1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include <net/devlink.h>
5#include "ice_sched.h"
6
7/**
8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
9 * @pi: port information structure
10 * @info: Scheduler element information from firmware
11 *
12 * This function inserts the root node of the scheduling tree topology
13 * to the SW DB.
14 */
15static int
16ice_sched_add_root_node(struct ice_port_info *pi,
17 struct ice_aqc_txsched_elem_data *info)
18{
19 struct ice_sched_node *root;
20 struct ice_hw *hw;
21
22 if (!pi)
23 return -EINVAL;
24
25 hw = pi->hw;
26
27 root = devm_kzalloc(dev: ice_hw_to_dev(hw), size: sizeof(*root), GFP_KERNEL);
28 if (!root)
29 return -ENOMEM;
30
31 /* coverity[suspicious_sizeof] */
32 root->children = devm_kcalloc(dev: ice_hw_to_dev(hw), n: hw->max_children[0],
33 size: sizeof(*root), GFP_KERNEL);
34 if (!root->children) {
35 devm_kfree(dev: ice_hw_to_dev(hw), p: root);
36 return -ENOMEM;
37 }
38
39 memcpy(&root->info, info, sizeof(*info));
40 pi->root = root;
41 return 0;
42}
43
44/**
45 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
46 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
47 * @teid: node TEID to search
48 *
49 * This function searches for a node matching the TEID in the scheduling tree
50 * from the SW DB. The search is recursive and is restricted by the number of
51 * layers it has searched through; stopping at the max supported layer.
52 *
53 * This function needs to be called when holding the port_info->sched_lock
54 */
55struct ice_sched_node *
56ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
57{
58 u16 i;
59
60 /* The TEID is same as that of the start_node */
61 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
62 return start_node;
63
64 /* The node has no children or is at the max layer */
65 if (!start_node->num_children ||
66 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
67 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
68 return NULL;
69
70 /* Check if TEID matches to any of the children nodes */
71 for (i = 0; i < start_node->num_children; i++)
72 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
73 return start_node->children[i];
74
75 /* Search within each child's sub-tree */
76 for (i = 0; i < start_node->num_children; i++) {
77 struct ice_sched_node *tmp;
78
79 tmp = ice_sched_find_node_by_teid(start_node: start_node->children[i],
80 teid);
81 if (tmp)
82 return tmp;
83 }
84
85 return NULL;
86}
87
88/**
89 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
90 * @hw: pointer to the HW struct
91 * @cmd_opc: cmd opcode
92 * @elems_req: number of elements to request
93 * @buf: pointer to buffer
94 * @buf_size: buffer size in bytes
95 * @elems_resp: returns total number of elements response
96 * @cd: pointer to command details structure or NULL
97 *
98 * This function sends a scheduling elements cmd (cmd_opc)
99 */
100static int
101ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
102 u16 elems_req, void *buf, u16 buf_size,
103 u16 *elems_resp, struct ice_sq_cd *cd)
104{
105 struct ice_aqc_sched_elem_cmd *cmd;
106 struct ice_aq_desc desc;
107 int status;
108
109 cmd = &desc.params.sched_elem_cmd;
110 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: cmd_opc);
111 cmd->num_elem_req = cpu_to_le16(elems_req);
112 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
113 status = ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
114 if (!status && elems_resp)
115 *elems_resp = le16_to_cpu(cmd->num_elem_resp);
116
117 return status;
118}
119
120/**
121 * ice_aq_query_sched_elems - query scheduler elements
122 * @hw: pointer to the HW struct
123 * @elems_req: number of elements to query
124 * @buf: pointer to buffer
125 * @buf_size: buffer size in bytes
126 * @elems_ret: returns total number of elements returned
127 * @cd: pointer to command details structure or NULL
128 *
129 * Query scheduling elements (0x0404)
130 */
131int
132ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
133 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
134 u16 *elems_ret, struct ice_sq_cd *cd)
135{
136 return ice_aqc_send_sched_elem_cmd(hw, cmd_opc: ice_aqc_opc_get_sched_elems,
137 elems_req, buf: (void *)buf, buf_size,
138 elems_resp: elems_ret, cd);
139}
140
141/**
142 * ice_sched_add_node - Insert the Tx scheduler node in SW DB
143 * @pi: port information structure
144 * @layer: Scheduler layer of the node
145 * @info: Scheduler element information from firmware
146 * @prealloc_node: preallocated ice_sched_node struct for SW DB
147 *
148 * This function inserts a scheduler node to the SW DB.
149 */
150int
151ice_sched_add_node(struct ice_port_info *pi, u8 layer,
152 struct ice_aqc_txsched_elem_data *info,
153 struct ice_sched_node *prealloc_node)
154{
155 struct ice_aqc_txsched_elem_data elem;
156 struct ice_sched_node *parent;
157 struct ice_sched_node *node;
158 struct ice_hw *hw;
159 int status;
160
161 if (!pi)
162 return -EINVAL;
163
164 hw = pi->hw;
165
166 /* A valid parent node should be there */
167 parent = ice_sched_find_node_by_teid(start_node: pi->root,
168 le32_to_cpu(info->parent_teid));
169 if (!parent) {
170 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
171 le32_to_cpu(info->parent_teid));
172 return -EINVAL;
173 }
174
175 /* query the current node information from FW before adding it
176 * to the SW DB
177 */
178 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), buf: &elem);
179 if (status)
180 return status;
181
182 if (prealloc_node)
183 node = prealloc_node;
184 else
185 node = devm_kzalloc(dev: ice_hw_to_dev(hw), size: sizeof(*node), GFP_KERNEL);
186 if (!node)
187 return -ENOMEM;
188 if (hw->max_children[layer]) {
189 /* coverity[suspicious_sizeof] */
190 node->children = devm_kcalloc(dev: ice_hw_to_dev(hw),
191 n: hw->max_children[layer],
192 size: sizeof(*node), GFP_KERNEL);
193 if (!node->children) {
194 devm_kfree(dev: ice_hw_to_dev(hw), p: node);
195 return -ENOMEM;
196 }
197 }
198
199 node->in_use = true;
200 node->parent = parent;
201 node->tx_sched_layer = layer;
202 parent->children[parent->num_children++] = node;
203 node->info = elem;
204 return 0;
205}
206
207/**
208 * ice_aq_delete_sched_elems - delete scheduler elements
209 * @hw: pointer to the HW struct
210 * @grps_req: number of groups to delete
211 * @buf: pointer to buffer
212 * @buf_size: buffer size in bytes
213 * @grps_del: returns total number of elements deleted
214 * @cd: pointer to command details structure or NULL
215 *
216 * Delete scheduling elements (0x040F)
217 */
218static int
219ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
220 struct ice_aqc_delete_elem *buf, u16 buf_size,
221 u16 *grps_del, struct ice_sq_cd *cd)
222{
223 return ice_aqc_send_sched_elem_cmd(hw, cmd_opc: ice_aqc_opc_delete_sched_elems,
224 elems_req: grps_req, buf: (void *)buf, buf_size,
225 elems_resp: grps_del, cd);
226}
227
228/**
229 * ice_sched_remove_elems - remove nodes from HW
230 * @hw: pointer to the HW struct
231 * @parent: pointer to the parent node
232 * @node_teid: node teid to be deleted
233 *
234 * This function remove nodes from HW
235 */
236static int
237ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
238 u32 node_teid)
239{
240 DEFINE_FLEX(struct ice_aqc_delete_elem, buf, teid, 1);
241 u16 buf_size = __struct_size(buf);
242 u16 num_groups_removed = 0;
243 int status;
244
245 buf->hdr.parent_teid = parent->info.node_teid;
246 buf->hdr.num_elems = cpu_to_le16(1);
247 buf->teid[0] = cpu_to_le32(node_teid);
248
249 status = ice_aq_delete_sched_elems(hw, grps_req: 1, buf, buf_size,
250 grps_del: &num_groups_removed, NULL);
251 if (status || num_groups_removed != 1)
252 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
253 hw->adminq.sq_last_status);
254
255 return status;
256}
257
258/**
259 * ice_sched_get_first_node - get the first node of the given layer
260 * @pi: port information structure
261 * @parent: pointer the base node of the subtree
262 * @layer: layer number
263 *
264 * This function retrieves the first node of the given layer from the subtree
265 */
266static struct ice_sched_node *
267ice_sched_get_first_node(struct ice_port_info *pi,
268 struct ice_sched_node *parent, u8 layer)
269{
270 return pi->sib_head[parent->tc_num][layer];
271}
272
273/**
274 * ice_sched_get_tc_node - get pointer to TC node
275 * @pi: port information structure
276 * @tc: TC number
277 *
278 * This function returns the TC node pointer
279 */
280struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
281{
282 u8 i;
283
284 if (!pi || !pi->root)
285 return NULL;
286 for (i = 0; i < pi->root->num_children; i++)
287 if (pi->root->children[i]->tc_num == tc)
288 return pi->root->children[i];
289 return NULL;
290}
291
292/**
293 * ice_free_sched_node - Free a Tx scheduler node from SW DB
294 * @pi: port information structure
295 * @node: pointer to the ice_sched_node struct
296 *
297 * This function frees up a node from SW DB as well as from HW
298 *
299 * This function needs to be called with the port_info->sched_lock held
300 */
301void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
302{
303 struct ice_sched_node *parent;
304 struct ice_hw *hw = pi->hw;
305 u8 i, j;
306
307 /* Free the children before freeing up the parent node
308 * The parent array is updated below and that shifts the nodes
309 * in the array. So always pick the first child if num children > 0
310 */
311 while (node->num_children)
312 ice_free_sched_node(pi, node: node->children[0]);
313
314 /* Leaf, TC and root nodes can't be deleted by SW */
315 if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
316 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
317 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
318 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
319 u32 teid = le32_to_cpu(node->info.node_teid);
320
321 ice_sched_remove_elems(hw, parent: node->parent, node_teid: teid);
322 }
323 parent = node->parent;
324 /* root has no parent */
325 if (parent) {
326 struct ice_sched_node *p;
327
328 /* update the parent */
329 for (i = 0; i < parent->num_children; i++)
330 if (parent->children[i] == node) {
331 for (j = i + 1; j < parent->num_children; j++)
332 parent->children[j - 1] =
333 parent->children[j];
334 parent->num_children--;
335 break;
336 }
337
338 p = ice_sched_get_first_node(pi, parent: node, layer: node->tx_sched_layer);
339 while (p) {
340 if (p->sibling == node) {
341 p->sibling = node->sibling;
342 break;
343 }
344 p = p->sibling;
345 }
346
347 /* update the sibling head if head is getting removed */
348 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
349 pi->sib_head[node->tc_num][node->tx_sched_layer] =
350 node->sibling;
351 }
352
353 devm_kfree(dev: ice_hw_to_dev(hw), p: node->children);
354 kfree(objp: node->name);
355 xa_erase(&pi->sched_node_ids, index: node->id);
356 devm_kfree(dev: ice_hw_to_dev(hw), p: node);
357}
358
359/**
360 * ice_aq_get_dflt_topo - gets default scheduler topology
361 * @hw: pointer to the HW struct
362 * @lport: logical port number
363 * @buf: pointer to buffer
364 * @buf_size: buffer size in bytes
365 * @num_branches: returns total number of queue to port branches
366 * @cd: pointer to command details structure or NULL
367 *
368 * Get default scheduler topology (0x400)
369 */
370static int
371ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
372 struct ice_aqc_get_topo_elem *buf, u16 buf_size,
373 u8 *num_branches, struct ice_sq_cd *cd)
374{
375 struct ice_aqc_get_topo *cmd;
376 struct ice_aq_desc desc;
377 int status;
378
379 cmd = &desc.params.get_topo;
380 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_dflt_topo);
381 cmd->port_num = lport;
382 status = ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
383 if (!status && num_branches)
384 *num_branches = cmd->num_branches;
385
386 return status;
387}
388
389/**
390 * ice_aq_add_sched_elems - adds scheduling element
391 * @hw: pointer to the HW struct
392 * @grps_req: the number of groups that are requested to be added
393 * @buf: pointer to buffer
394 * @buf_size: buffer size in bytes
395 * @grps_added: returns total number of groups added
396 * @cd: pointer to command details structure or NULL
397 *
398 * Add scheduling elements (0x0401)
399 */
400static int
401ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
402 struct ice_aqc_add_elem *buf, u16 buf_size,
403 u16 *grps_added, struct ice_sq_cd *cd)
404{
405 return ice_aqc_send_sched_elem_cmd(hw, cmd_opc: ice_aqc_opc_add_sched_elems,
406 elems_req: grps_req, buf: (void *)buf, buf_size,
407 elems_resp: grps_added, cd);
408}
409
410/**
411 * ice_aq_cfg_sched_elems - configures scheduler elements
412 * @hw: pointer to the HW struct
413 * @elems_req: number of elements to configure
414 * @buf: pointer to buffer
415 * @buf_size: buffer size in bytes
416 * @elems_cfgd: returns total number of elements configured
417 * @cd: pointer to command details structure or NULL
418 *
419 * Configure scheduling elements (0x0403)
420 */
421static int
422ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
423 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
424 u16 *elems_cfgd, struct ice_sq_cd *cd)
425{
426 return ice_aqc_send_sched_elem_cmd(hw, cmd_opc: ice_aqc_opc_cfg_sched_elems,
427 elems_req, buf: (void *)buf, buf_size,
428 elems_resp: elems_cfgd, cd);
429}
430
431/**
432 * ice_aq_move_sched_elems - move scheduler element (just 1 group)
433 * @hw: pointer to the HW struct
434 * @buf: pointer to buffer
435 * @buf_size: buffer size in bytes
436 * @grps_movd: returns total number of groups moved
437 *
438 * Move scheduling elements (0x0408)
439 */
440int
441ice_aq_move_sched_elems(struct ice_hw *hw, struct ice_aqc_move_elem *buf,
442 u16 buf_size, u16 *grps_movd)
443{
444 return ice_aqc_send_sched_elem_cmd(hw, cmd_opc: ice_aqc_opc_move_sched_elems,
445 elems_req: 1, buf, buf_size, elems_resp: grps_movd, NULL);
446}
447
448/**
449 * ice_aq_suspend_sched_elems - suspend scheduler elements
450 * @hw: pointer to the HW struct
451 * @elems_req: number of elements to suspend
452 * @buf: pointer to buffer
453 * @buf_size: buffer size in bytes
454 * @elems_ret: returns total number of elements suspended
455 * @cd: pointer to command details structure or NULL
456 *
457 * Suspend scheduling elements (0x0409)
458 */
459static int
460ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
461 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
462{
463 return ice_aqc_send_sched_elem_cmd(hw, cmd_opc: ice_aqc_opc_suspend_sched_elems,
464 elems_req, buf: (void *)buf, buf_size,
465 elems_resp: elems_ret, cd);
466}
467
468/**
469 * ice_aq_resume_sched_elems - resume scheduler elements
470 * @hw: pointer to the HW struct
471 * @elems_req: number of elements to resume
472 * @buf: pointer to buffer
473 * @buf_size: buffer size in bytes
474 * @elems_ret: returns total number of elements resumed
475 * @cd: pointer to command details structure or NULL
476 *
477 * resume scheduling elements (0x040A)
478 */
479static int
480ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
481 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
482{
483 return ice_aqc_send_sched_elem_cmd(hw, cmd_opc: ice_aqc_opc_resume_sched_elems,
484 elems_req, buf: (void *)buf, buf_size,
485 elems_resp: elems_ret, cd);
486}
487
488/**
489 * ice_aq_query_sched_res - query scheduler resource
490 * @hw: pointer to the HW struct
491 * @buf_size: buffer size in bytes
492 * @buf: pointer to buffer
493 * @cd: pointer to command details structure or NULL
494 *
495 * Query scheduler resource allocation (0x0412)
496 */
497static int
498ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
499 struct ice_aqc_query_txsched_res_resp *buf,
500 struct ice_sq_cd *cd)
501{
502 struct ice_aq_desc desc;
503
504 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_query_sched_res);
505 return ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
506}
507
508/**
509 * ice_sched_suspend_resume_elems - suspend or resume HW nodes
510 * @hw: pointer to the HW struct
511 * @num_nodes: number of nodes
512 * @node_teids: array of node teids to be suspended or resumed
513 * @suspend: true means suspend / false means resume
514 *
515 * This function suspends or resumes HW nodes
516 */
517int
518ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
519 bool suspend)
520{
521 u16 i, buf_size, num_elem_ret = 0;
522 __le32 *buf;
523 int status;
524
525 buf_size = sizeof(*buf) * num_nodes;
526 buf = devm_kzalloc(dev: ice_hw_to_dev(hw), size: buf_size, GFP_KERNEL);
527 if (!buf)
