1 | /* SPDX-License-Identifier: GPL-2.0 */ |
2 | /* Copyright(c) 2013 - 2018 Intel Corporation. */ |
3 | |
4 | #ifndef _IAVF_TXRX_H_ |
5 | #define _IAVF_TXRX_H_ |
6 | |
7 | /* Interrupt Throttling and Rate Limiting Goodies */ |
8 | #define IAVF_DEFAULT_IRQ_WORK 256 |
9 | |
10 | /* The datasheet for the X710 and XL710 indicate that the maximum value for |
11 | * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec |
12 | * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing |
13 | * the register value which is divided by 2 lets use the actual values and |
14 | * avoid an excessive amount of translation. |
15 | */ |
16 | #define IAVF_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ |
17 | #define IAVF_ITR_MASK 0x1FFE /* mask for ITR register value */ |
18 | #define IAVF_ITR_100K 10 /* all values below must be even */ |
19 | #define IAVF_ITR_50K 20 |
20 | #define IAVF_ITR_20K 50 |
21 | #define IAVF_ITR_18K 60 |
22 | #define IAVF_ITR_8K 122 |
23 | #define IAVF_MAX_ITR 8160 /* maximum value as per datasheet */ |
24 | #define ITR_TO_REG(setting) ((setting) & ~IAVF_ITR_DYNAMIC) |
25 | #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~IAVF_ITR_MASK) |
26 | #define ITR_IS_DYNAMIC(setting) (!!((setting) & IAVF_ITR_DYNAMIC)) |
27 | |
28 | #define IAVF_ITR_RX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC) |
29 | #define IAVF_ITR_TX_DEF (IAVF_ITR_20K | IAVF_ITR_DYNAMIC) |
30 | |
31 | /* 0x40 is the enable bit for interrupt rate limiting, and must be set if |
32 | * the value of the rate limit is non-zero |
33 | */ |
34 | #define INTRL_ENA BIT(6) |
35 | #define IAVF_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ |
36 | #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) |
37 | #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0) |
38 | #define IAVF_INTRL_8K 125 /* 8000 ints/sec */ |
39 | #define IAVF_INTRL_62K 16 /* 62500 ints/sec */ |
40 | #define IAVF_INTRL_83K 12 /* 83333 ints/sec */ |
41 | |
42 | #define IAVF_QUEUE_END_OF_LIST 0x7FF |
43 | |
44 | /* this enum matches hardware bits and is meant to be used by DYN_CTLN |
45 | * registers and QINT registers or more generally anywhere in the manual |
46 | * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any |
47 | * register but instead is a special value meaning "don't update" ITR0/1/2. |
48 | */ |
49 | enum iavf_dyn_idx_t { |
50 | IAVF_IDX_ITR0 = 0, |
51 | IAVF_IDX_ITR1 = 1, |
52 | IAVF_IDX_ITR2 = 2, |
53 | IAVF_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ |
54 | }; |
55 | |
56 | /* these are indexes into ITRN registers */ |
57 | #define IAVF_RX_ITR IAVF_IDX_ITR0 |
58 | #define IAVF_TX_ITR IAVF_IDX_ITR1 |
59 | #define IAVF_PE_ITR IAVF_IDX_ITR2 |
60 | |
61 | /* Supported RSS offloads */ |
62 | #define ( \ |
63 | BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_UDP) | \ |
64 | BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ |
65 | BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP) | \ |
66 | BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ |
67 | BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV4) | \ |
68 | BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_UDP) | \ |
69 | BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP) | \ |
70 | BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ |
71 | BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ |
72 | BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV6) | \ |
73 | BIT_ULL(IAVF_FILTER_PCTYPE_L2_PAYLOAD)) |
74 | |
75 | #define IAVF_DEFAULT_RSS_HENA_EXPANDED (IAVF_DEFAULT_RSS_HENA | \ |
76 | BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ |
77 | BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ |
78 | BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ |
79 | BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ |
80 | BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ |
81 | BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) |
