1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2020, Intel Corporation. */
3
4#include <linux/vmalloc.h>
5
6#include "ice.h"
7#include "ice_lib.h"
8#include "ice_devlink.h"
9#include "ice_eswitch.h"
10#include "ice_fw_update.h"
11#include "ice_dcb_lib.h"
12
13static int ice_active_port_option = -1;
14
15/* context for devlink info version reporting */
16struct ice_info_ctx {
17 char buf[128];
18 struct ice_orom_info pending_orom;
19 struct ice_nvm_info pending_nvm;
20 struct ice_netlist_info pending_netlist;
21 struct ice_hw_dev_caps dev_caps;
22};
23
24/* The following functions are used to format specific strings for various
25 * devlink info versions. The ctx parameter is used to provide the storage
26 * buffer, as well as any ancillary information calculated when the info
27 * request was made.
28 *
29 * If a version does not exist, for example when attempting to get the
30 * inactive version of flash when there is no pending update, the function
31 * should leave the buffer in the ctx structure empty.
32 */
33
34static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
35{
36 u8 dsn[8];
37
38 /* Copy the DSN into an array in Big Endian format */
39 put_unaligned_be64(val: pci_get_dsn(dev: pf->pdev), p: dsn);
40
41 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "%8phD", dsn);
42}
43
44static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
45{
46 struct ice_hw *hw = &pf->hw;
47 int status;
48
49 status = ice_read_pba_string(hw, pba_num: (u8 *)ctx->buf, pba_num_size: sizeof(ctx->buf));
50 if (status)
51 /* We failed to locate the PBA, so just skip this entry */
52 dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
53 status);
54}
55
56static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
57{
58 struct ice_hw *hw = &pf->hw;
59
60 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "%u.%u.%u",
61 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
62}
63
64static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
65{
66 struct ice_hw *hw = &pf->hw;
67
68 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "%u.%u.%u", hw->api_maj_ver,
69 hw->api_min_ver, hw->api_patch);
70}
71
72static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
73{
74 struct ice_hw *hw = &pf->hw;
75
76 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "0x%08x", hw->fw_build);
77}
78
79static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
80{
81 struct ice_orom_info *orom = &pf->hw.flash.orom;
82
83 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "%u.%u.%u",
84 orom->major, orom->build, orom->patch);
85}
86
87static void
88ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
89 struct ice_info_ctx *ctx)
90{
91 struct ice_orom_info *orom = &ctx->pending_orom;
92
93 if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
94 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "%u.%u.%u",
95 orom->major, orom->build, orom->patch);
96}
97
98static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
99{
100 struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
101
102 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "%x.%02x", nvm->major, nvm->minor);
103}
104
105static void
106ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
107 struct ice_info_ctx *ctx)
108{
109 struct ice_nvm_info *nvm = &ctx->pending_nvm;
110
111 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
112 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "%x.%02x",
113 nvm->major, nvm->minor);
114}
115
116static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
117{
118 struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
119
120 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "0x%08x", nvm->eetrack);
121}
122
123static void
124ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
125{
126 struct ice_nvm_info *nvm = &ctx->pending_nvm;
127
128 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
129 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "0x%08x", nvm->eetrack);
130}
131
132static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
133{
134 struct ice_hw *hw = &pf->hw;
135
136 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "%s", hw->active_pkg_name);
137}
138
139static void
140ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
141{
142 struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
143
144 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "%u.%u.%u.%u",
145 pkg->major, pkg->minor, pkg->update, pkg->draft);
146}
147
148static void
149ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
150{
151 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "0x%08x", pf->hw.active_track_id);
152}
153
154static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
155{
156 struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
157
158 /* The netlist version fields are BCD formatted */
159 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "%x.%x.%x-%x.%x.%x",
160 netlist->major, netlist->minor,
161 netlist->type >> 16, netlist->type & 0xFFFF,
162 netlist->rev, netlist->cust_ver);
163}
164
165static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
166{
167 struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
168
169 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "0x%08x", netlist->hash);
170}
171
172static void
173ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
174 struct ice_info_ctx *ctx)
175{
176 struct ice_netlist_info *netlist = &ctx->pending_netlist;
177
178 /* The netlist version fields are BCD formatted */
179 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
180 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "%x.%x.%x-%x.%x.%x",
181 netlist->major, netlist->minor,
182 netlist->type >> 16, netlist->type & 0xFFFF,
183 netlist->rev, netlist->cust_ver);
184}
185
186static void
187ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
188 struct ice_info_ctx *ctx)
189{
190 struct ice_netlist_info *netlist = &ctx->pending_netlist;
191
192 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
193 snprintf(buf: ctx->buf, size: sizeof(ctx->buf), fmt: "0x%08x", netlist->hash);
194}
195
196#define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
197#define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
198#define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
199
200/* The combined() macro inserts both the running entry as well as a stored
201 * entry. The running entry will always report the version from the active
202 * handler. The stored entry will first try the pending handler, and fallback
203 * to the active handler if the pending function does not report a version.
204 * The pending handler should check the status of a pending update for the
205 * relevant flash component. It should only fill in the buffer in the case
206 * where a valid pending version is available. This ensures that the related
207 * stored and running versions remain in sync, and that stored versions are
208 * correctly reported as expected.
209 */
210#define combined(key, active, pending) \
211 running(key, active), \
212 stored(key, pending, active)
213
214enum ice_version_type {
215 ICE_VERSION_FIXED,
216 ICE_VERSION_RUNNING,
217 ICE_VERSION_STORED,
218};
219
220static const struct ice_devlink_version {
221 enum ice_version_type type;
222 const char *key;
223 void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
224 void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
225} ice_devlink_versions[] = {
226 fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
227 running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
228 running("fw.mgmt.api", ice_info_fw_api),
229 running("fw.mgmt.build", ice_info_fw_build),
230 combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
231 combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
232 combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
233 running("fw.app.name", ice_info_ddp_pkg_name),
234 running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
235 running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
236 combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
237 combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
238};
239
240/**
241 * ice_devlink_info_get - .info_get devlink handler
242 * @devlink: devlink instance structure
243 * @req: the devlink info request
244 * @extack: extended netdev ack structure
245 *
246 * Callback for the devlink .info_get operation. Reports information about the
247 * device.
248 *
249 * Return: zero on success or an error code on failure.
250 */
251static int ice_devlink_info_get(struct devlink *devlink,
252 struct devlink_info_req *req,
253 struct netlink_ext_ack *extack)
254{
255 struct ice_pf *pf = devlink_priv(devlink);
256 struct device *dev = ice_pf_to_dev(pf);
257 struct ice_hw *hw = &pf->hw;
258 struct ice_info_ctx *ctx;
259 size_t i;
260 int err;
261
262 err = ice_wait_for_reset(pf, timeout: 10 * HZ);
263 if (err) {
264 NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
265 return err;
266 }
267
268 ctx = kzalloc(size: sizeof(*ctx), GFP_KERNEL);
269 if (!ctx)
270 return -ENOMEM;
271
272 /* discover capabilities first */
273 err = ice_discover_dev_caps(hw, dev_caps: &ctx->dev_caps);
274 if (err) {
275 dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
276 err, ice_aq_str(hw->adminq.sq_last_status));
277 NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
278 goto out_free_ctx;
279 }
280
281 if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
282 err = ice_get_inactive_orom_ver(hw, orom: &ctx->pending_orom);
283 if (err) {
284 dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
285 err, ice_aq_str(hw->adminq.sq_last_status));
286
287 /* disable display of pending Option ROM */
288 ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
289 }
290 }
291
292 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
293 err = ice_get_inactive_nvm_ver(hw, nvm: &ctx->pending_nvm);
294 if (err) {
295 dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
296 err, ice_aq_str(hw->adminq.sq_last_status));
297
298 /* disable display of pending Option ROM */
299 ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
300 }
301 }
302
303 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
304 err = ice_get_inactive_netlist_ver(hw, netlist: &ctx->pending_netlist);
305 if (err) {
306 dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
307 err, ice_aq_str(hw->adminq.sq_last_status));
308
309 /* disable display of pending Option ROM */
310 ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
311 }
312 }
313
314 ice_info_get_dsn(pf, ctx);
315
316 err = devlink_info_serial_number_put(req, sn: ctx->buf);
317 if (err) {
318 NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
319 goto out_free_ctx;
320 }
321
322 for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
323 enum ice_version_type type = ice_devlink_versions[i].type;
324 const char *key = ice_devlink_versions[i].key;
325
326 memset(ctx->buf, 0, sizeof(ctx->buf));
327
328 ice_devlink_versions[i].getter(pf, ctx);
329
330 /* If the default getter doesn't report a version, use the
331 * fallback function. This is primarily useful in the case of
332 * "stored" versions that want to report the same value as the
333 * running version in the normal case of no pending update.
