1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "iavf_type.h"
5#include "iavf_adminq.h"
6#include "iavf_prototype.h"
7#include <linux/avf/virtchnl.h>
8
9/**
10 * iavf_aq_str - convert AQ err code to a string
11 * @hw: pointer to the HW structure
12 * @aq_err: the AQ error code to convert
13 **/
14const char *iavf_aq_str(struct iavf_hw *hw, enum iavf_admin_queue_err aq_err)
15{
16 switch (aq_err) {
17 case IAVF_AQ_RC_OK:
18 return "OK";
19 case IAVF_AQ_RC_EPERM:
20 return "IAVF_AQ_RC_EPERM";
21 case IAVF_AQ_RC_ENOENT:
22 return "IAVF_AQ_RC_ENOENT";
23 case IAVF_AQ_RC_ESRCH:
24 return "IAVF_AQ_RC_ESRCH";
25 case IAVF_AQ_RC_EINTR:
26 return "IAVF_AQ_RC_EINTR";
27 case IAVF_AQ_RC_EIO:
28 return "IAVF_AQ_RC_EIO";
29 case IAVF_AQ_RC_ENXIO:
30 return "IAVF_AQ_RC_ENXIO";
31 case IAVF_AQ_RC_E2BIG:
32 return "IAVF_AQ_RC_E2BIG";
33 case IAVF_AQ_RC_EAGAIN:
34 return "IAVF_AQ_RC_EAGAIN";
35 case IAVF_AQ_RC_ENOMEM:
36 return "IAVF_AQ_RC_ENOMEM";
37 case IAVF_AQ_RC_EACCES:
38 return "IAVF_AQ_RC_EACCES";
39 case IAVF_AQ_RC_EFAULT:
40 return "IAVF_AQ_RC_EFAULT";
41 case IAVF_AQ_RC_EBUSY:
42 return "IAVF_AQ_RC_EBUSY";
43 case IAVF_AQ_RC_EEXIST:
44 return "IAVF_AQ_RC_EEXIST";
45 case IAVF_AQ_RC_EINVAL:
46 return "IAVF_AQ_RC_EINVAL";
47 case IAVF_AQ_RC_ENOTTY:
48 return "IAVF_AQ_RC_ENOTTY";
49 case IAVF_AQ_RC_ENOSPC:
50 return "IAVF_AQ_RC_ENOSPC";
51 case IAVF_AQ_RC_ENOSYS:
52 return "IAVF_AQ_RC_ENOSYS";
53 case IAVF_AQ_RC_ERANGE:
54 return "IAVF_AQ_RC_ERANGE";
55 case IAVF_AQ_RC_EFLUSHED:
56 return "IAVF_AQ_RC_EFLUSHED";
57 case IAVF_AQ_RC_BAD_ADDR:
58 return "IAVF_AQ_RC_BAD_ADDR";
59 case IAVF_AQ_RC_EMODE:
60 return "IAVF_AQ_RC_EMODE";
61 case IAVF_AQ_RC_EFBIG:
62 return "IAVF_AQ_RC_EFBIG";
63 }
64
65 snprintf(buf: hw->err_str, size: sizeof(hw->err_str), fmt: "%d", aq_err);
66 return hw->err_str;
67}
68
69/**
70 * iavf_stat_str - convert status err code to a string
71 * @hw: pointer to the HW structure
72 * @stat_err: the status error code to convert
73 **/
74const char *iavf_stat_str(struct iavf_hw *hw, enum iavf_status stat_err)
75{
76 switch (stat_err) {
77 case 0:
78 return "OK";
79 case IAVF_ERR_NVM:
80 return "IAVF_ERR_NVM";
81 case IAVF_ERR_NVM_CHECKSUM:
82 return "IAVF_ERR_NVM_CHECKSUM";
83 case IAVF_ERR_PHY:
84 return "IAVF_ERR_PHY";
85 case IAVF_ERR_CONFIG:
86 return "IAVF_ERR_CONFIG";
87 case IAVF_ERR_PARAM:
88 return "IAVF_ERR_PARAM";
89 case IAVF_ERR_MAC_TYPE:
90 return "IAVF_ERR_MAC_TYPE";
91 case IAVF_ERR_UNKNOWN_PHY:
92 return "IAVF_ERR_UNKNOWN_PHY";
93 case IAVF_ERR_LINK_SETUP:
94 return "IAVF_ERR_LINK_SETUP";
95 case IAVF_ERR_ADAPTER_STOPPED:
96 return "IAVF_ERR_ADAPTER_STOPPED";
97 case IAVF_ERR_INVALID_MAC_ADDR:
98 return "IAVF_ERR_INVALID_MAC_ADDR";
99 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
100 return "IAVF_ERR_DEVICE_NOT_SUPPORTED";
101 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
102 return "IAVF_ERR_PRIMARY_REQUESTS_PENDING";
103 case IAVF_ERR_INVALID_LINK_SETTINGS:
104 return "IAVF_ERR_INVALID_LINK_SETTINGS";
105 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
106 return "IAVF_ERR_AUTONEG_NOT_COMPLETE";