528 return -ENOMEM;
529
530 for (i = 0; i < num_nodes; i++)
531 buf[i] = cpu_to_le32(node_teids[i]);
532
533 if (suspend)
534 status = ice_aq_suspend_sched_elems(hw, elems_req: num_nodes, buf,
535 buf_size, elems_ret: &num_elem_ret,
536 NULL);
537 else
538 status = ice_aq_resume_sched_elems(hw, elems_req: num_nodes, buf,
539 buf_size, elems_ret: &num_elem_ret,
540 NULL);
541 if (status || num_elem_ret != num_nodes)
542 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
543
544 devm_kfree(dev: ice_hw_to_dev(hw), p: buf);
545 return status;
546}
547
548/**
549 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
550 * @hw: pointer to the HW struct
551 * @vsi_handle: VSI handle
552 * @tc: TC number
553 * @new_numqs: number of queues
554 */
555static int
556ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
557{
558 struct ice_vsi_ctx *vsi_ctx;
559 struct ice_q_ctx *q_ctx;
560 u16 idx;
561
562 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
563 if (!vsi_ctx)
564 return -EINVAL;
565 /* allocate LAN queue contexts */
566 if (!vsi_ctx->lan_q_ctx[tc]) {
567 q_ctx = devm_kcalloc(dev: ice_hw_to_dev(hw), n: new_numqs,
568 size: sizeof(*q_ctx), GFP_KERNEL);
569 if (!q_ctx)
570 return -ENOMEM;
571
572 for (idx = 0; idx < new_numqs; idx++) {
573 q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
574 q_ctx[idx].q_teid = ICE_INVAL_TEID;
575 }
576
577 vsi_ctx->lan_q_ctx[tc] = q_ctx;
578 vsi_ctx->num_lan_q_entries[tc] = new_numqs;
579 return 0;
580 }
581 /* num queues are increased, update the queue contexts */
582 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
583 u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
584
585 q_ctx = devm_kcalloc(dev: ice_hw_to_dev(hw), n: new_numqs,
586 size: sizeof(*q_ctx), GFP_KERNEL);
587 if (!q_ctx)
588 return -ENOMEM;
589
590 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
591 prev_num * sizeof(*q_ctx));
592 devm_kfree(dev: ice_hw_to_dev(hw), p: vsi_ctx->lan_q_ctx[tc]);
593
594 for (idx = prev_num; idx < new_numqs; idx++) {
595 q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
596 q_ctx[idx].q_teid = ICE_INVAL_TEID;
597 }
598
599 vsi_ctx->lan_q_ctx[tc] = q_ctx;
600 vsi_ctx->num_lan_q_entries[tc] = new_numqs;
601 }
602 return 0;
603}
604
605/**
606 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
607 * @hw: pointer to the HW struct
608 * @vsi_handle: VSI handle
609 * @tc: TC number
610 * @new_numqs: number of queues
611 */
612static int
613ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
614{
615 struct ice_vsi_ctx *vsi_ctx;
616 struct ice_q_ctx *q_ctx;
617
618 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
619 if (!vsi_ctx)
620 return -EINVAL;
621 /* allocate RDMA queue contexts */
622 if (!vsi_ctx->rdma_q_ctx[tc]) {
623 vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(dev: ice_hw_to_dev(hw),
624 n: new_numqs,
625 size: sizeof(*q_ctx),
626 GFP_KERNEL);
627 if (!vsi_ctx->rdma_q_ctx[tc])
628 return -ENOMEM;
629 vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
630 return 0;
631 }
632 /* num queues are increased, update the queue contexts */
633 if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
634 u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
635
636 q_ctx = devm_kcalloc(dev: ice_hw_to_dev(hw), n: new_numqs,
637 size: sizeof(*q_ctx), GFP_KERNEL);
638 if (!q_ctx)
639 return -ENOMEM;
640 memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
641 prev_num * sizeof(*q_ctx));
642 devm_kfree(dev: ice_hw_to_dev(hw), p: vsi_ctx->rdma_q_ctx[tc]);
643 vsi_ctx->rdma_q_ctx[tc] = q_ctx;
644 vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
645 }
646 return 0;
647}
648
649/**
650 * ice_aq_rl_profile - performs a rate limiting task
651 * @hw: pointer to the HW struct
652 * @opcode: opcode for add, query, or remove profile(s)
653 * @num_profiles: the number of profiles
654 * @buf: pointer to buffer
655 * @buf_size: buffer size in bytes
656 * @num_processed: number of processed add or remove profile(s) to return
657 * @cd: pointer to command details structure
658 *
659 * RL profile function to add, query, or remove profile(s)
660 */
661static int
662ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
663 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
664 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
665{
666 struct ice_aqc_rl_profile *cmd;
667 struct ice_aq_desc desc;
668 int status;
669
670 cmd = &desc.params.rl_profile;
671
672 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode);
673 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
674 cmd->num_profiles = cpu_to_le16(num_profiles);
675 status = ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
676 if (!status && num_processed)
677 *num_processed = le16_to_cpu(cmd->num_processed);
678 return status;
679}
680
681/**
682 * ice_aq_add_rl_profile - adds rate limiting profile(s)
683 * @hw: pointer to the HW struct
684 * @num_profiles: the number of profile(s) to be add
685 * @buf: pointer to buffer
686 * @buf_size: buffer size in bytes
687 * @num_profiles_added: total number of profiles added to return
688 * @cd: pointer to command details structure
689 *
690 * Add RL profile (0x0410)
691 */
692static int
693ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
694 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
695 u16 *num_profiles_added, struct ice_sq_cd *cd)
696{
697 return ice_aq_rl_profile(hw, opcode: ice_aqc_opc_add_rl_profiles, num_profiles,
698 buf, buf_size, num_processed: num_profiles_added, cd);
699}
700
701/**
702 * ice_aq_remove_rl_profile - removes RL profile(s)
703 * @hw: pointer to the HW struct
704 * @num_profiles: the number of profile(s) to remove
705 * @buf: pointer to buffer
706 * @buf_size: buffer size in bytes
707 * @num_profiles_removed: total number of profiles removed to return
708 * @cd: pointer to command details structure or NULL
709 *
710 * Remove RL profile (0x0415)
711 */
712static int
713ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
714 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
715 u16 *num_profiles_removed, struct ice_sq_cd *cd)
716{
717 return ice_aq_rl_profile(hw, opcode: ice_aqc_opc_remove_rl_profiles,
718 num_profiles, buf, buf_size,
719 num_processed: num_profiles_removed, cd);
720}
721
722/**
723 * ice_sched_del_rl_profile - remove RL profile
724 * @hw: pointer to the HW struct
725 * @rl_info: rate limit profile information
726 *
727 * If the profile ID is not referenced anymore, it removes profile ID with
728 * its associated parameters from HW DB,and locally. The caller needs to
729 * hold scheduler lock.
730 */
731static int
732ice_sched_del_rl_profile(struct ice_hw *hw,
733 struct ice_aqc_rl_profile_info *rl_info)
734{
735 struct ice_aqc_rl_profile_elem *buf;
736 u16 num_profiles_removed;
737 u16 num_profiles = 1;
738 int status;
739
740 if (rl_info->prof_id_ref != 0)
741 return -EBUSY;
742
743 /* Safe to remove profile ID */
744 buf = &rl_info->profile;
745 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, buf_size: sizeof(*buf),
746 num_profiles_removed: &num_profiles_removed, NULL);
747 if (status || num_profiles_removed != num_profiles)
748 return -EIO;
749
750 /* Delete stale entry now */
751 list_del(entry: &rl_info->list_entry);
752 devm_kfree(dev: ice_hw_to_dev(hw), p: rl_info);
753 return status;
754}
755
756/**
757 * ice_sched_clear_rl_prof - clears RL prof entries
758 * @pi: port information structure
759 *
760 * This function removes all RL profile from HW as well as from SW DB.
761 */
762static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
763{
764 u16 ln;
765
766 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
767 struct ice_aqc_rl_profile_info *rl_prof_elem;
768 struct ice_aqc_rl_profile_info *rl_prof_tmp;
769
770 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
771 &pi->rl_prof_list[ln], list_entry) {
772 struct ice_hw *hw = pi->hw;
773 int status;
774
775 rl_prof_elem->prof_id_ref = 0;
776 status = ice_sched_del_rl_profile(hw, rl_info: rl_prof_elem);
777 if (status) {
778 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
779 /* On error, free mem required */
780 list_del(entry: &rl_prof_elem->list_entry);
781 devm_kfree(dev: ice_hw_to_dev(hw), p: rl_prof_elem);
782 }
783 }
784 }
785}
786
787/**
788 * ice_sched_clear_agg - clears the aggregator related information
789 * @hw: pointer to the hardware structure
790 *
791 * This function removes aggregator list and free up aggregator related memory
792 * previously allocated.
793 */
794void ice_sched_clear_agg(struct ice_hw *hw)
795{
796 struct ice_sched_agg_info *agg_info;
797 struct ice_sched_agg_info *atmp;
798
799 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
800 struct ice_sched_agg_vsi_info *agg_vsi_info;
801 struct ice_sched_agg_vsi_info *vtmp;
802
803 list_for_each_entry_safe(agg_vsi_info, vtmp,
804 &agg_info->agg_vsi_list, list_entry) {
805 list_del(entry: &agg_vsi_info->list_entry);
806 devm_kfree(dev: ice_hw_to_dev(hw), p: agg_vsi_info);
807 }
808 list_del(entry: &agg_info->list_entry);
809 devm_kfree(dev: ice_hw_to_dev(hw), p: agg_info);
810 }
811}
812
813/**
814 * ice_sched_clear_tx_topo - clears the scheduler tree nodes
815 * @pi: port information structure
816 *
817 * This function removes all the nodes from HW as well as from SW DB.
818 */
819static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
820{
821 if (!pi)
822 return;
823 /* remove RL profiles related lists */
824 ice_sched_clear_rl_prof(pi);
825 if (pi->root) {
826 ice_free_sched_node(pi, node: pi->root);
827 pi->root = NULL;
828 }
829}
830
831/**
832 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
833 * @pi: port information structure
834 *
835 * Cleanup scheduling elements from SW DB
836 */
837void ice_sched_clear_port(struct ice_port_info *pi)
838{
839 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
840 return;
841
842 pi->port_state = ICE_SCHED_PORT_STATE_INIT;
843 mutex_lock(&pi->sched_lock);
844 ice_sched_clear_tx_topo(pi);
845 mutex_unlock(lock: &pi->sched_lock);
846 mutex_destroy(lock: &pi->sched_lock);
847}
848
849/**
850 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
851 * @hw: pointer to the HW struct
852 *
853 * Cleanup scheduling elements from SW DB for all the ports
854 */
855void ice_sched_cleanup_all(struct ice_hw *hw)
856{
857 if (!hw)
858 return;
859
860 devm_kfree(dev: ice_hw_to_dev(hw), p: hw->layer_info);
861 hw->layer_info = NULL;
862
863 ice_sched_clear_port(pi: hw->port_info);
864
865 hw->num_tx_sched_layers = 0;
866 hw->num_tx_sched_phys_layers = 0;
867 hw->flattened_layers = 0;
868 hw->max_cgds = 0;
869}
870
871/**
872 * ice_sched_add_elems - add nodes to HW and SW DB
873 * @pi: port information structure
874 * @tc_node: pointer to the branch node
875 * @parent: pointer to the parent node
876 * @layer: layer number to add nodes
877 * @num_nodes: number of nodes
878 * @num_nodes_added: pointer to num nodes added
879 * @first_node_teid: if new nodes are added then return the TEID of first node
880 * @prealloc_nodes: preallocated nodes struct for software DB
881 *
882 * This function add nodes to HW as well as to SW DB for a given layer
883 */
884int
885ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
886 struct ice_sched_node *parent, u8 layer, u16 num_nodes,
887 u16 *num_nodes_added, u32 *first_node_teid,
888 struct ice_sched_node **prealloc_nodes)
889{
890 struct ice_sched_node *prev, *new_node;
891 struct ice_aqc_add_elem *buf;
892 u16 i, num_groups_added = 0;
893 struct ice_hw *hw = pi->hw;
894 size_t buf_size;
895 int status = 0;
896 u32 teid;
897
898 buf_size = struct_size(buf, generic, num_nodes);
899 buf = devm_kzalloc(dev: ice_hw_to_dev(hw), size: buf_size, GFP_KERNEL);
900 if (!buf)
901 return -ENOMEM;
902
903 buf->hdr.parent_teid = parent->info.node_teid;
904 buf->hdr.num_elems = cpu_to_le16(num_nodes);
905 for (i = 0; i < num_nodes; i++) {
906 buf->generic[i].parent_teid = parent->info.node_teid;
907 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
908 buf->generic[i].data.valid_sections =
909 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
910 ICE_AQC_ELEM_VALID_EIR;
911 buf->generic[i].data.generic = 0;
912 buf->generic[i].data.cir_bw.bw_profile_idx =
913 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
914 buf->generic[i].data.cir_bw.bw_alloc =
915 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
916 buf->generic[i].data.eir_bw.bw_profile_idx =
917 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
918 buf->generic[i].data.eir_bw.bw_alloc =
919 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
920 }
921
922 status = ice_aq_add_sched_elems(hw, grps_req: 1, buf, buf_size,
923 grps_added: &num_groups_added, NULL);
924 if (status || num_groups_added != 1) {
925 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
926 hw->adminq.sq_last_status);
927 devm_kfree(dev: ice_hw_to_dev(hw), p: buf);
928 return -EIO;
929 }
930
931 *num_nodes_added = num_nodes;
932 /* add nodes to the SW DB */
933 for (i = 0; i < num_nodes; i++) {
934 if (prealloc_nodes)
935 status = ice_sched_add_node(pi, layer, info: &buf->generic[i], prealloc_node: prealloc_nodes[i]);
936 else
937 status = ice_sched_add_node(pi, layer, info: &buf->generic[i], NULL);
938
939 if (status) {
940 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
941 status);
942 break;
943 }
944
945 teid = le32_to_cpu(buf->generic[i].node_teid);
946 new_node = ice_sched_find_node_by_teid(start_node: parent, teid);
947 if (!new_node) {
948 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
949 break;
950 }
951
952 new_node->sibling = NULL;
953 new_node->tc_num = tc_node->tc_num;
954 new_node->tx_weight = ICE_SCHED_DFLT_BW_WT;
955 new_node->tx_share = ICE_SCHED_DFLT_BW;
956 new_node->tx_max = ICE_SCHED_DFLT_BW;
957 new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL);
958 if (!new_node->name)
959 return -ENOMEM;
960
961 status = xa_alloc(xa: &pi->sched_node_ids, id: &new_node->id, NULL, XA_LIMIT(0, UINT_MAX),
962 GFP_KERNEL);
963 if (status) {
964 ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n",
965 status);
966 break;
967 }
968
969 snprintf(buf: new_node->name, SCHED_NODE_NAME_MAX_LEN, fmt: "node_%u", new_node->id);
970
971 /* add it to previous node sibling pointer */
972 /* Note: siblings are not linked across branches */
973 prev = ice_sched_get_first_node(pi, parent: tc_node, layer);
974 if (prev && prev != new_node) {
975 while (prev->sibling)
976 prev = prev->sibling;
977 prev->sibling = new_node;
978 }
979
980 /* initialize the sibling head */
981 if (!pi->sib_head[tc_node->tc_num][layer])
982 pi->sib_head[tc_node->tc_num][layer] = new_node;
983
984 if (i == 0)
985 *first_node_teid = teid;
986 }
987
988 devm_kfree(dev: ice_hw_to_dev(hw), p: buf);
989 return status;
990}
991
992/**
993 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
994 * @pi: port information structure
995 * @tc_node: pointer to TC node
996 * @parent: pointer to parent node
997 * @layer: layer number to add nodes
998 * @num_nodes: number of nodes to be added
999 * @first_node_teid: pointer to the first node TEID
1000 * @num_nodes_added: pointer to number of nodes added
1001 *
1002 * Add nodes into specific HW layer.
1003 */
1004static int
1005ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1006 struct ice_sched_node *tc_node,
1007 struct ice_sched_node *parent, u8 layer,
1008 u16 num_nodes, u32 *first_node_teid,
1009 u16 *num_nodes_added)
1010{
1011 u16 max_child_nodes;
1012
1013 *num_nodes_added = 0;
1014
1015 if (!num_nodes)
1016 return 0;
1017
1018 if (!parent || layer < pi->hw->sw_entry_point_layer)
1019 return -EINVAL;
1020
1021 /* max children per node per layer */
1022 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1023
1024 /* current number of children + required nodes exceed max children */
1025 if ((parent->num_children + num_nodes) > max_child_nodes) {
1026 /* Fail if the parent is a TC node */
1027 if (parent == tc_node)
1028 return -EIO;
1029 return -ENOSPC;
1030 }
1031
1032 return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1033 num_nodes_added, first_node_teid, NULL);
1034}
1035
1036/**
1037 * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1038 * @pi: port information structure
1039 * @tc_node: pointer to TC node
1040 * @parent: pointer to parent node
1041 * @layer: layer number to add nodes
1042 * @num_nodes: number of nodes to be added
1043 * @first_node_teid: pointer to the first node TEID
1044 * @num_nodes_added: pointer to number of nodes added
1045 *
1046 * This function add nodes to a given layer.
