1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2021, Intel Corporation. */
3
4#include <linux/delay.h>
5#include "ice_common.h"
6#include "ice_ptp_hw.h"
7#include "ice_ptp_consts.h"
8#include "ice_cgu_regs.h"
9
10static struct dpll_pin_frequency ice_cgu_pin_freq_common[] = {
11 DPLL_PIN_FREQUENCY_1PPS,
12 DPLL_PIN_FREQUENCY_10MHZ,
13};
14
15static struct dpll_pin_frequency ice_cgu_pin_freq_1_hz[] = {
16 DPLL_PIN_FREQUENCY_1PPS,
17};
18
19static struct dpll_pin_frequency ice_cgu_pin_freq_10_mhz[] = {
20 DPLL_PIN_FREQUENCY_10MHZ,
21};
22
23static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_inputs[] = {
24 { "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
25 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
26 { "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
27 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
28 { "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0, },
29 { "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0, },
30 { "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT,
31 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
32 { "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT,
33 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
34 { "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS,
35 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
36 { "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0, },
37};
38
39static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = {
40 { "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
41 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
42 { "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
43 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
44 { "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, },
45 { "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, },
46 { "C827_1-RCLKA", ZL_REF2P, DPLL_PIN_TYPE_MUX, },
47 { "C827_1-RCLKB", ZL_REF2N, DPLL_PIN_TYPE_MUX, },
48 { "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT,
49 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
50 { "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT,
51 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
52 { "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS,
53 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
54 { "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, },
55};
56
57static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_outputs[] = {
58 { "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
59 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
60 { "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
61 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
62 { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
63 { "MAC-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
64 { "CVL-SDP21", ZL_OUT4, DPLL_PIN_TYPE_EXT,
65 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
66 { "CVL-SDP23", ZL_OUT5, DPLL_PIN_TYPE_EXT,
67 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
68};
69
70static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_outputs[] = {
71 { "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
72 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
73 { "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
74 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
75 { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
76 { "PHY2-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
77 { "MAC-CLK", ZL_OUT4, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
78 { "CVL-SDP21", ZL_OUT5, DPLL_PIN_TYPE_EXT,
79 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
80 { "CVL-SDP23", ZL_OUT6, DPLL_PIN_TYPE_EXT,
81 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
82};
83
84static const struct ice_cgu_pin_desc ice_e823_si_cgu_inputs[] = {
85 { "NONE", SI_REF0P, 0, 0 },
86 { "NONE", SI_REF0N, 0, 0 },
87 { "SYNCE0_DP", SI_REF1P, DPLL_PIN_TYPE_MUX, 0 },
88 { "SYNCE0_DN", SI_REF1N, DPLL_PIN_TYPE_MUX, 0 },
89 { "EXT_CLK_SYNC", SI_REF2P, DPLL_PIN_TYPE_EXT,
90 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
91 { "NONE", SI_REF2N, 0, 0 },
92 { "EXT_PPS_OUT", SI_REF3, DPLL_PIN_TYPE_EXT,
93 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
94 { "INT_PPS_OUT", SI_REF4, DPLL_PIN_TYPE_EXT,
95 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
96};
97
98static const struct ice_cgu_pin_desc ice_e823_si_cgu_outputs[] = {
99 { "1588-TIME_SYNC", SI_OUT0, DPLL_PIN_TYPE_EXT,
100 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
101 { "PHY-CLK", SI_OUT1, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
102 { "10MHZ-SMA2", SI_OUT2, DPLL_PIN_TYPE_EXT,
103 ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
104 { "PPS-SMA1", SI_OUT3, DPLL_PIN_TYPE_EXT,
105 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
106};
107
108static const struct ice_cgu_pin_desc ice_e823_zl_cgu_inputs[] = {
109 { "NONE", ZL_REF0P, 0, 0 },
110 { "INT_PPS_OUT", ZL_REF0N, DPLL_PIN_TYPE_EXT,
111 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
112 { "SYNCE0_DP", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0 },
113 { "SYNCE0_DN", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0 },
114 { "NONE", ZL_REF2P, 0, 0 },
115 { "NONE", ZL_REF2N, 0, 0 },
116 { "EXT_CLK_SYNC", ZL_REF3P, DPLL_PIN_TYPE_EXT,
117 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
118 { "NONE", ZL_REF3N, 0, 0 },
119 { "EXT_PPS_OUT", ZL_REF4P, DPLL_PIN_TYPE_EXT,
120 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
121 { "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0 },
122};
123
124static const struct ice_cgu_pin_desc ice_e823_zl_cgu_outputs[] = {
125 { "PPS-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
126 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
127 { "10MHZ-SMA2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
128 ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
129 { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
130 { "1588-TIME_REF", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
131 { "CPK-TIME_SYNC", ZL_OUT4, DPLL_PIN_TYPE_EXT,
132 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
133 { "NONE", ZL_OUT5, 0, 0 },
134};
135
136/* Low level functions for interacting with and managing the device clock used
137 * for the Precision Time Protocol.
138 *
139 * The ice hardware represents the current time using three registers:
140 *
141 * GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R
142 * +---------------+ +---------------+ +---------------+
143 * | 32 bits | | 32 bits | | 32 bits |
144 * +---------------+ +---------------+ +---------------+
145 *
146 * The registers are incremented every clock tick using a 40bit increment
147 * value defined over two registers:
148 *
149 * GLTSYN_INCVAL_H GLTSYN_INCVAL_L
150 * +---------------+ +---------------+
151 * | 8 bit s | | 32 bits |
152 * +---------------+ +---------------+
153 *
154 * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
155 * registers every clock source tick. Depending on the specific device
156 * configuration, the clock source frequency could be one of a number of
157 * values.
158 *
159 * For E810 devices, the increment frequency is 812.5 MHz
160 *
161 * For E822 devices the clock can be derived from different sources, and the
162 * increment has an effective frequency of one of the following:
163 * - 823.4375 MHz
164 * - 783.36 MHz
165 * - 796.875 MHz
166 * - 816 MHz
167 * - 830.078125 MHz
168 * - 783.36 MHz
169 *
170 * The hardware captures timestamps in the PHY for incoming packets, and for
171 * outgoing packets on request. To support this, the PHY maintains a timer
172 * that matches the lower 64 bits of the global source timer.
173 *
174 * In order to ensure that the PHY timers and the source timer are equivalent,
175 * shadow registers are used to prepare the desired initial values. A special
176 * sync command is issued to trigger copying from the shadow registers into
177 * the appropriate source and PHY registers simultaneously.
178 *
179 * The driver supports devices which have different PHYs with subtly different
180 * mechanisms to program and control the timers. We divide the devices into
181 * families named after the first major device, E810 and similar devices, and
182 * E822 and similar devices.
183 *
184 * - E822 based devices have additional support for fine grained Vernier
185 * calibration which requires significant setup
186 * - The layout of timestamp data in the PHY register blocks is different
187 * - The way timer synchronization commands are issued is different.
188 *
189 * To support this, very low level functions have an e810 or e822 suffix
190 * indicating what type of device they work on. Higher level abstractions for
191 * tasks that can be done on both devices do not have the suffix and will
192 * correctly look up the appropriate low level function when running.
193 *
194 * Functions which only make sense on a single device family may not have
195 * a suitable generic implementation
196 */
197
198/**
199 * ice_get_ptp_src_clock_index - determine source clock index
200 * @hw: pointer to HW struct
201 *
202 * Determine the source clock index currently in use, based on device
203 * capabilities reported during initialization.
204 */
205u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
206{
207 return hw->func_caps.ts_func_info.tmr_index_assoc;
208}
209
210/**
211 * ice_ptp_read_src_incval - Read source timer increment value
212 * @hw: pointer to HW struct
213 *
214 * Read the increment value of the source timer and return it.
215 */
216static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
217{
218 u32 lo, hi;
219 u8 tmr_idx;
220
221 tmr_idx = ice_get_ptp_src_clock_index(hw);
222
223 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
224 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
225
226 return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
227}
228
229/**
230 * ice_ptp_src_cmd - Prepare source timer for a timer command
231 * @hw: pointer to HW structure
232 * @cmd: Timer command
233 *
234 * Prepare the source timer for an upcoming timer sync command.
235 */
236void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
237{
238 u32 cmd_val;
239 u8 tmr_idx;
240
241 tmr_idx = ice_get_ptp_src_clock_index(hw);
242 cmd_val = tmr_idx << SEL_CPK_SRC;
243
244 switch (cmd) {
245 case ICE_PTP_INIT_TIME:
246 cmd_val |= GLTSYN_CMD_INIT_TIME;
247 break;
248 case ICE_PTP_INIT_INCVAL:
249 cmd_val |= GLTSYN_CMD_INIT_INCVAL;
250 break;
251 case ICE_PTP_ADJ_TIME:
252 cmd_val |= GLTSYN_CMD_ADJ_TIME;
253 break;
254 case ICE_PTP_ADJ_TIME_AT_TIME:
255 cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME;
256 break;
257 case ICE_PTP_READ_TIME:
258 cmd_val |= GLTSYN_CMD_READ_TIME;
259 break;
260 case ICE_PTP_NOP:
261 break;
262 }
263
264 wr32(hw, GLTSYN_CMD, cmd_val);
265}
266
267/**
268 * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
269 * @hw: pointer to HW struct
270 *
271 * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
272 * write immediately. This triggers the hardware to begin executing all of the
273 * source and PHY timer commands synchronously.
274 */
275static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
276{
277 wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
278 ice_flush(hw);
279}
280
281/* E822 family functions
282 *
283 * The following functions operate on the E822 family of devices.
284 */
285
286/**
287 * ice_fill_phy_msg_e822 - Fill message data for a PHY register access
288 * @msg: the PHY message buffer to fill in
289 * @port: the port to access
290 * @offset: the register offset
291 */
292static void
293ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset)
294{
295 int phy_port, phy, quadtype;
296
297 phy_port = port % ICE_PORTS_PER_PHY_E822;
298 phy = port / ICE_PORTS_PER_PHY_E822;
299 quadtype = (port / ICE_PORTS_PER_QUAD) % ICE_QUADS_PER_PHY_E822;
300
301 if (quadtype == 0) {
302 msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
303 msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
304 } else {
305 msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
306 msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
307 }
308
309 if (phy == 0)
310 msg->dest_dev = rmn_0;
311 else if (phy == 1)
312 msg->dest_dev = rmn_1;
313 else
314 msg->dest_dev = rmn_2;
315}
316
317/**
318 * ice_is_64b_phy_reg_e822 - Check if this is a 64bit PHY register
319 * @low_addr: the low address to check
320 * @high_addr: on return, contains the high address of the 64bit register
321 *
322 * Checks if the provided low address is one of the known 64bit PHY values
323 * represented as two 32bit registers. If it is, return the appropriate high
324 * register offset to use.
325 */
326static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr)
327{
328 switch (low_addr) {
329 case P_REG_PAR_PCS_TX_OFFSET_L:
330 *high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
331 return true;
332 case P_REG_PAR_PCS_RX_OFFSET_L:
333 *high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
334 return true;
335 case P_REG_PAR_TX_TIME_L:
336 *high_addr = P_REG_PAR_TX_TIME_U;
337 return true;
338 case P_REG_PAR_RX_TIME_L:
339 *high_addr = P_REG_PAR_RX_TIME_U;
340 return true;
341 case P_REG_TOTAL_TX_OFFSET_L:
342 *high_addr = P_REG_TOTAL_TX_OFFSET_U;
343 return true;
344 case P_REG_TOTAL_RX_OFFSET_L:
345 *high_addr = P_REG_TOTAL_RX_OFFSET_U;
346 return true;
347 case P_REG_UIX66_10G_40G_L:
348 *high_addr = P_REG_UIX66_10G_40G_U;
349 return true;
350 case P_REG_UIX66_25G_100G_L:
351 *high_addr = P_REG_UIX66_25G_100G_U;
352 return true;
353 case P_REG_TX_CAPTURE_L:
354 *high_addr = P_REG_TX_CAPTURE_U;
355 return true;
356 case P_REG_RX_CAPTURE_L:
357 *high_addr = P_REG_RX_CAPTURE_U;
358 return true;
359 case P_REG_TX_TIMER_INC_PRE_L:
360 *high_addr = P_REG_TX_TIMER_INC_PRE_U;
361 return true;
362 case P_REG_RX_TIMER_INC_PRE_L:
363 *high_addr = P_REG_RX_TIMER_INC_PRE_U;
364 return true;
365 default:
366 return false;
367 }
368}
369
370/**
371 * ice_is_40b_phy_reg_e822 - Check if this is a 40bit PHY register
372 * @low_addr: the low address to check
373 * @high_addr: on return, contains the high address of the 40bit value
374 *
375 * Checks if the provided low address is one of the known 40bit PHY values
376 * split into two registers with the lower 8 bits in the low register and the
377 * upper 32 bits in the high register. If it is, return the appropriate high
378 * register offset to use.
379 */
380static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr)
381{
382 switch (low_addr) {
383 case P_REG_TIMETUS_L:
384 *high_addr = P_REG_TIMETUS_U;
385 return true;
386 case P_REG_PAR_RX_TUS_L:
387 *high_addr = P_REG_PAR_RX_TUS_U;
388 return true;
389 case P_REG_PAR_TX_TUS_L:
390 *high_addr = P_REG_PAR_TX_TUS_U;
391 return true;
392 case P_REG_PCS_RX_TUS_L:
393 *high_addr = P_REG_PCS_RX_TUS_U;
394 return true;
395 case P_REG_PCS_TX_TUS_L:
396 *high_addr = P_REG_PCS_TX_TUS_U;
397 return true;
398 case P_REG_DESK_PAR_RX_TUS_L:
399 *high_addr = P_REG_DESK_PAR_RX_TUS_U;
400 return true;
401 case P_REG_DESK_PAR_TX_TUS_L:
402 *high_addr = P_REG_DESK_PAR_TX_TUS_U;
403 return true;
404 case P_REG_DESK_PCS_RX_TUS_L:
405 *high_addr = P_REG_DESK_PCS_RX_TUS_U;
406 return true;
407 case P_REG_DESK_PCS_TX_TUS_L:
408 *high_addr = P_REG_DESK_PCS_TX_TUS_U;
409 return true;
410 default:
411 return false;
412 }
413}
414
415/**
416 * ice_read_phy_reg_e822 - Read a PHY register
417 * @hw: pointer to the HW struct
418 * @port: PHY port to read from
419 * @offset: PHY register offset to read
420 * @val: on return, the contents read from the PHY
421 *
422 * Read a PHY register for the given port over the device sideband queue.
423 */
424static int
425ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
426{
427 struct ice_sbq_msg_input msg = {0};
428 int err;
429
430 ice_fill_phy_msg_e822(msg: &msg, port, offset);
431 msg.opcode = ice_sbq_msg_rd;
432
433 err = ice_sbq_rw_reg(hw, in: &msg);
434 if (err) {
435 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
436 err);
437 return err;
438 }
439
440 *val = msg.data;
441
442 return 0;
443}
444
445/**
446 * ice_read_64b_phy_reg_e822 - Read a 64bit value from PHY registers
447 * @hw: pointer to the HW struct
448 * @port: PHY port to read from
449 * @low_addr: offset of the lower register to read from
450 * @val: on return, the contents of the 64bit value from the PHY registers
451 *
452 * Reads the two registers associated with a 64bit value and returns it in the
453 * val pointer. The offset always specifies the lower register offset to use.
454 * The high offset is looked up. This function only operates on registers
455 * known to be two parts of a 64bit value.
456 */
457static int
458ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
459{
460 u32 low, high;
461 u16 high_addr;
462 int err;
463
464 /* Only operate on registers known to be split into two 32bit
465 * registers.
