1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "iavf.h"
5#include "iavf_prototype.h"
6/* All iavf tracepoints are defined by the include below, which must
7 * be included exactly once across the whole kernel with
8 * CREATE_TRACE_POINTS defined
9 */
10#define CREATE_TRACE_POINTS
11#include "iavf_trace.h"
12
13static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
14static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
15static int iavf_close(struct net_device *netdev);
16static void iavf_init_get_resources(struct iavf_adapter *adapter);
17static int iavf_check_reset_complete(struct iavf_hw *hw);
18
19char iavf_driver_name[] = "iavf";
20static const char iavf_driver_string[] =
21 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
22
23static const char iavf_copyright[] =
24 "Copyright (c) 2013 - 2018 Intel Corporation.";
25
26/* iavf_pci_tbl - PCI Device ID Table
27 *
28 * Wildcard entries (PCI_ANY_ID) should come last
29 * Last entry must be all 0s
30 *
31 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
32 * Class, Class Mask, private data (not used) }
33 */
34static const struct pci_device_id iavf_pci_tbl[] = {
35 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
39 /* required last entry */
40 {0, }
41};
42
43MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
44
45MODULE_ALIAS("i40evf");
46MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
47MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
48MODULE_LICENSE("GPL v2");
49
50static const struct net_device_ops iavf_netdev_ops;
51
52int iavf_status_to_errno(enum iavf_status status)
53{
54 switch (status) {
55 case IAVF_SUCCESS:
56 return 0;
57 case IAVF_ERR_PARAM:
58 case IAVF_ERR_MAC_TYPE:
59 case IAVF_ERR_INVALID_MAC_ADDR:
60 case IAVF_ERR_INVALID_LINK_SETTINGS:
61 case IAVF_ERR_INVALID_PD_ID:
62 case IAVF_ERR_INVALID_QP_ID:
63 case IAVF_ERR_INVALID_CQ_ID:
64 case IAVF_ERR_INVALID_CEQ_ID:
65 case IAVF_ERR_INVALID_AEQ_ID:
66 case IAVF_ERR_INVALID_SIZE:
67 case IAVF_ERR_INVALID_ARP_INDEX:
68 case IAVF_ERR_INVALID_FPM_FUNC_ID:
69 case IAVF_ERR_QP_INVALID_MSG_SIZE:
70 case IAVF_ERR_INVALID_FRAG_COUNT:
71 case IAVF_ERR_INVALID_ALIGNMENT:
72 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
73 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
74 case IAVF_ERR_INVALID_VF_ID:
75 case IAVF_ERR_INVALID_HMCFN_ID:
76 case IAVF_ERR_INVALID_PBLE_INDEX:
77 case IAVF_ERR_INVALID_SD_INDEX:
78 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
79 case IAVF_ERR_INVALID_SD_TYPE:
80 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
81 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
82 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
83 return -EINVAL;
84 case IAVF_ERR_NVM:
85 case IAVF_ERR_NVM_CHECKSUM:
86 case IAVF_ERR_PHY:
87 case IAVF_ERR_CONFIG:
88 case IAVF_ERR_UNKNOWN_PHY:
89 case IAVF_ERR_LINK_SETUP:
90 case IAVF_ERR_ADAPTER_STOPPED:
91 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
92 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
93 case IAVF_ERR_RESET_FAILED:
94 case IAVF_ERR_BAD_PTR:
95 case IAVF_ERR_SWFW_SYNC:
96 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
97 case IAVF_ERR_QUEUE_EMPTY:
98 case IAVF_ERR_FLUSHED_QUEUE:
99 case IAVF_ERR_OPCODE_MISMATCH:
100 case IAVF_ERR_CQP_COMPL_ERROR:
101 case IAVF_ERR_BACKING_PAGE_ERROR:
102 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
103 case IAVF_ERR_MEMCPY_FAILED:
104 case IAVF_ERR_SRQ_ENABLED:
105 case IAVF_ERR_ADMIN_QUEUE_ERROR:
106 case IAVF_ERR_ADMIN_QUEUE_FULL:
107 case IAVF_ERR_BAD_RDMA_CQE:
108 case IAVF_ERR_NVM_BLANK_MODE:
109 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
110 case IAVF_ERR_DIAG_TEST_FAILED:
111 case IAVF_ERR_FIRMWARE_API_VERSION:
112 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
113 return -EIO;
114 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
115 return -ENODEV;
116 case IAVF_ERR_NO_AVAILABLE_VSI:
117 case IAVF_ERR_RING_FULL:
118 return -ENOSPC;
119 case IAVF_ERR_NO_MEMORY:
120 return -ENOMEM;
121 case IAVF_ERR_TIMEOUT:
122 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
123 return -ETIMEDOUT;
124 case IAVF_ERR_NOT_IMPLEMENTED:
125 case IAVF_NOT_SUPPORTED:
126 return -EOPNOTSUPP;
127 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
128 return -EALREADY;
129 case IAVF_ERR_NOT_READY:
130 return -EBUSY;
131 case IAVF_ERR_BUF_TOO_SHORT:
132 return -EMSGSIZE;
133 }
134
135 return -EIO;
136}
137
138int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
139{
140 switch (v_status) {
141 case VIRTCHNL_STATUS_SUCCESS:
142 return 0;
143 case VIRTCHNL_STATUS_ERR_PARAM:
144 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
145 return -EINVAL;
146 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
147 return -ENOMEM;
148 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
149 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
150 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
151 return -EIO;
152 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
153 return -EOPNOTSUPP;
154 }
155
156 return -EIO;
157}
158
159/**
160 * iavf_pdev_to_adapter - go from pci_dev to adapter
161 * @pdev: pci_dev pointer
162 */
163static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
164{
165 return netdev_priv(dev: pci_get_drvdata(pdev));
166}
167
168/**
169 * iavf_is_reset_in_progress - Check if a reset is in progress
170 * @adapter: board private structure
171 */
172static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
173{
174 if (adapter->state == __IAVF_RESETTING ||
175 adapter->flags & (IAVF_FLAG_RESET_PENDING |
176 IAVF_FLAG_RESET_NEEDED))
177 return true;
178
179 return false;
180}
181
182/**
183 * iavf_wait_for_reset - Wait for reset to finish.
184 * @adapter: board private structure
185 *
186 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
187 */
188int iavf_wait_for_reset(struct iavf_adapter *adapter)
189{
190 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
191 !iavf_is_reset_in_progress(adapter),
192 msecs_to_jiffies(5000));
193
194 /* If ret < 0 then it means wait was interrupted.
195 * If ret == 0 then it means we got a timeout while waiting
196 * for reset to finish.
197 * If ret > 0 it means reset has finished.
198 */
199 if (ret > 0)
200 return 0;
201 else if (ret < 0)
202 return -EINTR;
203 else
204 return -EBUSY;
205}
206
207/**
208 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
209 * @hw: pointer to the HW structure
210 * @mem: ptr to mem struct to fill out
211 * @size: size of memory requested
212 * @alignment: what to align the allocation to
213 **/
214enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
215 struct iavf_dma_mem *mem,
216 u64 size, u32 alignment)
217{
218 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
219
220 if (!mem)
221 return IAVF_ERR_PARAM;
222
223 mem->size = ALIGN(size, alignment);
224 mem->va = dma_alloc_coherent(dev: &adapter->pdev->dev, size: mem->size,
225 dma_handle: (dma_addr_t *)&mem->pa, GFP_KERNEL);
226 if (mem->va)
227 return 0;
228 else
229 return IAVF_ERR_NO_MEMORY;
230}
231
232/**
233 * iavf_free_dma_mem - wrapper for DMA memory freeing
234 * @hw: pointer to the HW structure
235 * @mem: ptr to mem struct to free
236 **/
237enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
238{
239 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
240
241 if (!mem || !mem->va)
242 return IAVF_ERR_PARAM;
243 dma_free_coherent(dev: &adapter->pdev->dev, size: mem->size,
244 cpu_addr: mem->va, dma_handle: (dma_addr_t)mem->pa);
245 return 0;
246}
247
248/**
249 * iavf_allocate_virt_mem - virt memory alloc wrapper
250 * @hw: pointer to the HW structure
251 * @mem: ptr to mem struct to fill out
252 * @size: size of memory requested
253 **/
254enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
255 struct iavf_virt_mem *mem, u32 size)
256{
257 if (!mem)
258 return IAVF_ERR_PARAM;
259
260 mem->size = size;
261 mem->va = kzalloc(size, GFP_KERNEL);
262
263 if (mem->va)
264 return 0;
265 else
266 return IAVF_ERR_NO_MEMORY;
267}
268
269/**
270 * iavf_free_virt_mem - virt memory free wrapper
271 * @hw: pointer to the HW structure
272 * @mem: ptr to mem struct to free
273 **/
274void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
275{
276 kfree(objp: mem->va);
277}
278
279/**
280 * iavf_lock_timeout - try to lock mutex but give up after timeout
281 * @lock: mutex that should be locked
282 * @msecs: timeout in msecs
283 *
284 * Returns 0 on success, negative on failure
285 **/
286static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
287{
288 unsigned int wait, delay = 10;
289
290 for (wait = 0; wait < msecs; wait += delay) {
291 if (mutex_trylock(lock))
292 return 0;
293
294 msleep(msecs: delay);
295 }
296
297 return -1;
298}
299
300/**
301 * iavf_schedule_reset - Set the flags and schedule a reset event
302 * @adapter: board private structure
303 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
304 **/
305void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
306{
307 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
308 !(adapter->flags &
309 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
310 adapter->flags |= flags;
311 queue_work(wq: adapter->wq, work: &adapter->reset_task);
312 }
313}
314
315/**
316 * iavf_schedule_aq_request - Set the flags and schedule aq request
317 * @adapter: board private structure
318 * @flags: requested aq flags
319 **/
320void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
321{
322 adapter->aq_required |= flags;
323 mod_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task, delay: 0);
324}
325
326/**
327 * iavf_tx_timeout - Respond to a Tx Hang
328 * @netdev: network interface device structure
329 * @txqueue: queue number that is timing out
330 **/
331static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
332{
333 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
334
335 adapter->tx_timeout_count++;
336 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
337}
338
339/**
340 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
341 * @adapter: board private structure
342 **/
343static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
344{
345 struct iavf_hw *hw = &adapter->hw;
346
347 if (!adapter->msix_entries)
348 return;
349
350 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
351
352 iavf_flush(hw);
353
354 synchronize_irq(irq: adapter->msix_entries[0].vector);
355}
356
357/**
358 * iavf_misc_irq_enable - Enable default interrupt generation settings
359 * @adapter: board private structure
360 **/
361static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
362{
363 struct iavf_hw *hw = &adapter->hw;
364
365 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
366 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
367 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
368
369 iavf_flush(hw);
370}
371
372/**
373 * iavf_irq_disable - Mask off interrupt generation on the NIC
374 * @adapter: board private structure
375 **/
376static void iavf_irq_disable(struct iavf_adapter *adapter)
377{
378 int i;
379 struct iavf_hw *hw = &adapter->hw;
380
381 if (!adapter->msix_entries)
382 return;
383
384 for (i = 1; i < adapter->num_msix_vectors; i++) {
385 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
386 synchronize_irq(irq: adapter->msix_entries[i].vector);
387 }
388 iavf_flush(hw);
389}
390
391/**
392 * iavf_irq_enable_queues - Enable interrupt for all queues
393 * @adapter: board private structure
394 **/
395static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
396{
397 struct iavf_hw *hw = &adapter->hw;
398 int i;
399
400 for (i = 1; i < adapter->num_msix_vectors; i++) {
401 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
402 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
403 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
404 }
405}
406
407/**
408 * iavf_irq_enable - Enable default interrupt generation settings
409 * @adapter: board private structure
410 * @flush: boolean value whether to run rd32()
411 **/
412void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
413{
414 struct iavf_hw *hw = &adapter->hw;
415
416 iavf_misc_irq_enable(adapter);
417 iavf_irq_enable_queues(adapter);
418
419 if (flush)
420 iavf_flush(hw);
421}
422
423/**
424 * iavf_msix_aq - Interrupt handler for vector 0
425 * @irq: interrupt number
426 * @data: pointer to netdev
427 **/
428static irqreturn_t iavf_msix_aq(int irq, void *data)
429{
430 struct net_device *netdev = data;
431 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
432 struct iavf_hw *hw = &adapter->hw;
433
434 /* handle non-queue interrupts, these reads clear the registers */
435 rd32(hw, IAVF_VFINT_ICR01);
436 rd32(hw, IAVF_VFINT_ICR0_ENA1);
437
438 if (adapter->state != __IAVF_REMOVE)
439 /* schedule work on the private workqueue */
440 queue_work(wq: adapter->wq, work: &adapter->adminq_task);
441
442 return IRQ_HANDLED;
443}
444
445/**
446 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
447 * @irq: interrupt number
448 * @data: pointer to a q_vector
449 **/
450static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
451{
452 struct iavf_q_vector *q_vector = data;
453
454 if (!q_vector->tx.ring && !q_vector->rx.ring)
455 return IRQ_HANDLED;
456
457 napi_schedule_irqoff(n: &q_vector->napi);
458
459 return IRQ_HANDLED;
460}
461
462/**
463 * iavf_map_vector_to_rxq - associate irqs with rx queues
464 * @adapter: board private structure
465 * @v_idx: interrupt number
466 * @r_idx: queue number
467 **/
468static void
469iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
470{
471 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
472 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
473 struct iavf_hw *hw = &adapter->hw;
474
475 rx_ring->q_vector = q_vector;
476 rx_ring->next = q_vector->rx.ring;
477 rx_ring->vsi = &adapter->vsi;
478 q_vector->rx.ring = rx_ring;
479 q_vector->rx.count++;
480 q_vector->rx.next_update = jiffies + 1;
481 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
482 q_vector->ring_mask |= BIT(r_idx);
483 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
484 q_vector->rx.current_itr >> 1);
485 q_vector->rx.current_itr = q_vector->rx.target_itr;
486}
487
488/**
489 * iavf_map_vector_to_txq - associate irqs with tx queues
490 * @adapter: board private structure
491 * @v_idx: interrupt number
492 * @t_idx: queue number
493 **/
494static void
495iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
496{
497 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
498 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
499 struct iavf_hw *hw = &adapter->hw;
500
501 tx_ring->q_vector = q_vector;
502 tx_ring->next = q_vector->tx.ring;
503 tx_ring->vsi = &adapter->vsi;
504 q_vector->tx.ring = tx_ring;
505 q_vector->tx.count++;
506 q_vector->tx.next_update = jiffies + 1;
507 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
508 q_vector->num_ringpairs++;
509 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
510 q_vector->tx.target_itr >> 1);
511 q_vector->tx.current_itr = q_vector->tx.target_itr;
512}
513
514/**
515 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
516 * @adapter: board private structure to initialize
517 *
518 * This function maps descriptor rings to the queue-specific vectors
519 * we were allotted through the MSI-X enabling code. Ideally, we'd have
520 * one vector per ring/queue, but on a constrained vector budget, we
521 * group the rings as "efficiently" as possible. You would add new
522 * mapping configurations in here.
523 **/
524static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
525{
526 int rings_remaining = adapter->num_active_queues;
527 int ridx = 0, vidx = 0;
528 int q_vectors;
529
530 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
531
532 for (; ridx < rings_remaining; ridx++) {
533 iavf_map_vector_to_rxq(adapter, v_idx: vidx, r_idx: ridx);
534 iavf_map_vector_to_txq(adapter, v_idx: vidx, t_idx: ridx);
535
536 /* In the case where we have more queues than vectors, continue
537 * round-robin on vectors until all queues are mapped.
538 */
539 if (++vidx >= q_vectors)
540 vidx = 0;
541 }
542
543 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
544}
545
546/**
547 * iavf_irq_affinity_notify - Callback for affinity changes
548 * @notify: context as to what irq was changed
549 * @mask: the new affinity mask
550 *
551 * This is a callback function used by the irq_set_affinity_notifier function
552 * so that we may register to receive changes to the irq affinity masks.
553 **/
554static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
555 const cpumask_t *mask)
556{
557 struct iavf_q_vector *q_vector =
558 container_of(notify, struct iavf_q_vector, affinity_notify);
559
560 cpumask_copy(dstp: &q_vector->affinity_mask, srcp: mask);
561}
562
563/**
564 * iavf_irq_affinity_release - Callback for affinity notifier release
565 * @ref: internal core kernel usage
566 *
567 * This is a callback function used by the irq_set_affinity_notifier function
568 * to inform the current notification subscriber that they will no longer
569 * receive notifications.
570 **/
571static void iavf_irq_affinity_release(struct kref *ref) {}
572
573/**
574 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
575 * @adapter: board private structure
576 * @basename: device basename
577 *
578 * Allocates MSI-X vectors for tx and rx handling, and requests
579 * interrupts from the kernel.
580 **/
581static int
582iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
583{
584 unsigned int vector, q_vectors;
585 unsigned int rx_int_idx = 0, tx_int_idx = 0;
586 int irq_num, err;
587 int cpu;
588
589 iavf_irq_disable(adapter);
590 /* Decrement for Other and TCP Timer vectors */
591 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
592
593 for (vector = 0; vector < q_vectors; vector++) {
594 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
595
596 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
597
598 if (q_vector->tx.ring && q_vector->rx.ring) {
599 snprintf(buf: q_vector->name, size: sizeof(q_vector->name),
600 fmt: "iavf-%s-TxRx-%u", basename, rx_int_idx++);
601 tx_int_idx++;
602 } else if (q_vector->rx.ring) {
603 snprintf(buf: q_vector->name, size: sizeof(q_vector->name),
604 fmt: "iavf-%s-rx-%u", basename, rx_int_idx++);
605 } else if (q_vector->tx.ring) {
606 snprintf(buf: q_vector->name, size: sizeof(q_vector->name),
607 fmt: "iavf-%s-tx-%u", basename, tx_int_idx++);
608 } else {
609 /* skip this unused q_vector */
610 continue;
611 }
612 err = request_irq(irq: irq_num,
613 handler: iavf_msix_clean_rings,
614 flags: 0,
615 name: q_vector->name,
616 dev: q_vector);
617 if (err) {
618 dev_info(&adapter->pdev->dev,
619 "Request_irq failed, error: %d\n", err);
620 goto free_queue_irqs;
621 }
622 /* register for affinity change notifications */
623 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
624 q_vector->affinity_notify.release =
625 iavf_irq_affinity_release;
626 irq_set_affinity_notifier(irq: irq_num, notify: &q_vector->affinity_notify);
627 /* Spread the IRQ affinity hints across online CPUs. Note that
628 * get_cpu_mask returns a mask with a permanent lifetime so
629 * it's safe to use as a hint for irq_update_affinity_hint.
630 */
631 cpu = cpumask_local_spread(i: q_vector->v_idx, node: -1);
632 irq_update_affinity_hint(irq: irq_num, m: get_cpu_mask(cpu));
633 }
634
635 return 0;
636
637free_queue_irqs:
638 while (vector) {
639 vector--;
640 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
641 irq_set_affinity_notifier(irq: irq_num, NULL);
642 irq_update_affinity_hint(irq: irq_num, NULL);
643 free_irq(irq_num, &adapter->q_vectors[vector]);
644 }
645 return err;
646}
647
648/**
649 * iavf_request_misc_irq - Initialize MSI-X interrupts
650 * @adapter: board private structure
651 *
652 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
653 * vector is only for the admin queue, and stays active even when the netdev
654 * is closed.