334 */
335 if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
336 ice_devlink_versions[i].fallback(pf, ctx);
337
338 /* Do not report missing versions */
339 if (ctx->buf[0] == '\0')
340 continue;
341
342 switch (type) {
343 case ICE_VERSION_FIXED:
344 err = devlink_info_version_fixed_put(req, version_name: key, version_value: ctx->buf);
345 if (err) {
346 NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
347 goto out_free_ctx;
348 }
349 break;
350 case ICE_VERSION_RUNNING:
351 err = devlink_info_version_running_put(req, version_name: key, version_value: ctx->buf);
352 if (err) {
353 NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
354 goto out_free_ctx;
355 }
356 break;
357 case ICE_VERSION_STORED:
358 err = devlink_info_version_stored_put(req, version_name: key, version_value: ctx->buf);
359 if (err) {
360 NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
361 goto out_free_ctx;
362 }
363 break;
364 }
365 }
366
367out_free_ctx:
368 kfree(objp: ctx);
369 return err;
370}
371
372/**
373 * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
374 * @pf: pointer to the pf instance
375 * @extack: netlink extended ACK structure
376 *
377 * Allow user to activate new Embedded Management Processor firmware by
378 * issuing device specific EMP reset. Called in response to
379 * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
380 *
381 * Note that teardown and rebuild of the driver state happens automatically as
382 * part of an interrupt and watchdog task. This is because all physical
383 * functions on the device must be able to reset when an EMP reset occurs from
384 * any source.
385 */
386static int
387ice_devlink_reload_empr_start(struct ice_pf *pf,
388 struct netlink_ext_ack *extack)
389{
390 struct device *dev = ice_pf_to_dev(pf);
391 struct ice_hw *hw = &pf->hw;
392 u8 pending;
393 int err;
394
395 err = ice_get_pending_updates(pf, pending: &pending, extack);
396 if (err)
397 return err;
398
399 /* pending is a bitmask of which flash banks have a pending update,
400 * including the main NVM bank, the Option ROM bank, and the netlist
401 * bank. If any of these bits are set, then there is a pending update
402 * waiting to be activated.
403 */
404 if (!pending) {
405 NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
406 return -ECANCELED;
407 }
408
409 if (pf->fw_emp_reset_disabled) {
410 NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
411 return -ECANCELED;
412 }
413
414 dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
415
416 err = ice_aq_nvm_update_empr(hw);
417 if (err) {
418 dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
419 err, ice_aq_str(hw->adminq.sq_last_status));
420 NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
421 return err;
422 }
423
424 return 0;
425}
426
427/**
428 * ice_devlink_reload_down - prepare for reload
429 * @devlink: pointer to the devlink instance to reload
430 * @netns_change: if true, the network namespace is changing
431 * @action: the action to perform
432 * @limit: limits on what reload should do, such as not resetting
433 * @extack: netlink extended ACK structure
434 */
435static int
436ice_devlink_reload_down(struct devlink *devlink, bool netns_change,
437 enum devlink_reload_action action,
438 enum devlink_reload_limit limit,
439 struct netlink_ext_ack *extack)
440{
441 struct ice_pf *pf = devlink_priv(devlink);
442
443 switch (action) {
444 case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
445 if (ice_is_eswitch_mode_switchdev(pf)) {
446 NL_SET_ERR_MSG_MOD(extack,
447 "Go to legacy mode before doing reinit\n");
448 return -EOPNOTSUPP;
449 }
450 if (ice_is_adq_active(pf)) {
451 NL_SET_ERR_MSG_MOD(extack,
452 "Turn off ADQ before doing reinit\n");
453 return -EOPNOTSUPP;
454 }
455 if (ice_has_vfs(pf)) {
456 NL_SET_ERR_MSG_MOD(extack,
457 "Remove all VFs before doing reinit\n");
458 return -EOPNOTSUPP;
459 }
460 ice_unload(pf);
461 return 0;
462 case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
463 return ice_devlink_reload_empr_start(pf, extack);
464 default:
465 WARN_ON(1);
466 return -EOPNOTSUPP;
467 }
468}
469
470/**
471 * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
472 * @pf: pointer to the pf instance
473 * @extack: netlink extended ACK structure
474 *
475 * Wait for driver to finish rebuilding after EMP reset is completed. This
476 * includes time to wait for both the actual device reset as well as the time
477 * for the driver's rebuild to complete.
478 */
479static int
480ice_devlink_reload_empr_finish(struct ice_pf *pf,
481 struct netlink_ext_ack *extack)
482{
483 int err;
484
485 err = ice_wait_for_reset(pf, timeout: 60 * HZ);
486 if (err) {
487 NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
488 return err;
489 }
490
491 return 0;
492}
493
494/**
495 * ice_devlink_port_opt_speed_str - convert speed to a string
496 * @speed: speed value
497 */
498static const char *ice_devlink_port_opt_speed_str(u8 speed)
499{
500 switch (speed & ICE_AQC_PORT_OPT_MAX_LANE_M) {
501 case ICE_AQC_PORT_OPT_MAX_LANE_100M:
502 return "0.1";
503 case ICE_AQC_PORT_OPT_MAX_LANE_1G:
504 return "1";
505 case ICE_AQC_PORT_OPT_MAX_LANE_2500M:
506 return "2.5";
507 case ICE_AQC_PORT_OPT_MAX_LANE_5G:
508 return "5";
509 case ICE_AQC_PORT_OPT_MAX_LANE_10G:
510 return "10";
511 case ICE_AQC_PORT_OPT_MAX_LANE_25G:
512 return "25";
513 case ICE_AQC_PORT_OPT_MAX_LANE_50G:
514 return "50";
515 case ICE_AQC_PORT_OPT_MAX_LANE_100G:
516 return "100";
517 }
518
519 return "-";
520}
521
522#define ICE_PORT_OPT_DESC_LEN 50
523/**
524 * ice_devlink_port_options_print - Print available port split options
525 * @pf: the PF to print split port options
526 *
527 * Prints a table with available port split options and max port speeds
528 */
529static void ice_devlink_port_options_print(struct ice_pf *pf)
530{
531 u8 i, j, options_count, cnt, speed, pending_idx, active_idx;
532 struct ice_aqc_get_port_options_elem *options, *opt;
533 struct device *dev = ice_pf_to_dev(pf);
534 bool active_valid, pending_valid;
535 char desc[ICE_PORT_OPT_DESC_LEN];
536 const char *str;
537 int status;
538
539 options = kcalloc(ICE_AQC_PORT_OPT_MAX * ICE_MAX_PORT_PER_PCI_DEV,
540 size: sizeof(*options), GFP_KERNEL);
541 if (!options)
542 return;
543
544 for (i = 0; i < ICE_MAX_PORT_PER_PCI_DEV; i++) {
545 opt = options + i * ICE_AQC_PORT_OPT_MAX;
546 options_count = ICE_AQC_PORT_OPT_MAX;
547 active_valid = 0;
548
549 status = ice_aq_get_port_options(hw: &pf->hw, options: opt, option_count: &options_count,
550 lport: i, lport_valid: true, active_option_idx: &active_idx,
551 active_option_valid: &active_valid, pending_option_idx: &pending_idx,
552 pending_option_valid: &pending_valid);
553 if (status) {
554 dev_dbg(dev, "Couldn't read port option for port %d, err %d\n",
555 i, status);
556 goto err;
557 }
558 }
559
560 dev_dbg(dev, "Available port split options and max port speeds (Gbps):\n");
561 dev_dbg(dev, "Status Split Quad 0 Quad 1\n");
562 dev_dbg(dev, " count L0 L1 L2 L3 L4 L5 L6 L7\n");
563
564 for (i = 0; i < options_count; i++) {
565 cnt = 0;
566
567 if (i == ice_active_port_option)
568 str = "Active";
569 else if ((i == pending_idx) && pending_valid)
570 str = "Pending";
571 else
572 str = "";
573
574 cnt += snprintf(buf: &desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
575 fmt: "%-8s", str);
576
577 cnt += snprintf(buf: &desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
578 fmt: "%-6u", options[i].pmd);
579
580 for (j = 0; j < ICE_MAX_PORT_PER_PCI_DEV; ++j) {
581 speed = options[i + j * ICE_AQC_PORT_OPT_MAX].max_lane_speed;
582 str = ice_devlink_port_opt_speed_str(speed);
583 cnt += snprintf(buf: &desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
584 fmt: "%3s ", str);
585 }
586
587 dev_dbg(dev, "%s\n", desc);
588 }
589
590err:
591 kfree(objp: options);
592}
593
594/**
595 * ice_devlink_aq_set_port_option - Send set port option admin queue command
596 * @pf: the PF to print split port options
597 * @option_idx: selected port option
598 * @extack: extended netdev ack structure
599 *
600 * Sends set port option admin queue command with selected port option and
601 * calls NVM write activate.
