1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/prefetch.h>
5
6#include "iavf.h"
7#include "iavf_trace.h"
8#include "iavf_prototype.h"
9
10static __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
11 u32 td_tag)
12{
13 return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
14 ((u64)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) |
15 ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
16 ((u64)size << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
17 ((u64)td_tag << IAVF_TXD_QW1_L2TAG1_SHIFT));
18}
19
20#define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
21
22/**
23 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
24 * @ring: the ring that owns the buffer
25 * @tx_buffer: the buffer to free
26 **/
27static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
28 struct iavf_tx_buffer *tx_buffer)
29{
30 if (tx_buffer->skb) {
31 if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
32 kfree(objp: tx_buffer->raw_buf);
33 else
34 dev_kfree_skb_any(skb: tx_buffer->skb);
35 if (dma_unmap_len(tx_buffer, len))
36 dma_unmap_single(ring->dev,
37 dma_unmap_addr(tx_buffer, dma),
38 dma_unmap_len(tx_buffer, len),
39 DMA_TO_DEVICE);
40 } else if (dma_unmap_len(tx_buffer, len)) {
41 dma_unmap_page(ring->dev,
42 dma_unmap_addr(tx_buffer, dma),
43 dma_unmap_len(tx_buffer, len),
44 DMA_TO_DEVICE);
45 }
46
47 tx_buffer->next_to_watch = NULL;
48 tx_buffer->skb = NULL;
49 dma_unmap_len_set(tx_buffer, len, 0);
50 /* tx_buffer must be completely set up in the transmit path */
51}
52
53/**
54 * iavf_clean_tx_ring - Free any empty Tx buffers
55 * @tx_ring: ring to be cleaned
56 **/
57static void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
58{
59 unsigned long bi_size;
60 u16 i;
61
62 /* ring already cleared, nothing to do */
63 if (!tx_ring->tx_bi)
64 return;
65
66 /* Free all the Tx ring sk_buffs */
67 for (i = 0; i < tx_ring->count; i++)
68 iavf_unmap_and_free_tx_resource(ring: tx_ring, tx_buffer: &tx_ring->tx_bi[i]);
69
70 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
71 memset(tx_ring->tx_bi, 0, bi_size);
72
73 /* Zero out the descriptor ring */
74 memset(tx_ring->desc, 0, tx_ring->size);
75
76 tx_ring->next_to_use = 0;
77 tx_ring->next_to_clean = 0;
78
79 if (!tx_ring->netdev)
80 return;
81
82 /* cleanup Tx queue statistics */
83 netdev_tx_reset_queue(q: txring_txq(ring: tx_ring));
84}
85
86/**
87 * iavf_free_tx_resources - Free Tx resources per queue
88 * @tx_ring: Tx descriptor ring for a specific queue
89 *
90 * Free all transmit software resources
91 **/
92void iavf_free_tx_resources(struct iavf_ring *tx_ring)
93{
94 iavf_clean_tx_ring(tx_ring);
95 kfree(objp: tx_ring->tx_bi);
96 tx_ring->tx_bi = NULL;
97
98 if (tx_ring->desc) {
99 dma_free_coherent(dev: tx_ring->dev, size: tx_ring->size,
100 cpu_addr: tx_ring->desc, dma_handle: tx_ring->dma);
101 tx_ring->desc = NULL;
102 }
103}
104
105/**
106 * iavf_get_tx_pending - how many Tx descriptors not processed
107 * @ring: the ring of descriptors
108 * @in_sw: is tx_pending being checked in SW or HW
109 *
110 * Since there is no access to the ring head register
111 * in XL710, we need to use our local copies
112 **/
113static u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
114{
115 u32 head, tail;
116
117 /* underlying hardware might not allow access and/or always return
118 * 0 for the head/tail registers so just use the cached values
119 */
120 head = ring->next_to_clean;
121 tail = ring->next_to_use;
122
123 if (head != tail)
124 return (head < tail) ?
125 tail - head : (tail + ring->count - head);
126
127 return 0;
128}
129
130/**
131 * iavf_force_wb - Issue SW Interrupt so HW does a wb
132 * @vsi: the VSI we care about
133 * @q_vector: the vector on which to force writeback
134 **/
135static void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
136{
137 u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
138 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
139 IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
140 IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
141 /* allow 00 to be written to the index */;
142
143 wr32(&vsi->back->hw,
144 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
145 val);
146}
147
148/**
149 * iavf_detect_recover_hung - Function to detect and recover hung_queues
150 * @vsi: pointer to vsi struct with tx queues
151 *
152 * VSI has netdev and netdev has TX queues. This function is to check each of
153 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
154 **/
155void iavf_detect_recover_hung(struct iavf_vsi *vsi)
156{
157 struct iavf_ring *tx_ring = NULL;
158 struct net_device *netdev;
159 unsigned int i;
160 int packets;
161
162 if (!vsi)
163 return;
164
165 if (test_bit(__IAVF_VSI_DOWN, vsi->state))
166 return;
167
168 netdev = vsi->netdev;
169 if (!netdev)
170 return;
171
172 if (!netif_carrier_ok(dev: netdev))
173 return;
174
175 for (i = 0; i < vsi->back->num_active_queues; i++) {
176 tx_ring = &vsi->back->tx_rings[i];
177 if (tx_ring && tx_ring->desc) {
178 /* If packet counter has not changed the queue is
179 * likely stalled, so force an interrupt for this
180 * queue.
181 *
182 * prev_pkt_ctr would be negative if there was no
183 * pending work.
184 */
185 packets = tx_ring->stats.packets & INT_MAX;
186 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
187 iavf_force_wb(vsi, q_vector: tx_ring->q_vector);
188 continue;
189 }
190
191 /* Memory barrier between read of packet count and call
192 * to iavf_get_tx_pending()
193 */
194 smp_rmb();
195 tx_ring->tx_stats.prev_pkt_ctr =
196 iavf_get_tx_pending(ring: tx_ring, in_sw: true) ? packets : -1;
197 }
198 }
199}
200
201#define WB_STRIDE 4
202
203/**
204 * iavf_clean_tx_irq - Reclaim resources after transmit completes
205 * @vsi: the VSI we care about
206 * @tx_ring: Tx ring to clean
207 * @napi_budget: Used to determine if we are in netpoll
208 *
209 * Returns true if there's any budget left (e.g. the clean is finished)
210 **/
211static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
212 struct iavf_ring *tx_ring, int napi_budget)
213{
214 int i = tx_ring->next_to_clean;
215 struct iavf_tx_buffer *tx_buf;
216 struct iavf_tx_desc *tx_desc;
217 unsigned int total_bytes = 0, total_packets = 0;
218 unsigned int budget = IAVF_DEFAULT_IRQ_WORK;
219
220 tx_buf = &tx_ring->tx_bi[i];
221 tx_desc = IAVF_TX_DESC(tx_ring, i);
222 i -= tx_ring->count;
223
224 do {
225 struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
226
227 /* if next_to_watch is not set then there is no work pending */
228 if (!eop_desc)
229 break;
230
231 /* prevent any other reads prior to eop_desc */
232 smp_rmb();
233
234 iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
235 /* if the descriptor isn't done, no work yet to do */
236 if (!(eop_desc->cmd_type_offset_bsz &
237 cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
238 break;
239
240 /* clear next_to_watch to prevent false hangs */
241 tx_buf->next_to_watch = NULL;
242
243 /* update the statistics for this packet */
244 total_bytes += tx_buf->bytecount;
245 total_packets += tx_buf->gso_segs;
246
247 /* free the skb */
248 napi_consume_skb(skb: tx_buf->skb, budget: napi_budget);
249
250 /* unmap skb header data */
251 dma_unmap_single(tx_ring->dev,
252 dma_unmap_addr(tx_buf, dma),
253 dma_unmap_len(tx_buf, len),
254 DMA_TO_DEVICE);
255
256 /* clear tx_buffer data */
257 tx_buf->skb = NULL;
258 dma_unmap_len_set(tx_buf, len, 0);
259
260 /* unmap remaining buffers */
261 while (tx_desc != eop_desc) {
262 iavf_trace(clean_tx_irq_unmap,
263 tx_ring, tx_desc, tx_buf);
264
265 tx_buf++;
266 tx_desc++;
267 i++;
268 if (unlikely(!i)) {
269 i -= tx_ring->count;
270 tx_buf = tx_ring->tx_bi;
271 tx_desc = IAVF_TX_DESC(tx_ring, 0);
272 }
273
274 /* unmap any remaining paged data */
275 if (dma_unmap_len(tx_buf, len)) {
276 dma_unmap_page(tx_ring->dev,
277 dma_unmap_addr(tx_buf, dma),
278 dma_unmap_len(tx_buf, len),
279 DMA_TO_DEVICE);
280 dma_unmap_len_set(tx_buf, len, 0);
281 }
282 }
283
284 /* move us one more past the eop_desc for start of next pkt */
285 tx_buf++;
286 tx_desc++;
287 i++;
288 if (unlikely(!i)) {
289 i -= tx_ring->count;
290 tx_buf = tx_ring->tx_bi;
291 tx_desc = IAVF_TX_DESC(tx_ring, 0);
292 }
293
294 prefetch(tx_desc);
295
296 /* update budget accounting */
297 budget--;
298 } while (likely(budget));
299
300 i += tx_ring->count;
301 tx_ring->next_to_clean = i;
302 u64_stats_update_begin(syncp: &tx_ring->syncp);
303 tx_ring->stats.bytes += total_bytes;
304 tx_ring->stats.packets += total_packets;
305 u64_stats_update_end(syncp: &tx_ring->syncp);
306 tx_ring->q_vector->tx.total_bytes += total_bytes;
307 tx_ring->q_vector->tx.total_packets += total_packets;
308
309 if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
310 /* check to see if there are < 4 descriptors
311 * waiting to be written back, then kick the hardware to force
312 * them to be written back in case we stay in NAPI.
313 * In this mode on X722 we do not enable Interrupt.
314 */
315 unsigned int j = iavf_get_tx_pending(ring: tx_ring, in_sw: false);
316
317 if (budget &&
318 ((j / WB_STRIDE) == 0) && (j > 0) &&
319 !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
320 (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
321 tx_ring->arm_wb = true;
322 }
323
324 /* notify netdev of completed buffers */
325 netdev_tx_completed_queue(dev_queue: txring_txq(ring: tx_ring),
326 pkts: total_packets, bytes: total_bytes);
327
328#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
329 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
330 (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
331 /* Make sure that anybody stopping the queue after this
332 * sees the new next_to_clean.