82 | |
83 | /* How many Rx Buffers do we bundle into one write to the hardware ? */ |
84 | #define IAVF_RX_INCREMENT(r, i) \ |
85 | do { \ |
86 | (i)++; \ |
87 | if ((i) == (r)->count) \ |
88 | i = 0; \ |
89 | r->next_to_clean = i; \ |
90 | } while (0) |
91 | |
92 | #define IAVF_RX_NEXT_DESC(r, i, n) \ |
93 | do { \ |
94 | (i)++; \ |
95 | if ((i) == (r)->count) \ |
96 | i = 0; \ |
97 | (n) = IAVF_RX_DESC((r), (i)); \ |
98 | } while (0) |
99 | |
100 | #define IAVF_RX_NEXT_DESC_PREFETCH(r, i, n) \ |
101 | do { \ |
102 | IAVF_RX_NEXT_DESC((r), (i), (n)); \ |
103 | prefetch((n)); \ |
104 | } while (0) |
105 | |
106 | #define IAVF_MAX_BUFFER_TXD 8 |
107 | #define IAVF_MIN_TX_LEN 17 |
108 | |
109 | /* The size limit for a transmit buffer in a descriptor is (16K - 1). |
110 | * In order to align with the read requests we will align the value to |
111 | * the nearest 4K which represents our maximum read request size. |
112 | */ |
113 | #define IAVF_MAX_READ_REQ_SIZE 4096 |
114 | #define IAVF_MAX_DATA_PER_TXD (16 * 1024 - 1) |
115 | #define IAVF_MAX_DATA_PER_TXD_ALIGNED \ |
116 | (IAVF_MAX_DATA_PER_TXD & ~(IAVF_MAX_READ_REQ_SIZE - 1)) |
117 | |
118 | /** |
119 | * iavf_txd_use_count - estimate the number of descriptors needed for Tx |
120 | * @size: transmit request size in bytes |
121 | * |
122 | * Due to hardware alignment restrictions (4K alignment), we need to |
123 | * assume that we can have no more than 12K of data per descriptor, even |
124 | * though each descriptor can take up to 16K - 1 bytes of aligned memory. |
125 | * Thus, we need to divide by 12K. But division is slow! Instead, |
126 | * we decompose the operation into shifts and one relatively cheap |
127 | * multiply operation. |
128 | * |
129 | * To divide by 12K, we first divide by 4K, then divide by 3: |
130 | * To divide by 4K, shift right by 12 bits |
131 | * To divide by 3, multiply by 85, then divide by 256 |
132 | * (Divide by 256 is done by shifting right by 8 bits) |
133 | * Finally, we add one to round up. Because 256 isn't an exact multiple of |
134 | * 3, we'll underestimate near each multiple of 12K. This is actually more |
135 | * accurate as we have 4K - 1 of wiggle room that we can fit into the last |
136 | * segment. For our purposes this is accurate out to 1M which is orders of |
137 | * magnitude greater than our largest possible GSO size. |
138 | * |
139 | * This would then be implemented as: |
140 | * return (((size >> 12) * 85) >> 8) + 1; |
141 | * |
142 | * Since multiplication and division are commutative, we can reorder |
143 | * operations into: |
144 | * return ((size * 85) >> 20) + 1; |
145 | */ |
146 | static inline unsigned int iavf_txd_use_count(unsigned int size) |
147 | { |
148 | return ((size * 85) >> 20) + 1; |
149 | } |
150 | |
151 | /* Tx Descriptors needed, worst case */ |
152 | #define DESC_NEEDED (MAX_SKB_FRAGS + 6) |
153 | #define IAVF_MIN_DESC_PENDING 4 |
154 | |
155 | #define IAVF_TX_FLAGS_HW_VLAN BIT(1) |
156 | #define IAVF_TX_FLAGS_SW_VLAN BIT(2) |
157 | #define IAVF_TX_FLAGS_TSO BIT(3) |
158 | #define IAVF_TX_FLAGS_IPV4 BIT(4) |
159 | #define IAVF_TX_FLAGS_IPV6 BIT(5) |
160 | #define IAVF_TX_FLAGS_FCCRC BIT(6) |
161 | #define IAVF_TX_FLAGS_FSO BIT(7) |
162 | #define IAVF_TX_FLAGS_FD_SB BIT(9) |
163 | #define IAVF_TX_FLAGS_VXLAN_TUNNEL BIT(10) |
164 | #define IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN BIT(11) |
165 | #define IAVF_TX_FLAGS_VLAN_MASK 0xffff0000 |
166 | #define IAVF_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 |
167 | #define IAVF_TX_FLAGS_VLAN_PRIO_SHIFT 29 |
168 | #define IAVF_TX_FLAGS_VLAN_SHIFT 16 |
169 | |
170 | struct iavf_tx_buffer { |
171 | struct iavf_tx_desc *next_to_watch; |
172 | union { |
173 | struct sk_buff *skb; |
174 | void *raw_buf; |
175 | }; |
176 | unsigned int bytecount; |
177 | unsigned short gso_segs; |
178 | |
179 | DEFINE_DMA_UNMAP_ADDR(dma); |
180 | DEFINE_DMA_UNMAP_LEN(len); |