466 */
467 if (!ice_is_64b_phy_reg_e822(low_addr, high_addr: &high_addr)) {
468 ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
469 low_addr);
470 return -EINVAL;
471 }
472
473 err = ice_read_phy_reg_e822(hw, port, offset: low_addr, val: &low);
474 if (err) {
475 ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
476 low_addr, err);
477 return err;
478 }
479
480 err = ice_read_phy_reg_e822(hw, port, offset: high_addr, val: &high);
481 if (err) {
482 ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
483 high_addr, err);
484 return err;
485 }
486
487 *val = (u64)high << 32 | low;
488
489 return 0;
490}
491
492/**
493 * ice_write_phy_reg_e822 - Write a PHY register
494 * @hw: pointer to the HW struct
495 * @port: PHY port to write to
496 * @offset: PHY register offset to write
497 * @val: The value to write to the register
498 *
499 * Write a PHY register for the given port over the device sideband queue.
500 */
501static int
502ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val)
503{
504 struct ice_sbq_msg_input msg = {0};
505 int err;
506
507 ice_fill_phy_msg_e822(msg: &msg, port, offset);
508 msg.opcode = ice_sbq_msg_wr;
509 msg.data = val;
510
511 err = ice_sbq_rw_reg(hw, in: &msg);
512 if (err) {
513 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
514 err);
515 return err;
516 }
517
518 return 0;
519}
520
521/**
522 * ice_write_40b_phy_reg_e822 - Write a 40b value to the PHY
523 * @hw: pointer to the HW struct
524 * @port: port to write to
525 * @low_addr: offset of the low register
526 * @val: 40b value to write
527 *
528 * Write the provided 40b value to the two associated registers by splitting
529 * it up into two chunks, the lower 8 bits and the upper 32 bits.
530 */
531static int
532ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
533{
534 u32 low, high;
535 u16 high_addr;
536 int err;
537
538 /* Only operate on registers known to be split into a lower 8 bit
539 * register and an upper 32 bit register.
540 */
541 if (!ice_is_40b_phy_reg_e822(low_addr, high_addr: &high_addr)) {
542 ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
543 low_addr);
544 return -EINVAL;
545 }
546
547 low = (u32)(val & P_REG_40B_LOW_M);
548 high = (u32)(val >> P_REG_40B_HIGH_S);
549
550 err = ice_write_phy_reg_e822(hw, port, offset: low_addr, val: low);
551 if (err) {
552 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
553 low_addr, err);
554 return err;
555 }
556
557 err = ice_write_phy_reg_e822(hw, port, offset: high_addr, val: high);
558 if (err) {
559 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
560 high_addr, err);
561 return err;
562 }
563
564 return 0;
565}
566
567/**
568 * ice_write_64b_phy_reg_e822 - Write a 64bit value to PHY registers
569 * @hw: pointer to the HW struct
570 * @port: PHY port to read from
571 * @low_addr: offset of the lower register to read from
572 * @val: the contents of the 64bit value to write to PHY
573 *
574 * Write the 64bit value to the two associated 32bit PHY registers. The offset
575 * is always specified as the lower register, and the high address is looked
576 * up. This function only operates on registers known to be two parts of
577 * a 64bit value.
578 */
579static int
580ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
581{
582 u32 low, high;
583 u16 high_addr;
584 int err;
585
586 /* Only operate on registers known to be split into two 32bit
587 * registers.
588 */
589 if (!ice_is_64b_phy_reg_e822(low_addr, high_addr: &high_addr)) {
590 ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
591 low_addr);
592 return -EINVAL;
593 }
594
595 low = lower_32_bits(val);
596 high = upper_32_bits(val);
597
598 err = ice_write_phy_reg_e822(hw, port, offset: low_addr, val: low);
599 if (err) {
600 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
601 low_addr, err);
602 return err;
603 }
604
605 err = ice_write_phy_reg_e822(hw, port, offset: high_addr, val: high);
606 if (err) {
607 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
608 high_addr, err);
609 return err;
610 }
611
612 return 0;
613}
614
615/**
616 * ice_fill_quad_msg_e822 - Fill message data for quad register access
617 * @msg: the PHY message buffer to fill in
618 * @quad: the quad to access
619 * @offset: the register offset
620 *
621 * Fill a message buffer for accessing a register in a quad shared between
622 * multiple PHYs.
623 */
624static int
625ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset)
626{
627 u32 addr;
628
629 if (quad >= ICE_MAX_QUAD)
630 return -EINVAL;
631
632 msg->dest_dev = rmn_0;
633
634 if ((quad % ICE_QUADS_PER_PHY_E822) == 0)
635 addr = Q_0_BASE + offset;
636 else
637 addr = Q_1_BASE + offset;
638
639 msg->msg_addr_low = lower_16_bits(addr);
640 msg->msg_addr_high = upper_16_bits(addr);
641
642 return 0;
643}
644
645/**
646 * ice_read_quad_reg_e822 - Read a PHY quad register
647 * @hw: pointer to the HW struct
648 * @quad: quad to read from
649 * @offset: quad register offset to read
650 * @val: on return, the contents read from the quad
651 *
652 * Read a quad register over the device sideband queue. Quad registers are
653 * shared between multiple PHYs.
654 */
655int
656ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
657{
658 struct ice_sbq_msg_input msg = {0};
659 int err;
660
661 err = ice_fill_quad_msg_e822(msg: &msg, quad, offset);
662 if (err)
663 return err;
664
665 msg.opcode = ice_sbq_msg_rd;
666
667 err = ice_sbq_rw_reg(hw, in: &msg);
668 if (err) {
669 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
670 err);
671 return err;
672 }
673
674 *val = msg.data;
675
676 return 0;
677}
678
679/**
680 * ice_write_quad_reg_e822 - Write a PHY quad register
681 * @hw: pointer to the HW struct
682 * @quad: quad to write to
683 * @offset: quad register offset to write
684 * @val: The value to write to the register
685 *
686 * Write a quad register over the device sideband queue. Quad registers are
687 * shared between multiple PHYs.
688 */
689int
690ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
691{
692 struct ice_sbq_msg_input msg = {0};
693 int err;
694
695 err = ice_fill_quad_msg_e822(msg: &msg, quad, offset);
696 if (err)
697 return err;
698
699 msg.opcode = ice_sbq_msg_wr;
700 msg.data = val;
701
702 err = ice_sbq_rw_reg(hw, in: &msg);
703 if (err) {
704 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
705 err);
706 return err;
707 }
708
709 return 0;
710}
711
712/**
713 * ice_read_phy_tstamp_e822 - Read a PHY timestamp out of the quad block
714 * @hw: pointer to the HW struct
715 * @quad: the quad to read from
716 * @idx: the timestamp index to read
717 * @tstamp: on return, the 40bit timestamp value
718 *
719 * Read a 40bit timestamp value out of the two associated registers in the
720 * quad memory block that is shared between the internal PHYs of the E822
721 * family of devices.
722 */
723static int
724ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
725{
726 u16 lo_addr, hi_addr;
727 u32 lo, hi;
728 int err;
729
730 lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
731 hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
732
733 err = ice_read_quad_reg_e822(hw, quad, offset: lo_addr, val: &lo);
734 if (err) {
735 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
736 err);
737 return err;
738 }
739
740 err = ice_read_quad_reg_e822(hw, quad, offset: hi_addr, val: &hi);
741 if (err) {
742 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
743 err);
744 return err;
745 }
746
747 /* For E822 based internal PHYs, the timestamp is reported with the
748 * lower 8 bits in the low register, and the upper 32 bits in the high
749 * register.
750 */
751 *tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M);
752
753 return 0;
754}
755
756/**
757 * ice_clear_phy_tstamp_e822 - Clear a timestamp from the quad block
758 * @hw: pointer to the HW struct
759 * @quad: the quad to read from
760 * @idx: the timestamp index to reset
761 *
762 * Read the timestamp out of the quad to clear its timestamp status bit from
763 * the PHY quad block that is shared between the internal PHYs of the E822
764 * devices.
765 *
766 * Note that unlike E810, software cannot directly write to the quad memory
767 * bank registers. E822 relies on the ice_get_phy_tx_tstamp_ready() function
768 * to determine which timestamps are valid. Reading a timestamp auto-clears
769 * the valid bit.
770 *
771 * To directly clear the contents of the timestamp block entirely, discarding
772 * all timestamp data at once, software should instead use
773 * ice_ptp_reset_ts_memory_quad_e822().
774 *
775 * This function should only be called on an idx whose bit is set according to
776 * ice_get_phy_tx_tstamp_ready().
777 */
778static int
779ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx)
780{
781 u64 unused_tstamp;
782 int err;
783
784 err = ice_read_phy_tstamp_e822(hw, quad, idx, tstamp: &unused_tstamp);
785 if (err) {
786 ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for quad %u, idx %u, err %d\n",
787 quad, idx, err);
788 return err;
789 }
790
791 return 0;
792}
793
794/**
795 * ice_ptp_reset_ts_memory_quad_e822 - Clear all timestamps from the quad block
796 * @hw: pointer to the HW struct
797 * @quad: the quad to read from
798 *
799 * Clear all timestamps from the PHY quad block that is shared between the
800 * internal PHYs on the E822 devices.
801 */
802void ice_ptp_reset_ts_memory_quad_e822(struct ice_hw *hw, u8 quad)
803{
804 ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
805 ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, val: ~(u32)Q_REG_TS_CTRL_M);
806}
807
808/**
809 * ice_ptp_reset_ts_memory_e822 - Clear all timestamps from all quad blocks
810 * @hw: pointer to the HW struct
811 */
812static void ice_ptp_reset_ts_memory_e822(struct ice_hw *hw)
813{
814 unsigned int quad;
815
816 for (quad = 0; quad < ICE_MAX_QUAD; quad++)
817 ice_ptp_reset_ts_memory_quad_e822(hw, quad);
818}
819
820/**
821 * ice_read_cgu_reg_e822 - Read a CGU register
822 * @hw: pointer to the HW struct
823 * @addr: Register address to read
824 * @val: storage for register value read
825 *
826 * Read the contents of a register of the Clock Generation Unit. Only
827 * applicable to E822 devices.
828 */
829static int
830ice_read_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 *val)
831{
832 struct ice_sbq_msg_input cgu_msg;
833 int err;
834
835 cgu_msg.opcode = ice_sbq_msg_rd;
836 cgu_msg.dest_dev = cgu;
837 cgu_msg.msg_addr_low = addr;
838 cgu_msg.msg_addr_high = 0x0;
839
840 err = ice_sbq_rw_reg(hw, in: &cgu_msg);
841 if (err) {
842 ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
843 addr, err);
844 return err;
845 }
846
847 *val = cgu_msg.data;
848
849 return err;
850}
851
852/**
853 * ice_write_cgu_reg_e822 - Write a CGU register
854 * @hw: pointer to the HW struct
855 * @addr: Register address to write
856 * @val: value to write into the register
857 *
858 * Write the specified value to a register of the Clock Generation Unit. Only
859 * applicable to E822 devices.
860 */
861static int
862ice_write_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 val)
863{
864 struct ice_sbq_msg_input cgu_msg;
865 int err;
866
867 cgu_msg.opcode = ice_sbq_msg_wr;
868 cgu_msg.dest_dev = cgu;
869 cgu_msg.msg_addr_low = addr;
870 cgu_msg.msg_addr_high = 0x0;
871 cgu_msg.data = val;
872
873 err = ice_sbq_rw_reg(hw, in: &cgu_msg);
874 if (err) {
875 ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
876 addr, err);
877 return err;
878 }
879
880 return err;
881}
882
883/**
884 * ice_clk_freq_str - Convert time_ref_freq to string
885 * @clk_freq: Clock frequency
886 *
887 * Convert the specified TIME_REF clock frequency to a string.
888 */
889static const char *ice_clk_freq_str(u8 clk_freq)
890{
891 switch ((enum ice_time_ref_freq)clk_freq) {
892 case ICE_TIME_REF_FREQ_25_000:
893 return "25 MHz";
894 case ICE_TIME_REF_FREQ_122_880:
895 return "122.88 MHz";
896 case ICE_TIME_REF_FREQ_125_000:
897 return "125 MHz";
898 case ICE_TIME_REF_FREQ_153_600:
899 return "153.6 MHz";
900 case ICE_TIME_REF_FREQ_156_250:
901 return "156.25 MHz";
902 case ICE_TIME_REF_FREQ_245_760:
903 return "245.76 MHz";
904 default:
905 return "Unknown";
906 }
907}
908
909/**
910 * ice_clk_src_str - Convert time_ref_src to string
911 * @clk_src: Clock source
912 *
913 * Convert the specified clock source to its string name.
914 */
915static const char *ice_clk_src_str(u8 clk_src)
916{
917 switch ((enum ice_clk_src)clk_src) {
918 case ICE_CLK_SRC_TCX0:
919 return "TCX0";
920 case ICE_CLK_SRC_TIME_REF:
921 return "TIME_REF";
922 default:
923 return "Unknown";
924 }
925}
926
927/**
928 * ice_cfg_cgu_pll_e822 - Configure the Clock Generation Unit
929 * @hw: pointer to the HW struct
930 * @clk_freq: Clock frequency to program
931 * @clk_src: Clock source to select (TIME_REF, or TCX0)
932 *
933 * Configure the Clock Generation Unit with the desired clock frequency and
934 * time reference, enabling the PLL which drives the PTP hardware clock.
935 */
936static int
937ice_cfg_cgu_pll_e822(struct ice_hw *hw, enum ice_time_ref_freq clk_freq,
938 enum ice_clk_src clk_src)
939{
940 union tspll_ro_bwm_lf bwm_lf;
941 union nac_cgu_dword19 dw19;
942 union nac_cgu_dword22 dw22;
943 union nac_cgu_dword24 dw24;
944 union nac_cgu_dword9 dw9;
945 int err;
946
947 if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
948 dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
949 clk_freq);
950 return -EINVAL;
951 }
952
953 if (clk_src >= NUM_ICE_CLK_SRC) {
954 dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
955 clk_src);
956 return -EINVAL;
957 }
958
959 if (clk_src == ICE_CLK_SRC_TCX0 &&
960 clk_freq != ICE_TIME_REF_FREQ_25_000) {
961 dev_warn(ice_hw_to_dev(hw),
962 "TCX0 only supports 25 MHz frequency\n");
963 return -EINVAL;
964 }
965
966 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD9, val: &dw9.val);
967 if (err)
968 return err;
969
970 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, val: &dw24.val);
971 if (err)
972 return err;
973
974 err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, val: &bwm_lf.val);
975 if (err)
976 return err;
977
978 /* Log the current clock configuration */
979 ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
980 dw24.field.ts_pll_enable ? "enabled" : "disabled",
981 ice_clk_src_str(dw24.field.time_ref_sel),
982 ice_clk_freq_str(dw9.field.time_ref_freq_sel),
983 bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
984
985 /* Disable the PLL before changing the clock source or frequency */
986 if (dw24.field.ts_pll_enable) {
987 dw24.field.ts_pll_enable = 0;
988
989 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, val: dw24.val);
990 if (err)
991 return err;
992 }
993
994 /* Set the frequency */
995 dw9.field.time_ref_freq_sel = clk_freq;
996 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD9, val: dw9.val);
997 if (err)
998 return err;
999
1000 /* Configure the TS PLL feedback divisor */
1001 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD19, val: &dw19.val);
1002 if (err)
1003 return err;
1004
1005 dw19.field.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
1006 dw19.field.tspll_ndivratio = 1;
1007
1008 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD19, val: dw19.val);
1009 if (err)
1010 return err;
1011
1012 /* Configure the TS PLL post divisor */
1013 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD22, val: &dw22.val);
1014 if (err)
1015 return err;
1016
1017 dw22.field.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
1018 dw22.field.time1588clk_sel_div2 = 0;
1019
1020 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD22, val: dw22.val);
1021 if (err)
1022 return err;
1023
1024 /* Configure the TS PLL pre divisor and clock source */
1025 err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, val: &dw24.val);
1026 if (err)
1027 return err;
1028
1029 dw24.field.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
1030 dw24.field.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
1031 dw24.field.time_ref_sel = clk_src;
1032
1033 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, val: dw24.val);
1034 if (err)
1035 return err;
1036
1037 /* Finally, enable the PLL */
1038 dw24.field.ts_pll_enable = 1;
1039
1040 err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, val: dw24.val);
1041 if (err)
1042 return err;
1043
1044 /* Wait to verify if the PLL locks */
1045 usleep_range(min: 1000, max: 5000);
1046
1047 err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, val: &bwm_lf.val);
1048 if (err)
1049 return err;
1050
1051 if (!bwm_lf.field.plllock_true_lock_cri) {
1052 dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
1053 return -EBUSY;
1054 }
1055
1056 /* Log the current clock configuration */
1057 ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
1058 dw24.field.ts_pll_enable ? "enabled" : "disabled",
1059 ice_clk_src_str(dw24.field.time_ref_sel),
1060 ice_clk_freq_str(dw9.field.time_ref_freq_sel),
1061 bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
1062
1063 return 0;
1064}
1065
1066/**
1067 * ice_init_cgu_e822 - Initialize CGU with settings from firmware
1068 * @hw: pointer to the HW structure
1069 *
1070 * Initialize the Clock Generation Unit of the E822 device.
