1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4/* ethtool support for e1000 */
5
6#include "e1000.h"
7#include <linux/jiffies.h>
8#include <linux/uaccess.h>
9
10enum {NETDEV_STATS, E1000_STATS};
11
12struct e1000_stats {
13 char stat_string[ETH_GSTRING_LEN];
14 int type;
15 int sizeof_stat;
16 int stat_offset;
17};
18
19#define E1000_STAT(m) E1000_STATS, \
20 sizeof(((struct e1000_adapter *)0)->m), \
21 offsetof(struct e1000_adapter, m)
22#define E1000_NETDEV_STAT(m) NETDEV_STATS, \
23 sizeof(((struct net_device *)0)->m), \
24 offsetof(struct net_device, m)
25
26static const struct e1000_stats e1000_gstrings_stats[] = {
27 { "rx_packets", E1000_STAT(stats.gprc) },
28 { "tx_packets", E1000_STAT(stats.gptc) },
29 { "rx_bytes", E1000_STAT(stats.gorcl) },
30 { "tx_bytes", E1000_STAT(stats.gotcl) },
31 { "rx_broadcast", E1000_STAT(stats.bprc) },
32 { "tx_broadcast", E1000_STAT(stats.bptc) },
33 { "rx_multicast", E1000_STAT(stats.mprc) },
34 { "tx_multicast", E1000_STAT(stats.mptc) },
35 { "rx_errors", E1000_STAT(stats.rxerrc) },
36 { "tx_errors", E1000_STAT(stats.txerrc) },
37 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
38 { "multicast", E1000_STAT(stats.mprc) },
39 { "collisions", E1000_STAT(stats.colc) },
40 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
41 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
42 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
43 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
44 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
45 { "rx_missed_errors", E1000_STAT(stats.mpc) },
46 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
47 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
48 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
49 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
50 { "tx_window_errors", E1000_STAT(stats.latecol) },
51 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
52 { "tx_deferred_ok", E1000_STAT(stats.dc) },
53 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
54 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
55 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
56 { "tx_restart_queue", E1000_STAT(restart_queue) },
57 { "rx_long_length_errors", E1000_STAT(stats.roc) },
58 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
59 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
60 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
61 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
62 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
63 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
64 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
65 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
66 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
67 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
68 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
69 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
70 { "tx_smbus", E1000_STAT(stats.mgptc) },
71 { "rx_smbus", E1000_STAT(stats.mgprc) },
72 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
73};
74
75#define E1000_QUEUE_STATS_LEN 0
76#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
77#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
78static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
79 "Register test (offline)", "Eeprom test (offline)",
80 "Interrupt test (offline)", "Loopback test (offline)",
81 "Link test (on/offline)"
82};
83
84#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
85
86static int e1000_get_link_ksettings(struct net_device *netdev,
87 struct ethtool_link_ksettings *cmd)
88{
89 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
90 struct e1000_hw *hw = &adapter->hw;
91 u32 supported, advertising;
92
93 if (hw->media_type == e1000_media_type_copper) {
94 supported = (SUPPORTED_10baseT_Half |
95 SUPPORTED_10baseT_Full |
96 SUPPORTED_100baseT_Half |
97 SUPPORTED_100baseT_Full |
98 SUPPORTED_1000baseT_Full|
99 SUPPORTED_Autoneg |
100 SUPPORTED_TP);
101 advertising = ADVERTISED_TP;
102
103 if (hw->autoneg == 1) {
104 advertising |= ADVERTISED_Autoneg;
105 /* the e1000 autoneg seems to match ethtool nicely */
106 advertising |= hw->autoneg_advertised;
107 }
108
109 cmd->base.port = PORT_TP;
110 cmd->base.phy_address = hw->phy_addr;
111 } else {
112 supported = (SUPPORTED_1000baseT_Full |
113 SUPPORTED_FIBRE |
114 SUPPORTED_Autoneg);
115
116 advertising = (ADVERTISED_1000baseT_Full |
117 ADVERTISED_FIBRE |
118 ADVERTISED_Autoneg);
119
120 cmd->base.port = PORT_FIBRE;
121 }
122
123 if (er32(STATUS) & E1000_STATUS_LU) {
124 e1000_get_speed_and_duplex(hw, speed: &adapter->link_speed,
125 duplex: &adapter->link_duplex);
126 cmd->base.speed = adapter->link_speed;
127
128 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
129 * and HALF_DUPLEX != DUPLEX_HALF
130 */
131 if (adapter->link_duplex == FULL_DUPLEX)
132 cmd->base.duplex = DUPLEX_FULL;
133 else
134 cmd->base.duplex = DUPLEX_HALF;
135 } else {
136 cmd->base.speed = SPEED_UNKNOWN;
137 cmd->base.duplex = DUPLEX_UNKNOWN;
138 }
139
140 cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
141 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
142
143 /* MDI-X => 1; MDI => 0 */
144 if ((hw->media_type == e1000_media_type_copper) &&
145 netif_carrier_ok(dev: netdev))
146 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
147 ETH_TP_MDI_X : ETH_TP_MDI);
148 else
149 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
150
151 if (hw->mdix == AUTO_ALL_MODES)
152 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
153 else
154 cmd->base.eth_tp_mdix_ctrl = hw->mdix;
155
156 ethtool_convert_legacy_u32_to_link_mode(dst: cmd->link_modes.supported,
157 legacy_u32: supported);
158 ethtool_convert_legacy_u32_to_link_mode(dst: cmd->link_modes.advertising,
159 legacy_u32: advertising);
160
161 return 0;
162}
163
164static int e1000_set_link_ksettings(struct net_device *netdev,
165 const struct ethtool_link_ksettings *cmd)
166{
167 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
168 struct e1000_hw *hw = &adapter->hw;
169 u32 advertising;
170
171 ethtool_convert_link_mode_to_legacy_u32(legacy_u32: &advertising,
172 src: cmd->link_modes.advertising);
173
174 /* MDI setting is only allowed when autoneg enabled because
175 * some hardware doesn't allow MDI setting when speed or
176 * duplex is forced.
177 */
178 if (cmd->base.eth_tp_mdix_ctrl) {
179 if (hw->media_type != e1000_media_type_copper)
180 return -EOPNOTSUPP;
181
182 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
183 (cmd->base.autoneg != AUTONEG_ENABLE)) {
184 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
185 return -EINVAL;
186 }
187 }
188
189 while (test_and_set_bit(nr: __E1000_RESETTING, addr: &adapter->flags))
190 msleep(msecs: 1);
191
192 if (cmd->base.autoneg == AUTONEG_ENABLE) {
193 hw->autoneg = 1;
194 if (hw->media_type == e1000_media_type_fiber)
195 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
196 ADVERTISED_FIBRE |
197 ADVERTISED_Autoneg;
198 else
199 hw->autoneg_advertised = advertising |
200 ADVERTISED_TP |
201 ADVERTISED_Autoneg;
202 } else {
203 u32 speed = cmd->base.speed;
204 /* calling this overrides forced MDI setting */
205 if (e1000_set_spd_dplx(adapter, spd: speed, dplx: cmd->base.duplex)) {
206 clear_bit(nr: __E1000_RESETTING, addr: &adapter->flags);
207 return -EINVAL;
208 }
209 }
210
211 /* MDI-X => 2; MDI => 1; Auto => 3 */
212 if (cmd->base.eth_tp_mdix_ctrl) {
213 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
214 hw->mdix = AUTO_ALL_MODES;
215 else
216 hw->mdix = cmd->base.eth_tp_mdix_ctrl;
217 }
218
219 /* reset the link */
220
221 if (netif_running(dev: adapter->netdev)) {
222 e1000_down(adapter);
223 e1000_up(adapter);
224 } else {
225 e1000_reset(adapter);
226 }
227 clear_bit(nr: __E1000_RESETTING, addr: &adapter->flags);
228 return 0;
229}
230
231static u32 e1000_get_link(struct net_device *netdev)
232{
233 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
234
235 /* If the link is not reported up to netdev, interrupts are disabled,
236 * and so the physical link state may have changed since we last
237 * looked. Set get_link_status to make sure that the true link
238 * state is interrogated, rather than pulling a cached and possibly
239 * stale link state from the driver.