1047 */
1048int
1049ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1050 struct ice_sched_node *tc_node,
1051 struct ice_sched_node *parent, u8 layer,
1052 u16 num_nodes, u32 *first_node_teid,
1053 u16 *num_nodes_added)
1054{
1055 u32 *first_teid_ptr = first_node_teid;
1056 u16 new_num_nodes = num_nodes;
1057 int status = 0;
1058
1059 *num_nodes_added = 0;
1060 while (*num_nodes_added < num_nodes) {
1061 u16 max_child_nodes, num_added = 0;
1062 u32 temp;
1063
1064 status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1065 layer, num_nodes: new_num_nodes,
1066 first_node_teid: first_teid_ptr,
1067 num_nodes_added: &num_added);
1068 if (!status)
1069 *num_nodes_added += num_added;
1070 /* added more nodes than requested ? */
1071 if (*num_nodes_added > num_nodes) {
1072 ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1073 *num_nodes_added);
1074 status = -EIO;
1075 break;
1076 }
1077 /* break if all the nodes are added successfully */
1078 if (!status && (*num_nodes_added == num_nodes))
1079 break;
1080 /* break if the error is not max limit */
1081 if (status && status != -ENOSPC)
1082 break;
1083 /* Exceeded the max children */
1084 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1085 /* utilize all the spaces if the parent is not full */
1086 if (parent->num_children < max_child_nodes) {
1087 new_num_nodes = max_child_nodes - parent->num_children;
1088 } else {
1089 /* This parent is full, try the next sibling */
1090 parent = parent->sibling;
1091 /* Don't modify the first node TEID memory if the
1092 * first node was added already in the above call.
1093 * Instead send some temp memory for all other
1094 * recursive calls.
1095 */
1096 if (num_added)
1097 first_teid_ptr = &temp;
1098
1099 new_num_nodes = num_nodes - *num_nodes_added;
1100 }
1101 }
1102 return status;
1103}
1104
1105/**
1106 * ice_sched_get_qgrp_layer - get the current queue group layer number
1107 * @hw: pointer to the HW struct
1108 *
1109 * This function returns the current queue group layer number
1110 */
1111static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1112{
1113 /* It's always total layers - 1, the array is 0 relative so -2 */
1114 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1115}
1116
1117/**
1118 * ice_sched_get_vsi_layer - get the current VSI layer number
1119 * @hw: pointer to the HW struct
1120 *
1121 * This function returns the current VSI layer number
1122 */
1123u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1124{
1125 /* Num Layers VSI layer
1126 * 9 6
1127 * 7 4
1128 * 5 or less sw_entry_point_layer
1129 */
1130 /* calculate the VSI layer based on number of layers. */
1131 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1132 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1133
1134 if (layer > hw->sw_entry_point_layer)
1135 return layer;
1136 }
1137 return hw->sw_entry_point_layer;
1138}
1139
1140/**
1141 * ice_sched_get_agg_layer - get the current aggregator layer number
1142 * @hw: pointer to the HW struct
1143 *
1144 * This function returns the current aggregator layer number
1145 */
1146u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1147{
1148 /* Num Layers aggregator layer
1149 * 9 4
1150 * 7 or less sw_entry_point_layer
1151 */
1152 /* calculate the aggregator layer based on number of layers. */
1153 if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1154 u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1155
1156 if (layer > hw->sw_entry_point_layer)
1157 return layer;
1158 }
1159 return hw->sw_entry_point_layer;
1160}
1161
1162/**
1163 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1164 * @pi: port information structure
1165 *
1166 * This function removes the leaf node that was created by the FW
1167 * during initialization
1168 */
1169static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1170{
1171 struct ice_sched_node *node;
1172
1173 node = pi->root;
1174 while (node) {
1175 if (!node->num_children)
1176 break;
1177 node = node->children[0];
1178 }
1179 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1180 u32 teid = le32_to_cpu(node->info.node_teid);
1181 int status;
1182
1183 /* remove the default leaf node */
1184 status = ice_sched_remove_elems(hw: pi->hw, parent: node->parent, node_teid: teid);
1185 if (!status)
1186 ice_free_sched_node(pi, node);
1187 }
1188}
1189
1190/**
1191 * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1192 * @pi: port information structure
1193 *
1194 * This function frees all the nodes except root and TC that were created by
1195 * the FW during initialization
1196 */
1197static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1198{
1199 struct ice_sched_node *node;
1200
1201 ice_rm_dflt_leaf_node(pi);
1202
1203 /* remove the default nodes except TC and root nodes */
1204 node = pi->root;
1205 while (node) {
1206 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1207 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1208 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1209 ice_free_sched_node(pi, node);
1210 break;
1211 }
1212
1213 if (!node->num_children)
1214 break;
1215 node = node->children[0];
1216 }
1217}
1218
1219/**
1220 * ice_sched_init_port - Initialize scheduler by querying information from FW
1221 * @pi: port info structure for the tree to cleanup
1222 *
1223 * This function is the initial call to find the total number of Tx scheduler
1224 * resources, default topology created by firmware and storing the information
1225 * in SW DB.
1226 */
1227int ice_sched_init_port(struct ice_port_info *pi)
1228{
1229 struct ice_aqc_get_topo_elem *buf;
1230 struct ice_hw *hw;
1231 u8 num_branches;
1232 u16 num_elems;
1233 int status;
1234 u8 i, j;
1235
1236 if (!pi)
1237 return -EINVAL;
1238 hw = pi->hw;
1239
1240 /* Query the Default Topology from FW */
1241 buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1242 if (!buf)
1243 return -ENOMEM;
1244
1245 /* Query default scheduling tree topology */
1246 status = ice_aq_get_dflt_topo(hw, lport: pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1247 num_branches: &num_branches, NULL);
1248 if (status)
1249 goto err_init_port;
1250
1251 /* num_branches should be between 1-8 */
1252 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1253 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1254 num_branches);
1255 status = -EINVAL;
1256 goto err_init_port;
1257 }
1258
1259 /* get the number of elements on the default/first branch */
1260 num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1261
1262 /* num_elems should always be between 1-9 */
1263 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1264 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1265 num_elems);
1266 status = -EINVAL;
1267 goto err_init_port;
1268 }
1269
1270 /* If the last node is a leaf node then the index of the queue group
1271 * layer is two less than the number of elements.
1272 */
1273 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1274 ICE_AQC_ELEM_TYPE_LEAF)
1275 pi->last_node_teid =
1276 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1277 else
1278 pi->last_node_teid =
1279 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1280
1281 /* Insert the Tx Sched root node */
1282 status = ice_sched_add_root_node(pi, info: &buf[0].generic[0]);
1283 if (status)
1284 goto err_init_port;
1285
1286 /* Parse the default tree and cache the information */
1287 for (i = 0; i < num_branches; i++) {
1288 num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1289
1290 /* Skip root element as already inserted */
1291 for (j = 1; j < num_elems; j++) {
1292 /* update the sw entry point */
1293 if (buf[0].generic[j].data.elem_type ==
1294 ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1295 hw->sw_entry_point_layer = j;
1296
1297 status = ice_sched_add_node(pi, layer: j, info: &buf[i].generic[j], NULL);
1298 if (status)
1299 goto err_init_port;
1300 }
1301 }
1302
1303 /* Remove the default nodes. */
1304 if (pi->root)
1305 ice_sched_rm_dflt_nodes(pi);
1306
1307 /* initialize the port for handling the scheduler tree */
1308 pi->port_state = ICE_SCHED_PORT_STATE_READY;
1309 mutex_init(&pi->sched_lock);
1310 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1311 INIT_LIST_HEAD(list: &pi->rl_prof_list[i]);
1312
1313err_init_port:
1314 if (status && pi->root) {
1315 ice_free_sched_node(pi, node: pi->root);
1316 pi->root = NULL;
1317 }
1318
1319 kfree(objp: buf);
1320 return status;
1321}
1322
1323/**
1324 * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1325 * @hw: pointer to the HW struct
1326 *
1327 * query FW for allocated scheduler resources and store in HW struct
1328 */
1329int ice_sched_query_res_alloc(struct ice_hw *hw)
1330{
1331 struct ice_aqc_query_txsched_res_resp *buf;
1332 __le16 max_sibl;
1333 int status = 0;
1334 u16 i;
1335
1336 if (hw->layer_info)
1337 return status;
1338
1339 buf = devm_kzalloc(dev: ice_hw_to_dev(hw), size: sizeof(*buf), GFP_KERNEL);
1340 if (!buf)
1341 return -ENOMEM;
1342
1343 status = ice_aq_query_sched_res(hw, buf_size: sizeof(*buf), buf, NULL);
1344 if (status)
1345 goto sched_query_out;
1346
1347 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1348 hw->num_tx_sched_phys_layers =
1349 le16_to_cpu(buf->sched_props.phys_levels);
1350 hw->flattened_layers = buf->sched_props.flattening_bitmap;
1351 hw->max_cgds = buf->sched_props.max_pf_cgds;
1352
1353 /* max sibling group size of current layer refers to the max children
1354 * of the below layer node.
1355 * layer 1 node max children will be layer 2 max sibling group size
1356 * layer 2 node max children will be layer 3 max sibling group size
1357 * and so on. This array will be populated from root (index 0) to
1358 * qgroup layer 7. Leaf node has no children.
1359 */
1360 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1361 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1362 hw->max_children[i] = le16_to_cpu(max_sibl);
1363 }
1364
1365 hw->layer_info = devm_kmemdup(dev: ice_hw_to_dev(hw), src: buf->layer_props,
1366 len: (hw->num_tx_sched_layers *
1367 sizeof(*hw->layer_info)),
1368 GFP_KERNEL);
1369 if (!hw->layer_info) {
1370 status = -ENOMEM;
1371 goto sched_query_out;
1372 }
1373
1374sched_query_out:
1375 devm_kfree(dev: ice_hw_to_dev(hw), p: buf);
1376 return status;
1377}
1378
1379/**
1380 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1381 * @hw: pointer to the HW struct
1382 *
1383 * Determine the PSM clock frequency and store in HW struct
1384 */
1385void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1386{
1387 u32 val, clk_src;
1388
1389 val = rd32(hw, GLGEN_CLKSTAT_SRC);
1390 clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1391 GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1392
1393#define PSM_CLK_SRC_367_MHZ 0x0
1394#define PSM_CLK_SRC_416_MHZ 0x1
1395#define PSM_CLK_SRC_446_MHZ 0x2
1396#define PSM_CLK_SRC_390_MHZ 0x3
1397
1398 switch (clk_src) {
1399 case PSM_CLK_SRC_367_MHZ:
1400 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1401 break;
1402 case PSM_CLK_SRC_416_MHZ:
1403 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1404 break;
1405 case PSM_CLK_SRC_446_MHZ:
1406 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1407 break;
1408 case PSM_CLK_SRC_390_MHZ:
1409 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1410 break;
1411 default:
1412 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1413 clk_src);
1414 /* fall back to a safe default */
1415 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1416 }
1417}
1418
1419/**
1420 * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1421 * @hw: pointer to the HW struct
1422 * @base: pointer to the base node
1423 * @node: pointer to the node to search
1424 *
1425 * This function checks whether a given node is part of the base node
1426 * subtree or not
1427 */
1428static bool
1429ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1430 struct ice_sched_node *node)
1431{
1432 u8 i;
1433
1434 for (i = 0; i < base->num_children; i++) {
1435 struct ice_sched_node *child = base->children[i];
1436
1437 if (node == child)
1438 return true;
1439
1440 if (child->tx_sched_layer > node->tx_sched_layer)
1441 return false;
1442
1443 /* this recursion is intentional, and wouldn't
1444 * go more than 8 calls
1445 */
1446 if (ice_sched_find_node_in_subtree(hw, base: child, node))
1447 return true;
1448 }
1449 return false;
1450}
1451
1452/**
1453 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1454 * @pi: port information structure
1455 * @vsi_node: software VSI handle
1456 * @qgrp_node: first queue group node identified for scanning
1457 * @owner: LAN or RDMA
1458 *
1459 * This function retrieves a free LAN or RDMA queue group node by scanning
1460 * qgrp_node and its siblings for the queue group with the fewest number
1461 * of queues currently assigned.
1462 */
1463static struct ice_sched_node *
1464ice_sched_get_free_qgrp(struct ice_port_info *pi,
1465 struct ice_sched_node *vsi_node,
1466 struct ice_sched_node *qgrp_node, u8 owner)
1467{
1468 struct ice_sched_node *min_qgrp;
1469 u8 min_children;
1470
1471 if (!qgrp_node)
1472 return qgrp_node;
1473 min_children = qgrp_node->num_children;
1474 if (!min_children)
1475 return qgrp_node;
1476 min_qgrp = qgrp_node;
1477 /* scan all queue groups until find a node which has less than the
1478 * minimum number of children. This way all queue group nodes get
1479 * equal number of shares and active. The bandwidth will be equally
1480 * distributed across all queues.
1481 */
1482 while (qgrp_node) {
1483 /* make sure the qgroup node is part of the VSI subtree */
1484 if (ice_sched_find_node_in_subtree(hw: pi->hw, base: vsi_node, node: qgrp_node))
1485 if (qgrp_node->num_children < min_children &&
1486 qgrp_node->owner == owner) {
1487 /* replace the new min queue group node */
1488 min_qgrp = qgrp_node;
1489 min_children = min_qgrp->num_children;
1490 /* break if it has no children, */
1491 if (!min_children)
1492 break;
1493 }
1494 qgrp_node = qgrp_node->sibling;
1495 }
1496 return min_qgrp;
1497}
1498
1499/**
1500 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1501 * @pi: port information structure
1502 * @vsi_handle: software VSI handle
1503 * @tc: branch number
1504 * @owner: LAN or RDMA
1505 *
1506 * This function retrieves a free LAN or RDMA queue group node
1507 */
1508struct ice_sched_node *
1509ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1510 u8 owner)
1511{
1512 struct ice_sched_node *vsi_node, *qgrp_node;
1513 struct ice_vsi_ctx *vsi_ctx;
1514 u16 max_children;
1515 u8 qgrp_layer;
1516
1517 qgrp_layer = ice_sched_get_qgrp_layer(hw: pi->hw);
1518 max_children = pi->hw->max_children[qgrp_layer];
1519
1520 vsi_ctx = ice_get_vsi_ctx(hw: pi->hw, vsi_handle);
1521 if (!vsi_ctx)
1522 return NULL;
1523 vsi_node = vsi_ctx->sched.vsi_node[tc];
1524 /* validate invalid VSI ID */
1525 if (!vsi_node)
1526 return NULL;
1527
1528 /* get the first queue group node from VSI sub-tree */
1529 qgrp_node = ice_sched_get_first_node(pi, parent: vsi_node, layer: qgrp_layer);
1530 while (qgrp_node) {
1531 /* make sure the qgroup node is part of the VSI subtree */
1532 if (ice_sched_find_node_in_subtree(hw: pi->hw, base: vsi_node, node: qgrp_node))
1533 if (qgrp_node->num_children < max_children &&
1534 qgrp_node->owner == owner)
1535 break;
1536 qgrp_node = qgrp_node->sibling;
1537 }
1538
1539 /* Select the best queue group */
1540 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1541}
1542
1543/**
1544 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1545 * @pi: pointer to the port information structure
1546 * @tc_node: pointer to the TC node
1547 * @vsi_handle: software VSI handle
1548 *
1549 * This function retrieves a VSI node for a given VSI ID from a given
1550 * TC branch
1551 */
1552static struct ice_sched_node *
1553ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1554 u16 vsi_handle)
1555{
1556 struct ice_sched_node *node;
1557 u8 vsi_layer;
1558
1559 vsi_layer = ice_sched_get_vsi_layer(hw: pi->hw);
1560 node = ice_sched_get_first_node(pi, parent: tc_node, layer: vsi_layer);
1561
1562 /* Check whether it already exists */
1563 while (node) {
1564 if (node->vsi_handle == vsi_handle)
1565 return node;
1566 node = node->sibling;
1567 }
1568
1569 return node;
1570}
1571
1572/**
1573 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1574 * @pi: pointer to the port information structure
1575 * @tc_node: pointer to the TC node
1576 * @agg_id: aggregator ID
1577 *
1578 * This function retrieves an aggregator node for a given aggregator ID from
1579 * a given TC branch
1580 */
1581struct ice_sched_node *
1582ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1583 u32 agg_id)
1584{
1585 struct ice_sched_node *node;
1586 struct ice_hw *hw = pi->hw;
1587 u8 agg_layer;
1588
1589 if (!hw)
1590 return NULL;
1591 agg_layer = ice_sched_get_agg_layer(hw);
1592 node = ice_sched_get_first_node(pi, parent: tc_node, layer: agg_layer);
1593
1594 /* Check whether it already exists */
1595 while (node) {
1596 if (node->agg_id == agg_id)
1597 return node;
1598 node = node->sibling;
1599 }
1600
1601 return node;
1602}
1603
1604/**
1605 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1606 * @hw: pointer to the HW struct
1607 * @num_qs: number of queues
1608 * @num_nodes: num nodes array
1609 *
1610 * This function calculates the number of VSI child nodes based on the
1611 * number of queues.
1612 */
1613static void
1614ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1615{
1616 u16 num = num_qs;
1617 u8 i, qgl, vsil;
1618
1619 qgl = ice_sched_get_qgrp_layer(hw);
1620 vsil = ice_sched_get_vsi_layer(hw);
1621
1622 /* calculate num nodes from queue group to VSI layer */
1623 for (i = qgl; i > vsil; i--) {
1624 /* round to the next integer if there is a remainder */
1625 num = DIV_ROUND_UP(num, hw->max_children[i]);
1626
1627 /* need at least one node */
1628 num_nodes[i] = num ? num : 1;
1629 }
1630}
1631
1632/**
1633 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1634 * @pi: port information structure
1635 * @vsi_handle: software VSI handle
1636 * @tc_node: pointer to the TC node
1637 * @num_nodes: pointer to the num nodes that needs to be added per layer
1638 * @owner: node owner (LAN or RDMA)
1639 *
1640 * This function adds the VSI child nodes to tree. It gets called for
1641 * LAN and RDMA separately.