1071 */
1072static int ice_init_cgu_e822(struct ice_hw *hw)
1073{
1074 struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
1075 union tspll_cntr_bist_settings cntr_bist;
1076 int err;
1077
1078 err = ice_read_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
1079 val: &cntr_bist.val);
1080 if (err)
1081 return err;
1082
1083 /* Disable sticky lock detection so lock err reported is accurate */
1084 cntr_bist.field.i_plllock_sel_0 = 0;
1085 cntr_bist.field.i_plllock_sel_1 = 0;
1086
1087 err = ice_write_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
1088 val: cntr_bist.val);
1089 if (err)
1090 return err;
1091
1092 /* Configure the CGU PLL using the parameters from the function
1093 * capabilities.
1094 */
1095 err = ice_cfg_cgu_pll_e822(hw, clk_freq: ts_info->time_ref,
1096 clk_src: (enum ice_clk_src)ts_info->clk_src);
1097 if (err)
1098 return err;
1099
1100 return 0;
1101}
1102
1103/**
1104 * ice_ptp_set_vernier_wl - Set the window length for vernier calibration
1105 * @hw: pointer to the HW struct
1106 *
1107 * Set the window length used for the vernier port calibration process.
1108 */
1109static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
1110{
1111 u8 port;
1112
1113 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1114 int err;
1115
1116 err = ice_write_phy_reg_e822(hw, port, P_REG_WL,
1117 PTP_VERNIER_WL);
1118 if (err) {
1119 ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
1120 port, err);
1121 return err;
1122 }
1123 }
1124
1125 return 0;
1126}
1127
1128/**
1129 * ice_ptp_init_phc_e822 - Perform E822 specific PHC initialization
1130 * @hw: pointer to HW struct
1131 *
1132 * Perform PHC initialization steps specific to E822 devices.
1133 */
1134static int ice_ptp_init_phc_e822(struct ice_hw *hw)
1135{
1136 int err;
1137 u32 regval;
1138
1139 /* Enable reading switch and PHY registers over the sideband queue */
1140#define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
1141#define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
1142 regval = rd32(hw, PF_SB_REM_DEV_CTL);
1143 regval |= (PF_SB_REM_DEV_CTL_SWITCH_READ |
1144 PF_SB_REM_DEV_CTL_PHY0);
1145 wr32(hw, PF_SB_REM_DEV_CTL, regval);
1146
1147 /* Initialize the Clock Generation Unit */
1148 err = ice_init_cgu_e822(hw);
1149 if (err)
1150 return err;
1151
1152 /* Set window length for all the ports */
1153 return ice_ptp_set_vernier_wl(hw);
1154}
1155
1156/**
1157 * ice_ptp_prep_phy_time_e822 - Prepare PHY port with initial time
1158 * @hw: pointer to the HW struct
1159 * @time: Time to initialize the PHY port clocks to
1160 *
1161 * Program the PHY port registers with a new initial time value. The port
1162 * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
1163 * command. The time value is the upper 32 bits of the PHY timer, usually in
1164 * units of nominal nanoseconds.
1165 */
1166static int
1167ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time)
1168{
1169 u64 phy_time;
1170 u8 port;
1171 int err;
1172
1173 /* The time represents the upper 32 bits of the PHY timer, so we need
1174 * to shift to account for this when programming.
1175 */
1176 phy_time = (u64)time << 32;
1177
1178 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1179 /* Tx case */
1180 err = ice_write_64b_phy_reg_e822(hw, port,
1181 P_REG_TX_TIMER_INC_PRE_L,
1182 val: phy_time);
1183 if (err)
1184 goto exit_err;
1185
1186 /* Rx case */
1187 err = ice_write_64b_phy_reg_e822(hw, port,
1188 P_REG_RX_TIMER_INC_PRE_L,
1189 val: phy_time);
1190 if (err)
1191 goto exit_err;
1192 }
1193
1194 return 0;
1195
1196exit_err:
1197 ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
1198 port, err);
1199
1200 return err;
1201}
1202
1203/**
1204 * ice_ptp_prep_port_adj_e822 - Prepare a single port for time adjust
1205 * @hw: pointer to HW struct
1206 * @port: Port number to be programmed
1207 * @time: time in cycles to adjust the port Tx and Rx clocks
1208 *
1209 * Program the port for an atomic adjustment by writing the Tx and Rx timer
1210 * registers. The atomic adjustment won't be completed until the driver issues
1211 * an ICE_PTP_ADJ_TIME command.
1212 *
1213 * Note that time is not in units of nanoseconds. It is in clock time
1214 * including the lower sub-nanosecond portion of the port timer.
1215 *
1216 * Negative adjustments are supported using 2s complement arithmetic.
1217 */
1218static int
1219ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time)
1220{
1221 u32 l_time, u_time;
1222 int err;
1223
1224 l_time = lower_32_bits(time);
1225 u_time = upper_32_bits(time);
1226
1227 /* Tx case */
1228 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L,
1229 val: l_time);
1230 if (err)
1231 goto exit_err;
1232
1233 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_U,
1234 val: u_time);
1235 if (err)
1236 goto exit_err;
1237
1238 /* Rx case */
1239 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L,
1240 val: l_time);
1241 if (err)
1242 goto exit_err;
1243
1244 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_U,
1245 val: u_time);
1246 if (err)
1247 goto exit_err;
1248
1249 return 0;
1250
1251exit_err:
1252 ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
1253 port, err);
1254 return err;
1255}
1256
1257/**
1258 * ice_ptp_prep_phy_adj_e822 - Prep PHY ports for a time adjustment
1259 * @hw: pointer to HW struct
1260 * @adj: adjustment in nanoseconds
1261 *
1262 * Prepare the PHY ports for an atomic time adjustment by programming the PHY
1263 * Tx and Rx port registers. The actual adjustment is completed by issuing an
1264 * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
1265 */
1266static int
1267ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj)
1268{
1269 s64 cycles;
1270 u8 port;
1271
1272 /* The port clock supports adjustment of the sub-nanosecond portion of
1273 * the clock. We shift the provided adjustment in nanoseconds to
1274 * calculate the appropriate adjustment to program into the PHY ports.
1275 */
1276 if (adj > 0)
1277 cycles = (s64)adj << 32;
1278 else
1279 cycles = -(((s64)-adj) << 32);
1280
1281 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1282 int err;
1283
1284 err = ice_ptp_prep_port_adj_e822(hw, port, time: cycles);
1285 if (err)
1286 return err;
1287 }
1288
1289 return 0;
1290}
1291
1292/**
1293 * ice_ptp_prep_phy_incval_e822 - Prepare PHY ports for time adjustment
1294 * @hw: pointer to HW struct
1295 * @incval: new increment value to prepare
1296 *
1297 * Prepare each of the PHY ports for a new increment value by programming the
1298 * port's TIMETUS registers. The new increment value will be updated after
1299 * issuing an ICE_PTP_INIT_INCVAL command.
1300 */
1301static int
1302ice_ptp_prep_phy_incval_e822(struct ice_hw *hw, u64 incval)
1303{
1304 int err;
1305 u8 port;
1306
1307 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1308 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L,
1309 val: incval);
1310 if (err)
1311 goto exit_err;
1312 }
1313
1314 return 0;
1315
1316exit_err:
1317 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
1318 port, err);
1319
1320 return err;
1321}
1322
1323/**
1324 * ice_ptp_read_port_capture - Read a port's local time capture
1325 * @hw: pointer to HW struct
1326 * @port: Port number to read
1327 * @tx_ts: on return, the Tx port time capture
1328 * @rx_ts: on return, the Rx port time capture
1329 *
1330 * Read the port's Tx and Rx local time capture values.
1331 *
1332 * Note this has no equivalent for the E810 devices.
1333 */
1334static int
1335ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
1336{
1337 int err;
1338
1339 /* Tx case */
1340 err = ice_read_64b_phy_reg_e822(hw, port, P_REG_TX_CAPTURE_L, val: tx_ts);
1341 if (err) {
1342 ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
1343 err);
1344 return err;
1345 }
1346
1347 ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
1348 (unsigned long long)*tx_ts);
1349
1350 /* Rx case */
1351 err = ice_read_64b_phy_reg_e822(hw, port, P_REG_RX_CAPTURE_L, val: rx_ts);
1352 if (err) {
1353 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
1354 err);
1355 return err;
1356 }
1357
1358 ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
1359 (unsigned long long)*rx_ts);
1360
1361 return 0;
1362}
1363
1364/**
1365 * ice_ptp_write_port_cmd_e822 - Prepare a single PHY port for a timer command
1366 * @hw: pointer to HW struct
1367 * @port: Port to which cmd has to be sent
1368 * @cmd: Command to be sent to the port
1369 *
1370 * Prepare the requested port for an upcoming timer sync command.
1371 *
1372 * Do not use this function directly. If you want to configure exactly one
1373 * port, use ice_ptp_one_port_cmd() instead.
1374 */
1375static int
1376ice_ptp_write_port_cmd_e822(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd)
1377{
1378 u32 cmd_val, val;
1379 u8 tmr_idx;
1380 int err;
1381
1382 tmr_idx = ice_get_ptp_src_clock_index(hw);
1383 cmd_val = tmr_idx << SEL_PHY_SRC;
1384 switch (cmd) {
1385 case ICE_PTP_INIT_TIME:
1386 cmd_val |= PHY_CMD_INIT_TIME;
1387 break;
1388 case ICE_PTP_INIT_INCVAL:
1389 cmd_val |= PHY_CMD_INIT_INCVAL;
1390 break;
1391 case ICE_PTP_ADJ_TIME:
1392 cmd_val |= PHY_CMD_ADJ_TIME;
1393 break;
1394 case ICE_PTP_READ_TIME:
1395 cmd_val |= PHY_CMD_READ_TIME;
1396 break;
1397 case ICE_PTP_ADJ_TIME_AT_TIME:
1398 cmd_val |= PHY_CMD_ADJ_TIME_AT_TIME;
1399 break;
1400 case ICE_PTP_NOP:
1401 break;
1402 }
1403
1404 /* Tx case */
1405 /* Read, modify, write */
1406 err = ice_read_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val: &val);
1407 if (err) {
1408 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_TMR_CMD, err %d\n",
1409 err);
1410 return err;
1411 }
1412
1413 /* Modify necessary bits only and perform write */
1414 val &= ~TS_CMD_MASK;
1415 val |= cmd_val;
1416
1417 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val);
1418 if (err) {
1419 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
1420 err);
1421 return err;
1422 }
1423
1424 /* Rx case */
1425 /* Read, modify, write */
1426 err = ice_read_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val: &val);
1427 if (err) {
1428 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_TMR_CMD, err %d\n",
1429 err);
1430 return err;
1431 }
1432
1433 /* Modify necessary bits only and perform write */
1434 val &= ~TS_CMD_MASK;
1435 val |= cmd_val;
1436
1437 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val);
1438 if (err) {
1439 ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
1440 err);
1441 return err;
1442 }
1443
1444 return 0;
1445}
1446
1447/**
1448 * ice_ptp_one_port_cmd - Prepare one port for a timer command
1449 * @hw: pointer to the HW struct
1450 * @configured_port: the port to configure with configured_cmd
1451 * @configured_cmd: timer command to prepare on the configured_port
1452 *
1453 * Prepare the configured_port for the configured_cmd, and prepare all other
1454 * ports for ICE_PTP_NOP. This causes the configured_port to execute the
1455 * desired command while all other ports perform no operation.
1456 */
1457static int
1458ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port,
1459 enum ice_ptp_tmr_cmd configured_cmd)
1460{
1461 u8 port;
1462
1463 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1464 enum ice_ptp_tmr_cmd cmd;
1465 int err;
1466
1467 if (port == configured_port)
1468 cmd = configured_cmd;
1469 else
1470 cmd = ICE_PTP_NOP;
1471
1472 err = ice_ptp_write_port_cmd_e822(hw, port, cmd);
1473 if (err)
1474 return err;
1475 }
1476
1477 return 0;
1478}
1479
1480/**
1481 * ice_ptp_port_cmd_e822 - Prepare all ports for a timer command
1482 * @hw: pointer to the HW struct
1483 * @cmd: timer command to prepare
1484 *
1485 * Prepare all ports connected to this device for an upcoming timer sync
1486 * command.
1487 */
1488static int
1489ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
1490{
1491 u8 port;
1492
1493 for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1494 int err;
1495
1496 err = ice_ptp_write_port_cmd_e822(hw, port, cmd);
1497 if (err)
1498 return err;
1499 }
1500
1501 return 0;
1502}
1503
1504/* E822 Vernier calibration functions
1505 *
1506 * The following functions are used as part of the vernier calibration of
1507 * a port. This calibration increases the precision of the timestamps on the
1508 * port.
1509 */
1510
1511/**
1512 * ice_phy_get_speed_and_fec_e822 - Get link speed and FEC based on serdes mode
1513 * @hw: pointer to HW struct
1514 * @port: the port to read from
1515 * @link_out: if non-NULL, holds link speed on success
1516 * @fec_out: if non-NULL, holds FEC algorithm on success
1517 *
1518 * Read the serdes data for the PHY port and extract the link speed and FEC
1519 * algorithm.