240 */
241 if (!netif_carrier_ok(dev: netdev))
242 adapter->hw.get_link_status = 1;
243
244 return e1000_has_link(adapter);
245}
246
247static void e1000_get_pauseparam(struct net_device *netdev,
248 struct ethtool_pauseparam *pause)
249{
250 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
251 struct e1000_hw *hw = &adapter->hw;
252
253 pause->autoneg =
254 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
255
256 if (hw->fc == E1000_FC_RX_PAUSE) {
257 pause->rx_pause = 1;
258 } else if (hw->fc == E1000_FC_TX_PAUSE) {
259 pause->tx_pause = 1;
260 } else if (hw->fc == E1000_FC_FULL) {
261 pause->rx_pause = 1;
262 pause->tx_pause = 1;
263 }
264}
265
266static int e1000_set_pauseparam(struct net_device *netdev,
267 struct ethtool_pauseparam *pause)
268{
269 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
270 struct e1000_hw *hw = &adapter->hw;
271 int retval = 0;
272
273 adapter->fc_autoneg = pause->autoneg;
274
275 while (test_and_set_bit(nr: __E1000_RESETTING, addr: &adapter->flags))
276 msleep(msecs: 1);
277
278 if (pause->rx_pause && pause->tx_pause)
279 hw->fc = E1000_FC_FULL;
280 else if (pause->rx_pause && !pause->tx_pause)
281 hw->fc = E1000_FC_RX_PAUSE;
282 else if (!pause->rx_pause && pause->tx_pause)
283 hw->fc = E1000_FC_TX_PAUSE;
284 else if (!pause->rx_pause && !pause->tx_pause)
285 hw->fc = E1000_FC_NONE;
286
287 hw->original_fc = hw->fc;
288
289 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
290 if (netif_running(dev: adapter->netdev)) {
291 e1000_down(adapter);
292 e1000_up(adapter);
293 } else {
294 e1000_reset(adapter);
295 }
296 } else
297 retval = ((hw->media_type == e1000_media_type_fiber) ?
298 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
299
300 clear_bit(nr: __E1000_RESETTING, addr: &adapter->flags);
301 return retval;
302}
303
304static u32 e1000_get_msglevel(struct net_device *netdev)
305{
306 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
307
308 return adapter->msg_enable;
309}
310
311static void e1000_set_msglevel(struct net_device *netdev, u32 data)
312{
313 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
314
315 adapter->msg_enable = data;
316}
317
318static int e1000_get_regs_len(struct net_device *netdev)
319{
320#define E1000_REGS_LEN 32
321 return E1000_REGS_LEN * sizeof(u32);
322}
323
324static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
325 void *p)
326{
327 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
328 struct e1000_hw *hw = &adapter->hw;
329 u32 *regs_buff = p;
330 u16 phy_data;
331
332 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
333
334 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
335
336 regs_buff[0] = er32(CTRL);
337 regs_buff[1] = er32(STATUS);
338
339 regs_buff[2] = er32(RCTL);
340 regs_buff[3] = er32(RDLEN);
341 regs_buff[4] = er32(RDH);
342 regs_buff[5] = er32(RDT);
343 regs_buff[6] = er32(RDTR);
344
345 regs_buff[7] = er32(TCTL);
346 regs_buff[8] = er32(TDLEN);
347 regs_buff[9] = er32(TDH);
348 regs_buff[10] = er32(TDT);
349 regs_buff[11] = er32(TIDV);
350
351 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
352 if (hw->phy_type == e1000_phy_igp) {
353 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
354 IGP01E1000_PHY_AGC_A);
355 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
356 IGP01E1000_PHY_PAGE_SELECT, phy_data: &phy_data);
357 regs_buff[13] = (u32)phy_data; /* cable length */
358 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
359 IGP01E1000_PHY_AGC_B);
360 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
361 IGP01E1000_PHY_PAGE_SELECT, phy_data: &phy_data);
362 regs_buff[14] = (u32)phy_data; /* cable length */
363 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
364 IGP01E1000_PHY_AGC_C);
365 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
366 IGP01E1000_PHY_PAGE_SELECT, phy_data: &phy_data);
367 regs_buff[15] = (u32)phy_data; /* cable length */
368 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
369 IGP01E1000_PHY_AGC_D);
370 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
371 IGP01E1000_PHY_PAGE_SELECT, phy_data: &phy_data);
372 regs_buff[16] = (u32)phy_data; /* cable length */
373 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
374 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, data: 0x0);
375 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
376 IGP01E1000_PHY_PAGE_SELECT, phy_data: &phy_data);
377 regs_buff[18] = (u32)phy_data; /* cable polarity */
378 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379 IGP01E1000_PHY_PCS_INIT_REG);
380 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
381 IGP01E1000_PHY_PAGE_SELECT, phy_data: &phy_data);
382 regs_buff[19] = (u32)phy_data; /* cable polarity */
383 regs_buff[20] = 0; /* polarity correction enabled (always) */
384 regs_buff[22] = 0; /* phy receive errors (unavailable) */
385 regs_buff[23] = regs_buff[18]; /* mdix mode */
386 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, data: 0x0);
387 } else {
388 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, phy_data: &phy_data);
389 regs_buff[13] = (u32)phy_data; /* cable length */
390 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
391 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
392 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
393 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data: &phy_data);
394 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
395 regs_buff[18] = regs_buff[13]; /* cable polarity */
396 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
397 regs_buff[20] = regs_buff[17]; /* polarity correction */
398 /* phy receive errors */
399 regs_buff[22] = adapter->phy_stats.receive_errors;
400 regs_buff[23] = regs_buff[13]; /* mdix mode */
401 }
402 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
403 e1000_read_phy_reg(hw, PHY_1000T_STATUS, phy_data: &phy_data);
404 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
405 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
406 if (hw->mac_type >= e1000_82540 &&
407 hw->media_type == e1000_media_type_copper) {
408 regs_buff[26] = er32(MANC);
409 }
410}
411
412static int e1000_get_eeprom_len(struct net_device *netdev)
413{
414 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
415 struct e1000_hw *hw = &adapter->hw;
416
417 return hw->eeprom.word_size * 2;
418}
419
420static int e1000_get_eeprom(struct net_device *netdev,
421 struct ethtool_eeprom *eeprom, u8 *bytes)
422{
423 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
424 struct e1000_hw *hw = &adapter->hw;
425 u16 *eeprom_buff;
426 int first_word, last_word;
427 int ret_val = 0;
428 u16 i;
429
430 if (eeprom->len == 0)
431 return -EINVAL;
432
433 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
434
435 first_word = eeprom->offset >> 1;
436 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
437
438 eeprom_buff = kmalloc_array(n: last_word - first_word + 1, size: sizeof(u16),
439 GFP_KERNEL);
440 if (!eeprom_buff)
441 return -ENOMEM;
442
443 if (hw->eeprom.type == e1000_eeprom_spi)
444 ret_val = e1000_read_eeprom(hw, reg: first_word,
445 words: last_word - first_word + 1,
446 data: eeprom_buff);
447 else {
448 for (i = 0; i < last_word - first_word + 1; i++) {
449 ret_val = e1000_read_eeprom(hw, reg: first_word + i, words: 1,
450 data: &eeprom_buff[i]);
451 if (ret_val)
452 break;
453 }
454 }
455
456 /* Device's eeprom is always little-endian, word addressable */
457 for (i = 0; i < last_word - first_word + 1; i++)
458 le16_to_cpus(&eeprom_buff[i]);
459
460 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
461 eeprom->len);
462 kfree(objp: eeprom_buff);
463
464 return ret_val;
465}
466
467static int e1000_set_eeprom(struct net_device *netdev,