107 case IAVF_ERR_RESET_FAILED:
108 return "IAVF_ERR_RESET_FAILED";
109 case IAVF_ERR_SWFW_SYNC:
110 return "IAVF_ERR_SWFW_SYNC";
111 case IAVF_ERR_NO_AVAILABLE_VSI:
112 return "IAVF_ERR_NO_AVAILABLE_VSI";
113 case IAVF_ERR_NO_MEMORY:
114 return "IAVF_ERR_NO_MEMORY";
115 case IAVF_ERR_BAD_PTR:
116 return "IAVF_ERR_BAD_PTR";
117 case IAVF_ERR_RING_FULL:
118 return "IAVF_ERR_RING_FULL";
119 case IAVF_ERR_INVALID_PD_ID:
120 return "IAVF_ERR_INVALID_PD_ID";
121 case IAVF_ERR_INVALID_QP_ID:
122 return "IAVF_ERR_INVALID_QP_ID";
123 case IAVF_ERR_INVALID_CQ_ID:
124 return "IAVF_ERR_INVALID_CQ_ID";
125 case IAVF_ERR_INVALID_CEQ_ID:
126 return "IAVF_ERR_INVALID_CEQ_ID";
127 case IAVF_ERR_INVALID_AEQ_ID:
128 return "IAVF_ERR_INVALID_AEQ_ID";
129 case IAVF_ERR_INVALID_SIZE:
130 return "IAVF_ERR_INVALID_SIZE";
131 case IAVF_ERR_INVALID_ARP_INDEX:
132 return "IAVF_ERR_INVALID_ARP_INDEX";
133 case IAVF_ERR_INVALID_FPM_FUNC_ID:
134 return "IAVF_ERR_INVALID_FPM_FUNC_ID";
135 case IAVF_ERR_QP_INVALID_MSG_SIZE:
136 return "IAVF_ERR_QP_INVALID_MSG_SIZE";
137 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
138 return "IAVF_ERR_QP_TOOMANY_WRS_POSTED";
139 case IAVF_ERR_INVALID_FRAG_COUNT:
140 return "IAVF_ERR_INVALID_FRAG_COUNT";
141 case IAVF_ERR_QUEUE_EMPTY:
142 return "IAVF_ERR_QUEUE_EMPTY";
143 case IAVF_ERR_INVALID_ALIGNMENT:
144 return "IAVF_ERR_INVALID_ALIGNMENT";
145 case IAVF_ERR_FLUSHED_QUEUE:
146 return "IAVF_ERR_FLUSHED_QUEUE";
147 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
148 return "IAVF_ERR_INVALID_PUSH_PAGE_INDEX";
149 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
150 return "IAVF_ERR_INVALID_IMM_DATA_SIZE";
151 case IAVF_ERR_TIMEOUT:
152 return "IAVF_ERR_TIMEOUT";
153 case IAVF_ERR_OPCODE_MISMATCH:
154 return "IAVF_ERR_OPCODE_MISMATCH";
155 case IAVF_ERR_CQP_COMPL_ERROR:
156 return "IAVF_ERR_CQP_COMPL_ERROR";
157 case IAVF_ERR_INVALID_VF_ID:
158 return "IAVF_ERR_INVALID_VF_ID";
159 case IAVF_ERR_INVALID_HMCFN_ID:
160 return "IAVF_ERR_INVALID_HMCFN_ID";
161 case IAVF_ERR_BACKING_PAGE_ERROR:
162 return "IAVF_ERR_BACKING_PAGE_ERROR";
163 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
164 return "IAVF_ERR_NO_PBLCHUNKS_AVAILABLE";
165 case IAVF_ERR_INVALID_PBLE_INDEX:
166 return "IAVF_ERR_INVALID_PBLE_INDEX";
167 case IAVF_ERR_INVALID_SD_INDEX:
168 return "IAVF_ERR_INVALID_SD_INDEX";
169 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
170 return "IAVF_ERR_INVALID_PAGE_DESC_INDEX";
171 case IAVF_ERR_INVALID_SD_TYPE:
172 return "IAVF_ERR_INVALID_SD_TYPE";
173 case IAVF_ERR_MEMCPY_FAILED:
174 return "IAVF_ERR_MEMCPY_FAILED";
175 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
176 return "IAVF_ERR_INVALID_HMC_OBJ_INDEX";
177 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
178 return "IAVF_ERR_INVALID_HMC_OBJ_COUNT";
179 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
180 return "IAVF_ERR_INVALID_SRQ_ARM_LIMIT";
181 case IAVF_ERR_SRQ_ENABLED:
182 return "IAVF_ERR_SRQ_ENABLED";
183 case IAVF_ERR_ADMIN_QUEUE_ERROR:
184 return "IAVF_ERR_ADMIN_QUEUE_ERROR";
185 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