333 */
334 smp_mb();
335 if (__netif_subqueue_stopped(dev: tx_ring->netdev,
336 queue_index: tx_ring->queue_index) &&
337 !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
338 netif_wake_subqueue(dev: tx_ring->netdev,
339 queue_index: tx_ring->queue_index);
340 ++tx_ring->tx_stats.restart_queue;
341 }
342 }
343
344 return !!budget;
345}
346
347/**
348 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
349 * @vsi: the VSI we care about
350 * @q_vector: the vector on which to enable writeback
351 *
352 **/
353static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
354 struct iavf_q_vector *q_vector)
355{
356 u16 flags = q_vector->tx.ring[0].flags;
357 u32 val;
358
359 if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
360 return;
361
362 if (q_vector->arm_wb_state)
363 return;
364
365 val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
366 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
367
368 wr32(&vsi->back->hw,
369 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
370 q_vector->arm_wb_state = true;
371}
372
373static bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
374 struct iavf_ring_container *rc)
375{
376 return &q_vector->rx == rc;
377}
378
379#define IAVF_AIM_MULTIPLIER_100G 2560
380#define IAVF_AIM_MULTIPLIER_50G 1280
381#define IAVF_AIM_MULTIPLIER_40G 1024
382#define IAVF_AIM_MULTIPLIER_20G 512
383#define IAVF_AIM_MULTIPLIER_10G 256
384#define IAVF_AIM_MULTIPLIER_1G 32
385
386static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps)
387{
388 switch (speed_mbps) {
389 case SPEED_100000:
390 return IAVF_AIM_MULTIPLIER_100G;
391 case SPEED_50000:
392 return IAVF_AIM_MULTIPLIER_50G;
393 case SPEED_40000:
394 return IAVF_AIM_MULTIPLIER_40G;
395 case SPEED_25000:
396 case SPEED_20000:
397 return IAVF_AIM_MULTIPLIER_20G;
398 case SPEED_10000:
399 default:
400 return IAVF_AIM_MULTIPLIER_10G;
401 case SPEED_1000:
402 case SPEED_100:
403 return IAVF_AIM_MULTIPLIER_1G;
404 }
405}
406
407static unsigned int
408iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl)
409{
410 switch (speed_virtchnl) {
411 case VIRTCHNL_LINK_SPEED_40GB:
412 return IAVF_AIM_MULTIPLIER_40G;
413 case VIRTCHNL_LINK_SPEED_25GB:
414 case VIRTCHNL_LINK_SPEED_20GB:
415 return IAVF_AIM_MULTIPLIER_20G;
416 case VIRTCHNL_LINK_SPEED_10GB:
417 default:
418 return IAVF_AIM_MULTIPLIER_10G;
419 case VIRTCHNL_LINK_SPEED_1GB:
420 case VIRTCHNL_LINK_SPEED_100MB:
421 return IAVF_AIM_MULTIPLIER_1G;
422 }
423}
424
425static unsigned int iavf_itr_divisor(struct iavf_adapter *adapter)
426{
427 if (ADV_LINK_SUPPORT(adapter))
428 return IAVF_ITR_ADAPTIVE_MIN_INC *
429 iavf_mbps_itr_multiplier(speed_mbps: adapter->link_speed_mbps);
430 else
431 return IAVF_ITR_ADAPTIVE_MIN_INC *
432 iavf_virtchnl_itr_multiplier(speed_virtchnl: adapter->link_speed);
433}
434
435/**
436 * iavf_update_itr - update the dynamic ITR value based on statistics
437 * @q_vector: structure containing interrupt and ring information
438 * @rc: structure containing ring performance data
439 *
440 * Stores a new ITR value based on packets and byte
441 * counts during the last interrupt. The advantage of per interrupt
442 * computation is faster updates and more accurate ITR for the current
443 * traffic pattern. Constants in this function were computed
444 * based on theoretical maximum wire speed and thresholds were set based
445 * on testing data as well as attempting to minimize response time
446 * while increasing bulk throughput.
447 **/
448static void iavf_update_itr(struct iavf_q_vector *q_vector,
449 struct iavf_ring_container *rc)
450{
451 unsigned int avg_wire_size, packets, bytes, itr;
452 unsigned long next_update = jiffies;
453
454 /* If we don't have any rings just leave ourselves set for maximum
455 * possible latency so we take ourselves out of the equation.
456 */
457 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
458 return;
459
460 /* For Rx we want to push the delay up and default to low latency.
461 * for Tx we want to pull the delay down and default to high latency.
462 */
463 itr = iavf_container_is_rx(q_vector, rc) ?
464 IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
465 IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
466
467 /* If we didn't update within up to 1 - 2 jiffies we can assume
468 * that either packets are coming in so slow there hasn't been
469 * any work, or that there is so much work that NAPI is dealing
470 * with interrupt moderation and we don't need to do anything.
471 */
472 if (time_after(next_update, rc->next_update))
473 goto clear_counts;
474
475 /* If itr_countdown is set it means we programmed an ITR within
476 * the last 4 interrupt cycles. This has a side effect of us
477 * potentially firing an early interrupt. In order to work around
478 * this we need to throw out any data received for a few
479 * interrupts following the update.
480 */
481 if (q_vector->itr_countdown) {
482 itr = rc->target_itr;
483 goto clear_counts;
484 }
485
486 packets = rc->total_packets;
487 bytes = rc->total_bytes;
488
489 if (iavf_container_is_rx(q_vector, rc)) {
490 /* If Rx there are 1 to 4 packets and bytes are less than
491 * 9000 assume insufficient data to use bulk rate limiting
492 * approach unless Tx is already in bulk rate limiting. We
493 * are likely latency driven.
494 */
495 if (packets && packets < 4 && bytes < 9000 &&
496 (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
497 itr = IAVF_ITR_ADAPTIVE_LATENCY;
498 goto adjust_by_size;
499 }
500 } else if (packets < 4) {
501 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
502 * bulk mode and we are receiving 4 or fewer packets just
503 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
504 * that the Rx can relax.
505 */
506 if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
507 (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
508 IAVF_ITR_ADAPTIVE_MAX_USECS)
509 goto clear_counts;
510 } else if (packets > 32) {
511 /* If we have processed over 32 packets in a single interrupt
512 * for Tx assume we need to switch over to "bulk" mode.
513 */
514 rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
515 }
516
517 /* We have no packets to actually measure against. This means
518 * either one of the other queues on this vector is active or
519 * we are a Tx queue doing TSO with too high of an interrupt rate.
520 *
521 * Between 4 and 56 we can assume that our current interrupt delay
522 * is only slightly too low. As such we should increase it by a small
523 * fixed amount.
524 */
525 if (packets < 56) {
526 itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
527 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
528 itr &= IAVF_ITR_ADAPTIVE_LATENCY;
529 itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
530 }
531 goto clear_counts;
532 }
533
534 if (packets <= 256) {
535 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
536 itr &= IAVF_ITR_MASK;
537
538 /* Between 56 and 112 is our "goldilocks" zone where we are
539 * working out "just right". Just report that our current
540 * ITR is good for us.
541 */
542 if (packets <= 112)
543 goto clear_counts;
544
545 /* If packet count is 128 or greater we are likely looking
546 * at a slight overrun of the delay we want. Try halving
547 * our delay to see if that will cut the number of packets
548 * in half per interrupt.
549 */
550 itr /= 2;
551 itr &= IAVF_ITR_MASK;
552 if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
553 itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
554
555 goto clear_counts;
556 }
557
558 /* The paths below assume we are dealing with a bulk ITR since
559 * number of packets is greater than 256. We are just going to have
560 * to compute a value and try to bring the count under control,
561 * though for smaller packet sizes there isn't much we can do as
562 * NAPI polling will likely be kicking in sooner rather than later.
563 */
564 itr = IAVF_ITR_ADAPTIVE_BULK;
565
566adjust_by_size:
567 /* If packet counts are 256 or greater we can assume we have a gross
568 * overestimation of what the rate should be. Instead of trying to fine
569 * tune it just use the formula below to try and dial in an exact value
570 * give the current packet size of the frame.
571 */
572 avg_wire_size = bytes / packets;
573
574 /* The following is a crude approximation of:
575 * wmem_default / (size + overhead) = desired_pkts_per_int
576 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
577 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
578 *
579 * Assuming wmem_default is 212992 and overhead is 640 bytes per
580 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
581 * formula down to
582 *
583 * (170 * (size + 24)) / (size + 640) = ITR
584 *
585 * We first do some math on the packet size and then finally bitshift
586 * by 8 after rounding up. We also have to account for PCIe link speed
587 * difference as ITR scales based on this.
588 */
589 if (avg_wire_size <= 60) {
590 /* Start at 250k ints/sec */
591 avg_wire_size = 4096;
592 } else if (avg_wire_size <= 380) {
593 /* 250K ints/sec to 60K ints/sec */
594 avg_wire_size *= 40;
595 avg_wire_size += 1696;
596 } else if (avg_wire_size <= 1084) {
597 /* 60K ints/sec to 36K ints/sec */
598 avg_wire_size *= 15;
599 avg_wire_size += 11452;
600 } else if (avg_wire_size <= 1980) {
601 /* 36K ints/sec to 30K ints/sec */
602 avg_wire_size *= 5;
603 avg_wire_size += 22420;
604 } else {
605 /* plateau at a limit of 30K ints/sec */
606 avg_wire_size = 32256;
607 }
608
609 /* If we are in low latency mode halve our delay which doubles the
610 * rate to somewhere between 100K to 16K ints/sec
611 */
612 if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
613 avg_wire_size /= 2;
614
615 /* Resultant value is 256 times larger than it needs to be. This
616 * gives us room to adjust the value as needed to either increase
617 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
618 *
619 * Use addition as we have already recorded the new latency flag
620 * for the ITR value.