468 struct ethtool_eeprom *eeprom, u8 *bytes)
469{
470 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
471 struct e1000_hw *hw = &adapter->hw;
472 u16 *eeprom_buff;
473 void *ptr;
474 int max_len, first_word, last_word, ret_val = 0;
475 u16 i;
476
477 if (eeprom->len == 0)
478 return -EOPNOTSUPP;
479
480 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
481 return -EFAULT;
482
483 max_len = hw->eeprom.word_size * 2;
484
485 first_word = eeprom->offset >> 1;
486 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
487 eeprom_buff = kmalloc(size: max_len, GFP_KERNEL);
488 if (!eeprom_buff)
489 return -ENOMEM;
490
491 ptr = (void *)eeprom_buff;
492
493 if (eeprom->offset & 1) {
494 /* need read/modify/write of first changed EEPROM word
495 * only the second byte of the word is being modified
496 */
497 ret_val = e1000_read_eeprom(hw, reg: first_word, words: 1,
498 data: &eeprom_buff[0]);
499 ptr++;
500 }
501 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
502 /* need read/modify/write of last changed EEPROM word
503 * only the first byte of the word is being modified
504 */
505 ret_val = e1000_read_eeprom(hw, reg: last_word, words: 1,
506 data: &eeprom_buff[last_word - first_word]);
507 }
508
509 /* Device's eeprom is always little-endian, word addressable */
510 for (i = 0; i < last_word - first_word + 1; i++)
511 le16_to_cpus(&eeprom_buff[i]);
512
513 memcpy(ptr, bytes, eeprom->len);
514
515 for (i = 0; i < last_word - first_word + 1; i++)
516 cpu_to_le16s(&eeprom_buff[i]);
517
518 ret_val = e1000_write_eeprom(hw, reg: first_word,
519 words: last_word - first_word + 1, data: eeprom_buff);
520
521 /* Update the checksum over the first part of the EEPROM if needed */
522 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
523 e1000_update_eeprom_checksum(hw);
524
525 kfree(objp: eeprom_buff);
526 return ret_val;
527}
528
529static void e1000_get_drvinfo(struct net_device *netdev,
530 struct ethtool_drvinfo *drvinfo)
531{
532 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
533
534 strscpy(p: drvinfo->driver, q: e1000_driver_name,
535 size: sizeof(drvinfo->driver));
536
537 strscpy(p: drvinfo->bus_info, q: pci_name(pdev: adapter->pdev),
538 size: sizeof(drvinfo->bus_info));
539}
540
541static void e1000_get_ringparam(struct net_device *netdev,
542 struct ethtool_ringparam *ring,
543 struct kernel_ethtool_ringparam *kernel_ring,
544 struct netlink_ext_ack *extack)
545{
546 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
547 struct e1000_hw *hw = &adapter->hw;
548 e1000_mac_type mac_type = hw->mac_type;
549 struct e1000_tx_ring *txdr = adapter->tx_ring;
550 struct e1000_rx_ring *rxdr = adapter->rx_ring;
551
552 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
553 E1000_MAX_82544_RXD;
554 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
555 E1000_MAX_82544_TXD;
556 ring->rx_pending = rxdr->count;
557 ring->tx_pending = txdr->count;
558}
559
560static int e1000_set_ringparam(struct net_device *netdev,
561 struct ethtool_ringparam *ring,
562 struct kernel_ethtool_ringparam *kernel_ring,
563 struct netlink_ext_ack *extack)
564{
565 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
566 struct e1000_hw *hw = &adapter->hw;
567 e1000_mac_type mac_type = hw->mac_type;
568 struct e1000_tx_ring *txdr, *tx_old;
569 struct e1000_rx_ring *rxdr, *rx_old;
570 int i, err;
571
572 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
573 return -EINVAL;
574
575 while (test_and_set_bit(nr: __E1000_RESETTING, addr: &adapter->flags))
576 msleep(msecs: 1);
577
578 if (netif_running(dev: adapter->netdev))
579 e1000_down(adapter);
580
581 tx_old = adapter->tx_ring;
582 rx_old = adapter->rx_ring;
583
584 err = -ENOMEM;
585 txdr = kcalloc(n: adapter->num_tx_queues, size: sizeof(struct e1000_tx_ring),
586 GFP_KERNEL);
587 if (!txdr)
588 goto err_alloc_tx;
589
590 rxdr = kcalloc(n: adapter->num_rx_queues, size: sizeof(struct e1000_rx_ring),
591 GFP_KERNEL);
592 if (!rxdr)
593 goto err_alloc_rx;
594
595 adapter->tx_ring = txdr;
596 adapter->rx_ring = rxdr;
597
598 rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
599 rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
600 E1000_MAX_RXD : E1000_MAX_82544_RXD));
601 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
602 txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
603 txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
604 E1000_MAX_TXD : E1000_MAX_82544_TXD));
605 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
606
607 for (i = 0; i < adapter->num_tx_queues; i++)
608 txdr[i].count = txdr->count;
609 for (i = 0; i < adapter->num_rx_queues; i++)
610 rxdr[i].count = rxdr->count;
611
612 err = 0;
613 if (netif_running(dev: adapter->netdev)) {
614 /* Try to get new resources before deleting old */
615 err = e1000_setup_all_rx_resources(adapter);
616 if (err)
617 goto err_setup_rx;
618 err = e1000_setup_all_tx_resources(adapter);
619 if (err)
620 goto err_setup_tx;
621
622 /* save the new, restore the old in order to free it,
623 * then restore the new back again
624 */
625
626 adapter->rx_ring = rx_old;
627 adapter->tx_ring = tx_old;
628 e1000_free_all_rx_resources(adapter);
629 e1000_free_all_tx_resources(adapter);
630 adapter->rx_ring = rxdr;
631 adapter->tx_ring = txdr;
632 err = e1000_up(adapter);
633 }
634 kfree(objp: tx_old);
635 kfree(objp: rx_old);
636
637 clear_bit(nr: __E1000_RESETTING, addr: &adapter->flags);
638 return err;
639
640err_setup_tx:
641 e1000_free_all_rx_resources(adapter);
642err_setup_rx:
643 adapter->rx_ring = rx_old;
644 adapter->tx_ring = tx_old;
645 kfree(objp: rxdr);
646err_alloc_rx:
647 kfree(objp: txdr);
648err_alloc_tx:
649 if (netif_running(dev: adapter->netdev))
650 e1000_up(adapter);
651 clear_bit(nr: __E1000_RESETTING, addr: &adapter->flags);
652 return err;
653}
654
655static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
656 u32 mask, u32 write)
657{
658 struct e1000_hw *hw = &adapter->hw;
659 static const u32 test[] = {
660 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
661 };
662 u8 __iomem *address = hw->hw_addr + reg;
663 u32 read;
664 int i;
665
666 for (i = 0; i < ARRAY_SIZE(test); i++) {
667 writel(val: write & test[i], addr: address);
668 read = readl(addr: address);
669 if (read != (write & test[i] & mask)) {
670 e_err(drv, "pattern test reg %04X failed: "
671 "got 0x%08X expected 0x%08X\n",
672 reg, read, (write & test[i] & mask));
673 *data = reg;
674 return true;
675 }
676 }
677 return false;
678}
679
680static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
681 u32 mask, u32 write)
682{
683 struct e1000_hw *hw = &adapter->hw;
684 u8 __iomem *address = hw->hw_addr + reg;
685 u32 read;
686
687 writel(val: write & mask, addr: address);
688 read = readl(addr: address);
689 if ((read & mask) != (write & mask)) {
690 e_err(drv, "set/check reg %04X test failed: "
691 "got 0x%08X expected 0x%08X\n",
692 reg, (read & mask), (write & mask));
693 *data = reg;
694 return true;
695 }
696 return false;
697}
698
699#define REG_PATTERN_TEST(reg, mask, write) \
700 do { \
701 if (reg_pattern_test(adapter, data, \
702 (hw->mac_type >= e1000_82543) \
703 ? E1000_##reg : E1000_82542_##reg, \
704 mask, write)) \
705 return 1; \
706 } while (0)
707
708#define REG_SET_AND_CHECK(reg, mask, write) \
709 do { \
710 if (reg_set_and_check(adapter, data, \
711 (hw->mac_type >= e1000_82543) \
712 ? E1000_##reg : E1000_82542_##reg, \
713 mask, write)) \
714 return 1; \
715 } while (0)
716
717static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
718{
719 u32 value, before, after;
720 u32 i, toggle;
721 struct e1000_hw *hw = &adapter->hw;
722
723 /* The status register is Read Only, so a write should fail.