655 **/
656static int iavf_request_misc_irq(struct iavf_adapter *adapter)
657{
658 struct net_device *netdev = adapter->netdev;
659 int err;
660
661 snprintf(buf: adapter->misc_vector_name,
662 size: sizeof(adapter->misc_vector_name) - 1, fmt: "iavf-%s:mbx",
663 dev_name(dev: &adapter->pdev->dev));
664 err = request_irq(irq: adapter->msix_entries[0].vector,
665 handler: &iavf_msix_aq, flags: 0,
666 name: adapter->misc_vector_name, dev: netdev);
667 if (err) {
668 dev_err(&adapter->pdev->dev,
669 "request_irq for %s failed: %d\n",
670 adapter->misc_vector_name, err);
671 free_irq(adapter->msix_entries[0].vector, netdev);
672 }
673 return err;
674}
675
676/**
677 * iavf_free_traffic_irqs - Free MSI-X interrupts
678 * @adapter: board private structure
679 *
680 * Frees all MSI-X vectors other than 0.
681 **/
682static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
683{
684 int vector, irq_num, q_vectors;
685
686 if (!adapter->msix_entries)
687 return;
688
689 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
690
691 for (vector = 0; vector < q_vectors; vector++) {
692 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
693 irq_set_affinity_notifier(irq: irq_num, NULL);
694 irq_update_affinity_hint(irq: irq_num, NULL);
695 free_irq(irq_num, &adapter->q_vectors[vector]);
696 }
697}
698
699/**
700 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
701 * @adapter: board private structure
702 *
703 * Frees MSI-X vector 0.
704 **/
705static void iavf_free_misc_irq(struct iavf_adapter *adapter)
706{
707 struct net_device *netdev = adapter->netdev;
708
709 if (!adapter->msix_entries)
710 return;
711
712 free_irq(adapter->msix_entries[0].vector, netdev);
713}
714
715/**
716 * iavf_configure_tx - Configure Transmit Unit after Reset
717 * @adapter: board private structure
718 *
719 * Configure the Tx unit of the MAC after a reset.
720 **/
721static void iavf_configure_tx(struct iavf_adapter *adapter)
722{
723 struct iavf_hw *hw = &adapter->hw;
724 int i;
725
726 for (i = 0; i < adapter->num_active_queues; i++)
727 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
728}
729
730/**
731 * iavf_configure_rx - Configure Receive Unit after Reset
732 * @adapter: board private structure
733 *
734 * Configure the Rx unit of the MAC after a reset.
735 **/
736static void iavf_configure_rx(struct iavf_adapter *adapter)
737{
738 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
739 struct iavf_hw *hw = &adapter->hw;
740 int i;
741
742 /* Legacy Rx will always default to a 2048 buffer size. */
743#if (PAGE_SIZE < 8192)
744 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
745 struct net_device *netdev = adapter->netdev;
746
747 /* For jumbo frames on systems with 4K pages we have to use
748 * an order 1 page, so we might as well increase the size
749 * of our Rx buffer to make better use of the available space
750 */
751 rx_buf_len = IAVF_RXBUFFER_3072;
752
753 /* We use a 1536 buffer size for configurations with
754 * standard Ethernet mtu. On x86 this gives us enough room
755 * for shared info and 192 bytes of padding.
756 */
757 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
758 (netdev->mtu <= ETH_DATA_LEN))
759 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
760 }
761#endif
762
763 for (i = 0; i < adapter->num_active_queues; i++) {
764 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
765 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
766
767 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
768 clear_ring_build_skb_enabled(ring: &adapter->rx_rings[i]);
769 else
770 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
771 }
772}
773
774/**
775 * iavf_find_vlan - Search filter list for specific vlan filter
776 * @adapter: board private structure
777 * @vlan: vlan tag
778 *
779 * Returns ptr to the filter object or NULL. Must be called while holding the
780 * mac_vlan_list_lock.
781 **/
782static struct
783iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
784 struct iavf_vlan vlan)
785{
786 struct iavf_vlan_filter *f;
787
788 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
789 if (f->vlan.vid == vlan.vid &&
790 f->vlan.tpid == vlan.tpid)
791 return f;
792 }
793
794 return NULL;
795}
796
797/**
798 * iavf_add_vlan - Add a vlan filter to the list
799 * @adapter: board private structure
800 * @vlan: VLAN tag
801 *
802 * Returns ptr to the filter object or NULL when no memory available.
803 **/
804static struct
805iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
806 struct iavf_vlan vlan)
807{
808 struct iavf_vlan_filter *f = NULL;
809
810 spin_lock_bh(lock: &adapter->mac_vlan_list_lock);
811
812 f = iavf_find_vlan(adapter, vlan);
813 if (!f) {
814 f = kzalloc(size: sizeof(*f), GFP_ATOMIC);
815 if (!f)
816 goto clearout;
817
818 f->vlan = vlan;
819
820 list_add_tail(new: &f->list, head: &adapter->vlan_filter_list);
821 f->state = IAVF_VLAN_ADD;
822 adapter->num_vlan_filters++;
823 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
824 }
825
826clearout:
827 spin_unlock_bh(lock: &adapter->mac_vlan_list_lock);
828 return f;
829}
830
831/**
832 * iavf_del_vlan - Remove a vlan filter from the list
833 * @adapter: board private structure
834 * @vlan: VLAN tag
835 **/
836static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
837{
838 struct iavf_vlan_filter *f;
839
840 spin_lock_bh(lock: &adapter->mac_vlan_list_lock);
841
842 f = iavf_find_vlan(adapter, vlan);
843 if (f) {
844 f->state = IAVF_VLAN_REMOVE;
845 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
846 }
847
848 spin_unlock_bh(lock: &adapter->mac_vlan_list_lock);
849}
850
851/**
852 * iavf_restore_filters
853 * @adapter: board private structure
854 *
855 * Restore existing non MAC filters when VF netdev comes back up
856 **/
857static void iavf_restore_filters(struct iavf_adapter *adapter)
858{
859 struct iavf_vlan_filter *f;
860
861 /* re-add all VLAN filters */
862 spin_lock_bh(lock: &adapter->mac_vlan_list_lock);
863
864 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
865 if (f->state == IAVF_VLAN_INACTIVE)
866 f->state = IAVF_VLAN_ADD;
867 }
868
869 spin_unlock_bh(lock: &adapter->mac_vlan_list_lock);
870 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
871}
872
873/**
874 * iavf_get_num_vlans_added - get number of VLANs added
875 * @adapter: board private structure
876 */
877u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
878{
879 return adapter->num_vlan_filters;
880}
881
882/**
883 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
884 * @adapter: board private structure
885 *
886 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
887 * do not impose a limit as that maintains current behavior and for
888 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
889 **/
890static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
891{
892 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
893 * never been a limit on the VF driver side
894 */
895 if (VLAN_ALLOWED(adapter))
896 return VLAN_N_VID;
897 else if (VLAN_V2_ALLOWED(adapter))
898 return adapter->vlan_v2_caps.filtering.max_filters;
899
900 return 0;
901}
902
903/**
904 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
905 * @adapter: board private structure
906 **/
907static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
908{
909 if (iavf_get_num_vlans_added(adapter) <
910 iavf_get_max_vlans_allowed(adapter))
911 return false;
912
913 return true;
914}
915
916/**
917 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
918 * @netdev: network device struct
919 * @proto: unused protocol data
920 * @vid: VLAN tag
921 **/
922static int iavf_vlan_rx_add_vid(struct net_device *netdev,
923 __always_unused __be16 proto, u16 vid)
924{
925 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
926
927 /* Do not track VLAN 0 filter, always added by the PF on VF init */
928 if (!vid)
929 return 0;
930
931 if (!VLAN_FILTERING_ALLOWED(adapter))
932 return -EIO;
933
934 if (iavf_max_vlans_added(adapter)) {
935 netdev_err(dev: netdev, format: "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
936 iavf_get_max_vlans_allowed(adapter));
937 return -EIO;
938 }
939
940 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
941 return -ENOMEM;
942
943 return 0;
944}
945
946/**
947 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
948 * @netdev: network device struct
949 * @proto: unused protocol data
950 * @vid: VLAN tag
951 **/
952static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
953 __always_unused __be16 proto, u16 vid)
954{
955 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
956
957 /* We do not track VLAN 0 filter */
958 if (!vid)
959 return 0;
960
961 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
962 return 0;
963}
964
965/**
966 * iavf_find_filter - Search filter list for specific mac filter
967 * @adapter: board private structure
968 * @macaddr: the MAC address
969 *
970 * Returns ptr to the filter object or NULL. Must be called while holding the
971 * mac_vlan_list_lock.
972 **/
973static struct
974iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
975 const u8 *macaddr)
976{
977 struct iavf_mac_filter *f;
978
979 if (!macaddr)
980 return NULL;
981
982 list_for_each_entry(f, &adapter->mac_filter_list, list) {
983 if (ether_addr_equal(addr1: macaddr, addr2: f->macaddr))
984 return f;
985 }
986 return NULL;
987}
988
989/**
990 * iavf_add_filter - Add a mac filter to the filter list
991 * @adapter: board private structure
992 * @macaddr: the MAC address
993 *
994 * Returns ptr to the filter object or NULL when no memory available.
995 **/
996struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
997 const u8 *macaddr)
998{
999 struct iavf_mac_filter *f;
1000
1001 if (!macaddr)
1002 return NULL;
1003
1004 f = iavf_find_filter(adapter, macaddr);
1005 if (!f) {
1006 f = kzalloc(size: sizeof(*f), GFP_ATOMIC);
1007 if (!f)
1008 return f;
1009
1010 ether_addr_copy(dst: f->macaddr, src: macaddr);
1011
1012 list_add_tail(new: &f->list, head: &adapter->mac_filter_list);
1013 f->add = true;
1014 f->add_handled = false;
1015 f->is_new_mac = true;
1016 f->is_primary = ether_addr_equal(addr1: macaddr, addr2: adapter->hw.mac.addr);
1017 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
1018 } else {
1019 f->remove = false;
1020 }
1021
1022 return f;
1023}
1024
1025/**
1026 * iavf_replace_primary_mac - Replace current primary address
1027 * @adapter: board private structure
1028 * @new_mac: new MAC address to be applied
1029 *
1030 * Replace current dev_addr and send request to PF for removal of previous
1031 * primary MAC address filter and addition of new primary MAC filter.
1032 * Return 0 for success, -ENOMEM for failure.
1033 *
1034 * Do not call this with mac_vlan_list_lock!
1035 **/
1036static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1037 const u8 *new_mac)
1038{
1039 struct iavf_hw *hw = &adapter->hw;
1040 struct iavf_mac_filter *new_f;
1041 struct iavf_mac_filter *old_f;
1042
1043 spin_lock_bh(lock: &adapter->mac_vlan_list_lock);
1044
1045 new_f = iavf_add_filter(adapter, macaddr: new_mac);
1046 if (!new_f) {
1047 spin_unlock_bh(lock: &adapter->mac_vlan_list_lock);
1048 return -ENOMEM;
1049 }
1050
1051 old_f = iavf_find_filter(adapter, macaddr: hw->mac.addr);
1052 if (old_f) {
1053 old_f->is_primary = false;
1054 old_f->remove = true;
1055 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1056 }
1057 /* Always send the request to add if changing primary MAC,
1058 * even if filter is already present on the list
1059 */
1060 new_f->is_primary = true;
1061 new_f->add = true;
1062 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
1063 ether_addr_copy(dst: hw->mac.addr, src: new_mac);
1064
1065 spin_unlock_bh(lock: &adapter->mac_vlan_list_lock);
1066
1067 /* schedule the watchdog task to immediately process the request */
1068 mod_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task, delay: 0);
1069 return 0;
1070}
1071
1072/**
1073 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1074 * @netdev: network interface device structure
1075 * @macaddr: MAC address to set
1076 *
1077 * Returns true on success, false on failure
1078 */
1079static bool iavf_is_mac_set_handled(struct net_device *netdev,
1080 const u8 *macaddr)
1081{
1082 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
1083 struct iavf_mac_filter *f;
1084 bool ret = false;
1085
1086 spin_lock_bh(lock: &adapter->mac_vlan_list_lock);
1087
1088 f = iavf_find_filter(adapter, macaddr);
1089
1090 if (!f || (!f->add && f->add_handled))
1091 ret = true;
1092
1093 spin_unlock_bh(lock: &adapter->mac_vlan_list_lock);
1094
1095 return ret;
1096}
1097
1098/**
1099 * iavf_set_mac - NDO callback to set port MAC address
1100 * @netdev: network interface device structure
1101 * @p: pointer to an address structure
1102 *
1103 * Returns 0 on success, negative on failure
1104 */
1105static int iavf_set_mac(struct net_device *netdev, void *p)
1106{
1107 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
1108 struct sockaddr *addr = p;
1109 int ret;
1110
1111 if (!is_valid_ether_addr(addr: addr->sa_data))
1112 return -EADDRNOTAVAIL;
1113
1114 ret = iavf_replace_primary_mac(adapter, new_mac: addr->sa_data);
1115
1116 if (ret)
1117 return ret;
1118
1119 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1120 iavf_is_mac_set_handled(netdev, addr->sa_data),
1121 msecs_to_jiffies(2500));
1122
1123 /* If ret < 0 then it means wait was interrupted.
1124 * If ret == 0 then it means we got a timeout.
1125 * else it means we got response for set MAC from PF,
1126 * check if netdev MAC was updated to requested MAC,
1127 * if yes then set MAC succeeded otherwise it failed return -EACCES
1128 */
1129 if (ret < 0)
1130 return ret;
1131
1132 if (!ret)
1133 return -EAGAIN;
1134
1135 if (!ether_addr_equal(addr1: netdev->dev_addr, addr2: addr->sa_data))
1136 return -EACCES;
1137
1138 return 0;
1139}
1140
1141/**
1142 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1143 * @netdev: the netdevice
1144 * @addr: address to add
1145 *
1146 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1147 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1148 */
1149static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1150{
1151 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
1152
1153 if (iavf_add_filter(adapter, macaddr: addr))
1154 return 0;
1155 else
1156 return -ENOMEM;
1157}
1158
1159/**
1160 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1161 * @netdev: the netdevice
1162 * @addr: address to add
1163 *
1164 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1165 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1166 */
1167static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1168{
1169 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
1170 struct iavf_mac_filter *f;
1171
1172 /* Under some circumstances, we might receive a request to delete
1173 * our own device address from our uc list. Because we store the
1174 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1175 * such requests and not delete our device address from this list.
1176 */
1177 if (ether_addr_equal(addr1: addr, addr2: netdev->dev_addr))
1178 return 0;
1179
1180 f = iavf_find_filter(adapter, macaddr: addr);
1181 if (f) {
1182 f->remove = true;
1183 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1184 }
1185 return 0;
1186}
1187
1188/**
1189 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1190 * @adapter: device specific adapter
1191 */
1192bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1193{
1194 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1195 (IFF_PROMISC | IFF_ALLMULTI);
1196}
1197
1198/**
1199 * iavf_set_rx_mode - NDO callback to set the netdev filters
1200 * @netdev: network interface device structure
1201 **/
1202static void iavf_set_rx_mode(struct net_device *netdev)
1203{
1204 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
1205
1206 spin_lock_bh(lock: &adapter->mac_vlan_list_lock);
1207 __dev_uc_sync(dev: netdev, sync: iavf_addr_sync, unsync: iavf_addr_unsync);
1208 __dev_mc_sync(dev: netdev, sync: iavf_addr_sync, unsync: iavf_addr_unsync);
1209 spin_unlock_bh(lock: &adapter->mac_vlan_list_lock);
1210
1211 spin_lock_bh(lock: &adapter->current_netdev_promisc_flags_lock);
1212 if (iavf_promiscuous_mode_changed(adapter))
1213 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1214 spin_unlock_bh(lock: &adapter->current_netdev_promisc_flags_lock);
1215}
1216
1217/**
1218 * iavf_napi_enable_all - enable NAPI on all queue vectors
1219 * @adapter: board private structure
1220 **/
1221static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1222{
1223 int q_idx;
1224 struct iavf_q_vector *q_vector;
1225 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1226
1227 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1228 struct napi_struct *napi;
1229
1230 q_vector = &adapter->q_vectors[q_idx];
1231 napi = &q_vector->napi;
1232 napi_enable(n: napi);
1233 }
1234}
1235
1236/**
1237 * iavf_napi_disable_all - disable NAPI on all queue vectors
1238 * @adapter: board private structure
1239 **/
1240static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1241{
1242 int q_idx;
1243 struct iavf_q_vector *q_vector;
1244 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1245
1246 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1247 q_vector = &adapter->q_vectors[q_idx];
1248 napi_disable(n: &q_vector->napi);
1249 }
1250}
1251
1252/**
1253 * iavf_configure - set up transmit and receive data structures
1254 * @adapter: board private structure
1255 **/
1256static void iavf_configure(struct iavf_adapter *adapter)
1257{
1258 struct net_device *netdev = adapter->netdev;
1259 int i;
1260
1261 iavf_set_rx_mode(netdev);
1262
1263 iavf_configure_tx(adapter);
1264 iavf_configure_rx(adapter);
1265 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1266
1267 for (i = 0; i < adapter->num_active_queues; i++) {
1268 struct iavf_ring *ring = &adapter->rx_rings[i];
1269
1270 iavf_alloc_rx_buffers(rxr: ring, IAVF_DESC_UNUSED(ring));
1271 }
1272}
1273
1274/**
1275 * iavf_up_complete - Finish the last steps of bringing up a connection
1276 * @adapter: board private structure
1277 *
1278 * Expects to be called while holding crit_lock.
1279 **/
1280static void iavf_up_complete(struct iavf_adapter *adapter)
1281{
1282 iavf_change_state(adapter, state: __IAVF_RUNNING);
1283 clear_bit(nr: __IAVF_VSI_DOWN, addr: adapter->vsi.state);
1284
1285 iavf_napi_enable_all(adapter);
1286
1287 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1288 mod_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task, delay: 0);
1289}
1290
1291/**
1292 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1293 * yet and mark other to be removed.
1294 * @adapter: board private structure
1295 **/
1296static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1297{
1298 struct iavf_vlan_filter *vlf, *vlftmp;
1299 struct iavf_mac_filter *f, *ftmp;
1300
1301 spin_lock_bh(lock: &adapter->mac_vlan_list_lock);
1302 /* clear the sync flag on all filters */
1303 __dev_uc_unsync(dev: adapter->netdev, NULL);
1304 __dev_mc_unsync(dev: adapter->netdev, NULL);
1305
1306 /* remove all MAC filters */
1307 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1308 list) {
1309 if (f->add) {
1310 list_del(entry: &f->list);
1311 kfree(objp: f);
1312 } else {
1313 f->remove = true;
1314 }
1315 }
1316
1317 /* disable all VLAN filters */
1318 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1319 list)
1320 vlf->state = IAVF_VLAN_DISABLE;
1321
1322 spin_unlock_bh(lock: &adapter->mac_vlan_list_lock);
1323}
1324
1325/**
1326 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1327 * mark other to be removed.
1328 * @adapter: board private structure
1329 **/
1330static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1331{
1332 struct iavf_cloud_filter *cf, *cftmp;
1333
1334 /* remove all cloud filters */
1335 spin_lock_bh(lock: &adapter->cloud_filter_list_lock);
1336 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1337 list) {
1338 if (cf->add) {
1339 list_del(entry: &cf->list);
1340 kfree(objp: cf);
1341 adapter->num_cloud_filters--;
1342 } else {
1343 cf->del = true;
1344 }
1345 }
1346 spin_unlock_bh(lock: &adapter->cloud_filter_list_lock);
1347}
1348
1349/**
1350 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1351 * other to be removed.
1352 * @adapter: board private structure
1353 **/
1354static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1355{
1356 struct iavf_fdir_fltr *fdir, *fdirtmp;
1357
1358 /* remove all Flow Director filters */
1359 spin_lock_bh(lock: &adapter->fdir_fltr_lock);
1360 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
1361 list) {
1362 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1363 list_del(entry: &fdir->list);
1364 kfree(objp: fdir);
1365 adapter->fdir_active_fltr--;
1366 } else {
1367 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1368 }
1369 }
1370 spin_unlock_bh(lock: &adapter->fdir_fltr_lock);
1371}
1372
1373/**
1374 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1375 * other to be removed.