621 */
622 itr += DIV_ROUND_UP(avg_wire_size,
623 iavf_itr_divisor(q_vector->adapter)) *
624 IAVF_ITR_ADAPTIVE_MIN_INC;
625
626 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
627 itr &= IAVF_ITR_ADAPTIVE_LATENCY;
628 itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
629 }
630
631clear_counts:
632 /* write back value */
633 rc->target_itr = itr;
634
635 /* next update should occur within next jiffy */
636 rc->next_update = next_update + 1;
637
638 rc->total_bytes = 0;
639 rc->total_packets = 0;
640}
641
642/**
643 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
644 * @tx_ring: the tx ring to set up
645 *
646 * Return 0 on success, negative on error
647 **/
648int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
649{
650 struct device *dev = tx_ring->dev;
651 int bi_size;
652
653 if (!dev)
654 return -ENOMEM;
655
656 /* warn if we are about to overwrite the pointer */
657 WARN_ON(tx_ring->tx_bi);
658 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
659 tx_ring->tx_bi = kzalloc(size: bi_size, GFP_KERNEL);
660 if (!tx_ring->tx_bi)
661 goto err;
662
663 /* round up to nearest 4K */
664 tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
665 tx_ring->size = ALIGN(tx_ring->size, 4096);
666 tx_ring->desc = dma_alloc_coherent(dev, size: tx_ring->size,
667 dma_handle: &tx_ring->dma, GFP_KERNEL);
668 if (!tx_ring->desc) {
669 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
670 tx_ring->size);
671 goto err;
672 }
673
674 tx_ring->next_to_use = 0;
675 tx_ring->next_to_clean = 0;
676 tx_ring->tx_stats.prev_pkt_ctr = -1;
677 return 0;
678
679err:
680 kfree(objp: tx_ring->tx_bi);
681 tx_ring->tx_bi = NULL;
682 return -ENOMEM;
683}
684
685/**
686 * iavf_clean_rx_ring - Free Rx buffers
687 * @rx_ring: ring to be cleaned
688 **/
689static void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
690{
691 unsigned long bi_size;
692 u16 i;
693
694 /* ring already cleared, nothing to do */
695 if (!rx_ring->rx_bi)
696 return;
697
698 if (rx_ring->skb) {
699 dev_kfree_skb(rx_ring->skb);
700 rx_ring->skb = NULL;
701 }
702
703 /* Free all the Rx ring sk_buffs */
704 for (i = 0; i < rx_ring->count; i++) {
705 struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
706
707 if (!rx_bi->page)
708 continue;
709
710 /* Invalidate cache lines that may have been written to by
711 * device so that we avoid corrupting memory.
712 */
713 dma_sync_single_range_for_cpu(dev: rx_ring->dev,
714 addr: rx_bi->dma,
715 offset: rx_bi->page_offset,
716 size: rx_ring->rx_buf_len,
717 dir: DMA_FROM_DEVICE);
718
719 /* free resources associated with mapping */
720 dma_unmap_page_attrs(dev: rx_ring->dev, addr: rx_bi->dma,
721 iavf_rx_pg_size(rx_ring),
722 dir: DMA_FROM_DEVICE,
723 IAVF_RX_DMA_ATTR);
724
725 __page_frag_cache_drain(page: rx_bi->page, count: rx_bi->pagecnt_bias);
726
727 rx_bi->page = NULL;
728 rx_bi->page_offset = 0;
729 }
730
731 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
732 memset(rx_ring->rx_bi, 0, bi_size);
733
734 /* Zero out the descriptor ring */
735 memset(rx_ring->desc, 0, rx_ring->size);
736
737 rx_ring->next_to_alloc = 0;
738 rx_ring->next_to_clean = 0;
739 rx_ring->next_to_use = 0;
740}
741
742/**
743 * iavf_free_rx_resources - Free Rx resources
744 * @rx_ring: ring to clean the resources from
745 *
746 * Free all receive software resources
747 **/
748void iavf_free_rx_resources(struct iavf_ring *rx_ring)
749{
750 iavf_clean_rx_ring(rx_ring);
751 kfree(objp: rx_ring->rx_bi);
752 rx_ring->rx_bi = NULL;
753
754 if (rx_ring->desc) {
755 dma_free_coherent(dev: rx_ring->dev, size: rx_ring->size,
756 cpu_addr: rx_ring->desc, dma_handle: rx_ring->dma);
757 rx_ring->desc = NULL;
758 }
759}
760
761/**
762 * iavf_setup_rx_descriptors - Allocate Rx descriptors
763 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
764 *
765 * Returns 0 on success, negative on failure
766 **/
767int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
768{
769 struct device *dev = rx_ring->dev;
770 int bi_size;
771
772 /* warn if we are about to overwrite the pointer */
773 WARN_ON(rx_ring->rx_bi);
774 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
775 rx_ring->rx_bi = kzalloc(size: bi_size, GFP_KERNEL);
776 if (!rx_ring->rx_bi)
777 goto err;
778
779 u64_stats_init(syncp: &rx_ring->syncp);
780
781 /* Round up to nearest 4K */
782 rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
783 rx_ring->size = ALIGN(rx_ring->size, 4096);
784 rx_ring->desc = dma_alloc_coherent(dev, size: rx_ring->size,
785 dma_handle: &rx_ring->dma, GFP_KERNEL);
786
787 if (!rx_ring->desc) {
788 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
789 rx_ring->size);
790 goto err;
791 }
792
793 rx_ring->next_to_alloc = 0;
794 rx_ring->next_to_clean = 0;
795 rx_ring->next_to_use = 0;
796
797 return 0;
798err:
799 kfree(objp: rx_ring->rx_bi);
800 rx_ring->rx_bi = NULL;
801 return -ENOMEM;
802}
803
804/**
805 * iavf_release_rx_desc - Store the new tail and head values
806 * @rx_ring: ring to bump
807 * @val: new head index
808 **/
809static void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
810{
811 rx_ring->next_to_use = val;
812
813 /* update next to alloc since we have filled the ring */
814 rx_ring->next_to_alloc = val;
815
816 /* Force memory writes to complete before letting h/w
817 * know there are new descriptors to fetch. (Only
818 * applicable for weak-ordered memory model archs,
819 * such as IA-64).
820 */
821 wmb();
822 writel(val, addr: rx_ring->tail);
823}
824
825/**
826 * iavf_rx_offset - Return expected offset into page to access data
827 * @rx_ring: Ring we are requesting offset of
828 *
829 * Returns the offset value for ring into the data buffer.
830 */
831static unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
832{
833 return ring_uses_build_skb(ring: rx_ring) ? IAVF_SKB_PAD : 0;
834}
835
836/**
837 * iavf_alloc_mapped_page - recycle or make a new page
838 * @rx_ring: ring to use
839 * @bi: rx_buffer struct to modify
840 *
841 * Returns true if the page was successfully allocated or
842 * reused.
843 **/
844static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
845 struct iavf_rx_buffer *bi)
846{
847 struct page *page = bi->page;
848 dma_addr_t dma;
849
850 /* since we are recycling buffers we should seldom need to alloc */
851 if (likely(page)) {
852 rx_ring->rx_stats.page_reuse_count++;
853 return true;
854 }
855
856 /* alloc new page for storage */
857 page = dev_alloc_pages(order: iavf_rx_pg_order(ring: rx_ring));
858 if (unlikely(!page)) {
859 rx_ring->rx_stats.alloc_page_failed++;
860 return false;
861 }
862
863 /* map page for use */
864 dma = dma_map_page_attrs(dev: rx_ring->dev, page, offset: 0,
865 iavf_rx_pg_size(rx_ring),
866 dir: DMA_FROM_DEVICE,
867 IAVF_RX_DMA_ATTR);
868
869 /* if mapping failed free memory back to system since
870 * there isn't much point in holding memory we can't use
871 */
872 if (dma_mapping_error(dev: rx_ring->dev, dma_addr: dma)) {
873 __free_pages(page, order: iavf_rx_pg_order(ring: rx_ring));
874 rx_ring->rx_stats.alloc_page_failed++;
875 return false;
876 }
877
878 bi->dma = dma;
879 bi->page = page;
880 bi->page_offset = iavf_rx_offset(rx_ring);
881
882 /* initialize pagecnt_bias to 1 representing we fully own page */
883 bi->pagecnt_bias = 1;
884
885 return true;
886}
887
888/**
889 * iavf_receive_skb - Send a completed packet up the stack
890 * @rx_ring: rx ring in play
891 * @skb: packet to send up
892 * @vlan_tag: vlan tag for packet
893 **/
894static void iavf_receive_skb(struct iavf_ring *rx_ring,
895 struct sk_buff *skb, u16 vlan_tag)
896{
897 struct iavf_q_vector *q_vector = rx_ring->q_vector;
898
899 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
900 (vlan_tag & VLAN_VID_MASK))
901 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci: vlan_tag);
902 else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) &&
903 vlan_tag & VLAN_VID_MASK)
904 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tci: vlan_tag);
905
906 napi_gro_receive(napi: &q_vector->napi, skb);
907}
908
909/**
910 * iavf_alloc_rx_buffers - Replace used receive buffers
911 * @rx_ring: ring to place buffers on
912 * @cleaned_count: number of buffers to replace
913 *
914 * Returns false if all allocations were successful, true if any fail
915 **/
916bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
917{
918 u16 ntu = rx_ring->next_to_use;
919 union iavf_rx_desc *rx_desc;
920 struct iavf_rx_buffer *bi;
921
922 /* do nothing if no valid netdev defined */
923 if (!rx_ring->netdev || !cleaned_count)
924 return false;
925
926 rx_desc = IAVF_RX_DESC(rx_ring, ntu);
927 bi = &rx_ring->rx_bi[ntu];
928
929 do {
930 if (!iavf_alloc_mapped_page(rx_ring, bi))
931 goto no_buffers;
932
933 /* sync the buffer for use by the device */
934 dma_sync_single_range_for_device(dev: rx_ring->dev, addr: bi->dma,
935 offset: bi->page_offset,
936 size: rx_ring->rx_buf_len,
937 dir: DMA_FROM_DEVICE);
938
939 /* Refresh the desc even if buffer_addrs didn't change
940 * because each write-back erases this info.