602 */
603static int
604ice_devlink_aq_set_port_option(struct ice_pf *pf, u8 option_idx,
605 struct netlink_ext_ack *extack)
606{
607 struct device *dev = ice_pf_to_dev(pf);
608 int status;
609
610 status = ice_aq_set_port_option(hw: &pf->hw, lport: 0, lport_valid: true, new_option: option_idx);
611 if (status) {
612 dev_dbg(dev, "ice_aq_set_port_option, err %d aq_err %d\n",
613 status, pf->hw.adminq.sq_last_status);
614 NL_SET_ERR_MSG_MOD(extack, "Port split request failed");
615 return -EIO;
616 }
617
618 status = ice_acquire_nvm(hw: &pf->hw, access: ICE_RES_WRITE);
619 if (status) {
620 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
621 status, pf->hw.adminq.sq_last_status);
622 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
623 return -EIO;
624 }
625
626 status = ice_nvm_write_activate(hw: &pf->hw, ICE_AQC_NVM_ACTIV_REQ_EMPR, NULL);
627 if (status) {
628 dev_dbg(dev, "ice_nvm_write_activate failed, err %d aq_err %d\n",
629 status, pf->hw.adminq.sq_last_status);
630 NL_SET_ERR_MSG_MOD(extack, "Port split request failed to save data");
631 ice_release_nvm(hw: &pf->hw);
632 return -EIO;
633 }
634
635 ice_release_nvm(hw: &pf->hw);
636
637 NL_SET_ERR_MSG_MOD(extack, "Reboot required to finish port split");
638 return 0;
639}
640
641/**
642 * ice_devlink_port_split - .port_split devlink handler
643 * @devlink: devlink instance structure
644 * @port: devlink port structure
645 * @count: number of ports to split to
646 * @extack: extended netdev ack structure
647 *
648 * Callback for the devlink .port_split operation.
649 *
650 * Unfortunately, the devlink expression of available options is limited
651 * to just a number, so search for an FW port option which supports
652 * the specified number. As there could be multiple FW port options with
653 * the same port split count, allow switching between them. When the same
654 * port split count request is issued again, switch to the next FW port
655 * option with the same port split count.
656 *
657 * Return: zero on success or an error code on failure.
658 */
659static int
660ice_devlink_port_split(struct devlink *devlink, struct devlink_port *port,
661 unsigned int count, struct netlink_ext_ack *extack)
662{
663 struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX];
664 u8 i, j, active_idx, pending_idx, new_option;
665 struct ice_pf *pf = devlink_priv(devlink);
666 u8 option_count = ICE_AQC_PORT_OPT_MAX;
667 struct device *dev = ice_pf_to_dev(pf);
668 bool active_valid, pending_valid;
669 int status;
670
671 status = ice_aq_get_port_options(hw: &pf->hw, options, option_count: &option_count,
672 lport: 0, lport_valid: true, active_option_idx: &active_idx, active_option_valid: &active_valid,
673 pending_option_idx: &pending_idx, pending_option_valid: &pending_valid);
674 if (status) {
675 dev_dbg(dev, "Couldn't read port split options, err = %d\n",
676 status);
677 NL_SET_ERR_MSG_MOD(extack, "Failed to get available port split options");
678 return -EIO;
679 }
680
681 new_option = ICE_AQC_PORT_OPT_MAX;
682 active_idx = pending_valid ? pending_idx : active_idx;
683 for (i = 1; i <= option_count; i++) {
684 /* In order to allow switching between FW port options with
685 * the same port split count, search for a new option starting
686 * from the active/pending option (with array wrap around).
687 */
688 j = (active_idx + i) % option_count;
689
690 if (count == options[j].pmd) {
691 new_option = j;
692 break;
693 }
694 }
695
696 if (new_option == active_idx) {
697 dev_dbg(dev, "request to split: count: %u is already set and there are no other options\n",
698 count);
699 NL_SET_ERR_MSG_MOD(extack, "Requested split count is already set");
700 ice_devlink_port_options_print(pf);
701 return -EINVAL;
702 }
703
704 if (new_option == ICE_AQC_PORT_OPT_MAX) {
705 dev_dbg(dev, "request to split: count: %u not found\n", count);
706 NL_SET_ERR_MSG_MOD(extack, "Port split requested unsupported port config");
707 ice_devlink_port_options_print(pf);
708 return -EINVAL;
709 }
710
711 status = ice_devlink_aq_set_port_option(pf, option_idx: new_option, extack);
712 if (status)
713 return status;
714
715 ice_devlink_port_options_print(pf);
716
717 return 0;
718}
719
720/**
721 * ice_devlink_port_unsplit - .port_unsplit devlink handler
722 * @devlink: devlink instance structure
723 * @port: devlink port structure
724 * @extack: extended netdev ack structure
725 *
726 * Callback for the devlink .port_unsplit operation.
727 * Calls ice_devlink_port_split with split count set to 1.
728 * There could be no FW option available with split count 1.
729 *
730 * Return: zero on success or an error code on failure.
731 */
732static int
733ice_devlink_port_unsplit(struct devlink *devlink, struct devlink_port *port,
734 struct netlink_ext_ack *extack)
735{
736 return ice_devlink_port_split(devlink, port, count: 1, extack);
737}
738
739/**
740 * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
741 * @pf: pf struct
742 *
743 * This function tears down tree exported during VF's creation.