186 return "IAVF_ERR_ADMIN_QUEUE_TIMEOUT";
187 case IAVF_ERR_BUF_TOO_SHORT:
188 return "IAVF_ERR_BUF_TOO_SHORT";
189 case IAVF_ERR_ADMIN_QUEUE_FULL:
190 return "IAVF_ERR_ADMIN_QUEUE_FULL";
191 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
192 return "IAVF_ERR_ADMIN_QUEUE_NO_WORK";
193 case IAVF_ERR_BAD_RDMA_CQE:
194 return "IAVF_ERR_BAD_RDMA_CQE";
195 case IAVF_ERR_NVM_BLANK_MODE:
196 return "IAVF_ERR_NVM_BLANK_MODE";
197 case IAVF_ERR_NOT_IMPLEMENTED:
198 return "IAVF_ERR_NOT_IMPLEMENTED";
199 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
200 return "IAVF_ERR_PE_DOORBELL_NOT_ENABLED";
201 case IAVF_ERR_DIAG_TEST_FAILED:
202 return "IAVF_ERR_DIAG_TEST_FAILED";
203 case IAVF_ERR_NOT_READY:
204 return "IAVF_ERR_NOT_READY";
205 case IAVF_NOT_SUPPORTED:
206 return "IAVF_NOT_SUPPORTED";
207 case IAVF_ERR_FIRMWARE_API_VERSION:
208 return "IAVF_ERR_FIRMWARE_API_VERSION";
209 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
210 return "IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR";
211 }
212
213 snprintf(buf: hw->err_str, size: sizeof(hw->err_str), fmt: "%d", stat_err);
214 return hw->err_str;
215}
216
217/**
218 * iavf_debug_aq
219 * @hw: debug mask related to admin queue
220 * @mask: debug mask
221 * @desc: pointer to admin queue descriptor
222 * @buffer: pointer to command buffer
223 * @buf_len: max length of buffer
224 *
225 * Dumps debug log about adminq command with descriptor contents.
226 **/
227void iavf_debug_aq(struct iavf_hw *hw, enum iavf_debug_mask mask, void *desc,
228 void *buffer, u16 buf_len)
229{
230 struct iavf_aq_desc *aq_desc = (struct iavf_aq_desc *)desc;
231 u8 *buf = (u8 *)buffer;
232
233 if ((!(mask & hw->debug_mask)) || !desc)
234 return;
235
236 iavf_debug(hw, mask,
237 "AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
238 le16_to_cpu(aq_desc->opcode),
239 le16_to_cpu(aq_desc->flags),
240 le16_to_cpu(aq_desc->datalen),
241 le16_to_cpu(aq_desc->retval));
242 iavf_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
243 le32_to_cpu(aq_desc->cookie_high),
244 le32_to_cpu(aq_desc->cookie_low));
245 iavf_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n",
246 le32_to_cpu(aq_desc->params.internal.param0),
247 le32_to_cpu(aq_desc->params.internal.param1));
248 iavf_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n",
249 le32_to_cpu(aq_desc->params.external.addr_high),
250 le32_to_cpu(aq_desc->params.external.addr_low));
251
252 if (buffer && aq_desc->datalen) {
253 u16 len = le16_to_cpu(aq_desc->datalen);
254
255 iavf_debug(hw, mask, "AQ CMD Buffer:\n");
256 if (buf_len < len)
257 len = buf_len;
258 /* write the full 16-byte chunks */
259 if (hw->debug_mask & mask) {
260 char prefix[27];
261
262 snprintf(buf: prefix, size: sizeof(prefix),
263 fmt: "iavf %02x:%02x.%x: \t0x",
264 hw->bus.bus_id,
265 hw->bus.device,
266 hw->bus.func);
267
268 print_hex_dump(KERN_INFO, prefix_str: prefix, prefix_type: DUMP_PREFIX_OFFSET,
269 rowsize: 16, groupsize: 1, buf, len, ascii: false);
270 }
271 }
272}
273
274/**
275 * iavf_check_asq_alive
276 * @hw: pointer to the hw struct
277 *
278 * Returns true if Queue is enabled else false.
