1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2022, Intel Corporation. */
3
4#include "ice_virtchnl.h"
5#include "ice_vf_lib_private.h"
6#include "ice.h"
7#include "ice_base.h"
8#include "ice_lib.h"
9#include "ice_fltr.h"
10#include "ice_virtchnl_allowlist.h"
11#include "ice_vf_vsi_vlan_ops.h"
12#include "ice_vlan.h"
13#include "ice_flex_pipe.h"
14#include "ice_dcb_lib.h"
15
16#define FIELD_SELECTOR(proto_hdr_field) \
17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19struct ice_vc_hdr_match_type {
20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22};
23
24static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE},
26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH},
27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN},
28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN},
29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 |
30 ICE_FLOW_SEG_HDR_IPV_OTHER},
31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 |
32 ICE_FLOW_SEG_HDR_IPV_OTHER},
33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP},
34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP},
35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP},
36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE},
37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP},
38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH},
39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 ICE_FLOW_SEG_HDR_GTPU_DWN},
41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 ICE_FLOW_SEG_HDR_GTPU_UP},
43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3},
44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP},
45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH},
46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION},
47};
48
49struct ice_vc_hash_field_match_type {
50 u32 vc_hdr; /* virtchnl headers
51 * (VIRTCHNL_PROTO_HDR_XXX)
52 */
53 u32 vc_hash_field; /* virtchnl hash fields selector
54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 */
56 u64 ice_hash_field; /* ice hash fields
57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 */
59};
60
61static const struct
62ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 ICE_FLOW_HASH_ETH},
70 {VIRTCHNL_PROTO_HDR_ETH,
71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 {VIRTCHNL_PROTO_HDR_S_VLAN,
74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 {VIRTCHNL_PROTO_HDR_C_VLAN,
77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 ICE_FLOW_HASH_IPV4},
86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 ICE_FLOW_HASH_IPV6},
107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 {VIRTCHNL_PROTO_HDR_TCP,
122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 {VIRTCHNL_PROTO_HDR_TCP,
125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 {VIRTCHNL_PROTO_HDR_TCP,
128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 ICE_FLOW_HASH_TCP_PORT},
131 {VIRTCHNL_PROTO_HDR_UDP,
132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 {VIRTCHNL_PROTO_HDR_UDP,
135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 {VIRTCHNL_PROTO_HDR_UDP,
138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 ICE_FLOW_HASH_UDP_PORT},
141 {VIRTCHNL_PROTO_HDR_SCTP,
142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 {VIRTCHNL_PROTO_HDR_SCTP,
145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 {VIRTCHNL_PROTO_HDR_SCTP,
148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 ICE_FLOW_HASH_SCTP_PORT},
151 {VIRTCHNL_PROTO_HDR_PPPOE,
152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 {VIRTCHNL_PROTO_HDR_GTPU_IP,
155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 {VIRTCHNL_PROTO_HDR_L2TPV3,
158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166};
167
168/**
169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170 * @pf: pointer to the PF structure
171 * @v_opcode: operation code
172 * @v_retval: return value
173 * @msg: pointer to the msg buffer
174 * @msglen: msg length
175 */
176static void
177ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179{
180 struct ice_hw *hw = &pf->hw;
181 struct ice_vf *vf;
182 unsigned int bkt;
183
184 mutex_lock(&pf->vfs.table_lock);
185 ice_for_each_vf(pf, bkt, vf) {
186 /* Not all vfs are enabled so skip the ones that are not */
187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 continue;
190
191 /* Ignore return value on purpose - a given VF may fail, but
192 * we need to keep going and send to all of them
193 */
194 ice_aq_send_msg_to_vf(hw, vfid: vf->vf_id, v_opcode, v_retval, msg,