1376 * @adapter: board private structure
1377 **/
1378static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1379{
1380 struct iavf_adv_rss *rss, *rsstmp;
1381
1382 /* remove all advance RSS configuration */
1383 spin_lock_bh(lock: &adapter->adv_rss_lock);
1384 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1385 list) {
1386 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1387 list_del(entry: &rss->list);
1388 kfree(objp: rss);
1389 } else {
1390 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1391 }
1392 }
1393 spin_unlock_bh(lock: &adapter->adv_rss_lock);
1394}
1395
1396/**
1397 * iavf_down - Shutdown the connection processing
1398 * @adapter: board private structure
1399 *
1400 * Expects to be called while holding crit_lock.
1401 **/
1402void iavf_down(struct iavf_adapter *adapter)
1403{
1404 struct net_device *netdev = adapter->netdev;
1405
1406 if (adapter->state <= __IAVF_DOWN_PENDING)
1407 return;
1408
1409 netif_carrier_off(dev: netdev);
1410 netif_tx_disable(dev: netdev);
1411 adapter->link_up = false;
1412 iavf_napi_disable_all(adapter);
1413 iavf_irq_disable(adapter);
1414
1415 iavf_clear_mac_vlan_filters(adapter);
1416 iavf_clear_cloud_filters(adapter);
1417 iavf_clear_fdir_filters(adapter);
1418 iavf_clear_adv_rss_conf(adapter);
1419
1420 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1421 return;
1422
1423 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1424 /* cancel any current operation */
1425 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1426 /* Schedule operations to close down the HW. Don't wait
1427 * here for this to complete. The watchdog is still running
1428 * and it will take care of this.
1429 */
1430 if (!list_empty(head: &adapter->mac_filter_list))
1431 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1432 if (!list_empty(head: &adapter->vlan_filter_list))
1433 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1434 if (!list_empty(head: &adapter->cloud_filter_list))
1435 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1436 if (!list_empty(head: &adapter->fdir_list_head))
1437 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1438 if (!list_empty(head: &adapter->adv_rss_list_head))
1439 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1440 }
1441
1442 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1443 mod_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task, delay: 0);
1444}
1445
1446/**
1447 * iavf_acquire_msix_vectors - Setup the MSIX capability
1448 * @adapter: board private structure
1449 * @vectors: number of vectors to request
1450 *
1451 * Work with the OS to set up the MSIX vectors needed.
1452 *
1453 * Returns 0 on success, negative on failure
1454 **/
1455static int
1456iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1457{
1458 int err, vector_threshold;
1459
1460 /* We'll want at least 3 (vector_threshold):
1461 * 0) Other (Admin Queue and link, mostly)
1462 * 1) TxQ[0] Cleanup
1463 * 2) RxQ[0] Cleanup
1464 */
1465 vector_threshold = MIN_MSIX_COUNT;
1466
1467 /* The more we get, the more we will assign to Tx/Rx Cleanup
1468 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1469 * Right now, we simply care about how many we'll get; we'll
1470 * set them up later while requesting irq's.
1471 */
1472 err = pci_enable_msix_range(dev: adapter->pdev, entries: adapter->msix_entries,
1473 minvec: vector_threshold, maxvec: vectors);
1474 if (err < 0) {
1475 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1476 kfree(objp: adapter->msix_entries);
1477 adapter->msix_entries = NULL;
1478 return err;
1479 }
1480
1481 /* Adjust for only the vectors we'll use, which is minimum
1482 * of max_msix_q_vectors + NONQ_VECS, or the number of
1483 * vectors we were allocated.
1484 */
1485 adapter->num_msix_vectors = err;
1486 return 0;
1487}
1488
1489/**
1490 * iavf_free_queues - Free memory for all rings
1491 * @adapter: board private structure to initialize
1492 *
1493 * Free all of the memory associated with queue pairs.
1494 **/
1495static void iavf_free_queues(struct iavf_adapter *adapter)
1496{
1497 if (!adapter->vsi_res)
1498 return;
1499 adapter->num_active_queues = 0;
1500 kfree(objp: adapter->tx_rings);
1501 adapter->tx_rings = NULL;
1502 kfree(objp: adapter->rx_rings);
1503 adapter->rx_rings = NULL;
1504}
1505
1506/**
1507 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1508 * @adapter: board private structure
1509 *
1510 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1511 * stripped in certain descriptor fields. Instead of checking the offload
1512 * capability bits in the hot path, cache the location the ring specific
1513 * flags.
1514 */
1515void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1516{
1517 int i;
1518
1519 for (i = 0; i < adapter->num_active_queues; i++) {
1520 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1521 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1522
1523 /* prevent multiple L2TAG bits being set after VFR */
1524 tx_ring->flags &=
1525 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1526 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1527 rx_ring->flags &=
1528 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1529 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1530
1531 if (VLAN_ALLOWED(adapter)) {
1532 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1533 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1534 } else if (VLAN_V2_ALLOWED(adapter)) {
1535 struct virtchnl_vlan_supported_caps *stripping_support;
1536 struct virtchnl_vlan_supported_caps *insertion_support;
1537
1538 stripping_support =
1539 &adapter->vlan_v2_caps.offloads.stripping_support;
1540 insertion_support =
1541 &adapter->vlan_v2_caps.offloads.insertion_support;
1542
1543 if (stripping_support->outer) {
1544 if (stripping_support->outer &
1545 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1546 rx_ring->flags |=
1547 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1548 else if (stripping_support->outer &
1549 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1550 rx_ring->flags |=
1551 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1552 } else if (stripping_support->inner) {
1553 if (stripping_support->inner &
1554 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1555 rx_ring->flags |=
1556 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1557 else if (stripping_support->inner &
1558 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1559 rx_ring->flags |=
1560 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1561 }
1562
1563 if (insertion_support->outer) {
1564 if (insertion_support->outer &
1565 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1566 tx_ring->flags |=
1567 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1568 else if (insertion_support->outer &
1569 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1570 tx_ring->flags |=
1571 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1572 } else if (insertion_support->inner) {
1573 if (insertion_support->inner &
1574 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1575 tx_ring->flags |=
1576 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1577 else if (insertion_support->inner &
1578 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1579 tx_ring->flags |=
1580 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1581 }
1582 }
1583 }
1584}
1585
1586/**
1587 * iavf_alloc_queues - Allocate memory for all rings
1588 * @adapter: board private structure to initialize
1589 *
1590 * We allocate one ring per queue at run-time since we don't know the
1591 * number of queues at compile-time. The polling_netdev array is
1592 * intended for Multiqueue, but should work fine with a single queue.
1593 **/
1594static int iavf_alloc_queues(struct iavf_adapter *adapter)
1595{
1596 int i, num_active_queues;
1597
1598 /* If we're in reset reallocating queues we don't actually know yet for
1599 * certain the PF gave us the number of queues we asked for but we'll
1600 * assume it did. Once basic reset is finished we'll confirm once we
1601 * start negotiating config with PF.
1602 */
1603 if (adapter->num_req_queues)
1604 num_active_queues = adapter->num_req_queues;
1605 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1606 adapter->num_tc)
1607 num_active_queues = adapter->ch_config.total_qps;
1608 else
1609 num_active_queues = min_t(int,
1610 adapter->vsi_res->num_queue_pairs,
1611 (int)(num_online_cpus()));
1612
1613
1614 adapter->tx_rings = kcalloc(n: num_active_queues,
1615 size: sizeof(struct iavf_ring), GFP_KERNEL);
1616 if (!adapter->tx_rings)
1617 goto err_out;
1618 adapter->rx_rings = kcalloc(n: num_active_queues,
1619 size: sizeof(struct iavf_ring), GFP_KERNEL);
1620 if (!adapter->rx_rings)
1621 goto err_out;
1622
1623 for (i = 0; i < num_active_queues; i++) {
1624 struct iavf_ring *tx_ring;
1625 struct iavf_ring *rx_ring;
1626
1627 tx_ring = &adapter->tx_rings[i];
1628
1629 tx_ring->queue_index = i;
1630 tx_ring->netdev = adapter->netdev;
1631 tx_ring->dev = &adapter->pdev->dev;
1632 tx_ring->count = adapter->tx_desc_count;
1633 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1634 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1635 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1636
1637 rx_ring = &adapter->rx_rings[i];
1638 rx_ring->queue_index = i;
1639 rx_ring->netdev = adapter->netdev;
1640 rx_ring->dev = &adapter->pdev->dev;
1641 rx_ring->count = adapter->rx_desc_count;
1642 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1643 }
1644
1645 adapter->num_active_queues = num_active_queues;
1646
1647 iavf_set_queue_vlan_tag_loc(adapter);
1648
1649 return 0;
1650
1651err_out:
1652 iavf_free_queues(adapter);
1653 return -ENOMEM;
1654}
1655
1656/**
1657 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1658 * @adapter: board private structure to initialize
1659 *
1660 * Attempt to configure the interrupts using the best available
1661 * capabilities of the hardware and the kernel.
1662 **/
1663static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1664{
1665 int vector, v_budget;
1666 int pairs = 0;
1667 int err = 0;
1668
1669 if (!adapter->vsi_res) {
1670 err = -EIO;
1671 goto out;
1672 }
1673 pairs = adapter->num_active_queues;
1674
1675 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1676 * us much good if we have more vectors than CPUs. However, we already
1677 * limit the total number of queues by the number of CPUs so we do not
1678 * need any further limiting here.
1679 */
1680 v_budget = min_t(int, pairs + NONQ_VECS,
1681 (int)adapter->vf_res->max_vectors);
1682
1683 adapter->msix_entries = kcalloc(n: v_budget,
1684 size: sizeof(struct msix_entry), GFP_KERNEL);
1685 if (!adapter->msix_entries) {
1686 err = -ENOMEM;
1687 goto out;
1688 }
1689
1690 for (vector = 0; vector < v_budget; vector++)
1691 adapter->msix_entries[vector].entry = vector;
1692
1693 err = iavf_acquire_msix_vectors(adapter, vectors: v_budget);
1694 if (!err)
1695 iavf_schedule_finish_config(adapter);
1696
1697out:
1698 return err;
1699}
1700
1701/**
1702 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1703 * @adapter: board private structure
1704 *
1705 * Return 0 on success, negative on failure
1706 **/
1707static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1708{
1709 struct iavf_aqc_get_set_rss_key_data *rss_key =
1710 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1711 struct iavf_hw *hw = &adapter->hw;
1712 enum iavf_status status;
1713
1714 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1715 /* bail because we already have a command pending */
1716 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1717 adapter->current_op);
1718 return -EBUSY;
1719 }
1720
1721 status = iavf_aq_set_rss_key(hw, seid: adapter->vsi.id, key: rss_key);
1722 if (status) {
1723 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1724 iavf_stat_str(hw, status),
1725 iavf_aq_str(hw, hw->aq.asq_last_status));
1726 return iavf_status_to_errno(status);
1727
1728 }
1729
1730 status = iavf_aq_set_rss_lut(hw, seid: adapter->vsi.id, pf_lut: false,
1731 lut: adapter->rss_lut, lut_size: adapter->rss_lut_size);
1732 if (status) {
1733 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1734 iavf_stat_str(hw, status),
1735 iavf_aq_str(hw, hw->aq.asq_last_status));
1736 return iavf_status_to_errno(status);
1737 }
1738
1739 return 0;
1740
1741}
1742
1743/**
1744 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1745 * @adapter: board private structure
1746 *
1747 * Returns 0 on success, negative on failure
1748 **/
1749static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1750{
1751 struct iavf_hw *hw = &adapter->hw;
1752 u32 *dw;
1753 u16 i;
1754
1755 dw = (u32 *)adapter->rss_key;
1756 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1757 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1758
1759 dw = (u32 *)adapter->rss_lut;
1760 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1761 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1762
1763 iavf_flush(hw);
1764
1765 return 0;
1766}
1767
1768/**
1769 * iavf_config_rss - Configure RSS keys and lut
1770 * @adapter: board private structure
1771 *
1772 * Returns 0 on success, negative on failure
1773 **/
1774int iavf_config_rss(struct iavf_adapter *adapter)
1775{
1776
1777 if (RSS_PF(adapter)) {
1778 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1779 IAVF_FLAG_AQ_SET_RSS_KEY;
1780 return 0;
1781 } else if (RSS_AQ(adapter)) {
1782 return iavf_config_rss_aq(adapter);
1783 } else {
1784 return iavf_config_rss_reg(adapter);
1785 }
1786}
1787
1788/**
1789 * iavf_fill_rss_lut - Fill the lut with default values
1790 * @adapter: board private structure
1791 **/
1792static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1793{
1794 u16 i;
1795
1796 for (i = 0; i < adapter->rss_lut_size; i++)
1797 adapter->rss_lut[i] = i % adapter->num_active_queues;
1798}
1799
1800/**
1801 * iavf_init_rss - Prepare for RSS
1802 * @adapter: board private structure
1803 *
1804 * Return 0 on success, negative on failure
1805 **/
1806static int iavf_init_rss(struct iavf_adapter *adapter)
1807{
1808 struct iavf_hw *hw = &adapter->hw;
1809
1810 if (!RSS_PF(adapter)) {
1811 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1812 if (adapter->vf_res->vf_cap_flags &
1813 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1814 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1815 else
1816 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1817
1818 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1819 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1820 }
1821
1822 iavf_fill_rss_lut(adapter);
1823 netdev_rss_key_fill(buffer: (void *)adapter->rss_key, len: adapter->rss_key_size);
1824
1825 return iavf_config_rss(adapter);
1826}
1827
1828/**
1829 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1830 * @adapter: board private structure to initialize
1831 *
1832 * We allocate one q_vector per queue interrupt. If allocation fails we
1833 * return -ENOMEM.
1834 **/
1835static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1836{
1837 int q_idx = 0, num_q_vectors;
1838 struct iavf_q_vector *q_vector;
1839
1840 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1841 adapter->q_vectors = kcalloc(n: num_q_vectors, size: sizeof(*q_vector),
1842 GFP_KERNEL);
1843 if (!adapter->q_vectors)
1844 return -ENOMEM;
1845
1846 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1847 q_vector = &adapter->q_vectors[q_idx];
1848 q_vector->adapter = adapter;
1849 q_vector->vsi = &adapter->vsi;
1850 q_vector->v_idx = q_idx;
1851 q_vector->reg_idx = q_idx;
1852 cpumask_copy(dstp: &q_vector->affinity_mask, cpu_possible_mask);
1853 netif_napi_add(dev: adapter->netdev, napi: &q_vector->napi,
1854 poll: iavf_napi_poll);
1855 }
1856
1857 return 0;
1858}
1859
1860/**
1861 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1862 * @adapter: board private structure to initialize
1863 *
1864 * This function frees the memory allocated to the q_vectors. In addition if
1865 * NAPI is enabled it will delete any references to the NAPI struct prior
1866 * to freeing the q_vector.
1867 **/
1868static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1869{
1870 int q_idx, num_q_vectors;
1871
1872 if (!adapter->q_vectors)
1873 return;
1874
1875 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1876
1877 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1878 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1879
1880 netif_napi_del(napi: &q_vector->napi);
1881 }
1882 kfree(objp: adapter->q_vectors);
1883 adapter->q_vectors = NULL;
1884}
1885
1886/**
1887 * iavf_reset_interrupt_capability - Reset MSIX setup
1888 * @adapter: board private structure
1889 *
1890 **/
1891static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1892{
1893 if (!adapter->msix_entries)
1894 return;
1895
1896 pci_disable_msix(dev: adapter->pdev);
1897 kfree(objp: adapter->msix_entries);
1898 adapter->msix_entries = NULL;
1899}
1900
1901/**
1902 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1903 * @adapter: board private structure to initialize
1904 *
1905 **/
1906static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1907{
1908 int err;
1909
1910 err = iavf_alloc_queues(adapter);
1911 if (err) {
1912 dev_err(&adapter->pdev->dev,
1913 "Unable to allocate memory for queues\n");
1914 goto err_alloc_queues;
1915 }
1916
1917 err = iavf_set_interrupt_capability(adapter);
1918 if (err) {
1919 dev_err(&adapter->pdev->dev,
1920 "Unable to setup interrupt capabilities\n");
1921 goto err_set_interrupt;
1922 }
1923
1924 err = iavf_alloc_q_vectors(adapter);
1925 if (err) {
1926 dev_err(&adapter->pdev->dev,
1927 "Unable to allocate memory for queue vectors\n");
1928 goto err_alloc_q_vectors;
1929 }
1930
1931 /* If we've made it so far while ADq flag being ON, then we haven't
1932 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1933 * resources have been allocated in the reset path.
1934 * Now we can truly claim that ADq is enabled.
1935 */
1936 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1937 adapter->num_tc)
1938 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1939 adapter->num_tc);
1940
1941 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1942 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1943 adapter->num_active_queues);
1944
1945 return 0;
1946err_alloc_q_vectors:
1947 iavf_reset_interrupt_capability(adapter);
1948err_set_interrupt:
1949 iavf_free_queues(adapter);
1950err_alloc_queues:
1951 return err;
1952}
1953
1954/**
1955 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1956 * @adapter: board private structure
1957 **/
1958static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1959{
1960 iavf_free_q_vectors(adapter);
1961 iavf_reset_interrupt_capability(adapter);
1962 iavf_free_queues(adapter);
1963}
1964
1965/**
1966 * iavf_free_rss - Free memory used by RSS structs
1967 * @adapter: board private structure
1968 **/
1969static void iavf_free_rss(struct iavf_adapter *adapter)
1970{
1971 kfree(objp: adapter->rss_key);
1972 adapter->rss_key = NULL;
1973
1974 kfree(objp: adapter->rss_lut);
1975 adapter->rss_lut = NULL;
1976}
1977
1978/**
1979 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1980 * @adapter: board private structure
1981 * @running: true if adapter->state == __IAVF_RUNNING
1982 *
1983 * Returns 0 on success, negative on failure
1984 **/
1985static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1986{
1987 struct net_device *netdev = adapter->netdev;
1988 int err;
1989
1990 if (running)
1991 iavf_free_traffic_irqs(adapter);
1992 iavf_free_misc_irq(adapter);
1993 iavf_free_interrupt_scheme(adapter);
1994
1995 err = iavf_init_interrupt_scheme(adapter);
1996 if (err)
1997 goto err;
1998
1999 netif_tx_stop_all_queues(dev: netdev);
2000
2001 err = iavf_request_misc_irq(adapter);
2002 if (err)
2003 goto err;
2004
2005 set_bit(nr: __IAVF_VSI_DOWN, addr: adapter->vsi.state);
2006
2007 iavf_map_rings_to_vectors(adapter);
2008err:
2009 return err;
2010}
2011
2012/**
2013 * iavf_finish_config - do all netdev work that needs RTNL
2014 * @work: our work_struct
2015 *
2016 * Do work that needs both RTNL and crit_lock.