1642 */
1643static int
1644ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1645 struct ice_sched_node *tc_node, u16 *num_nodes,
1646 u8 owner)
1647{
1648 struct ice_sched_node *parent, *node;
1649 struct ice_hw *hw = pi->hw;
1650 u32 first_node_teid;
1651 u16 num_added = 0;
1652 u8 i, qgl, vsil;
1653
1654 qgl = ice_sched_get_qgrp_layer(hw);
1655 vsil = ice_sched_get_vsi_layer(hw);
1656 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1657 for (i = vsil + 1; i <= qgl; i++) {
1658 int status;
1659
1660 if (!parent)
1661 return -EIO;
1662
1663 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, layer: i,
1664 num_nodes: num_nodes[i],
1665 first_node_teid: &first_node_teid,
1666 num_nodes_added: &num_added);
1667 if (status || num_nodes[i] != num_added)
1668 return -EIO;
1669
1670 /* The newly added node can be a new parent for the next
1671 * layer nodes
1672 */
1673 if (num_added) {
1674 parent = ice_sched_find_node_by_teid(start_node: tc_node,
1675 teid: first_node_teid);
1676 node = parent;
1677 while (node) {
1678 node->owner = owner;
1679 node = node->sibling;
1680 }
1681 } else {
1682 parent = parent->children[0];
1683 }
1684 }
1685
1686 return 0;
1687}
1688
1689/**
1690 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1691 * @pi: pointer to the port info structure
1692 * @tc_node: pointer to TC node
1693 * @num_nodes: pointer to num nodes array
1694 *
1695 * This function calculates the number of supported nodes needed to add this
1696 * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1697 * layers
1698 */
1699static void
1700ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1701 struct ice_sched_node *tc_node, u16 *num_nodes)
1702{
1703 struct ice_sched_node *node;
1704 u8 vsil;
1705 int i;
1706
1707 vsil = ice_sched_get_vsi_layer(hw: pi->hw);
1708 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1709 /* Add intermediate nodes if TC has no children and
1710 * need at least one node for VSI
1711 */
1712 if (!tc_node->num_children || i == vsil) {
1713 num_nodes[i]++;
1714 } else {
1715 /* If intermediate nodes are reached max children
1716 * then add a new one.
1717 */
1718 node = ice_sched_get_first_node(pi, parent: tc_node, layer: (u8)i);
1719 /* scan all the siblings */
1720 while (node) {
1721 if (node->num_children < pi->hw->max_children[i])
1722 break;
1723 node = node->sibling;
1724 }
1725
1726 /* tree has one intermediate node to add this new VSI.
1727 * So no need to calculate supported nodes for below
1728 * layers.
1729 */
1730 if (node)
1731 break;
1732 /* all the nodes are full, allocate a new one */
1733 num_nodes[i]++;
1734 }
1735}
1736
1737/**
1738 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1739 * @pi: port information structure
1740 * @vsi_handle: software VSI handle
1741 * @tc_node: pointer to TC node
1742 * @num_nodes: pointer to num nodes array
1743 *
1744 * This function adds the VSI supported nodes into Tx tree including the
1745 * VSI, its parent and intermediate nodes in below layers
1746 */
1747static int
1748ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1749 struct ice_sched_node *tc_node, u16 *num_nodes)
1750{
1751 struct ice_sched_node *parent = tc_node;
1752 u32 first_node_teid;
1753 u16 num_added = 0;
1754 u8 i, vsil;
1755
1756 if (!pi)
1757 return -EINVAL;
1758
1759 vsil = ice_sched_get_vsi_layer(hw: pi->hw);
1760 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1761 int status;
1762
1763 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1764 layer: i, num_nodes: num_nodes[i],
1765 first_node_teid: &first_node_teid,
1766 num_nodes_added: &num_added);
1767 if (status || num_nodes[i] != num_added)
1768 return -EIO;
1769
1770 /* The newly added node can be a new parent for the next
1771 * layer nodes
1772 */
1773 if (num_added)
1774 parent = ice_sched_find_node_by_teid(start_node: tc_node,
1775 teid: first_node_teid);
1776 else
1777 parent = parent->children[0];
1778
1779 if (!parent)
1780 return -EIO;
1781
1782 if (i == vsil)
1783 parent->vsi_handle = vsi_handle;
1784 }
1785
1786 return 0;
1787}
1788
1789/**
1790 * ice_sched_add_vsi_to_topo - add a new VSI into tree
1791 * @pi: port information structure
1792 * @vsi_handle: software VSI handle
1793 * @tc: TC number
1794 *
1795 * This function adds a new VSI into scheduler tree
1796 */
1797static int
1798ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1799{
1800 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1801 struct ice_sched_node *tc_node;
1802
1803 tc_node = ice_sched_get_tc_node(pi, tc);
1804 if (!tc_node)
1805 return -EINVAL;
1806
1807 /* calculate number of supported nodes needed for this VSI */
1808 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1809
1810 /* add VSI supported nodes to TC subtree */
1811 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1812 num_nodes);
1813}
1814
1815/**
1816 * ice_sched_update_vsi_child_nodes - update VSI child nodes
1817 * @pi: port information structure
1818 * @vsi_handle: software VSI handle
1819 * @tc: TC number
1820 * @new_numqs: new number of max queues
1821 * @owner: owner of this subtree
1822 *
1823 * This function updates the VSI child nodes based on the number of queues
1824 */
1825static int
1826ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1827 u8 tc, u16 new_numqs, u8 owner)
1828{
1829 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1830 struct ice_sched_node *vsi_node;
1831 struct ice_sched_node *tc_node;
1832 struct ice_vsi_ctx *vsi_ctx;
1833 struct ice_hw *hw = pi->hw;
1834 u16 prev_numqs;
1835 int status = 0;
1836
1837 tc_node = ice_sched_get_tc_node(pi, tc);
1838 if (!tc_node)
1839 return -EIO;
1840
1841 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1842 if (!vsi_node)
1843 return -EIO;
1844
1845 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1846 if (!vsi_ctx)
1847 return -EINVAL;
1848
1849 if (owner == ICE_SCHED_NODE_OWNER_LAN)
1850 prev_numqs = vsi_ctx->sched.max_lanq[tc];
1851 else
1852 prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1853 /* num queues are not changed or less than the previous number */
1854 if (new_numqs <= prev_numqs)
1855 return status;
1856 if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1857 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1858 if (status)
1859 return status;
1860 } else {
1861 status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1862 if (status)
1863 return status;
1864 }
1865
1866 if (new_numqs)
1867 ice_sched_calc_vsi_child_nodes(hw, num_qs: new_numqs, num_nodes: new_num_nodes);
1868 /* Keep the max number of queue configuration all the time. Update the
1869 * tree only if number of queues > previous number of queues. This may
1870 * leave some extra nodes in the tree if number of queues < previous
1871 * number but that wouldn't harm anything. Removing those extra nodes
1872 * may complicate the code if those nodes are part of SRL or
1873 * individually rate limited.
1874 */
1875 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1876 num_nodes: new_num_nodes, owner);
1877 if (status)
1878 return status;
1879 if (owner == ICE_SCHED_NODE_OWNER_LAN)
1880 vsi_ctx->sched.max_lanq[tc] = new_numqs;
1881 else
1882 vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1883
1884 return 0;
1885}
1886
1887/**
1888 * ice_sched_cfg_vsi - configure the new/existing VSI
1889 * @pi: port information structure
1890 * @vsi_handle: software VSI handle
1891 * @tc: TC number
1892 * @maxqs: max number of queues
1893 * @owner: LAN or RDMA
1894 * @enable: TC enabled or disabled
1895 *
1896 * This function adds/updates VSI nodes based on the number of queues. If TC is
1897 * enabled and VSI is in suspended state then resume the VSI back. If TC is
1898 * disabled then suspend the VSI if it is not already.
1899 */
1900int
1901ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1902 u8 owner, bool enable)
1903{
1904 struct ice_sched_node *vsi_node, *tc_node;
1905 struct ice_vsi_ctx *vsi_ctx;
1906 struct ice_hw *hw = pi->hw;
1907 int status = 0;
1908
1909 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1910 tc_node = ice_sched_get_tc_node(pi, tc);
1911 if (!tc_node)
1912 return -EINVAL;
1913 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1914 if (!vsi_ctx)
1915 return -EINVAL;
1916 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1917
1918 /* suspend the VSI if TC is not enabled */
1919 if (!enable) {
1920 if (vsi_node && vsi_node->in_use) {
1921 u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1922
1923 status = ice_sched_suspend_resume_elems(hw, num_nodes: 1, node_teids: &teid,
1924 suspend: true);
1925 if (!status)
1926 vsi_node->in_use = false;
1927 }
1928 return status;
1929 }
1930
1931 /* TC is enabled, if it is a new VSI then add it to the tree */
1932 if (!vsi_node) {
1933 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1934 if (status)
1935 return status;
1936
1937 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1938 if (!vsi_node)
1939 return -EIO;
1940
1941 vsi_ctx->sched.vsi_node[tc] = vsi_node;
1942 vsi_node->in_use = true;
1943 /* invalidate the max queues whenever VSI gets added first time
1944 * into the scheduler tree (boot or after reset). We need to
1945 * recreate the child nodes all the time in these cases.
1946 */
1947 vsi_ctx->sched.max_lanq[tc] = 0;
1948 vsi_ctx->sched.max_rdmaq[tc] = 0;
1949 }
1950
1951 /* update the VSI child nodes */
1952 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, new_numqs: maxqs,
1953 owner);
1954 if (status)
1955 return status;
1956
1957 /* TC is enabled, resume the VSI if it is in the suspend state */
1958 if (!vsi_node->in_use) {
1959 u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1960
1961 status = ice_sched_suspend_resume_elems(hw, num_nodes: 1, node_teids: &teid, suspend: false);
1962 if (!status)
1963 vsi_node->in_use = true;
1964 }
1965
1966 return status;
1967}
1968
1969/**
1970 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1971 * @pi: port information structure
1972 * @vsi_handle: software VSI handle
1973 *
1974 * This function removes single aggregator VSI info entry from
1975 * aggregator list.
1976 */
1977static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1978{
1979 struct ice_sched_agg_info *agg_info;
1980 struct ice_sched_agg_info *atmp;
1981
1982 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1983 list_entry) {
1984 struct ice_sched_agg_vsi_info *agg_vsi_info;
1985 struct ice_sched_agg_vsi_info *vtmp;
1986
1987 list_for_each_entry_safe(agg_vsi_info, vtmp,
1988 &agg_info->agg_vsi_list, list_entry)
1989 if (agg_vsi_info->vsi_handle == vsi_handle) {
1990 list_del(entry: &agg_vsi_info->list_entry);
1991 devm_kfree(dev: ice_hw_to_dev(hw: pi->hw),
1992 p: agg_vsi_info);
1993 return;
1994 }
1995 }
1996}
1997
1998/**
1999 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2000 * @node: pointer to the sub-tree node
2001 *
2002 * This function checks for a leaf node presence in a given sub-tree node.
2003 */
2004static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2005{
2006 u8 i;
2007
2008 for (i = 0; i < node->num_children; i++)
2009 if (ice_sched_is_leaf_node_present(node: node->children[i]))
2010 return true;
2011 /* check for a leaf node */
2012 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2013}
2014
2015/**
2016 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2017 * @pi: port information structure
2018 * @vsi_handle: software VSI handle
2019 * @owner: LAN or RDMA
2020 *
2021 * This function removes the VSI and its LAN or RDMA children nodes from the
2022 * scheduler tree.
2023 */
2024static int
2025ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2026{
2027 struct ice_vsi_ctx *vsi_ctx;
2028 int status = -EINVAL;
2029 u8 i;
2030
2031 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2032 if (!ice_is_vsi_valid(hw: pi->hw, vsi_handle))
2033 return status;
2034 mutex_lock(&pi->sched_lock);
2035 vsi_ctx = ice_get_vsi_ctx(hw: pi->hw, vsi_handle);
2036 if (!vsi_ctx)
2037 goto exit_sched_rm_vsi_cfg;
2038
2039 ice_for_each_traffic_class(i) {
2040 struct ice_sched_node *vsi_node, *tc_node;
2041 u8 j = 0;
2042
2043 tc_node = ice_sched_get_tc_node(pi, tc: i);
2044 if (!tc_node)
2045 continue;
2046
2047 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2048 if (!vsi_node)
2049 continue;
2050
2051 if (ice_sched_is_leaf_node_present(node: vsi_node)) {
2052 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2053 status = -EBUSY;
2054 goto exit_sched_rm_vsi_cfg;
2055 }
2056 while (j < vsi_node->num_children) {
2057 if (vsi_node->children[j]->owner == owner) {
2058 ice_free_sched_node(pi, node: vsi_node->children[j]);
2059
2060 /* reset the counter again since the num
2061 * children will be updated after node removal
2062 */
2063 j = 0;
2064 } else {
2065 j++;
2066 }
2067 }
2068 /* remove the VSI if it has no children */
2069 if (!vsi_node->num_children) {
2070 ice_free_sched_node(pi, node: vsi_node);
2071 vsi_ctx->sched.vsi_node[i] = NULL;
2072
2073 /* clean up aggregator related VSI info if any */
2074 ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2075 }
2076 if (owner == ICE_SCHED_NODE_OWNER_LAN)
2077 vsi_ctx->sched.max_lanq[i] = 0;
2078 else
2079 vsi_ctx->sched.max_rdmaq[i] = 0;
2080 }
2081 status = 0;
2082
2083exit_sched_rm_vsi_cfg:
2084 mutex_unlock(lock: &pi->sched_lock);
2085 return status;
2086}
2087
2088/**
2089 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2090 * @pi: port information structure
2091 * @vsi_handle: software VSI handle
2092 *
2093 * This function clears the VSI and its LAN children nodes from scheduler tree
2094 * for all TCs.
2095 */
2096int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2097{
2098 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2099}
2100
2101/**
2102 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2103 * @pi: port information structure
2104 * @vsi_handle: software VSI handle
2105 *
2106 * This function clears the VSI and its RDMA children nodes from scheduler tree
2107 * for all TCs.
2108 */
2109int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2110{
2111 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2112}
2113
2114/**
2115 * ice_get_agg_info - get the aggregator ID
2116 * @hw: pointer to the hardware structure
2117 * @agg_id: aggregator ID
2118 *
2119 * This function validates aggregator ID. The function returns info if
2120 * aggregator ID is present in list otherwise it returns null.
2121 */
2122static struct ice_sched_agg_info *
2123ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2124{
2125 struct ice_sched_agg_info *agg_info;
2126
2127 list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2128 if (agg_info->agg_id == agg_id)
2129 return agg_info;
2130
2131 return NULL;
2132}
2133
2134/**
2135 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2136 * @hw: pointer to the HW struct
2137 * @node: pointer to a child node
2138 * @num_nodes: num nodes count array
2139 *
2140 * This function walks through the aggregator subtree to find a free parent
2141 * node
2142 */
2143struct ice_sched_node *
2144ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2145 u16 *num_nodes)
2146{
2147 u8 l = node->tx_sched_layer;
2148 u8 vsil, i;
2149
2150 vsil = ice_sched_get_vsi_layer(hw);
2151
2152 /* Is it VSI parent layer ? */
2153 if (l == vsil - 1)
2154 return (node->num_children < hw->max_children[l]) ? node : NULL;
2155
2156 /* We have intermediate nodes. Let's walk through the subtree. If the
2157 * intermediate node has space to add a new node then clear the count
2158 */
2159 if (node->num_children < hw->max_children[l])
2160 num_nodes[l] = 0;
2161 /* The below recursive call is intentional and wouldn't go more than
2162 * 2 or 3 iterations.
2163 */
2164
2165 for (i = 0; i < node->num_children; i++) {
2166 struct ice_sched_node *parent;
2167
2168 parent = ice_sched_get_free_vsi_parent(hw, node: node->children[i],
2169 num_nodes);
2170 if (parent)
2171 return parent;
2172 }
2173
2174 return NULL;
2175}
2176
2177/**
2178 * ice_sched_update_parent - update the new parent in SW DB
2179 * @new_parent: pointer to a new parent node
2180 * @node: pointer to a child node
2181 *
2182 * This function removes the child from the old parent and adds it to a new
2183 * parent
2184 */
2185void
2186ice_sched_update_parent(struct ice_sched_node *new_parent,
2187 struct ice_sched_node *node)
2188{
2189 struct ice_sched_node *old_parent;
2190 u8 i, j;
2191
2192 old_parent = node->parent;
2193
2194 /* update the old parent children */
2195 for (i = 0; i < old_parent->num_children; i++)
2196 if (old_parent->children[i] == node) {
2197 for (j = i + 1; j < old_parent->num_children; j++)
2198 old_parent->children[j - 1] =
2199 old_parent->children[j];
2200 old_parent->num_children--;
2201 break;
2202 }
2203
2204 /* now move the node to a new parent */
2205 new_parent->children[new_parent->num_children++] = node;
2206 node->parent = new_parent;
2207 node->info.parent_teid = new_parent->info.node_teid;
2208}
2209
2210/**
2211 * ice_sched_move_nodes - move child nodes to a given parent
2212 * @pi: port information structure
2213 * @parent: pointer to parent node
2214 * @num_items: number of child nodes to be moved
2215 * @list: pointer to child node teids
2216 *
2217 * This function move the child nodes to a given parent.