1520 */
1521static int
1522ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port,
1523 enum ice_ptp_link_spd *link_out,
1524 enum ice_ptp_fec_mode *fec_out)
1525{
1526 enum ice_ptp_link_spd link;
1527 enum ice_ptp_fec_mode fec;
1528 u32 serdes;
1529 int err;
1530
1531 err = ice_read_phy_reg_e822(hw, port, P_REG_LINK_SPEED, val: &serdes);
1532 if (err) {
1533 ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
1534 return err;
1535 }
1536
1537 /* Determine the FEC algorithm */
1538 fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
1539
1540 serdes &= P_REG_LINK_SPEED_SERDES_M;
1541
1542 /* Determine the link speed */
1543 if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
1544 switch (serdes) {
1545 case ICE_PTP_SERDES_25G:
1546 link = ICE_PTP_LNK_SPD_25G_RS;
1547 break;
1548 case ICE_PTP_SERDES_50G:
1549 link = ICE_PTP_LNK_SPD_50G_RS;
1550 break;
1551 case ICE_PTP_SERDES_100G:
1552 link = ICE_PTP_LNK_SPD_100G_RS;
1553 break;
1554 default:
1555 return -EIO;
1556 }
1557 } else {
1558 switch (serdes) {
1559 case ICE_PTP_SERDES_1G:
1560 link = ICE_PTP_LNK_SPD_1G;
1561 break;
1562 case ICE_PTP_SERDES_10G:
1563 link = ICE_PTP_LNK_SPD_10G;
1564 break;
1565 case ICE_PTP_SERDES_25G:
1566 link = ICE_PTP_LNK_SPD_25G;
1567 break;
1568 case ICE_PTP_SERDES_40G:
1569 link = ICE_PTP_LNK_SPD_40G;
1570 break;
1571 case ICE_PTP_SERDES_50G:
1572 link = ICE_PTP_LNK_SPD_50G;
1573 break;
1574 default:
1575 return -EIO;
1576 }
1577 }
1578
1579 if (link_out)
1580 *link_out = link;
1581 if (fec_out)
1582 *fec_out = fec;
1583
1584 return 0;
1585}
1586
1587/**
1588 * ice_phy_cfg_lane_e822 - Configure PHY quad for single/multi-lane timestamp
1589 * @hw: pointer to HW struct
1590 * @port: to configure the quad for
1591 */
1592static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port)
1593{
1594 enum ice_ptp_link_spd link_spd;
1595 int err;
1596 u32 val;
1597 u8 quad;
1598
1599 err = ice_phy_get_speed_and_fec_e822(hw, port, link_out: &link_spd, NULL);
1600 if (err) {
1601 ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
1602 err);
1603 return;
1604 }
1605
1606 quad = port / ICE_PORTS_PER_QUAD;
1607
1608 err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val: &val);
1609 if (err) {
1610 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
1611 err);
1612 return;
1613 }
1614
1615 if (link_spd >= ICE_PTP_LNK_SPD_40G)
1616 val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
1617 else
1618 val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
1619
1620 err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
1621 if (err) {
1622 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
1623 err);
1624 return;
1625 }
1626}
1627
1628/**
1629 * ice_phy_cfg_uix_e822 - Configure Serdes UI to TU conversion for E822
1630 * @hw: pointer to the HW structure
1631 * @port: the port to configure
1632 *
1633 * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
1634 * hardware clock time units (TUs). That is, determine the number of TUs per
1635 * serdes unit interval, and program the UIX registers with this conversion.
1636 *
1637 * This conversion is used as part of the calibration process when determining
1638 * the additional error of a timestamp vs the real time of transmission or
1639 * receipt of the packet.
1640 *
1641 * Hardware uses the number of TUs per 66 UIs, written to the UIX registers
1642 * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
1643 *
1644 * To calculate the conversion ratio, we use the following facts:
1645 *
1646 * a) the clock frequency in Hz (cycles per second)
1647 * b) the number of TUs per cycle (the increment value of the clock)
1648 * c) 1 second per 1 billion nanoseconds
1649 * d) the duration of 66 UIs in nanoseconds
1650 *
1651 * Given these facts, we can use the following table to work out what ratios
1652 * to multiply in order to get the number of TUs per 66 UIs:
1653 *
1654 * cycles | 1 second | incval (TUs) | nanoseconds
1655 * -------+--------------+--------------+-------------
1656 * second | 1 billion ns | cycle | 66 UIs
1657 *
1658 * To perform the multiplication using integers without too much loss of
1659 * precision, we can take use the following equation:
1660 *
1661 * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
1662 *
1663 * We scale up to using 6600 UI instead of 66 in order to avoid fractional
1664 * nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
1665 *
1666 * The increment value has a maximum expected range of about 34 bits, while
1667 * the frequency value is about 29 bits. Multiplying these values shouldn't
1668 * overflow the 64 bits. However, we must then further multiply them again by
1669 * the Serdes unit interval duration. To avoid overflow here, we split the
1670 * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
1671 * a divide by 390,625,000. This does lose some precision, but avoids
1672 * miscalculation due to arithmetic overflow.
1673 */
1674static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port)
1675{
1676 u64 cur_freq, clk_incval, tu_per_sec, uix;
1677 int err;
1678
1679 cur_freq = ice_e822_pll_freq(time_ref: ice_e822_time_ref(hw));
1680 clk_incval = ice_ptp_read_src_incval(hw);
1681
1682 /* Calculate TUs per second divided by 256 */
1683 tu_per_sec = (cur_freq * clk_incval) >> 8;
1684
1685#define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
1686#define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
1687
1688 /* Program the 10Gb/40Gb conversion ratio */
1689 uix = div_u64(dividend: tu_per_sec * LINE_UI_10G_40G, divisor: 390625000);
1690
1691 err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_10G_40G_L,
1692 val: uix);
1693 if (err) {
1694 ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
1695 err);
1696 return err;
1697 }
1698
1699 /* Program the 25Gb/100Gb conversion ratio */
1700 uix = div_u64(dividend: tu_per_sec * LINE_UI_25G_100G, divisor: 390625000);
1701
1702 err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_25G_100G_L,
1703 val: uix);
1704 if (err) {
1705 ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
1706 err);
1707 return err;
1708 }
1709
1710 return 0;
1711}
1712
1713/**
1714 * ice_phy_cfg_parpcs_e822 - Configure TUs per PAR/PCS clock cycle
1715 * @hw: pointer to the HW struct
1716 * @port: port to configure
1717 *
1718 * Configure the number of TUs for the PAR and PCS clocks used as part of the
1719 * timestamp calibration process. This depends on the link speed, as the PHY
1720 * uses different markers depending on the speed.
1721 *
1722 * 1Gb/10Gb/25Gb:
1723 * - Tx/Rx PAR/PCS markers
1724 *
1725 * 25Gb RS:
1726 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
1727 *
1728 * 40Gb/50Gb:
1729 * - Tx/Rx PAR/PCS markers
1730 * - Rx Deskew PAR/PCS markers
1731 *
1732 * 50G RS and 100GB RS:
1733 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
1734 * - Rx Deskew PAR/PCS markers
1735 * - Tx PAR/PCS markers
1736 *
1737 * To calculate the conversion, we use the PHC clock frequency (cycles per
1738 * second), the increment value (TUs per cycle), and the related PHY clock
1739 * frequency to calculate the TUs per unit of the PHY link clock. The
1740 * following table shows how the units convert:
1741 *
1742 * cycles | TUs | second
1743 * -------+-------+--------
1744 * second | cycle | cycles
1745 *
1746 * For each conversion register, look up the appropriate frequency from the
1747 * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
1748 * this to the appropriate register, preparing hardware to perform timestamp
1749 * calibration to calculate the total Tx or Rx offset to adjust the timestamp
1750 * in order to calibrate for the internal PHY delays.
1751 *
1752 * Note that the increment value ranges up to ~34 bits, and the clock
1753 * frequency is ~29 bits, so multiplying them together should fit within the
1754 * 64 bit arithmetic.
1755 */
1756static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port)
1757{
1758 u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
1759 enum ice_ptp_link_spd link_spd;
1760 enum ice_ptp_fec_mode fec_mode;
1761 int err;
1762
1763 err = ice_phy_get_speed_and_fec_e822(hw, port, link_out: &link_spd, fec_out: &fec_mode);
1764 if (err)
1765 return err;
1766
1767 cur_freq = ice_e822_pll_freq(time_ref: ice_e822_time_ref(hw));
1768 clk_incval = ice_ptp_read_src_incval(hw);
1769
1770 /* Calculate TUs per cycle of the PHC clock */
1771 tu_per_sec = cur_freq * clk_incval;
1772
1773 /* For each PHY conversion register, look up the appropriate link
1774 * speed frequency and determine the TUs per that clock's cycle time.
1775 * Split this into a high and low value and then program the
1776 * appropriate register. If that link speed does not use the
1777 * associated register, write zeros to clear it instead.
1778 */
1779
1780 /* P_REG_PAR_TX_TUS */
1781 if (e822_vernier[link_spd].tx_par_clk)
1782 phy_tus = div_u64(dividend: tu_per_sec,
1783 divisor: e822_vernier[link_spd].tx_par_clk);
1784 else
1785 phy_tus = 0;
1786
1787 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_TX_TUS_L,
1788 val: phy_tus);
1789 if (err)
1790 return err;
1791
1792 /* P_REG_PAR_RX_TUS */
1793 if (e822_vernier[link_spd].rx_par_clk)
1794 phy_tus = div_u64(dividend: tu_per_sec,
1795 divisor: e822_vernier[link_spd].rx_par_clk);
1796 else
1797 phy_tus = 0;
1798
1799 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_RX_TUS_L,
1800 val: phy_tus);
1801 if (err)
1802 return err;
1803
1804 /* P_REG_PCS_TX_TUS */
1805 if (e822_vernier[link_spd].tx_pcs_clk)
1806 phy_tus = div_u64(dividend: tu_per_sec,
1807 divisor: e822_vernier[link_spd].tx_pcs_clk);
1808 else
1809 phy_tus = 0;
1810
1811 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_TX_TUS_L,
1812 val: phy_tus);
1813 if (err)
1814 return err;
1815
1816 /* P_REG_PCS_RX_TUS */
1817 if (e822_vernier[link_spd].rx_pcs_clk)
1818 phy_tus = div_u64(dividend: tu_per_sec,
1819 divisor: e822_vernier[link_spd].rx_pcs_clk);
1820 else
1821 phy_tus = 0;
1822
1823 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_RX_TUS_L,
1824 val: phy_tus);
1825 if (err)
1826 return err;
1827
1828 /* P_REG_DESK_PAR_TX_TUS */
1829 if (e822_vernier[link_spd].tx_desk_rsgb_par)
1830 phy_tus = div_u64(dividend: tu_per_sec,
1831 divisor: e822_vernier[link_spd].tx_desk_rsgb_par);
1832 else
1833 phy_tus = 0;
1834
1835 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_TX_TUS_L,
1836 val: phy_tus);
1837 if (err)
1838 return err;
1839
1840 /* P_REG_DESK_PAR_RX_TUS */
1841 if (e822_vernier[link_spd].rx_desk_rsgb_par)
1842 phy_tus = div_u64(dividend: tu_per_sec,
1843 divisor: e822_vernier[link_spd].rx_desk_rsgb_par);
1844 else
1845 phy_tus = 0;
1846
1847 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_RX_TUS_L,
1848 val: phy_tus);
1849 if (err)
1850 return err;
1851
1852 /* P_REG_DESK_PCS_TX_TUS */
1853 if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
1854 phy_tus = div_u64(dividend: tu_per_sec,
1855 divisor: e822_vernier[link_spd].tx_desk_rsgb_pcs);
1856 else
1857 phy_tus = 0;
1858
1859 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_TX_TUS_L,
1860 val: phy_tus);
1861 if (err)
1862 return err;
1863
1864 /* P_REG_DESK_PCS_RX_TUS */
1865 if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
1866 phy_tus = div_u64(dividend: tu_per_sec,
1867 divisor: e822_vernier[link_spd].rx_desk_rsgb_pcs);
1868 else
1869 phy_tus = 0;
1870
1871 return ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_RX_TUS_L,
1872 val: phy_tus);
1873}
1874
1875/**
1876 * ice_calc_fixed_tx_offset_e822 - Calculated Fixed Tx offset for a port
1877 * @hw: pointer to the HW struct
1878 * @link_spd: the Link speed to calculate for
1879 *
1880 * Calculate the fixed offset due to known static latency data.
1881 */
1882static u64
1883ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
1884{
1885 u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
1886
1887 cur_freq = ice_e822_pll_freq(time_ref: ice_e822_time_ref(hw));
1888 clk_incval = ice_ptp_read_src_incval(hw);
1889
1890 /* Calculate TUs per second */
1891 tu_per_sec = cur_freq * clk_incval;
1892
1893 /* Calculate number of TUs to add for the fixed Tx latency. Since the
1894 * latency measurement is in 1/100th of a nanosecond, we need to
1895 * multiply by tu_per_sec and then divide by 1e11. This calculation
1896 * overflows 64 bit integer arithmetic, so break it up into two
1897 * divisions by 1e4 first then by 1e7.
1898 */
1899 fixed_offset = div_u64(dividend: tu_per_sec, divisor: 10000);
1900 fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
1901 fixed_offset = div_u64(dividend: fixed_offset, divisor: 10000000);
1902
1903 return fixed_offset;
1904}
1905
1906/**
1907 * ice_phy_cfg_tx_offset_e822 - Configure total Tx timestamp offset
1908 * @hw: pointer to the HW struct
1909 * @port: the PHY port to configure
1910 *
1911 * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
1912 * adjust Tx timestamps by. This is calculated by combining some known static
1913 * latency along with the Vernier offset computations done by hardware.
1914 *
1915 * This function will not return successfully until the Tx offset calculations
1916 * have been completed, which requires waiting until at least one packet has
1917 * been transmitted by the device. It is safe to call this function
1918 * periodically until calibration succeeds, as it will only program the offset
1919 * once.
1920 *
1921 * To avoid overflow, when calculating the offset based on the known static
1922 * latency values, we use measurements in 1/100th of a nanosecond, and divide
1923 * the TUs per second up front. This avoids overflow while allowing
1924 * calculation of the adjustment using integer arithmetic.
1925 *
1926 * Returns zero on success, -EBUSY if the hardware vernier offset
1927 * calibration has not completed, or another error code on failure.
1928 */
1929int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port)
1930{
1931 enum ice_ptp_link_spd link_spd;
1932 enum ice_ptp_fec_mode fec_mode;
1933 u64 total_offset, val;
1934 int err;
1935 u32 reg;
1936
1937 /* Nothing to do if we've already programmed the offset */
1938 err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OR, val: &reg);
1939 if (err) {
1940 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n",
1941 port, err);
1942 return err;
1943 }
1944
1945 if (reg)
1946 return 0;
1947
1948 err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OV_STATUS, val: &reg);
1949 if (err) {
1950 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
1951 port, err);
1952 return err;
1953 }
1954
1955 if (!(reg & P_REG_TX_OV_STATUS_OV_M))
1956 return -EBUSY;
1957
1958 err = ice_phy_get_speed_and_fec_e822(hw, port, link_out: &link_spd, fec_out: &fec_mode);
1959 if (err)
1960 return err;
1961
1962 total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd);
1963
1964 /* Read the first Vernier offset from the PHY register and add it to
1965 * the total offset.
1966 */
1967 if (link_spd == ICE_PTP_LNK_SPD_1G ||
1968 link_spd == ICE_PTP_LNK_SPD_10G ||
1969 link_spd == ICE_PTP_LNK_SPD_25G ||
1970 link_spd == ICE_PTP_LNK_SPD_25G_RS ||
1971 link_spd == ICE_PTP_LNK_SPD_40G ||
1972 link_spd == ICE_PTP_LNK_SPD_50G) {
1973 err = ice_read_64b_phy_reg_e822(hw, port,
1974 P_REG_PAR_PCS_TX_OFFSET_L,
1975 val: &val);
1976 if (err)
1977 return err;
1978
1979 total_offset += val;
1980 }
1981
1982 /* For Tx, we only need to use the second Vernier offset for
1983 * multi-lane link speeds with RS-FEC. The lanes will always be
1984 * aligned.
1985 */
1986 if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
1987 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
1988 err = ice_read_64b_phy_reg_e822(hw, port,
1989 P_REG_PAR_TX_TIME_L,
1990 val: &val);
1991 if (err)
1992 return err;
1993
1994 total_offset += val;
1995 }
1996
1997 /* Now that the total offset has been calculated, program it to the
1998 * PHY and indicate that the Tx offset is ready. After this,
1999 * timestamps will be enabled.