2017 **/
2018static void iavf_finish_config(struct work_struct *work)
2019{
2020 struct iavf_adapter *adapter;
2021 int pairs, err;
2022
2023 adapter = container_of(work, struct iavf_adapter, finish_config);
2024
2025 /* Always take RTNL first to prevent circular lock dependency */
2026 rtnl_lock();
2027 mutex_lock(&adapter->crit_lock);
2028
2029 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
2030 adapter->netdev->reg_state == NETREG_REGISTERED &&
2031 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2032 netdev_update_features(dev: adapter->netdev);
2033 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2034 }
2035
2036 switch (adapter->state) {
2037 case __IAVF_DOWN:
2038 if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2039 err = register_netdevice(dev: adapter->netdev);
2040 if (err) {
2041 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2042 err);
2043
2044 /* go back and try again.*/
2045 iavf_free_rss(adapter);
2046 iavf_free_misc_irq(adapter);
2047 iavf_reset_interrupt_capability(adapter);
2048 iavf_change_state(adapter,
2049 state: __IAVF_INIT_CONFIG_ADAPTER);
2050 goto out;
2051 }
2052 }
2053
2054 /* Set the real number of queues when reset occurs while
2055 * state == __IAVF_DOWN
2056 */
2057 fallthrough;
2058 case __IAVF_RUNNING:
2059 pairs = adapter->num_active_queues;
2060 netif_set_real_num_rx_queues(dev: adapter->netdev, rxq: pairs);
2061 netif_set_real_num_tx_queues(dev: adapter->netdev, txq: pairs);
2062 break;
2063
2064 default:
2065 break;
2066 }
2067
2068out:
2069 mutex_unlock(lock: &adapter->crit_lock);
2070 rtnl_unlock();
2071}
2072
2073/**
2074 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2075 * @adapter: board private structure
2076 **/
2077void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2078{
2079 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2080 queue_work(wq: adapter->wq, work: &adapter->finish_config);
2081}
2082
2083/**
2084 * iavf_process_aq_command - process aq_required flags
2085 * and sends aq command
2086 * @adapter: pointer to iavf adapter structure
2087 *
2088 * Returns 0 on success
2089 * Returns error code if no command was sent
2090 * or error code if the command failed.
2091 **/
2092static int iavf_process_aq_command(struct iavf_adapter *adapter)
2093{
2094 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2095 return iavf_send_vf_config_msg(adapter);
2096 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2097 return iavf_send_vf_offload_vlan_v2_msg(adapter);
2098 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2099 iavf_disable_queues(adapter);
2100 return 0;
2101 }
2102
2103 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2104 iavf_map_queues(adapter);
2105 return 0;
2106 }
2107
2108 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2109 iavf_add_ether_addrs(adapter);
2110 return 0;
2111 }
2112
2113 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2114 iavf_add_vlans(adapter);
2115 return 0;
2116 }
2117
2118 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2119 iavf_del_ether_addrs(adapter);
2120 return 0;
2121 }
2122
2123 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2124 iavf_del_vlans(adapter);
2125 return 0;
2126 }
2127
2128 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2129 iavf_enable_vlan_stripping(adapter);
2130 return 0;
2131 }
2132
2133 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2134 iavf_disable_vlan_stripping(adapter);
2135 return 0;
2136 }
2137
2138 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2139 iavf_configure_queues(adapter);
2140 return 0;
2141 }
2142
2143 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2144 iavf_enable_queues(adapter);
2145 return 0;
2146 }
2147
2148 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2149 /* This message goes straight to the firmware, not the
2150 * PF, so we don't have to set current_op as we will
2151 * not get a response through the ARQ.
2152 */
2153 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2154 return 0;
2155 }
2156 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2157 iavf_get_hena(adapter);
2158 return 0;
2159 }
2160 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2161 iavf_set_hena(adapter);
2162 return 0;
2163 }
2164 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2165 iavf_set_rss_key(adapter);
2166 return 0;
2167 }
2168 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2169 iavf_set_rss_lut(adapter);
2170 return 0;
2171 }
2172
2173 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2174 iavf_set_promiscuous(adapter);
2175 return 0;
2176 }
2177
2178 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2179 iavf_enable_channels(adapter);
2180 return 0;
2181 }
2182
2183 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2184 iavf_disable_channels(adapter);
2185 return 0;
2186 }
2187 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2188 iavf_add_cloud_filter(adapter);
2189 return 0;
2190 }
2191
2192 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2193 iavf_del_cloud_filter(adapter);
2194 return 0;
2195 }
2196 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2197 iavf_del_cloud_filter(adapter);
2198 return 0;
2199 }
2200 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2201 iavf_add_cloud_filter(adapter);
2202 return 0;
2203 }
2204 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2205 iavf_add_fdir_filter(adapter);
2206 return IAVF_SUCCESS;
2207 }
2208 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2209 iavf_del_fdir_filter(adapter);
2210 return IAVF_SUCCESS;
2211 }
2212 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2213 iavf_add_adv_rss_cfg(adapter);
2214 return 0;
2215 }
2216 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2217 iavf_del_adv_rss_cfg(adapter);
2218 return 0;
2219 }
2220 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2221 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2222 return 0;
2223 }
2224 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2225 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2226 return 0;
2227 }
2228 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2229 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2230 return 0;
2231 }
2232 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2233 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2234 return 0;
2235 }
2236 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2237 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2238 return 0;
2239 }
2240 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2241 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2242 return 0;
2243 }
2244 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2245 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2246 return 0;
2247 }
2248 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2249 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2250 return 0;
2251 }
2252
2253 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2254 iavf_request_stats(adapter);
2255 return 0;
2256 }
2257
2258 return -EAGAIN;
2259}
2260
2261/**
2262 * iavf_set_vlan_offload_features - set VLAN offload configuration
2263 * @adapter: board private structure
2264 * @prev_features: previous features used for comparison
2265 * @features: updated features used for configuration
2266 *
2267 * Set the aq_required bit(s) based on the requested features passed in to
2268 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2269 * the watchdog if any changes are requested to expedite the request via
2270 * virtchnl.
2271 **/
2272static void
2273iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2274 netdev_features_t prev_features,
2275 netdev_features_t features)
2276{
2277 bool enable_stripping = true, enable_insertion = true;
2278 u16 vlan_ethertype = 0;
2279 u64 aq_required = 0;
2280
2281 /* keep cases separate because one ethertype for offloads can be
2282 * disabled at the same time as another is disabled, so check for an
2283 * enabled ethertype first, then check for disabled. Default to
2284 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2285 * stripping.
2286 */
2287 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2288 vlan_ethertype = ETH_P_8021AD;
2289 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2290 vlan_ethertype = ETH_P_8021Q;
2291 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2292 vlan_ethertype = ETH_P_8021AD;
2293 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2294 vlan_ethertype = ETH_P_8021Q;
2295 else
2296 vlan_ethertype = ETH_P_8021Q;
2297
2298 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2299 enable_stripping = false;
2300 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2301 enable_insertion = false;
2302
2303 if (VLAN_ALLOWED(adapter)) {
2304 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2305 * stripping via virtchnl. VLAN insertion can be toggled on the
2306 * netdev, but it doesn't require a virtchnl message
2307 */
2308 if (enable_stripping)
2309 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2310 else
2311 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2312
2313 } else if (VLAN_V2_ALLOWED(adapter)) {
2314 switch (vlan_ethertype) {
2315 case ETH_P_8021Q:
2316 if (enable_stripping)
2317 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2318 else
2319 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2320
2321 if (enable_insertion)
2322 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2323 else
2324 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2325 break;
2326 case ETH_P_8021AD:
2327 if (enable_stripping)
2328 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2329 else
2330 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2331
2332 if (enable_insertion)
2333 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2334 else
2335 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2336 break;
2337 }
2338 }
2339
2340 if (aq_required) {
2341 adapter->aq_required |= aq_required;
2342 mod_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task, delay: 0);
2343 }
2344}
2345
2346/**
2347 * iavf_startup - first step of driver startup
2348 * @adapter: board private structure
2349 *
2350 * Function process __IAVF_STARTUP driver state.
2351 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2352 * when fails the state is changed to __IAVF_INIT_FAILED
2353 **/
2354static void iavf_startup(struct iavf_adapter *adapter)
2355{
2356 struct pci_dev *pdev = adapter->pdev;
2357 struct iavf_hw *hw = &adapter->hw;
2358 enum iavf_status status;
2359 int ret;
2360
2361 WARN_ON(adapter->state != __IAVF_STARTUP);
2362
2363 /* driver loaded, probe complete */
2364 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2365 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2366
2367 ret = iavf_check_reset_complete(hw);
2368 if (ret) {
2369 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2370 ret);
2371 goto err;
2372 }
2373 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2374 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2375 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2376 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2377
2378 status = iavf_init_adminq(hw);
2379 if (status) {
2380 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2381 status);
2382 goto err;
2383 }
2384 ret = iavf_send_api_ver(adapter);
2385 if (ret) {
2386 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2387 iavf_shutdown_adminq(hw);
2388 goto err;
2389 }
2390 iavf_change_state(adapter, state: __IAVF_INIT_VERSION_CHECK);
2391 return;
2392err:
2393 iavf_change_state(adapter, state: __IAVF_INIT_FAILED);
2394}
2395
2396/**
2397 * iavf_init_version_check - second step of driver startup
2398 * @adapter: board private structure
2399 *
2400 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2401 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2402 * when fails the state is changed to __IAVF_INIT_FAILED
2403 **/
2404static void iavf_init_version_check(struct iavf_adapter *adapter)
2405{
2406 struct pci_dev *pdev = adapter->pdev;
2407 struct iavf_hw *hw = &adapter->hw;
2408 int err = -EAGAIN;
2409
2410 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2411
2412 if (!iavf_asq_done(hw)) {
2413 dev_err(&pdev->dev, "Admin queue command never completed\n");
2414 iavf_shutdown_adminq(hw);
2415 iavf_change_state(adapter, state: __IAVF_STARTUP);
2416 goto err;
2417 }
2418
2419 /* aq msg sent, awaiting reply */
2420 err = iavf_verify_api_ver(adapter);
2421 if (err) {
2422 if (err == -EALREADY)
2423 err = iavf_send_api_ver(adapter);
2424 else
2425 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2426 adapter->pf_version.major,
2427 adapter->pf_version.minor,
2428 VIRTCHNL_VERSION_MAJOR,
2429 VIRTCHNL_VERSION_MINOR);
2430 goto err;
2431 }
2432 err = iavf_send_vf_config_msg(adapter);
2433 if (err) {
2434 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2435 err);
2436 goto err;
2437 }
2438 iavf_change_state(adapter, state: __IAVF_INIT_GET_RESOURCES);
2439 return;
2440err:
2441 iavf_change_state(adapter, state: __IAVF_INIT_FAILED);
2442}
2443
2444/**
2445 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2446 * @adapter: board private structure
2447 */
2448int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2449{
2450 int i, num_req_queues = adapter->num_req_queues;
2451 struct iavf_vsi *vsi = &adapter->vsi;
2452
2453 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2454 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2455 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2456 }
2457 if (!adapter->vsi_res) {
2458 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2459 return -ENODEV;
2460 }
2461
2462 if (num_req_queues &&
2463 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2464 /* Problem. The PF gave us fewer queues than what we had
2465 * negotiated in our request. Need a reset to see if we can't
2466 * get back to a working state.
2467 */
2468 dev_err(&adapter->pdev->dev,
2469 "Requested %d queues, but PF only gave us %d.\n",
2470 num_req_queues,
2471 adapter->vsi_res->num_queue_pairs);
2472 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2473 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2474 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2475
2476 return -EAGAIN;
2477 }
2478 adapter->num_req_queues = 0;
2479 adapter->vsi.id = adapter->vsi_res->vsi_id;
2480
2481 adapter->vsi.back = adapter;
2482 adapter->vsi.base_vector = 1;
2483 vsi->netdev = adapter->netdev;
2484 vsi->qs_handle = adapter->vsi_res->qset_handle;
2485 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2486 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2487 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2488 } else {
2489 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2490 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2491 }
2492
2493 return 0;
2494}
2495
2496/**
2497 * iavf_init_get_resources - third step of driver startup
2498 * @adapter: board private structure
2499 *
2500 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2501 * finishes driver initialization procedure.
2502 * When success the state is changed to __IAVF_DOWN
2503 * when fails the state is changed to __IAVF_INIT_FAILED
2504 **/
2505static void iavf_init_get_resources(struct iavf_adapter *adapter)
2506{
2507 struct pci_dev *pdev = adapter->pdev;
2508 struct iavf_hw *hw = &adapter->hw;
2509 int err;
2510
2511 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2512 /* aq msg sent, awaiting reply */
2513 if (!adapter->vf_res) {
2514 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2515 GFP_KERNEL);
2516 if (!adapter->vf_res) {
2517 err = -ENOMEM;
2518 goto err;
2519 }
2520 }
2521 err = iavf_get_vf_config(adapter);
2522 if (err == -EALREADY) {
2523 err = iavf_send_vf_config_msg(adapter);
2524 goto err;
2525 } else if (err == -EINVAL) {
2526 /* We only get -EINVAL if the device is in a very bad
2527 * state or if we've been disabled for previous bad
2528 * behavior. Either way, we're done now.
2529 */
2530 iavf_shutdown_adminq(hw);
2531 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2532 return;
2533 }
2534 if (err) {
2535 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2536 goto err_alloc;
2537 }
2538
2539 err = iavf_parse_vf_resource_msg(adapter);
2540 if (err) {
2541 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2542 err);
2543 goto err_alloc;
2544 }
2545 /* Some features require additional messages to negotiate extended
2546 * capabilities. These are processed in sequence by the
2547 * __IAVF_INIT_EXTENDED_CAPS driver state.
2548 */
2549 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2550
2551 iavf_change_state(adapter, state: __IAVF_INIT_EXTENDED_CAPS);
2552 return;
2553
2554err_alloc:
2555 kfree(objp: adapter->vf_res);
2556 adapter->vf_res = NULL;
2557err:
2558 iavf_change_state(adapter, state: __IAVF_INIT_FAILED);
2559}
2560
2561/**
2562 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2563 * @adapter: board private structure
2564 *
2565 * Function processes send of the extended VLAN V2 capability message to the
2566 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2567 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2568 */
2569static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2570{
2571 int ret;
2572
2573 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2574
2575 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2576 if (ret && ret == -EOPNOTSUPP) {
2577 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2578 * we did not send the capability exchange message and do not
2579 * expect a response.
2580 */
2581 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2582 }
2583
2584 /* We sent the message, so move on to the next step */
2585 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2586}
2587
2588/**
2589 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2590 * @adapter: board private structure
2591 *
2592 * Function processes receipt of the extended VLAN V2 capability message from
2593 * the PF.
2594 **/
2595static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2596{
2597 int ret;
2598
2599 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2600
2601 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2602
2603 ret = iavf_get_vf_vlan_v2_caps(adapter);
2604 if (ret)
2605 goto err;
2606
2607 /* We've processed receipt of the VLAN V2 caps message */
2608 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2609 return;
2610err:
2611 /* We didn't receive a reply. Make sure we try sending again when
2612 * __IAVF_INIT_FAILED attempts to recover.
2613 */
2614 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2615 iavf_change_state(adapter, state: __IAVF_INIT_FAILED);
2616}
2617
2618/**
2619 * iavf_init_process_extended_caps - Part of driver startup
2620 * @adapter: board private structure
2621 *
2622 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2623 * handles negotiating capabilities for features which require an additional
2624 * message.
2625 *
2626 * Once all extended capabilities exchanges are finished, the driver will
2627 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2628 */
2629static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2630{
2631 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2632
2633 /* Process capability exchange for VLAN V2 */
2634 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2635 iavf_init_send_offload_vlan_v2_caps(adapter);
2636 return;
2637 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2638 iavf_init_recv_offload_vlan_v2_caps(adapter);
2639 return;
2640 }
2641
2642 /* When we reach here, no further extended capabilities exchanges are
2643 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2644 */
2645 iavf_change_state(adapter, state: __IAVF_INIT_CONFIG_ADAPTER);
2646}
2647
2648/**
2649 * iavf_init_config_adapter - last part of driver startup
2650 * @adapter: board private structure
2651 *
2652 * After all the supported capabilities are negotiated, then the
2653 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2654 */
2655static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2656{
2657 struct net_device *netdev = adapter->netdev;
2658 struct pci_dev *pdev = adapter->pdev;
2659 int err;
2660
2661 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2662
2663 if (iavf_process_config(adapter))
2664 goto err;
2665
2666 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2667
2668 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2669
2670 netdev->netdev_ops = &iavf_netdev_ops;
2671 iavf_set_ethtool_ops(netdev);
2672 netdev->watchdog_timeo = 5 * HZ;
2673
2674 /* MTU range: 68 - 9710 */
2675 netdev->min_mtu = ETH_MIN_MTU;
2676 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2677
2678 if (!is_valid_ether_addr(addr: adapter->hw.mac.addr)) {
2679 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2680 adapter->hw.mac.addr);
2681 eth_hw_addr_random(dev: netdev);
2682 ether_addr_copy(dst: adapter->hw.mac.addr, src: netdev->dev_addr);
2683 } else {
2684 eth_hw_addr_set(dev: netdev, addr: adapter->hw.mac.addr);
2685 ether_addr_copy(dst: netdev->perm_addr, src: adapter->hw.mac.addr);
2686 }
2687
2688 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2689 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2690 err = iavf_init_interrupt_scheme(adapter);
2691 if (err)
2692 goto err_sw_init;
2693 iavf_map_rings_to_vectors(adapter);
2694 if (adapter->vf_res->vf_cap_flags &
2695 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2696 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2697
2698 err = iavf_request_misc_irq(adapter);
2699 if (err)
2700 goto err_sw_init;
2701
2702 netif_carrier_off(dev: netdev);
2703 adapter->link_up = false;
2704 netif_tx_stop_all_queues(dev: netdev);
2705
2706 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2707 if (netdev->features & NETIF_F_GRO)
2708 dev_info(&pdev->dev, "GRO is enabled\n");
2709
2710 iavf_change_state(adapter, state: __IAVF_DOWN);
2711 set_bit(nr: __IAVF_VSI_DOWN, addr: adapter->vsi.state);
2712
2713 iavf_misc_irq_enable(adapter);
2714 wake_up(&adapter->down_waitqueue);
2715
2716 adapter->rss_key = kzalloc(size: adapter->rss_key_size, GFP_KERNEL);
2717 adapter->rss_lut = kzalloc(size: adapter->rss_lut_size, GFP_KERNEL);
2718 if (!adapter->rss_key || !adapter->rss_lut) {
2719 err = -ENOMEM;
2720 goto err_mem;
2721 }
2722 if (RSS_AQ(adapter))
2723 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2724 else
2725 iavf_init_rss(adapter);
2726
2727 if (VLAN_V2_ALLOWED(adapter))
2728 /* request initial VLAN offload settings */
2729 iavf_set_vlan_offload_features(adapter, prev_features: 0, features: netdev->features);
2730
2731 iavf_schedule_finish_config(adapter);
2732 return;
2733
2734err_mem:
2735 iavf_free_rss(adapter);
2736 iavf_free_misc_irq(adapter);
2737err_sw_init:
2738 iavf_reset_interrupt_capability(adapter);
2739err:
2740 iavf_change_state(adapter, state: __IAVF_INIT_FAILED);
2741}
2742
2743/**
2744 * iavf_watchdog_task - Periodic call-back task
2745 * @work: pointer to work_struct
2746 **/
2747static void iavf_watchdog_task(struct work_struct *work)
2748{
2749 struct iavf_adapter *adapter = container_of(work,
2750 struct iavf_adapter,
2751 watchdog_task.work);
2752 struct iavf_hw *hw = &adapter->hw;
2753 u32 reg_val;
2754
2755 if (!mutex_trylock(lock: &adapter->crit_lock)) {
2756 if (adapter->state == __IAVF_REMOVE)
2757 return;
2758
2759 goto restart_watchdog;
2760 }
2761
2762 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2763 iavf_change_state(adapter, state: __IAVF_COMM_FAILED);
2764
2765 switch (adapter->state) {
2766 case __IAVF_STARTUP:
2767 iavf_startup(adapter);
2768 mutex_unlock(lock: &adapter->crit_lock);
2769 queue_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task,
2770 delay: msecs_to_jiffies(m: 30));
2771 return;
2772 case __IAVF_INIT_VERSION_CHECK:
2773 iavf_init_version_check(adapter);
2774 mutex_unlock(lock: &adapter->crit_lock);
2775 queue_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task,
2776 delay: msecs_to_jiffies(m: 30));
2777 return;
2778 case __IAVF_INIT_GET_RESOURCES:
2779 iavf_init_get_resources(adapter);
2780 mutex_unlock(lock: &adapter->crit_lock);
2781 queue_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task,
2782 delay: msecs_to_jiffies(m: 1));
2783 return;
2784 case __IAVF_INIT_EXTENDED_CAPS:
2785 iavf_init_process_extended_caps(adapter);
2786 mutex_unlock(lock: &adapter->crit_lock);
2787 queue_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task,
2788 delay: msecs_to_jiffies(m: 1));
2789 return;
2790 case __IAVF_INIT_CONFIG_ADAPTER:
2791 iavf_init_config_adapter(adapter);
2792 mutex_unlock(lock: &adapter->crit_lock);
2793 queue_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task,
2794 delay: msecs_to_jiffies(m: 1));
2795 return;
2796 case __IAVF_INIT_FAILED:
2797 if (test_bit(__IAVF_IN_REMOVE_TASK,
2798 &adapter->crit_section)) {
2799 /* Do not update the state and do not reschedule
2800 * watchdog task, iavf_remove should handle this state
2801 * as it can loop forever
2802 */
2803 mutex_unlock(lock: &adapter->crit_lock);
2804 return;
2805 }
2806 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2807 dev_err(&adapter->pdev->dev,
2808 "Failed to communicate with PF; waiting before retry\n");
2809 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2810 iavf_shutdown_adminq(hw);
2811 mutex_unlock(lock: &adapter->crit_lock);
2812 queue_delayed_work(wq: adapter->wq,
2813 dwork: &adapter->watchdog_task, delay: (5 * HZ));
2814 return;
2815 }
2816 /* Try again from failed step*/
2817 iavf_change_state(adapter, state: adapter->last_state);
2818 mutex_unlock(lock: &adapter->crit_lock);
2819 queue_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task, HZ);
2820 return;
2821 case __IAVF_COMM_FAILED:
2822 if (test_bit(__IAVF_IN_REMOVE_TASK,
2823 &adapter->crit_section)) {
2824 /* Set state to __IAVF_INIT_FAILED and perform remove
2825 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2826 * doesn't bring the state back to __IAVF_COMM_FAILED.