181 | u32 tx_flags; |
182 | }; |
183 | |
184 | struct iavf_queue_stats { |
185 | u64 packets; |
186 | u64 bytes; |
187 | }; |
188 | |
189 | struct iavf_tx_queue_stats { |
190 | u64 restart_queue; |
191 | u64 tx_busy; |
192 | u64 tx_done_old; |
193 | u64 tx_linearize; |
194 | u64 tx_force_wb; |
195 | u64 tx_lost_interrupt; |
196 | }; |
197 | |
198 | struct iavf_rx_queue_stats { |
199 | u64 non_eop_descs; |
200 | u64 alloc_page_failed; |
201 | u64 alloc_buff_failed; |
202 | }; |
203 | |
204 | /* some useful defines for virtchannel interface, which |
205 | * is the only remaining user of header split |
206 | */ |
207 | #define IAVF_RX_DTYPE_NO_SPLIT 0 |
208 | #define 1 |
209 | #define IAVF_RX_DTYPE_SPLIT_ALWAYS 2 |
210 | #define IAVF_RX_SPLIT_L2 0x1 |
211 | #define IAVF_RX_SPLIT_IP 0x2 |
212 | #define IAVF_RX_SPLIT_TCP_UDP 0x4 |
213 | #define IAVF_RX_SPLIT_SCTP 0x8 |
214 | |
215 | /* struct that defines a descriptor ring, associated with a VSI */ |
216 | struct iavf_ring { |
217 | struct iavf_ring *next; /* pointer to next ring in q_vector */ |
218 | void *desc; /* Descriptor ring memory */ |
219 | union { |
220 | struct page_pool *pp; /* Used on Rx for buffer management */ |
221 | struct device *dev; /* Used on Tx for DMA mapping */ |
222 | }; |
223 | struct net_device *netdev; /* netdev ring maps to */ |
224 | union { |
225 | struct libeth_fqe *rx_fqes; |
226 | struct iavf_tx_buffer *tx_bi; |
227 | }; |
228 | u8 __iomem *tail; |
229 | u32 truesize; |
230 | |
231 | u16 queue_index; /* Queue number of ring */ |
232 | |
233 | /* high bit set means dynamic, use accessors routines to read/write. |
234 | * hardware only supports 2us resolution for the ITR registers. |
235 | * these values always store the USER setting, and must be converted |
236 | * before programming to a register. |
237 | */ |
238 | u16 itr_setting; |
239 | |
240 | u16 count; /* Number of descriptors */ |
241 | |
242 | /* used in interrupt processing */ |
243 | u16 next_to_use; |
244 | u16 next_to_clean; |
245 | |
246 | u16 rxdid; /* Rx descriptor format */ |
247 | |
248 | u16 flags; |
249 | #define IAVF_TXR_FLAGS_WB_ON_ITR BIT(0) |
250 | #define IAVF_TXR_FLAGS_ARM_WB BIT(1) |
251 | /* BIT(2) is free */ |
252 | #define IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 BIT(3) |
253 | #define IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2 BIT(4) |
254 | #define IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2 BIT(5) |
255 | #define IAVF_TXRX_FLAGS_HW_TSTAMP BIT(6) |
256 | |
257 | /* stats structs */ |
258 | struct iavf_queue_stats stats; |
259 | struct u64_stats_sync syncp; |
260 | union { |
261 | struct iavf_tx_queue_stats tx_stats; |
262 | struct iavf_rx_queue_stats rx_stats; |
263 | }; |
264 | |
265 | int prev_pkt_ctr; /* For Tx stall detection */ |
266 | unsigned int size; /* length of descriptor ring in bytes */ |
267 | dma_addr_t dma; /* physical address of ring */ |
268 | |
269 | struct iavf_vsi *vsi; /* Backreference to associated VSI */ |
270 | struct iavf_q_vector *q_vector; /* Backreference to associated vector */ |
271 | |
272 | struct rcu_head rcu; /* to avoid race on free */ |
273 | struct sk_buff *skb; /* When iavf_clean_rx_ring_irq() must |
274 | * return before it sees the EOP for |
275 | * the current packet, we save that skb |
276 | * here and resume receiving this |
277 | * packet the next time |
278 | * iavf_clean_rx_ring_irq() is called |
279 | * for this ring. |
280 | */ |
281 | |
282 | struct iavf_ptp *ptp; |
283 | |
284 | u32 rx_buf_len; |
285 | struct net_shaper q_shaper; |
286 | bool q_shaper_update; |
287 | } ____cacheline_internodealigned_in_smp; |
288 | |
289 | #define IAVF_ITR_ADAPTIVE_MIN_INC 0x0002 |
290 | #define IAVF_ITR_ADAPTIVE_MIN_USECS 0x0002 |
291 | #define IAVF_ITR_ADAPTIVE_MAX_USECS 0x007e |
292 | #define IAVF_ITR_ADAPTIVE_LATENCY 0x8000 |
293 | #define IAVF_ITR_ADAPTIVE_BULK 0x0000 |