2218 */
2219int
2220ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2221 u16 num_items, u32 *list)
2222{
2223 DEFINE_FLEX(struct ice_aqc_move_elem, buf, teid, 1);
2224 u16 buf_len = __struct_size(buf);
2225 struct ice_sched_node *node;
2226 u16 i, grps_movd = 0;
2227 struct ice_hw *hw;
2228 int status = 0;
2229
2230 hw = pi->hw;
2231
2232 if (!parent || !num_items)
2233 return -EINVAL;
2234
2235 /* Does parent have enough space */
2236 if (parent->num_children + num_items >
2237 hw->max_children[parent->tx_sched_layer])
2238 return -ENOSPC;
2239
2240 for (i = 0; i < num_items; i++) {
2241 node = ice_sched_find_node_by_teid(start_node: pi->root, teid: list[i]);
2242 if (!node) {
2243 status = -EINVAL;
2244 break;
2245 }
2246
2247 buf->hdr.src_parent_teid = node->info.parent_teid;
2248 buf->hdr.dest_parent_teid = parent->info.node_teid;
2249 buf->teid[0] = node->info.node_teid;
2250 buf->hdr.num_elems = cpu_to_le16(1);
2251 status = ice_aq_move_sched_elems(hw, buf, buf_size: buf_len, grps_movd: &grps_movd);
2252 if (status && grps_movd != 1) {
2253 status = -EIO;
2254 break;
2255 }
2256
2257 /* update the SW DB */
2258 ice_sched_update_parent(new_parent: parent, node);
2259 }
2260
2261 return status;
2262}
2263
2264/**
2265 * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2266 * @pi: port information structure
2267 * @vsi_handle: software VSI handle
2268 * @agg_id: aggregator ID
2269 * @tc: TC number
2270 *
2271 * This function moves a VSI to an aggregator node or its subtree.
2272 * Intermediate nodes may be created if required.
2273 */
2274static int
2275ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2276 u8 tc)
2277{
2278 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2279 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2280 u32 first_node_teid, vsi_teid;
2281 u16 num_nodes_added;
2282 u8 aggl, vsil, i;
2283 int status;
2284
2285 tc_node = ice_sched_get_tc_node(pi, tc);
2286 if (!tc_node)
2287 return -EIO;
2288
2289 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2290 if (!agg_node)
2291 return -ENOENT;
2292
2293 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2294 if (!vsi_node)
2295 return -ENOENT;
2296
2297 /* Is this VSI already part of given aggregator? */
2298 if (ice_sched_find_node_in_subtree(hw: pi->hw, base: agg_node, node: vsi_node))
2299 return 0;
2300
2301 aggl = ice_sched_get_agg_layer(hw: pi->hw);
2302 vsil = ice_sched_get_vsi_layer(hw: pi->hw);
2303
2304 /* set intermediate node count to 1 between aggregator and VSI layers */
2305 for (i = aggl + 1; i < vsil; i++)
2306 num_nodes[i] = 1;
2307
2308 /* Check if the aggregator subtree has any free node to add the VSI */
2309 for (i = 0; i < agg_node->num_children; i++) {
2310 parent = ice_sched_get_free_vsi_parent(hw: pi->hw,
2311 node: agg_node->children[i],
2312 num_nodes);
2313 if (parent)
2314 goto move_nodes;
2315 }
2316
2317 /* add new nodes */
2318 parent = agg_node;
2319 for (i = aggl + 1; i < vsil; i++) {
2320 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, layer: i,
2321 num_nodes: num_nodes[i],
2322 first_node_teid: &first_node_teid,
2323 num_nodes_added: &num_nodes_added);
2324 if (status || num_nodes[i] != num_nodes_added)
2325 return -EIO;
2326
2327 /* The newly added node can be a new parent for the next
2328 * layer nodes
2329 */
2330 if (num_nodes_added)
2331 parent = ice_sched_find_node_by_teid(start_node: tc_node,
2332 teid: first_node_teid);
2333 else
2334 parent = parent->children[0];
2335
2336 if (!parent)
2337 return -EIO;
2338 }
2339
2340move_nodes:
2341 vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2342 return ice_sched_move_nodes(pi, parent, num_items: 1, list: &vsi_teid);
2343}
2344
2345/**
2346 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2347 * @pi: port information structure
2348 * @agg_info: aggregator info
2349 * @tc: traffic class number
2350 * @rm_vsi_info: true or false
2351 *
2352 * This function move all the VSI(s) to the default aggregator and delete
2353 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2354 * caller holds the scheduler lock.
2355 */
2356static int
2357ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2358 struct ice_sched_agg_info *agg_info, u8 tc,
2359 bool rm_vsi_info)
2360{
2361 struct ice_sched_agg_vsi_info *agg_vsi_info;
2362 struct ice_sched_agg_vsi_info *tmp;
2363 int status = 0;
2364
2365 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2366 list_entry) {
2367 u16 vsi_handle = agg_vsi_info->vsi_handle;
2368
2369 /* Move VSI to default aggregator */
2370 if (!ice_is_tc_ena(bitmap: agg_vsi_info->tc_bitmap[0], tc))
2371 continue;
2372
2373 status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2374 ICE_DFLT_AGG_ID, tc);
2375 if (status)
2376 break;
2377
2378 clear_bit(nr: tc, addr: agg_vsi_info->tc_bitmap);
2379 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2380 list_del(entry: &agg_vsi_info->list_entry);
2381 devm_kfree(dev: ice_hw_to_dev(hw: pi->hw), p: agg_vsi_info);
2382 }
2383 }
2384
2385 return status;
2386}
2387
2388/**
2389 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2390 * @pi: port information structure
2391 * @node: node pointer
2392 *
2393 * This function checks whether the aggregator is attached with any VSI or not.
2394 */
2395static bool
2396ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2397{
2398 u8 vsil, i;
2399
2400 vsil = ice_sched_get_vsi_layer(hw: pi->hw);
2401 if (node->tx_sched_layer < vsil - 1) {
2402 for (i = 0; i < node->num_children; i++)
2403 if (ice_sched_is_agg_inuse(pi, node: node->children[i]))
2404 return true;
2405 return false;
2406 } else {
2407 return node->num_children ? true : false;
2408 }
2409}
2410
2411/**
2412 * ice_sched_rm_agg_cfg - remove the aggregator node
2413 * @pi: port information structure
2414 * @agg_id: aggregator ID
2415 * @tc: TC number
2416 *
2417 * This function removes the aggregator node and intermediate nodes if any
2418 * from the given TC
2419 */
2420static int
2421ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2422{
2423 struct ice_sched_node *tc_node, *agg_node;
2424 struct ice_hw *hw = pi->hw;
2425
2426 tc_node = ice_sched_get_tc_node(pi, tc);
2427 if (!tc_node)
2428 return -EIO;
2429
2430 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2431 if (!agg_node)
2432 return -ENOENT;
2433
2434 /* Can't remove the aggregator node if it has children */
2435 if (ice_sched_is_agg_inuse(pi, node: agg_node))
2436 return -EBUSY;
2437
2438 /* need to remove the whole subtree if aggregator node is the
2439 * only child.
2440 */
2441 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2442 struct ice_sched_node *parent = agg_node->parent;
2443
2444 if (!parent)
2445 return -EIO;
2446
2447 if (parent->num_children > 1)
2448 break;
2449
2450 agg_node = parent;
2451 }
2452
2453 ice_free_sched_node(pi, node: agg_node);
2454 return 0;
2455}
2456
2457/**
2458 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2459 * @pi: port information structure
2460 * @agg_info: aggregator ID
2461 * @tc: TC number
2462 * @rm_vsi_info: bool value true or false
2463 *
2464 * This function removes aggregator reference to VSI of given TC. It removes
2465 * the aggregator configuration completely for requested TC. The caller needs
2466 * to hold the scheduler lock.
2467 */
2468static int
2469ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2470 u8 tc, bool rm_vsi_info)
2471{
2472 int status = 0;
2473
2474 /* If nothing to remove - return success */
2475 if (!ice_is_tc_ena(bitmap: agg_info->tc_bitmap[0], tc))
2476 goto exit_rm_agg_cfg_tc;
2477
2478 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2479 if (status)
2480 goto exit_rm_agg_cfg_tc;
2481
2482 /* Delete aggregator node(s) */
2483 status = ice_sched_rm_agg_cfg(pi, agg_id: agg_info->agg_id, tc);
2484 if (status)
2485 goto exit_rm_agg_cfg_tc;
2486
2487 clear_bit(nr: tc, addr: agg_info->tc_bitmap);
2488exit_rm_agg_cfg_tc:
2489 return status;
2490}
2491
2492/**
2493 * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2494 * @pi: port information structure
2495 * @agg_id: aggregator ID
2496 * @tc_bitmap: 8 bits TC bitmap
2497 *
2498 * Save aggregator TC bitmap. This function needs to be called with scheduler
2499 * lock held.
2500 */
2501static int
2502ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2503 unsigned long *tc_bitmap)
2504{
2505 struct ice_sched_agg_info *agg_info;
2506
2507 agg_info = ice_get_agg_info(hw: pi->hw, agg_id);
2508 if (!agg_info)
2509 return -EINVAL;
2510 bitmap_copy(dst: agg_info->replay_tc_bitmap, src: tc_bitmap,
2511 ICE_MAX_TRAFFIC_CLASS);
2512 return 0;
2513}
2514
2515/**
2516 * ice_sched_add_agg_cfg - create an aggregator node
2517 * @pi: port information structure
2518 * @agg_id: aggregator ID
2519 * @tc: TC number
2520 *
2521 * This function creates an aggregator node and intermediate nodes if required
2522 * for the given TC
2523 */
2524static int
2525ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2526{
2527 struct ice_sched_node *parent, *agg_node, *tc_node;
2528 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2529 struct ice_hw *hw = pi->hw;
2530 u32 first_node_teid;
2531 u16 num_nodes_added;
2532 int status = 0;
2533 u8 i, aggl;
2534
2535 tc_node = ice_sched_get_tc_node(pi, tc);
2536 if (!tc_node)
2537 return -EIO;
2538
2539 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2540 /* Does Agg node already exist ? */
2541 if (agg_node)
2542 return status;
2543
2544 aggl = ice_sched_get_agg_layer(hw);
2545
2546 /* need one node in Agg layer */
2547 num_nodes[aggl] = 1;
2548
2549 /* Check whether the intermediate nodes have space to add the
2550 * new aggregator. If they are full, then SW needs to allocate a new
2551 * intermediate node on those layers
2552 */
2553 for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2554 parent = ice_sched_get_first_node(pi, parent: tc_node, layer: i);
2555
2556 /* scan all the siblings */
2557 while (parent) {
2558 if (parent->num_children < hw->max_children[i])
2559 break;
2560 parent = parent->sibling;
2561 }
2562
2563 /* all the nodes are full, reserve one for this layer */
2564 if (!parent)
2565 num_nodes[i]++;
2566 }
2567
2568 /* add the aggregator node */
2569 parent = tc_node;
2570 for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2571 if (!parent)
2572 return -EIO;
2573
2574 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, layer: i,
2575 num_nodes: num_nodes[i],
2576 first_node_teid: &first_node_teid,
2577 num_nodes_added: &num_nodes_added);
2578 if (status || num_nodes[i] != num_nodes_added)
2579 return -EIO;
2580
2581 /* The newly added node can be a new parent for the next
2582 * layer nodes
2583 */
2584 if (num_nodes_added) {
2585 parent = ice_sched_find_node_by_teid(start_node: tc_node,
2586 teid: first_node_teid);
2587 /* register aggregator ID with the aggregator node */
2588 if (parent && i == aggl)
2589 parent->agg_id = agg_id;
2590 } else {
2591 parent = parent->children[0];
2592 }
2593 }
2594
2595 return 0;
2596}
2597
2598/**
2599 * ice_sched_cfg_agg - configure aggregator node
2600 * @pi: port information structure
2601 * @agg_id: aggregator ID
2602 * @agg_type: aggregator type queue, VSI, or aggregator group
2603 * @tc_bitmap: bits TC bitmap
2604 *
2605 * It registers a unique aggregator node into scheduler services. It
2606 * allows a user to register with a unique ID to track it's resources.
2607 * The aggregator type determines if this is a queue group, VSI group
2608 * or aggregator group. It then creates the aggregator node(s) for requested
2609 * TC(s) or removes an existing aggregator node including its configuration
2610 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2611 * resources and remove aggregator ID.
2612 * This function needs to be called with scheduler lock held.
2613 */
2614static int
2615ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2616 enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2617{
2618 struct ice_sched_agg_info *agg_info;
2619 struct ice_hw *hw = pi->hw;
2620 int status = 0;
2621 u8 tc;
2622
2623 agg_info = ice_get_agg_info(hw, agg_id);
2624 if (!agg_info) {
2625 /* Create new entry for new aggregator ID */
2626 agg_info = devm_kzalloc(dev: ice_hw_to_dev(hw), size: sizeof(*agg_info),
2627 GFP_KERNEL);
2628 if (!agg_info)
2629 return -ENOMEM;
2630
2631 agg_info->agg_id = agg_id;
2632 agg_info->agg_type = agg_type;
2633 agg_info->tc_bitmap[0] = 0;
2634
2635 /* Initialize the aggregator VSI list head */
2636 INIT_LIST_HEAD(list: &agg_info->agg_vsi_list);
2637
2638 /* Add new entry in aggregator list */
2639 list_add(new: &agg_info->list_entry, head: &hw->agg_list);
2640 }
2641 /* Create aggregator node(s) for requested TC(s) */
2642 ice_for_each_traffic_class(tc) {
2643 if (!ice_is_tc_ena(bitmap: *tc_bitmap, tc)) {
2644 /* Delete aggregator cfg TC if it exists previously */
2645 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, rm_vsi_info: false);
2646 if (status)
2647 break;
2648 continue;
2649 }
2650
2651 /* Check if aggregator node for TC already exists */
2652 if (ice_is_tc_ena(bitmap: agg_info->tc_bitmap[0], tc))
2653 continue;
2654
2655 /* Create new aggregator node for TC */
2656 status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2657 if (status)
2658 break;
2659
2660 /* Save aggregator node's TC information */
2661 set_bit(nr: tc, addr: agg_info->tc_bitmap);
2662 }
2663
2664 return status;
2665}
2666
2667/**
2668 * ice_cfg_agg - config aggregator node
2669 * @pi: port information structure
2670 * @agg_id: aggregator ID
2671 * @agg_type: aggregator type queue, VSI, or aggregator group
2672 * @tc_bitmap: bits TC bitmap
2673 *
2674 * This function configures aggregator node(s).
2675 */
2676int
2677ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2678 u8 tc_bitmap)
2679{
2680 unsigned long bitmap = tc_bitmap;
2681 int status;
2682
2683 mutex_lock(&pi->sched_lock);
2684 status = ice_sched_cfg_agg(pi, agg_id, agg_type, tc_bitmap: &bitmap);
2685 if (!status)
2686 status = ice_save_agg_tc_bitmap(pi, agg_id, tc_bitmap: &bitmap);
2687 mutex_unlock(lock: &pi->sched_lock);
2688 return status;
2689}
2690
2691/**
2692 * ice_get_agg_vsi_info - get the aggregator ID
2693 * @agg_info: aggregator info
2694 * @vsi_handle: software VSI handle
2695 *
2696 * The function returns aggregator VSI info based on VSI handle. This function
2697 * needs to be called with scheduler lock held.
2698 */
2699static struct ice_sched_agg_vsi_info *
2700ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2701{
2702 struct ice_sched_agg_vsi_info *agg_vsi_info;
2703
2704 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2705 if (agg_vsi_info->vsi_handle == vsi_handle)
2706 return agg_vsi_info;
2707
2708 return NULL;
2709}
2710
2711/**
2712 * ice_get_vsi_agg_info - get the aggregator info of VSI
2713 * @hw: pointer to the hardware structure
2714 * @vsi_handle: Sw VSI handle
2715 *
2716 * The function returns aggregator info of VSI represented via vsi_handle. The
2717 * VSI has in this case a different aggregator than the default one. This
2718 * function needs to be called with scheduler lock held.
2719 */
2720static struct ice_sched_agg_info *
2721ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2722{
2723 struct ice_sched_agg_info *agg_info;
2724
2725 list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2726 struct ice_sched_agg_vsi_info *agg_vsi_info;
2727
2728 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2729 if (agg_vsi_info)
2730 return agg_info;
2731 }
2732 return NULL;
2733}
2734
2735/**
2736 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2737 * @pi: port information structure
2738 * @agg_id: aggregator ID
2739 * @vsi_handle: software VSI handle
2740 * @tc_bitmap: TC bitmap of enabled TC(s)
2741 *
2742 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2743 * lock held.