279 **/
280bool iavf_check_asq_alive(struct iavf_hw *hw)
281{
282 if (hw->aq.asq.len)
283 return !!(rd32(hw, hw->aq.asq.len) &
284 IAVF_VF_ATQLEN1_ATQENABLE_MASK);
285 else
286 return false;
287}
288
289/**
290 * iavf_aq_queue_shutdown
291 * @hw: pointer to the hw struct
292 * @unloading: is the driver unloading itself
293 *
294 * Tell the Firmware that we're shutting down the AdminQ and whether
295 * or not the driver is unloading as well.
296 **/
297enum iavf_status iavf_aq_queue_shutdown(struct iavf_hw *hw, bool unloading)
298{
299 struct iavf_aq_desc desc;
300 struct iavf_aqc_queue_shutdown *cmd =
301 (struct iavf_aqc_queue_shutdown *)&desc.params.raw;
302 enum iavf_status status;
303
304 iavf_fill_default_direct_cmd_desc(desc: &desc, opcode: iavf_aqc_opc_queue_shutdown);
305
306 if (unloading)
307 cmd->driver_unloading = cpu_to_le32(IAVF_AQ_DRIVER_UNLOADING);
308 status = iavf_asq_send_command(hw, desc: &desc, NULL, buff_size: 0, NULL);
309
310 return status;
311}
312
313/**
314 * iavf_aq_get_set_rss_lut
315 * @hw: pointer to the hardware structure
316 * @vsi_id: vsi fw index
317 * @pf_lut: for PF table set true, for VSI table set false
318 * @lut: pointer to the lut buffer provided by the caller
319 * @lut_size: size of the lut buffer
320 * @set: set true to set the table, false to get the table
321 *
322 * Internal function to get or set RSS look up table
323 **/
324static enum iavf_status iavf_aq_get_set_rss_lut(struct iavf_hw *hw,
325 u16 vsi_id, bool pf_lut,
326 u8 *lut, u16 lut_size,
327 bool set)
328{
329 enum iavf_status status;
330 struct iavf_aq_desc desc;
331 struct iavf_aqc_get_set_rss_lut *cmd_resp =
332 (struct iavf_aqc_get_set_rss_lut *)&desc.params.raw;
333
334 if (set)
335 iavf_fill_default_direct_cmd_desc(desc: &desc,
336 opcode: iavf_aqc_opc_set_rss_lut);
337 else
338 iavf_fill_default_direct_cmd_desc(desc: &desc,
339 opcode: iavf_aqc_opc_get_rss_lut);
340
341 /* Indirect command */
342 desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_BUF);
343 desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_RD);
344
345 cmd_resp->vsi_id =
346 cpu_to_le16((u16)((vsi_id <<
347 IAVF_AQC_SET_RSS_LUT_VSI_ID_SHIFT) &
348 IAVF_AQC_SET_RSS_LUT_VSI_ID_MASK));
349 cmd_resp->vsi_id |= cpu_to_le16((u16)IAVF_AQC_SET_RSS_LUT_VSI_VALID);
350
351 if (pf_lut)
352 cmd_resp->flags |= cpu_to_le16((u16)
353 ((IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_PF <<
354 IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
355 IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
356 else
357 cmd_resp->flags |= cpu_to_le16((u16)
358 ((IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_VSI <<
359 IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
360 IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
361
362 status = iavf_asq_send_command(hw, desc: &desc, buff: lut, buff_size: lut_size, NULL);
363
364 return status;
365}
366
367/**
368 * iavf_aq_set_rss_lut
369 * @hw: pointer to the hardware structure
370 * @vsi_id: vsi fw index
371 * @pf_lut: for PF table set true, for VSI table set false
372 * @lut: pointer to the lut buffer provided by the caller
373 * @lut_size: size of the lut buffer
374 *
375 * set the RSS lookup table, PF or VSI type
376 **/
377enum iavf_status iavf_aq_set_rss_lut(struct iavf_hw *hw, u16 vsi_id,
378 bool pf_lut, u8 *lut, u16 lut_size)
379{
380 return iavf_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, set: true);
381}
382
383/**
384 * iavf_aq_get_set_rss_key
385 * @hw: pointer to the hw struct
386 * @vsi_id: vsi fw index
387 * @key: pointer to key info struct
388 * @set: set true to set the key, false to get the key
389 *
390 * get the RSS key per VSI
391 **/
392static enum
393iavf_status iavf_aq_get_set_rss_key(struct iavf_hw *hw, u16 vsi_id,
394 struct iavf_aqc_get_set_rss_key_data *key,
395 bool set)
396{
397 enum iavf_status status;
398 struct iavf_aq_desc desc;
399 struct iavf_aqc_get_set_rss_key *cmd_resp =
400 (struct iavf_aqc_get_set_rss_key *)&desc.params.raw;
401 u16 key_size = sizeof(struct iavf_aqc_get_set_rss_key_data);
402
403 if (set)
404 iavf_fill_default_direct_cmd_desc(desc: &desc,
405 opcode: iavf_aqc_opc_set_rss_key);
406 else