724 * Some bits that get toggled are ignored.
725 */
726
727 /* there are several bits on newer hardware that are r/w */
728 toggle = 0xFFFFF833;
729
730 before = er32(STATUS);
731 value = (er32(STATUS) & toggle);
732 ew32(STATUS, toggle);
733 after = er32(STATUS) & toggle;
734 if (value != after) {
735 e_err(drv, "failed STATUS register test got: "
736 "0x%08X expected: 0x%08X\n", after, value);
737 *data = 1;
738 return 1;
739 }
740 /* restore previous status */
741 ew32(STATUS, before);
742
743 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
744 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
745 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
746 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
747
748 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
749 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
750 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
751 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
752 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
753 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
754 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
755 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
756 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
757 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
758
759 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
760
761 before = 0x06DFB3FE;
762 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
763 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
764
765 if (hw->mac_type >= e1000_82543) {
766 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
767 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
768 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
769 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
770 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
771 value = E1000_RAR_ENTRIES;
772 for (i = 0; i < value; i++) {
773 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
774 0x8003FFFF, 0xFFFFFFFF);
775 }
776 } else {
777 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
778 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
779 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
780 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
781 }
782
783 value = E1000_MC_TBL_SIZE;
784 for (i = 0; i < value; i++)
785 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
786
787 *data = 0;
788 return 0;
789}
790
791static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
792{
793 struct e1000_hw *hw = &adapter->hw;
794 u16 temp;
795 u16 checksum = 0;
796 u16 i;
797
798 *data = 0;
799 /* Read and add up the contents of the EEPROM */
800 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
801 if ((e1000_read_eeprom(hw, reg: i, words: 1, data: &temp)) < 0) {
802 *data = 1;
803 break;
804 }
805 checksum += temp;
806 }
807
808 /* If Checksum is not Correct return error else test passed */
809 if ((checksum != (u16)EEPROM_SUM) && !(*data))
810 *data = 2;
811
812 return *data;
813}
814
815static irqreturn_t e1000_test_intr(int irq, void *data)
816{
817 struct net_device *netdev = (struct net_device *)data;
818 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
819 struct e1000_hw *hw = &adapter->hw;
820
821 adapter->test_icr |= er32(ICR);
822
823 return IRQ_HANDLED;
824}
825
826static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
827{
828 struct net_device *netdev = adapter->netdev;
829 u32 mask, i = 0;
830 bool shared_int = true;
831 u32 irq = adapter->pdev->irq;
832 struct e1000_hw *hw = &adapter->hw;
833
834 *data = 0;
835
836 /* NOTE: we don't test MSI interrupts here, yet
837 * Hook up test interrupt handler just for this test
838 */
839 if (!request_irq(irq, handler: e1000_test_intr, IRQF_PROBE_SHARED, name: netdev->name,
840 dev: netdev))
841 shared_int = false;
842 else if (request_irq(irq, handler: e1000_test_intr, IRQF_SHARED,
843 name: netdev->name, dev: netdev)) {
844 *data = 1;
845 return -1;
846 }
847 e_info(hw, "testing %s interrupt\n", (shared_int ?
848 "shared" : "unshared"));
849
850 /* Disable all the interrupts */
851 ew32(IMC, 0xFFFFFFFF);
852 E1000_WRITE_FLUSH();
853 msleep(msecs: 10);
854
855 /* Test each interrupt */
856 for (; i < 10; i++) {
857 /* Interrupt to test */
858 mask = 1 << i;
859
860 if (!shared_int) {
861 /* Disable the interrupt to be reported in
862 * the cause register and then force the same
863 * interrupt and see if one gets posted. If
864 * an interrupt was posted to the bus, the
865 * test failed.
866 */
867 adapter->test_icr = 0;
868 ew32(IMC, mask);
869 ew32(ICS, mask);
870 E1000_WRITE_FLUSH();
871 msleep(msecs: 10);
872
873 if (adapter->test_icr & mask) {
874 *data = 3;
875 break;
876 }
877 }
878
879 /* Enable the interrupt to be reported in
880 * the cause register and then force the same
881 * interrupt and see if one gets posted. If
882 * an interrupt was not posted to the bus, the
883 * test failed.
884 */
885 adapter->test_icr = 0;
886 ew32(IMS, mask);
887 ew32(ICS, mask);
888 E1000_WRITE_FLUSH();
889 msleep(msecs: 10);
890
891 if (!(adapter->test_icr & mask)) {
892 *data = 4;
893 break;
894 }
895
896 if (!shared_int) {
897 /* Disable the other interrupts to be reported in
898 * the cause register and then force the other
899 * interrupts and see if any get posted. If
900 * an interrupt was posted to the bus, the
901 * test failed.
902 */
903 adapter->test_icr = 0;
904 ew32(IMC, ~mask & 0x00007FFF);
905 ew32(ICS, ~mask & 0x00007FFF);
906 E1000_WRITE_FLUSH();
907 msleep(msecs: 10);
908
909 if (adapter->test_icr) {
910 *data = 5;
911 break;
912 }
913 }
914 }
915
916 /* Disable all the interrupts */
917 ew32(IMC, 0xFFFFFFFF);
918 E1000_WRITE_FLUSH();
919 msleep(msecs: 10);
920
921 /* Unhook test interrupt handler */
922 free_irq(irq, netdev);
923
924 return *data;
925}
926
927static void e1000_free_desc_rings(struct e1000_adapter *adapter)
928{
929 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
930 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
931 struct pci_dev *pdev = adapter->pdev;
932 int i;
933
934 if (txdr->desc && txdr->buffer_info) {
935 for (i = 0; i < txdr->count; i++) {
936 if (txdr->buffer_info[i].dma)
937 dma_unmap_single(&pdev->dev,
938 txdr->buffer_info[i].dma,
939 txdr->buffer_info[i].length,
940 DMA_TO_DEVICE);
941 dev_kfree_skb(txdr->buffer_info[i].skb);
942 }
943 }
944
945 if (rxdr->desc && rxdr->buffer_info) {
946 for (i = 0; i < rxdr->count; i++) {
947 if (rxdr->buffer_info[i].dma)
948 dma_unmap_single(&pdev->dev,
949 rxdr->buffer_info[i].dma,
950 E1000_RXBUFFER_2048,
951 DMA_FROM_DEVICE);
952 kfree(objp: rxdr->buffer_info[i].rxbuf.data);
953 }
954 }
955
956 if (txdr->desc) {
957 dma_free_coherent(dev: &pdev->dev, size: txdr->size, cpu_addr: txdr->desc,
958 dma_handle: txdr->dma);
959 txdr->desc = NULL;
960 }
961 if (rxdr->desc) {
962 dma_free_coherent(dev: &pdev->dev, size: rxdr->size, cpu_addr: rxdr->desc,
963 dma_handle: rxdr->dma);
964 rxdr->desc = NULL;
965 }
966
967 kfree(objp: txdr->buffer_info);
968 txdr->buffer_info = NULL;
969 kfree(objp: rxdr->buffer_info);
970 rxdr->buffer_info = NULL;
971}
972
973static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
974{
975 struct e1000_hw *hw = &adapter->hw;
976 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
977 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
978 struct pci_dev *pdev = adapter->pdev;
979 u32 rctl;
980 int i, ret_val;
981
982 /* Setup Tx descriptor ring and Tx buffers */
983
984 if (!txdr->count)
985 txdr->count = E1000_DEFAULT_TXD;
986
987 txdr->buffer_info = kcalloc(n: txdr->count, size: sizeof(struct e1000_tx_buffer),
988 GFP_KERNEL);
989 if (!txdr->buffer_info) {
990 ret_val = 1;
991 goto err_nomem;
992 }
993
994 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
995 txdr->size = ALIGN(txdr->size, 4096);
996 txdr->desc = dma_alloc_coherent(dev: &pdev->dev, size: txdr->size, dma_handle: &txdr->dma,
997 GFP_KERNEL);
998 if (!txdr->desc) {
999 ret_val = 2;