941 */
942 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
943
944 rx_desc++;
945 bi++;
946 ntu++;
947 if (unlikely(ntu == rx_ring->count)) {
948 rx_desc = IAVF_RX_DESC(rx_ring, 0);
949 bi = rx_ring->rx_bi;
950 ntu = 0;
951 }
952
953 /* clear the status bits for the next_to_use descriptor */
954 rx_desc->wb.qword1.status_error_len = 0;
955
956 cleaned_count--;
957 } while (cleaned_count);
958
959 if (rx_ring->next_to_use != ntu)
960 iavf_release_rx_desc(rx_ring, val: ntu);
961
962 return false;
963
964no_buffers:
965 if (rx_ring->next_to_use != ntu)
966 iavf_release_rx_desc(rx_ring, val: ntu);
967
968 /* make sure to come back via polling to try again after
969 * allocation failure
970 */
971 return true;
972}
973
974/**
975 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
976 * @vsi: the VSI we care about
977 * @skb: skb currently being received and modified
978 * @rx_desc: the receive descriptor
979 **/
980static void iavf_rx_checksum(struct iavf_vsi *vsi,
981 struct sk_buff *skb,
982 union iavf_rx_desc *rx_desc)
983{
984 struct iavf_rx_ptype_decoded decoded;
985 u32 rx_error, rx_status;
986 bool ipv4, ipv6;
987 u8 ptype;
988 u64 qword;
989
990 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
991 ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
992 rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
993 IAVF_RXD_QW1_ERROR_SHIFT;
994 rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
995 IAVF_RXD_QW1_STATUS_SHIFT;
996 decoded = decode_rx_desc_ptype(ptype);
997
998 skb->ip_summed = CHECKSUM_NONE;
999
1000 skb_checksum_none_assert(skb);
1001
1002 /* Rx csum enabled and ip headers found? */
1003 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1004 return;
1005
1006 /* did the hardware decode the packet and checksum? */
1007 if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
1008 return;
1009
1010 /* both known and outer_ip must be set for the below code to work */
1011 if (!(decoded.known && decoded.outer_ip))
1012 return;
1013
1014 ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
1015 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
1016 ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
1017 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
1018
1019 if (ipv4 &&
1020 (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
1021 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
1022 goto checksum_fail;
1023
1024 /* likely incorrect csum if alternate IP extension headers found */
1025 if (ipv6 &&
1026 rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1027 /* don't increment checksum err here, non-fatal err */
1028 return;
1029
1030 /* there was some L4 error, count error and punt packet to the stack */
1031 if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
1032 goto checksum_fail;
1033
1034 /* handle packets that were not able to be checksummed due
1035 * to arrival speed, in this case the stack can compute
1036 * the csum.
1037 */
1038 if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1039 return;
1040
1041 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1042 switch (decoded.inner_prot) {
1043 case IAVF_RX_PTYPE_INNER_PROT_TCP:
1044 case IAVF_RX_PTYPE_INNER_PROT_UDP:
1045 case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1046 skb->ip_summed = CHECKSUM_UNNECESSARY;
1047 fallthrough;
1048 default:
1049 break;
1050 }
1051
1052 return;
1053
1054checksum_fail:
1055 vsi->back->hw_csum_rx_error++;
1056}
1057
1058/**
1059 * iavf_ptype_to_htype - get a hash type
1060 * @ptype: the ptype value from the descriptor
1061 *
1062 * Returns a hash type to be used by skb_set_hash
1063 **/
1064static int iavf_ptype_to_htype(u8 ptype)
1065{
1066 struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1067
1068 if (!decoded.known)
1069 return PKT_HASH_TYPE_NONE;
1070
1071 if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1072 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1073 return PKT_HASH_TYPE_L4;
1074 else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1075 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1076 return PKT_HASH_TYPE_L3;
1077 else
1078 return PKT_HASH_TYPE_L2;
1079}
1080
1081/**
1082 * iavf_rx_hash - set the hash value in the skb
1083 * @ring: descriptor ring
1084 * @rx_desc: specific descriptor
1085 * @skb: skb currently being received and modified
1086 * @rx_ptype: Rx packet type
1087 **/
1088static void iavf_rx_hash(struct iavf_ring *ring,
1089 union iavf_rx_desc *rx_desc,
1090 struct sk_buff *skb,
1091 u8 rx_ptype)
1092{
1093 u32 hash;
1094 const __le64 rss_mask =
1095 cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1096 IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1097
1098 if (!(ring->netdev->features & NETIF_F_RXHASH))
1099 return;
1100
1101 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1102 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1103 skb_set_hash(skb, hash, type: iavf_ptype_to_htype(ptype: rx_ptype));
1104 }
1105}
1106
1107/**
1108 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1109 * @rx_ring: rx descriptor ring packet is being transacted on
1110 * @rx_desc: pointer to the EOP Rx descriptor
1111 * @skb: pointer to current skb being populated
1112 * @rx_ptype: the packet type decoded by hardware
1113 *
1114 * This function checks the ring, descriptor, and packet information in
1115 * order to populate the hash, checksum, VLAN, protocol, and
1116 * other fields within the skb.
1117 **/
1118static void
1119iavf_process_skb_fields(struct iavf_ring *rx_ring,
1120 union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1121 u8 rx_ptype)
1122{
1123 iavf_rx_hash(ring: rx_ring, rx_desc, skb, rx_ptype);
1124
1125 iavf_rx_checksum(vsi: rx_ring->vsi, skb, rx_desc);
1126
1127 skb_record_rx_queue(skb, rx_queue: rx_ring->queue_index);
1128
1129 /* modifies the skb - consumes the enet header */
1130 skb->protocol = eth_type_trans(skb, dev: rx_ring->netdev);
1131}
1132
1133/**
1134 * iavf_cleanup_headers - Correct empty headers
1135 * @rx_ring: rx descriptor ring packet is being transacted on
1136 * @skb: pointer to current skb being fixed
1137 *
1138 * Also address the case where we are pulling data in on pages only
1139 * and as such no data is present in the skb header.
1140 *
1141 * In addition if skb is not at least 60 bytes we need to pad it so that
1142 * it is large enough to qualify as a valid Ethernet frame.
1143 *
1144 * Returns true if an error was encountered and skb was freed.
1145 **/
1146static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1147{
1148 /* if eth_skb_pad returns an error the skb was freed */
1149 if (eth_skb_pad(skb))
1150 return true;
1151
1152 return false;
1153}
1154
1155/**
1156 * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1157 * @rx_ring: rx descriptor ring to store buffers on
1158 * @old_buff: donor buffer to have page reused
1159 *
1160 * Synchronizes page for reuse by the adapter
1161 **/
1162static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1163 struct iavf_rx_buffer *old_buff)
1164{
1165 struct iavf_rx_buffer *new_buff;
1166 u16 nta = rx_ring->next_to_alloc;
1167
1168 new_buff = &rx_ring->rx_bi[nta];
1169
1170 /* update, and store next to alloc */
1171 nta++;
1172 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1173
1174 /* transfer page from old buffer to new buffer */
1175 new_buff->dma = old_buff->dma;
1176 new_buff->page = old_buff->page;
1177 new_buff->page_offset = old_buff->page_offset;
1178 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1179}
1180
1181/**
1182 * iavf_can_reuse_rx_page - Determine if this page can be reused by
1183 * the adapter for another receive
1184 *
1185 * @rx_buffer: buffer containing the page
1186 *
1187 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1188 * an unused region in the page.
1189 *
1190 * For small pages, @truesize will be a constant value, half the size
1191 * of the memory at page. We'll attempt to alternate between high and
1192 * low halves of the page, with one half ready for use by the hardware
1193 * and the other half being consumed by the stack. We use the page
1194 * ref count to determine whether the stack has finished consuming the
1195 * portion of this page that was passed up with a previous packet. If
1196 * the page ref count is >1, we'll assume the "other" half page is
1197 * still busy, and this page cannot be reused.
1198 *
1199 * For larger pages, @truesize will be the actual space used by the
1200 * received packet (adjusted upward to an even multiple of the cache
1201 * line size). This will advance through the page by the amount
1202 * actually consumed by the received packets while there is still
1203 * space for a buffer. Each region of larger pages will be used at
1204 * most once, after which the page will not be reused.
1205 *
1206 * In either case, if the page is reusable its refcount is increased.
1207 **/
1208static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1209{
1210 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1211 struct page *page = rx_buffer->page;
1212
1213 /* Is any reuse possible? */
1214 if (!dev_page_is_reusable(page))
1215 return false;
1216
1217#if (PAGE_SIZE < 8192)
1218 /* if we are only owner of page we can reuse it */
1219 if (unlikely((page_count(page) - pagecnt_bias) > 1))
1220 return false;
1221#else
1222#define IAVF_LAST_OFFSET \
1223 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1224 if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1225 return false;
1226#endif
1227
1228 /* If we have drained the page fragment pool we need to update
1229 * the pagecnt_bias and page count so that we fully restock the
1230 * number of references the driver holds.
1231 */
1232 if (unlikely(!pagecnt_bias)) {
1233 page_ref_add(page, USHRT_MAX);
1234 rx_buffer->pagecnt_bias = USHRT_MAX;
1235 }
1236
1237 return true;
1238}
1239
1240/**
1241 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1242 * @rx_ring: rx descriptor ring to transact packets on
1243 * @rx_buffer: buffer containing page to add
1244 * @skb: sk_buff to place the data into
1245 * @size: packet length from rx_desc
1246 *
1247 * This function will add the data contained in rx_buffer->page to the skb.
1248 * It will just attach the page as a frag to the skb.
1249 *
1250 * The function will then update the page offset.
1251 **/
1252static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1253 struct iavf_rx_buffer *rx_buffer,
1254 struct sk_buff *skb,
1255 unsigned int size)
1256{
1257#if (PAGE_SIZE < 8192)
1258 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1259#else
1260 unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1261#endif
1262
1263 if (!size)
1264 return;
1265
1266 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page: rx_buffer->page,
1267 off: rx_buffer->page_offset, size, truesize);
1268
1269 /* page is being used so we must update the page offset */
1270#if (PAGE_SIZE < 8192)
1271 rx_buffer->page_offset ^= truesize;
1272#else
1273 rx_buffer->page_offset += truesize;
1274#endif
1275}
1276
1277/**
1278 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1279 * @rx_ring: rx descriptor ring to transact packets on
1280 * @size: size of buffer to add to skb
1281 *
1282 * This function will pull an Rx buffer from the ring and synchronize it
1283 * for use by the CPU.