2827 */
2828 iavf_change_state(adapter, state: __IAVF_INIT_FAILED);
2829 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2830 mutex_unlock(lock: &adapter->crit_lock);
2831 return;
2832 }
2833 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2834 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2835 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2836 reg_val == VIRTCHNL_VFR_COMPLETED) {
2837 /* A chance for redemption! */
2838 dev_err(&adapter->pdev->dev,
2839 "Hardware came out of reset. Attempting reinit.\n");
2840 /* When init task contacts the PF and
2841 * gets everything set up again, it'll restart the
2842 * watchdog for us. Down, boy. Sit. Stay. Woof.
2843 */
2844 iavf_change_state(adapter, state: __IAVF_STARTUP);
2845 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2846 }
2847 adapter->aq_required = 0;
2848 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2849 mutex_unlock(lock: &adapter->crit_lock);
2850 queue_delayed_work(wq: adapter->wq,
2851 dwork: &adapter->watchdog_task,
2852 delay: msecs_to_jiffies(m: 10));
2853 return;
2854 case __IAVF_RESETTING:
2855 mutex_unlock(lock: &adapter->crit_lock);
2856 queue_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task,
2857 HZ * 2);
2858 return;
2859 case __IAVF_DOWN:
2860 case __IAVF_DOWN_PENDING:
2861 case __IAVF_TESTING:
2862 case __IAVF_RUNNING:
2863 if (adapter->current_op) {
2864 if (!iavf_asq_done(hw)) {
2865 dev_dbg(&adapter->pdev->dev,
2866 "Admin queue timeout\n");
2867 iavf_send_api_ver(adapter);
2868 }
2869 } else {
2870 int ret = iavf_process_aq_command(adapter);
2871
2872 /* An error will be returned if no commands were
2873 * processed; use this opportunity to update stats
2874 * if the error isn't -ENOTSUPP
2875 */
2876 if (ret && ret != -EOPNOTSUPP &&
2877 adapter->state == __IAVF_RUNNING)
2878 iavf_request_stats(adapter);
2879 }
2880 if (adapter->state == __IAVF_RUNNING)
2881 iavf_detect_recover_hung(vsi: &adapter->vsi);
2882 break;
2883 case __IAVF_REMOVE:
2884 default:
2885 mutex_unlock(lock: &adapter->crit_lock);
2886 return;
2887 }
2888
2889 /* check for hw reset */
2890 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2891 if (!reg_val) {
2892 adapter->aq_required = 0;
2893 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2894 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2895 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2896 mutex_unlock(lock: &adapter->crit_lock);
2897 queue_delayed_work(wq: adapter->wq,
2898 dwork: &adapter->watchdog_task, HZ * 2);
2899 return;
2900 }
2901
2902 mutex_unlock(lock: &adapter->crit_lock);
2903restart_watchdog:
2904 if (adapter->state >= __IAVF_DOWN)
2905 queue_work(wq: adapter->wq, work: &adapter->adminq_task);
2906 if (adapter->aq_required)
2907 queue_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task,
2908 delay: msecs_to_jiffies(m: 20));
2909 else
2910 queue_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task,
2911 HZ * 2);
2912}
2913
2914/**
2915 * iavf_disable_vf - disable VF
2916 * @adapter: board private structure
2917 *
2918 * Set communication failed flag and free all resources.
2919 * NOTE: This function is expected to be called with crit_lock being held.
2920 **/
2921static void iavf_disable_vf(struct iavf_adapter *adapter)
2922{
2923 struct iavf_mac_filter *f, *ftmp;
2924 struct iavf_vlan_filter *fv, *fvtmp;
2925 struct iavf_cloud_filter *cf, *cftmp;
2926
2927 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2928
2929 /* We don't use netif_running() because it may be true prior to
2930 * ndo_open() returning, so we can't assume it means all our open
2931 * tasks have finished, since we're not holding the rtnl_lock here.
2932 */
2933 if (adapter->state == __IAVF_RUNNING) {
2934 set_bit(nr: __IAVF_VSI_DOWN, addr: adapter->vsi.state);
2935 netif_carrier_off(dev: adapter->netdev);
2936 netif_tx_disable(dev: adapter->netdev);
2937 adapter->link_up = false;
2938 iavf_napi_disable_all(adapter);
2939 iavf_irq_disable(adapter);
2940 iavf_free_traffic_irqs(adapter);
2941 iavf_free_all_tx_resources(adapter);
2942 iavf_free_all_rx_resources(adapter);
2943 }
2944
2945 spin_lock_bh(lock: &adapter->mac_vlan_list_lock);
2946
2947 /* Delete all of the filters */
2948 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2949 list_del(entry: &f->list);
2950 kfree(objp: f);
2951 }
2952
2953 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2954 list_del(entry: &fv->list);
2955 kfree(objp: fv);
2956 }
2957 adapter->num_vlan_filters = 0;
2958
2959 spin_unlock_bh(lock: &adapter->mac_vlan_list_lock);
2960
2961 spin_lock_bh(lock: &adapter->cloud_filter_list_lock);
2962 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2963 list_del(entry: &cf->list);
2964 kfree(objp: cf);
2965 adapter->num_cloud_filters--;
2966 }
2967 spin_unlock_bh(lock: &adapter->cloud_filter_list_lock);
2968
2969 iavf_free_misc_irq(adapter);
2970 iavf_free_interrupt_scheme(adapter);
2971 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2972 iavf_shutdown_adminq(hw: &adapter->hw);
2973 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2974 iavf_change_state(adapter, state: __IAVF_DOWN);
2975 wake_up(&adapter->down_waitqueue);
2976 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2977}
2978
2979/**
2980 * iavf_reset_task - Call-back task to handle hardware reset
2981 * @work: pointer to work_struct
2982 *
2983 * During reset we need to shut down and reinitialize the admin queue
2984 * before we can use it to communicate with the PF again. We also clear
2985 * and reinit the rings because that context is lost as well.
2986 **/
2987static void iavf_reset_task(struct work_struct *work)
2988{
2989 struct iavf_adapter *adapter = container_of(work,
2990 struct iavf_adapter,
2991 reset_task);
2992 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2993 struct net_device *netdev = adapter->netdev;
2994 struct iavf_hw *hw = &adapter->hw;
2995 struct iavf_mac_filter *f, *ftmp;
2996 struct iavf_cloud_filter *cf;
2997 enum iavf_status status;
2998 u32 reg_val;
2999 int i = 0, err;
3000 bool running;
3001
3002 /* When device is being removed it doesn't make sense to run the reset
3003 * task, just return in such a case.
3004 */
3005 if (!mutex_trylock(lock: &adapter->crit_lock)) {
3006 if (adapter->state != __IAVF_REMOVE)
3007 queue_work(wq: adapter->wq, work: &adapter->reset_task);
3008
3009 return;
3010 }
3011
3012 iavf_misc_irq_disable(adapter);
3013 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
3014 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
3015 /* Restart the AQ here. If we have been reset but didn't
3016 * detect it, or if the PF had to reinit, our AQ will be hosed.
3017 */
3018 iavf_shutdown_adminq(hw);
3019 iavf_init_adminq(hw);
3020 iavf_request_reset(adapter);
3021 }
3022 adapter->flags |= IAVF_FLAG_RESET_PENDING;
3023
3024 /* poll until we see the reset actually happen */
3025 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3026 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3027 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3028 if (!reg_val)
3029 break;
3030 usleep_range(min: 5000, max: 10000);
3031 }
3032 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3033 dev_info(&adapter->pdev->dev, "Never saw reset\n");
3034 goto continue_reset; /* act like the reset happened */
3035 }
3036
3037 /* wait until the reset is complete and the PF is responding to us */
3038 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3039 /* sleep first to make sure a minimum wait time is met */
3040 msleep(IAVF_RESET_WAIT_MS);
3041
3042 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3043 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3044 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3045 break;
3046 }
3047
3048 pci_set_master(dev: adapter->pdev);
3049 pci_restore_msi_state(dev: adapter->pdev);
3050
3051 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3052 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3053 reg_val);
3054 iavf_disable_vf(adapter);
3055 mutex_unlock(lock: &adapter->crit_lock);
3056 return; /* Do not attempt to reinit. It's dead, Jim. */
3057 }
3058
3059continue_reset:
3060 /* We don't use netif_running() because it may be true prior to
3061 * ndo_open() returning, so we can't assume it means all our open
3062 * tasks have finished, since we're not holding the rtnl_lock here.
3063 */
3064 running = adapter->state == __IAVF_RUNNING;
3065
3066 if (running) {
3067 netif_carrier_off(dev: netdev);
3068 netif_tx_stop_all_queues(dev: netdev);
3069 adapter->link_up = false;
3070 iavf_napi_disable_all(adapter);
3071 }
3072 iavf_irq_disable(adapter);
3073
3074 iavf_change_state(adapter, state: __IAVF_RESETTING);
3075 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3076
3077 /* free the Tx/Rx rings and descriptors, might be better to just
3078 * re-use them sometime in the future
3079 */
3080 iavf_free_all_rx_resources(adapter);
3081 iavf_free_all_tx_resources(adapter);
3082
3083 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3084 /* kill and reinit the admin queue */
3085 iavf_shutdown_adminq(hw);
3086 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3087 status = iavf_init_adminq(hw);
3088 if (status) {
3089 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3090 status);
3091 goto reset_err;
3092 }
3093 adapter->aq_required = 0;
3094
3095 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3096 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3097 err = iavf_reinit_interrupt_scheme(adapter, running);
3098 if (err)
3099 goto reset_err;
3100 }
3101
3102 if (RSS_AQ(adapter)) {
3103 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3104 } else {
3105 err = iavf_init_rss(adapter);
3106 if (err)
3107 goto reset_err;
3108 }
3109
3110 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3111 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3112 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3113 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3114 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3115 * been successfully sent and negotiated
3116 */
3117 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3118 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3119
3120 spin_lock_bh(lock: &adapter->mac_vlan_list_lock);
3121
3122 /* Delete filter for the current MAC address, it could have
3123 * been changed by the PF via administratively set MAC.
3124 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3125 */
3126 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3127 if (ether_addr_equal(addr1: f->macaddr, addr2: adapter->hw.mac.addr)) {
3128 list_del(entry: &f->list);
3129 kfree(objp: f);
3130 }
3131 }
3132 /* re-add all MAC filters */
3133 list_for_each_entry(f, &adapter->mac_filter_list, list) {
3134 f->add = true;
3135 }
3136 spin_unlock_bh(lock: &adapter->mac_vlan_list_lock);
3137
3138 /* check if TCs are running and re-add all cloud filters */
3139 spin_lock_bh(lock: &adapter->cloud_filter_list_lock);
3140 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3141 adapter->num_tc) {
3142 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3143 cf->add = true;
3144 }
3145 }
3146 spin_unlock_bh(lock: &adapter->cloud_filter_list_lock);
3147
3148 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3149 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3150 iavf_misc_irq_enable(adapter);
3151
3152 mod_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task, delay: 2);
3153
3154 /* We were running when the reset started, so we need to restore some
3155 * state here.
3156 */
3157 if (running) {
3158 /* allocate transmit descriptors */
3159 err = iavf_setup_all_tx_resources(adapter);
3160 if (err)
3161 goto reset_err;
3162
3163 /* allocate receive descriptors */
3164 err = iavf_setup_all_rx_resources(adapter);
3165 if (err)
3166 goto reset_err;
3167
3168 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3169 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3170 err = iavf_request_traffic_irqs(adapter, basename: netdev->name);
3171 if (err)
3172 goto reset_err;
3173
3174 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3175 }
3176
3177 iavf_configure(adapter);
3178
3179 /* iavf_up_complete() will switch device back
3180 * to __IAVF_RUNNING
3181 */
3182 iavf_up_complete(adapter);
3183
3184 iavf_irq_enable(adapter, flush: true);
3185 } else {
3186 iavf_change_state(adapter, state: __IAVF_DOWN);
3187 wake_up(&adapter->down_waitqueue);
3188 }
3189
3190 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3191
3192 wake_up(&adapter->reset_waitqueue);
3193 mutex_unlock(lock: &adapter->crit_lock);
3194
3195 return;
3196reset_err:
3197 if (running) {
3198 set_bit(nr: __IAVF_VSI_DOWN, addr: adapter->vsi.state);
3199 iavf_free_traffic_irqs(adapter);
3200 }
3201 iavf_disable_vf(adapter);
3202
3203 mutex_unlock(lock: &adapter->crit_lock);
3204 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3205}
3206
3207/**
3208 * iavf_adminq_task - worker thread to clean the admin queue
3209 * @work: pointer to work_struct containing our data
3210 **/
3211static void iavf_adminq_task(struct work_struct *work)
3212{
3213 struct iavf_adapter *adapter =
3214 container_of(work, struct iavf_adapter, adminq_task);
3215 struct iavf_hw *hw = &adapter->hw;
3216 struct iavf_arq_event_info event;
3217 enum virtchnl_ops v_op;
3218 enum iavf_status ret, v_ret;
3219 u32 val, oldval;
3220 u16 pending;
3221
3222 if (!mutex_trylock(lock: &adapter->crit_lock)) {
3223 if (adapter->state == __IAVF_REMOVE)
3224 return;
3225
3226 queue_work(wq: adapter->wq, work: &adapter->adminq_task);
3227 goto out;
3228 }
3229
3230 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3231 goto unlock;
3232
3233 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3234 event.msg_buf = kzalloc(size: event.buf_len, GFP_KERNEL);
3235 if (!event.msg_buf)
3236 goto unlock;
3237
3238 do {
3239 ret = iavf_clean_arq_element(hw, e: &event, events_pending: &pending);
3240 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3241 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3242
3243 if (ret || !v_op)
3244 break; /* No event to process or error cleaning ARQ */
3245
3246 iavf_virtchnl_completion(adapter, v_opcode: v_op, v_retval: v_ret, msg: event.msg_buf,
3247 msglen: event.msg_len);
3248 if (pending != 0)
3249 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3250 } while (pending);
3251
3252 if (iavf_is_reset_in_progress(adapter))
3253 goto freedom;
3254
3255 /* check for error indications */
3256 val = rd32(hw, hw->aq.arq.len);
3257 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3258 goto freedom;
3259 oldval = val;
3260 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3261 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3262 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3263 }
3264 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3265 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3266 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3267 }
3268 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3269 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3270 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3271 }
3272 if (oldval != val)
3273 wr32(hw, hw->aq.arq.len, val);
3274
3275 val = rd32(hw, hw->aq.asq.len);
3276 oldval = val;
3277 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3278 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3279 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3280 }
3281 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3282 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3283 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3284 }
3285 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3286 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3287 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3288 }
3289 if (oldval != val)
3290 wr32(hw, hw->aq.asq.len, val);
3291
3292freedom:
3293 kfree(objp: event.msg_buf);
3294unlock:
3295 mutex_unlock(lock: &adapter->crit_lock);
3296out:
3297 /* re-enable Admin queue interrupt cause */
3298 iavf_misc_irq_enable(adapter);
3299}
3300
3301/**
3302 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3303 * @adapter: board private structure
3304 *
3305 * Free all transmit software resources
3306 **/
3307void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3308{
3309 int i;
3310
3311 if (!adapter->tx_rings)
3312 return;
3313
3314 for (i = 0; i < adapter->num_active_queues; i++)
3315 if (adapter->tx_rings[i].desc)
3316 iavf_free_tx_resources(tx_ring: &adapter->tx_rings[i]);
3317}
3318
3319/**
3320 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3321 * @adapter: board private structure
3322 *
3323 * If this function returns with an error, then it's possible one or
3324 * more of the rings is populated (while the rest are not). It is the
3325 * callers duty to clean those orphaned rings.
3326 *
3327 * Return 0 on success, negative on failure
3328 **/
3329static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3330{
3331 int i, err = 0;
3332
3333 for (i = 0; i < adapter->num_active_queues; i++) {
3334 adapter->tx_rings[i].count = adapter->tx_desc_count;
3335 err = iavf_setup_tx_descriptors(tx_ring: &adapter->tx_rings[i]);
3336 if (!err)
3337 continue;
3338 dev_err(&adapter->pdev->dev,
3339 "Allocation for Tx Queue %u failed\n", i);
3340 break;
3341 }
3342
3343 return err;
3344}
3345
3346/**
3347 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3348 * @adapter: board private structure
3349 *
3350 * If this function returns with an error, then it's possible one or
3351 * more of the rings is populated (while the rest are not). It is the
3352 * callers duty to clean those orphaned rings.