1000 goto err_nomem;
1001 }
1002 txdr->next_to_use = txdr->next_to_clean = 0;
1003
1004 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1005 ew32(TDBAH, ((u64)txdr->dma >> 32));
1006 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1007 ew32(TDH, 0);
1008 ew32(TDT, 0);
1009 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1010 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1011 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1012
1013 for (i = 0; i < txdr->count; i++) {
1014 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1015 struct sk_buff *skb;
1016 unsigned int size = 1024;
1017
1018 skb = alloc_skb(size, GFP_KERNEL);
1019 if (!skb) {
1020 ret_val = 3;
1021 goto err_nomem;
1022 }
1023 skb_put(skb, len: size);
1024 txdr->buffer_info[i].skb = skb;
1025 txdr->buffer_info[i].length = skb->len;
1026 txdr->buffer_info[i].dma =
1027 dma_map_single(&pdev->dev, skb->data, skb->len,
1028 DMA_TO_DEVICE);
1029 if (dma_mapping_error(dev: &pdev->dev, dma_addr: txdr->buffer_info[i].dma)) {
1030 ret_val = 4;
1031 goto err_nomem;
1032 }
1033 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1034 tx_desc->lower.data = cpu_to_le32(skb->len);
1035 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1036 E1000_TXD_CMD_IFCS |
1037 E1000_TXD_CMD_RPS);
1038 tx_desc->upper.data = 0;
1039 }
1040
1041 /* Setup Rx descriptor ring and Rx buffers */
1042
1043 if (!rxdr->count)
1044 rxdr->count = E1000_DEFAULT_RXD;
1045
1046 rxdr->buffer_info = kcalloc(n: rxdr->count, size: sizeof(struct e1000_rx_buffer),
1047 GFP_KERNEL);
1048 if (!rxdr->buffer_info) {
1049 ret_val = 5;
1050 goto err_nomem;
1051 }
1052
1053 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1054 rxdr->desc = dma_alloc_coherent(dev: &pdev->dev, size: rxdr->size, dma_handle: &rxdr->dma,
1055 GFP_KERNEL);
1056 if (!rxdr->desc) {
1057 ret_val = 6;
1058 goto err_nomem;
1059 }
1060 rxdr->next_to_use = rxdr->next_to_clean = 0;
1061
1062 rctl = er32(RCTL);
1063 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1064 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1065 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1066 ew32(RDLEN, rxdr->size);
1067 ew32(RDH, 0);
1068 ew32(RDT, 0);
1069 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1070 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1071 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1072 ew32(RCTL, rctl);
1073
1074 for (i = 0; i < rxdr->count; i++) {
1075 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1076 u8 *buf;
1077
1078 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1079 GFP_KERNEL);
1080 if (!buf) {
1081 ret_val = 7;
1082 goto err_nomem;
1083 }
1084 rxdr->buffer_info[i].rxbuf.data = buf;
1085
1086 rxdr->buffer_info[i].dma =
1087 dma_map_single(&pdev->dev,
1088 buf + NET_SKB_PAD + NET_IP_ALIGN,
1089 E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1090 if (dma_mapping_error(dev: &pdev->dev, dma_addr: rxdr->buffer_info[i].dma)) {
1091 ret_val = 8;
1092 goto err_nomem;
1093 }
1094 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1095 }
1096
1097 return 0;
1098
1099err_nomem:
1100 e1000_free_desc_rings(adapter);
1101 return ret_val;
1102}
1103
1104static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1105{
1106 struct e1000_hw *hw = &adapter->hw;
1107
1108 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1109 e1000_write_phy_reg(hw, reg_addr: 29, data: 0x001F);
1110 e1000_write_phy_reg(hw, reg_addr: 30, data: 0x8FFC);
1111 e1000_write_phy_reg(hw, reg_addr: 29, data: 0x001A);
1112 e1000_write_phy_reg(hw, reg_addr: 30, data: 0x8FF0);
1113}
1114
1115static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1116{
1117 struct e1000_hw *hw = &adapter->hw;
1118 u16 phy_reg;
1119
1120 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1121 * Extended PHY Specific Control Register to 25MHz clock. This
1122 * value defaults back to a 2.5MHz clock when the PHY is reset.
1123 */
1124 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data: &phy_reg);
1125 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1126 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, data: phy_reg);
1127
1128 /* In addition, because of the s/w reset above, we need to enable
1129 * CRS on TX. This must be set for both full and half duplex
1130 * operation.
1131 */
1132 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data: &phy_reg);
1133 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1134 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, data: phy_reg);
1135}
1136
1137static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1138{
1139 struct e1000_hw *hw = &adapter->hw;
1140 u32 ctrl_reg;
1141 u16 phy_reg;
1142
1143 /* Setup the Device Control Register for PHY loopback test. */
1144
1145 ctrl_reg = er32(CTRL);
1146 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1147 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1148 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1149 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1150 E1000_CTRL_FD); /* Force Duplex to FULL */
1151
1152 ew32(CTRL, ctrl_reg);
1153
1154 /* Read the PHY Specific Control Register (0x10) */
1155 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data: &phy_reg);
1156
1157 /* Clear Auto-Crossover bits in PHY Specific Control Register
1158 * (bits 6:5).
1159 */
1160 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1161 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, data: phy_reg);
1162
1163 /* Perform software reset on the PHY */
1164 e1000_phy_reset(hw);
1165
1166 /* Have to setup TX_CLK and TX_CRS after software reset */
1167 e1000_phy_reset_clk_and_crs(adapter);
1168
1169 e1000_write_phy_reg(hw, PHY_CTRL, data: 0x8100);
1170
1171 /* Wait for reset to complete. */
1172 udelay(500);
1173
1174 /* Have to setup TX_CLK and TX_CRS after software reset */
1175 e1000_phy_reset_clk_and_crs(adapter);
1176
1177 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1178 e1000_phy_disable_receiver(adapter);
1179
1180 /* Set the loopback bit in the PHY control register. */
1181 e1000_read_phy_reg(hw, PHY_CTRL, phy_data: &phy_reg);
1182 phy_reg |= MII_CR_LOOPBACK;
1183 e1000_write_phy_reg(hw, PHY_CTRL, data: phy_reg);
1184
1185 /* Setup TX_CLK and TX_CRS one more time. */
1186 e1000_phy_reset_clk_and_crs(adapter);
1187
1188 /* Check Phy Configuration */
1189 e1000_read_phy_reg(hw, PHY_CTRL, phy_data: &phy_reg);
1190 if (phy_reg != 0x4100)
1191 return 9;
1192
1193 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data: &phy_reg);
1194 if (phy_reg != 0x0070)
1195 return 10;
1196
1197 e1000_read_phy_reg(hw, reg_addr: 29, phy_data: &phy_reg);
1198 if (phy_reg != 0x001A)
1199 return 11;
1200
1201 return 0;
1202}
1203
1204static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1205{
1206 struct e1000_hw *hw = &adapter->hw;
1207 u32 ctrl_reg = 0;
1208 u32 stat_reg = 0;
1209
1210 hw->autoneg = false;
1211
1212 if (hw->phy_type == e1000_phy_m88) {
1213 /* Auto-MDI/MDIX Off */
1214 e1000_write_phy_reg(hw,
1215 M88E1000_PHY_SPEC_CTRL, data: 0x0808);
1216 /* reset to update Auto-MDI/MDIX */
1217 e1000_write_phy_reg(hw, PHY_CTRL, data: 0x9140);
1218 /* autoneg off */
1219 e1000_write_phy_reg(hw, PHY_CTRL, data: 0x8140);
1220 }
1221
1222 ctrl_reg = er32(CTRL);
1223
1224 /* force 1000, set loopback */
1225 e1000_write_phy_reg(hw, PHY_CTRL, data: 0x4140);
1226
1227 /* Now set up the MAC to the same speed/duplex as the PHY. */
1228 ctrl_reg = er32(CTRL);
1229 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1230 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1231 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1232 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1233 E1000_CTRL_FD); /* Force Duplex to FULL */
1234
1235 if (hw->media_type == e1000_media_type_copper &&
1236 hw->phy_type == e1000_phy_m88)
1237 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1238 else {
1239 /* Set the ILOS bit on the fiber Nic is half
1240 * duplex link is detected.