744 */
745void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
746{
747 struct devlink *devlink;
748 struct ice_vf *vf;
749 unsigned int bkt;
750
751 devlink = priv_to_devlink(priv: pf);
752
753 devl_lock(devlink);
754 mutex_lock(&pf->vfs.table_lock);
755 ice_for_each_vf(pf, bkt, vf) {
756 if (vf->devlink_port.devlink_rate)
757 devl_rate_leaf_destroy(devlink_port: &vf->devlink_port);
758 }
759 mutex_unlock(lock: &pf->vfs.table_lock);
760
761 devl_rate_nodes_destroy(devlink);
762 devl_unlock(devlink);
763}
764
765/**
766 * ice_enable_custom_tx - try to enable custom Tx feature
767 * @pf: pf struct
768 *
769 * This function tries to enable custom Tx feature,
770 * it's not possible to enable it, if DCB or ADQ is active.
771 */
772static bool ice_enable_custom_tx(struct ice_pf *pf)
773{
774 struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
775 struct device *dev = ice_pf_to_dev(pf);
776
777 if (pi->is_custom_tx_enabled)
778 /* already enabled, return true */
779 return true;
780
781 if (ice_is_adq_active(pf)) {
782 dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
783 return false;
784 }
785
786 if (ice_is_dcb_active(pf)) {
787 dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
788 return false;
789 }
790
791 pi->is_custom_tx_enabled = true;
792
793 return true;
794}
795
796/**
797 * ice_traverse_tx_tree - traverse Tx scheduler tree
798 * @devlink: devlink struct
799 * @node: current node, used for recursion
800 * @tc_node: tc_node struct, that is treated as a root
801 * @pf: pf struct
802 *
803 * This function traverses Tx scheduler tree and exports
804 * entire structure to the devlink-rate.
805 */
806static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
807 struct ice_sched_node *tc_node, struct ice_pf *pf)
808{
809 struct devlink_rate *rate_node = NULL;
810 struct ice_vf *vf;
811 int i;
812
813 if (node->parent == tc_node) {
814 /* create root node */
815 rate_node = devl_rate_node_create(devlink, priv: node, node_name: node->name, NULL);
816 } else if (node->vsi_handle &&
817 pf->vsi[node->vsi_handle]->vf) {
818 vf = pf->vsi[node->vsi_handle]->vf;
819 if (!vf->devlink_port.devlink_rate)
820 /* leaf nodes doesn't have children
821 * so we don't set rate_node
822 */
823 devl_rate_leaf_create(devlink_port: &vf->devlink_port, priv: node,
824 parent: node->parent->rate_node);
825 } else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
826 node->parent->rate_node) {
827 rate_node = devl_rate_node_create(devlink, priv: node, node_name: node->name,
828 parent: node->parent->rate_node);
829 }
830
831 if (rate_node && !IS_ERR(ptr: rate_node))
832 node->rate_node = rate_node;
833
834 for (i = 0; i < node->num_children; i++)
835 ice_traverse_tx_tree(devlink, node: node->children[i], tc_node, pf);
836}
837
838/**
839 * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
840 * @devlink: devlink struct
841 * @vsi: main vsi struct
842 *
843 * This function finds a root node, then calls ice_traverse_tx tree, which
844 * traverses the tree and exports it's contents to devlink rate.
845 */
846int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
847{
848 struct ice_port_info *pi = vsi->port_info;
849 struct ice_sched_node *tc_node;
850 struct ice_pf *pf = vsi->back;
851 int i;
852
853 tc_node = pi->root->children[0];
854 mutex_lock(&pi->sched_lock);
855 devl_lock(devlink);
856 for (i = 0; i < tc_node->num_children; i++)
857 ice_traverse_tx_tree(devlink, node: tc_node->children[i], tc_node, pf);
858 devl_unlock(devlink);
859 mutex_unlock(lock: &pi->sched_lock);
860
861 return 0;
862}
863
864/**
865 * ice_set_object_tx_share - sets node scheduling parameter
866 * @pi: devlink struct instance
867 * @node: node struct instance
868 * @bw: bandwidth in bytes per second
869 * @extack: extended netdev ack structure
870 *
871 * This function sets ICE_MIN_BW scheduling BW limit.
872 */
873static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
874 u64 bw, struct netlink_ext_ack *extack)
875{
876 int status;
877
878 mutex_lock(&pi->sched_lock);
879 /* converts bytes per second to kilo bits per second */
880 node->tx_share = div_u64(dividend: bw, divisor: 125);
881 status = ice_sched_set_node_bw_lmt(pi, node, rl_type: ICE_MIN_BW, bw: node->tx_share);
882 mutex_unlock(lock: &pi->sched_lock);
883
884 if (status)
885 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
886
887 return status;
888}
889
890/**
891 * ice_set_object_tx_max - sets node scheduling parameter
892 * @pi: devlink struct instance
893 * @node: node struct instance
894 * @bw: bandwidth in bytes per second
895 * @extack: extended netdev ack structure
896 *
897 * This function sets ICE_MAX_BW scheduling BW limit.
898 */
899static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
900 u64 bw, struct netlink_ext_ack *extack)
901{
902 int status;
903
904 mutex_lock(&pi->sched_lock);
905 /* converts bytes per second value to kilo bits per second */
906 node->tx_max = div_u64(dividend: bw, divisor: 125);
907 status = ice_sched_set_node_bw_lmt(pi, node, rl_type: ICE_MAX_BW, bw: node->tx_max);
908 mutex_unlock(lock: &pi->sched_lock);
909
910 if (status)
911 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
912
913 return status;
914}
915
916/**
917 * ice_set_object_tx_priority - sets node scheduling parameter
918 * @pi: devlink struct instance
919 * @node: node struct instance
920 * @priority: value representing priority for strict priority arbitration
921 * @extack: extended netdev ack structure
922 *
923 * This function sets priority of node among siblings.
924 */
925static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
926 u32 priority, struct netlink_ext_ack *extack)
927{
928 int status;
929
930 if (priority >= 8) {
931 NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
932 return -EINVAL;
933 }
934
935 mutex_lock(&pi->sched_lock);
936 node->tx_priority = priority;
937 status = ice_sched_set_node_priority(pi, node, priority: node->tx_priority);
938 mutex_unlock(lock: &pi->sched_lock);
939
940 if (status)
941 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
942
943 return status;
944}
945
946/**
947 * ice_set_object_tx_weight - sets node scheduling parameter
948 * @pi: devlink struct instance
949 * @node: node struct instance
950 * @weight: value represeting relative weight for WFQ arbitration
951 * @extack: extended netdev ack structure
952 *
953 * This function sets node weight for WFQ algorithm.