195 msglen, NULL);
196 }
197 mutex_unlock(lock: &pf->vfs.table_lock);
198}
199
200/**
201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202 * @vf: pointer to the VF structure
203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205 * @link_up: whether or not to set the link up/down
206 */
207static void
208ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 int ice_link_speed, bool link_up)
210{
211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 pfe->event_data.link_event_adv.link_status = link_up;
213 /* Speed in Mbps */
214 pfe->event_data.link_event_adv.link_speed =
215 ice_conv_link_speed_to_virtchnl(adv_link_support: true, link_speed: ice_link_speed);
216 } else {
217 pfe->event_data.link_event.link_status = link_up;
218 /* Legacy method for virtchnl link speeds */
219 pfe->event_data.link_event.link_speed =
220 (enum virtchnl_link_speed)
221 ice_conv_link_speed_to_virtchnl(adv_link_support: false, link_speed: ice_link_speed);
222 }
223}
224
225/**
226 * ice_vc_notify_vf_link_state - Inform a VF of link status
227 * @vf: pointer to the VF structure
228 *
229 * send a link status message to a single VF
230 */
231void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232{
233 struct virtchnl_pf_event pfe = { 0 };
234 struct ice_hw *hw = &vf->pf->hw;
235
236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239 if (ice_is_vf_link_up(vf))
240 ice_set_pfe_link(vf, pfe: &pfe,
241 ice_link_speed: hw->port_info->phy.link_info.link_speed, link_up: true);
242 else
243 ice_set_pfe_link(vf, pfe: &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, link_up: false);
244
245 ice_aq_send_msg_to_vf(hw, vfid: vf->vf_id, v_opcode: VIRTCHNL_OP_EVENT,
246 v_retval: VIRTCHNL_STATUS_SUCCESS, msg: (u8 *)&pfe,
247 msglen: sizeof(pfe), NULL);
248}
249
250/**
251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252 * @pf: pointer to the PF structure
253 */
254void ice_vc_notify_link_state(struct ice_pf *pf)
255{
256 struct ice_vf *vf;
257 unsigned int bkt;
258
259 mutex_lock(&pf->vfs.table_lock);
260 ice_for_each_vf(pf, bkt, vf)
261 ice_vc_notify_vf_link_state(vf);
262 mutex_unlock(lock: &pf->vfs.table_lock);
263}
264
265/**
266 * ice_vc_notify_reset - Send pending reset message to all VFs
267 * @pf: pointer to the PF structure
268 *
269 * indicate a pending reset to all VFs on a given PF
270 */
271void ice_vc_notify_reset(struct ice_pf *pf)
272{
273 struct virtchnl_pf_event pfe;
274
275 if (!ice_has_vfs(pf))
276 return;
277
278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 ice_vc_vf_broadcast(pf, v_opcode: VIRTCHNL_OP_EVENT, v_retval: VIRTCHNL_STATUS_SUCCESS,
281 msg: (u8 *)&pfe, msglen: sizeof(struct virtchnl_pf_event));
282}
283
284/**
285 * ice_vc_send_msg_to_vf - Send message to VF
286 * @vf: pointer to the VF info
287 * @v_opcode: virtual channel opcode
288 * @v_retval: virtual channel return value
289 * @msg: pointer to the msg buffer
290 * @msglen: msg length
291 *
292 * send msg to VF
293 */
294int
295ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297{
298 struct device *dev;
299 struct ice_pf *pf;
300 int aq_ret;
301
302 pf = vf->pf;
303 dev = ice_pf_to_dev(pf);
304
305 aq_ret = ice_aq_send_msg_to_vf(hw: &pf->hw, vfid: vf->vf_id, v_opcode, v_retval,
306 msg, msglen, NULL);
307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 vf->vf_id, aq_ret,
310 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 return -EIO;
312 }
313
314 return 0;
315}
316
317/**
318 * ice_vc_get_ver_msg
319 * @vf: pointer to the VF info
320 * @msg: pointer to the msg buffer
321 *
322 * called from the VF to request the API version used by the PF
323 */
324static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325{
326 struct virtchnl_version_info info = {
327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 };
329
330 vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 if (VF_IS_V10(&vf->vf_ver))
333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_VERSION,
336 v_retval: VIRTCHNL_STATUS_SUCCESS, msg: (u8 *)&info,
337 msglen: sizeof(struct virtchnl_version_info));
338}
339
340/**
341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
342 * @vf: VF used to determine max frame size
343 *
344 * Max frame size is determined based on the current port's max frame size and
345 * whether a port VLAN is configured on this VF. The VF is not aware whether
346 * it's in a port VLAN so the PF needs to account for this in max frame size
347 * checks and sending the max frame size to the VF.