2744 */
2745static int
2746ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2747 unsigned long *tc_bitmap)
2748{
2749 struct ice_sched_agg_vsi_info *agg_vsi_info;
2750 struct ice_sched_agg_info *agg_info;
2751
2752 agg_info = ice_get_agg_info(hw: pi->hw, agg_id);
2753 if (!agg_info)
2754 return -EINVAL;
2755 /* check if entry already exist */
2756 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2757 if (!agg_vsi_info)
2758 return -EINVAL;
2759 bitmap_copy(dst: agg_vsi_info->replay_tc_bitmap, src: tc_bitmap,
2760 ICE_MAX_TRAFFIC_CLASS);
2761 return 0;
2762}
2763
2764/**
2765 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2766 * @pi: port information structure
2767 * @agg_id: aggregator ID
2768 * @vsi_handle: software VSI handle
2769 * @tc_bitmap: TC bitmap of enabled TC(s)
2770 *
2771 * This function moves VSI to a new or default aggregator node. If VSI is
2772 * already associated to the aggregator node then no operation is performed on
2773 * the tree. This function needs to be called with scheduler lock held.
2774 */
2775static int
2776ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2777 u16 vsi_handle, unsigned long *tc_bitmap)
2778{
2779 struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL;
2780 struct ice_sched_agg_info *agg_info, *old_agg_info;
2781 struct ice_hw *hw = pi->hw;
2782 int status = 0;
2783 u8 tc;
2784
2785 if (!ice_is_vsi_valid(hw: pi->hw, vsi_handle))
2786 return -EINVAL;
2787 agg_info = ice_get_agg_info(hw, agg_id);
2788 if (!agg_info)
2789 return -EINVAL;
2790 /* If the VSI is already part of another aggregator then update
2791 * its VSI info list
2792 */
2793 old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2794 if (old_agg_info && old_agg_info != agg_info) {
2795 struct ice_sched_agg_vsi_info *vtmp;
2796
2797 list_for_each_entry_safe(iter, vtmp,
2798 &old_agg_info->agg_vsi_list,
2799 list_entry)
2800 if (iter->vsi_handle == vsi_handle) {
2801 old_agg_vsi_info = iter;
2802 break;
2803 }
2804 }
2805
2806 /* check if entry already exist */
2807 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2808 if (!agg_vsi_info) {
2809 /* Create new entry for VSI under aggregator list */
2810 agg_vsi_info = devm_kzalloc(dev: ice_hw_to_dev(hw),
2811 size: sizeof(*agg_vsi_info), GFP_KERNEL);
2812 if (!agg_vsi_info)
2813 return -EINVAL;
2814
2815 /* add VSI ID into the aggregator list */
2816 agg_vsi_info->vsi_handle = vsi_handle;
2817 list_add(new: &agg_vsi_info->list_entry, head: &agg_info->agg_vsi_list);
2818 }
2819 /* Move VSI node to new aggregator node for requested TC(s) */
2820 ice_for_each_traffic_class(tc) {
2821 if (!ice_is_tc_ena(bitmap: *tc_bitmap, tc))
2822 continue;
2823
2824 /* Move VSI to new aggregator */
2825 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2826 if (status)
2827 break;
2828
2829 set_bit(nr: tc, addr: agg_vsi_info->tc_bitmap);
2830 if (old_agg_vsi_info)
2831 clear_bit(nr: tc, addr: old_agg_vsi_info->tc_bitmap);
2832 }
2833 if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2834 list_del(entry: &old_agg_vsi_info->list_entry);
2835 devm_kfree(dev: ice_hw_to_dev(hw: pi->hw), p: old_agg_vsi_info);
2836 }
2837 return status;
2838}
2839
2840/**
2841 * ice_sched_rm_unused_rl_prof - remove unused RL profile
2842 * @pi: port information structure
2843 *
2844 * This function removes unused rate limit profiles from the HW and
2845 * SW DB. The caller needs to hold scheduler lock.
2846 */
2847static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2848{
2849 u16 ln;
2850
2851 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2852 struct ice_aqc_rl_profile_info *rl_prof_elem;
2853 struct ice_aqc_rl_profile_info *rl_prof_tmp;
2854
2855 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2856 &pi->rl_prof_list[ln], list_entry) {
2857 if (!ice_sched_del_rl_profile(hw: pi->hw, rl_info: rl_prof_elem))
2858 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2859 }
2860 }
2861}
2862
2863/**
2864 * ice_sched_update_elem - update element
2865 * @hw: pointer to the HW struct
2866 * @node: pointer to node
2867 * @info: node info to update
2868 *
2869 * Update the HW DB, and local SW DB of node. Update the scheduling
2870 * parameters of node from argument info data buffer (Info->data buf) and
2871 * returns success or error on config sched element failure. The caller
2872 * needs to hold scheduler lock.
2873 */
2874static int
2875ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2876 struct ice_aqc_txsched_elem_data *info)
2877{
2878 struct ice_aqc_txsched_elem_data buf;
2879 u16 elem_cfgd = 0;
2880 u16 num_elems = 1;
2881 int status;
2882
2883 buf = *info;
2884 /* Parent TEID is reserved field in this aq call */
2885 buf.parent_teid = 0;
2886 /* Element type is reserved field in this aq call */
2887 buf.data.elem_type = 0;
2888 /* Flags is reserved field in this aq call */
2889 buf.data.flags = 0;
2890
2891 /* Update HW DB */
2892 /* Configure element node */
2893 status = ice_aq_cfg_sched_elems(hw, elems_req: num_elems, buf: &buf, buf_size: sizeof(buf),
2894 elems_cfgd: &elem_cfgd, NULL);
2895 if (status || elem_cfgd != num_elems) {
2896 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2897 return -EIO;
2898 }
2899
2900 /* Config success case */
2901 /* Now update local SW DB */
2902 /* Only copy the data portion of info buffer */
2903 node->info.data = info->data;
2904 return status;
2905}
2906
2907/**
2908 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2909 * @hw: pointer to the HW struct
2910 * @node: sched node to configure
2911 * @rl_type: rate limit type CIR, EIR, or shared
2912 * @bw_alloc: BW weight/allocation
2913 *
2914 * This function configures node element's BW allocation.
2915 */
2916static int
2917ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2918 enum ice_rl_type rl_type, u16 bw_alloc)
2919{
2920 struct ice_aqc_txsched_elem_data buf;
2921 struct ice_aqc_txsched_elem *data;
2922
2923 buf = node->info;
2924 data = &buf.data;
2925 if (rl_type == ICE_MIN_BW) {
2926 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2927 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2928 } else if (rl_type == ICE_MAX_BW) {
2929 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2930 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2931 } else {
2932 return -EINVAL;
2933 }
2934
2935 /* Configure element */
2936 return ice_sched_update_elem(hw, node, info: &buf);
2937}
2938
2939/**
2940 * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2941 * @pi: port information structure
2942 * @agg_id: aggregator ID
2943 * @vsi_handle: software VSI handle
2944 * @tc_bitmap: TC bitmap of enabled TC(s)
2945 *
2946 * Move or associate VSI to a new or default aggregator node.
2947 */
2948int
2949ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2950 u8 tc_bitmap)
2951{
2952 unsigned long bitmap = tc_bitmap;
2953 int status;
2954
2955 mutex_lock(&pi->sched_lock);
2956 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2957 tc_bitmap: (unsigned long *)&bitmap);
2958 if (!status)
2959 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2960 tc_bitmap: (unsigned long *)&bitmap);
2961 mutex_unlock(lock: &pi->sched_lock);
2962 return status;
2963}
2964
2965/**
2966 * ice_set_clear_cir_bw - set or clear CIR BW
2967 * @bw_t_info: bandwidth type information structure
2968 * @bw: bandwidth in Kbps - Kilo bits per sec
2969 *
2970 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2971 */
2972static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2973{
2974 if (bw == ICE_SCHED_DFLT_BW) {
2975 clear_bit(nr: ICE_BW_TYPE_CIR, addr: bw_t_info->bw_t_bitmap);
2976 bw_t_info->cir_bw.bw = 0;
2977 } else {
2978 /* Save type of BW information */
2979 set_bit(nr: ICE_BW_TYPE_CIR, addr: bw_t_info->bw_t_bitmap);
2980 bw_t_info->cir_bw.bw = bw;
2981 }
2982}
2983
2984/**
2985 * ice_set_clear_eir_bw - set or clear EIR BW
2986 * @bw_t_info: bandwidth type information structure
2987 * @bw: bandwidth in Kbps - Kilo bits per sec
2988 *
2989 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2990 */
2991static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2992{
2993 if (bw == ICE_SCHED_DFLT_BW) {
2994 clear_bit(nr: ICE_BW_TYPE_EIR, addr: bw_t_info->bw_t_bitmap);
2995 bw_t_info->eir_bw.bw = 0;
2996 } else {
2997 /* EIR BW and Shared BW profiles are mutually exclusive and
2998 * hence only one of them may be set for any given element.
2999 * First clear earlier saved shared BW information.
3000 */
3001 clear_bit(nr: ICE_BW_TYPE_SHARED, addr: bw_t_info->bw_t_bitmap);
3002 bw_t_info->shared_bw = 0;
3003 /* save EIR BW information */
3004 set_bit(nr: ICE_BW_TYPE_EIR, addr: bw_t_info->bw_t_bitmap);
3005 bw_t_info->eir_bw.bw = bw;
3006 }
3007}
3008
3009/**
3010 * ice_set_clear_shared_bw - set or clear shared BW
3011 * @bw_t_info: bandwidth type information structure
3012 * @bw: bandwidth in Kbps - Kilo bits per sec
3013 *
3014 * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3015 */
3016static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3017{
3018 if (bw == ICE_SCHED_DFLT_BW) {
3019 clear_bit(nr: ICE_BW_TYPE_SHARED, addr: bw_t_info->bw_t_bitmap);
3020 bw_t_info->shared_bw = 0;
3021 } else {
3022 /* EIR BW and Shared BW profiles are mutually exclusive and
3023 * hence only one of them may be set for any given element.
3024 * First clear earlier saved EIR BW information.
3025 */
3026 clear_bit(nr: ICE_BW_TYPE_EIR, addr: bw_t_info->bw_t_bitmap);
3027 bw_t_info->eir_bw.bw = 0;
3028 /* save shared BW information */
3029 set_bit(nr: ICE_BW_TYPE_SHARED, addr: bw_t_info->bw_t_bitmap);
3030 bw_t_info->shared_bw = bw;
3031 }
3032}
3033
3034/**
3035 * ice_sched_save_vsi_bw - save VSI node's BW information
3036 * @pi: port information structure
3037 * @vsi_handle: sw VSI handle
3038 * @tc: traffic class
3039 * @rl_type: rate limit type min, max, or shared
3040 * @bw: bandwidth in Kbps - Kilo bits per sec
3041 *
3042 * Save BW information of VSI type node for post replay use.
3043 */
3044static int
3045ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3046 enum ice_rl_type rl_type, u32 bw)
3047{
3048 struct ice_vsi_ctx *vsi_ctx;
3049
3050 if (!ice_is_vsi_valid(hw: pi->hw, vsi_handle))
3051 return -EINVAL;
3052 vsi_ctx = ice_get_vsi_ctx(hw: pi->hw, vsi_handle);
3053 if (!vsi_ctx)
3054 return -EINVAL;
3055 switch (rl_type) {
3056 case ICE_MIN_BW:
3057 ice_set_clear_cir_bw(bw_t_info: &vsi_ctx->sched.bw_t_info[tc], bw);
3058 break;
3059 case ICE_MAX_BW:
3060 ice_set_clear_eir_bw(bw_t_info: &vsi_ctx->sched.bw_t_info[tc], bw);
3061 break;
3062 case ICE_SHARED_BW:
3063 ice_set_clear_shared_bw(bw_t_info: &vsi_ctx->sched.bw_t_info[tc], bw);
3064 break;
3065 default:
3066 return -EINVAL;
3067 }
3068 return 0;
3069}
3070
3071/**
3072 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3073 * @hw: pointer to the HW struct
3074 * @bw: bandwidth in Kbps
3075 *
3076 * This function calculates the wakeup parameter of RL profile.
3077 */
3078static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3079{
3080 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3081 s32 wakeup_f_int;
3082 u16 wakeup = 0;
3083
3084 /* Get the wakeup integer value */
3085 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3086 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3087 if (wakeup_int > 63) {
3088 wakeup = (u16)((1 << 15) | wakeup_int);
3089 } else {
3090 /* Calculate fraction value up to 4 decimals
3091 * Convert Integer value to a constant multiplier
3092 */
3093 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3094 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3095 hw->psm_clk_freq, bytes_per_sec);
3096
3097 /* Get Fraction value */
3098 wakeup_f = wakeup_a - wakeup_b;
3099
3100 /* Round up the Fractional value via Ceil(Fractional value) */
3101 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3102 wakeup_f += 1;
3103
3104 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3105 ICE_RL_PROF_MULTIPLIER);
3106 wakeup |= (u16)(wakeup_int << 9);
3107 wakeup |= (u16)(0x1ff & wakeup_f_int);
3108 }
3109
3110 return wakeup;
3111}
3112
3113/**
3114 * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3115 * @hw: pointer to the HW struct
3116 * @bw: bandwidth in Kbps
3117 * @profile: profile parameters to return
3118 *
3119 * This function converts the BW to profile structure format.
3120 */
3121static int
3122ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3123 struct ice_aqc_rl_profile_elem *profile)
3124{
3125 s64 bytes_per_sec, ts_rate, mv_tmp;
3126 int status = -EINVAL;
3127 bool found = false;
3128 s32 encode = 0;
3129 s64 mv = 0;
3130 s32 i;
3131
3132 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3133 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3134 return status;
3135
3136 /* Bytes per second from Kbps */
3137 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3138
3139 /* encode is 6 bits but really useful are 5 bits */
3140 for (i = 0; i < 64; i++) {
3141 u64 pow_result = BIT_ULL(i);
3142
3143 ts_rate = div64_long((s64)hw->psm_clk_freq,
3144 pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3145 if (ts_rate <= 0)
3146 continue;
3147
3148 /* Multiplier value */
3149 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3150 ts_rate);
3151
3152 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3153 mv = round_up_64bit(a: mv_tmp, ICE_RL_PROF_MULTIPLIER);
3154
3155 /* First multiplier value greater than the given
3156 * accuracy bytes
3157 */
3158 if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3159 encode = i;
3160 found = true;
3161 break;
3162 }
3163 }
3164 if (found) {
3165 u16 wm;
3166
3167 wm = ice_sched_calc_wakeup(hw, bw);
3168 profile->rl_multiply = cpu_to_le16(mv);
3169 profile->wake_up_calc = cpu_to_le16(wm);
3170 profile->rl_encode = cpu_to_le16(encode);
3171 status = 0;
3172 } else {
3173 status = -ENOENT;
3174 }
3175
3176 return status;
3177}
3178
3179/**
3180 * ice_sched_add_rl_profile - add RL profile
3181 * @pi: port information structure
3182 * @rl_type: type of rate limit BW - min, max, or shared
3183 * @bw: bandwidth in Kbps - Kilo bits per sec
3184 * @layer_num: specifies in which layer to create profile
3185 *
3186 * This function first checks the existing list for corresponding BW
3187 * parameter. If it exists, it returns the associated profile otherwise
3188 * it creates a new rate limit profile for requested BW, and adds it to
3189 * the HW DB and local list. It returns the new profile or null on error.
3190 * The caller needs to hold the scheduler lock.
3191 */
3192static struct ice_aqc_rl_profile_info *
3193ice_sched_add_rl_profile(struct ice_port_info *pi,
3194 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3195{
3196 struct ice_aqc_rl_profile_info *rl_prof_elem;
3197 u16 profiles_added = 0, num_profiles = 1;
3198 struct ice_aqc_rl_profile_elem *buf;
3199 struct ice_hw *hw;
3200 u8 profile_type;
3201 int status;
3202
3203 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3204 return NULL;
3205 switch (rl_type) {
3206 case ICE_MIN_BW:
3207 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3208 break;
3209 case ICE_MAX_BW:
3210 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3211 break;
3212 case ICE_SHARED_BW:
3213 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3214 break;
3215 default:
3216 return NULL;
3217 }
3218
3219 if (!pi)
3220 return NULL;
3221 hw = pi->hw;
3222 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3223 list_entry)
3224 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3225 profile_type && rl_prof_elem->bw == bw)
3226 /* Return existing profile ID info */
3227 return rl_prof_elem;
3228
3229 /* Create new profile ID */
3230 rl_prof_elem = devm_kzalloc(dev: ice_hw_to_dev(hw), size: sizeof(*rl_prof_elem),
3231 GFP_KERNEL);
3232
3233 if (!rl_prof_elem)
3234 return NULL;
3235
3236 status = ice_sched_bw_to_rl_profile(hw, bw, profile: &rl_prof_elem->profile);
3237 if (status)
3238 goto exit_add_rl_prof;
3239
3240 rl_prof_elem->bw = bw;
3241 /* layer_num is zero relative, and fw expects level from 1 to 9 */
3242 rl_prof_elem->profile.level = layer_num + 1;
3243 rl_prof_elem->profile.flags = profile_type;
3244 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3245
3246 /* Create new entry in HW DB */
3247 buf = &rl_prof_elem->profile;
3248 status = ice_aq_add_rl_profile(hw, num_profiles, buf, buf_size: sizeof(*buf),
3249 num_profiles_added: &profiles_added, NULL);
3250 if (status || profiles_added != num_profiles)
3251 goto exit_add_rl_prof;
3252
3253 /* Good entry - add in the list */
3254 rl_prof_elem->prof_id_ref = 0;
3255 list_add(new: &rl_prof_elem->list_entry, head: &pi->rl_prof_list[layer_num]);
3256 return rl_prof_elem;
3257
3258exit_add_rl_prof:
3259 devm_kfree(dev: ice_hw_to_dev(hw), p: rl_prof_elem);
3260 return NULL;
3261}
3262
3263/**
3264 * ice_sched_cfg_node_bw_lmt - configure node sched params
3265 * @hw: pointer to the HW struct
3266 * @node: sched node to configure
3267 * @rl_type: rate limit type CIR, EIR, or shared
3268 * @rl_prof_id: rate limit profile ID
3269 *
3270 * This function configures node element's BW limit.