407 iavf_fill_default_direct_cmd_desc(desc: &desc,
408 opcode: iavf_aqc_opc_get_rss_key);
409
410 /* Indirect command */
411 desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_BUF);
412 desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_RD);
413
414 cmd_resp->vsi_id =
415 cpu_to_le16((u16)((vsi_id <<
416 IAVF_AQC_SET_RSS_KEY_VSI_ID_SHIFT) &
417 IAVF_AQC_SET_RSS_KEY_VSI_ID_MASK));
418 cmd_resp->vsi_id |= cpu_to_le16((u16)IAVF_AQC_SET_RSS_KEY_VSI_VALID);
419
420 status = iavf_asq_send_command(hw, desc: &desc, buff: key, buff_size: key_size, NULL);
421
422 return status;
423}
424
425/**
426 * iavf_aq_set_rss_key
427 * @hw: pointer to the hw struct
428 * @vsi_id: vsi fw index
429 * @key: pointer to key info struct
430 *
431 * set the RSS key per VSI
432 **/
433enum iavf_status iavf_aq_set_rss_key(struct iavf_hw *hw, u16 vsi_id,
434 struct iavf_aqc_get_set_rss_key_data *key)
435{
436 return iavf_aq_get_set_rss_key(hw, vsi_id, key, set: true);
437}
438
439/* The iavf_ptype_lookup table is used to convert from the 8-bit ptype in the
440 * hardware to a bit-field that can be used by SW to more easily determine the
441 * packet type.
442 *
443 * Macros are used to shorten the table lines and make this table human
444 * readable.
445 *
446 * We store the PTYPE in the top byte of the bit field - this is just so that
447 * we can check that the table doesn't have a row missing, as the index into
448 * the table should be the PTYPE.
449 *
450 * Typical work flow:
451 *
452 * IF NOT iavf_ptype_lookup[ptype].known
453 * THEN
454 * Packet is unknown
455 * ELSE IF iavf_ptype_lookup[ptype].outer_ip == IAVF_RX_PTYPE_OUTER_IP
456 * Use the rest of the fields to look at the tunnels, inner protocols, etc
457 * ELSE
458 * Use the enum iavf_rx_l2_ptype to decode the packet type
459 * ENDIF
460 */
461
462/* macro to make the table lines short, use explicit indexing with [PTYPE] */
463#define IAVF_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\
464 [PTYPE] = { \
465 1, \
466 IAVF_RX_PTYPE_OUTER_##OUTER_IP, \
467 IAVF_RX_PTYPE_OUTER_##OUTER_IP_VER, \
468 IAVF_RX_PTYPE_##OUTER_FRAG, \
469 IAVF_RX_PTYPE_TUNNEL_##T, \
470 IAVF_RX_PTYPE_TUNNEL_END_##TE, \
471 IAVF_RX_PTYPE_##TEF, \
472 IAVF_RX_PTYPE_INNER_PROT_##I, \
473 IAVF_RX_PTYPE_PAYLOAD_LAYER_##PL }
474
475#define IAVF_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
476
477/* shorter macros makes the table fit but are terse */
478#define IAVF_RX_PTYPE_NOF IAVF_RX_PTYPE_NOT_FRAG
479#define IAVF_RX_PTYPE_FRG IAVF_RX_PTYPE_FRAG
480#define IAVF_RX_PTYPE_INNER_PROT_TS IAVF_RX_PTYPE_INNER_PROT_TIMESYNC
481
482/* Lookup table mapping the 8-bit HW PTYPE to the bit field for decoding */
483struct iavf_rx_ptype_decoded iavf_ptype_lookup[BIT(8)] = {
484 /* L2 Packet types */
485 IAVF_PTT_UNUSED_ENTRY(0),
486 IAVF_PTT(1, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
487 IAVF_PTT(2, L2, NONE, NOF, NONE, NONE, NOF, TS, PAY2),
488 IAVF_PTT(3, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
489 IAVF_PTT_UNUSED_ENTRY(4),
490 IAVF_PTT_UNUSED_ENTRY(5),
491 IAVF_PTT(6, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
492 IAVF_PTT(7, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
493 IAVF_PTT_UNUSED_ENTRY(8),
494 IAVF_PTT_UNUSED_ENTRY(9),
495 IAVF_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
496 IAVF_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE),
497 IAVF_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
498 IAVF_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
499 IAVF_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
500 IAVF_PTT(15, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
501 IAVF_PTT(16, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
502 IAVF_PTT(17, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
503 IAVF_PTT(18, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
504 IAVF_PTT(19, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
505 IAVF_PTT(20, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
506 IAVF_PTT(21, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
507
508 /* Non Tunneled IPv4 */
509 IAVF_PTT(22, IP, IPV4, FRG, NONE, NONE, NOF, NONE, PAY3),