348 */
349static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350{
351 struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 u16 max_frame_size;
353
354 max_frame_size = pi->phy.link_info.max_frame_size;
355
356 if (ice_vf_is_port_vlan_ena(vf))
357 max_frame_size -= VLAN_HLEN;
358
359 return max_frame_size;
360}
361
362/**
363 * ice_vc_get_vlan_caps
364 * @hw: pointer to the hw
365 * @vf: pointer to the VF info
366 * @vsi: pointer to the VSI
367 * @driver_caps: current driver caps
368 *
369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
370 */
371static u32
372ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 u32 driver_caps)
374{
375 if (ice_is_eswitch_mode_switchdev(pf: vf->pf))
376 /* In switchdev setting VLAN from VF isn't supported */
377 return 0;
378
379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 /* VLAN offloads based on current device configuration */
381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 * these two conditions, which amounts to guest VLAN filtering
385 * and offloads being based on the inner VLAN or the
386 * inner/single VLAN respectively and don't allow VF to
387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 */
389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 return VIRTCHNL_VF_OFFLOAD_VLAN;
391 } else if (!ice_is_dvm_ena(hw) &&
392 !ice_vf_is_port_vlan_ena(vf)) {
393 /* configure backward compatible support for VFs that
394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 * configured in SVM, and no port VLAN is configured
396 */
397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 return VIRTCHNL_VF_OFFLOAD_VLAN;
399 } else if (ice_is_dvm_ena(hw)) {
400 /* configure software offloaded VLAN support when DVM
401 * is enabled, but no port VLAN is enabled
402 */
403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 }
405 }
406
407 return 0;
408}
409
410/**
411 * ice_vc_get_vf_res_msg
412 * @vf: pointer to the VF info
413 * @msg: pointer to the msg buffer
414 *
415 * called from the VF to request its resources
416 */
417static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418{
419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 struct virtchnl_vf_resource *vfres = NULL;
421 struct ice_hw *hw = &vf->pf->hw;
422 struct ice_vsi *vsi;
423 int len = 0;
424 int ret;
425
426 if (ice_check_vf_init(vf)) {
427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 goto err;
429 }
430
431 len = virtchnl_struct_size(vfres, vsi_res, 0);
432
433 vfres = kzalloc(size: len, GFP_KERNEL);
434 if (!vfres) {
435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 len = 0;
437 goto err;
438 }
439 if (VF_IS_V11(&vf->vf_ver))
440 vf->driver_caps = *(u32 *)msg;
441 else
442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 VIRTCHNL_VF_OFFLOAD_RSS_REG |
444 VIRTCHNL_VF_OFFLOAD_VLAN;
445
446 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
447 vsi = ice_get_vf_vsi(vf);
448 if (!vsi) {
449 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
450 goto err;
451 }
452
453 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
454 driver_caps: vf->driver_caps);
455
456 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
457 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
458 } else {
459 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
460 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
461 else
462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
463 }
464
465 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
467
468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
470
471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
473
474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
476
477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
479
480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
482
483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
485
486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
488
489 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
490 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
491
492 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
493 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
494
495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
497
498 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
499 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
500
501 vfres->num_vsis = 1;
502 /* Tx and Rx queue are equal for VF */
503 vfres->num_queue_pairs = vsi->num_txq;
504 vfres->max_vectors = vf->num_msix;
505 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
506 vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
507 vfres->max_mtu = ice_vc_get_max_frame_size(vf);
508
509 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
510 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
511 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
512 ether_addr_copy(dst: vfres->vsi_res[0].default_mac_addr,
513 src: vf->hw_lan_addr);
514
515 /* match guest capabilities */
516 vf->driver_caps = vfres->vf_cap_flags;
517
518 ice_vc_set_caps_allowlist(vf);
519 ice_vc_set_working_allowlist(vf);
520
521 set_bit(nr: ICE_VF_STATE_ACTIVE, addr: vf->vf_states);
522
523err:
524 /* send the response back to the VF */
525 ret = ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_GET_VF_RESOURCES, v_retval: v_ret,
526 msg: (u8 *)vfres, msglen: len);
527
528 kfree(objp: vfres);
529 return ret;
530}
531
532/**
533 * ice_vc_reset_vf_msg
534 * @vf: pointer to the VF info
535 *
536 * called from the VF to reset itself,
537 * unlike other virtchnl messages, PF driver
538 * doesn't send the response back to the VF
539 */
540static void ice_vc_reset_vf_msg(struct ice_vf *vf)
541{
542 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
543 ice_reset_vf(vf, flags: 0);
544}
545
546/**
547 * ice_vc_isvalid_vsi_id
548 * @vf: pointer to the VF info
549 * @vsi_id: VF relative VSI ID
550 *
551 * check for the valid VSI ID
552 */
553bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
554{
555 struct ice_pf *pf = vf->pf;
556 struct ice_vsi *vsi;
557
558 vsi = ice_find_vsi(pf, vsi_num: vsi_id);
559
560 return (vsi && (vsi->vf == vf));
561}
562
563/**
564 * ice_vc_isvalid_q_id
565 * @vf: pointer to the VF info
566 * @vsi_id: VSI ID
567 * @qid: VSI relative queue ID
568 *
569 * check for the valid queue ID
570 */
571static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
572{
573 struct ice_vsi *vsi = ice_find_vsi(pf: vf->pf, vsi_num: vsi_id);
574 /* allocated Tx and Rx queues should be always equal for VF VSI */
575 return (vsi && (qid < vsi->alloc_txq));
576}
577
578/**
579 * ice_vc_isvalid_ring_len
580 * @ring_len: length of ring
581 *
582 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
583 * or zero
584 */
585static bool ice_vc_isvalid_ring_len(u16 ring_len)
586{
587 return ring_len == 0 ||
588 (ring_len >= ICE_MIN_NUM_DESC &&
589 ring_len <= ICE_MAX_NUM_DESC &&
590 !(ring_len % ICE_REQ_DESC_MULTIPLE));
591}
592
593/**
594 * ice_vc_validate_pattern
595 * @vf: pointer to the VF info
596 * @proto: virtchnl protocol headers
597 *
598 * validate the pattern is supported or not.