1284 */
1285static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1286 const unsigned int size)
1287{
1288 struct iavf_rx_buffer *rx_buffer;
1289
1290 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1291 prefetchw(x: rx_buffer->page);
1292 if (!size)
1293 return rx_buffer;
1294
1295 /* we are reusing so sync this buffer for CPU use */
1296 dma_sync_single_range_for_cpu(dev: rx_ring->dev,
1297 addr: rx_buffer->dma,
1298 offset: rx_buffer->page_offset,
1299 size,
1300 dir: DMA_FROM_DEVICE);
1301
1302 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1303 rx_buffer->pagecnt_bias--;
1304
1305 return rx_buffer;
1306}
1307
1308/**
1309 * iavf_construct_skb - Allocate skb and populate it
1310 * @rx_ring: rx descriptor ring to transact packets on
1311 * @rx_buffer: rx buffer to pull data from
1312 * @size: size of buffer to add to skb
1313 *
1314 * This function allocates an skb. It then populates it with the page
1315 * data from the current receive descriptor, taking care to set up the
1316 * skb correctly.
1317 */
1318static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1319 struct iavf_rx_buffer *rx_buffer,
1320 unsigned int size)
1321{
1322 void *va;
1323#if (PAGE_SIZE < 8192)
1324 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1325#else
1326 unsigned int truesize = SKB_DATA_ALIGN(size);
1327#endif
1328 unsigned int headlen;
1329 struct sk_buff *skb;
1330
1331 if (!rx_buffer)
1332 return NULL;
1333 /* prefetch first cache line of first page */
1334 va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1335 net_prefetch(p: va);
1336
1337 /* allocate a skb to store the frags */
1338 skb = __napi_alloc_skb(napi: &rx_ring->q_vector->napi,
1339 IAVF_RX_HDR_SIZE,
1340 GFP_ATOMIC | __GFP_NOWARN);
1341 if (unlikely(!skb))
1342 return NULL;
1343
1344 /* Determine available headroom for copy */
1345 headlen = size;
1346 if (headlen > IAVF_RX_HDR_SIZE)
1347 headlen = eth_get_headlen(dev: skb->dev, data: va, IAVF_RX_HDR_SIZE);
1348
1349 /* align pull length to size of long to optimize memcpy performance */
1350 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1351
1352 /* update all of the pointers */
1353 size -= headlen;
1354 if (size) {
1355 skb_add_rx_frag(skb, i: 0, page: rx_buffer->page,
1356 off: rx_buffer->page_offset + headlen,
1357 size, truesize);
1358
1359 /* buffer is used by skb, update page_offset */
1360#if (PAGE_SIZE < 8192)
1361 rx_buffer->page_offset ^= truesize;
1362#else
1363 rx_buffer->page_offset += truesize;
1364#endif
1365 } else {
1366 /* buffer is unused, reset bias back to rx_buffer */
1367 rx_buffer->pagecnt_bias++;
1368 }
1369
1370 return skb;
1371}
1372
1373/**
1374 * iavf_build_skb - Build skb around an existing buffer
1375 * @rx_ring: Rx descriptor ring to transact packets on
1376 * @rx_buffer: Rx buffer to pull data from
1377 * @size: size of buffer to add to skb
1378 *
1379 * This function builds an skb around an existing Rx buffer, taking care
1380 * to set up the skb correctly and avoid any memcpy overhead.
1381 */
1382static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1383 struct iavf_rx_buffer *rx_buffer,
1384 unsigned int size)
1385{
1386 void *va;
1387#if (PAGE_SIZE < 8192)
1388 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1389#else
1390 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1391 SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1392#endif
1393 struct sk_buff *skb;
1394
1395 if (!rx_buffer || !size)
1396 return NULL;
1397 /* prefetch first cache line of first page */
1398 va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1399 net_prefetch(p: va);
1400
1401 /* build an skb around the page buffer */
1402 skb = napi_build_skb(data: va - IAVF_SKB_PAD, frag_size: truesize);
1403 if (unlikely(!skb))
1404 return NULL;
1405
1406 /* update pointers within the skb to store the data */
1407 skb_reserve(skb, IAVF_SKB_PAD);
1408 __skb_put(skb, len: size);
1409
1410 /* buffer is used by skb, update page_offset */
1411#if (PAGE_SIZE < 8192)
1412 rx_buffer->page_offset ^= truesize;
1413#else
1414 rx_buffer->page_offset += truesize;
1415#endif
1416
1417 return skb;
1418}
1419
1420/**
1421 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1422 * @rx_ring: rx descriptor ring to transact packets on
1423 * @rx_buffer: rx buffer to pull data from
1424 *
1425 * This function will clean up the contents of the rx_buffer. It will
1426 * either recycle the buffer or unmap it and free the associated resources.
1427 */
1428static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1429 struct iavf_rx_buffer *rx_buffer)
1430{
1431 if (!rx_buffer)
1432 return;
1433
1434 if (iavf_can_reuse_rx_page(rx_buffer)) {
1435 /* hand second half of page back to the ring */
1436 iavf_reuse_rx_page(rx_ring, old_buff: rx_buffer);
1437 rx_ring->rx_stats.page_reuse_count++;
1438 } else {
1439 /* we are not reusing the buffer so unmap it */
1440 dma_unmap_page_attrs(dev: rx_ring->dev, addr: rx_buffer->dma,
1441 iavf_rx_pg_size(rx_ring),
1442 dir: DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1443 __page_frag_cache_drain(page: rx_buffer->page,
1444 count: rx_buffer->pagecnt_bias);
1445 }
1446
1447 /* clear contents of buffer_info */
1448 rx_buffer->page = NULL;
1449}
1450
1451/**
1452 * iavf_is_non_eop - process handling of non-EOP buffers
1453 * @rx_ring: Rx ring being processed
1454 * @rx_desc: Rx descriptor for current buffer
1455 * @skb: Current socket buffer containing buffer in progress
1456 *
1457 * This function updates next to clean. If the buffer is an EOP buffer
1458 * this function exits returning false, otherwise it will place the
1459 * sk_buff in the next buffer to be chained and return true indicating
1460 * that this is in fact a non-EOP buffer.
1461 **/
1462static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1463 union iavf_rx_desc *rx_desc,
1464 struct sk_buff *skb)
1465{
1466 u32 ntc = rx_ring->next_to_clean + 1;
1467
1468 /* fetch, update, and store next to clean */
1469 ntc = (ntc < rx_ring->count) ? ntc : 0;
1470 rx_ring->next_to_clean = ntc;
1471
1472 prefetch(IAVF_RX_DESC(rx_ring, ntc));
1473
1474 /* if we are the last buffer then there is nothing else to do */
1475#define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1476 if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1477 return false;
1478
1479 rx_ring->rx_stats.non_eop_descs++;
1480
1481 return true;
1482}
1483
1484/**
1485 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1486 * @rx_ring: rx descriptor ring to transact packets on
1487 * @budget: Total limit on number of packets to process
1488 *
1489 * This function provides a "bounce buffer" approach to Rx interrupt
1490 * processing. The advantage to this is that on systems that have
1491 * expensive overhead for IOMMU access this provides a means of avoiding
1492 * it by maintaining the mapping of the page to the system.
1493 *
1494 * Returns amount of work completed
1495 **/
1496static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1497{
1498 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1499 struct sk_buff *skb = rx_ring->skb;
1500 u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1501 bool failure = false;
1502
1503 while (likely(total_rx_packets < (unsigned int)budget)) {
1504 struct iavf_rx_buffer *rx_buffer;
1505 union iavf_rx_desc *rx_desc;
1506 unsigned int size;
1507 u16 vlan_tag = 0;
1508 u8 rx_ptype;
1509 u64 qword;
1510
1511 /* return some buffers to hardware, one at a time is too slow */
1512 if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1513 failure = failure ||
1514 iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1515 cleaned_count = 0;
1516 }
1517
1518 rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1519
1520 /* status_error_len will always be zero for unused descriptors
1521 * because it's cleared in cleanup, and overlaps with hdr_addr
1522 * which is always zero because packet split isn't used, if the
1523 * hardware wrote DD then the length will be non-zero
1524 */
1525 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1526
1527 /* This memory barrier is needed to keep us from reading
1528 * any other fields out of the rx_desc until we have
1529 * verified the descriptor has been written back.
1530 */
1531 dma_rmb();
1532#define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1533 if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1534 break;
1535
1536 size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1537 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1538
1539 iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1540 rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1541
1542 /* retrieve a buffer from the ring */
1543 if (skb)
1544 iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1545 else if (ring_uses_build_skb(ring: rx_ring))
1546 skb = iavf_build_skb(rx_ring, rx_buffer, size);
1547 else
1548 skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1549
1550 /* exit if we failed to retrieve a buffer */
1551 if (!skb) {
1552 rx_ring->rx_stats.alloc_buff_failed++;
1553 if (rx_buffer && size)
1554 rx_buffer->pagecnt_bias++;
1555 break;
1556 }
1557
1558 iavf_put_rx_buffer(rx_ring, rx_buffer);
1559 cleaned_count++;
1560
1561 if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1562 continue;
1563
1564 /* ERR_MASK will only have valid bits if EOP set, and
1565 * what we are doing here is actually checking
1566 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1567 * the error field
1568 */
1569 if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1570 dev_kfree_skb_any(skb);
1571 skb = NULL;
1572 continue;
1573 }
1574
1575 if (iavf_cleanup_headers(rx_ring, skb)) {
1576 skb = NULL;
1577 continue;
1578 }
1579
1580 /* probably a little skewed due to removing CRC */
1581 total_rx_bytes += skb->len;
1582
1583 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1584 rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
1585 IAVF_RXD_QW1_PTYPE_SHIFT;
1586
1587 /* populate checksum, VLAN, and protocol */
1588 iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1589
1590 if (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT) &&
1591 rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1)
1592 vlan_tag = le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1);
1593 if (rx_desc->wb.qword2.ext_status &
1594 cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) &&
1595 rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2)
1596 vlan_tag = le16_to_cpu(rx_desc->wb.qword2.l2tag2_2);
1597
1598 iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1599 iavf_receive_skb(rx_ring, skb, vlan_tag);
1600 skb = NULL;
1601
1602 /* update budget accounting */
1603 total_rx_packets++;
1604 }
1605
1606 rx_ring->skb = skb;
1607
1608 u64_stats_update_begin(syncp: &rx_ring->syncp);
1609 rx_ring->stats.packets += total_rx_packets;
1610 rx_ring->stats.bytes += total_rx_bytes;
1611 u64_stats_update_end(syncp: &rx_ring->syncp);
1612 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1613 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1614
1615 /* guarantee a trip back through this routine if there was a failure */
1616 return failure ? budget : (int)total_rx_packets;
1617}
1618
1619static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1620{
1621 u32 val;
1622
1623 /* We don't bother with setting the CLEARPBA bit as the data sheet
1624 * points out doing so is "meaningless since it was already
1625 * auto-cleared". The auto-clearing happens when the interrupt is
1626 * asserted.