294 | #define ITR_IS_BULK(x) (!((x) & IAVF_ITR_ADAPTIVE_LATENCY)) |
295 | |
296 | struct iavf_ring_container { |
297 | struct iavf_ring *ring; /* pointer to linked list of ring(s) */ |
298 | unsigned long next_update; /* jiffies value of next update */ |
299 | unsigned int total_bytes; /* total bytes processed this int */ |
300 | unsigned int total_packets; /* total packets processed this int */ |
301 | u16 count; |
302 | u16 target_itr; /* target ITR setting for ring(s) */ |
303 | u16 current_itr; /* current ITR setting for ring(s) */ |
304 | }; |
305 | |
306 | /* iterator for handling rings in ring container */ |
307 | #define iavf_for_each_ring(pos, head) \ |
308 | for (pos = (head).ring; pos != NULL; pos = pos->next) |
309 | |
310 | bool iavf_alloc_rx_buffers(struct iavf_ring *rxr, u16 cleaned_count); |
311 | netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev); |
312 | int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring); |
313 | int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring); |
314 | void iavf_free_tx_resources(struct iavf_ring *tx_ring); |
315 | void iavf_free_rx_resources(struct iavf_ring *rx_ring); |
316 | int iavf_napi_poll(struct napi_struct *napi, int budget); |
317 | void iavf_detect_recover_hung(struct iavf_vsi *vsi); |
318 | int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size); |
319 | bool __iavf_chk_linearize(struct sk_buff *skb); |
320 | |
321 | /** |
322 | * iavf_xmit_descriptor_count - calculate number of Tx descriptors needed |
323 | * @skb: send buffer |
324 | * |
325 | * Returns number of data descriptors needed for this skb. Returns 0 to indicate |
326 | * there is not enough descriptors available in this ring since we need at least |
327 | * one descriptor. |
328 | **/ |
329 | static inline int iavf_xmit_descriptor_count(struct sk_buff *skb) |
330 | { |
331 | const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; |
332 | unsigned int nr_frags = skb_shinfo(skb)->nr_frags; |
333 | int count = 0, size = skb_headlen(skb); |
334 | |
335 | for (;;) { |
336 | count += iavf_txd_use_count(size); |
337 | |
338 | if (!nr_frags--) |
339 | break; |
340 | |
341 | size = skb_frag_size(frag: frag++); |
342 | } |
343 | |
344 | return count; |
345 | } |
346 | |
347 | /** |
348 | * iavf_maybe_stop_tx - 1st level check for Tx stop conditions |
349 | * @tx_ring: the ring to be checked |
350 | * @size: the size buffer we want to assure is available |
351 | * |
352 | * Returns 0 if stop is not needed |
353 | **/ |
354 | static inline int iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size) |
355 | { |
356 | if (likely(IAVF_DESC_UNUSED(tx_ring) >= size)) |
357 | return 0; |
358 | return __iavf_maybe_stop_tx(tx_ring, size); |
359 | } |
360 | |
361 | /** |
362 | * iavf_chk_linearize - Check if there are more than 8 fragments per packet |
363 | * @skb: send buffer |
364 | * @count: number of buffers used |
365 | * |
366 | * Note: Our HW can't scatter-gather more than 8 fragments to build |
367 | * a packet on the wire and so we need to figure out the cases where we |
368 | * need to linearize the skb. |
369 | **/ |
370 | static inline bool iavf_chk_linearize(struct sk_buff *skb, int count) |
371 | { |
372 | /* Both TSO and single send will work if count is less than 8 */ |
373 | if (likely(count < IAVF_MAX_BUFFER_TXD)) |
374 | return false; |
375 | |
376 | if (skb_is_gso(skb)) |
377 | return __iavf_chk_linearize(skb); |
378 | |
379 | /* we can support up to 8 data buffers for a single send */ |
380 | return count != IAVF_MAX_BUFFER_TXD; |
381 | } |
382 | /** |
383 | * txring_txq - helper to convert from a ring to a queue |
384 | * @ring: Tx ring to find the netdev equivalent of |
385 | **/ |
386 | static inline struct netdev_queue *txring_txq(const struct iavf_ring *ring) |
387 | { |
388 | return netdev_get_tx_queue(dev: ring->netdev, index: ring->queue_index); |
389 | } |
390 | #endif /* _IAVF_TXRX_H_ */ |
391 | |