599 *
600 * Return: true on success, false on error.
601 */
602bool
603ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
604{
605 bool is_ipv4 = false;
606 bool is_ipv6 = false;
607 bool is_udp = false;
608 u16 ptype = -1;
609 int i = 0;
610
611 while (i < proto->count &&
612 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
613 switch (proto->proto_hdr[i].type) {
614 case VIRTCHNL_PROTO_HDR_ETH:
615 ptype = ICE_PTYPE_MAC_PAY;
616 break;
617 case VIRTCHNL_PROTO_HDR_IPV4:
618 ptype = ICE_PTYPE_IPV4_PAY;
619 is_ipv4 = true;
620 break;
621 case VIRTCHNL_PROTO_HDR_IPV6:
622 ptype = ICE_PTYPE_IPV6_PAY;
623 is_ipv6 = true;
624 break;
625 case VIRTCHNL_PROTO_HDR_UDP:
626 if (is_ipv4)
627 ptype = ICE_PTYPE_IPV4_UDP_PAY;
628 else if (is_ipv6)
629 ptype = ICE_PTYPE_IPV6_UDP_PAY;
630 is_udp = true;
631 break;
632 case VIRTCHNL_PROTO_HDR_TCP:
633 if (is_ipv4)
634 ptype = ICE_PTYPE_IPV4_TCP_PAY;
635 else if (is_ipv6)
636 ptype = ICE_PTYPE_IPV6_TCP_PAY;
637 break;
638 case VIRTCHNL_PROTO_HDR_SCTP:
639 if (is_ipv4)
640 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
641 else if (is_ipv6)
642 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
643 break;
644 case VIRTCHNL_PROTO_HDR_GTPU_IP:
645 case VIRTCHNL_PROTO_HDR_GTPU_EH:
646 if (is_ipv4)
647 ptype = ICE_MAC_IPV4_GTPU;
648 else if (is_ipv6)
649 ptype = ICE_MAC_IPV6_GTPU;
650 goto out;
651 case VIRTCHNL_PROTO_HDR_L2TPV3:
652 if (is_ipv4)
653 ptype = ICE_MAC_IPV4_L2TPV3;
654 else if (is_ipv6)
655 ptype = ICE_MAC_IPV6_L2TPV3;
656 goto out;
657 case VIRTCHNL_PROTO_HDR_ESP:
658 if (is_ipv4)
659 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
660 ICE_MAC_IPV4_ESP;
661 else if (is_ipv6)
662 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
663 ICE_MAC_IPV6_ESP;
664 goto out;
665 case VIRTCHNL_PROTO_HDR_AH:
666 if (is_ipv4)
667 ptype = ICE_MAC_IPV4_AH;
668 else if (is_ipv6)
669 ptype = ICE_MAC_IPV6_AH;
670 goto out;
671 case VIRTCHNL_PROTO_HDR_PFCP:
672 if (is_ipv4)
673 ptype = ICE_MAC_IPV4_PFCP_SESSION;
674 else if (is_ipv6)
675 ptype = ICE_MAC_IPV6_PFCP_SESSION;
676 goto out;
677 default:
678 break;
679 }
680 i++;
681 }
682
683out:
684 return ice_hw_ptype_ena(hw: &vf->pf->hw, ptype);
685}
686
687/**
688 * ice_vc_parse_rss_cfg - parses hash fields and headers from
689 * a specific virtchnl RSS cfg
690 * @hw: pointer to the hardware
691 * @rss_cfg: pointer to the virtchnl RSS cfg
692 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
693 * to configure
694 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
695 *
696 * Return true if all the protocol header and hash fields in the RSS cfg could
697 * be parsed, else return false
698 *
699 * This function parses the virtchnl RSS cfg to be the intended
700 * hash fields and the intended header for RSS configuration
701 */
702static bool
703ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
704 u32 *addl_hdrs, u64 *hash_flds)
705{
706 const struct ice_vc_hash_field_match_type *hf_list;
707 const struct ice_vc_hdr_match_type *hdr_list;
708 int i, hf_list_len, hdr_list_len;
709
710 hf_list = ice_vc_hash_field_list;
711 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
712 hdr_list = ice_vc_hdr_list;
713 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
714
715 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
716 struct virtchnl_proto_hdr *proto_hdr =
717 &rss_cfg->proto_hdrs.proto_hdr[i];
718 bool hdr_found = false;
719 int j;
720
721 /* Find matched ice headers according to virtchnl headers. */
722 for (j = 0; j < hdr_list_len; j++) {
723 struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
724
725 if (proto_hdr->type == hdr_map.vc_hdr) {
726 *addl_hdrs |= hdr_map.ice_hdr;
727 hdr_found = true;
728 }
729 }
730
731 if (!hdr_found)
732 return false;
733
734 /* Find matched ice hash fields according to
735 * virtchnl hash fields.