2000 */
2001 err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L,
2002 val: total_offset);
2003 if (err)
2004 return err;
2005
2006 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, val: 1);
2007 if (err)
2008 return err;
2009
2010 dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n",
2011 port);
2012
2013 return 0;
2014}
2015
2016/**
2017 * ice_phy_calc_pmd_adj_e822 - Calculate PMD adjustment for Rx
2018 * @hw: pointer to the HW struct
2019 * @port: the PHY port to adjust for
2020 * @link_spd: the current link speed of the PHY
2021 * @fec_mode: the current FEC mode of the PHY
2022 * @pmd_adj: on return, the amount to adjust the Rx total offset by
2023 *
2024 * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
2025 * This varies by link speed and FEC mode. The value calculated accounts for
2026 * various delays caused when receiving a packet.
2027 */
2028static int
2029ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port,
2030 enum ice_ptp_link_spd link_spd,
2031 enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
2032{
2033 u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
2034 u8 pmd_align;
2035 u32 val;
2036 int err;
2037
2038 err = ice_read_phy_reg_e822(hw, port, P_REG_PMD_ALIGNMENT, val: &val);
2039 if (err) {
2040 ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
2041 err);
2042 return err;
2043 }
2044
2045 pmd_align = (u8)val;
2046
2047 cur_freq = ice_e822_pll_freq(time_ref: ice_e822_time_ref(hw));
2048 clk_incval = ice_ptp_read_src_incval(hw);
2049
2050 /* Calculate TUs per second */
2051 tu_per_sec = cur_freq * clk_incval;
2052
2053 /* The PMD alignment adjustment measurement depends on the link speed,
2054 * and whether FEC is enabled. For each link speed, the alignment
2055 * adjustment is calculated by dividing a value by the length of
2056 * a Time Unit in nanoseconds.
2057 *
2058 * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
2059 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
2060 * 10G w/FEC: align * 0.1 * 32/33
2061 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
2062 * 25G w/FEC: align * 0.4 * 32/33
2063 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
2064 * 40G w/FEC: align * 0.1 * 32/33
2065 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
2066 * 50G w/FEC: align * 0.8 * 32/33
2067 *
2068 * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
2069 *
2070 * To allow for calculating this value using integer arithmetic, we
2071 * instead start with the number of TUs per second, (inverse of the
2072 * length of a Time Unit in nanoseconds), multiply by a value based
2073 * on the PMD alignment register, and then divide by the right value
2074 * calculated based on the table above. To avoid integer overflow this
2075 * division is broken up into a step of dividing by 125 first.
2076 */
2077 if (link_spd == ICE_PTP_LNK_SPD_1G) {
2078 if (pmd_align == 4)
2079 mult = 10;
2080 else
2081 mult = (pmd_align + 6) % 10;
2082 } else if (link_spd == ICE_PTP_LNK_SPD_10G ||
2083 link_spd == ICE_PTP_LNK_SPD_25G ||
2084 link_spd == ICE_PTP_LNK_SPD_40G ||
2085 link_spd == ICE_PTP_LNK_SPD_50G) {
2086 /* If Clause 74 FEC, always calculate PMD adjust */
2087 if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
2088 mult = pmd_align;
2089 else
2090 mult = 0;
2091 } else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
2092 link_spd == ICE_PTP_LNK_SPD_50G_RS ||
2093 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
2094 if (pmd_align < 17)
2095 mult = pmd_align + 40;
2096 else
2097 mult = pmd_align;
2098 } else {
2099 ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
2100 link_spd);
2101 mult = 0;
2102 }
2103
2104 /* In some cases, there's no need to adjust for the PMD alignment */
2105 if (!mult) {
2106 *pmd_adj = 0;
2107 return 0;
2108 }
2109
2110 /* Calculate the adjustment by multiplying TUs per second by the
2111 * appropriate multiplier and divisor. To avoid overflow, we first
2112 * divide by 125, and then handle remaining divisor based on the link
2113 * speed pmd_adj_divisor value.
2114 */
2115 adj = div_u64(dividend: tu_per_sec, divisor: 125);
2116 adj *= mult;
2117 adj = div_u64(dividend: adj, divisor: e822_vernier[link_spd].pmd_adj_divisor);
2118
2119 /* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
2120 * cycle count is necessary.
2121 */
2122 if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
2123 u64 cycle_adj;
2124 u8 rx_cycle;
2125
2126 err = ice_read_phy_reg_e822(hw, port, P_REG_RX_40_TO_160_CNT,
2127 val: &val);
2128 if (err) {
2129 ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
2130 err);
2131 return err;
2132 }
2133
2134 rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
2135 if (rx_cycle) {
2136 mult = (4 - rx_cycle) * 40;
2137
2138 cycle_adj = div_u64(dividend: tu_per_sec, divisor: 125);
2139 cycle_adj *= mult;
2140 cycle_adj = div_u64(dividend: cycle_adj, divisor: e822_vernier[link_spd].pmd_adj_divisor);
2141
2142 adj += cycle_adj;
2143 }
2144 } else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
2145 u64 cycle_adj;
2146 u8 rx_cycle;
2147
2148 err = ice_read_phy_reg_e822(hw, port, P_REG_RX_80_TO_160_CNT,
2149 val: &val);
2150 if (err) {
2151 ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
2152 err);
2153 return err;
2154 }
2155
2156 rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
2157 if (rx_cycle) {
2158 mult = rx_cycle * 40;
2159
2160 cycle_adj = div_u64(dividend: tu_per_sec, divisor: 125);
2161 cycle_adj *= mult;
2162 cycle_adj = div_u64(dividend: cycle_adj, divisor: e822_vernier[link_spd].pmd_adj_divisor);
2163
2164 adj += cycle_adj;
2165 }
2166 }
2167
2168 /* Return the calculated adjustment */
2169 *pmd_adj = adj;
2170
2171 return 0;
2172}
2173
2174/**
2175 * ice_calc_fixed_rx_offset_e822 - Calculated the fixed Rx offset for a port
2176 * @hw: pointer to HW struct
2177 * @link_spd: The Link speed to calculate for
2178 *
2179 * Determine the fixed Rx latency for a given link speed.
2180 */
2181static u64
2182ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
2183{
2184 u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
2185
2186 cur_freq = ice_e822_pll_freq(time_ref: ice_e822_time_ref(hw));
2187 clk_incval = ice_ptp_read_src_incval(hw);
2188
2189 /* Calculate TUs per second */
2190 tu_per_sec = cur_freq * clk_incval;
2191
2192 /* Calculate number of TUs to add for the fixed Rx latency. Since the
2193 * latency measurement is in 1/100th of a nanosecond, we need to
2194 * multiply by tu_per_sec and then divide by 1e11. This calculation
2195 * overflows 64 bit integer arithmetic, so break it up into two
2196 * divisions by 1e4 first then by 1e7.
2197 */
2198 fixed_offset = div_u64(dividend: tu_per_sec, divisor: 10000);
2199 fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
2200 fixed_offset = div_u64(dividend: fixed_offset, divisor: 10000000);
2201
2202 return fixed_offset;
2203}
2204
2205/**
2206 * ice_phy_cfg_rx_offset_e822 - Configure total Rx timestamp offset
2207 * @hw: pointer to the HW struct
2208 * @port: the PHY port to configure
2209 *
2210 * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
2211 * adjust Rx timestamps by. This combines calculations from the Vernier offset
2212 * measurements taken in hardware with some data about known fixed delay as
2213 * well as adjusting for multi-lane alignment delay.
2214 *
2215 * This function will not return successfully until the Rx offset calculations
2216 * have been completed, which requires waiting until at least one packet has
2217 * been received by the device. It is safe to call this function periodically
2218 * until calibration succeeds, as it will only program the offset once.
2219 *
2220 * This function must be called only after the offset registers are valid,
2221 * i.e. after the Vernier calibration wait has passed, to ensure that the PHY
2222 * has measured the offset.
2223 *
2224 * To avoid overflow, when calculating the offset based on the known static
2225 * latency values, we use measurements in 1/100th of a nanosecond, and divide
2226 * the TUs per second up front. This avoids overflow while allowing
2227 * calculation of the adjustment using integer arithmetic.
2228 *
2229 * Returns zero on success, -EBUSY if the hardware vernier offset
2230 * calibration has not completed, or another error code on failure.
2231 */
2232int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port)
2233{
2234 enum ice_ptp_link_spd link_spd;
2235 enum ice_ptp_fec_mode fec_mode;
2236 u64 total_offset, pmd, val;
2237 int err;
2238 u32 reg;
2239
2240 /* Nothing to do if we've already programmed the offset */
2241 err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OR, val: &reg);
2242 if (err) {
2243 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n",
2244 port, err);
2245 return err;
2246 }
2247
2248 if (reg)
2249 return 0;
2250
2251 err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OV_STATUS, val: &reg);
2252 if (err) {
2253 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
2254 port, err);
2255 return err;
2256 }
2257
2258 if (!(reg & P_REG_RX_OV_STATUS_OV_M))
2259 return -EBUSY;
2260
2261 err = ice_phy_get_speed_and_fec_e822(hw, port, link_out: &link_spd, fec_out: &fec_mode);
2262 if (err)
2263 return err;
2264
2265 total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd);
2266
2267 /* Read the first Vernier offset from the PHY register and add it to
2268 * the total offset.
2269 */
2270 err = ice_read_64b_phy_reg_e822(hw, port,
2271 P_REG_PAR_PCS_RX_OFFSET_L,
2272 val: &val);
2273 if (err)
2274 return err;
2275
2276 total_offset += val;
2277
2278 /* For Rx, all multi-lane link speeds include a second Vernier
2279 * calibration, because the lanes might not be aligned.
2280 */
2281 if (link_spd == ICE_PTP_LNK_SPD_40G ||
2282 link_spd == ICE_PTP_LNK_SPD_50G ||
2283 link_spd == ICE_PTP_LNK_SPD_50G_RS ||
2284 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
2285 err = ice_read_64b_phy_reg_e822(hw, port,
2286 P_REG_PAR_RX_TIME_L,
2287 val: &val);
2288 if (err)
2289 return err;
2290
2291 total_offset += val;
2292 }
2293
2294 /* In addition, Rx must account for the PMD alignment */
2295 err = ice_phy_calc_pmd_adj_e822(hw, port, link_spd, fec_mode, pmd_adj: &pmd);
2296 if (err)
2297 return err;
2298
2299 /* For RS-FEC, this adjustment adds delay, but for other modes, it
2300 * subtracts delay.
2301 */
2302 if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
2303 total_offset += pmd;
2304 else
2305 total_offset -= pmd;
2306
2307 /* Now that the total offset has been calculated, program it to the
2308 * PHY and indicate that the Rx offset is ready. After this,
2309 * timestamps will be enabled.
2310 */
2311 err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L,
2312 val: total_offset);
2313 if (err)
2314 return err;
2315
2316 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, val: 1);
2317 if (err)
2318 return err;
2319
2320 dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n",
2321 port);
2322
2323 return 0;
2324}
2325
2326/**
2327 * ice_read_phy_and_phc_time_e822 - Simultaneously capture PHC and PHY time
2328 * @hw: pointer to the HW struct
2329 * @port: the PHY port to read
2330 * @phy_time: on return, the 64bit PHY timer value
2331 * @phc_time: on return, the lower 64bits of PHC time
2332 *
2333 * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
2334 * and PHC timer values.
2335 */
2336static int
2337ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time,
2338 u64 *phc_time)
2339{
2340 u64 tx_time, rx_time;
2341 u32 zo, lo;
2342 u8 tmr_idx;
2343 int err;
2344
2345 tmr_idx = ice_get_ptp_src_clock_index(hw);
2346
2347 /* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
2348 ice_ptp_src_cmd(hw, cmd: ICE_PTP_READ_TIME);
2349
2350 /* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
2351 err = ice_ptp_one_port_cmd(hw, configured_port: port, configured_cmd: ICE_PTP_READ_TIME);
2352 if (err)
2353 return err;
2354
2355 /* Issue the sync to start the ICE_PTP_READ_TIME capture */
2356 ice_ptp_exec_tmr_cmd(hw);
2357
2358 /* Read the captured PHC time from the shadow time registers */
2359 zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
2360 lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
2361 *phc_time = (u64)lo << 32 | zo;
2362
2363 /* Read the captured PHY time from the PHY shadow registers */
2364 err = ice_ptp_read_port_capture(hw, port, tx_ts: &tx_time, rx_ts: &rx_time);
2365 if (err)
2366 return err;
2367
2368 /* If the PHY Tx and Rx timers don't match, log a warning message.
2369 * Note that this should not happen in normal circumstances since the
2370 * driver always programs them together.
2371 */
2372 if (tx_time != rx_time)
2373 dev_warn(ice_hw_to_dev(hw),
2374 "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
2375 port, (unsigned long long)tx_time,
2376 (unsigned long long)rx_time);
2377
2378 *phy_time = tx_time;
2379
2380 return 0;
2381}
2382
2383/**
2384 * ice_sync_phy_timer_e822 - Synchronize the PHY timer with PHC timer
2385 * @hw: pointer to the HW struct
2386 * @port: the PHY port to synchronize
2387 *
2388 * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
2389 * This is done by issuing a ICE_PTP_READ_TIME command which triggers a
2390 * simultaneous read of the PHY timer and PHC timer. Then we use the
2391 * difference to calculate an appropriate 2s complement addition to add
2392 * to the PHY timer in order to ensure it reads the same value as the
2393 * primary PHC timer.
2394 */
2395static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port)
2396{
2397 u64 phc_time, phy_time, difference;
2398 int err;
2399
2400 if (!ice_ptp_lock(hw)) {
2401 ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
2402 return -EBUSY;
2403 }
2404
2405 err = ice_read_phy_and_phc_time_e822(hw, port, phy_time: &phy_time, phc_time: &phc_time);
2406 if (err)
2407 goto err_unlock;
2408
2409 /* Calculate the amount required to add to the port time in order for
2410 * it to match the PHC time.
2411 *
2412 * Note that the port adjustment is done using 2s complement
2413 * arithmetic. This is convenient since it means that we can simply
2414 * calculate the difference between the PHC time and the port time,
2415 * and it will be interpreted correctly.
2416 */
2417 difference = phc_time - phy_time;
2418
2419 err = ice_ptp_prep_port_adj_e822(hw, port, time: (s64)difference);
2420 if (err)
2421 goto err_unlock;
2422
2423 err = ice_ptp_one_port_cmd(hw, configured_port: port, configured_cmd: ICE_PTP_ADJ_TIME);
2424 if (err)
2425 goto err_unlock;
2426
2427 /* Do not perform any action on the main timer */
2428 ice_ptp_src_cmd(hw, cmd: ICE_PTP_NOP);
2429
2430 /* Issue the sync to activate the time adjustment */
2431 ice_ptp_exec_tmr_cmd(hw);
2432
2433 /* Re-capture the timer values to flush the command registers and
2434 * verify that the time was properly adjusted.
2435 */
2436 err = ice_read_phy_and_phc_time_e822(hw, port, phy_time: &phy_time, phc_time: &phc_time);
2437 if (err)
2438 goto err_unlock;
2439
2440 dev_info(ice_hw_to_dev(hw),
2441 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
2442 port, (unsigned long long)phy_time,
2443 (unsigned long long)phc_time);
2444
2445 ice_ptp_unlock(hw);
2446
2447 return 0;
2448
2449err_unlock:
2450 ice_ptp_unlock(hw);
2451 return err;
2452}
2453
2454/**
2455 * ice_stop_phy_timer_e822 - Stop the PHY clock timer
2456 * @hw: pointer to the HW struct
2457 * @port: the PHY port to stop
2458 * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
2459 *
2460 * Stop the clock of a PHY port. This must be done as part of the flow to
2461 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2462 * initialized or when link speed changes.