954 */
955static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
956 u32 weight, struct netlink_ext_ack *extack)
957{
958 int status;
959
960 if (weight > 200 || weight < 1) {
961 NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
962 return -EINVAL;
963 }
964
965 mutex_lock(&pi->sched_lock);
966 node->tx_weight = weight;
967 status = ice_sched_set_node_weight(pi, node, weight: node->tx_weight);
968 mutex_unlock(lock: &pi->sched_lock);
969
970 if (status)
971 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
972
973 return status;
974}
975
976/**
977 * ice_get_pi_from_dev_rate - get port info from devlink_rate
978 * @rate_node: devlink struct instance
979 *
980 * This function returns corresponding port_info struct of devlink_rate
981 */
982static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
983{
984 struct ice_pf *pf = devlink_priv(devlink: rate_node->devlink);
985
986 return ice_get_main_vsi(pf)->port_info;
987}
988
989static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
990 struct netlink_ext_ack *extack)
991{
992 struct ice_sched_node *node;
993 struct ice_port_info *pi;
994
995 pi = ice_get_pi_from_dev_rate(rate_node);
996
997 if (!ice_enable_custom_tx(pf: devlink_priv(devlink: rate_node->devlink)))
998 return -EBUSY;
999
1000 /* preallocate memory for ice_sched_node */
1001 node = devm_kzalloc(dev: ice_hw_to_dev(hw: pi->hw), size: sizeof(*node), GFP_KERNEL);
1002 *priv = node;
1003
1004 return 0;
1005}
1006
1007static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
1008 struct netlink_ext_ack *extack)
1009{
1010 struct ice_sched_node *node, *tc_node;
1011 struct ice_port_info *pi;
1012
1013 pi = ice_get_pi_from_dev_rate(rate_node);
1014 tc_node = pi->root->children[0];
1015 node = priv;
1016
1017 if (!rate_node->parent || !node || tc_node == node || !extack)
1018 return 0;
1019
1020 if (!ice_enable_custom_tx(pf: devlink_priv(devlink: rate_node->devlink)))
1021 return -EBUSY;
1022
1023 /* can't allow to delete a node with children */
1024 if (node->num_children)
1025 return -EINVAL;
1026
1027 mutex_lock(&pi->sched_lock);
1028 ice_free_sched_node(pi, node);
1029 mutex_unlock(lock: &pi->sched_lock);
1030
1031 return 0;
1032}
1033
1034static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
1035 u64 tx_max, struct netlink_ext_ack *extack)
1036{
1037 struct ice_sched_node *node = priv;
1038
1039 if (!ice_enable_custom_tx(pf: devlink_priv(devlink: rate_leaf->devlink)))
1040 return -EBUSY;
1041
1042 if (!node)
1043 return 0;
1044
1045 return ice_set_object_tx_max(pi: ice_get_pi_from_dev_rate(rate_node: rate_leaf),
1046 node, bw: tx_max, extack);
1047}
1048
1049static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
1050 u64 tx_share, struct netlink_ext_ack *extack)
1051{
1052 struct ice_sched_node *node = priv;
1053
1054 if (!ice_enable_custom_tx(pf: devlink_priv(devlink: rate_leaf->devlink)))
1055 return -EBUSY;
1056
1057 if (!node)
1058 return 0;
1059
1060 return ice_set_object_tx_share(pi: ice_get_pi_from_dev_rate(rate_node: rate_leaf), node,
1061 bw: tx_share, extack);
1062}
1063
1064static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
1065 u32 tx_priority, struct netlink_ext_ack *extack)
1066{
1067 struct ice_sched_node *node = priv;
1068
1069 if (!ice_enable_custom_tx(pf: devlink_priv(devlink: rate_leaf->devlink)))
1070 return -EBUSY;
1071
1072 if (!node)
1073 return 0;
1074
1075 return ice_set_object_tx_priority(pi: ice_get_pi_from_dev_rate(rate_node: rate_leaf), node,
1076 priority: tx_priority, extack);
1077}
1078
1079static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
1080 u32 tx_weight, struct netlink_ext_ack *extack)
1081{
1082 struct ice_sched_node *node = priv;
1083
1084 if (!ice_enable_custom_tx(pf: devlink_priv(devlink: rate_leaf->devlink)))
1085 return -EBUSY;
1086
1087 if (!node)
1088 return 0;
1089
1090 return ice_set_object_tx_weight(pi: ice_get_pi_from_dev_rate(rate_node: rate_leaf), node,
1091 weight: tx_weight, extack);
1092}
1093
1094static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
1095 u64 tx_max, struct netlink_ext_ack *extack)
1096{
1097 struct ice_sched_node *node = priv;
1098
1099 if (!ice_enable_custom_tx(pf: devlink_priv(devlink: rate_node->devlink)))
1100 return -EBUSY;
1101
1102 if (!node)
1103 return 0;
1104
1105 return ice_set_object_tx_max(pi: ice_get_pi_from_dev_rate(rate_node),
1106 node, bw: tx_max, extack);
1107}
1108
1109static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
1110 u64 tx_share, struct netlink_ext_ack *extack)
1111{
1112 struct ice_sched_node *node = priv;
1113
1114 if (!ice_enable_custom_tx(pf: devlink_priv(devlink: rate_node->devlink)))
1115 return -EBUSY;
1116
1117 if (!node)
1118 return 0;
1119
1120 return ice_set_object_tx_share(pi: ice_get_pi_from_dev_rate(rate_node),
1121 node, bw: tx_share, extack);
1122}
1123
1124static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
1125 u32 tx_priority, struct netlink_ext_ack *extack)
1126{
1127 struct ice_sched_node *node = priv;
1128
1129 if (!ice_enable_custom_tx(pf: devlink_priv(devlink: rate_node->devlink)))
1130 return -EBUSY;
1131
1132 if (!node)
1133 return 0;
1134
1135 return ice_set_object_tx_priority(pi: ice_get_pi_from_dev_rate(rate_node),
1136 node, priority: tx_priority, extack);
1137}
1138
1139static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
1140 u32 tx_weight, struct netlink_ext_ack *extack)
1141{
1142 struct ice_sched_node *node = priv;
1143
1144 if (!ice_enable_custom_tx(pf: devlink_priv(devlink: rate_node->devlink)))
1145 return -EBUSY;
1146
1147 if (!node)
1148 return 0;
1149
1150 return ice_set_object_tx_weight(pi: ice_get_pi_from_dev_rate(rate_node),
1151 node, weight: tx_weight, extack);
1152}
1153
1154static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
1155 struct devlink_rate *parent,
1156 void *priv, void *parent_priv,
1157 struct netlink_ext_ack *extack)
1158{
1159 struct ice_port_info *pi = ice_get_pi_from_dev_rate(rate_node: devlink_rate);
1160 struct ice_sched_node *tc_node, *node, *parent_node;
1161 u16 num_nodes_added;
1162 u32 first_node_teid;
1163 u32 node_teid;
1164 int status;
1165
1166 tc_node = pi->root->children[0];
1167 node = priv;
1168
1169 if (!extack)
1170 return 0;
1171
1172 if (!ice_enable_custom_tx(pf: devlink_priv(devlink: devlink_rate->devlink)))
1173 return -EBUSY;
1174
1175 if (!parent) {
1176 if (!node || tc_node == node || node->num_children)
1177 return -EINVAL;
1178
1179 mutex_lock(&pi->sched_lock);
1180 ice_free_sched_node(pi, node);
1181 mutex_unlock(lock: &pi->sched_lock);
1182
1183 return 0;
1184 }
1185
1186 parent_node = parent_priv;
1187
1188 /* if the node doesn't exist, create it */
1189 if (!node->parent) {
1190 mutex_lock(&pi->sched_lock);
1191 status = ice_sched_add_elems(pi, tc_node, parent: parent_node,
1192 layer: parent_node->tx_sched_layer + 1,
1193 num_nodes: 1, num_nodes_added: &num_nodes_added, first_node_teid: &first_node_teid,
1194 prealloc_node: &node);
1195 mutex_unlock(lock: &pi->sched_lock);
1196
1197 if (status) {
1198 NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
1199 return status;
1200 }
1201
1202 if (devlink_rate->tx_share)
1203 ice_set_object_tx_share(pi, node, bw: devlink_rate->tx_share, extack);
1204 if (devlink_rate->tx_max)
1205 ice_set_object_tx_max(pi, node, bw: devlink_rate->tx_max, extack);
1206 if (devlink_rate->tx_priority)
1207 ice_set_object_tx_priority(pi, node, priority: devlink_rate->tx_priority, extack);
1208 if (devlink_rate->tx_weight)
1209 ice_set_object_tx_weight(pi, node, weight: devlink_rate->tx_weight, extack);
1210 } else {
1211 node_teid = le32_to_cpu(node->info.node_teid);
1212 mutex_lock(&pi->sched_lock);
1213 status = ice_sched_move_nodes(pi, parent: parent_node, num_items: 1, list: &node_teid);
1214 mutex_unlock(lock: &pi->sched_lock);
1215
1216 if (status)
1217 NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
1218 }
1219
1220 return status;
1221}
1222
1223/**
1224 * ice_devlink_reload_up - do reload up after reinit
1225 * @devlink: pointer to the devlink instance reloading
1226 * @action: the action requested
1227 * @limit: limits imposed by userspace, such as not resetting
1228 * @actions_performed: on return, indicate what actions actually performed
1229 * @extack: netlink extended ACK structure
1230 */
1231static int
1232ice_devlink_reload_up(struct devlink *devlink,
1233 enum devlink_reload_action action,
1234 enum devlink_reload_limit limit,
1235 u32 *actions_performed,
1236 struct netlink_ext_ack *extack)
1237{
1238 struct ice_pf *pf = devlink_priv(devlink);
1239
1240 switch (action) {
1241 case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
1242 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT);
1243 return ice_load(pf);