1241 */
1242 stat_reg = er32(STATUS);
1243 if ((stat_reg & E1000_STATUS_FD) == 0)
1244 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1245 }
1246
1247 ew32(CTRL, ctrl_reg);
1248
1249 /* Disable the receiver on the PHY so when a cable is plugged in, the
1250 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1251 */
1252 if (hw->phy_type == e1000_phy_m88)
1253 e1000_phy_disable_receiver(adapter);
1254
1255 udelay(500);
1256
1257 return 0;
1258}
1259
1260static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1261{
1262 struct e1000_hw *hw = &adapter->hw;
1263 u16 phy_reg = 0;
1264 u16 count = 0;
1265
1266 switch (hw->mac_type) {
1267 case e1000_82543:
1268 if (hw->media_type == e1000_media_type_copper) {
1269 /* Attempt to setup Loopback mode on Non-integrated PHY.
1270 * Some PHY registers get corrupted at random, so
1271 * attempt this 10 times.
1272 */
1273 while (e1000_nonintegrated_phy_loopback(adapter) &&
1274 count++ < 10);
1275 if (count < 11)
1276 return 0;
1277 }
1278 break;
1279
1280 case e1000_82544:
1281 case e1000_82540:
1282 case e1000_82545:
1283 case e1000_82545_rev_3:
1284 case e1000_82546:
1285 case e1000_82546_rev_3:
1286 case e1000_82541:
1287 case e1000_82541_rev_2:
1288 case e1000_82547:
1289 case e1000_82547_rev_2:
1290 return e1000_integrated_phy_loopback(adapter);
1291 default:
1292 /* Default PHY loopback work is to read the MII
1293 * control register and assert bit 14 (loopback mode).
1294 */
1295 e1000_read_phy_reg(hw, PHY_CTRL, phy_data: &phy_reg);
1296 phy_reg |= MII_CR_LOOPBACK;
1297 e1000_write_phy_reg(hw, PHY_CTRL, data: phy_reg);
1298 return 0;
1299 }
1300
1301 return 8;
1302}
1303
1304static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1305{
1306 struct e1000_hw *hw = &adapter->hw;
1307 u32 rctl;
1308
1309 if (hw->media_type == e1000_media_type_fiber ||
1310 hw->media_type == e1000_media_type_internal_serdes) {
1311 switch (hw->mac_type) {
1312 case e1000_82545:
1313 case e1000_82546:
1314 case e1000_82545_rev_3:
1315 case e1000_82546_rev_3:
1316 return e1000_set_phy_loopback(adapter);
1317 default:
1318 rctl = er32(RCTL);
1319 rctl |= E1000_RCTL_LBM_TCVR;
1320 ew32(RCTL, rctl);
1321 return 0;
1322 }
1323 } else if (hw->media_type == e1000_media_type_copper) {
1324 return e1000_set_phy_loopback(adapter);
1325 }
1326
1327 return 7;
1328}
1329
1330static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1331{
1332 struct e1000_hw *hw = &adapter->hw;
1333 u32 rctl;
1334 u16 phy_reg;
1335
1336 rctl = er32(RCTL);
1337 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1338 ew32(RCTL, rctl);
1339
1340 switch (hw->mac_type) {
1341 case e1000_82545:
1342 case e1000_82546:
1343 case e1000_82545_rev_3:
1344 case e1000_82546_rev_3:
1345 default:
1346 hw->autoneg = true;
1347 e1000_read_phy_reg(hw, PHY_CTRL, phy_data: &phy_reg);
1348 if (phy_reg & MII_CR_LOOPBACK) {
1349 phy_reg &= ~MII_CR_LOOPBACK;
1350 e1000_write_phy_reg(hw, PHY_CTRL, data: phy_reg);
1351 e1000_phy_reset(hw);
1352 }
1353 break;
1354 }
1355}
1356
1357static void e1000_create_lbtest_frame(struct sk_buff *skb,
1358 unsigned int frame_size)
1359{
1360 memset(skb->data, 0xFF, frame_size);
1361 frame_size &= ~1;
1362 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1363 skb->data[frame_size / 2 + 10] = 0xBE;
1364 skb->data[frame_size / 2 + 12] = 0xAF;
1365}
1366
1367static int e1000_check_lbtest_frame(const unsigned char *data,
1368 unsigned int frame_size)
1369{
1370 frame_size &= ~1;
1371 if (*(data + 3) == 0xFF) {
1372 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1373 (*(data + frame_size / 2 + 12) == 0xAF)) {
1374 return 0;
1375 }
1376 }
1377 return 13;
1378}
1379
1380static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1381{
1382 struct e1000_hw *hw = &adapter->hw;
1383 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1384 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1385 struct pci_dev *pdev = adapter->pdev;
1386 int i, j, k, l, lc, good_cnt, ret_val = 0;
1387 unsigned long time;
1388
1389 ew32(RDT, rxdr->count - 1);
1390
1391 /* Calculate the loop count based on the largest descriptor ring
1392 * The idea is to wrap the largest ring a number of times using 64
1393 * send/receive pairs during each loop
1394 */
1395
1396 if (rxdr->count <= txdr->count)
1397 lc = ((txdr->count / 64) * 2) + 1;
1398 else
1399 lc = ((rxdr->count / 64) * 2) + 1;
1400
1401 k = l = 0;
1402 for (j = 0; j <= lc; j++) { /* loop count loop */
1403 for (i = 0; i < 64; i++) { /* send the packets */
1404 e1000_create_lbtest_frame(skb: txdr->buffer_info[i].skb,
1405 frame_size: 1024);
1406 dma_sync_single_for_device(dev: &pdev->dev,
1407 addr: txdr->buffer_info[k].dma,
1408 size: txdr->buffer_info[k].length,
1409 dir: DMA_TO_DEVICE);
1410 if (unlikely(++k == txdr->count))
1411 k = 0;
1412 }
1413 ew32(TDT, k);
1414 E1000_WRITE_FLUSH();
1415 msleep(msecs: 200);
1416 time = jiffies; /* set the start time for the receive */
1417 good_cnt = 0;
1418 do { /* receive the sent packets */
1419 dma_sync_single_for_cpu(dev: &pdev->dev,
1420 addr: rxdr->buffer_info[l].dma,
1421 E1000_RXBUFFER_2048,
1422 dir: DMA_FROM_DEVICE);
1423
1424 ret_val = e1000_check_lbtest_frame(
1425 data: rxdr->buffer_info[l].rxbuf.data +
1426 NET_SKB_PAD + NET_IP_ALIGN,
1427 frame_size: 1024);
1428 if (!ret_val)
1429 good_cnt++;
1430 if (unlikely(++l == rxdr->count))
1431 l = 0;
1432 /* time + 20 msecs (200 msecs on 2.4) is more than
1433 * enough time to complete the receives, if it's
1434 * exceeded, break and error off
1435 */
1436 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1437
1438 if (good_cnt != 64) {
1439 ret_val = 13; /* ret_val is the same as mis-compare */
1440 break;
1441 }
1442 if (time_after_eq(jiffies, time + 2)) {
1443 ret_val = 14; /* error code for time out error */
1444 break;
1445 }
1446 } /* end loop count loop */
1447 return ret_val;
1448}
1449
1450static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1451{
1452 *data = e1000_setup_desc_rings(adapter);
1453 if (*data)
1454 goto out;
1455 *data = e1000_setup_loopback_test(adapter);
1456 if (*data)
1457 goto err_loopback;
1458 *data = e1000_run_loopback_test(adapter);
1459 e1000_loopback_cleanup(adapter);
1460
1461err_loopback:
1462 e1000_free_desc_rings(adapter);
1463out:
1464 return *data;