1627 *
1628 * Hardware errata 28 for also indicates that writing to a
1629 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1630 * an event in the PBA anyway so we need to rely on the automask
1631 * to hold pending events for us until the interrupt is re-enabled
1632 *
1633 * The itr value is reported in microseconds, and the register
1634 * value is recorded in 2 microsecond units. For this reason we
1635 * only need to shift by the interval shift - 1 instead of the
1636 * full value.
1637 */
1638 itr &= IAVF_ITR_MASK;
1639
1640 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1641 (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1642 (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1643
1644 return val;
1645}
1646
1647/* a small macro to shorten up some long lines */
1648#define INTREG IAVF_VFINT_DYN_CTLN1
1649
1650/* The act of updating the ITR will cause it to immediately trigger. In order
1651 * to prevent this from throwing off adaptive update statistics we defer the
1652 * update so that it can only happen so often. So after either Tx or Rx are
1653 * updated we make the adaptive scheme wait until either the ITR completely
1654 * expires via the next_update expiration or we have been through at least
1655 * 3 interrupts.
1656 */
1657#define ITR_COUNTDOWN_START 3
1658
1659/**
1660 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1661 * @vsi: the VSI we care about
1662 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1663 *
1664 **/
1665static void iavf_update_enable_itr(struct iavf_vsi *vsi,
1666 struct iavf_q_vector *q_vector)
1667{
1668 struct iavf_hw *hw = &vsi->back->hw;
1669 u32 intval;
1670
1671 /* These will do nothing if dynamic updates are not enabled */
1672 iavf_update_itr(q_vector, rc: &q_vector->tx);
1673 iavf_update_itr(q_vector, rc: &q_vector->rx);
1674
1675 /* This block of logic allows us to get away with only updating
1676 * one ITR value with each interrupt. The idea is to perform a
1677 * pseudo-lazy update with the following criteria.
1678 *
1679 * 1. Rx is given higher priority than Tx if both are in same state
1680 * 2. If we must reduce an ITR that is given highest priority.
1681 * 3. We then give priority to increasing ITR based on amount.
1682 */
1683 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1684 /* Rx ITR needs to be reduced, this is highest priority */
1685 intval = iavf_buildreg_itr(IAVF_RX_ITR,
1686 itr: q_vector->rx.target_itr);
1687 q_vector->rx.current_itr = q_vector->rx.target_itr;
1688 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1689 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1690 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1691 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1692 /* Tx ITR needs to be reduced, this is second priority
1693 * Tx ITR needs to be increased more than Rx, fourth priority
1694 */
1695 intval = iavf_buildreg_itr(IAVF_TX_ITR,
1696 itr: q_vector->tx.target_itr);
1697 q_vector->tx.current_itr = q_vector->tx.target_itr;
1698 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1699 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1700 /* Rx ITR needs to be increased, third priority */
1701 intval = iavf_buildreg_itr(IAVF_RX_ITR,
1702 itr: q_vector->rx.target_itr);
1703 q_vector->rx.current_itr = q_vector->rx.target_itr;
1704 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1705 } else {
1706 /* No ITR update, lowest priority */
1707 intval = iavf_buildreg_itr(type: IAVF_ITR_NONE, itr: 0);
1708 if (q_vector->itr_countdown)
1709 q_vector->itr_countdown--;
1710 }
1711
1712 if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1713 wr32(hw, INTREG(q_vector->reg_idx), intval);
1714}
1715
1716/**
1717 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1718 * @napi: napi struct with our devices info in it
1719 * @budget: amount of work driver is allowed to do this pass, in packets
1720 *
1721 * This function will clean all queues associated with a q_vector.
1722 *
1723 * Returns the amount of work done
1724 **/
1725int iavf_napi_poll(struct napi_struct *napi, int budget)
1726{
1727 struct iavf_q_vector *q_vector =
1728 container_of(napi, struct iavf_q_vector, napi);
1729 struct iavf_vsi *vsi = q_vector->vsi;
1730 struct iavf_ring *ring;
1731 bool clean_complete = true;
1732 bool arm_wb = false;
1733 int budget_per_ring;
1734 int work_done = 0;
1735
1736 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1737 napi_complete(n: napi);
1738 return 0;
1739 }
1740
1741 /* Since the actual Tx work is minimal, we can give the Tx a larger
1742 * budget and be more aggressive about cleaning up the Tx descriptors.
1743 */
1744 iavf_for_each_ring(ring, q_vector->tx) {
1745 if (!iavf_clean_tx_irq(vsi, tx_ring: ring, napi_budget: budget)) {
1746 clean_complete = false;
1747 continue;
1748 }
1749 arm_wb |= ring->arm_wb;
1750 ring->arm_wb = false;
1751 }
1752
1753 /* Handle case where we are called by netpoll with a budget of 0 */
1754 if (budget <= 0)
1755 goto tx_only;
1756
1757 /* We attempt to distribute budget to each Rx queue fairly, but don't
1758 * allow the budget to go below 1 because that would exit polling early.
1759 */
1760 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1761
1762 iavf_for_each_ring(ring, q_vector->rx) {
1763 int cleaned = iavf_clean_rx_irq(rx_ring: ring, budget: budget_per_ring);
1764
1765 work_done += cleaned;
1766 /* if we clean as many as budgeted, we must not be done */
1767 if (cleaned >= budget_per_ring)
1768 clean_complete = false;
1769 }
1770
1771 /* If work not completed, return budget and polling will return */
1772 if (!clean_complete) {
1773 int cpu_id = smp_processor_id();
1774
1775 /* It is possible that the interrupt affinity has changed but,
1776 * if the cpu is pegged at 100%, polling will never exit while
1777 * traffic continues and the interrupt will be stuck on this
1778 * cpu. We check to make sure affinity is correct before we
1779 * continue to poll, otherwise we must stop polling so the
1780 * interrupt can move to the correct cpu.
1781 */
1782 if (!cpumask_test_cpu(cpu: cpu_id, cpumask: &q_vector->affinity_mask)) {
1783 /* Tell napi that we are done polling */
1784 napi_complete_done(n: napi, work_done);
1785
1786 /* Force an interrupt */
1787 iavf_force_wb(vsi, q_vector);
1788
1789 /* Return budget-1 so that polling stops */
1790 return budget - 1;
1791 }
1792tx_only:
1793 if (arm_wb) {
1794 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1795 iavf_enable_wb_on_itr(vsi, q_vector);
1796 }
1797 return budget;
1798 }
1799
1800 if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1801 q_vector->arm_wb_state = false;
1802
1803 /* Exit the polling mode, but don't re-enable interrupts if stack might
1804 * poll us due to busy-polling
1805 */
1806 if (likely(napi_complete_done(napi, work_done)))
1807 iavf_update_enable_itr(vsi, q_vector);
1808
1809 return min_t(int, work_done, budget - 1);
1810}
1811
1812/**
1813 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1814 * @skb: send buffer
1815 * @tx_ring: ring to send buffer on
1816 * @flags: the tx flags to be set
1817 *
1818 * Checks the skb and set up correspondingly several generic transmit flags
1819 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1820 *
1821 * Returns error code indicate the frame should be dropped upon error and the
1822 * otherwise returns 0 to indicate the flags has been set properly.