510 IAVF_PTT(23, IP, IPV4, NOF, NONE, NONE, NOF, NONE, PAY3),
511 IAVF_PTT(24, IP, IPV4, NOF, NONE, NONE, NOF, UDP, PAY4),
512 IAVF_PTT_UNUSED_ENTRY(25),
513 IAVF_PTT(26, IP, IPV4, NOF, NONE, NONE, NOF, TCP, PAY4),
514 IAVF_PTT(27, IP, IPV4, NOF, NONE, NONE, NOF, SCTP, PAY4),
515 IAVF_PTT(28, IP, IPV4, NOF, NONE, NONE, NOF, ICMP, PAY4),
516
517 /* IPv4 --> IPv4 */
518 IAVF_PTT(29, IP, IPV4, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
519 IAVF_PTT(30, IP, IPV4, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
520 IAVF_PTT(31, IP, IPV4, NOF, IP_IP, IPV4, NOF, UDP, PAY4),
521 IAVF_PTT_UNUSED_ENTRY(32),
522 IAVF_PTT(33, IP, IPV4, NOF, IP_IP, IPV4, NOF, TCP, PAY4),
523 IAVF_PTT(34, IP, IPV4, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
524 IAVF_PTT(35, IP, IPV4, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
525
526 /* IPv4 --> IPv6 */
527 IAVF_PTT(36, IP, IPV4, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
528 IAVF_PTT(37, IP, IPV4, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
529 IAVF_PTT(38, IP, IPV4, NOF, IP_IP, IPV6, NOF, UDP, PAY4),
530 IAVF_PTT_UNUSED_ENTRY(39),
531 IAVF_PTT(40, IP, IPV4, NOF, IP_IP, IPV6, NOF, TCP, PAY4),
532 IAVF_PTT(41, IP, IPV4, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
533 IAVF_PTT(42, IP, IPV4, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
534
535 /* IPv4 --> GRE/NAT */
536 IAVF_PTT(43, IP, IPV4, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
537
538 /* IPv4 --> GRE/NAT --> IPv4 */
539 IAVF_PTT(44, IP, IPV4, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
540 IAVF_PTT(45, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
541 IAVF_PTT(46, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, UDP, PAY4),
542 IAVF_PTT_UNUSED_ENTRY(47),
543 IAVF_PTT(48, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, TCP, PAY4),
544 IAVF_PTT(49, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
545 IAVF_PTT(50, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
546
547 /* IPv4 --> GRE/NAT --> IPv6 */
548 IAVF_PTT(51, IP, IPV4, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
549 IAVF_PTT(52, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
550 IAVF_PTT(53, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, UDP, PAY4),
551 IAVF_PTT_UNUSED_ENTRY(54),
552 IAVF_PTT(55, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, TCP, PAY4),
553 IAVF_PTT(56, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
554 IAVF_PTT(57, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
555
556 /* IPv4 --> GRE/NAT --> MAC */
557 IAVF_PTT(58, IP, IPV4, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
558
559 /* IPv4 --> GRE/NAT --> MAC --> IPv4 */
560 IAVF_PTT(59, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
561 IAVF_PTT(60, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
562 IAVF_PTT(61, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP, PAY4),
563 IAVF_PTT_UNUSED_ENTRY(62),
564 IAVF_PTT(63, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP, PAY4),
565 IAVF_PTT(64, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
566 IAVF_PTT(65, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
567
568 /* IPv4 --> GRE/NAT -> MAC --> IPv6 */
569 IAVF_PTT(66, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
570 IAVF_PTT(67, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
571 IAVF_PTT(68, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP, PAY4),
572 IAVF_PTT_UNUSED_ENTRY(69),
573 IAVF_PTT(70, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP, PAY4),
574 IAVF_PTT(71, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
575 IAVF_PTT(72, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
576
577 /* IPv4 --> GRE/NAT --> MAC/VLAN */
578 IAVF_PTT(73, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
579
580 /* IPv4 ---> GRE/NAT -> MAC/VLAN --> IPv4 */
581 IAVF_PTT(74, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
582 IAVF_PTT(75, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
583 IAVF_PTT(76, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP, PAY4),
584 IAVF_PTT_UNUSED_ENTRY(77),
585 IAVF_PTT(78, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP, PAY4),
586 IAVF_PTT(79, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