1244 case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
1245 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
1246 return ice_devlink_reload_empr_finish(pf, extack);
1247 default:
1248 WARN_ON(1);
1249 return -EOPNOTSUPP;
1250 }
1251}
1252
1253static const struct devlink_ops ice_devlink_ops = {
1254 .supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
1255 .reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) |
1256 BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
1257 .reload_down = ice_devlink_reload_down,
1258 .reload_up = ice_devlink_reload_up,
1259 .eswitch_mode_get = ice_eswitch_mode_get,
1260 .eswitch_mode_set = ice_eswitch_mode_set,
1261 .info_get = ice_devlink_info_get,
1262 .flash_update = ice_devlink_flash_update,
1263
1264 .rate_node_new = ice_devlink_rate_node_new,
1265 .rate_node_del = ice_devlink_rate_node_del,
1266
1267 .rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
1268 .rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
1269 .rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
1270 .rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
1271
1272 .rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
1273 .rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
1274 .rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
1275 .rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
1276
1277 .rate_leaf_parent_set = ice_devlink_set_parent,
1278 .rate_node_parent_set = ice_devlink_set_parent,
1279};
1280
1281static int
1282ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
1283 struct devlink_param_gset_ctx *ctx)
1284{
1285 struct ice_pf *pf = devlink_priv(devlink);
1286
1287 ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false;
1288
1289 return 0;
1290}
1291
1292static int
1293ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
1294 struct devlink_param_gset_ctx *ctx)
1295{
1296 struct ice_pf *pf = devlink_priv(devlink);
1297 bool roce_ena = ctx->val.vbool;
1298 int ret;
1299
1300 if (!roce_ena) {
1301 ice_unplug_aux_dev(pf);
1302 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1303 return 0;
1304 }
1305
1306 pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2;
1307 ret = ice_plug_aux_dev(pf);
1308 if (ret)
1309 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1310
1311 return ret;
1312}
1313
1314static int
1315ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
1316 union devlink_param_value val,
1317 struct netlink_ext_ack *extack)
1318{
1319 struct ice_pf *pf = devlink_priv(devlink);
1320
1321 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1322 return -EOPNOTSUPP;
1323
1324 if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) {
1325 NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1326 return -EOPNOTSUPP;
1327 }
1328
1329 return 0;
1330}
1331
1332static int
1333ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
1334 struct devlink_param_gset_ctx *ctx)
1335{
1336 struct ice_pf *pf = devlink_priv(devlink);
1337
1338 ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP;
1339
1340 return 0;
1341}
1342
1343static int
1344ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
1345 struct devlink_param_gset_ctx *ctx)
1346{
1347 struct ice_pf *pf = devlink_priv(devlink);
1348 bool iw_ena = ctx->val.vbool;
1349 int ret;
1350
1351 if (!iw_ena) {
1352 ice_unplug_aux_dev(pf);
1353 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1354 return 0;
1355 }
1356
1357 pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP;
1358 ret = ice_plug_aux_dev(pf);
1359 if (ret)
1360 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1361
1362 return ret;
1363}
1364
1365static int
1366ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
1367 union devlink_param_value val,
1368 struct netlink_ext_ack *extack)
1369{
1370 struct ice_pf *pf = devlink_priv(devlink);
1371
1372 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1373 return -EOPNOTSUPP;
1374
1375 if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) {
1376 NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1377 return -EOPNOTSUPP;
1378 }
1379
1380 return 0;
1381}
1382
1383static const struct devlink_param ice_devlink_params[] = {
1384 DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1385 ice_devlink_enable_roce_get,
1386 ice_devlink_enable_roce_set,
1387 ice_devlink_enable_roce_validate),
1388 DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1389 ice_devlink_enable_iw_get,
1390 ice_devlink_enable_iw_set,
1391 ice_devlink_enable_iw_validate),
1392
1393};
1394
1395static void ice_devlink_free(void *devlink_ptr)
1396{
1397 devlink_free(devlink: (struct devlink *)devlink_ptr);
1398}
1399
1400/**
1401 * ice_allocate_pf - Allocate devlink and return PF structure pointer
1402 * @dev: the device to allocate for
1403 *
1404 * Allocate a devlink instance for this device and return the private area as
1405 * the PF structure. The devlink memory is kept track of through devres by
1406 * adding an action to remove it when unwinding.
1407 */
1408struct ice_pf *ice_allocate_pf(struct device *dev)
1409{
1410 struct devlink *devlink;
1411
1412 devlink = devlink_alloc(ops: &ice_devlink_ops, priv_size: sizeof(struct ice_pf), dev);
1413 if (!devlink)
1414 return NULL;
1415
1416 /* Add an action to teardown the devlink when unwinding the driver */
1417 if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
1418 return NULL;
1419
1420 return devlink_priv(devlink);
1421}
1422
1423/**
1424 * ice_devlink_register - Register devlink interface for this PF
1425 * @pf: the PF to register the devlink for.
1426 *
1427 * Register the devlink instance associated with this physical function.
1428 *
1429 * Return: zero on success or an error code on failure.
1430 */
1431void ice_devlink_register(struct ice_pf *pf)
1432{
1433 struct devlink *devlink = priv_to_devlink(priv: pf);
1434
1435 devlink_register(devlink);
1436}
1437
1438/**
1439 * ice_devlink_unregister - Unregister devlink resources for this PF.
1440 * @pf: the PF structure to cleanup
1441 *
1442 * Releases resources used by devlink and cleans up associated memory.
1443 */
1444void ice_devlink_unregister(struct ice_pf *pf)
1445{
1446 devlink_unregister(devlink: priv_to_devlink(priv: pf));
1447}
1448
1449/**
1450 * ice_devlink_set_switch_id - Set unique switch id based on pci dsn
1451 * @pf: the PF to create a devlink port for
1452 * @ppid: struct with switch id information
1453 */
1454static void
1455ice_devlink_set_switch_id(struct ice_pf *pf, struct netdev_phys_item_id *ppid)
1456{
1457 struct pci_dev *pdev = pf->pdev;
1458 u64 id;
1459
1460 id = pci_get_dsn(dev: pdev);
1461
1462 ppid->id_len = sizeof(id);
1463 put_unaligned_be64(val: id, p: &ppid->id);
1464}
1465
1466int ice_devlink_register_params(struct ice_pf *pf)
1467{
1468 struct devlink *devlink = priv_to_devlink(priv: pf);
1469
1470 return devlink_params_register(devlink, params: ice_devlink_params,
1471 ARRAY_SIZE(ice_devlink_params));
1472}
1473
1474void ice_devlink_unregister_params(struct ice_pf *pf)
1475{
1476 devlink_params_unregister(devlink: priv_to_devlink(priv: pf), params: ice_devlink_params,
1477 ARRAY_SIZE(ice_devlink_params));
1478}
1479
1480/**
1481 * ice_devlink_set_port_split_options - Set port split options
1482 * @pf: the PF to set port split options
1483 * @attrs: devlink attributes
1484 *
1485 * Sets devlink port split options based on available FW port options
1486 */
1487static void
1488ice_devlink_set_port_split_options(struct ice_pf *pf,
1489 struct devlink_port_attrs *attrs)
1490{
1491 struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX];
1492 u8 i, active_idx, pending_idx, option_count = ICE_AQC_PORT_OPT_MAX;
1493 bool active_valid, pending_valid;
1494 int status;
1495
1496 status = ice_aq_get_port_options(hw: &pf->hw, options, option_count: &option_count,
1497 lport: 0, lport_valid: true, active_option_idx: &active_idx, active_option_valid: &active_valid,
1498 pending_option_idx: &pending_idx, pending_option_valid: &pending_valid);
1499 if (status) {
1500 dev_dbg(ice_pf_to_dev(pf), "Couldn't read port split options, err = %d\n",
1501 status);
1502 return;
1503 }
1504
1505 /* find the biggest available port split count */
1506 for (i = 0; i < option_count; i++)
1507 attrs->lanes = max_t(int, attrs->lanes, options[i].pmd);
1508
1509 attrs->splittable = attrs->lanes ? 1 : 0;
1510 ice_active_port_option = active_idx;
1511}
1512
1513static const struct devlink_port_ops ice_devlink_port_ops = {
1514 .port_split = ice_devlink_port_split,
1515 .port_unsplit = ice_devlink_port_unsplit,
1516};
1517
1518/**
1519 * ice_devlink_create_pf_port - Create a devlink port for this PF
1520 * @pf: the PF to create a devlink port for
1521 *
1522 * Create and register a devlink_port for this PF.