3271 */
3272static int
3273ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3274 enum ice_rl_type rl_type, u16 rl_prof_id)
3275{
3276 struct ice_aqc_txsched_elem_data buf;
3277 struct ice_aqc_txsched_elem *data;
3278
3279 buf = node->info;
3280 data = &buf.data;
3281 switch (rl_type) {
3282 case ICE_MIN_BW:
3283 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3284 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3285 break;
3286 case ICE_MAX_BW:
3287 /* EIR BW and Shared BW profiles are mutually exclusive and
3288 * hence only one of them may be set for any given element
3289 */
3290 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3291 return -EIO;
3292 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3293 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3294 break;
3295 case ICE_SHARED_BW:
3296 /* Check for removing shared BW */
3297 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3298 /* remove shared profile */
3299 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3300 data->srl_id = 0; /* clear SRL field */
3301
3302 /* enable back EIR to default profile */
3303 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3304 data->eir_bw.bw_profile_idx =
3305 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3306 break;
3307 }
3308 /* EIR BW and Shared BW profiles are mutually exclusive and
3309 * hence only one of them may be set for any given element
3310 */
3311 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3312 (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3313 ICE_SCHED_DFLT_RL_PROF_ID))
3314 return -EIO;
3315 /* EIR BW is set to default, disable it */
3316 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3317 /* Okay to enable shared BW now */
3318 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3319 data->srl_id = cpu_to_le16(rl_prof_id);
3320 break;
3321 default:
3322 /* Unknown rate limit type */
3323 return -EINVAL;
3324 }
3325
3326 /* Configure element */
3327 return ice_sched_update_elem(hw, node, info: &buf);
3328}
3329
3330/**
3331 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3332 * @node: sched node
3333 * @rl_type: rate limit type
3334 *
3335 * If existing profile matches, it returns the corresponding rate
3336 * limit profile ID, otherwise it returns an invalid ID as error.
3337 */
3338static u16
3339ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3340 enum ice_rl_type rl_type)
3341{
3342 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3343 struct ice_aqc_txsched_elem *data;
3344
3345 data = &node->info.data;
3346 switch (rl_type) {
3347 case ICE_MIN_BW:
3348 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3349 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3350 break;
3351 case ICE_MAX_BW:
3352 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3353 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3354 break;
3355 case ICE_SHARED_BW:
3356 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3357 rl_prof_id = le16_to_cpu(data->srl_id);
3358 break;
3359 default:
3360 break;
3361 }
3362
3363 return rl_prof_id;
3364}
3365
3366/**
3367 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3368 * @pi: port information structure
3369 * @rl_type: type of rate limit BW - min, max, or shared
3370 * @layer_index: layer index
3371 *
3372 * This function returns requested profile creation layer.
3373 */
3374static u8
3375ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3376 u8 layer_index)
3377{
3378 struct ice_hw *hw = pi->hw;
3379
3380 if (layer_index >= hw->num_tx_sched_layers)
3381 return ICE_SCHED_INVAL_LAYER_NUM;
3382 switch (rl_type) {
3383 case ICE_MIN_BW:
3384 if (hw->layer_info[layer_index].max_cir_rl_profiles)
3385 return layer_index;
3386 break;
3387 case ICE_MAX_BW:
3388 if (hw->layer_info[layer_index].max_eir_rl_profiles)
3389 return layer_index;
3390 break;
3391 case ICE_SHARED_BW:
3392 /* if current layer doesn't support SRL profile creation
3393 * then try a layer up or down.
3394 */
3395 if (hw->layer_info[layer_index].max_srl_profiles)
3396 return layer_index;
3397 else if (layer_index < hw->num_tx_sched_layers - 1 &&
3398 hw->layer_info[layer_index + 1].max_srl_profiles)
3399 return layer_index + 1;
3400 else if (layer_index > 0 &&
3401 hw->layer_info[layer_index - 1].max_srl_profiles)
3402 return layer_index - 1;
3403 break;
3404 default:
3405 break;
3406 }
3407 return ICE_SCHED_INVAL_LAYER_NUM;
3408}
3409
3410/**
3411 * ice_sched_get_srl_node - get shared rate limit node
3412 * @node: tree node
3413 * @srl_layer: shared rate limit layer
3414 *
3415 * This function returns SRL node to be used for shared rate limit purpose.
3416 * The caller needs to hold scheduler lock.
3417 */
3418static struct ice_sched_node *
3419ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3420{
3421 if (srl_layer > node->tx_sched_layer)
3422 return node->children[0];
3423 else if (srl_layer < node->tx_sched_layer)
3424 /* Node can't be created without a parent. It will always
3425 * have a valid parent except root node.
3426 */
3427 return node->parent;
3428 else
3429 return node;
3430}
3431
3432/**
3433 * ice_sched_rm_rl_profile - remove RL profile ID
3434 * @pi: port information structure
3435 * @layer_num: layer number where profiles are saved
3436 * @profile_type: profile type like EIR, CIR, or SRL
3437 * @profile_id: profile ID to remove
3438 *
3439 * This function removes rate limit profile from layer 'layer_num' of type
3440 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3441 * scheduler lock.
3442 */
3443static int
3444ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3445 u16 profile_id)
3446{
3447 struct ice_aqc_rl_profile_info *rl_prof_elem;
3448 int status = 0;
3449
3450 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3451 return -EINVAL;
3452 /* Check the existing list for RL profile */
3453 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3454 list_entry)
3455 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3456 profile_type &&
3457 le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3458 profile_id) {
3459 if (rl_prof_elem->prof_id_ref)
3460 rl_prof_elem->prof_id_ref--;
3461
3462 /* Remove old profile ID from database */
3463 status = ice_sched_del_rl_profile(hw: pi->hw, rl_info: rl_prof_elem);
3464 if (status && status != -EBUSY)
3465 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3466 break;
3467 }
3468 if (status == -EBUSY)
3469 status = 0;
3470 return status;
3471}
3472
3473/**
3474 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3475 * @pi: port information structure
3476 * @node: pointer to node structure
3477 * @rl_type: rate limit type min, max, or shared
3478 * @layer_num: layer number where RL profiles are saved
3479 *
3480 * This function configures node element's BW rate limit profile ID of
3481 * type CIR, EIR, or SRL to default. This function needs to be called
3482 * with the scheduler lock held.
3483 */
3484static int
3485ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3486 struct ice_sched_node *node,
3487 enum ice_rl_type rl_type, u8 layer_num)
3488{
3489 struct ice_hw *hw;
3490 u8 profile_type;
3491 u16 rl_prof_id;
3492 u16 old_id;
3493 int status;
3494
3495 hw = pi->hw;
3496 switch (rl_type) {
3497 case ICE_MIN_BW:
3498 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3499 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3500 break;
3501 case ICE_MAX_BW:
3502 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3503 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3504 break;
3505 case ICE_SHARED_BW:
3506 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3507 /* No SRL is configured for default case */
3508 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3509 break;
3510 default:
3511 return -EINVAL;
3512 }
3513 /* Save existing RL prof ID for later clean up */
3514 old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3515 /* Configure BW scheduling parameters */
3516 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3517 if (status)
3518 return status;
3519
3520 /* Remove stale RL profile ID */
3521 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3522 old_id == ICE_SCHED_INVAL_PROF_ID)
3523 return 0;
3524
3525 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, profile_id: old_id);
3526}
3527
3528/**
3529 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3530 * @pi: port information structure
3531 * @node: pointer to node structure
3532 * @layer_num: layer number where rate limit profiles are saved
3533 * @rl_type: rate limit type min, max, or shared
3534 * @bw: bandwidth value
3535 *
3536 * This function prepares node element's bandwidth to SRL or EIR exclusively.
3537 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3538 * them may be set for any given element. This function needs to be called
3539 * with the scheduler lock held.
3540 */
3541static int
3542ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3543 struct ice_sched_node *node,
3544 u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3545{
3546 if (rl_type == ICE_SHARED_BW) {
3547 /* SRL node passed in this case, it may be different node */
3548 if (bw == ICE_SCHED_DFLT_BW)
3549 /* SRL being removed, ice_sched_cfg_node_bw_lmt()
3550 * enables EIR to default. EIR is not set in this
3551 * case, so no additional action is required.
3552 */
3553 return 0;
3554
3555 /* SRL being configured, set EIR to default here.
3556 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3557 * configures SRL
3558 */
3559 return ice_sched_set_node_bw_dflt(pi, node, rl_type: ICE_MAX_BW,
3560 layer_num);
3561 } else if (rl_type == ICE_MAX_BW &&
3562 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3563 /* Remove Shared profile. Set default shared BW call
3564 * removes shared profile for a node.
3565 */
3566 return ice_sched_set_node_bw_dflt(pi, node,
3567 rl_type: ICE_SHARED_BW,
3568 layer_num);
3569 }
3570 return 0;
3571}
3572
3573/**
3574 * ice_sched_set_node_bw - set node's bandwidth
3575 * @pi: port information structure
3576 * @node: tree node
3577 * @rl_type: rate limit type min, max, or shared
3578 * @bw: bandwidth in Kbps - Kilo bits per sec
3579 * @layer_num: layer number
3580 *
3581 * This function adds new profile corresponding to requested BW, configures
3582 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3583 * ID from local database. The caller needs to hold scheduler lock.
3584 */
3585int
3586ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3587 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3588{
3589 struct ice_aqc_rl_profile_info *rl_prof_info;
3590 struct ice_hw *hw = pi->hw;
3591 u16 old_id, rl_prof_id;
3592 int status = -EINVAL;
3593
3594 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3595 if (!rl_prof_info)
3596 return status;
3597
3598 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3599
3600 /* Save existing RL prof ID for later clean up */
3601 old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3602 /* Configure BW scheduling parameters */
3603 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3604 if (status)
3605 return status;
3606
3607 /* New changes has been applied */
3608 /* Increment the profile ID reference count */
3609 rl_prof_info->prof_id_ref++;
3610
3611 /* Check for old ID removal */
3612 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3613 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3614 return 0;
3615
3616 return ice_sched_rm_rl_profile(pi, layer_num,
3617 profile_type: rl_prof_info->profile.flags &
3618 ICE_AQC_RL_PROFILE_TYPE_M, profile_id: old_id);
3619}
3620
3621/**
3622 * ice_sched_set_node_priority - set node's priority
3623 * @pi: port information structure
3624 * @node: tree node
3625 * @priority: number 0-7 representing priority among siblings
3626 *
3627 * This function sets priority of a node among it's siblings.
3628 */
3629int
3630ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
3631 u16 priority)
3632{
3633 struct ice_aqc_txsched_elem_data buf;
3634 struct ice_aqc_txsched_elem *data;
3635
3636 buf = node->info;
3637 data = &buf.data;
3638
3639 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3640 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority);
3641
3642 return ice_sched_update_elem(hw: pi->hw, node, info: &buf);
3643}
3644
3645/**
3646 * ice_sched_set_node_weight - set node's weight
3647 * @pi: port information structure
3648 * @node: tree node
3649 * @weight: number 1-200 representing weight for WFQ
3650 *
3651 * This function sets weight of the node for WFQ algorithm.
3652 */
3653int
3654ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
3655{
3656 struct ice_aqc_txsched_elem_data buf;
3657 struct ice_aqc_txsched_elem *data;
3658
3659 buf = node->info;
3660 data = &buf.data;
3661
3662 data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
3663 ICE_AQC_ELEM_VALID_GENERIC;
3664 data->cir_bw.bw_alloc = cpu_to_le16(weight);
3665 data->eir_bw.bw_alloc = cpu_to_le16(weight);
3666
3667 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0);
3668
3669 return ice_sched_update_elem(hw: pi->hw, node, info: &buf);
3670}
3671
3672/**
3673 * ice_sched_set_node_bw_lmt - set node's BW limit
3674 * @pi: port information structure
3675 * @node: tree node
3676 * @rl_type: rate limit type min, max, or shared
3677 * @bw: bandwidth in Kbps - Kilo bits per sec
3678 *
3679 * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3680 * EIR, or SRL. The caller needs to hold scheduler lock.
3681 */
3682int
3683ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3684 enum ice_rl_type rl_type, u32 bw)
3685{
3686 struct ice_sched_node *cfg_node = node;
3687 int status;
3688
3689 struct ice_hw *hw;
3690 u8 layer_num;
3691
3692 if (!pi)
3693 return -EINVAL;
3694 hw = pi->hw;
3695 /* Remove unused RL profile IDs from HW and SW DB */
3696 ice_sched_rm_unused_rl_prof(pi);
3697 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3698 layer_index: node->tx_sched_layer);
3699 if (layer_num >= hw->num_tx_sched_layers)
3700 return -EINVAL;
3701
3702 if (rl_type == ICE_SHARED_BW) {
3703 /* SRL node may be different */
3704 cfg_node = ice_sched_get_srl_node(node, srl_layer: layer_num);
3705 if (!cfg_node)
3706 return -EIO;
3707 }
3708 /* EIR BW and Shared BW profiles are mutually exclusive and
3709 * hence only one of them may be set for any given element
3710 */
3711 status = ice_sched_set_eir_srl_excl(pi, node: cfg_node, layer_num, rl_type,
3712 bw);
3713 if (status)
3714 return status;
3715 if (bw == ICE_SCHED_DFLT_BW)
3716 return ice_sched_set_node_bw_dflt(pi, node: cfg_node, rl_type,
3717 layer_num);
3718 return ice_sched_set_node_bw(pi, node: cfg_node, rl_type, bw, layer_num);
3719}
3720
3721/**
3722 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3723 * @pi: port information structure
3724 * @node: pointer to node structure
3725 * @rl_type: rate limit type min, max, or shared
3726 *
3727 * This function configures node element's BW rate limit profile ID of
3728 * type CIR, EIR, or SRL to default. This function needs to be called
3729 * with the scheduler lock held.
3730 */
3731static int
3732ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3733 struct ice_sched_node *node,
3734 enum ice_rl_type rl_type)
3735{
3736 return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3737 ICE_SCHED_DFLT_BW);
3738}
3739
3740/**
3741 * ice_sched_validate_srl_node - Check node for SRL applicability
3742 * @node: sched node to configure
3743 * @sel_layer: selected SRL layer
3744 *
3745 * This function checks if the SRL can be applied to a selected layer node on
3746 * behalf of the requested node (first argument). This function needs to be
3747 * called with scheduler lock held.
3748 */
3749static int
3750ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3751{
3752 /* SRL profiles are not available on all layers. Check if the
3753 * SRL profile can be applied to a node above or below the
3754 * requested node. SRL configuration is possible only if the
3755 * selected layer's node has single child.
3756 */
3757 if (sel_layer == node->tx_sched_layer ||
3758 ((sel_layer == node->tx_sched_layer + 1) &&
3759 node->num_children == 1) ||
3760 ((sel_layer == node->tx_sched_layer - 1) &&
3761 (node->parent && node->parent->num_children == 1)))
3762 return 0;
3763
3764 return -EIO;
3765}
3766
3767/**
3768 * ice_sched_save_q_bw - save queue node's BW information
3769 * @q_ctx: queue context structure
3770 * @rl_type: rate limit type min, max, or shared
3771 * @bw: bandwidth in Kbps - Kilo bits per sec
3772 *
3773 * Save BW information of queue type node for post replay use.
3774 */
3775static int
3776ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3777{
3778 switch (rl_type) {
3779 case ICE_MIN_BW:
3780 ice_set_clear_cir_bw(bw_t_info: &q_ctx->bw_t_info, bw);
3781 break;
3782 case ICE_MAX_BW:
3783 ice_set_clear_eir_bw(bw_t_info: &q_ctx->bw_t_info, bw);
3784 break;
3785 case ICE_SHARED_BW:
3786 ice_set_clear_shared_bw(bw_t_info: &q_ctx->bw_t_info, bw);
3787 break;
3788 default:
3789 return -EINVAL;
3790 }
3791 return 0;
3792}
3793
3794/**
3795 * ice_sched_set_q_bw_lmt - sets queue BW limit
3796 * @pi: port information structure
3797 * @vsi_handle: sw VSI handle
3798 * @tc: traffic class
3799 * @q_handle: software queue handle
3800 * @rl_type: min, max, or shared
3801 * @bw: bandwidth in Kbps
3802 *
3803 * This function sets BW limit of queue scheduling node.
