall.params[5] = params[5];
1569 vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1570 vcpu->arch.complete_userspace_io =
1571 kvm_xen_hypercall_complete_userspace;
1572
1573 return 0;
1574}
1575
1576static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1577{
1578 int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1579
1580 if ((poll_evtchn == port || poll_evtchn == -1) &&
1581 test_and_clear_bit(nr: vcpu->vcpu_idx, addr: vcpu->kvm->arch.xen.poll_mask)) {
1582 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1583 kvm_vcpu_kick(vcpu);
1584 }
1585}
1586
1587/*
1588 * The return value from this function is propagated to kvm_set_irq() API,
1589 * so it returns:
1590 * < 0 Interrupt was ignored (masked or not delivered for other reasons)
1591 * = 0 Interrupt was coalesced (previous irq is still pending)
1592 * > 0 Number of CPUs interrupt was delivered to
1593 *
1594 * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1595 * only check on its return value is a comparison with -EWOULDBLOCK'.
1596 */
1597int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1598{
1599 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1600 struct kvm_vcpu *vcpu;
1601 unsigned long *pending_bits, *mask_bits;
1602 unsigned long flags;
1603 int port_word_bit;
1604 bool kick_vcpu = false;
1605 int vcpu_idx, idx, rc;
1606
1607 vcpu_idx = READ_ONCE(xe->vcpu_idx);
1608 if (vcpu_idx >= 0)
1609 vcpu = kvm_get_vcpu(kvm, i: vcpu_idx);
1610 else {
1611 vcpu = kvm_get_vcpu_by_id(kvm, id: xe->vcpu_id);
1612 if (!vcpu)
1613 return -EINVAL;
1614 WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1615 }
1616
1617 if (!vcpu->arch.xen.vcpu_info_cache.active)
1618 return -EINVAL;
1619
1620 if (xe->port >= max_evtchn_port(kvm))
1621 return -EINVAL;
1622
1623 rc = -EWOULDBLOCK;
1624
1625 idx = srcu_read_lock(ssp: &kvm->srcu);
1626
1627 read_lock_irqsave(&gpc->lock, flags);
1628 if (!kvm_gpc_check(gpc, PAGE_SIZE))
1629 goto out_rcu;
1630
1631 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1632 struct shared_info *shinfo = gpc->khva;
1633 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1634 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1635 port_word_bit = xe->port / 64;
1636 } else {
1637 struct compat_shared_info *shinfo = gpc->khva;
1638 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1639 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1640 port_word_bit = xe->port / 32;
1641 }
1642
1643 /*
1644 * If this port wasn't already set, and if it isn't masked, then
1645 * we try to set the corresponding bit in the in-kernel shadow of
1646 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1647 * already set, then we kick the vCPU in question to write to the
1648 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1649 */
1650 if (test_and_set_bit(nr: xe->port, addr: pending_bits)) {
1651 rc = 0; /* It was already raised */
1652 } else if (test_bit(xe->port, mask_bits)) {
1653 rc = -ENOTCONN; /* Masked */
1654 kvm_xen_check_poller(vcpu, port: xe->port);
1655 } else {
1656 rc = 1; /* Delivered to the bitmap in shared_info. */
1657 /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1658 read_unlock_irqrestore(&gpc->lock, flags);
1659 gpc = &vcpu->arch.xen.vcpu_info_cache;
1660
1661 read_lock_irqsave(&gpc->lock, flags);
1662 if (!kvm_gpc_check(gpc, len: sizeof(struct vcpu_info))) {
1663 /*
1664 * Could not access the vcpu_info. Set the bit in-kernel
1665 * and prod the vCPU to deliver it for itself.