1523 *
1524 * Return: zero on success or an error code on failure.
1525 */
1526int ice_devlink_create_pf_port(struct ice_pf *pf)
1527{
1528 struct devlink_port_attrs attrs = {};
1529 struct devlink_port *devlink_port;
1530 struct devlink *devlink;
1531 struct ice_vsi *vsi;
1532 struct device *dev;
1533 int err;
1534
1535 dev = ice_pf_to_dev(pf);
1536
1537 devlink_port = &pf->devlink_port;
1538
1539 vsi = ice_get_main_vsi(pf);
1540 if (!vsi)
1541 return -EIO;
1542
1543 attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
1544 attrs.phys.port_number = pf->hw.bus.func;
1545
1546 /* As FW supports only port split options for whole device,
1547 * set port split options only for first PF.
1548 */
1549 if (pf->hw.pf_id == 0)
1550 ice_devlink_set_port_split_options(pf, attrs: &attrs);
1551
1552 ice_devlink_set_switch_id(pf, ppid: &attrs.switch_id);
1553
1554 devlink_port_attrs_set(devlink_port, devlink_port_attrs: &attrs);
1555 devlink = priv_to_devlink(priv: pf);
1556
1557 err = devlink_port_register_with_ops(devlink, devlink_port, port_index: vsi->idx,
1558 ops: &ice_devlink_port_ops);
1559 if (err) {
1560 dev_err(dev, "Failed to create devlink port for PF %d, error %d\n",
1561 pf->hw.pf_id, err);
1562 return err;
1563 }
1564
1565 return 0;
1566}
1567
1568/**
1569 * ice_devlink_destroy_pf_port - Destroy the devlink_port for this PF
1570 * @pf: the PF to cleanup
1571 *
1572 * Unregisters the devlink_port structure associated with this PF.
1573 */
1574void ice_devlink_destroy_pf_port(struct ice_pf *pf)
1575{
1576 devlink_port_unregister(devlink_port: &pf->devlink_port);
1577}
1578
1579/**
1580 * ice_devlink_create_vf_port - Create a devlink port for this VF
1581 * @vf: the VF to create a port for
1582 *
1583 * Create and register a devlink_port for this VF.
1584 *
1585 * Return: zero on success or an error code on failure.
1586 */
1587int ice_devlink_create_vf_port(struct ice_vf *vf)
1588{
1589 struct devlink_port_attrs attrs = {};
1590 struct devlink_port *devlink_port;
1591 struct devlink *devlink;
1592 struct ice_vsi *vsi;
1593 struct device *dev;
1594 struct ice_pf *pf;
1595 int err;
1596
1597 pf = vf->pf;
1598 dev = ice_pf_to_dev(pf);
1599 devlink_port = &vf->devlink_port;
1600
1601 vsi = ice_get_vf_vsi(vf);
1602 if (!vsi)
1603 return -EINVAL;
1604
1605 attrs.flavour = DEVLINK_PORT_FLAVOUR_PCI_VF;
1606 attrs.pci_vf.pf = pf->hw.bus.func;
1607 attrs.pci_vf.vf = vf->vf_id;
1608
1609 ice_devlink_set_switch_id(pf, ppid: &attrs.switch_id);
1610
1611 devlink_port_attrs_set(devlink_port, devlink_port_attrs: &attrs);
1612 devlink = priv_to_devlink(priv: pf);
1613
1614 err = devlink_port_register(devlink, devlink_port, port_index: vsi->idx);
1615 if (err) {
1616 dev_err(dev, "Failed to create devlink port for VF %d, error %d\n",
1617 vf->vf_id, err);
1618 return err;
1619 }
1620
1621 return 0;
1622}
1623
1624/**
1625 * ice_devlink_destroy_vf_port - Destroy the devlink_port for this VF
1626 * @vf: the VF to cleanup
1627 *
1628 * Unregisters the devlink_port structure associated with this VF.
1629 */
1630void ice_devlink_destroy_vf_port(struct ice_vf *vf)
1631{
1632 devl_rate_leaf_destroy(devlink_port: &vf->devlink_port);
1633 devlink_port_unregister(devlink_port: &vf->devlink_port);
1634}
1635
1636#define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1637
1638static const struct devlink_region_ops ice_nvm_region_ops;
1639static const struct devlink_region_ops ice_sram_region_ops;
1640
1641/**
1642 * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1643 * @devlink: the devlink instance
1644 * @ops: the devlink region to snapshot
1645 * @extack: extended ACK response structure
1646 * @data: on exit points to snapshot data buffer
1647 *
1648 * This function is called in response to a DEVLINK_CMD_REGION_NEW for either
1649 * the nvm-flash or shadow-ram region.
1650 *
1651 * It captures a snapshot of the NVM or Shadow RAM flash contents. This
1652 * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
1653 * interface.
1654 *
1655 * @returns zero on success, and updates the data pointer. Returns a non-zero
1656 * error code on failure.
1657 */
1658static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1659 const struct devlink_region_ops *ops,
1660 struct netlink_ext_ack *extack, u8 **data)
1661{
1662 struct ice_pf *pf = devlink_priv(devlink);
1663 struct device *dev = ice_pf_to_dev(pf);
1664 struct ice_hw *hw = &pf->hw;
1665 bool read_shadow_ram;
1666 u8 *nvm_data, *tmp, i;
1667 u32 nvm_size, left;
1668 s8 num_blks;
1669 int status;
1670
1671 if (ops == &ice_nvm_region_ops) {
1672 read_shadow_ram = false;
1673 nvm_size = hw->flash.flash_size;
1674 } else if (ops == &ice_sram_region_ops) {
1675 read_shadow_ram = true;
1676 nvm_size = hw->flash.sr_words * 2u;
1677 } else {
1678 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1679 return -EOPNOTSUPP;
1680 }
1681
1682 nvm_data = vzalloc(size: nvm_size);
1683 if (!nvm_data)
1684 return -ENOMEM;
1685
1686 num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1687 tmp = nvm_data;
1688 left = nvm_size;
1689
1690 /* Some systems take longer to read the NVM than others which causes the
1691 * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1692 * this by breaking the reads of the NVM into smaller chunks that will
1693 * probably not take as long. This has some overhead since we are
1694 * increasing the number of AQ commands, but it should always work
1695 */
1696 for (i = 0; i < num_blks; i++) {
1697 u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1698
1699 status = ice_acquire_nvm(hw, access: ICE_RES_READ);
1700 if (status) {
1701 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1702 status, hw->adminq.sq_last_status);
1703 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1704 vfree(addr: nvm_data);
1705 return -EIO;
1706 }
1707
1708 status = ice_read_flat_nvm(hw, offset: i * ICE_DEVLINK_READ_BLK_SIZE,
1709 length: &read_sz, data: tmp, read_shadow_ram);
1710 if (status) {
1711 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1712 read_sz, status, hw->adminq.sq_last_status);
1713 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1714 ice_release_nvm(hw);
1715 vfree(addr: nvm_data);
1716 return -EIO;
1717 }
1718 ice_release_nvm(hw);
1719
1720 tmp += read_sz;
1721 left -= read_sz;
1722 }
1723
1724 *data = nvm_data;
1725
1726 return 0;
1727}
1728
1729/**
1730 * ice_devlink_nvm_read - Read a portion of NVM flash contents
1731 * @devlink: the devlink instance
1732 * @ops: the devlink region to snapshot
1733 * @extack: extended ACK response structure
1734 * @offset: the offset to start at
1735 * @size: the amount to read
1736 * @data: the data buffer to read into
1737 *
1738 * This function is called in response to DEVLINK_CMD_REGION_READ to directly
1739 * read a section of the NVM contents.