3353 *
3354 * Return 0 on success, negative on failure
3355 **/
3356static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3357{
3358 int i, err = 0;
3359
3360 for (i = 0; i < adapter->num_active_queues; i++) {
3361 adapter->rx_rings[i].count = adapter->rx_desc_count;
3362 err = iavf_setup_rx_descriptors(rx_ring: &adapter->rx_rings[i]);
3363 if (!err)
3364 continue;
3365 dev_err(&adapter->pdev->dev,
3366 "Allocation for Rx Queue %u failed\n", i);
3367 break;
3368 }
3369 return err;
3370}
3371
3372/**
3373 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3374 * @adapter: board private structure
3375 *
3376 * Free all receive software resources
3377 **/
3378void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3379{
3380 int i;
3381
3382 if (!adapter->rx_rings)
3383 return;
3384
3385 for (i = 0; i < adapter->num_active_queues; i++)
3386 if (adapter->rx_rings[i].desc)
3387 iavf_free_rx_resources(rx_ring: &adapter->rx_rings[i]);
3388}
3389
3390/**
3391 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3392 * @adapter: board private structure
3393 * @max_tx_rate: max Tx bw for a tc
3394 **/
3395static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3396 u64 max_tx_rate)
3397{
3398 int speed = 0, ret = 0;
3399
3400 if (ADV_LINK_SUPPORT(adapter)) {
3401 if (adapter->link_speed_mbps < U32_MAX) {
3402 speed = adapter->link_speed_mbps;
3403 goto validate_bw;
3404 } else {
3405 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3406 return -EINVAL;
3407 }
3408 }
3409
3410 switch (adapter->link_speed) {
3411 case VIRTCHNL_LINK_SPEED_40GB:
3412 speed = SPEED_40000;
3413 break;
3414 case VIRTCHNL_LINK_SPEED_25GB:
3415 speed = SPEED_25000;
3416 break;
3417 case VIRTCHNL_LINK_SPEED_20GB:
3418 speed = SPEED_20000;
3419 break;
3420 case VIRTCHNL_LINK_SPEED_10GB:
3421 speed = SPEED_10000;
3422 break;
3423 case VIRTCHNL_LINK_SPEED_5GB:
3424 speed = SPEED_5000;
3425 break;
3426 case VIRTCHNL_LINK_SPEED_2_5GB:
3427 speed = SPEED_2500;
3428 break;
3429 case VIRTCHNL_LINK_SPEED_1GB:
3430 speed = SPEED_1000;
3431 break;
3432 case VIRTCHNL_LINK_SPEED_100MB:
3433 speed = SPEED_100;
3434 break;
3435 default:
3436 break;
3437 }
3438
3439validate_bw:
3440 if (max_tx_rate > speed) {
3441 dev_err(&adapter->pdev->dev,
3442 "Invalid tx rate specified\n");
3443 ret = -EINVAL;
3444 }
3445
3446 return ret;
3447}
3448
3449/**
3450 * iavf_validate_ch_config - validate queue mapping info
3451 * @adapter: board private structure
3452 * @mqprio_qopt: queue parameters
3453 *
3454 * This function validates if the config provided by the user to
3455 * configure queue channels is valid or not. Returns 0 on a valid
3456 * config.
3457 **/
3458static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3459 struct tc_mqprio_qopt_offload *mqprio_qopt)
3460{
3461 u64 total_max_rate = 0;
3462 u32 tx_rate_rem = 0;
3463 int i, num_qps = 0;
3464 u64 tx_rate = 0;
3465 int ret = 0;
3466
3467 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3468 mqprio_qopt->qopt.num_tc < 1)
3469 return -EINVAL;
3470
3471 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3472 if (!mqprio_qopt->qopt.count[i] ||
3473 mqprio_qopt->qopt.offset[i] != num_qps)
3474 return -EINVAL;
3475 if (mqprio_qopt->min_rate[i]) {
3476 dev_err(&adapter->pdev->dev,
3477 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3478 i);
3479 return -EINVAL;
3480 }
3481
3482 /* convert to Mbps */
3483 tx_rate = div_u64(dividend: mqprio_qopt->max_rate[i],
3484 IAVF_MBPS_DIVISOR);
3485
3486 if (mqprio_qopt->max_rate[i] &&
3487 tx_rate < IAVF_MBPS_QUANTA) {
3488 dev_err(&adapter->pdev->dev,
3489 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3490 i, IAVF_MBPS_QUANTA);
3491 return -EINVAL;
3492 }
3493
3494 (void)div_u64_rem(dividend: tx_rate, IAVF_MBPS_QUANTA, remainder: &tx_rate_rem);
3495
3496 if (tx_rate_rem != 0) {
3497 dev_err(&adapter->pdev->dev,
3498 "Invalid max tx rate for TC%d, not divisible by %d\n",
3499 i, IAVF_MBPS_QUANTA);
3500 return -EINVAL;
3501 }
3502
3503 total_max_rate += tx_rate;
3504 num_qps += mqprio_qopt->qopt.count[i];
3505 }
3506 if (num_qps > adapter->num_active_queues) {
3507 dev_err(&adapter->pdev->dev,
3508 "Cannot support requested number of queues\n");
3509 return -EINVAL;
3510 }
3511
3512 ret = iavf_validate_tx_bandwidth(adapter, max_tx_rate: total_max_rate);
3513 return ret;
3514}
3515
3516/**
3517 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3518 * @adapter: board private structure
3519 **/
3520static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3521{
3522 struct iavf_cloud_filter *cf, *cftmp;
3523
3524 spin_lock_bh(lock: &adapter->cloud_filter_list_lock);
3525 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3526 list) {
3527 list_del(entry: &cf->list);
3528 kfree(objp: cf);
3529 adapter->num_cloud_filters--;
3530 }
3531 spin_unlock_bh(lock: &adapter->cloud_filter_list_lock);
3532}
3533
3534/**
3535 * __iavf_setup_tc - configure multiple traffic classes
3536 * @netdev: network interface device structure
3537 * @type_data: tc offload data
3538 *
3539 * This function processes the config information provided by the
3540 * user to configure traffic classes/queue channels and packages the
3541 * information to request the PF to setup traffic classes.
3542 *
3543 * Returns 0 on success.
3544 **/
3545static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3546{
3547 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3548 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
3549 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3550 u8 num_tc = 0, total_qps = 0;
3551 int ret = 0, netdev_tc = 0;
3552 u64 max_tx_rate;
3553 u16 mode;
3554 int i;
3555
3556 num_tc = mqprio_qopt->qopt.num_tc;
3557 mode = mqprio_qopt->mode;
3558
3559 /* delete queue_channel */
3560 if (!mqprio_qopt->qopt.hw) {
3561 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3562 /* reset the tc configuration */
3563 netdev_reset_tc(dev: netdev);
3564 adapter->num_tc = 0;
3565 netif_tx_stop_all_queues(dev: netdev);
3566 netif_tx_disable(dev: netdev);
3567 iavf_del_all_cloud_filters(adapter);
3568 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3569 total_qps = adapter->orig_num_active_queues;
3570 goto exit;
3571 } else {
3572 return -EINVAL;
3573 }
3574 }
3575
3576 /* add queue channel */
3577 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3578 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3579 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3580 return -EOPNOTSUPP;
3581 }
3582 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3583 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3584 return -EINVAL;
3585 }
3586
3587 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3588 if (ret)
3589 return ret;
3590 /* Return if same TC config is requested */
3591 if (adapter->num_tc == num_tc)
3592 return 0;
3593 adapter->num_tc = num_tc;
3594
3595 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3596 if (i < num_tc) {
3597 adapter->ch_config.ch_info[i].count =
3598 mqprio_qopt->qopt.count[i];
3599 adapter->ch_config.ch_info[i].offset =
3600 mqprio_qopt->qopt.offset[i];
3601 total_qps += mqprio_qopt->qopt.count[i];
3602 max_tx_rate = mqprio_qopt->max_rate[i];
3603 /* convert to Mbps */
3604 max_tx_rate = div_u64(dividend: max_tx_rate,
3605 IAVF_MBPS_DIVISOR);
3606 adapter->ch_config.ch_info[i].max_tx_rate =
3607 max_tx_rate;
3608 } else {
3609 adapter->ch_config.ch_info[i].count = 1;
3610 adapter->ch_config.ch_info[i].offset = 0;
3611 }
3612 }
3613
3614 /* Take snapshot of original config such as "num_active_queues"
3615 * It is used later when delete ADQ flow is exercised, so that
3616 * once delete ADQ flow completes, VF shall go back to its
3617 * original queue configuration
3618 */
3619
3620 adapter->orig_num_active_queues = adapter->num_active_queues;
3621
3622 /* Store queue info based on TC so that VF gets configured
3623 * with correct number of queues when VF completes ADQ config
3624 * flow
3625 */
3626 adapter->ch_config.total_qps = total_qps;
3627
3628 netif_tx_stop_all_queues(dev: netdev);
3629 netif_tx_disable(dev: netdev);
3630 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3631 netdev_reset_tc(dev: netdev);
3632 /* Report the tc mapping up the stack */
3633 netdev_set_num_tc(dev: adapter->netdev, num_tc);
3634 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3635 u16 qcount = mqprio_qopt->qopt.count[i];
3636 u16 qoffset = mqprio_qopt->qopt.offset[i];
3637
3638 if (i < num_tc)
3639 netdev_set_tc_queue(dev: netdev, tc: netdev_tc++, count: qcount,
3640 offset: qoffset);
3641 }
3642 }
3643exit:
3644 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3645 return 0;
3646
3647 netif_set_real_num_rx_queues(dev: netdev, rxq: total_qps);
3648 netif_set_real_num_tx_queues(dev: netdev, txq: total_qps);
3649
3650 return ret;
3651}
3652
3653/**
3654 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3655 * @adapter: board private structure
3656 * @f: pointer to struct flow_cls_offload
3657 * @filter: pointer to cloud filter structure
3658 */
3659static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3660 struct flow_cls_offload *f,
3661 struct iavf_cloud_filter *filter)
3662{
3663 struct flow_rule *rule = flow_cls_offload_flow_rule(flow_cmd: f);
3664 struct flow_dissector *dissector = rule->match.dissector;
3665 u16 n_proto_mask = 0;
3666 u16 n_proto_key = 0;
3667 u8 field_flags = 0;
3668 u16 addr_type = 0;
3669 u16 n_proto = 0;
3670 int i = 0;
3671 struct virtchnl_filter *vf = &filter->f;
3672
3673 if (dissector->used_keys &
3674 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3675 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3676 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3677 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3678 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3679 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3680 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3681 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3682 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3683 dissector->used_keys);
3684 return -EOPNOTSUPP;
3685 }
3686
3687 if (flow_rule_match_key(rule, key: FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3688 struct flow_match_enc_keyid match;
3689
3690 flow_rule_match_enc_keyid(rule, out: &match);
3691 if (match.mask->keyid != 0)
3692 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3693 }
3694
3695 if (flow_rule_match_key(rule, key: FLOW_DISSECTOR_KEY_BASIC)) {
3696 struct flow_match_basic match;
3697
3698 flow_rule_match_basic(rule, out: &match);
3699 n_proto_key = ntohs(match.key->n_proto);
3700 n_proto_mask = ntohs(match.mask->n_proto);
3701
3702 if (n_proto_key == ETH_P_ALL) {
3703 n_proto_key = 0;
3704 n_proto_mask = 0;
3705 }
3706 n_proto = n_proto_key & n_proto_mask;
3707 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3708 return -EINVAL;
3709 if (n_proto == ETH_P_IPV6) {
3710 /* specify flow type as TCP IPv6 */
3711 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3712 }
3713
3714 if (match.key->ip_proto != IPPROTO_TCP) {
3715 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3716 return -EINVAL;
3717 }
3718 }
3719
3720 if (flow_rule_match_key(rule, key: FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3721 struct flow_match_eth_addrs match;
3722
3723 flow_rule_match_eth_addrs(rule, out: &match);
3724
3725 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3726 if (!is_zero_ether_addr(addr: match.mask->dst)) {
3727 if (is_broadcast_ether_addr(addr: match.mask->dst)) {
3728 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3729 } else {
3730 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3731 match.mask->dst);
3732 return -EINVAL;
3733 }
3734 }
3735
3736 if (!is_zero_ether_addr(addr: match.mask->src)) {
3737 if (is_broadcast_ether_addr(addr: match.mask->src)) {
3738 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3739 } else {
3740 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3741 match.mask->src);
3742 return -EINVAL;
3743 }
3744 }
3745
3746 if (!is_zero_ether_addr(addr: match.key->dst))
3747 if (is_valid_ether_addr(addr: match.key->dst) ||
3748 is_multicast_ether_addr(addr: match.key->dst)) {
3749 /* set the mask if a valid dst_mac address */
3750 for (i = 0; i < ETH_ALEN; i++)
3751 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3752 ether_addr_copy(dst: vf->data.tcp_spec.dst_mac,
3753 src: match.key->dst);
3754 }
3755
3756 if (!is_zero_ether_addr(addr: match.key->src))
3757 if (is_valid_ether_addr(addr: match.key->src) ||
3758 is_multicast_ether_addr(addr: match.key->src)) {
3759 /* set the mask if a valid dst_mac address */
3760 for (i = 0; i < ETH_ALEN; i++)
3761 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3762 ether_addr_copy(dst: vf->data.tcp_spec.src_mac,
3763 src: match.key->src);
3764 }
3765 }
3766
3767 if (flow_rule_match_key(rule, key: FLOW_DISSECTOR_KEY_VLAN)) {
3768 struct flow_match_vlan match;
3769
3770 flow_rule_match_vlan(rule, out: &match);
3771 if (match.mask->vlan_id) {
3772 if (match.mask->vlan_id == VLAN_VID_MASK) {
3773 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3774 } else {
3775 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3776 match.mask->vlan_id);
3777 return -EINVAL;
3778 }
3779 }
3780 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3781 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3782 }
3783
3784 if (flow_rule_match_key(rule, key: FLOW_DISSECTOR_KEY_CONTROL)) {
3785 struct flow_match_control match;
3786
3787 flow_rule_match_control(rule, out: &match);
3788 addr_type = match.key->addr_type;
3789 }
3790
3791 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3792 struct flow_match_ipv4_addrs match;
3793
3794 flow_rule_match_ipv4_addrs(rule, out: &match);
3795 if (match.mask->dst) {
3796 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3797 field_flags |= IAVF_CLOUD_FIELD_IIP;
3798 } else {
3799 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3800 be32_to_cpu(match.mask->dst));
3801 return -EINVAL;
3802 }
3803 }
3804
3805 if (match.mask->src) {
3806 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3807 field_flags |= IAVF_CLOUD_FIELD_IIP;
3808 } else {
3809 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3810 be32_to_cpu(match.mask->src));
3811 return -EINVAL;
3812 }
3813 }
3814
3815 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3816 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3817 return -EINVAL;
3818 }
3819 if (match.key->dst) {
3820 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3821 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3822 }
3823 if (match.key->src) {
3824 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3825 vf->data.tcp_spec.src_ip[0] = match.key->src;
3826 }
3827 }
3828
3829 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3830 struct flow_match_ipv6_addrs match;
3831
3832 flow_rule_match_ipv6_addrs(rule, out: &match);
3833
3834 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3835 if (ipv6_addr_any(a: &match.mask->dst)) {
3836 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3837 IPV6_ADDR_ANY);
3838 return -EINVAL;
3839 }
3840
3841 /* src and dest IPv6 address should not be LOOPBACK
3842 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3843 */
3844 if (ipv6_addr_loopback(a: &match.key->dst) ||
3845 ipv6_addr_loopback(a: &match.key->src)) {
3846 dev_err(&adapter->pdev->dev,
3847 "ipv6 addr should not be loopback\n");
3848 return -EINVAL;
3849 }
3850 if (!ipv6_addr_any(a: &match.mask->dst) ||
3851 !ipv6_addr_any(a: &match.mask->src))
3852 field_flags |= IAVF_CLOUD_FIELD_IIP;
3853
3854 for (i = 0; i < 4; i++)
3855 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3856 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3857 sizeof(vf->data.tcp_spec.dst_ip));
3858 for (i = 0; i < 4; i++)
3859 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3860 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3861 sizeof(vf->data.tcp_spec.src_ip));
3862 }
3863 if (flow_rule_match_key(rule, key: FLOW_DISSECTOR_KEY_PORTS)) {
3864 struct flow_match_ports match;
3865
3866 flow_rule_match_ports(rule, out: &match);
3867 if (match.mask->src) {
3868 if (match.mask->src == cpu_to_be16(0xffff)) {
3869 field_flags |= IAVF_CLOUD_FIELD_IIP;
3870 } else {
3871 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3872 be16_to_cpu(match.mask->src));
3873 return -EINVAL;
3874 }
3875 }
3876
3877 if (match.mask->dst) {
3878 if (match.mask->dst == cpu_to_be16(0xffff)) {
3879 field_flags |= IAVF_CLOUD_FIELD_IIP;
3880 } else {
3881 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3882 be16_to_cpu(match.mask->dst));
3883 return -EINVAL;
3884 }
3885 }
3886 if (match.key->dst) {
3887 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3888 vf->data.tcp_spec.dst_port = match.key->dst;
3889 }
3890
3891 if (match.key->src) {
3892 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3893 vf->data.tcp_spec.src_port = match.key->src;
3894 }
3895 }
3896 vf->field_flags = field_flags;
3897
3898 return 0;
3899}
3900
3901/**
3902 * iavf_handle_tclass - Forward to a traffic class on the device
3903 * @adapter: board private structure
3904 * @tc: traffic class index on the device
3905 * @filter: pointer to cloud filter structure
3906 */
3907static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3908 struct iavf_cloud_filter *filter)
3909{
3910 if (tc == 0)
3911 return 0;
3912 if (tc < adapter->num_tc) {
3913 if (!filter->f.data.tcp_spec.dst_port) {
3914 dev_err(&adapter->pdev->dev,
3915 "Specify destination port to redirect to traffic class other than TC0\n");
3916 return -EINVAL;
3917 }
3918 }
3919 /* redirect to a traffic class on the same device */
3920 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3921 filter->f.action_meta = tc;
3922 return 0;
3923}
3924
3925/**
3926 * iavf_find_cf - Find the cloud filter in the list
3927 * @adapter: Board private structure
3928 * @cookie: filter specific cookie
3929 *
3930 * Returns ptr to the filter object or NULL. Must be called while holding the
3931 * cloud_filter_list_lock.
3932 */
3933static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3934 unsigned long *cookie)
3935{
3936 struct iavf_cloud_filter *filter = NULL;
3937
3938 if (!cookie)
3939 return NULL;
3940
3941 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3942 if (!memcmp(p: cookie, q: &filter->cookie, size: sizeof(filter->cookie)))
3943 return filter;
3944 }
3945 return NULL;
3946}
3947
3948/**
3949 * iavf_configure_clsflower - Add tc flower filters
3950 * @adapter: board private structure
3951 * @cls_flower: Pointer to struct flow_cls_offload
3952 */
3953static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3954 struct flow_cls_offload *cls_flower)
3955{
3956 int tc = tc_classid_to_hwtc(dev: adapter->netdev, classid: cls_flower->classid);
3957 struct iavf_cloud_filter *filter = NULL;
3958 int err = -EINVAL, count = 50;
3959
3960 if (tc < 0) {
3961 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3962 return -EINVAL;
3963 }
3964
3965 filter = kzalloc(size: sizeof(*filter), GFP_KERNEL);
3966 if (!filter)
3967 return -ENOMEM;
3968
3969 while (!mutex_trylock(lock: &adapter->crit_lock)) {
3970 if (--count == 0) {
3971 kfree(objp: filter);
3972 return err;
3973 }
3974 udelay(1);
3975 }
3976
3977 filter->cookie = cls_flower->cookie;
3978
3979 /* bail out here if filter already exists */
3980 spin_lock_bh(lock: &adapter->cloud_filter_list_lock);
3981 if (iavf_find_cf(adapter, cookie: &cls_flower->cookie)) {
3982 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3983 err = -EEXIST;
3984 goto spin_unlock;
3985 }
3986 spin_unlock_bh(lock: &adapter->cloud_filter_list_lock);
3987
3988 /* set the mask to all zeroes to begin with */
3989 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3990 /* start out with flow type and eth type IPv4 to begin with */
3991 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3992 err = iavf_parse_cls_flower(adapter, f: cls_flower, filter);
3993 if (err)
3994 goto err;
3995
3996 err = iavf_handle_tclass(adapter, tc, filter);
3997 if (err)
3998 goto err;
3999
4000 /* add filter to the list */
4001 spin_lock_bh(lock: &adapter->cloud_filter_list_lock);
4002 list_add_tail(new: &filter->list, head: &adapter->cloud_filter_list);
4003 adapter->num_cloud_filters++;
4004 filter->add = true;
4005 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4006spin_unlock:
4007 spin_unlock_bh(lock: &adapter->cloud_filter_list_lock);
4008err:
4009 if (err)
4010 kfree(objp: filter);
4011
4012 mutex_unlock(lock: &adapter->crit_lock);
4013 return err;
4014}
4015
4016/**
4017 * iavf_delete_clsflower - Remove tc flower filters
4018 * @adapter: board private structure
4019 * @cls_flower: Pointer to struct flow_cls_offload
4020 */
4021static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4022 struct flow_cls_offload *cls_flower)
4023{
4024 struct iavf_cloud_filter *filter = NULL;
4025 int err = 0;
4026
4027 spin_lock_bh(lock: &adapter->cloud_filter_list_lock);
4028 filter = iavf_find_cf(adapter, cookie: &cls_flower->cookie);
4029 if (filter) {
4030 filter->del = true;
4031 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4032 } else {
4033 err = -EINVAL;
4034 }
4035 spin_unlock_bh(lock: &adapter->cloud_filter_list_lock);
4036
4037 return err;
4038}
4039
4040/**
4041 * iavf_setup_tc_cls_flower - flower classifier offloads
4042 * @adapter: board private structure
4043 * @cls_flower: pointer to flow_cls_offload struct with flow info
4044 */
4045static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4046 struct flow_cls_offload *cls_flower)
4047{
4048 switch (cls_flower->command) {
4049 case FLOW_CLS_REPLACE:
4050 return iavf_configure_clsflower(adapter, cls_flower);
4051 case FLOW_CLS_DESTROY:
4052 return iavf_delete_clsflower(adapter, cls_flower);
4053 case FLOW_CLS_STATS:
4054 return -EOPNOTSUPP;
4055 default:
4056 return -EOPNOTSUPP;
4057 }
4058}
4059
4060/**
4061 * iavf_setup_tc_block_cb - block callback for tc
4062 * @type: type of offload
4063 * @type_data: offload data
4064 * @cb_priv:
4065 *
4066 * This function is the block callback for traffic classes
4067 **/
4068static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4069 void *cb_priv)
4070{
4071 struct iavf_adapter *adapter = cb_priv;
4072
4073 if (!tc_cls_can_offload_and_chain0(dev: adapter->netdev, common: type_data))
4074 return -EOPNOTSUPP;
4075
4076 switch (type) {
4077 case TC_SETUP_CLSFLOWER:
4078 return iavf_setup_tc_cls_flower(adapter: cb_priv, cls_flower: type_data);
4079 default:
4080 return -EOPNOTSUPP;
4081 }
4082}
4083
4084static LIST_HEAD(iavf_block_cb_list);
4085
4086/**
4087 * iavf_setup_tc - configure multiple traffic classes
4088 * @netdev: network interface device structure
4089 * @type: type of offload
4090 * @type_data: tc offload data
4091 *
4092 * This function is the callback to ndo_setup_tc in the
4093 * netdev_ops.