1465}
1466
1467static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1468{
1469 struct e1000_hw *hw = &adapter->hw;
1470 *data = 0;
1471 if (hw->media_type == e1000_media_type_internal_serdes) {
1472 int i = 0;
1473
1474 hw->serdes_has_link = false;
1475
1476 /* On some blade server designs, link establishment
1477 * could take as long as 2-3 minutes
1478 */
1479 do {
1480 e1000_check_for_link(hw);
1481 if (hw->serdes_has_link)
1482 return *data;
1483 msleep(msecs: 20);
1484 } while (i++ < 3750);
1485
1486 *data = 1;
1487 } else {
1488 e1000_check_for_link(hw);
1489 if (hw->autoneg) /* if auto_neg is set wait for it */
1490 msleep(msecs: 4000);
1491
1492 if (!(er32(STATUS) & E1000_STATUS_LU))
1493 *data = 1;
1494 }
1495 return *data;
1496}
1497
1498static int e1000_get_sset_count(struct net_device *netdev, int sset)
1499{
1500 switch (sset) {
1501 case ETH_SS_TEST:
1502 return E1000_TEST_LEN;
1503 case ETH_SS_STATS:
1504 return E1000_STATS_LEN;
1505 default:
1506 return -EOPNOTSUPP;
1507 }
1508}
1509
1510static void e1000_diag_test(struct net_device *netdev,
1511 struct ethtool_test *eth_test, u64 *data)
1512{
1513 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
1514 struct e1000_hw *hw = &adapter->hw;
1515 bool if_running = netif_running(dev: netdev);
1516
1517 set_bit(nr: __E1000_TESTING, addr: &adapter->flags);
1518 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1519 /* Offline tests */
1520
1521 /* save speed, duplex, autoneg settings */
1522 u16 autoneg_advertised = hw->autoneg_advertised;
1523 u8 forced_speed_duplex = hw->forced_speed_duplex;
1524 u8 autoneg = hw->autoneg;
1525
1526 e_info(hw, "offline testing starting\n");
1527
1528 /* Link test performed before hardware reset so autoneg doesn't
1529 * interfere with test result
1530 */
1531 if (e1000_link_test(adapter, data: &data[4]))
1532 eth_test->flags |= ETH_TEST_FL_FAILED;
1533
1534 if (if_running)
1535 /* indicate we're in test mode */
1536 e1000_close(netdev);
1537 else
1538 e1000_reset(adapter);
1539
1540 if (e1000_reg_test(adapter, data: &data[0]))
1541 eth_test->flags |= ETH_TEST_FL_FAILED;
1542
1543 e1000_reset(adapter);
1544 if (e1000_eeprom_test(adapter, data: &data[1]))
1545 eth_test->flags |= ETH_TEST_FL_FAILED;
1546
1547 e1000_reset(adapter);
1548 if (e1000_intr_test(adapter, data: &data[2]))
1549 eth_test->flags |= ETH_TEST_FL_FAILED;
1550
1551 e1000_reset(adapter);
1552 /* make sure the phy is powered up */
1553 e1000_power_up_phy(adapter);
1554 if (e1000_loopback_test(adapter, data: &data[3]))
1555 eth_test->flags |= ETH_TEST_FL_FAILED;
1556
1557 /* restore speed, duplex, autoneg settings */
1558 hw->autoneg_advertised = autoneg_advertised;
1559 hw->forced_speed_duplex = forced_speed_duplex;
1560 hw->autoneg = autoneg;
1561
1562 e1000_reset(adapter);
1563 clear_bit(nr: __E1000_TESTING, addr: &adapter->flags);
1564 if (if_running)
1565 e1000_open(netdev);
1566 } else {
1567 e_info(hw, "online testing starting\n");
1568 /* Online tests */
1569 if (e1000_link_test(adapter, data: &data[4]))
1570 eth_test->flags |= ETH_TEST_FL_FAILED;
1571
1572 /* Online tests aren't run; pass by default */
1573 data[0] = 0;
1574 data[1] = 0;
1575 data[2] = 0;
1576 data[3] = 0;
1577
1578 clear_bit(nr: __E1000_TESTING, addr: &adapter->flags);
1579 }
1580 msleep_interruptible(msecs: 4 * 1000);
1581}
1582
1583static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1584 struct ethtool_wolinfo *wol)
1585{
1586 struct e1000_hw *hw = &adapter->hw;
1587 int retval = 1; /* fail by default */
1588
1589 switch (hw->device_id) {
1590 case E1000_DEV_ID_82542:
1591 case E1000_DEV_ID_82543GC_FIBER:
1592 case E1000_DEV_ID_82543GC_COPPER:
1593 case E1000_DEV_ID_82544EI_FIBER:
1594 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1595 case E1000_DEV_ID_82545EM_FIBER:
1596 case E1000_DEV_ID_82545EM_COPPER:
1597 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1598 case E1000_DEV_ID_82546GB_PCIE:
1599 /* these don't support WoL at all */
1600 wol->supported = 0;
1601 break;
1602 case E1000_DEV_ID_82546EB_FIBER:
1603 case E1000_DEV_ID_82546GB_FIBER:
1604 /* Wake events not supported on port B */
1605 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1606 wol->supported = 0;
1607 break;
1608 }
1609 /* return success for non excluded adapter ports */
1610 retval = 0;
1611 break;
1612 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1613 /* quad port adapters only support WoL on port A */
1614 if (!adapter->quad_port_a) {
1615 wol->supported = 0;
1616 break;
1617 }
1618 /* return success for non excluded adapter ports */
1619 retval = 0;
1620 break;
1621 default:
1622 /* dual port cards only support WoL on port A from now on
1623 * unless it was enabled in the eeprom for port B
1624 * so exclude FUNC_1 ports from having WoL enabled
1625 */
1626 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1627 !adapter->eeprom_wol) {
1628 wol->supported = 0;
1629 break;
1630 }
1631
1632 retval = 0;
1633 }
1634
1635 return retval;
1636}
1637
1638static void e1000_get_wol(struct net_device *netdev,
1639 struct ethtool_wolinfo *wol)
1640{
1641 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
1642 struct e1000_hw *hw = &adapter->hw;
1643
1644 wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1645 wol->wolopts = 0;
1646
1647 /* this function will set ->supported = 0 and return 1 if wol is not
1648 * supported by this hardware
1649 */
1650 if (e1000_wol_exclusion(adapter, wol) ||
1651 !device_can_wakeup(dev: &adapter->pdev->dev))
1652 return;
1653
1654 /* apply any specific unsupported masks here */
1655 switch (hw->device_id) {
1656 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1657 /* KSP3 does not support UCAST wake-ups */
1658 wol->supported &= ~WAKE_UCAST;
1659
1660 if (adapter->wol & E1000_WUFC_EX)
1661 e_err(drv, "Interface does not support directed "
1662 "(unicast) frame wake-up packets\n");
1663 break;
1664 default:
1665 break;
1666 }
1667
1668 if (adapter->wol & E1000_WUFC_EX)
1669 wol->wolopts |= WAKE_UCAST;
1670 if (adapter->wol & E1000_WUFC_MC)
1671 wol->wolopts |= WAKE_MCAST;
1672 if (adapter->wol & E1000_WUFC_BC)
1673 wol->wolopts |= WAKE_BCAST;
1674 if (adapter->wol & E1000_WUFC_MAG)
1675 wol->wolopts |= WAKE_MAGIC;
1676}
1677