1740 *
1741 * It reads from either the nvm-flash or shadow-ram region contents.
1742 *
1743 * @returns zero on success, and updates the data pointer. Returns a non-zero
1744 * error code on failure.
1745 */
1746static int ice_devlink_nvm_read(struct devlink *devlink,
1747 const struct devlink_region_ops *ops,
1748 struct netlink_ext_ack *extack,
1749 u64 offset, u32 size, u8 *data)
1750{
1751 struct ice_pf *pf = devlink_priv(devlink);
1752 struct device *dev = ice_pf_to_dev(pf);
1753 struct ice_hw *hw = &pf->hw;
1754 bool read_shadow_ram;
1755 u64 nvm_size;
1756 int status;
1757
1758 if (ops == &ice_nvm_region_ops) {
1759 read_shadow_ram = false;
1760 nvm_size = hw->flash.flash_size;
1761 } else if (ops == &ice_sram_region_ops) {
1762 read_shadow_ram = true;
1763 nvm_size = hw->flash.sr_words * 2u;
1764 } else {
1765 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1766 return -EOPNOTSUPP;
1767 }
1768
1769 if (offset + size >= nvm_size) {
1770 NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
1771 return -ERANGE;
1772 }
1773
1774 status = ice_acquire_nvm(hw, access: ICE_RES_READ);
1775 if (status) {
1776 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1777 status, hw->adminq.sq_last_status);
1778 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1779 return -EIO;
1780 }
1781
1782 status = ice_read_flat_nvm(hw, offset: (u32)offset, length: &size, data,
1783 read_shadow_ram);
1784 if (status) {
1785 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1786 size, status, hw->adminq.sq_last_status);
1787 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1788 ice_release_nvm(hw);
1789 return -EIO;
1790 }
1791 ice_release_nvm(hw);
1792
1793 return 0;
1794}
1795
1796/**
1797 * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1798 * @devlink: the devlink instance
1799 * @ops: the devlink region being snapshotted
1800 * @extack: extended ACK response structure
1801 * @data: on exit points to snapshot data buffer
1802 *
1803 * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1804 * the device-caps devlink region. It captures a snapshot of the device
1805 * capabilities reported by firmware.
1806 *
1807 * @returns zero on success, and updates the data pointer. Returns a non-zero
1808 * error code on failure.
1809 */
1810static int
1811ice_devlink_devcaps_snapshot(struct devlink *devlink,
1812 const struct devlink_region_ops *ops,
1813 struct netlink_ext_ack *extack, u8 **data)
1814{
1815 struct ice_pf *pf = devlink_priv(devlink);
1816 struct device *dev = ice_pf_to_dev(pf);
1817 struct ice_hw *hw = &pf->hw;
1818 void *devcaps;
1819 int status;
1820
1821 devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
1822 if (!devcaps)
1823 return -ENOMEM;
1824
1825 status = ice_aq_list_caps(hw, buf: devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
1826 opc: ice_aqc_opc_list_dev_caps, NULL);
1827 if (status) {
1828 dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
1829 status, hw->adminq.sq_last_status);
1830 NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
1831 vfree(addr: devcaps);
1832 return status;
1833 }
1834
1835 *data = (u8 *)devcaps;
1836
1837 return 0;
1838}
1839
1840static const struct devlink_region_ops ice_nvm_region_ops = {
1841 .name = "nvm-flash",
1842 .destructor = vfree,
1843 .snapshot = ice_devlink_nvm_snapshot,
1844 .read = ice_devlink_nvm_read,
1845};
1846
1847static const struct devlink_region_ops ice_sram_region_ops = {
1848 .name = "shadow-ram",
1849 .destructor = vfree,
1850 .snapshot = ice_devlink_nvm_snapshot,
1851 .read = ice_devlink_nvm_read,
1852};
1853
1854static const struct devlink_region_ops ice_devcaps_region_ops = {
1855 .name = "device-caps",
1856 .destructor = vfree,
1857 .snapshot = ice_devlink_devcaps_snapshot,
1858};
1859
1860/**
1861 * ice_devlink_init_regions - Initialize devlink regions
1862 * @pf: the PF device structure
1863 *
1864 * Create devlink regions used to enable access to dump the contents of the
1865 * flash memory on the device.
1866 */
1867void ice_devlink_init_regions(struct ice_pf *pf)
1868{
1869 struct devlink *devlink = priv_to_devlink(priv: pf);
1870 struct device *dev = ice_pf_to_dev(pf);
1871 u64 nvm_size, sram_size;
1872
1873 nvm_size = pf->hw.flash.flash_size;
1874 pf->nvm_region = devlink_region_create(devlink, ops: &ice_nvm_region_ops, region_max_snapshots: 1,
1875 region_size: nvm_size);
1876 if (IS_ERR(ptr: pf->nvm_region)) {
1877 dev_err(dev, "failed to create NVM devlink region, err %ld\n",
1878 PTR_ERR(pf->nvm_region));
1879 pf->nvm_region = NULL;
1880 }
1881
1882 sram_size = pf->hw.flash.sr_words * 2u;
1883 pf->sram_region = devlink_region_create(devlink, ops: &ice_sram_region_ops,
1884 region_max_snapshots: 1, region_size: sram_size);
1885 if (IS_ERR(ptr: pf->sram_region)) {
1886 dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
1887 PTR_ERR(pf->sram_region));
1888 pf->sram_region = NULL;
1889 }
1890
1891 pf->devcaps_region = devlink_region_create(devlink,
1892 ops: &ice_devcaps_region_ops, region_max_snapshots: 10,
1893 ICE_AQ_MAX_BUF_LEN);
1894 if (IS_ERR(ptr: pf->devcaps_region)) {
1895 dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
1896 PTR_ERR(pf->devcaps_region));
1897 pf->devcaps_region = NULL;
1898 }
1899}
1900
1901/**
1902 * ice_devlink_destroy_regions - Destroy devlink regions
1903 * @pf: the PF device structure
1904 *
1905 * Remove previously created regions for this PF.
1906 */
1907void ice_devlink_destroy_regions(struct ice_pf *pf)
1908{
1909 if (pf->nvm_region)
1910 devlink_region_destroy(region: pf->nvm_region);
1911
1912 if (pf->sram_region)
1913 devlink_region_destroy(region: pf->sram_region);
1914
1915 if (pf->devcaps_region)
1916 devlink_region_destroy(region: pf->devcaps_region);
1917}
1918

source code of linux/drivers/net/ethernet/intel/ice/ice_devlink.c