1666 */
1667 if (!test_and_set_bit(nr: port_word_bit, addr: &vcpu->arch.xen.evtchn_pending_sel))
1668 kick_vcpu = true;
1669 goto out_rcu;
1670 }
1671
1672 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1673 struct vcpu_info *vcpu_info = gpc->khva;
1674 if (!test_and_set_bit(nr: port_word_bit, addr: &vcpu_info->evtchn_pending_sel)) {
1675 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1676 kick_vcpu = true;
1677 }
1678 } else {
1679 struct compat_vcpu_info *vcpu_info = gpc->khva;
1680 if (!test_and_set_bit(nr: port_word_bit,
1681 addr: (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1682 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1683 kick_vcpu = true;
1684 }
1685 }
1686
1687 /* For the per-vCPU lapic vector, deliver it as MSI. */
1688 if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1689 kvm_xen_inject_vcpu_vector(v: vcpu);
1690 kick_vcpu = false;
1691 }
1692 }
1693
1694 out_rcu:
1695 read_unlock_irqrestore(&gpc->lock, flags);
1696 srcu_read_unlock(ssp: &kvm->srcu, idx);
1697
1698 if (kick_vcpu) {
1699 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1700 kvm_vcpu_kick(vcpu);
1701 }
1702
1703 return rc;
1704}
1705
1706static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1707{
1708 bool mm_borrowed = false;
1709 int rc;
1710
1711 rc = kvm_xen_set_evtchn_fast(xe, kvm);
1712 if (rc != -EWOULDBLOCK)
1713 return rc;
1714
1715 if (current->mm != kvm->mm) {
1716 /*
1717 * If not on a thread which already belongs to this KVM,
1718 * we'd better be in the irqfd workqueue.
1719 */
1720 if (WARN_ON_ONCE(current->mm))
1721 return -EINVAL;
1722
1723 kthread_use_mm(mm: kvm->mm);
1724 mm_borrowed = true;
1725 }
1726
1727 mutex_lock(&kvm->arch.xen.xen_lock);
1728
1729 /*
1730 * It is theoretically possible for the page to be unmapped
1731 * and the MMU notifier to invalidate the shared_info before
1732 * we even get to use it. In that case, this looks like an
1733 * infinite loop. It was tempting to do it via the userspace
1734 * HVA instead... but that just *hides* the fact that it's
1735 * an infinite loop, because if a fault occurs and it waits
1736 * for the page to come back, it can *still* immediately
1737 * fault and have to wait again, repeatedly.
1738 *
1739 * Conversely, the page could also have been reinstated by
1740 * another thread before we even obtain the mutex above, so
1741 * check again *first* before remapping it.
1742 */
1743 do {
1744 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1745 int idx;
1746
1747 rc = kvm_xen_set_evtchn_fast(xe, kvm);
1748 if (rc != -EWOULDBLOCK)
1749 break;
1750
1751 idx = srcu_read_lock(ssp: &kvm->srcu);
1752 rc = kvm_gpc_refresh(gpc, PAGE_SIZE);
1753 srcu_read_unlock(ssp: &kvm->srcu, idx);
1754 } while(!rc);
1755
1756 mutex_unlock(lock: &kvm->arch.xen.xen_lock);
1757
1758 if (mm_borrowed)
1759 kthread_unuse_mm(mm: kvm->mm);
1760
1761 return rc;
1762}
1763
1764/* This is the version called from kvm_set_irq() as the .set function */
1765static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1766 int irq_source_id, int level, bool line_status)
1767{
1768 if (!level)
1769 return -EINVAL;
1770
1771 return kvm_xen_set_evtchn(xe: &e->xen_evtchn, kvm);
1772}
1773
1774/*
1775 * Set up an event channel interrupt from the KVM IRQ routing table.
1776 * Used for e.g. PIRQ from passed through physical devices.
1777 */
1778int kvm_xen_setup_evtchn(struct kvm *kvm,
1779 struct kvm_kernel_irq_routing_entry *e,
1780 const struct kvm_irq_routing_entry *ue)
1781
1782{
1783 struct kvm_vcpu *vcpu;
1784
1785 if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1786 return -EINVAL;
1787
1788 /* We only support 2 level event channels for now */
1789 if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1790 return -EINVAL;
1791
1792 /*
1793 * Xen gives us interesting mappings from vCPU index to APIC ID,
1794 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1795 * to find it. Do that once at setup time, instead of every time.
1796 * But beware that on live update / live migration, the routing
1797 * table might be reinstated before the vCPU threads have finished
1798 * recreating their vCPUs.