736 */
737 for (j = 0; j < hf_list_len; j++) {
738 struct ice_vc_hash_field_match_type hf_map = hf_list[j];
739
740 if (proto_hdr->type == hf_map.vc_hdr &&
741 proto_hdr->field_selector == hf_map.vc_hash_field) {
742 *hash_flds |= hf_map.ice_hash_field;
743 break;
744 }
745 }
746 }
747
748 return true;
749}
750
751/**
752 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
753 * RSS offloads
754 * @caps: VF driver negotiated capabilities
755 *
756 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
757 * else return false
758 */
759static bool ice_vf_adv_rss_offload_ena(u32 caps)
760{
761 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
762}
763
764/**
765 * ice_vc_handle_rss_cfg
766 * @vf: pointer to the VF info
767 * @msg: pointer to the message buffer
768 * @add: add a RSS config if true, otherwise delete a RSS config
769 *
770 * This function adds/deletes a RSS config
771 */
772static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
773{
774 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
775 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
776 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
777 struct device *dev = ice_pf_to_dev(vf->pf);
778 struct ice_hw *hw = &vf->pf->hw;
779 struct ice_vsi *vsi;
780
781 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
782 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
783 vf->vf_id);
784 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
785 goto error_param;
786 }
787
788 if (!ice_vf_adv_rss_offload_ena(caps: vf->driver_caps)) {
789 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
790 vf->vf_id);
791 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
792 goto error_param;
793 }
794
795 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
796 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
797 goto error_param;
798 }
799
800 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
801 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
802 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
803 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
804 vf->vf_id);
805 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
806 goto error_param;
807 }
808
809 vsi = ice_get_vf_vsi(vf);
810 if (!vsi) {
811 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
812 goto error_param;
813 }
814
815 if (!ice_vc_validate_pattern(vf, proto: &rss_cfg->proto_hdrs)) {
816 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
817 goto error_param;
818 }
819
820 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
821 struct ice_vsi_ctx *ctx;
822 u8 lut_type, hash_type;
823 int status;
824
825 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
826 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
827 ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
828
829 ctx = kzalloc(size: sizeof(*ctx), GFP_KERNEL);
830 if (!ctx) {
831 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
832 goto error_param;
833 }
834
835 ctx->info.q_opt_rss = ((lut_type <<
836 ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
837 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
838 (hash_type &
839 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
840
841 /* Preserve existing queueing option setting */
842 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
843 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
844 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
845 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
846
847 ctx->info.valid_sections =
848 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
849
850 status = ice_update_vsi(hw, vsi_handle: vsi->idx, vsi_ctx: ctx, NULL);
851 if (status) {
852 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
853 status, ice_aq_str(hw->adminq.sq_last_status));
854 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
855 } else {
856 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
857 }
858
859 kfree(objp: ctx);
860 } else {
861 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
862 u64 hash_flds = ICE_HASH_INVALID;
863
864 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, addl_hdrs: &addl_hdrs,
865 hash_flds: &hash_flds)) {
866 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
867 goto error_param;
868 }
869
870 if (add) {
871 if (ice_add_rss_cfg(hw, vsi_handle: vsi->idx, hashed_flds: hash_flds,
872 addl_hdrs)) {
873 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
874 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
875 vsi->vsi_num, v_ret);
876 }
877 } else {
878 int status;
879
880 status = ice_rem_rss_cfg(hw, vsi_handle: vsi->idx, hashed_flds: hash_flds,
881 addl_hdrs);
882 /* We just ignore -ENOENT, because if two configurations
883 * share the same profile remove one of them actually
884 * removes both, since the profile is deleted.