587 IAVF_PTT(80, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
588
589 /* IPv4 -> GRE/NAT -> MAC/VLAN --> IPv6 */
590 IAVF_PTT(81, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
591 IAVF_PTT(82, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
592 IAVF_PTT(83, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP, PAY4),
593 IAVF_PTT_UNUSED_ENTRY(84),
594 IAVF_PTT(85, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP, PAY4),
595 IAVF_PTT(86, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
596 IAVF_PTT(87, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
597
598 /* Non Tunneled IPv6 */
599 IAVF_PTT(88, IP, IPV6, FRG, NONE, NONE, NOF, NONE, PAY3),
600 IAVF_PTT(89, IP, IPV6, NOF, NONE, NONE, NOF, NONE, PAY3),
601 IAVF_PTT(90, IP, IPV6, NOF, NONE, NONE, NOF, UDP, PAY4),
602 IAVF_PTT_UNUSED_ENTRY(91),
603 IAVF_PTT(92, IP, IPV6, NOF, NONE, NONE, NOF, TCP, PAY4),
604 IAVF_PTT(93, IP, IPV6, NOF, NONE, NONE, NOF, SCTP, PAY4),
605 IAVF_PTT(94, IP, IPV6, NOF, NONE, NONE, NOF, ICMP, PAY4),
606
607 /* IPv6 --> IPv4 */
608 IAVF_PTT(95, IP, IPV6, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
609 IAVF_PTT(96, IP, IPV6, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
610 IAVF_PTT(97, IP, IPV6, NOF, IP_IP, IPV4, NOF, UDP, PAY4),
611 IAVF_PTT_UNUSED_ENTRY(98),
612 IAVF_PTT(99, IP, IPV6, NOF, IP_IP, IPV4, NOF, TCP, PAY4),
613 IAVF_PTT(100, IP, IPV6, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
614 IAVF_PTT(101, IP, IPV6, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
615
616 /* IPv6 --> IPv6 */
617 IAVF_PTT(102, IP, IPV6, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
618 IAVF_PTT(103, IP, IPV6, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
619 IAVF_PTT(104, IP, IPV6, NOF, IP_IP, IPV6, NOF, UDP, PAY4),
620 IAVF_PTT_UNUSED_ENTRY(105),
621 IAVF_PTT(106, IP, IPV6, NOF, IP_IP, IPV6, NOF, TCP, PAY4),
622 IAVF_PTT(107, IP, IPV6, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
623 IAVF_PTT(108, IP, IPV6, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
624
625 /* IPv6 --> GRE/NAT */
626 IAVF_PTT(109, IP, IPV6, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
627
628 /* IPv6 --> GRE/NAT -> IPv4 */
629 IAVF_PTT(110, IP, IPV6, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
630 IAVF_PTT(111, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
631 IAVF_PTT(112, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, UDP, PAY4),
632 IAVF_PTT_UNUSED_ENTRY(113),
633 IAVF_PTT(114, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, TCP, PAY4),
634 IAVF_PTT(115, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
635 IAVF_PTT(116, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
636
637 /* IPv6 --> GRE/NAT -> IPv6 */
638 IAVF_PTT(117, IP, IPV6, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
639 IAVF_PTT(118, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
640 IAVF_PTT(119, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, UDP, PAY4),
641 IAVF_PTT_UNUSED_ENTRY(120),
642 IAVF_PTT(121, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, TCP, PAY4),
643 IAVF_PTT(122, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
644 IAVF_PTT(123, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
645
646 /* IPv6 --> GRE/NAT -> MAC */
647 IAVF_PTT(124, IP, IPV6, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
648
649 /* IPv6 --> GRE/NAT -> MAC -> IPv4 */
650 IAVF_PTT(125, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
651 IAVF_PTT(126, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
652 IAVF_PTT(127, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP, PAY4),
653 IAVF_PTT_UNUSED_ENTRY(128),
654 IAVF_PTT(129, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP, PAY4),
655 IAVF_PTT(130, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
656 IAVF_PTT(131, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
657
658 /* IPv6 --> GRE/NAT -> MAC -> IPv6 */
659 IAVF_PTT(132, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
660 IAVF_PTT(133, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
661 IAVF_PTT(134, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP, PAY4),
662 IAVF_PTT_UNUSED_ENTRY(135),