1799 */
1800 vcpu = kvm_get_vcpu_by_id(kvm, id: ue->u.xen_evtchn.vcpu);
1801 if (vcpu)
1802 e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1803 else
1804 e->xen_evtchn.vcpu_idx = -1;
1805
1806 e->xen_evtchn.port = ue->u.xen_evtchn.port;
1807 e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1808 e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1809 e->set = evtchn_set_fn;
1810
1811 return 0;
1812}
1813
1814/*
1815 * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
1816 */
1817int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
1818{
1819 struct kvm_xen_evtchn e;
1820 int ret;
1821
1822 if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
1823 return -EINVAL;
1824
1825 /* We only support 2 level event channels for now */
1826 if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1827 return -EINVAL;
1828
1829 e.port = uxe->port;
1830 e.vcpu_id = uxe->vcpu;
1831 e.vcpu_idx = -1;
1832 e.priority = uxe->priority;
1833
1834 ret = kvm_xen_set_evtchn(xe: &e, kvm);
1835
1836 /*
1837 * None of that 'return 1 if it actually got delivered' nonsense.
1838 * We don't care if it was masked (-ENOTCONN) either.
1839 */
1840 if (ret > 0 || ret == -ENOTCONN)
1841 ret = 0;
1842
1843 return ret;
1844}
1845
1846/*
1847 * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
1848 */
1849struct evtchnfd {
1850 u32 send_port;
1851 u32 type;
1852 union {
1853 struct kvm_xen_evtchn port;
1854 struct {
1855 u32 port; /* zero */
1856 struct eventfd_ctx *ctx;
1857 } eventfd;
1858 } deliver;
1859};
1860
1861/*
1862 * Update target vCPU or priority for a registered sending channel.
1863 */
1864static int kvm_xen_eventfd_update(struct kvm *kvm,
1865 struct kvm_xen_hvm_attr *data)
1866{
1867 u32 port = data->u.evtchn.send_port;
1868 struct evtchnfd *evtchnfd;
1869 int ret;
1870
1871 /* Protect writes to evtchnfd as well as the idr lookup. */
1872 mutex_lock(&kvm->arch.xen.xen_lock);
1873 evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, id: port);
1874
1875 ret = -ENOENT;
1876 if (!evtchnfd)
1877 goto out_unlock;
1878
1879 /* For an UPDATE, nothing may change except the priority/vcpu */
1880 ret = -EINVAL;
1881 if (evtchnfd->type != data->u.evtchn.type)
1882 goto out_unlock;
1883
1884 /*
1885 * Port cannot change, and if it's zero that was an eventfd
1886 * which can't be changed either.
1887 */
1888 if (!evtchnfd->deliver.port.port ||
1889 evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
1890 goto out_unlock;
1891
1892 /* We only support 2 level event channels for now */
1893 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1894 goto out_unlock;
1895
1896 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1897 if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
1898 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1899 evtchnfd->deliver.port.vcpu_idx = -1;
1900 }
1901 ret = 0;
1902out_unlock:
1903 mutex_unlock(lock: &kvm->arch.xen.xen_lock);
1904 return ret;
1905}
1906
1907/*
1908 * Configure the target (eventfd or local port delivery) for sending on
1909 * a given event channel.
1910 */
1911static int kvm_xen_eventfd_assign(struct kvm *kvm,
1912 struct kvm_xen_hvm_attr *data)
1913{
1914 u32 port = data->u.evtchn.send_port;
1915 struct eventfd_ctx *eventfd = NULL;
1916 struct evtchnfd *evtchnfd;
1917 int ret = -EINVAL;
1918
1919 evtchnfd = kzalloc(size: sizeof(struct evtchnfd), GFP_KERNEL);
1920 if (!evtchnfd)
1921 return -ENOMEM;
1922
1923 switch(data->u.evtchn.type) {
1924 case EVTCHNSTAT_ipi:
1925 /* IPI must map back to the same port# */
1926 if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
1927 goto out_noeventfd; /* -EINVAL */
1928 break;
1929
1930 case EVTCHNSTAT_interdomain:
1931 if (data->u.evtchn.deliver.port.port) {
1932 if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
1933 goto out_noeventfd; /* -EINVAL */
1934 } else {
1935 eventfd = eventfd_ctx_fdget(fd: data->u.evtchn.deliver.eventfd.fd);
1936 if (IS_ERR(ptr: eventfd)) {
1937 ret = PTR_ERR(ptr: eventfd);
1938 goto out_noeventfd;
1939 }
1940 }
1941 break;
1942