1823 **/
1824static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1825 struct iavf_ring *tx_ring, u32 *flags)
1826{
1827 u32 tx_flags = 0;
1828
1829
1830 /* stack will only request hardware VLAN insertion offload for protocols
1831 * that the driver supports and has enabled
1832 */
1833 if (!skb_vlan_tag_present(skb))
1834 return;
1835
1836 tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1837 if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) {
1838 tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1839 } else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
1840 tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1841 } else {
1842 dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n");
1843 return;
1844 }
1845
1846 *flags = tx_flags;
1847}
1848
1849/**
1850 * iavf_tso - set up the tso context descriptor
1851 * @first: pointer to first Tx buffer for xmit
1852 * @hdr_len: ptr to the size of the packet header
1853 * @cd_type_cmd_tso_mss: Quad Word 1
1854 *
1855 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1856 **/
1857static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1858 u64 *cd_type_cmd_tso_mss)
1859{
1860 struct sk_buff *skb = first->skb;
1861 u64 cd_cmd, cd_tso_len, cd_mss;
1862 union {
1863 struct iphdr *v4;
1864 struct ipv6hdr *v6;
1865 unsigned char *hdr;
1866 } ip;
1867 union {
1868 struct tcphdr *tcp;
1869 struct udphdr *udp;
1870 unsigned char *hdr;
1871 } l4;
1872 u32 paylen, l4_offset;
1873 u16 gso_segs, gso_size;
1874 int err;
1875
1876 if (skb->ip_summed != CHECKSUM_PARTIAL)
1877 return 0;
1878
1879 if (!skb_is_gso(skb))
1880 return 0;
1881
1882 err = skb_cow_head(skb, headroom: 0);
1883 if (err < 0)
1884 return err;
1885
1886 ip.hdr = skb_network_header(skb);
1887 l4.hdr = skb_transport_header(skb);
1888
1889 /* initialize outer IP header fields */
1890 if (ip.v4->version == 4) {
1891 ip.v4->tot_len = 0;
1892 ip.v4->check = 0;
1893 } else {
1894 ip.v6->payload_len = 0;
1895 }
1896
1897 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1898 SKB_GSO_GRE_CSUM |
1899 SKB_GSO_IPXIP4 |
1900 SKB_GSO_IPXIP6 |
1901 SKB_GSO_UDP_TUNNEL |
1902 SKB_GSO_UDP_TUNNEL_CSUM)) {
1903 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1904 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1905 l4.udp->len = 0;
1906
1907 /* determine offset of outer transport header */
1908 l4_offset = l4.hdr - skb->data;
1909
1910 /* remove payload length from outer checksum */
1911 paylen = skb->len - l4_offset;
1912 csum_replace_by_diff(sum: &l4.udp->check,
1913 diff: (__force __wsum)htonl(paylen));
1914 }
1915
1916 /* reset pointers to inner headers */
1917 ip.hdr = skb_inner_network_header(skb);
1918 l4.hdr = skb_inner_transport_header(skb);
1919
1920 /* initialize inner IP header fields */
1921 if (ip.v4->version == 4) {
1922 ip.v4->tot_len = 0;
1923 ip.v4->check = 0;
1924 } else {
1925 ip.v6->payload_len = 0;
1926 }
1927 }
1928
1929 /* determine offset of inner transport header */
1930 l4_offset = l4.hdr - skb->data;
1931 /* remove payload length from inner checksum */
1932 paylen = skb->len - l4_offset;
1933
1934 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1935 csum_replace_by_diff(sum: &l4.udp->check,
1936 diff: (__force __wsum)htonl(paylen));
1937 /* compute length of UDP segmentation header */
1938 *hdr_len = (u8)sizeof(l4.udp) + l4_offset;
1939 } else {
1940 csum_replace_by_diff(sum: &l4.tcp->check,
1941 diff: (__force __wsum)htonl(paylen));
1942 /* compute length of TCP segmentation header */
1943 *hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset);
1944 }
1945
1946 /* pull values out of skb_shinfo */
1947 gso_size = skb_shinfo(skb)->gso_size;
1948 gso_segs = skb_shinfo(skb)->gso_segs;
1949
1950 /* update GSO size and bytecount with header size */
1951 first->gso_segs = gso_segs;
1952 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1953
1954 /* find the field values */
1955 cd_cmd = IAVF_TX_CTX_DESC_TSO;
1956 cd_tso_len = skb->len - *hdr_len;
1957 cd_mss = gso_size;
1958 *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1959 (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1960 (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1961 return 1;
1962}
1963
1964/**
1965 * iavf_tx_enable_csum - Enable Tx checksum offloads
1966 * @skb: send buffer
1967 * @tx_flags: pointer to Tx flags currently set
1968 * @td_cmd: Tx descriptor command bits to set
1969 * @td_offset: Tx descriptor header offsets to set
1970 * @tx_ring: Tx descriptor ring
1971 * @cd_tunneling: ptr to context desc bits
1972 **/
1973static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1974 u32 *td_cmd, u32 *td_offset,
1975 struct iavf_ring *tx_ring,
1976 u32 *cd_tunneling)
1977{
1978 union {
1979 struct iphdr *v4;
1980 struct ipv6hdr *v6;
1981 unsigned char *hdr;
1982 } ip;
1983 union {
1984 struct tcphdr *tcp;
1985 struct udphdr *udp;
1986 unsigned char *hdr;
1987 } l4;
1988 unsigned char *exthdr;
1989 u32 offset, cmd = 0;
1990 __be16 frag_off;
1991 u8 l4_proto = 0;
1992
1993 if (skb->ip_summed != CHECKSUM_PARTIAL)
1994 return 0;
1995
1996 ip.hdr = skb_network_header(skb);
1997 l4.hdr = skb_transport_header(skb);
1998
1999 /* compute outer L2 header size */
2000 offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
2001
2002 if (skb->encapsulation) {
2003 u32 tunnel = 0;
2004 /* define outer network header type */
2005 if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2006 tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2007 IAVF_TX_CTX_EXT_IP_IPV4 :
2008 IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2009
2010 l4_proto = ip.v4->protocol;
2011 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2012 tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
2013
2014 exthdr = ip.hdr + sizeof(*ip.v6);
2015 l4_proto = ip.v6->nexthdr;
2016 if (l4.hdr != exthdr)
2017 ipv6_skip_exthdr(skb, start: exthdr - skb->data,
2018 nexthdrp: &l4_proto, frag_offp: &frag_off);
2019 }
2020
2021 /* define outer transport */
2022 switch (l4_proto) {
2023 case IPPROTO_UDP:
2024 tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
2025 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2026 break;
2027 case IPPROTO_GRE:
2028 tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2029 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2030 break;
2031 case IPPROTO_IPIP:
2032 case IPPROTO_IPV6:
2033 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2034 l4.hdr = skb_inner_network_header(skb);
2035 break;
2036 default:
2037 if (*tx_flags & IAVF_TX_FLAGS_TSO)
2038 return -1;
2039
2040 skb_checksum_help(skb);
2041 return 0;
2042 }
2043
2044 /* compute outer L3 header size */
2045 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2046 IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2047
2048 /* switch IP header pointer from outer to inner header */
2049 ip.hdr = skb_inner_network_header(skb);
2050
2051 /* compute tunnel header size */
2052 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2053 IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2054
2055 /* indicate if we need to offload outer UDP header */
2056 if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2057 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2058 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2059 tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2060
2061 /* record tunnel offload values */
2062 *cd_tunneling |= tunnel;
2063
2064 /* switch L4 header pointer from outer to inner */
2065 l4.hdr = skb_inner_transport_header(skb);
2066 l4_proto = 0;
2067
2068 /* reset type as we transition from outer to inner headers */
2069 *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2070 if (ip.v4->version == 4)
2071 *tx_flags |= IAVF_TX_FLAGS_IPV4;
2072 if (ip.v6->version == 6)
2073 *tx_flags |= IAVF_TX_FLAGS_IPV6;
2074 }
2075
2076 /* Enable IP checksum offloads */
2077 if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2078 l4_proto = ip.v4->protocol;
2079 /* the stack computes the IP header already, the only time we
2080 * need the hardware to recompute it is in the case of TSO.
2081 */
2082 cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2083 IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2084 IAVF_TX_DESC_CMD_IIPT_IPV4;
2085 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2086 cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2087
2088 exthdr = ip.hdr + sizeof(*ip.v6);
2089 l4_proto = ip.v6->nexthdr;
2090 if (l4.hdr != exthdr)
2091 ipv6_skip_exthdr(skb, start: exthdr - skb->data,
2092 nexthdrp: &l4_proto, frag_offp: &frag_off);
2093 }
2094
2095 /* compute inner L3 header size */
2096 offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2097
2098 /* Enable L4 checksum offloads */
2099 switch (l4_proto) {
2100 case IPPROTO_TCP:
2101 /* enable checksum offloads */
2102 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2103 offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2104 break;
2105 case IPPROTO_SCTP:
2106 /* enable SCTP checksum offload */
2107 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2108 offset |= (sizeof(struct sctphdr) >> 2) <<
2109 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2110 break;
2111 case IPPROTO_UDP:
2112 /* enable UDP checksum offload */
2113 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2114 offset |= (sizeof(struct udphdr) >> 2) <<
2115 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2116 break;
2117 default:
2118 if (*tx_flags & IAVF_TX_FLAGS_TSO)
2119 return -1;
2120 skb_checksum_help(skb);
2121 return 0;
2122 }
2123
2124 *td_cmd |= cmd;
2125 *td_offset |= offset;
2126
2127 return 1;
2128}
2129
2130/**
2131 * iavf_create_tx_ctx - Build the Tx context descriptor
2132 * @tx_ring: ring to create the descriptor on
2133 * @cd_type_cmd_tso_mss: Quad Word 1
2134 * @cd_tunneling: Quad Word 0 - bits 0-31
2135 * @cd_l2tag2: Quad Word 0 - bits 32-63
2136 **/
2137static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2138 const u64 cd_type_cmd_tso_mss,
2139 const u32 cd_tunneling, const u32 cd_l2tag2)
2140{
2141 struct iavf_tx_context_desc *context_desc;
2142 int i = tx_ring->next_to_use;
2143
2144 if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2145 !cd_tunneling && !cd_l2tag2)
2146 return;
2147
2148 /* grab the next descriptor */
2149 context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2150
2151 i++;
2152 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2153
2154 /* cpu_to_le32 and assign to struct fields */
2155 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2156 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2157 context_desc->rsvd = cpu_to_le16(0);
2158 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2159}
2160
2161/**
2162 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2163 * @skb: send buffer
2164 *
2165 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2166 * and so we need to figure out the cases where we need to linearize the skb.
2167 *
2168 * For TSO we need to count the TSO header and segment payload separately.
2169 * As such we need to check cases where we have 7 fragments or more as we
2170 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2171 * the segment payload in the first descriptor, and another 7 for the
2172 * fragments.
2173 **/
2174bool __iavf_chk_linearize(struct sk_buff *skb)
2175{
2176 const skb_frag_t *frag, *stale;
2177 int nr_frags, sum;
2178
2179 /* no need to check if number of frags is less than 7 */
2180 nr_frags = skb_shinfo(skb)->nr_frags;
2181 if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2182 return false;
2183
2184 /* We need to walk through the list and validate that each group
2185 * of 6 fragments totals at least gso_size.
2186 */
2187 nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2188 frag = &skb_shinfo(skb)->frags[0];
2189
2190 /* Initialize size to the negative value of gso_size minus 1. We
2191 * use this as the worst case scenerio in which the frag ahead
2192 * of us only provides one byte which is why we are limited to 6
2193 * descriptors for a single transmit as the header and previous
2194 * fragment are already consuming 2 descriptors.
2195 */
2196 sum = 1 - skb_shinfo(skb)->gso_size;
2197
2198 /* Add size of frags 0 through 4 to create our initial sum */
2199 sum += skb_frag_size(frag: frag++);
2200 sum += skb_frag_size(frag: frag++);
2201 sum += skb_frag_size(frag: frag++);
2202 sum += skb_frag_size(frag: frag++);
2203 sum += skb_frag_size(frag: frag++);
2204
2205 /* Walk through fragments adding latest fragment, testing it, and
2206 * then removing stale fragments from the sum.
2207 */
2208 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2209 int stale_size = skb_frag_size(frag: stale);
2210
2211 sum += skb_frag_size(frag: frag++);
2212
2213 /* The stale fragment may present us with a smaller
2214 * descriptor than the actual fragment size. To account
2215 * for that we need to remove all the data on the front and
2216 * figure out what the remainder would be in the last
2217 * descriptor associated with the fragment.