3804 */
3805static int
3806ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3807 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3808{
3809 struct ice_sched_node *node;
3810 struct ice_q_ctx *q_ctx;
3811 int status = -EINVAL;
3812
3813 if (!ice_is_vsi_valid(hw: pi->hw, vsi_handle))
3814 return -EINVAL;
3815 mutex_lock(&pi->sched_lock);
3816 q_ctx = ice_get_lan_q_ctx(hw: pi->hw, vsi_handle, tc, q_handle);
3817 if (!q_ctx)
3818 goto exit_q_bw_lmt;
3819 node = ice_sched_find_node_by_teid(start_node: pi->root, teid: q_ctx->q_teid);
3820 if (!node) {
3821 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3822 goto exit_q_bw_lmt;
3823 }
3824
3825 /* Return error if it is not a leaf node */
3826 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3827 goto exit_q_bw_lmt;
3828
3829 /* SRL bandwidth layer selection */
3830 if (rl_type == ICE_SHARED_BW) {
3831 u8 sel_layer; /* selected layer */
3832
3833 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3834 layer_index: node->tx_sched_layer);
3835 if (sel_layer >= pi->hw->num_tx_sched_layers) {
3836 status = -EINVAL;
3837 goto exit_q_bw_lmt;
3838 }
3839 status = ice_sched_validate_srl_node(node, sel_layer);
3840 if (status)
3841 goto exit_q_bw_lmt;
3842 }
3843
3844 if (bw == ICE_SCHED_DFLT_BW)
3845 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3846 else
3847 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3848
3849 if (!status)
3850 status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3851
3852exit_q_bw_lmt:
3853 mutex_unlock(lock: &pi->sched_lock);
3854 return status;
3855}
3856
3857/**
3858 * ice_cfg_q_bw_lmt - configure queue BW limit
3859 * @pi: port information structure
3860 * @vsi_handle: sw VSI handle
3861 * @tc: traffic class
3862 * @q_handle: software queue handle
3863 * @rl_type: min, max, or shared
3864 * @bw: bandwidth in Kbps
3865 *
3866 * This function configures BW limit of queue scheduling node.
3867 */
3868int
3869ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3870 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3871{
3872 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3873 bw);
3874}
3875
3876/**
3877 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3878 * @pi: port information structure
3879 * @vsi_handle: sw VSI handle
3880 * @tc: traffic class
3881 * @q_handle: software queue handle
3882 * @rl_type: min, max, or shared
3883 *
3884 * This function configures BW default limit of queue scheduling node.
3885 */
3886int
3887ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3888 u16 q_handle, enum ice_rl_type rl_type)
3889{
3890 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3891 ICE_SCHED_DFLT_BW);
3892}
3893
3894/**
3895 * ice_sched_get_node_by_id_type - get node from ID type
3896 * @pi: port information structure
3897 * @id: identifier
3898 * @agg_type: type of aggregator
3899 * @tc: traffic class
3900 *
3901 * This function returns node identified by ID of type aggregator, and
3902 * based on traffic class (TC). This function needs to be called with
3903 * the scheduler lock held.
3904 */
3905static struct ice_sched_node *
3906ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
3907 enum ice_agg_type agg_type, u8 tc)
3908{
3909 struct ice_sched_node *node = NULL;
3910
3911 switch (agg_type) {
3912 case ICE_AGG_TYPE_VSI: {
3913 struct ice_vsi_ctx *vsi_ctx;
3914 u16 vsi_handle = (u16)id;
3915
3916 if (!ice_is_vsi_valid(hw: pi->hw, vsi_handle))
3917 break;
3918 /* Get sched_vsi_info */
3919 vsi_ctx = ice_get_vsi_ctx(hw: pi->hw, vsi_handle);
3920 if (!vsi_ctx)
3921 break;
3922 node = vsi_ctx->sched.vsi_node[tc];
3923 break;
3924 }
3925
3926 case ICE_AGG_TYPE_AGG: {
3927 struct ice_sched_node *tc_node;
3928
3929 tc_node = ice_sched_get_tc_node(pi, tc);
3930 if (tc_node)
3931 node = ice_sched_get_agg_node(pi, tc_node, agg_id: id);
3932 break;
3933 }
3934
3935 default:
3936 break;
3937 }
3938
3939 return node;
3940}
3941
3942/**
3943 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
3944 * @pi: port information structure
3945 * @id: ID (software VSI handle or AGG ID)
3946 * @agg_type: aggregator type (VSI or AGG type node)
3947 * @tc: traffic class
3948 * @rl_type: min or max
3949 * @bw: bandwidth in Kbps
3950 *
3951 * This function sets BW limit of VSI or Aggregator scheduling node
3952 * based on TC information from passed in argument BW.
3953 */
3954static int
3955ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
3956 enum ice_agg_type agg_type, u8 tc,
3957 enum ice_rl_type rl_type, u32 bw)
3958{
3959 struct ice_sched_node *node;
3960 int status = -EINVAL;
3961
3962 if (!pi)
3963 return status;
3964
3965 if (rl_type == ICE_UNKNOWN_BW)
3966 return status;
3967
3968 mutex_lock(&pi->sched_lock);
3969 node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
3970 if (!node) {
3971 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
3972 goto exit_set_node_bw_lmt_per_tc;
3973 }
3974 if (bw == ICE_SCHED_DFLT_BW)
3975 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3976 else
3977 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3978
3979exit_set_node_bw_lmt_per_tc:
3980 mutex_unlock(lock: &pi->sched_lock);
3981 return status;
3982}
3983
3984/**
3985 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3986 * @pi: port information structure
3987 * @vsi_handle: software VSI handle
3988 * @tc: traffic class
3989 * @rl_type: min or max
3990 * @bw: bandwidth in Kbps
3991 *
3992 * This function configures BW limit of VSI scheduling node based on TC
3993 * information.
3994 */
3995int
3996ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3997 enum ice_rl_type rl_type, u32 bw)
3998{
3999 int status;
4000
4001 status = ice_sched_set_node_bw_lmt_per_tc(pi, id: vsi_handle,
4002 agg_type: ICE_AGG_TYPE_VSI,
4003 tc, rl_type, bw);
4004 if (!status) {
4005 mutex_lock(&pi->sched_lock);
4006 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4007 mutex_unlock(lock: &pi->sched_lock);
4008 }
4009 return status;
4010}
4011
4012/**
4013 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
4014 * @pi: port information structure
4015 * @vsi_handle: software VSI handle
4016 * @tc: traffic class
4017 * @rl_type: min or max
4018 *
4019 * This function configures default BW limit of VSI scheduling node based on TC
4020 * information.
4021 */
4022int
4023ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4024 enum ice_rl_type rl_type)
4025{
4026 int status;
4027
4028 status = ice_sched_set_node_bw_lmt_per_tc(pi, id: vsi_handle,
4029 agg_type: ICE_AGG_TYPE_VSI,
4030 tc, rl_type,
4031 ICE_SCHED_DFLT_BW);
4032 if (!status) {
4033 mutex_lock(&pi->sched_lock);
4034 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
4035 ICE_SCHED_DFLT_BW);
4036 mutex_unlock(lock: &pi->sched_lock);
4037 }
4038 return status;
4039}
4040
4041/**
4042 * ice_cfg_rl_burst_size - Set burst size value
4043 * @hw: pointer to the HW struct
4044 * @bytes: burst size in bytes
4045 *
4046 * This function configures/set the burst size to requested new value. The new
4047 * burst size value is used for future rate limit calls. It doesn't change the
4048 * existing or previously created RL profiles.
4049 */
4050int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
4051{
4052 u16 burst_size_to_prog;
4053
4054 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
4055 bytes > ICE_MAX_BURST_SIZE_ALLOWED)
4056 return -EINVAL;
4057 if (ice_round_to_num(N: bytes, R: 64) <=
4058 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
4059 /* 64 byte granularity case */
4060 /* Disable MSB granularity bit */
4061 burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
4062 /* round number to nearest 64 byte granularity */
4063 bytes = ice_round_to_num(N: bytes, R: 64);
4064 /* The value is in 64 byte chunks */
4065 burst_size_to_prog |= (u16)(bytes / 64);
4066 } else {
4067 /* k bytes granularity case */
4068 /* Enable MSB granularity bit */
4069 burst_size_to_prog = ICE_KBYTE_GRANULARITY;
4070 /* round number to nearest 1024 granularity */
4071 bytes = ice_round_to_num(N: bytes, R: 1024);
4072 /* check rounding doesn't go beyond allowed */
4073 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4074 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4075 /* The value is in k bytes */
4076 burst_size_to_prog |= (u16)(bytes / 1024);
4077 }
4078 hw->max_burst_size = burst_size_to_prog;
4079 return 0;
4080}
4081
4082/**
4083 * ice_sched_replay_node_prio - re-configure node priority
4084 * @hw: pointer to the HW struct
4085 * @node: sched node to configure
4086 * @priority: priority value
4087 *
4088 * This function configures node element's priority value. It
4089 * needs to be called with scheduler lock held.
4090 */
4091static int
4092ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4093 u8 priority)
4094{
4095 struct ice_aqc_txsched_elem_data buf;
4096 struct ice_aqc_txsched_elem *data;
4097 int status;
4098
4099 buf = node->info;
4100 data = &buf.data;
4101 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4102 data->generic = priority;
4103
4104 /* Configure element */
4105 status = ice_sched_update_elem(hw, node, info: &buf);
4106 return status;
4107}
4108
4109/**
4110 * ice_sched_replay_node_bw - replay node(s) BW
4111 * @hw: pointer to the HW struct
4112 * @node: sched node to configure
4113 * @bw_t_info: BW type information
4114 *
4115 * This function restores node's BW from bw_t_info. The caller needs
4116 * to hold the scheduler lock.
4117 */
4118static int
4119ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4120 struct ice_bw_type_info *bw_t_info)
4121{
4122 struct ice_port_info *pi = hw->port_info;
4123 int status = -EINVAL;
4124 u16 bw_alloc;
4125
4126 if (!node)
4127 return status;
4128 if (bitmap_empty(src: bw_t_info->bw_t_bitmap, nbits: ICE_BW_TYPE_CNT))
4129 return 0;
4130 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4131 status = ice_sched_replay_node_prio(hw, node,
4132 priority: bw_t_info->generic);
4133 if (status)
4134 return status;
4135 }
4136 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4137 status = ice_sched_set_node_bw_lmt(pi, node, rl_type: ICE_MIN_BW,
4138 bw: bw_t_info->cir_bw.bw);
4139 if (status)
4140 return status;
4141 }
4142 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4143 bw_alloc = bw_t_info->cir_bw.bw_alloc;
4144 status = ice_sched_cfg_node_bw_alloc(hw, node, rl_type: ICE_MIN_BW,
4145 bw_alloc);
4146 if (status)
4147 return status;
4148 }
4149 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4150 status = ice_sched_set_node_bw_lmt(pi, node, rl_type: ICE_MAX_BW,
4151 bw: bw_t_info->eir_bw.bw);
4152 if (status)
4153 return status;
4154 }
4155 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4156 bw_alloc = bw_t_info->eir_bw.bw_alloc;
4157 status = ice_sched_cfg_node_bw_alloc(hw, node, rl_type: ICE_MAX_BW,
4158 bw_alloc);
4159 if (status)
4160 return status;
4161 }
4162 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4163 status = ice_sched_set_node_bw_lmt(pi, node, rl_type: ICE_SHARED_BW,
4164 bw: bw_t_info->shared_bw);
4165 return status;
4166}
4167
4168/**
4169 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4170 * @pi: port info struct
4171 * @tc_bitmap: 8 bits TC bitmap to check
4172 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4173 *
4174 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4175 * may be missing, it returns enabled TCs. This function needs to be called with
4176 * scheduler lock held.
4177 */
4178static void
4179ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4180 unsigned long *tc_bitmap,
4181 unsigned long *ena_tc_bitmap)
4182{
4183 u8 tc;
4184
4185 /* Some TC(s) may be missing after reset, adjust for replay */
4186 ice_for_each_traffic_class(tc)
4187 if (ice_is_tc_ena(bitmap: *tc_bitmap, tc) &&
4188 (ice_sched_get_tc_node(pi, tc)))
4189 set_bit(nr: tc, addr: ena_tc_bitmap);
4190}
4191
4192/**
4193 * ice_sched_replay_agg - recreate aggregator node(s)
4194 * @hw: pointer to the HW struct
4195 *
4196 * This function recreate aggregator type nodes which are not replayed earlier.
4197 * It also replay aggregator BW information. These aggregator nodes are not
4198 * associated with VSI type node yet.
4199 */
4200void ice_sched_replay_agg(struct ice_hw *hw)
4201{
4202 struct ice_port_info *pi = hw->port_info;
4203 struct ice_sched_agg_info *agg_info;
4204
4205 mutex_lock(&pi->sched_lock);
4206 list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4207 /* replay aggregator (re-create aggregator node) */
4208 if (!bitmap_equal(src1: agg_info->tc_bitmap, src2: agg_info->replay_tc_bitmap,
4209 ICE_MAX_TRAFFIC_CLASS)) {
4210 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4211 int status;
4212
4213 bitmap_zero(dst: replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4214 ice_sched_get_ena_tc_bitmap(pi,
4215 tc_bitmap: agg_info->replay_tc_bitmap,
4216 ena_tc_bitmap: replay_bitmap);
4217 status = ice_sched_cfg_agg(pi: hw->port_info,
4218 agg_id: agg_info->agg_id,
4219 agg_type: ICE_AGG_TYPE_AGG,
4220 tc_bitmap: replay_bitmap);
4221 if (status) {
4222 dev_info(ice_hw_to_dev(hw),
4223 "Replay agg id[%d] failed\n",
4224 agg_info->agg_id);
4225 /* Move on to next one */
4226 continue;
4227 }
4228 }
4229 mutex_unlock(lock: &pi->sched_lock);
4230}
4231
4232/**
4233 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4234 * @hw: pointer to the HW struct
4235 *
4236 * This function initialize aggregator(s) TC bitmap to zero. A required
4237 * preinit step for replaying aggregators.
4238 */
4239void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4240{
4241 struct ice_port_info *pi = hw->port_info;
4242 struct ice_sched_agg_info *agg_info;
4243
4244 mutex_lock(&pi->sched_lock);
4245 list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4246 struct ice_sched_agg_vsi_info *agg_vsi_info;
4247
4248 agg_info->tc_bitmap[0] = 0;
4249 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4250 list_entry)
4251 agg_vsi_info->tc_bitmap[0] = 0;
4252 }
4253 mutex_unlock(lock: &pi->sched_lock);
4254}
4255
4256/**
4257 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4258 * @hw: pointer to the HW struct
4259 * @vsi_handle: software VSI handle
4260 *
4261 * This function replays aggregator node, VSI to aggregator type nodes, and
4262 * their node bandwidth information. This function needs to be called with
4263 * scheduler lock held.
4264 */
4265static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4266{
4267 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4268 struct ice_sched_agg_vsi_info *agg_vsi_info;
4269 struct ice_port_info *pi = hw->port_info;
4270 struct ice_sched_agg_info *agg_info;
4271 int status;
4272
4273 bitmap_zero(dst: replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4274 if (!ice_is_vsi_valid(hw, vsi_handle))
4275 return -EINVAL;
4276 agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4277 if (!agg_info)
4278 return 0; /* Not present in list - default Agg case */
4279 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4280 if (!agg_vsi_info)
4281 return 0; /* Not present in list - default Agg case */
4282 ice_sched_get_ena_tc_bitmap(pi, tc_bitmap: agg_info->replay_tc_bitmap,
4283 ena_tc_bitmap: replay_bitmap);
4284 /* Replay aggregator node associated to vsi_handle */
4285 status = ice_sched_cfg_agg(pi: hw->port_info, agg_id: agg_info->agg_id,
4286 agg_type: ICE_AGG_TYPE_AGG, tc_bitmap: replay_bitmap);
4287 if (status)
4288 return status;
4289
4290 bitmap_zero(dst: replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4291 ice_sched_get_ena_tc_bitmap(pi, tc_bitmap: agg_vsi_info->replay_tc_bitmap,
4292 ena_tc_bitmap: replay_bitmap);
4293 /* Move this VSI (vsi_handle) to above aggregator */
4294 return ice_sched_assoc_vsi_to_agg(pi, agg_id: agg_info->agg_id, vsi_handle,
4295 tc_bitmap: replay_bitmap);
4296}
4297
4298/**
4299 * ice_replay_vsi_agg - replay VSI to aggregator node
4300 * @hw: pointer to the HW struct
4301 * @vsi_handle: software VSI handle
4302 *
4303 * This function replays association of VSI to aggregator type nodes, and
4304 * node bandwidth information.
4305 */
4306int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4307{
4308 struct ice_port_info *pi = hw->port_info;
4309 int status;
4310
4311 mutex_lock(&pi->sched_lock);
4312 status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4313 mutex_unlock(lock: &pi->sched_lock);
4314 return status;
4315}
4316
4317/**
4318 * ice_sched_replay_q_bw - replay queue type node BW
4319 * @pi: port information structure
4320 * @q_ctx: queue context structure
4321 *
4322 * This function replays queue type node bandwidth. This function needs to be
4323 * called with scheduler lock held.
4324 */
4325int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4326{
4327 struct ice_sched_node *q_node;
4328
4329 /* Following also checks the presence of node in tree */
4330 q_node = ice_sched_find_node_by_teid(start_node: pi->root, teid: q_ctx->q_teid);
4331 if (!q_node)
4332 return -EINVAL;
4333 return ice_sched_replay_node_bw(hw: pi->hw, node: q_node, bw_t_info: &q_ctx->bw_t_info);
4334}
4335

source code of linux/drivers/net/ethernet/intel/ice/ice_sched.c