885 */
886 if (status && status != -ENOENT) {
887 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
888 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
889 vf->vf_id, status);
890 }
891 }
892 }
893
894error_param:
895 return ice_vc_send_msg_to_vf(vf, v_opcode, v_retval: v_ret, NULL, msglen: 0);
896}
897
898/**
899 * ice_vc_config_rss_key
900 * @vf: pointer to the VF info
901 * @msg: pointer to the msg buffer
902 *
903 * Configure the VF's RSS key
904 */
905static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
906{
907 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
908 struct virtchnl_rss_key *vrk =
909 (struct virtchnl_rss_key *)msg;
910 struct ice_vsi *vsi;
911
912 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
913 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
914 goto error_param;
915 }
916
917 if (!ice_vc_isvalid_vsi_id(vf, vsi_id: vrk->vsi_id)) {
918 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
919 goto error_param;
920 }
921
922 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
923 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
924 goto error_param;
925 }
926
927 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
928 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
929 goto error_param;
930 }
931
932 vsi = ice_get_vf_vsi(vf);
933 if (!vsi) {
934 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
935 goto error_param;
936 }
937
938 if (ice_set_rss_key(vsi, seed: vrk->key))
939 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
940error_param:
941 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_CONFIG_RSS_KEY, v_retval: v_ret,
942 NULL, msglen: 0);
943}
944
945/**
946 * ice_vc_config_rss_lut
947 * @vf: pointer to the VF info
948 * @msg: pointer to the msg buffer
949 *
950 * Configure the VF's RSS LUT
951 */
952static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
953{
954 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
955 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
956 struct ice_vsi *vsi;
957
958 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
959 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
960 goto error_param;
961 }
962
963 if (!ice_vc_isvalid_vsi_id(vf, vsi_id: vrl->vsi_id)) {
964 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
965 goto error_param;
966 }
967
968 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
969 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
970 goto error_param;
971 }
972
973 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
974 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
975 goto error_param;
976 }
977
978 vsi = ice_get_vf_vsi(vf);
979 if (!vsi) {
980 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
981 goto error_param;
982 }
983
984 if (ice_set_rss_lut(vsi, lut: vrl->lut, lut_size: ICE_LUT_VSI_SIZE))
985 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
986error_param:
987 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_CONFIG_RSS_LUT, v_retval: v_ret,
988 NULL, msglen: 0);
989}
990
991/**
992 * ice_vc_cfg_promiscuous_mode_msg
993 * @vf: pointer to the VF info
994 * @msg: pointer to the msg buffer
995 *
996 * called from the VF to configure VF VSIs promiscuous mode
997 */
998static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
999{
1000 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1001 bool rm_promisc, alluni = false, allmulti = false;
1002 struct virtchnl_promisc_info *info =
1003 (struct virtchnl_promisc_info *)msg;
1004 struct ice_vsi_vlan_ops *vlan_ops;
1005 int mcast_err = 0, ucast_err = 0;
1006 struct ice_pf *pf = vf->pf;
1007 struct ice_vsi *vsi;
1008 u8 mcast_m, ucast_m;
1009 struct device *dev;
1010 int ret = 0;
1011
1012 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1013 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1014 goto error_param;
1015 }
1016
1017 if (!ice_vc_isvalid_vsi_id(vf, vsi_id: info->vsi_id)) {
1018 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1019 goto error_param;
1020 }
1021
1022 vsi = ice_get_vf_vsi(vf);
1023 if (!vsi) {
1024 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1025 goto error_param;
1026 }
1027
1028 dev = ice_pf_to_dev(pf);
1029 if (!ice_is_vf_trusted(vf)) {
1030 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1031 vf->vf_id);
1032 /* Leave v_ret alone, lie to the VF on purpose. */
1033 goto error_param;
1034 }
1035
1036 if (info->flags & FLAG_VF_UNICAST_PROMISC)
1037 alluni = true;
1038
1039 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1040 allmulti = true;
1041
1042 rm_promisc = !allmulti && !alluni;
1043
1044 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1045 if (rm_promisc)
1046 ret = vlan_ops->ena_rx_filtering(vsi);
1047 else
1048 ret = vlan_ops->dis_rx_filtering(vsi);
1049 if (ret) {
1050 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1051 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1052 goto error_param;