2218 */
2219 if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2220 int align_pad = -(skb_frag_off(frag: stale)) &
2221 (IAVF_MAX_READ_REQ_SIZE - 1);
2222
2223 sum -= align_pad;
2224 stale_size -= align_pad;
2225
2226 do {
2227 sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2228 stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2229 } while (stale_size > IAVF_MAX_DATA_PER_TXD);
2230 }
2231
2232 /* if sum is negative we failed to make sufficient progress */
2233 if (sum < 0)
2234 return true;
2235
2236 if (!nr_frags--)
2237 break;
2238
2239 sum -= stale_size;
2240 }
2241
2242 return false;
2243}
2244
2245/**
2246 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2247 * @tx_ring: the ring to be checked
2248 * @size: the size buffer we want to assure is available
2249 *
2250 * Returns -EBUSY if a stop is needed, else 0
2251 **/
2252int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2253{
2254 netif_stop_subqueue(dev: tx_ring->netdev, queue_index: tx_ring->queue_index);
2255 /* Memory barrier before checking head and tail */
2256 smp_mb();
2257
2258 /* Check again in a case another CPU has just made room available. */
2259 if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2260 return -EBUSY;
2261
2262 /* A reprieve! - use start_queue because it doesn't call schedule */
2263 netif_start_subqueue(dev: tx_ring->netdev, queue_index: tx_ring->queue_index);
2264 ++tx_ring->tx_stats.restart_queue;
2265 return 0;
2266}
2267
2268/**
2269 * iavf_tx_map - Build the Tx descriptor
2270 * @tx_ring: ring to send buffer on
2271 * @skb: send buffer
2272 * @first: first buffer info buffer to use
2273 * @tx_flags: collected send information
2274 * @hdr_len: size of the packet header
2275 * @td_cmd: the command field in the descriptor
2276 * @td_offset: offset for checksum or crc
2277 **/
2278static void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2279 struct iavf_tx_buffer *first, u32 tx_flags,
2280 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2281{
2282 unsigned int data_len = skb->data_len;
2283 unsigned int size = skb_headlen(skb);
2284 skb_frag_t *frag;
2285 struct iavf_tx_buffer *tx_bi;
2286 struct iavf_tx_desc *tx_desc;
2287 u16 i = tx_ring->next_to_use;
2288 u32 td_tag = 0;
2289 dma_addr_t dma;
2290
2291 if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2292 td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2293 td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2294 IAVF_TX_FLAGS_VLAN_SHIFT;
2295 }
2296
2297 first->tx_flags = tx_flags;
2298
2299 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2300
2301 tx_desc = IAVF_TX_DESC(tx_ring, i);
2302 tx_bi = first;
2303
2304 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2305 unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2306
2307 if (dma_mapping_error(dev: tx_ring->dev, dma_addr: dma))
2308 goto dma_error;
2309
2310 /* record length, and DMA address */
2311 dma_unmap_len_set(tx_bi, len, size);
2312 dma_unmap_addr_set(tx_bi, dma, dma);
2313
2314 /* align size to end of page */
2315 max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2316 tx_desc->buffer_addr = cpu_to_le64(dma);
2317
2318 while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2319 tx_desc->cmd_type_offset_bsz =
2320 build_ctob(td_cmd, td_offset,
2321 size: max_data, td_tag);
2322
2323 tx_desc++;
2324 i++;
2325
2326 if (i == tx_ring->count) {
2327 tx_desc = IAVF_TX_DESC(tx_ring, 0);
2328 i = 0;
2329 }
2330
2331 dma += max_data;
2332 size -= max_data;
2333
2334 max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2335 tx_desc->buffer_addr = cpu_to_le64(dma);
2336 }
2337
2338 if (likely(!data_len))
2339 break;
2340
2341 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2342 size, td_tag);
2343
2344 tx_desc++;
2345 i++;
2346
2347 if (i == tx_ring->count) {
2348 tx_desc = IAVF_TX_DESC(tx_ring, 0);
2349 i = 0;
2350 }
2351
2352 size = skb_frag_size(frag);
2353 data_len -= size;
2354
2355 dma = skb_frag_dma_map(dev: tx_ring->dev, frag, offset: 0, size,
2356 dir: DMA_TO_DEVICE);
2357
2358 tx_bi = &tx_ring->tx_bi[i];
2359 }
2360
2361 netdev_tx_sent_queue(dev_queue: txring_txq(ring: tx_ring), bytes: first->bytecount);
2362
2363 i++;
2364 if (i == tx_ring->count)
2365 i = 0;
2366
2367 tx_ring->next_to_use = i;
2368
2369 iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2370
2371 /* write last descriptor with RS and EOP bits */
2372 td_cmd |= IAVF_TXD_CMD;
2373 tx_desc->cmd_type_offset_bsz =
2374 build_ctob(td_cmd, td_offset, size, td_tag);
2375
2376 skb_tx_timestamp(skb);
2377
2378 /* Force memory writes to complete before letting h/w know there
2379 * are new descriptors to fetch.
2380 *
2381 * We also use this memory barrier to make certain all of the
2382 * status bits have been updated before next_to_watch is written.
2383 */
2384 wmb();
2385
2386 /* set next_to_watch value indicating a packet is present */
2387 first->next_to_watch = tx_desc;
2388
2389 /* notify HW of packet */
2390 if (netif_xmit_stopped(dev_queue: txring_txq(ring: tx_ring)) || !netdev_xmit_more()) {
2391 writel(val: i, addr: tx_ring->tail);
2392 }
2393
2394 return;
2395
2396dma_error:
2397 dev_info(tx_ring->dev, "TX DMA map failed\n");
2398
2399 /* clear dma mappings for failed tx_bi map */
2400 for (;;) {
2401 tx_bi = &tx_ring->tx_bi[i];
2402 iavf_unmap_and_free_tx_resource(ring: tx_ring, tx_buffer: tx_bi);
2403 if (tx_bi == first)
2404 break;
2405 if (i == 0)
2406 i = tx_ring->count;
2407 i--;
2408 }
2409
2410 tx_ring->next_to_use = i;
2411}
2412
2413/**
2414 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2415 * @skb: send buffer
2416 * @tx_ring: ring to send buffer on
2417 *
2418 * Returns NETDEV_TX_OK if sent, else an error code
2419 **/
2420static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2421 struct iavf_ring *tx_ring)
2422{
2423 u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2424 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2425 struct iavf_tx_buffer *first;
2426 u32 td_offset = 0;
2427 u32 tx_flags = 0;
2428 __be16 protocol;
2429 u32 td_cmd = 0;
2430 u8 hdr_len = 0;
2431 int tso, count;
2432
2433 /* prefetch the data, we'll need it later */
2434 prefetch(skb->data);
2435
2436 iavf_trace(xmit_frame_ring, skb, tx_ring);
2437
2438 count = iavf_xmit_descriptor_count(skb);
2439 if (iavf_chk_linearize(skb, count)) {
2440 if (__skb_linearize(skb)) {
2441 dev_kfree_skb_any(skb);
2442 return NETDEV_TX_OK;
2443 }
2444 count = iavf_txd_use_count(size: skb->len);
2445 tx_ring->tx_stats.tx_linearize++;
2446 }
2447
2448 /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2449 * + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2450 * + 4 desc gap to avoid the cache line where head is,
2451 * + 1 desc for context descriptor,
2452 * otherwise try next time
2453 */
2454 if (iavf_maybe_stop_tx(tx_ring, size: count + 4 + 1)) {
2455 tx_ring->tx_stats.tx_busy++;
2456 return NETDEV_TX_BUSY;
2457 }
2458
2459 /* record the location of the first descriptor for this packet */
2460 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2461 first->skb = skb;
2462 first->bytecount = skb->len;
2463 first->gso_segs = 1;
2464
2465 /* prepare the xmit flags */
2466 iavf_tx_prepare_vlan_flags(skb, tx_ring, flags: &tx_flags);
2467 if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2468 cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 <<
2469 IAVF_TXD_CTX_QW1_CMD_SHIFT;
2470 cd_l2tag2 = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2471 IAVF_TX_FLAGS_VLAN_SHIFT;
2472 }
2473
2474 /* obtain protocol of skb */
2475 protocol = vlan_get_protocol(skb);
2476
2477 /* setup IPv4/IPv6 offloads */
2478 if (protocol == htons(ETH_P_IP))
2479 tx_flags |= IAVF_TX_FLAGS_IPV4;
2480 else if (protocol == htons(ETH_P_IPV6))
2481 tx_flags |= IAVF_TX_FLAGS_IPV6;
2482
2483 tso = iavf_tso(first, hdr_len: &hdr_len, cd_type_cmd_tso_mss: &cd_type_cmd_tso_mss);
2484
2485 if (tso < 0)
2486 goto out_drop;
2487 else if (tso)
2488 tx_flags |= IAVF_TX_FLAGS_TSO;
2489
2490 /* Always offload the checksum, since it's in the data descriptor */
2491 tso = iavf_tx_enable_csum(skb, tx_flags: &tx_flags, td_cmd: &td_cmd, td_offset: &td_offset,
2492 tx_ring, cd_tunneling: &cd_tunneling);
2493 if (tso < 0)
2494 goto out_drop;
2495
2496 /* always enable CRC insertion offload */
2497 td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2498
2499 iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2500 cd_tunneling, cd_l2tag2);
2501
2502 iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2503 td_cmd, td_offset);
2504
2505 return NETDEV_TX_OK;
2506
2507out_drop:
2508 iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2509 dev_kfree_skb_any(skb: first->skb);
2510 first->skb = NULL;
2511 return NETDEV_TX_OK;
2512}
2513
2514/**
2515 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2516 * @skb: send buffer
2517 * @netdev: network interface device structure
2518 *
2519 * Returns NETDEV_TX_OK if sent, else an error code
2520 **/
2521netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2522{
2523 struct iavf_adapter *adapter = netdev_priv(dev: netdev);
2524 struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2525
2526 /* hardware can't handle really short frames, hardware padding works
2527 * beyond this point
2528 */
2529 if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2530 if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2531 return NETDEV_TX_OK;
2532 skb->len = IAVF_MIN_TX_LEN;
2533 skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2534 }
2535
2536 return iavf_xmit_frame_ring(skb, tx_ring);
2537}
2538

source code of linux/drivers/net/ethernet/intel/iavf/iavf_txrx.c