1943 case EVTCHNSTAT_virq:
1944 case EVTCHNSTAT_closed:
1945 case EVTCHNSTAT_unbound:
1946 case EVTCHNSTAT_pirq:
1947 default: /* Unknown event channel type */
1948 goto out; /* -EINVAL */
1949 }
1950
1951 evtchnfd->send_port = data->u.evtchn.send_port;
1952 evtchnfd->type = data->u.evtchn.type;
1953 if (eventfd) {
1954 evtchnfd->deliver.eventfd.ctx = eventfd;
1955 } else {
1956 /* We only support 2 level event channels for now */
1957 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1958 goto out; /* -EINVAL; */
1959
1960 evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
1961 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1962 evtchnfd->deliver.port.vcpu_idx = -1;
1963 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1964 }
1965
1966 mutex_lock(&kvm->arch.xen.xen_lock);
1967 ret = idr_alloc(&kvm->arch.xen.evtchn_ports, ptr: evtchnfd, start: port, end: port + 1,
1968 GFP_KERNEL);
1969 mutex_unlock(lock: &kvm->arch.xen.xen_lock);
1970 if (ret >= 0)
1971 return 0;
1972
1973 if (ret == -ENOSPC)
1974 ret = -EEXIST;
1975out:
1976 if (eventfd)
1977 eventfd_ctx_put(ctx: eventfd);
1978out_noeventfd:
1979 kfree(objp: evtchnfd);
1980 return ret;
1981}
1982
1983static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
1984{
1985 struct evtchnfd *evtchnfd;
1986
1987 mutex_lock(&kvm->arch.xen.xen_lock);
1988 evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, id: port);
1989 mutex_unlock(lock: &kvm->arch.xen.xen_lock);
1990
1991 if (!evtchnfd)
1992 return -ENOENT;
1993
1994 synchronize_srcu(ssp: &kvm->srcu);
1995 if (!evtchnfd->deliver.port.port)
1996 eventfd_ctx_put(ctx: evtchnfd->deliver.eventfd.ctx);
1997 kfree(objp: evtchnfd);
1998 return 0;
1999}
2000
2001static int kvm_xen_eventfd_reset(struct kvm *kvm)
2002{
2003 struct evtchnfd *evtchnfd, **all_evtchnfds;
2004 int i;
2005 int n = 0;
2006
2007 mutex_lock(&kvm->arch.xen.xen_lock);
2008
2009 /*
2010 * Because synchronize_srcu() cannot be called inside the
2011 * critical section, first collect all the evtchnfd objects
2012 * in an array as they are removed from evtchn_ports.
2013 */
2014 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i)
2015 n++;
2016
2017 all_evtchnfds = kmalloc_array(n, size: sizeof(struct evtchnfd *), GFP_KERNEL);
2018 if (!all_evtchnfds) {
2019 mutex_unlock(lock: &kvm->arch.xen.xen_lock);
2020 return -ENOMEM;
2021 }
2022
2023 n = 0;
2024 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2025 all_evtchnfds[n++] = evtchnfd;
2026 idr_remove(&kvm->arch.xen.evtchn_ports, id: evtchnfd->send_port);
2027 }
2028 mutex_unlock(lock: &kvm->arch.xen.xen_lock);
2029
2030 synchronize_srcu(ssp: &kvm->srcu);
2031
2032 while (n--) {
2033 evtchnfd = all_evtchnfds[n];
2034 if (!evtchnfd->deliver.port.port)
2035 eventfd_ctx_put(ctx: evtchnfd->deliver.eventfd.ctx);
2036 kfree(objp: evtchnfd);
2037 }
2038 kfree(objp: all_evtchnfds);
2039
2040 return 0;
2041}
2042
2043static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
2044{
2045 u32 port = data->u.evtchn.send_port;
2046
2047 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
2048 return kvm_xen_eventfd_reset(kvm);
2049
2050 if (!port || port >= max_evtchn_port(kvm))
2051 return -EINVAL;
2052
2053 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
2054 return kvm_xen_eventfd_deassign(kvm, port);
2055 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
2056 return kvm_xen_eventfd_update(kvm, data);
2057 if (data->u.evtchn.flags)
2058 return -EINVAL;
2059
2060 return kvm_xen_eventfd_assign(kvm, data);
2061}
2062
2063static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
2064{
2065 struct evtchnfd *evtchnfd;
2066 struct evtchn_send send;
2067 struct x86_exception e;
2068
2069 /* Sanity check: this structure is the same for 32-bit and 64-bit */
2070 BUILD_BUG_ON(sizeof(send) != 4);
2071 if (kvm_read_guest_virt(vcpu, addr: param, val: &send, bytes: sizeof(send), exception: &e)) {
2072 *r = -EFAULT;
2073 return true;
2074 }
2075
2076 /*
2077 * evtchnfd is protected by kvm->srcu; the idr lookup instead
2078 * is protected by RCU.