2463 */
2464int
2465ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset)
2466{
2467 int err;
2468 u32 val;
2469
2470 err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, val: 0);
2471 if (err)
2472 return err;
2473
2474 err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, val: 0);
2475 if (err)
2476 return err;
2477
2478 err = ice_read_phy_reg_e822(hw, port, P_REG_PS, val: &val);
2479 if (err)
2480 return err;
2481
2482 val &= ~P_REG_PS_START_M;
2483 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2484 if (err)
2485 return err;
2486
2487 val &= ~P_REG_PS_ENA_CLK_M;
2488 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2489 if (err)
2490 return err;
2491
2492 if (soft_reset) {
2493 val |= P_REG_PS_SFT_RESET_M;
2494 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2495 if (err)
2496 return err;
2497 }
2498
2499 ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
2500
2501 return 0;
2502}
2503
2504/**
2505 * ice_start_phy_timer_e822 - Start the PHY clock timer
2506 * @hw: pointer to the HW struct
2507 * @port: the PHY port to start
2508 *
2509 * Start the clock of a PHY port. This must be done as part of the flow to
2510 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2511 * initialized or when link speed changes.
2512 *
2513 * Hardware will take Vernier measurements on Tx or Rx of packets.
2514 */
2515int ice_start_phy_timer_e822(struct ice_hw *hw, u8 port)
2516{
2517 u32 lo, hi, val;
2518 u64 incval;
2519 u8 tmr_idx;
2520 int err;
2521
2522 tmr_idx = ice_get_ptp_src_clock_index(hw);
2523
2524 err = ice_stop_phy_timer_e822(hw, port, soft_reset: false);
2525 if (err)
2526 return err;
2527
2528 ice_phy_cfg_lane_e822(hw, port);
2529
2530 err = ice_phy_cfg_uix_e822(hw, port);
2531 if (err)
2532 return err;
2533
2534 err = ice_phy_cfg_parpcs_e822(hw, port);
2535 if (err)
2536 return err;
2537
2538 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
2539 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
2540 incval = (u64)hi << 32 | lo;
2541
2542 err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, val: incval);
2543 if (err)
2544 return err;
2545
2546 err = ice_ptp_one_port_cmd(hw, configured_port: port, configured_cmd: ICE_PTP_INIT_INCVAL);
2547 if (err)
2548 return err;
2549
2550 /* Do not perform any action on the main timer */
2551 ice_ptp_src_cmd(hw, cmd: ICE_PTP_NOP);
2552
2553 ice_ptp_exec_tmr_cmd(hw);
2554
2555 err = ice_read_phy_reg_e822(hw, port, P_REG_PS, val: &val);
2556 if (err)
2557 return err;
2558
2559 val |= P_REG_PS_SFT_RESET_M;
2560 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2561 if (err)
2562 return err;
2563
2564 val |= P_REG_PS_START_M;
2565 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2566 if (err)
2567 return err;
2568
2569 val &= ~P_REG_PS_SFT_RESET_M;
2570 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2571 if (err)
2572 return err;
2573
2574 err = ice_ptp_one_port_cmd(hw, configured_port: port, configured_cmd: ICE_PTP_INIT_INCVAL);
2575 if (err)
2576 return err;
2577
2578 ice_ptp_exec_tmr_cmd(hw);
2579
2580 val |= P_REG_PS_ENA_CLK_M;
2581 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2582 if (err)
2583 return err;
2584
2585 val |= P_REG_PS_LOAD_OFFSET_M;
2586 err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2587 if (err)
2588 return err;
2589
2590 ice_ptp_exec_tmr_cmd(hw);
2591
2592 err = ice_sync_phy_timer_e822(hw, port);
2593 if (err)
2594 return err;
2595
2596 ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
2597
2598 return 0;
2599}
2600
2601/**
2602 * ice_get_phy_tx_tstamp_ready_e822 - Read Tx memory status register
2603 * @hw: pointer to the HW struct
2604 * @quad: the timestamp quad to read from
2605 * @tstamp_ready: contents of the Tx memory status register
2606 *
2607 * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in
2608 * the PHY are ready. A set bit means the corresponding timestamp is valid and
2609 * ready to be captured from the PHY timestamp block.
2610 */
2611static int
2612ice_get_phy_tx_tstamp_ready_e822(struct ice_hw *hw, u8 quad, u64 *tstamp_ready)
2613{
2614 u32 hi, lo;
2615 int err;
2616
2617 err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_U, val: &hi);
2618 if (err) {
2619 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n",
2620 quad, err);
2621 return err;
2622 }
2623
2624 err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_L, val: &lo);
2625 if (err) {
2626 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n",
2627 quad, err);
2628 return err;
2629 }
2630
2631 *tstamp_ready = (u64)hi << 32 | (u64)lo;
2632
2633 return 0;
2634}
2635
2636/* E810 functions
2637 *
2638 * The following functions operate on the E810 series devices which use
2639 * a separate external PHY.
2640 */
2641
2642/**
2643 * ice_read_phy_reg_e810 - Read register from external PHY on E810
2644 * @hw: pointer to the HW struct
2645 * @addr: the address to read from
2646 * @val: On return, the value read from the PHY
2647 *
2648 * Read a register from the external PHY on the E810 device.
2649 */
2650static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
2651{
2652 struct ice_sbq_msg_input msg = {0};
2653 int err;
2654
2655 msg.msg_addr_low = lower_16_bits(addr);
2656 msg.msg_addr_high = upper_16_bits(addr);
2657 msg.opcode = ice_sbq_msg_rd;
2658 msg.dest_dev = rmn_0;
2659
2660 err = ice_sbq_rw_reg(hw, in: &msg);
2661 if (err) {
2662 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2663 err);
2664 return err;
2665 }
2666
2667 *val = msg.data;
2668
2669 return 0;
2670}
2671
2672/**
2673 * ice_write_phy_reg_e810 - Write register on external PHY on E810
2674 * @hw: pointer to the HW struct
2675 * @addr: the address to writem to
2676 * @val: the value to write to the PHY
2677 *
2678 * Write a value to a register of the external PHY on the E810 device.
2679 */
2680static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
2681{
2682 struct ice_sbq_msg_input msg = {0};
2683 int err;
2684
2685 msg.msg_addr_low = lower_16_bits(addr);
2686 msg.msg_addr_high = upper_16_bits(addr);
2687 msg.opcode = ice_sbq_msg_wr;
2688 msg.dest_dev = rmn_0;
2689 msg.data = val;
2690
2691 err = ice_sbq_rw_reg(hw, in: &msg);
2692 if (err) {
2693 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2694 err);
2695 return err;
2696 }
2697
2698 return 0;
2699}
2700
2701/**
2702 * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
2703 * @hw: pointer to the HW struct
2704 * @idx: the timestamp index to read
2705 * @hi: 8 bit timestamp high value
2706 * @lo: 32 bit timestamp low value
2707 *
2708 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
2709 * timestamp block of the external PHY on the E810 device using the low latency
2710 * timestamp read.
2711 */
2712static int
2713ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
2714{
2715 u32 val;
2716 u8 i;
2717
2718 /* Write TS index to read to the PF register so the FW can read it */
2719 val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS;
2720 wr32(hw, PF_SB_ATQBAL, val);
2721
2722 /* Read the register repeatedly until the FW provides us the TS */
2723 for (i = TS_LL_READ_RETRIES; i > 0; i--) {
2724 val = rd32(hw, PF_SB_ATQBAL);
2725
2726 /* When the bit is cleared, the TS is ready in the register */
2727 if (!(FIELD_GET(TS_LL_READ_TS, val))) {
2728 /* High 8 bit value of the TS is on the bits 16:23 */
2729 *hi = FIELD_GET(TS_LL_READ_TS_HIGH, val);
2730
2731 /* Read the low 32 bit value and set the TS valid bit */
2732 *lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID;
2733 return 0;
2734 }
2735
2736 udelay(10);
2737 }
2738
2739 /* FW failed to provide the TS in time */
2740 ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
2741 return -EINVAL;
2742}
2743
2744/**
2745 * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
2746 * @hw: pointer to the HW struct
2747 * @lport: the lport to read from
2748 * @idx: the timestamp index to read
2749 * @hi: 8 bit timestamp high value
2750 * @lo: 32 bit timestamp low value
2751 *
2752 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
2753 * timestamp block of the external PHY on the E810 device using sideband queue.
2754 */
2755static int
2756ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
2757 u32 *lo)
2758{
2759 u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
2760 u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
2761 u32 lo_val, hi_val;
2762 int err;
2763
2764 err = ice_read_phy_reg_e810(hw, addr: lo_addr, val: &lo_val);
2765 if (err) {
2766 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
2767 err);
2768 return err;
2769 }
2770
2771 err = ice_read_phy_reg_e810(hw, addr: hi_addr, val: &hi_val);
2772 if (err) {
2773 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
2774 err);
2775 return err;
2776 }
2777
2778 *lo = lo_val;
2779 *hi = (u8)hi_val;
2780
2781 return 0;
2782}
2783
2784/**
2785 * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
2786 * @hw: pointer to the HW struct
2787 * @lport: the lport to read from
2788 * @idx: the timestamp index to read
2789 * @tstamp: on return, the 40bit timestamp value
2790 *
2791 * Read a 40bit timestamp value out of the timestamp block of the external PHY
2792 * on the E810 device.
2793 */
2794static int
2795ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
2796{
2797 u32 lo = 0;
2798 u8 hi = 0;
2799 int err;
2800
2801 if (hw->dev_caps.ts_dev_info.ts_ll_read)
2802 err = ice_read_phy_tstamp_ll_e810(hw, idx, hi: &hi, lo: &lo);
2803 else
2804 err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, hi: &hi, lo: &lo);
2805
2806 if (err)
2807 return err;
2808
2809 /* For E810 devices, the timestamp is reported with the lower 32 bits
2810 * in the low register, and the upper 8 bits in the high register.
2811 */
2812 *tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
2813
2814 return 0;
2815}
2816
2817/**
2818 * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
2819 * @hw: pointer to the HW struct
2820 * @lport: the lport to read from
2821 * @idx: the timestamp index to reset
2822 *
2823 * Read the timestamp and then forcibly overwrite its value to clear the valid
2824 * bit from the timestamp block of the external PHY on the E810 device.
2825 *
2826 * This function should only be called on an idx whose bit is set according to
2827 * ice_get_phy_tx_tstamp_ready().
2828 */
2829static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
2830{
2831 u32 lo_addr, hi_addr;
2832 u64 unused_tstamp;
2833 int err;
2834
2835 err = ice_read_phy_tstamp_e810(hw, lport, idx, tstamp: &unused_tstamp);
2836 if (err) {
2837 ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for lport %u, idx %u, err %d\n",
2838 lport, idx, err);
2839 return err;
2840 }
2841
2842 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
2843 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
2844
2845 err = ice_write_phy_reg_e810(hw, addr: lo_addr, val: 0);
2846 if (err) {
2847 ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for lport %u, idx %u, err %d\n",
2848 lport, idx, err);
2849 return err;
2850 }
2851
2852 err = ice_write_phy_reg_e810(hw, addr: hi_addr, val: 0);
2853 if (err) {
2854 ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register for lport %u, idx %u, err %d\n",
2855 lport, idx, err);
2856 return err;
2857 }
2858
2859 return 0;
2860}
2861
2862/**
2863 * ice_ptp_init_phy_e810 - Enable PTP function on the external PHY
2864 * @hw: pointer to HW struct
2865 *
2866 * Enable the timesync PTP functionality for the external PHY connected to
2867 * this function.
2868 */
2869int ice_ptp_init_phy_e810(struct ice_hw *hw)
2870{
2871 u8 tmr_idx;
2872 int err;
2873
2874 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2875 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
2876 GLTSYN_ENA_TSYN_ENA_M);
2877 if (err)
2878 ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
2879 err);
2880
2881 return err;
2882}
2883
2884/**
2885 * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
2886 * @hw: pointer to HW struct
2887 *
2888 * Perform E810-specific PTP hardware clock initialization steps.
2889 */
2890static int ice_ptp_init_phc_e810(struct ice_hw *hw)
2891{
2892 /* Ensure synchronization delay is zero */
2893 wr32(hw, GLTSYN_SYNC_DLAY, 0);
2894
2895 /* Initialize the PHY */
2896 return ice_ptp_init_phy_e810(hw);
2897}
2898
2899/**
2900 * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
2901 * @hw: Board private structure
2902 * @time: Time to initialize the PHY port clock to
2903 *
2904 * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
2905 * initial clock time. The time will not actually be programmed until the
2906 * driver issues an ICE_PTP_INIT_TIME command.
2907 *
2908 * The time value is the upper 32 bits of the PHY timer, usually in units of
2909 * nominal nanoseconds.
2910 */
2911static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
2912{
2913 u8 tmr_idx;
2914 int err;
2915
2916 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2917 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), val: 0);
2918 if (err) {
2919 ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
2920 err);
2921 return err;
2922 }
2923
2924 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), val: time);
2925 if (err) {
2926 ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
2927 err);
2928 return err;
2929 }
2930
2931 return 0;
2932}
2933
2934/**
2935 * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
2936 * @hw: pointer to HW struct
2937 * @adj: adjustment value to program
2938 *
2939 * Prepare the PHY port for an atomic adjustment by programming the PHY
2940 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
2941 * is completed by issuing an ICE_PTP_ADJ_TIME sync command.
2942 *
2943 * The adjustment value only contains the portion used for the upper 32bits of
2944 * the PHY timer, usually in units of nominal nanoseconds. Negative
2945 * adjustments are supported using 2s complement arithmetic.
2946 */
2947static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
2948{
2949 u8 tmr_idx;
2950 int err;
2951
2952 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2953
2954 /* Adjustments are represented as signed 2's complement values in
2955 * nanoseconds. Sub-nanosecond adjustment is not supported.
2956 */
2957 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), val: 0);
2958 if (err) {
2959 ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
2960 err);
2961 return err;
2962 }
2963
2964 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), val: adj);
2965 if (err) {
2966 ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
2967 err);
2968 return err;
2969 }
2970
2971 return 0;
2972}
2973
2974/**
2975 * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
2976 * @hw: pointer to HW struct
2977 * @incval: The new 40bit increment value to prepare
2978 *
2979 * Prepare the PHY port for a new increment value by programming the PHY
2980 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
2981 * completed by issuing an ICE_PTP_INIT_INCVAL command.
2982 */
2983static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
2984{
2985 u32 high, low;
2986 u8 tmr_idx;
2987 int err;
2988
2989 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2990 low = lower_32_bits(incval);
2991 high = upper_32_bits(incval);
2992
2993 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), val: low);
2994 if (err) {
2995 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
2996 err);
2997 return err;
2998 }
2999
3000 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), val: high);
3001 if (err) {
3002 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
3003 err);
3004 return err;
3005 }
3006
3007 return 0;
3008}
3009
3010/**
3011 * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
3012 * @hw: pointer to HW struct
3013 * @cmd: Command to be sent to the port
3014 *
3015 * Prepare the external PHYs connected to this device for a timer sync
3016 * command.
3017 */
3018static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
3019{
3020 u32 cmd_val, val;
3021 int err;
3022
3023 switch (cmd) {
3024 case ICE_PTP_INIT_TIME:
3025 cmd_val = GLTSYN_CMD_INIT_TIME;
3026 break;
3027 case ICE_PTP_INIT_INCVAL:
3028 cmd_val = GLTSYN_CMD_INIT_INCVAL;
3029 break;
3030 case ICE_PTP_ADJ_TIME:
3031 cmd_val = GLTSYN_CMD_ADJ_TIME;
3032 break;
3033 case ICE_PTP_READ_TIME:
3034 cmd_val = GLTSYN_CMD_READ_TIME;
3035 break;
3036 case ICE_PTP_ADJ_TIME_AT_TIME:
3037 cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
3038 break;
3039 case ICE_PTP_NOP:
3040 return 0;
3041 }
3042
3043 /* Read, modify, write */
3044 err = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, val: &val);
3045 if (err) {
3046 ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, err %d\n", err);
3047 return err;
3048 }
3049
3050 /* Modify necessary bits only and perform write */
3051 val &= ~TS_CMD_MASK_E810;
3052 val |= cmd_val;
3053
3054 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val);
3055 if (err) {
3056 ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, err %d\n", err);
3057 return err;
3058 }
3059
3060 return 0;
3061}
3062
3063/**
3064 * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register
3065 * @hw: pointer to the HW struct
3066 * @port: the PHY port to read
3067 * @tstamp_ready: contents of the Tx memory status register
3068 *
3069 * E810 devices do not use a Tx memory status register. Instead simply
3070 * indicate that all timestamps are currently ready.