663 IAVF_PTT(136, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP, PAY4),
664 IAVF_PTT(137, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
665 IAVF_PTT(138, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
666
667 /* IPv6 --> GRE/NAT -> MAC/VLAN */
668 IAVF_PTT(139, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
669
670 /* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv4 */
671 IAVF_PTT(140, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
672 IAVF_PTT(141, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
673 IAVF_PTT(142, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP, PAY4),
674 IAVF_PTT_UNUSED_ENTRY(143),
675 IAVF_PTT(144, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP, PAY4),
676 IAVF_PTT(145, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
677 IAVF_PTT(146, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
678
679 /* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv6 */
680 IAVF_PTT(147, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
681 IAVF_PTT(148, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
682 IAVF_PTT(149, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP, PAY4),
683 IAVF_PTT_UNUSED_ENTRY(150),
684 IAVF_PTT(151, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP, PAY4),
685 IAVF_PTT(152, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
686 IAVF_PTT(153, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
687
688 /* unused entries */
689 [154 ... 255] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
690};
691
692/**
693 * iavf_aq_send_msg_to_pf
694 * @hw: pointer to the hardware structure
695 * @v_opcode: opcodes for VF-PF communication
696 * @v_retval: return error code
697 * @msg: pointer to the msg buffer
698 * @msglen: msg length
699 * @cmd_details: pointer to command details
700 *
701 * Send message to PF driver using admin queue. By default, this message
702 * is sent asynchronously, i.e. iavf_asq_send_command() does not wait for
703 * completion before returning.
704 **/
705enum iavf_status iavf_aq_send_msg_to_pf(struct iavf_hw *hw,
706 enum virtchnl_ops v_opcode,
707 enum iavf_status v_retval,
708 u8 *msg, u16 msglen,
709 struct iavf_asq_cmd_details *cmd_details)
710{
711 struct iavf_asq_cmd_details details;
712 struct iavf_aq_desc desc;
713 enum iavf_status status;
714
715 iavf_fill_default_direct_cmd_desc(desc: &desc, opcode: iavf_aqc_opc_send_msg_to_pf);
716 desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_SI);
717 desc.cookie_high = cpu_to_le32(v_opcode);
718 desc.cookie_low = cpu_to_le32(v_retval);
719 if (msglen) {
720 desc.flags |= cpu_to_le16((u16)(IAVF_AQ_FLAG_BUF
721 | IAVF_AQ_FLAG_RD));
722 if (msglen > IAVF_AQ_LARGE_BUF)
723 desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_LB);
724 desc.datalen = cpu_to_le16(msglen);
725 }
726 if (!cmd_details) {
727 memset(&details, 0, sizeof(details));
728 details.async = true;
729 cmd_details = &details;
730 }
731 status = iavf_asq_send_command(hw, desc: &desc, buff: msg, buff_size: msglen, cmd_details);
732 return status;
733}
734
735/**
736 * iavf_vf_parse_hw_config
737 * @hw: pointer to the hardware structure
738 * @msg: pointer to the virtual channel VF resource structure
739 *
740 * Given a VF resource message from the PF, populate the hw struct
741 * with appropriate information.
742 **/
743void iavf_vf_parse_hw_config(struct iavf_hw *hw,
744 struct virtchnl_vf_resource *msg)
745{
746 struct virtchnl_vsi_resource *vsi_res;
747 int i;
748
749 vsi_res = &msg->vsi_res[0];
750
751 hw->dev_caps.num_vsis = msg->num_vsis;
752 hw->dev_caps.num_rx_qp = msg->num_queue_pairs;
753 hw->dev_caps.num_tx_qp = msg->num_queue_pairs;
754 hw->dev_caps.num_msix_vectors_vf = msg->max_vectors;
755 hw->dev_caps.dcb = msg->vf_cap_flags &
756 VIRTCHNL_VF_OFFLOAD_L2;
757 hw->dev_caps.fcoe = 0;
758 for (i = 0; i < msg->num_vsis; i++) {
759 if (vsi_res->vsi_type == VIRTCHNL_VSI_SRIOV) {
760 ether_addr_copy(dst: hw->mac.perm_addr,
761 src: vsi_res->default_mac_addr);
762 ether_addr_copy(dst: hw->mac.addr,
763 src: vsi_res->default_mac_addr);
764 }
765 vsi_res++;
766 }
767}
768

source code of linux/drivers/net/ethernet/intel/iavf/iavf_common.c