1053 }
1054
1055 ice_vf_get_promisc_masks(vf, vsi, ucast_m: &ucast_m, mcast_m: &mcast_m);
1056
1057 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1058 if (alluni) {
1059 /* in this case we're turning on promiscuous mode */
1060 ret = ice_set_dflt_vsi(vsi);
1061 } else {
1062 /* in this case we're turning off promiscuous mode */
1063 if (ice_is_dflt_vsi_in_use(pi: vsi->port_info))
1064 ret = ice_clear_dflt_vsi(vsi);
1065 }
1066
1067 /* in this case we're turning on/off only
1068 * allmulticast
1069 */
1070 if (allmulti)
1071 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, promisc_m: mcast_m);
1072 else
1073 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, promisc_m: mcast_m);
1074
1075 if (ret) {
1076 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1077 vf->vf_id, ret);
1078 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1079 goto error_param;
1080 }
1081 } else {
1082 if (alluni)
1083 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, promisc_m: ucast_m);
1084 else
1085 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, promisc_m: ucast_m);
1086
1087 if (allmulti)
1088 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, promisc_m: mcast_m);
1089 else
1090 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, promisc_m: mcast_m);
1091
1092 if (ucast_err || mcast_err)
1093 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1094 }
1095
1096 if (!mcast_err) {
1097 if (allmulti &&
1098 !test_and_set_bit(nr: ICE_VF_STATE_MC_PROMISC, addr: vf->vf_states))
1099 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1100 vf->vf_id);
1101 else if (!allmulti &&
1102 test_and_clear_bit(nr: ICE_VF_STATE_MC_PROMISC,
1103 addr: vf->vf_states))
1104 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1105 vf->vf_id);
1106 } else {
1107 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1108 vf->vf_id, mcast_err);
1109 }
1110
1111 if (!ucast_err) {
1112 if (alluni &&
1113 !test_and_set_bit(nr: ICE_VF_STATE_UC_PROMISC, addr: vf->vf_states))
1114 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1115 vf->vf_id);
1116 else if (!alluni &&
1117 test_and_clear_bit(nr: ICE_VF_STATE_UC_PROMISC,
1118 addr: vf->vf_states))
1119 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1120 vf->vf_id);
1121 } else {
1122 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1123 vf->vf_id, ucast_err);
1124 }
1125
1126error_param:
1127 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1128 v_retval: v_ret, NULL, msglen: 0);
1129}
1130
1131/**
1132 * ice_vc_get_stats_msg
1133 * @vf: pointer to the VF info
1134 * @msg: pointer to the msg buffer
1135 *
1136 * called from the VF to get VSI stats
1137 */
1138static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1139{
1140 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1141 struct virtchnl_queue_select *vqs =
1142 (struct virtchnl_queue_select *)msg;
1143 struct ice_eth_stats stats = { 0 };
1144 struct ice_vsi *vsi;
1145
1146 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1147 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1148 goto error_param;
1149 }
1150
1151 if (!ice_vc_isvalid_vsi_id(vf, vsi_id: vqs->vsi_id)) {
1152 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1153 goto error_param;
1154 }
1155
1156 vsi = ice_get_vf_vsi(vf);
1157 if (!vsi) {
1158 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1159 goto error_param;
1160 }
1161
1162 ice_update_eth_stats(vsi);
1163
1164 stats = vsi->eth_stats;
1165
1166error_param:
1167 /* send the response to the VF */
1168 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_GET_STATS, v_retval: v_ret,
1169 msg: (u8 *)&stats, msglen: sizeof(stats));
1170}
1171
1172/**
1173 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1174 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1175 *
1176 * Return true on successful validation, else false
1177 */
1178static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1179{
1180 if ((!vqs->rx_queues && !vqs->tx_queues) ||
1181 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1182 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1183 return false;
1184
1185 return true;
1186}
1187
1188/**
1189 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1190 * @vsi: VSI of the VF to configure
1191 * @q_idx: VF queue index used to determine the queue in the PF's space
1192 */
1193static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1194{
1195 struct ice_hw *hw = &vsi->back->hw;
1196 u32 pfq = vsi->txq_map[q_idx];
1197 u32 reg;
1198
1199 reg = rd32(hw, QINT_TQCTL(pfq));
1200
1201 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1202 * this is most likely a poll mode VF driver, so don't enable an
1203 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1204 */
1205 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1206 return;
1207
1208 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1209}