4094 *
4095 * Returns 0 on success
4096 **/
4097static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4098 void *type_data)
4099{
4100 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
4101
4102 switch (type) {
4103 case TC_SETUP_QDISC_MQPRIO:
4104 return __iavf_setup_tc(netdev, type_data);
4105 case TC_SETUP_BLOCK:
4106 return flow_block_cb_setup_simple(f: type_data,
4107 driver_list: &iavf_block_cb_list,
4108 cb: iavf_setup_tc_block_cb,
4109 cb_ident: adapter, cb_priv: adapter, ingress_only: true);
4110 default:
4111 return -EOPNOTSUPP;
4112 }
4113}
4114
4115/**
4116 * iavf_open - Called when a network interface is made active
4117 * @netdev: network interface device structure
4118 *
4119 * Returns 0 on success, negative value on failure
4120 *
4121 * The open entry point is called when a network interface is made
4122 * active by the system (IFF_UP). At this point all resources needed
4123 * for transmit and receive operations are allocated, the interrupt
4124 * handler is registered with the OS, the watchdog is started,
4125 * and the stack is notified that the interface is ready.
4126 **/
4127static int iavf_open(struct net_device *netdev)
4128{
4129 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
4130 int err;
4131
4132 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4133 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4134 return -EIO;
4135 }
4136
4137 while (!mutex_trylock(lock: &adapter->crit_lock)) {
4138 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4139 * is already taken and iavf_open is called from an upper
4140 * device's notifier reacting on NETDEV_REGISTER event.
4141 * We have to leave here to avoid dead lock.
4142 */
4143 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4144 return -EBUSY;
4145
4146 usleep_range(min: 500, max: 1000);
4147 }
4148
4149 if (adapter->state != __IAVF_DOWN) {
4150 err = -EBUSY;
4151 goto err_unlock;
4152 }
4153
4154 if (adapter->state == __IAVF_RUNNING &&
4155 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4156 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4157 err = 0;
4158 goto err_unlock;
4159 }
4160
4161 /* allocate transmit descriptors */
4162 err = iavf_setup_all_tx_resources(adapter);
4163 if (err)
4164 goto err_setup_tx;
4165
4166 /* allocate receive descriptors */
4167 err = iavf_setup_all_rx_resources(adapter);
4168 if (err)
4169 goto err_setup_rx;
4170
4171 /* clear any pending interrupts, may auto mask */
4172 err = iavf_request_traffic_irqs(adapter, basename: netdev->name);
4173 if (err)
4174 goto err_req_irq;
4175
4176 spin_lock_bh(lock: &adapter->mac_vlan_list_lock);
4177
4178 iavf_add_filter(adapter, macaddr: adapter->hw.mac.addr);
4179
4180 spin_unlock_bh(lock: &adapter->mac_vlan_list_lock);
4181
4182 /* Restore VLAN filters that were removed with IFF_DOWN */
4183 iavf_restore_filters(adapter);
4184
4185 iavf_configure(adapter);
4186
4187 iavf_up_complete(adapter);
4188
4189 iavf_irq_enable(adapter, flush: true);
4190
4191 mutex_unlock(lock: &adapter->crit_lock);
4192
4193 return 0;
4194
4195err_req_irq:
4196 iavf_down(adapter);
4197 iavf_free_traffic_irqs(adapter);
4198err_setup_rx:
4199 iavf_free_all_rx_resources(adapter);
4200err_setup_tx:
4201 iavf_free_all_tx_resources(adapter);
4202err_unlock:
4203 mutex_unlock(lock: &adapter->crit_lock);
4204
4205 return err;
4206}
4207
4208/**
4209 * iavf_close - Disables a network interface
4210 * @netdev: network interface device structure
4211 *
4212 * Returns 0, this is not allowed to fail
4213 *
4214 * The close entry point is called when an interface is de-activated
4215 * by the OS. The hardware is still under the drivers control, but
4216 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4217 * are freed, along with all transmit and receive resources.
4218 **/
4219static int iavf_close(struct net_device *netdev)
4220{
4221 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
4222 u64 aq_to_restore;
4223 int status;
4224
4225 mutex_lock(&adapter->crit_lock);
4226
4227 if (adapter->state <= __IAVF_DOWN_PENDING) {
4228 mutex_unlock(lock: &adapter->crit_lock);
4229 return 0;
4230 }
4231
4232 set_bit(nr: __IAVF_VSI_DOWN, addr: adapter->vsi.state);
4233 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4234 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4235 * deadlock with adminq_task() until iavf_close timeouts. We must send
4236 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4237 * disable queues possible for vf. Give only necessary flags to
4238 * iavf_down and save other to set them right before iavf_close()
4239 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4240 * iavf will be in DOWN state.
4241 */
4242 aq_to_restore = adapter->aq_required;
4243 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4244
4245 /* Remove flags which we do not want to send after close or we want to
4246 * send before disable queues.
4247 */
4248 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
4249 IAVF_FLAG_AQ_ENABLE_QUEUES |
4250 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
4251 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
4252 IAVF_FLAG_AQ_ADD_MAC_FILTER |
4253 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
4254 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
4255 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4256
4257 iavf_down(adapter);
4258 iavf_change_state(adapter, state: __IAVF_DOWN_PENDING);
4259 iavf_free_traffic_irqs(adapter);
4260
4261 mutex_unlock(lock: &adapter->crit_lock);
4262
4263 /* We explicitly don't free resources here because the hardware is
4264 * still active and can DMA into memory. Resources are cleared in
4265 * iavf_virtchnl_completion() after we get confirmation from the PF
4266 * driver that the rings have been stopped.
4267 *
4268 * Also, we wait for state to transition to __IAVF_DOWN before
4269 * returning. State change occurs in iavf_virtchnl_completion() after
4270 * VF resources are released (which occurs after PF driver processes and
4271 * responds to admin queue commands).
4272 */
4273
4274 status = wait_event_timeout(adapter->down_waitqueue,
4275 adapter->state == __IAVF_DOWN,
4276 msecs_to_jiffies(500));
4277 if (!status)
4278 netdev_warn(dev: netdev, format: "Device resources not yet released\n");
4279
4280 mutex_lock(&adapter->crit_lock);
4281 adapter->aq_required |= aq_to_restore;
4282 mutex_unlock(lock: &adapter->crit_lock);
4283 return 0;
4284}
4285
4286/**
4287 * iavf_change_mtu - Change the Maximum Transfer Unit
4288 * @netdev: network interface device structure
4289 * @new_mtu: new value for maximum frame size
4290 *
4291 * Returns 0 on success, negative on failure
4292 **/
4293static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4294{
4295 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
4296 int ret = 0;
4297
4298 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4299 netdev->mtu, new_mtu);
4300 netdev->mtu = new_mtu;
4301
4302 if (netif_running(dev: netdev)) {
4303 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4304 ret = iavf_wait_for_reset(adapter);
4305 if (ret < 0)
4306 netdev_warn(dev: netdev, format: "MTU change interrupted waiting for reset");
4307 else if (ret)
4308 netdev_warn(dev: netdev, format: "MTU change timed out waiting for reset");
4309 }
4310
4311 return ret;
4312}
4313
4314#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4315 NETIF_F_HW_VLAN_CTAG_TX | \
4316 NETIF_F_HW_VLAN_STAG_RX | \
4317 NETIF_F_HW_VLAN_STAG_TX)
4318
4319/**
4320 * iavf_set_features - set the netdev feature flags
4321 * @netdev: ptr to the netdev being adjusted
4322 * @features: the feature set that the stack is suggesting
4323 * Note: expects to be called while under rtnl_lock()
4324 **/
4325static int iavf_set_features(struct net_device *netdev,
4326 netdev_features_t features)
4327{
4328 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
4329
4330 /* trigger update on any VLAN feature change */
4331 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4332 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4333 iavf_set_vlan_offload_features(adapter, prev_features: netdev->features,
4334 features);
4335 if (CRC_OFFLOAD_ALLOWED(adapter) &&
4336 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4337 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4338
4339 return 0;
4340}
4341
4342/**
4343 * iavf_features_check - Validate encapsulated packet conforms to limits
4344 * @skb: skb buff
4345 * @dev: This physical port's netdev
4346 * @features: Offload features that the stack believes apply
4347 **/
4348static netdev_features_t iavf_features_check(struct sk_buff *skb,
4349 struct net_device *dev,
4350 netdev_features_t features)
4351{
4352 size_t len;
4353
4354 /* No point in doing any of this if neither checksum nor GSO are
4355 * being requested for this frame. We can rule out both by just
4356 * checking for CHECKSUM_PARTIAL
4357 */
4358 if (skb->ip_summed != CHECKSUM_PARTIAL)
4359 return features;
4360
4361 /* We cannot support GSO if the MSS is going to be less than
4362 * 64 bytes. If it is then we need to drop support for GSO.
4363 */
4364 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4365 features &= ~NETIF_F_GSO_MASK;
4366
4367 /* MACLEN can support at most 63 words */
4368 len = skb_network_header(skb) - skb->data;
4369 if (len & ~(63 * 2))
4370 goto out_err;
4371
4372 /* IPLEN and EIPLEN can support at most 127 dwords */
4373 len = skb_transport_header(skb) - skb_network_header(skb);
4374 if (len & ~(127 * 4))
4375 goto out_err;
4376
4377 if (skb->encapsulation) {
4378 /* L4TUNLEN can support 127 words */
4379 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4380 if (len & ~(127 * 2))
4381 goto out_err;
4382
4383 /* IPLEN can support at most 127 dwords */
4384 len = skb_inner_transport_header(skb) -
4385 skb_inner_network_header(skb);
4386 if (len & ~(127 * 4))
4387 goto out_err;
4388 }
4389
4390 /* No need to validate L4LEN as TCP is the only protocol with a
4391 * flexible value and we support all possible values supported
4392 * by TCP, which is at most 15 dwords
4393 */
4394
4395 return features;
4396out_err:
4397 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4398}
4399
4400/**
4401 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4402 * @adapter: board private structure
4403 *
4404 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4405 * were negotiated determine the VLAN features that can be toggled on and off.
4406 **/
4407static netdev_features_t
4408iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4409{
4410 netdev_features_t hw_features = 0;
4411
4412 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4413 return hw_features;
4414
4415 /* Enable VLAN features if supported */
4416 if (VLAN_ALLOWED(adapter)) {
4417 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4418 NETIF_F_HW_VLAN_CTAG_RX);
4419 } else if (VLAN_V2_ALLOWED(adapter)) {
4420 struct virtchnl_vlan_caps *vlan_v2_caps =
4421 &adapter->vlan_v2_caps;
4422 struct virtchnl_vlan_supported_caps *stripping_support =
4423 &vlan_v2_caps->offloads.stripping_support;
4424 struct virtchnl_vlan_supported_caps *insertion_support =
4425 &vlan_v2_caps->offloads.insertion_support;
4426
4427 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4428 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4429 if (stripping_support->outer &
4430 VIRTCHNL_VLAN_ETHERTYPE_8100)
4431 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4432 if (stripping_support->outer &
4433 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4434 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4435 } else if (stripping_support->inner !=
4436 VIRTCHNL_VLAN_UNSUPPORTED &&
4437 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4438 if (stripping_support->inner &
4439 VIRTCHNL_VLAN_ETHERTYPE_8100)
4440 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4441 }
4442
4443 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4444 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4445 if (insertion_support->outer &
4446 VIRTCHNL_VLAN_ETHERTYPE_8100)
4447 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4448 if (insertion_support->outer &
4449 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4450 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4451 } else if (insertion_support->inner &&
4452 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4453 if (insertion_support->inner &
4454 VIRTCHNL_VLAN_ETHERTYPE_8100)
4455 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4456 }
4457 }
4458
4459 if (CRC_OFFLOAD_ALLOWED(adapter))
4460 hw_features |= NETIF_F_RXFCS;
4461
4462 return hw_features;
4463}
4464
4465/**
4466 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4467 * @adapter: board private structure
4468 *
4469 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4470 * were negotiated determine the VLAN features that are enabled by default.
4471 **/
4472static netdev_features_t
4473iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4474{
4475 netdev_features_t features = 0;
4476
4477 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4478 return features;
4479
4480 if (VLAN_ALLOWED(adapter)) {
4481 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4482 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4483 } else if (VLAN_V2_ALLOWED(adapter)) {
4484 struct virtchnl_vlan_caps *vlan_v2_caps =
4485 &adapter->vlan_v2_caps;
4486 struct virtchnl_vlan_supported_caps *filtering_support =
4487 &vlan_v2_caps->filtering.filtering_support;
4488 struct virtchnl_vlan_supported_caps *stripping_support =
4489 &vlan_v2_caps->offloads.stripping_support;
4490 struct virtchnl_vlan_supported_caps *insertion_support =
4491 &vlan_v2_caps->offloads.insertion_support;
4492 u32 ethertype_init;
4493
4494 /* give priority to outer stripping and don't support both outer
4495 * and inner stripping
4496 */
4497 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4498 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4499 if (stripping_support->outer &
4500 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4501 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4502 features |= NETIF_F_HW_VLAN_CTAG_RX;
4503 else if (stripping_support->outer &
4504 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4505 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4506 features |= NETIF_F_HW_VLAN_STAG_RX;
4507 } else if (stripping_support->inner !=
4508 VIRTCHNL_VLAN_UNSUPPORTED) {
4509 if (stripping_support->inner &
4510 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4511 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4512 features |= NETIF_F_HW_VLAN_CTAG_RX;
4513 }
4514
4515 /* give priority to outer insertion and don't support both outer
4516 * and inner insertion
4517 */
4518 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4519 if (insertion_support->outer &
4520 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4521 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4522 features |= NETIF_F_HW_VLAN_CTAG_TX;
4523 else if (insertion_support->outer &
4524 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4525 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4526 features |= NETIF_F_HW_VLAN_STAG_TX;
4527 } else if (insertion_support->inner !=
4528 VIRTCHNL_VLAN_UNSUPPORTED) {
4529 if (insertion_support->inner &
4530 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4531 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4532 features |= NETIF_F_HW_VLAN_CTAG_TX;
4533 }
4534
4535 /* give priority to outer filtering and don't bother if both
4536 * outer and inner filtering are enabled
4537 */
4538 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4539 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4540 if (filtering_support->outer &
4541 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4542 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4543 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4544 if (filtering_support->outer &
4545 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4546 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4547 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4548 } else if (filtering_support->inner !=
4549 VIRTCHNL_VLAN_UNSUPPORTED) {
4550 if (filtering_support->inner &
4551 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4552 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4553 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4554 if (filtering_support->inner &
4555 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4556 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4557 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4558 }
4559 }
4560
4561 return features;
4562}
4563
4564#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4565 (!(((requested) & (feature_bit)) && \
4566 !((allowed) & (feature_bit))))
4567
4568/**
4569 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4570 * @adapter: board private structure
4571 * @requested_features: stack requested NETDEV features
4572 **/
4573static netdev_features_t
4574iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4575 netdev_features_t requested_features)
4576{
4577 netdev_features_t allowed_features;
4578
4579 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4580 iavf_get_netdev_vlan_features(adapter);
4581
4582 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4583 allowed_features,
4584 NETIF_F_HW_VLAN_CTAG_TX))
4585 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4586
4587 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4588 allowed_features,
4589 NETIF_F_HW_VLAN_CTAG_RX))
4590 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4591
4592 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4593 allowed_features,
4594 NETIF_F_HW_VLAN_STAG_TX))
4595 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4596 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4597 allowed_features,
4598 NETIF_F_HW_VLAN_STAG_RX))
4599 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4600
4601 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4602 allowed_features,
4603 NETIF_F_HW_VLAN_CTAG_FILTER))
4604 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4605
4606 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4607 allowed_features,
4608 NETIF_F_HW_VLAN_STAG_FILTER))
4609 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4610
4611 if ((requested_features &
4612 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4613 (requested_features &
4614 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4615 adapter->vlan_v2_caps.offloads.ethertype_match ==
4616 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4617 netdev_warn(dev: adapter->netdev, format: "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4618 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4619 NETIF_F_HW_VLAN_STAG_TX);
4620 }
4621
4622 return requested_features;
4623}
4624
4625/**
4626 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4627 * @adapter: board private structure
4628 * @requested_features: stack requested NETDEV features
4629 *
4630 * Returns fixed-up features bits
4631 **/
4632static netdev_features_t
4633iavf_fix_strip_features(struct iavf_adapter *adapter,
4634 netdev_features_t requested_features)
4635{
4636 struct net_device *netdev = adapter->netdev;
4637 bool crc_offload_req, is_vlan_strip;
4638 netdev_features_t vlan_strip;
4639 int num_non_zero_vlan;
4640
4641 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4642 (requested_features & NETIF_F_RXFCS);
4643 num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4644 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4645 is_vlan_strip = requested_features & vlan_strip;
4646
4647 if (!crc_offload_req)
4648 return requested_features;
4649
4650 if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4651 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4652 requested_features &= ~vlan_strip;
4653 netdev_info(dev: netdev, format: "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4654 return requested_features;
4655 }
4656
4657 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4658 requested_features &= ~vlan_strip;
4659 if (!(netdev->features & vlan_strip))
4660 netdev_info(dev: netdev, format: "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4661
4662 return requested_features;
4663 }
4664
4665 if (num_non_zero_vlan && is_vlan_strip &&
4666 !(netdev->features & NETIF_F_RXFCS)) {
4667 requested_features &= ~NETIF_F_RXFCS;
4668 netdev_info(dev: netdev, format: "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4669 }
4670
4671 return requested_features;
4672}
4673
4674/**
4675 * iavf_fix_features - fix up the netdev feature bits
4676 * @netdev: our net device
4677 * @features: desired feature bits
4678 *
4679 * Returns fixed-up features bits
4680 **/
4681static netdev_features_t iavf_fix_features(struct net_device *netdev,
4682 netdev_features_t features)
4683{
4684 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
4685
4686 features = iavf_fix_netdev_vlan_features(adapter, requested_features: features);
4687
4688 return iavf_fix_strip_features(adapter, requested_features: features);
4689}
4690
4691static const struct net_device_ops iavf_netdev_ops = {
4692 .ndo_open = iavf_open,
4693 .ndo_stop = iavf_close,
4694 .ndo_start_xmit = iavf_xmit_frame,
4695 .ndo_set_rx_mode = iavf_set_rx_mode,
4696 .ndo_validate_addr = eth_validate_addr,
4697 .ndo_set_mac_address = iavf_set_mac,
4698 .ndo_change_mtu = iavf_change_mtu,
4699 .ndo_tx_timeout = iavf_tx_timeout,
4700 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
4701 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
4702 .ndo_features_check = iavf_features_check,
4703 .ndo_fix_features = iavf_fix_features,
4704 .ndo_set_features = iavf_set_features,
4705 .ndo_setup_tc = iavf_setup_tc,
4706};
4707
4708/**
4709 * iavf_check_reset_complete - check that VF reset is complete
4710 * @hw: pointer to hw struct
4711 *
4712 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4713 **/
4714static int iavf_check_reset_complete(struct iavf_hw *hw)
4715{
4716 u32 rstat;
4717 int i;
4718
4719 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4720 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4721 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4722 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4723 (rstat == VIRTCHNL_VFR_COMPLETED))
4724 return 0;
4725 msleep(IAVF_RESET_WAIT_MS);
4726 }
4727 return -EBUSY;
4728}
4729
4730/**
4731 * iavf_process_config - Process the config information we got from the PF
4732 * @adapter: board private structure
4733 *
4734 * Verify that we have a valid config struct, and set up our netdev features
4735 * and our VSI struct.