2079 */
2080 rcu_read_lock();
2081 evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, id: send.port);
2082 rcu_read_unlock();
2083 if (!evtchnfd)
2084 return false;
2085
2086 if (evtchnfd->deliver.port.port) {
2087 int ret = kvm_xen_set_evtchn(xe: &evtchnfd->deliver.port, kvm: vcpu->kvm);
2088 if (ret < 0 && ret != -ENOTCONN)
2089 return false;
2090 } else {
2091 eventfd_signal(ctx: evtchnfd->deliver.eventfd.ctx, n: 1);
2092 }
2093
2094 *r = 0;
2095 return true;
2096}
2097
2098void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
2099{
2100 vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
2101 vcpu->arch.xen.poll_evtchn = 0;
2102
2103 timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
2104
2105 kvm_gpc_init(gpc: &vcpu->arch.xen.runstate_cache, kvm: vcpu->kvm, NULL,
2106 usage: KVM_HOST_USES_PFN);
2107 kvm_gpc_init(gpc: &vcpu->arch.xen.runstate2_cache, kvm: vcpu->kvm, NULL,
2108 usage: KVM_HOST_USES_PFN);
2109 kvm_gpc_init(gpc: &vcpu->arch.xen.vcpu_info_cache, kvm: vcpu->kvm, NULL,
2110 usage: KVM_HOST_USES_PFN);
2111 kvm_gpc_init(gpc: &vcpu->arch.xen.vcpu_time_info_cache, kvm: vcpu->kvm, NULL,
2112 usage: KVM_HOST_USES_PFN);
2113}
2114
2115void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
2116{
2117 if (kvm_xen_timer_enabled(vcpu))
2118 kvm_xen_stop_timer(vcpu);
2119
2120 kvm_gpc_deactivate(gpc: &vcpu->arch.xen.runstate_cache);
2121 kvm_gpc_deactivate(gpc: &vcpu->arch.xen.runstate2_cache);
2122 kvm_gpc_deactivate(gpc: &vcpu->arch.xen.vcpu_info_cache);
2123 kvm_gpc_deactivate(gpc: &vcpu->arch.xen.vcpu_time_info_cache);
2124
2125 del_timer_sync(timer: &vcpu->arch.xen.poll_timer);
2126}
2127
2128void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu)
2129{
2130 struct kvm_cpuid_entry2 *entry;
2131 u32 function;
2132
2133 if (!vcpu->arch.xen.cpuid.base)
2134 return;
2135
2136 function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3);
2137 if (function > vcpu->arch.xen.cpuid.limit)
2138 return;
2139
2140 entry = kvm_find_cpuid_entry_index(vcpu, function, index: 1);
2141 if (entry) {
2142 entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul;
2143 entry->edx = vcpu->arch.hv_clock.tsc_shift;
2144 }
2145
2146 entry = kvm_find_cpuid_entry_index(vcpu, function, index: 2);
2147 if (entry)
2148 entry->eax = vcpu->arch.hw_tsc_khz;
2149}
2150
2151void kvm_xen_init_vm(struct kvm *kvm)
2152{
2153 mutex_init(&kvm->arch.xen.xen_lock);
2154 idr_init(idr: &kvm->arch.xen.evtchn_ports);
2155 kvm_gpc_init(gpc: &kvm->arch.xen.shinfo_cache, kvm, NULL, usage: KVM_HOST_USES_PFN);
2156}
2157
2158void kvm_xen_destroy_vm(struct kvm *kvm)
2159{
2160 struct evtchnfd *evtchnfd;
2161 int i;
2162
2163 kvm_gpc_deactivate(gpc: &kvm->arch.xen.shinfo_cache);
2164
2165 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2166 if (!evtchnfd->deliver.port.port)
2167 eventfd_ctx_put(ctx: evtchnfd->deliver.eventfd.ctx);
2168 kfree(objp: evtchnfd);
2169 }
2170 idr_destroy(&kvm->arch.xen.evtchn_ports);
2171
2172 if (kvm->arch.xen_hvm_config.msr)
2173 static_branch_slow_dec_deferred(&kvm_xen_enabled);
2174}
2175

source code of linux/arch/x86/kvm/xen.c