1678static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1679{
1680 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
1681 struct e1000_hw *hw = &adapter->hw;
1682
1683 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1684 return -EOPNOTSUPP;
1685
1686 if (e1000_wol_exclusion(adapter, wol) ||
1687 !device_can_wakeup(dev: &adapter->pdev->dev))
1688 return wol->wolopts ? -EOPNOTSUPP : 0;
1689
1690 switch (hw->device_id) {
1691 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1692 if (wol->wolopts & WAKE_UCAST) {
1693 e_err(drv, "Interface does not support directed "
1694 "(unicast) frame wake-up packets\n");
1695 return -EOPNOTSUPP;
1696 }
1697 break;
1698 default:
1699 break;
1700 }
1701
1702 /* these settings will always override what we currently have */
1703 adapter->wol = 0;
1704
1705 if (wol->wolopts & WAKE_UCAST)
1706 adapter->wol |= E1000_WUFC_EX;
1707 if (wol->wolopts & WAKE_MCAST)
1708 adapter->wol |= E1000_WUFC_MC;
1709 if (wol->wolopts & WAKE_BCAST)
1710 adapter->wol |= E1000_WUFC_BC;
1711 if (wol->wolopts & WAKE_MAGIC)
1712 adapter->wol |= E1000_WUFC_MAG;
1713
1714 device_set_wakeup_enable(dev: &adapter->pdev->dev, enable: adapter->wol);
1715
1716 return 0;
1717}
1718
1719static int e1000_set_phys_id(struct net_device *netdev,
1720 enum ethtool_phys_id_state state)
1721{
1722 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
1723 struct e1000_hw *hw = &adapter->hw;
1724
1725 switch (state) {
1726 case ETHTOOL_ID_ACTIVE:
1727 e1000_setup_led(hw);
1728 return 2;
1729
1730 case ETHTOOL_ID_ON:
1731 e1000_led_on(hw);
1732 break;
1733
1734 case ETHTOOL_ID_OFF:
1735 e1000_led_off(hw);
1736 break;
1737
1738 case ETHTOOL_ID_INACTIVE:
1739 e1000_cleanup_led(hw);
1740 }
1741
1742 return 0;
1743}
1744
1745static int e1000_get_coalesce(struct net_device *netdev,
1746 struct ethtool_coalesce *ec,
1747 struct kernel_ethtool_coalesce *kernel_coal,
1748 struct netlink_ext_ack *extack)
1749{
1750 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
1751
1752 if (adapter->hw.mac_type < e1000_82545)
1753 return -EOPNOTSUPP;
1754
1755 if (adapter->itr_setting <= 4)
1756 ec->rx_coalesce_usecs = adapter->itr_setting;
1757 else
1758 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1759
1760 return 0;
1761}
1762
1763static int e1000_set_coalesce(struct net_device *netdev,
1764 struct ethtool_coalesce *ec,
1765 struct kernel_ethtool_coalesce *kernel_coal,
1766 struct netlink_ext_ack *extack)
1767{
1768 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
1769 struct e1000_hw *hw = &adapter->hw;
1770
1771 if (hw->mac_type < e1000_82545)
1772 return -EOPNOTSUPP;
1773
1774 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1775 ((ec->rx_coalesce_usecs > 4) &&
1776 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1777 (ec->rx_coalesce_usecs == 2))
1778 return -EINVAL;
1779
1780 if (ec->rx_coalesce_usecs == 4) {
1781 adapter->itr = adapter->itr_setting = 4;
1782 } else if (ec->rx_coalesce_usecs <= 3) {
1783 adapter->itr = 20000;
1784 adapter->itr_setting = ec->rx_coalesce_usecs;
1785 } else {
1786 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1787 adapter->itr_setting = adapter->itr & ~3;
1788 }
1789
1790 if (adapter->itr_setting != 0)
1791 ew32(ITR, 1000000000 / (adapter->itr * 256));
1792 else
1793 ew32(ITR, 0);
1794
1795 return 0;
1796}
1797
1798static int e1000_nway_reset(struct net_device *netdev)
1799{
1800 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
1801
1802 if (netif_running(dev: netdev))
1803 e1000_reinit_locked(adapter);
1804 return 0;
1805}
1806
1807static void e1000_get_ethtool_stats(struct net_device *netdev,
1808 struct ethtool_stats *stats, u64 *data)
1809{
1810 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
1811 int i;
1812 const struct e1000_stats *stat = e1000_gstrings_stats;
1813
1814 e1000_update_stats(adapter);
1815 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1816 char *p;
1817
1818 switch (stat->type) {
1819 case NETDEV_STATS:
1820 p = (char *)netdev + stat->stat_offset;
1821 break;
1822 case E1000_STATS:
1823 p = (char *)adapter + stat->stat_offset;
1824 break;
1825 default:
1826 netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1827 stat->type, i);
1828 continue;
1829 }
1830
1831 if (stat->sizeof_stat == sizeof(u64))
1832 data[i] = *(u64 *)p;
1833 else
1834 data[i] = *(u32 *)p;
1835 }
1836/* BUG_ON(i != E1000_STATS_LEN); */
1837}
1838
1839static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1840 u8 *data)
1841{
1842 u8 *p = data;
1843 int i;
1844
1845 switch (stringset) {
1846 case ETH_SS_TEST:
1847 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1848 break;
1849 case ETH_SS_STATS:
1850 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1851 memcpy(p, e1000_gstrings_stats[i].stat_string,
1852 ETH_GSTRING_LEN);
1853 p += ETH_GSTRING_LEN;
1854 }
1855 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1856 break;
1857 }
1858}
1859
1860static const struct ethtool_ops e1000_ethtool_ops = {
1861 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
1862 .get_drvinfo = e1000_get_drvinfo,
1863 .get_regs_len = e1000_get_regs_len,
1864 .get_regs = e1000_get_regs,
1865 .get_wol = e1000_get_wol,
1866 .set_wol = e1000_set_wol,
1867 .get_msglevel = e1000_get_msglevel,
1868 .set_msglevel = e1000_set_msglevel,
1869 .nway_reset = e1000_nway_reset,
1870 .get_link = e1000_get_link,
1871 .get_eeprom_len = e1000_get_eeprom_len,
1872 .get_eeprom = e1000_get_eeprom,
1873 .set_eeprom = e1000_set_eeprom,
1874 .get_ringparam = e1000_get_ringparam,
1875 .set_ringparam = e1000_set_ringparam,
1876 .get_pauseparam = e1000_get_pauseparam,
1877 .set_pauseparam = e1000_set_pauseparam,
1878 .self_test = e1000_diag_test,
1879 .get_strings = e1000_get_strings,
1880 .set_phys_id = e1000_set_phys_id,
1881 .get_ethtool_stats = e1000_get_ethtool_stats,
1882 .get_sset_count = e1000_get_sset_count,
1883 .get_coalesce = e1000_get_coalesce,
1884 .set_coalesce = e1000_set_coalesce,
1885 .get_ts_info = ethtool_op_get_ts_info,
1886 .get_link_ksettings = e1000_get_link_ksettings,
1887 .set_link_ksettings = e1000_set_link_ksettings,
1888};
1889
1890void e1000_set_ethtool_ops(struct net_device *netdev)
1891{
1892 netdev->ethtool_ops = &e1000_ethtool_ops;
1893}
1894

source code of linux/drivers/net/ethernet/intel/e1000/e1000_ethtool.c