3071 */
3072static int
3073ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready)
3074{
3075 *tstamp_ready = 0xFFFFFFFFFFFFFFFF;
3076 return 0;
3077}
3078
3079/* E810T SMA functions
3080 *
3081 * The following functions operate specifically on E810T hardware and are used
3082 * to access the extended GPIOs available.
3083 */
3084
3085/**
3086 * ice_get_pca9575_handle
3087 * @hw: pointer to the hw struct
3088 * @pca9575_handle: GPIO controller's handle
3089 *
3090 * Find and return the GPIO controller's handle in the netlist.
3091 * When found - the value will be cached in the hw structure and following calls
3092 * will return cached value
3093 */
3094static int
3095ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
3096{
3097 struct ice_aqc_get_link_topo *cmd;
3098 struct ice_aq_desc desc;
3099 int status;
3100 u8 idx;
3101
3102 /* If handle was read previously return cached value */
3103 if (hw->io_expander_handle) {
3104 *pca9575_handle = hw->io_expander_handle;
3105 return 0;
3106 }
3107
3108 /* If handle was not detected read it from the netlist */
3109 cmd = &desc.params.get_link_topo;
3110 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_link_topo);
3111
3112 /* Set node type to GPIO controller */
3113 cmd->addr.topo_params.node_type_ctx =
3114 (ICE_AQC_LINK_TOPO_NODE_TYPE_M &
3115 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
3116
3117#define SW_PCA9575_SFP_TOPO_IDX 2
3118#define SW_PCA9575_QSFP_TOPO_IDX 1
3119
3120 /* Check if the SW IO expander controlling SMA exists in the netlist. */
3121 if (hw->device_id == ICE_DEV_ID_E810C_SFP)
3122 idx = SW_PCA9575_SFP_TOPO_IDX;
3123 else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
3124 idx = SW_PCA9575_QSFP_TOPO_IDX;
3125 else
3126 return -EOPNOTSUPP;
3127
3128 cmd->addr.topo_params.index = idx;
3129
3130 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
3131 if (status)
3132 return -EOPNOTSUPP;
3133
3134 /* Verify if we found the right IO expander type */
3135 if (desc.params.get_link_topo.node_part_num !=
3136 ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
3137 return -EOPNOTSUPP;
3138
3139 /* If present save the handle and return it */
3140 hw->io_expander_handle =
3141 le16_to_cpu(desc.params.get_link_topo.addr.handle);
3142 *pca9575_handle = hw->io_expander_handle;
3143
3144 return 0;
3145}
3146
3147/**
3148 * ice_read_sma_ctrl_e810t
3149 * @hw: pointer to the hw struct
3150 * @data: pointer to data to be read from the GPIO controller
3151 *
3152 * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
3153 * PCA9575 expander, so only bits 3-7 in data are valid.
3154 */
3155int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data)
3156{
3157 int status;
3158 u16 handle;
3159 u8 i;
3160
3161 status = ice_get_pca9575_handle(hw, pca9575_handle: &handle);
3162 if (status)
3163 return status;
3164
3165 *data = 0;
3166
3167 for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
3168 bool pin;
3169
3170 status = ice_aq_get_gpio(hw, gpio_ctrl_handle: handle, pin_idx: i + ICE_PCA9575_P1_OFFSET,
3171 value: &pin, NULL);
3172 if (status)
3173 break;
3174 *data |= (u8)(!pin) << i;
3175 }
3176
3177 return status;
3178}
3179
3180/**
3181 * ice_write_sma_ctrl_e810t
3182 * @hw: pointer to the hw struct
3183 * @data: data to be written to the GPIO controller
3184 *
3185 * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
3186 * of the PCA9575 expander, so only bits 3-7 in data are valid.
3187 */
3188int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data)
3189{
3190 int status;
3191 u16 handle;
3192 u8 i;
3193
3194 status = ice_get_pca9575_handle(hw, pca9575_handle: &handle);
3195 if (status)
3196 return status;
3197
3198 for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
3199 bool pin;
3200
3201 pin = !(data & (1 << i));
3202 status = ice_aq_set_gpio(hw, gpio_ctrl_handle: handle, pin_idx: i + ICE_PCA9575_P1_OFFSET,
3203 value: pin, NULL);
3204 if (status)
3205 break;
3206 }
3207
3208 return status;
3209}
3210
3211/**
3212 * ice_read_pca9575_reg_e810t
3213 * @hw: pointer to the hw struct
3214 * @offset: GPIO controller register offset
3215 * @data: pointer to data to be read from the GPIO controller
3216 *
3217 * Read the register from the GPIO controller
3218 */
3219int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data)
3220{
3221 struct ice_aqc_link_topo_addr link_topo;
3222 __le16 addr;
3223 u16 handle;
3224 int err;
3225
3226 memset(&link_topo, 0, sizeof(link_topo));
3227
3228 err = ice_get_pca9575_handle(hw, pca9575_handle: &handle);
3229 if (err)
3230 return err;
3231
3232 link_topo.handle = cpu_to_le16(handle);
3233 link_topo.topo_params.node_type_ctx =
3234 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
3235 ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
3236
3237 addr = cpu_to_le16((u16)offset);
3238
3239 return ice_aq_read_i2c(hw, topo_addr: link_topo, bus_addr: 0, addr, params: 1, data, NULL);
3240}
3241
3242/* Device agnostic functions
3243 *
3244 * The following functions implement shared behavior common to both E822 and
3245 * E810 devices, possibly calling a device specific implementation where
3246 * necessary.
3247 */
3248
3249/**
3250 * ice_ptp_lock - Acquire PTP global semaphore register lock
3251 * @hw: pointer to the HW struct
3252 *
3253 * Acquire the global PTP hardware semaphore lock. Returns true if the lock
3254 * was acquired, false otherwise.
3255 *
3256 * The PFTSYN_SEM register sets the busy bit on read, returning the previous
3257 * value. If software sees the busy bit cleared, this means that this function
3258 * acquired the lock (and the busy bit is now set). If software sees the busy
3259 * bit set, it means that another function acquired the lock.
3260 *
3261 * Software must clear the busy bit with a write to release the lock for other
3262 * functions when done.
3263 */
3264bool ice_ptp_lock(struct ice_hw *hw)
3265{
3266 u32 hw_lock;
3267 int i;
3268
3269#define MAX_TRIES 15
3270
3271 for (i = 0; i < MAX_TRIES; i++) {
3272 hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
3273 hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
3274 if (hw_lock) {
3275 /* Somebody is holding the lock */
3276 usleep_range(min: 5000, max: 6000);
3277 continue;
3278 }
3279
3280 break;
3281 }
3282
3283 return !hw_lock;
3284}
3285
3286/**
3287 * ice_ptp_unlock - Release PTP global semaphore register lock
3288 * @hw: pointer to the HW struct
3289 *
3290 * Release the global PTP hardware semaphore lock. This is done by writing to
3291 * the PFTSYN_SEM register.
3292 */
3293void ice_ptp_unlock(struct ice_hw *hw)
3294{
3295 wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
3296}
3297
3298/**
3299 * ice_ptp_init_phy_model - Initialize hw->phy_model based on device type
3300 * @hw: pointer to the HW structure
3301 *
3302 * Determine the PHY model for the device, and initialize hw->phy_model
3303 * for use by other functions.
3304 */
3305void ice_ptp_init_phy_model(struct ice_hw *hw)
3306{
3307 if (ice_is_e810(hw))
3308 hw->phy_model = ICE_PHY_E810;
3309 else
3310 hw->phy_model = ICE_PHY_E822;
3311}
3312
3313/**
3314 * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
3315 * @hw: pointer to HW struct
3316 * @cmd: the command to issue
3317 *
3318 * Prepare the source timer and PHY timers and then trigger the requested
3319 * command. This causes the shadow registers previously written in preparation
3320 * for the command to be synchronously applied to both the source and PHY
3321 * timers.
3322 */
3323static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
3324{
3325 int err;
3326
3327 /* First, prepare the source timer */
3328 ice_ptp_src_cmd(hw, cmd);
3329
3330 /* Next, prepare the ports */
3331 switch (hw->phy_model) {
3332 case ICE_PHY_E810:
3333 err = ice_ptp_port_cmd_e810(hw, cmd);
3334 break;
3335 case ICE_PHY_E822:
3336 err = ice_ptp_port_cmd_e822(hw, cmd);
3337 break;
3338 default:
3339 err = -EOPNOTSUPP;
3340 }
3341
3342 if (err) {
3343 ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
3344 cmd, err);
3345 return err;
3346 }
3347
3348 /* Write the sync command register to drive both source and PHY timer
3349 * commands synchronously
3350 */
3351 ice_ptp_exec_tmr_cmd(hw);
3352
3353 return 0;
3354}
3355
3356/**
3357 * ice_ptp_init_time - Initialize device time to provided value
3358 * @hw: pointer to HW struct
3359 * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
3360 *
3361 * Initialize the device to the specified time provided. This requires a three
3362 * step process:
3363 *
3364 * 1) write the new init time to the source timer shadow registers
3365 * 2) write the new init time to the PHY timer shadow registers
3366 * 3) issue an init_time timer command to synchronously switch both the source
3367 * and port timers to the new init time value at the next clock cycle.
3368 */
3369int ice_ptp_init_time(struct ice_hw *hw, u64 time)
3370{
3371 u8 tmr_idx;
3372 int err;
3373
3374 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3375
3376 /* Source timers */
3377 wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
3378 wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
3379 wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
3380
3381 /* PHY timers */
3382 /* Fill Rx and Tx ports and send msg to PHY */
3383 switch (hw->phy_model) {
3384 case ICE_PHY_E810:
3385 err = ice_ptp_prep_phy_time_e810(hw, time: time & 0xFFFFFFFF);
3386 break;
3387 case ICE_PHY_E822:
3388 err = ice_ptp_prep_phy_time_e822(hw, time: time & 0xFFFFFFFF);
3389 break;
3390 default:
3391 err = -EOPNOTSUPP;
3392 }
3393
3394 if (err)
3395 return err;
3396
3397 return ice_ptp_tmr_cmd(hw, cmd: ICE_PTP_INIT_TIME);
3398}
3399
3400/**
3401 * ice_ptp_write_incval - Program PHC with new increment value
3402 * @hw: pointer to HW struct
3403 * @incval: Source timer increment value per clock cycle
3404 *
3405 * Program the PHC with a new increment value. This requires a three-step
3406 * process:
3407 *
3408 * 1) Write the increment value to the source timer shadow registers
3409 * 2) Write the increment value to the PHY timer shadow registers
3410 * 3) Issue an ICE_PTP_INIT_INCVAL timer command to synchronously switch both
3411 * the source and port timers to the new increment value at the next clock
3412 * cycle.
3413 */
3414int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
3415{
3416 u8 tmr_idx;
3417 int err;
3418
3419 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3420
3421 /* Shadow Adjust */
3422 wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
3423 wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
3424
3425 switch (hw->phy_model) {
3426 case ICE_PHY_E810:
3427 err = ice_ptp_prep_phy_incval_e810(hw, incval);
3428 break;
3429 case ICE_PHY_E822:
3430 err = ice_ptp_prep_phy_incval_e822(hw, incval);
3431 break;
3432 default:
3433 err = -EOPNOTSUPP;
3434 }
3435
3436 if (err)
3437 return err;
3438
3439 return ice_ptp_tmr_cmd(hw, cmd: ICE_PTP_INIT_INCVAL);
3440}
3441
3442/**
3443 * ice_ptp_write_incval_locked - Program new incval while holding semaphore
3444 * @hw: pointer to HW struct
3445 * @incval: Source timer increment value per clock cycle
3446 *
3447 * Program a new PHC incval while holding the PTP semaphore.
3448 */
3449int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
3450{
3451 int err;
3452
3453 if (!ice_ptp_lock(hw))
3454 return -EBUSY;
3455
3456 err = ice_ptp_write_incval(hw, incval);
3457
3458 ice_ptp_unlock(hw);
3459
3460 return err;
3461}
3462
3463/**
3464 * ice_ptp_adj_clock - Adjust PHC clock time atomically
3465 * @hw: pointer to HW struct
3466 * @adj: Adjustment in nanoseconds
3467 *
3468 * Perform an atomic adjustment of the PHC time by the specified number of
3469 * nanoseconds. This requires a three-step process:
3470 *
3471 * 1) Write the adjustment to the source timer shadow registers
3472 * 2) Write the adjustment to the PHY timer shadow registers
3473 * 3) Issue an ICE_PTP_ADJ_TIME timer command to synchronously apply the
3474 * adjustment to both the source and port timers at the next clock cycle.
3475 */
3476int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
3477{
3478 u8 tmr_idx;
3479 int err;
3480
3481 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3482
3483 /* Write the desired clock adjustment into the GLTSYN_SHADJ register.
3484 * For an ICE_PTP_ADJ_TIME command, this set of registers represents
3485 * the value to add to the clock time. It supports subtraction by
3486 * interpreting the value as a 2's complement integer.
3487 */
3488 wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
3489 wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
3490
3491 switch (hw->phy_model) {
3492 case ICE_PHY_E810:
3493 err = ice_ptp_prep_phy_adj_e810(hw, adj);
3494 break;
3495 case ICE_PHY_E822:
3496 err = ice_ptp_prep_phy_adj_e822(hw, adj);
3497 break;
3498 default:
3499 err = -EOPNOTSUPP;
3500 }
3501
3502 if (err)
3503 return err;
3504
3505 return ice_ptp_tmr_cmd(hw, cmd: ICE_PTP_ADJ_TIME);
3506}
3507
3508/**
3509 * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
3510 * @hw: pointer to the HW struct
3511 * @block: the block to read from
3512 * @idx: the timestamp index to read
3513 * @tstamp: on return, the 40bit timestamp value
3514 *
3515 * Read a 40bit timestamp value out of the timestamp block. For E822 devices,
3516 * the block is the quad to read from. For E810 devices, the block is the
3517 * logical port to read from.
3518 */
3519int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
3520{
3521 switch (hw->phy_model) {
3522 case ICE_PHY_E810:
3523 return ice_read_phy_tstamp_e810(hw, lport: block, idx, tstamp);
3524 case ICE_PHY_E822:
3525 return ice_read_phy_tstamp_e822(hw, quad: block, idx, tstamp);
3526 default:
3527 return -EOPNOTSUPP;
3528 }
3529}
3530
3531/**
3532 * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
3533 * @hw: pointer to the HW struct
3534 * @block: the block to read from
3535 * @idx: the timestamp index to reset
3536 *
3537 * Clear a timestamp from the timestamp block, discarding its value without
3538 * returning it. This resets the memory status bit for the timestamp index
3539 * allowing it to be reused for another timestamp in the future.
3540 *
3541 * For E822 devices, the block number is the PHY quad to clear from. For E810
3542 * devices, the block number is the logical port to clear from.
3543 *
3544 * This function must only be called on a timestamp index whose valid bit is
3545 * set according to ice_get_phy_tx_tstamp_ready().