4736 **/
4737int iavf_process_config(struct iavf_adapter *adapter)
4738{
4739 struct virtchnl_vf_resource *vfres = adapter->vf_res;
4740 netdev_features_t hw_vlan_features, vlan_features;
4741 struct net_device *netdev = adapter->netdev;
4742 netdev_features_t hw_enc_features;
4743 netdev_features_t hw_features;
4744
4745 hw_enc_features = NETIF_F_SG |
4746 NETIF_F_IP_CSUM |
4747 NETIF_F_IPV6_CSUM |
4748 NETIF_F_HIGHDMA |
4749 NETIF_F_SOFT_FEATURES |
4750 NETIF_F_TSO |
4751 NETIF_F_TSO_ECN |
4752 NETIF_F_TSO6 |
4753 NETIF_F_SCTP_CRC |
4754 NETIF_F_RXHASH |
4755 NETIF_F_RXCSUM |
4756 0;
4757
4758 /* advertise to stack only if offloads for encapsulated packets is
4759 * supported
4760 */
4761 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4762 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
4763 NETIF_F_GSO_GRE |
4764 NETIF_F_GSO_GRE_CSUM |
4765 NETIF_F_GSO_IPXIP4 |
4766 NETIF_F_GSO_IPXIP6 |
4767 NETIF_F_GSO_UDP_TUNNEL_CSUM |
4768 NETIF_F_GSO_PARTIAL |
4769 0;
4770
4771 if (!(vfres->vf_cap_flags &
4772 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4773 netdev->gso_partial_features |=
4774 NETIF_F_GSO_UDP_TUNNEL_CSUM;
4775
4776 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4777 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4778 netdev->hw_enc_features |= hw_enc_features;
4779 }
4780 /* record features VLANs can make use of */
4781 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4782
4783 /* Write features and hw_features separately to avoid polluting
4784 * with, or dropping, features that are set when we registered.
4785 */
4786 hw_features = hw_enc_features;
4787
4788 /* get HW VLAN features that can be toggled */
4789 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4790
4791 /* Enable cloud filter if ADQ is supported */
4792 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4793 hw_features |= NETIF_F_HW_TC;
4794 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4795 hw_features |= NETIF_F_GSO_UDP_L4;
4796
4797 netdev->hw_features |= hw_features | hw_vlan_features;
4798 vlan_features = iavf_get_netdev_vlan_features(adapter);
4799
4800 netdev->features |= hw_features | vlan_features;
4801
4802 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4803 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4804
4805 netdev->priv_flags |= IFF_UNICAST_FLT;
4806
4807 /* Do not turn on offloads when they are requested to be turned off.
4808 * TSO needs minimum 576 bytes to work correctly.
4809 */
4810 if (netdev->wanted_features) {
4811 if (!(netdev->wanted_features & NETIF_F_TSO) ||
4812 netdev->mtu < 576)
4813 netdev->features &= ~NETIF_F_TSO;
4814 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4815 netdev->mtu < 576)
4816 netdev->features &= ~NETIF_F_TSO6;
4817 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4818 netdev->features &= ~NETIF_F_TSO_ECN;
4819 if (!(netdev->wanted_features & NETIF_F_GRO))
4820 netdev->features &= ~NETIF_F_GRO;
4821 if (!(netdev->wanted_features & NETIF_F_GSO))
4822 netdev->features &= ~NETIF_F_GSO;
4823 }
4824
4825 return 0;
4826}
4827
4828/**
4829 * iavf_shutdown - Shutdown the device in preparation for a reboot
4830 * @pdev: pci device structure
4831 **/
4832static void iavf_shutdown(struct pci_dev *pdev)
4833{
4834 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4835 struct net_device *netdev = adapter->netdev;
4836
4837 netif_device_detach(dev: netdev);
4838
4839 if (netif_running(dev: netdev))
4840 iavf_close(netdev);
4841
4842 if (iavf_lock_timeout(lock: &adapter->crit_lock, msecs: 5000))
4843 dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__);
4844 /* Prevent the watchdog from running. */
4845 iavf_change_state(adapter, state: __IAVF_REMOVE);
4846 adapter->aq_required = 0;
4847 mutex_unlock(lock: &adapter->crit_lock);
4848
4849#ifdef CONFIG_PM
4850 pci_save_state(dev: pdev);
4851
4852#endif
4853 pci_disable_device(dev: pdev);
4854}
4855
4856/**
4857 * iavf_probe - Device Initialization Routine
4858 * @pdev: PCI device information struct
4859 * @ent: entry in iavf_pci_tbl
4860 *
4861 * Returns 0 on success, negative on failure
4862 *
4863 * iavf_probe initializes an adapter identified by a pci_dev structure.
4864 * The OS initialization, configuring of the adapter private structure,
4865 * and a hardware reset occur.
4866 **/
4867static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4868{
4869 struct net_device *netdev;
4870 struct iavf_adapter *adapter = NULL;
4871 struct iavf_hw *hw = NULL;
4872 int err;
4873
4874 err = pci_enable_device(dev: pdev);
4875 if (err)
4876 return err;
4877
4878 err = dma_set_mask_and_coherent(dev: &pdev->dev, DMA_BIT_MASK(64));
4879 if (err) {
4880 dev_err(&pdev->dev,
4881 "DMA configuration failed: 0x%x\n", err);
4882 goto err_dma;
4883 }
4884
4885 err = pci_request_regions(pdev, iavf_driver_name);
4886 if (err) {
4887 dev_err(&pdev->dev,
4888 "pci_request_regions failed 0x%x\n", err);
4889 goto err_pci_reg;
4890 }
4891
4892 pci_set_master(dev: pdev);
4893
4894 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4895 IAVF_MAX_REQ_QUEUES);
4896 if (!netdev) {
4897 err = -ENOMEM;
4898 goto err_alloc_etherdev;
4899 }
4900
4901 SET_NETDEV_DEV(netdev, &pdev->dev);
4902
4903 pci_set_drvdata(pdev, data: netdev);
4904 adapter = netdev_priv(dev: netdev);
4905
4906 adapter->netdev = netdev;
4907 adapter->pdev = pdev;
4908
4909 hw = &adapter->hw;
4910 hw->back = adapter;
4911
4912 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4913 iavf_driver_name);
4914 if (!adapter->wq) {
4915 err = -ENOMEM;
4916 goto err_alloc_wq;
4917 }
4918
4919 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4920 iavf_change_state(adapter, state: __IAVF_STARTUP);
4921
4922 /* Call save state here because it relies on the adapter struct. */
4923 pci_save_state(dev: pdev);
4924
4925 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4926 pci_resource_len(pdev, 0));
4927 if (!hw->hw_addr) {
4928 err = -EIO;
4929 goto err_ioremap;
4930 }
4931 hw->vendor_id = pdev->vendor;
4932 hw->device_id = pdev->device;
4933 pci_read_config_byte(dev: pdev, PCI_REVISION_ID, val: &hw->revision_id);
4934 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4935 hw->subsystem_device_id = pdev->subsystem_device;
4936 hw->bus.device = PCI_SLOT(pdev->devfn);
4937 hw->bus.func = PCI_FUNC(pdev->devfn);
4938 hw->bus.bus_id = pdev->bus->number;
4939
4940 /* set up the locks for the AQ, do this only once in probe
4941 * and destroy them only once in remove
4942 */
4943 mutex_init(&adapter->crit_lock);
4944 mutex_init(&hw->aq.asq_mutex);
4945 mutex_init(&hw->aq.arq_mutex);
4946
4947 spin_lock_init(&adapter->mac_vlan_list_lock);
4948 spin_lock_init(&adapter->cloud_filter_list_lock);
4949 spin_lock_init(&adapter->fdir_fltr_lock);
4950 spin_lock_init(&adapter->adv_rss_lock);
4951 spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
4952
4953 INIT_LIST_HEAD(list: &adapter->mac_filter_list);
4954 INIT_LIST_HEAD(list: &adapter->vlan_filter_list);
4955 INIT_LIST_HEAD(list: &adapter->cloud_filter_list);
4956 INIT_LIST_HEAD(list: &adapter->fdir_list_head);
4957 INIT_LIST_HEAD(list: &adapter->adv_rss_list_head);
4958
4959 INIT_WORK(&adapter->reset_task, iavf_reset_task);
4960 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4961 INIT_WORK(&adapter->finish_config, iavf_finish_config);
4962 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4963
4964 /* Setup the wait queue for indicating transition to down status */
4965 init_waitqueue_head(&adapter->down_waitqueue);
4966
4967 /* Setup the wait queue for indicating transition to running state */
4968 init_waitqueue_head(&adapter->reset_waitqueue);
4969
4970 /* Setup the wait queue for indicating virtchannel events */
4971 init_waitqueue_head(&adapter->vc_waitqueue);
4972
4973 queue_delayed_work(wq: adapter->wq, dwork: &adapter->watchdog_task,
4974 delay: msecs_to_jiffies(m: 5 * (pdev->devfn & 0x07)));
4975 /* Initialization goes on in the work. Do not add more of it below. */
4976 return 0;
4977
4978err_ioremap:
4979 destroy_workqueue(wq: adapter->wq);
4980err_alloc_wq:
4981 free_netdev(dev: netdev);
4982err_alloc_etherdev:
4983 pci_release_regions(pdev);
4984err_pci_reg:
4985err_dma:
4986 pci_disable_device(dev: pdev);
4987 return err;
4988}
4989
4990/**
4991 * iavf_suspend - Power management suspend routine
4992 * @dev_d: device info pointer
4993 *
4994 * Called when the system (VM) is entering sleep/suspend.
4995 **/
4996static int __maybe_unused iavf_suspend(struct device *dev_d)
4997{
4998 struct net_device *netdev = dev_get_drvdata(dev: dev_d);
4999 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
5000
5001 netif_device_detach(dev: netdev);
5002
5003 mutex_lock(&adapter->crit_lock);
5004
5005 if (netif_running(dev: netdev)) {
5006 rtnl_lock();
5007 iavf_down(adapter);
5008 rtnl_unlock();
5009 }
5010 iavf_free_misc_irq(adapter);
5011 iavf_reset_interrupt_capability(adapter);
5012
5013 mutex_unlock(lock: &adapter->crit_lock);
5014
5015 return 0;
5016}
5017
5018/**
5019 * iavf_resume - Power management resume routine
5020 * @dev_d: device info pointer
5021 *
5022 * Called when the system (VM) is resumed from sleep/suspend.
5023 **/
5024static int __maybe_unused iavf_resume(struct device *dev_d)
5025{
5026 struct pci_dev *pdev = to_pci_dev(dev_d);
5027 struct iavf_adapter *adapter;
5028 u32 err;
5029
5030 adapter = iavf_pdev_to_adapter(pdev);
5031
5032 pci_set_master(dev: pdev);
5033
5034 rtnl_lock();
5035 err = iavf_set_interrupt_capability(adapter);
5036 if (err) {
5037 rtnl_unlock();
5038 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5039 return err;
5040 }
5041 err = iavf_request_misc_irq(adapter);
5042 rtnl_unlock();
5043 if (err) {
5044 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5045 return err;
5046 }
5047
5048 queue_work(wq: adapter->wq, work: &adapter->reset_task);
5049
5050 netif_device_attach(dev: adapter->netdev);
5051
5052 return err;
5053}
5054
5055/**
5056 * iavf_remove - Device Removal Routine
5057 * @pdev: PCI device information struct
5058 *
5059 * iavf_remove is called by the PCI subsystem to alert the driver
5060 * that it should release a PCI device. The could be caused by a
5061 * Hot-Plug event, or because the driver is going to be removed from
5062 * memory.
5063 **/
5064static void iavf_remove(struct pci_dev *pdev)
5065{
5066 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
5067 struct iavf_fdir_fltr *fdir, *fdirtmp;
5068 struct iavf_vlan_filter *vlf, *vlftmp;
5069 struct iavf_cloud_filter *cf, *cftmp;
5070 struct iavf_adv_rss *rss, *rsstmp;
5071 struct iavf_mac_filter *f, *ftmp;
5072 struct net_device *netdev;
5073 struct iavf_hw *hw;
5074
5075 netdev = adapter->netdev;
5076 hw = &adapter->hw;
5077
5078 if (test_and_set_bit(nr: __IAVF_IN_REMOVE_TASK, addr: &adapter->crit_section))
5079 return;
5080
5081 /* Wait until port initialization is complete.
5082 * There are flows where register/unregister netdev may race.
5083 */
5084 while (1) {
5085 mutex_lock(&adapter->crit_lock);
5086 if (adapter->state == __IAVF_RUNNING ||
5087 adapter->state == __IAVF_DOWN ||
5088 adapter->state == __IAVF_INIT_FAILED) {
5089 mutex_unlock(lock: &adapter->crit_lock);
5090 break;
5091 }
5092 /* Simply return if we already went through iavf_shutdown */
5093 if (adapter->state == __IAVF_REMOVE) {
5094 mutex_unlock(lock: &adapter->crit_lock);
5095 return;
5096 }
5097
5098 mutex_unlock(lock: &adapter->crit_lock);
5099 usleep_range(min: 500, max: 1000);
5100 }
5101 cancel_delayed_work_sync(dwork: &adapter->watchdog_task);
5102 cancel_work_sync(work: &adapter->finish_config);
5103
5104 if (netdev->reg_state == NETREG_REGISTERED)
5105 unregister_netdev(dev: netdev);
5106
5107 mutex_lock(&adapter->crit_lock);
5108 dev_info(&adapter->pdev->dev, "Removing device\n");
5109 iavf_change_state(adapter, state: __IAVF_REMOVE);
5110
5111 iavf_request_reset(adapter);
5112 msleep(msecs: 50);
5113 /* If the FW isn't responding, kick it once, but only once. */
5114 if (!iavf_asq_done(hw)) {
5115 iavf_request_reset(adapter);
5116 msleep(msecs: 50);
5117 }
5118
5119 iavf_misc_irq_disable(adapter);
5120 /* Shut down all the garbage mashers on the detention level */
5121 cancel_work_sync(work: &adapter->reset_task);
5122 cancel_delayed_work_sync(dwork: &adapter->watchdog_task);
5123 cancel_work_sync(work: &adapter->adminq_task);
5124
5125 adapter->aq_required = 0;
5126 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5127
5128 iavf_free_all_tx_resources(adapter);
5129 iavf_free_all_rx_resources(adapter);
5130 iavf_free_misc_irq(adapter);
5131 iavf_free_interrupt_scheme(adapter);
5132
5133 iavf_free_rss(adapter);
5134
5135 if (hw->aq.asq.count)
5136 iavf_shutdown_adminq(hw);
5137
5138 /* destroy the locks only once, here */
5139 mutex_destroy(lock: &hw->aq.arq_mutex);
5140 mutex_destroy(lock: &hw->aq.asq_mutex);
5141 mutex_unlock(lock: &adapter->crit_lock);
5142 mutex_destroy(lock: &adapter->crit_lock);
5143
5144 iounmap(addr: hw->hw_addr);
5145 pci_release_regions(pdev);
5146 kfree(objp: adapter->vf_res);
5147 spin_lock_bh(lock: &adapter->mac_vlan_list_lock);
5148 /* If we got removed before an up/down sequence, we've got a filter
5149 * hanging out there that we need to get rid of.
5150 */
5151 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5152 list_del(entry: &f->list);
5153 kfree(objp: f);
5154 }
5155 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5156 list) {
5157 list_del(entry: &vlf->list);
5158 kfree(objp: vlf);
5159 }
5160
5161 spin_unlock_bh(lock: &adapter->mac_vlan_list_lock);
5162
5163 spin_lock_bh(lock: &adapter->cloud_filter_list_lock);
5164 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5165 list_del(entry: &cf->list);
5166 kfree(objp: cf);
5167 }
5168 spin_unlock_bh(lock: &adapter->cloud_filter_list_lock);
5169
5170 spin_lock_bh(lock: &adapter->fdir_fltr_lock);
5171 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5172 list_del(entry: &fdir->list);
5173 kfree(objp: fdir);
5174 }
5175 spin_unlock_bh(lock: &adapter->fdir_fltr_lock);
5176
5177 spin_lock_bh(lock: &adapter->adv_rss_lock);
5178 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5179 list) {
5180 list_del(entry: &rss->list);
5181 kfree(objp: rss);
5182 }
5183 spin_unlock_bh(lock: &adapter->adv_rss_lock);
5184
5185 destroy_workqueue(wq: adapter->wq);
5186
5187 free_netdev(dev: netdev);
5188
5189 pci_disable_device(dev: pdev);
5190}
5191
5192static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5193
5194static struct pci_driver iavf_driver = {
5195 .name = iavf_driver_name,
5196 .id_table = iavf_pci_tbl,
5197 .probe = iavf_probe,
5198 .remove = iavf_remove,
5199 .driver.pm = &iavf_pm_ops,
5200 .shutdown = iavf_shutdown,
5201};
5202
5203/**
5204 * iavf_init_module - Driver Registration Routine
5205 *
5206 * iavf_init_module is the first routine called when the driver is
5207 * loaded. All it does is register with the PCI subsystem.
5208 **/
5209static int __init iavf_init_module(void)
5210{
5211 pr_info("iavf: %s\n", iavf_driver_string);
5212
5213 pr_info("%s\n", iavf_copyright);
5214
5215 return pci_register_driver(&iavf_driver);
5216}
5217
5218module_init(iavf_init_module);
5219
5220/**
5221 * iavf_exit_module - Driver Exit Cleanup Routine
5222 *
5223 * iavf_exit_module is called just before the driver is removed
5224 * from memory.
5225 **/
5226static void __exit iavf_exit_module(void)
5227{
5228 pci_unregister_driver(dev: &iavf_driver);
5229}
5230
5231module_exit(iavf_exit_module);
5232
5233/* iavf_main.c */
5234

source code of linux/drivers/net/ethernet/intel/iavf/iavf_main.c