3546 */
3547int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
3548{
3549 switch (hw->phy_model) {
3550 case ICE_PHY_E810:
3551 return ice_clear_phy_tstamp_e810(hw, lport: block, idx);
3552 case ICE_PHY_E822:
3553 return ice_clear_phy_tstamp_e822(hw, quad: block, idx);
3554 default:
3555 return -EOPNOTSUPP;
3556 }
3557}
3558
3559/**
3560 * ice_get_pf_c827_idx - find and return the C827 index for the current pf
3561 * @hw: pointer to the hw struct
3562 * @idx: index of the found C827 PHY
3563 * Return:
3564 * * 0 - success
3565 * * negative - failure
3566 */
3567static int ice_get_pf_c827_idx(struct ice_hw *hw, u8 *idx)
3568{
3569 struct ice_aqc_get_link_topo cmd;
3570 u8 node_part_number;
3571 u16 node_handle;
3572 int status;
3573 u8 ctx;
3574
3575 if (hw->mac_type != ICE_MAC_E810)
3576 return -ENODEV;
3577
3578 if (hw->device_id != ICE_DEV_ID_E810C_QSFP) {
3579 *idx = C827_0;
3580 return 0;
3581 }
3582
3583 memset(&cmd, 0, sizeof(cmd));
3584
3585 ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_PHY << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
3586 ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
3587 cmd.addr.topo_params.node_type_ctx = ctx;
3588
3589 status = ice_aq_get_netlist_node(hw, cmd: &cmd, node_part_number: &node_part_number,
3590 node_handle: &node_handle);
3591 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
3592 return -ENOENT;
3593
3594 if (node_handle == E810C_QSFP_C827_0_HANDLE)
3595 *idx = C827_0;
3596 else if (node_handle == E810C_QSFP_C827_1_HANDLE)
3597 *idx = C827_1;
3598 else
3599 return -EIO;
3600
3601 return 0;
3602}
3603
3604/**
3605 * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks
3606 * @hw: pointer to the HW struct
3607 */
3608void ice_ptp_reset_ts_memory(struct ice_hw *hw)
3609{
3610 switch (hw->phy_model) {
3611 case ICE_PHY_E822:
3612 ice_ptp_reset_ts_memory_e822(hw);
3613 break;
3614 case ICE_PHY_E810:
3615 default:
3616 return;
3617 }
3618}
3619
3620/**
3621 * ice_ptp_init_phc - Initialize PTP hardware clock
3622 * @hw: pointer to the HW struct
3623 *
3624 * Perform the steps required to initialize the PTP hardware clock.
3625 */
3626int ice_ptp_init_phc(struct ice_hw *hw)
3627{
3628 u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3629
3630 /* Enable source clocks */
3631 wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
3632
3633 /* Clear event err indications for auxiliary pins */
3634 (void)rd32(hw, GLTSYN_STAT(src_idx));
3635
3636 switch (hw->phy_model) {
3637 case ICE_PHY_E810:
3638 return ice_ptp_init_phc_e810(hw);
3639 case ICE_PHY_E822:
3640 return ice_ptp_init_phc_e822(hw);
3641 default:
3642 return -EOPNOTSUPP;
3643 }
3644}
3645
3646/**
3647 * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication
3648 * @hw: pointer to the HW struct
3649 * @block: the timestamp block to check
3650 * @tstamp_ready: storage for the PHY Tx memory status information
3651 *
3652 * Check the PHY for Tx timestamp memory status. This reports a 64 bit value
3653 * which indicates which timestamps in the block may be captured. A set bit
3654 * means the timestamp can be read. An unset bit means the timestamp is not
3655 * ready and software should avoid reading the register.
3656 */
3657int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready)
3658{
3659 switch (hw->phy_model) {
3660 case ICE_PHY_E810:
3661 return ice_get_phy_tx_tstamp_ready_e810(hw, port: block,
3662 tstamp_ready);
3663 case ICE_PHY_E822:
3664 return ice_get_phy_tx_tstamp_ready_e822(hw, quad: block,
3665 tstamp_ready);
3666 break;
3667 default:
3668 return -EOPNOTSUPP;
3669 }
3670}
3671
3672/**
3673 * ice_cgu_get_pin_desc_e823 - get pin description array
3674 * @hw: pointer to the hw struct
3675 * @input: if request is done against input or output pin
3676 * @size: number of inputs/outputs
3677 *
3678 * Return: pointer to pin description array associated to given hw.
3679 */
3680static const struct ice_cgu_pin_desc *
3681ice_cgu_get_pin_desc_e823(struct ice_hw *hw, bool input, int *size)
3682{
3683 static const struct ice_cgu_pin_desc *t;
3684
3685 if (hw->cgu_part_number ==
3686 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) {
3687 if (input) {
3688 t = ice_e823_zl_cgu_inputs;
3689 *size = ARRAY_SIZE(ice_e823_zl_cgu_inputs);
3690 } else {
3691 t = ice_e823_zl_cgu_outputs;
3692 *size = ARRAY_SIZE(ice_e823_zl_cgu_outputs);
3693 }
3694 } else if (hw->cgu_part_number ==
3695 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) {
3696 if (input) {
3697 t = ice_e823_si_cgu_inputs;
3698 *size = ARRAY_SIZE(ice_e823_si_cgu_inputs);
3699 } else {
3700 t = ice_e823_si_cgu_outputs;
3701 *size = ARRAY_SIZE(ice_e823_si_cgu_outputs);
3702 }
3703 } else {
3704 t = NULL;
3705 *size = 0;
3706 }
3707
3708 return t;
3709}
3710
3711/**
3712 * ice_cgu_get_pin_desc - get pin description array
3713 * @hw: pointer to the hw struct
3714 * @input: if request is done against input or output pins
3715 * @size: size of array returned by function
3716 *
3717 * Return: pointer to pin description array associated to given hw.
3718 */
3719static const struct ice_cgu_pin_desc *
3720ice_cgu_get_pin_desc(struct ice_hw *hw, bool input, int *size)
3721{
3722 const struct ice_cgu_pin_desc *t = NULL;
3723
3724 switch (hw->device_id) {
3725 case ICE_DEV_ID_E810C_SFP:
3726 if (input) {
3727 t = ice_e810t_sfp_cgu_inputs;
3728 *size = ARRAY_SIZE(ice_e810t_sfp_cgu_inputs);
3729 } else {
3730 t = ice_e810t_sfp_cgu_outputs;
3731 *size = ARRAY_SIZE(ice_e810t_sfp_cgu_outputs);
3732 }
3733 break;
3734 case ICE_DEV_ID_E810C_QSFP:
3735 if (input) {
3736 t = ice_e810t_qsfp_cgu_inputs;
3737 *size = ARRAY_SIZE(ice_e810t_qsfp_cgu_inputs);
3738 } else {
3739 t = ice_e810t_qsfp_cgu_outputs;
3740 *size = ARRAY_SIZE(ice_e810t_qsfp_cgu_outputs);
3741 }
3742 break;
3743 case ICE_DEV_ID_E823L_10G_BASE_T:
3744 case ICE_DEV_ID_E823L_1GBE:
3745 case ICE_DEV_ID_E823L_BACKPLANE:
3746 case ICE_DEV_ID_E823L_QSFP:
3747 case ICE_DEV_ID_E823L_SFP:
3748 case ICE_DEV_ID_E823C_10G_BASE_T:
3749 case ICE_DEV_ID_E823C_BACKPLANE:
3750 case ICE_DEV_ID_E823C_QSFP:
3751 case ICE_DEV_ID_E823C_SFP:
3752 case ICE_DEV_ID_E823C_SGMII:
3753 t = ice_cgu_get_pin_desc_e823(hw, input, size);
3754 break;
3755 default:
3756 break;
3757 }
3758
3759 return t;
3760}
3761
3762/**
3763 * ice_cgu_get_pin_type - get pin's type
3764 * @hw: pointer to the hw struct
3765 * @pin: pin index
3766 * @input: if request is done against input or output pin
3767 *
3768 * Return: type of a pin.
3769 */
3770enum dpll_pin_type ice_cgu_get_pin_type(struct ice_hw *hw, u8 pin, bool input)
3771{
3772 const struct ice_cgu_pin_desc *t;
3773 int t_size;
3774
3775 t = ice_cgu_get_pin_desc(hw, input, size: &t_size);
3776
3777 if (!t)
3778 return 0;
3779
3780 if (pin >= t_size)
3781 return 0;
3782
3783 return t[pin].type;
3784}
3785
3786/**
3787 * ice_cgu_get_pin_freq_supp - get pin's supported frequency
3788 * @hw: pointer to the hw struct
3789 * @pin: pin index
3790 * @input: if request is done against input or output pin
3791 * @num: output number of supported frequencies
3792 *
3793 * Get frequency supported number and array of supported frequencies.
3794 *
3795 * Return: array of supported frequencies for given pin.
3796 */
3797struct dpll_pin_frequency *
3798ice_cgu_get_pin_freq_supp(struct ice_hw *hw, u8 pin, bool input, u8 *num)
3799{
3800 const struct ice_cgu_pin_desc *t;
3801 int t_size;
3802
3803 *num = 0;
3804 t = ice_cgu_get_pin_desc(hw, input, size: &t_size);
3805 if (!t)
3806 return NULL;
3807 if (pin >= t_size)
3808 return NULL;
3809 *num = t[pin].freq_supp_num;
3810
3811 return t[pin].freq_supp;
3812}
3813
3814/**
3815 * ice_cgu_get_pin_name - get pin's name
3816 * @hw: pointer to the hw struct
3817 * @pin: pin index
3818 * @input: if request is done against input or output pin
3819 *
3820 * Return:
3821 * * null terminated char array with name
3822 * * NULL in case of failure
3823 */
3824const char *ice_cgu_get_pin_name(struct ice_hw *hw, u8 pin, bool input)
3825{
3826 const struct ice_cgu_pin_desc *t;
3827 int t_size;
3828
3829 t = ice_cgu_get_pin_desc(hw, input, size: &t_size);
3830
3831 if (!t)
3832 return NULL;
3833
3834 if (pin >= t_size)
3835 return NULL;
3836
3837 return t[pin].name;
3838}
3839
3840/**
3841 * ice_get_cgu_state - get the state of the DPLL
3842 * @hw: pointer to the hw struct
3843 * @dpll_idx: Index of internal DPLL unit
3844 * @last_dpll_state: last known state of DPLL
3845 * @pin: pointer to a buffer for returning currently active pin
3846 * @ref_state: reference clock state
3847 * @eec_mode: eec mode of the DPLL
3848 * @phase_offset: pointer to a buffer for returning phase offset
3849 * @dpll_state: state of the DPLL (output)
3850 *
3851 * This function will read the state of the DPLL(dpll_idx). Non-null
3852 * 'pin', 'ref_state', 'eec_mode' and 'phase_offset' parameters are used to
3853 * retrieve currently active pin, state, mode and phase_offset respectively.
3854 *
3855 * Return: state of the DPLL
3856 */
3857int ice_get_cgu_state(struct ice_hw *hw, u8 dpll_idx,
3858 enum dpll_lock_status last_dpll_state, u8 *pin,
3859 u8 *ref_state, u8 *eec_mode, s64 *phase_offset,
3860 enum dpll_lock_status *dpll_state)
3861{
3862 u8 hw_ref_state, hw_dpll_state, hw_eec_mode, hw_config;
3863 s64 hw_phase_offset;
3864 int status;
3865
3866 status = ice_aq_get_cgu_dpll_status(hw, dpll_num: dpll_idx, ref_state: &hw_ref_state,
3867 dpll_state: &hw_dpll_state, config: &hw_config,
3868 phase_offset: &hw_phase_offset, eec_mode: &hw_eec_mode);
3869 if (status)
3870 return status;
3871
3872 if (pin)
3873 /* current ref pin in dpll_state_refsel_status_X register */
3874 *pin = hw_config & ICE_AQC_GET_CGU_DPLL_CONFIG_CLK_REF_SEL;
3875 if (phase_offset)
3876 *phase_offset = hw_phase_offset;
3877 if (ref_state)
3878 *ref_state = hw_ref_state;
3879 if (eec_mode)
3880 *eec_mode = hw_eec_mode;
3881 if (!dpll_state)
3882 return 0;
3883
3884 /* According to ZL DPLL documentation, once state reach LOCKED_HO_ACQ
3885 * it would never return to FREERUN. This aligns to ITU-T G.781
3886 * Recommendation. We cannot report HOLDOVER as HO memory is cleared
3887 * while switching to another reference.
3888 * Only for situations where previous state was either: "LOCKED without
3889 * HO_ACQ" or "HOLDOVER" we actually back to FREERUN.
3890 */
3891 if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_LOCK) {
3892 if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_HO_READY)
3893 *dpll_state = DPLL_LOCK_STATUS_LOCKED_HO_ACQ;
3894 else
3895 *dpll_state = DPLL_LOCK_STATUS_LOCKED;
3896 } else if (last_dpll_state == DPLL_LOCK_STATUS_LOCKED_HO_ACQ ||
3897 last_dpll_state == DPLL_LOCK_STATUS_HOLDOVER) {
3898 *dpll_state = DPLL_LOCK_STATUS_HOLDOVER;
3899 } else {
3900 *dpll_state = DPLL_LOCK_STATUS_UNLOCKED;
3901 }
3902
3903 return 0;
3904}
3905
3906/**
3907 * ice_get_cgu_rclk_pin_info - get info on available recovered clock pins
3908 * @hw: pointer to the hw struct
3909 * @base_idx: returns index of first recovered clock pin on device
3910 * @pin_num: returns number of recovered clock pins available on device
3911 *
3912 * Based on hw provide caller info about recovery clock pins available on the
3913 * board.
3914 *
3915 * Return:
3916 * * 0 - success, information is valid
3917 * * negative - failure, information is not valid
3918 */
3919int ice_get_cgu_rclk_pin_info(struct ice_hw *hw, u8 *base_idx, u8 *pin_num)
3920{
3921 u8 phy_idx;
3922 int ret;
3923
3924 switch (hw->device_id) {
3925 case ICE_DEV_ID_E810C_SFP:
3926 case ICE_DEV_ID_E810C_QSFP:
3927
3928 ret = ice_get_pf_c827_idx(hw, idx: &phy_idx);
3929 if (ret)
3930 return ret;
3931 *base_idx = E810T_CGU_INPUT_C827(phy_idx, ICE_RCLKA_PIN);
3932 *pin_num = ICE_E810_RCLK_PINS_NUM;
3933 ret = 0;
3934 break;
3935 case ICE_DEV_ID_E823L_10G_BASE_T:
3936 case ICE_DEV_ID_E823L_1GBE:
3937 case ICE_DEV_ID_E823L_BACKPLANE:
3938 case ICE_DEV_ID_E823L_QSFP:
3939 case ICE_DEV_ID_E823L_SFP:
3940 case ICE_DEV_ID_E823C_10G_BASE_T:
3941 case ICE_DEV_ID_E823C_BACKPLANE:
3942 case ICE_DEV_ID_E823C_QSFP:
3943 case ICE_DEV_ID_E823C_SFP:
3944 case ICE_DEV_ID_E823C_SGMII:
3945 *pin_num = ICE_E822_RCLK_PINS_NUM;
3946 ret = 0;
3947 if (hw->cgu_part_number ==
3948 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032)
3949 *base_idx = ZL_REF1P;
3950 else if (hw->cgu_part_number ==
3951 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384)
3952 *base_idx = SI_REF1P;
3953 else
3954 ret = -ENODEV;
3955
3956 break;
3957 default:
3958 ret = -ENODEV;
3959 break;
3960 }
3961
3962 return ret;
3963}
3964

source code of linux/drivers/net/ethernet/intel/ice/ice_ptp_hw.c