1210
1211/**
1212 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1213 * @vsi: VSI of the VF to configure
1214 * @q_idx: VF queue index used to determine the queue in the PF's space
1215 */
1216static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1217{
1218 struct ice_hw *hw = &vsi->back->hw;
1219 u32 pfq = vsi->rxq_map[q_idx];
1220 u32 reg;
1221
1222 reg = rd32(hw, QINT_RQCTL(pfq));
1223
1224 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1225 * this is most likely a poll mode VF driver, so don't enable an
1226 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1227 */
1228 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1229 return;
1230
1231 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1232}
1233
1234/**
1235 * ice_vc_ena_qs_msg
1236 * @vf: pointer to the VF info
1237 * @msg: pointer to the msg buffer
1238 *
1239 * called from the VF to enable all or specific queue(s)
1240 */
1241static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1242{
1243 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1244 struct virtchnl_queue_select *vqs =
1245 (struct virtchnl_queue_select *)msg;
1246 struct ice_vsi *vsi;
1247 unsigned long q_map;
1248 u16 vf_q_id;
1249
1250 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1251 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1252 goto error_param;
1253 }
1254
1255 if (!ice_vc_isvalid_vsi_id(vf, vsi_id: vqs->vsi_id)) {
1256 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1257 goto error_param;
1258 }
1259
1260 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1261 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1262 goto error_param;
1263 }
1264
1265 vsi = ice_get_vf_vsi(vf);
1266 if (!vsi) {
1267 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1268 goto error_param;
1269 }
1270
1271 /* Enable only Rx rings, Tx rings were enabled by the FW when the
1272 * Tx queue group list was configured and the context bits were
1273 * programmed using ice_vsi_cfg_txqs
1274 */
1275 q_map = vqs->rx_queues;
1276 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1277 if (!ice_vc_isvalid_q_id(vf, vsi_id: vqs->vsi_id, qid: vf_q_id)) {
1278 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1279 goto error_param;
1280 }
1281
1282 /* Skip queue if enabled */
1283 if (test_bit(vf_q_id, vf->rxq_ena))
1284 continue;
1285
1286 if (ice_vsi_ctrl_one_rx_ring(vsi, ena: true, rxq_idx: vf_q_id, wait: true)) {
1287 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1288 vf_q_id, vsi->vsi_num);
1289 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1290 goto error_param;
1291 }
1292
1293 ice_vf_ena_rxq_interrupt(vsi, q_idx: vf_q_id);
1294 set_bit(nr: vf_q_id, addr: vf->rxq_ena);
1295 }
1296
1297 q_map = vqs->tx_queues;
1298 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1299 if (!ice_vc_isvalid_q_id(vf, vsi_id: vqs->vsi_id, qid: vf_q_id)) {
1300 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1301 goto error_param;
1302 }
1303
1304 /* Skip queue if enabled */
1305 if (test_bit(vf_q_id, vf->txq_ena))
1306 continue;
1307
1308 ice_vf_ena_txq_interrupt(vsi, q_idx: vf_q_id);
1309 set_bit(nr: vf_q_id, addr: vf->txq_ena);
1310 }
1311
1312 /* Set flag to indicate that queues are enabled */
1313 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1314 set_bit(nr: ICE_VF_STATE_QS_ENA, addr: vf->vf_states);
1315
1316error_param:
1317 /* send the response to the VF */
1318 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_ENABLE_QUEUES, v_retval: v_ret,
1319 NULL, msglen: 0);
1320}
1321
1322/**
1323 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1324 * @vf: VF to disable queue for
1325 * @vsi: VSI for the VF
1326 * @q_id: VF relative (0-based) queue ID
1327 *
1328 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1329 * disabled then clear q_id bit in the enabled queues bitmap and return
1330 * success. Otherwise return error.
1331 */
1332static int
1333ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1334{
1335 struct ice_txq_meta txq_meta = { 0 };
1336 struct ice_tx_ring *ring;
1337 int err;
1338
1339 if (!test_bit(q_id, vf->txq_ena))
1340 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1341 q_id, vsi->vsi_num);
1342
1343 ring = vsi->tx_rings[q_id];
1344 if (!ring)
1345 return -EINVAL;
1346
1347 ice_fill_txq_meta(vsi, ring, txq_meta: &txq_meta);
1348
1349 err = ice_vsi_stop_tx_ring(vsi, rst_src: ICE_NO_RESET, rel_vmvf_num: vf->vf_id, ring, txq_meta: &txq_meta);
1350 if (err) {
1351 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1352 q_id, vsi->vsi_num);
1353 return err;
1354 }
1355
1356 /* Clear enabled queues flag */
1357 clear_bit(nr: q_id, addr: vf->txq_ena);
1358
1359 return 0;
1360}
1361
1362/**
1363 * ice_vc_dis_qs_msg
1364 * @vf: pointer to the VF info
1365 * @msg: pointer to the msg buffer
1366 *
1367 * called from the VF to disable all or specific queue(s)
1368 */
1369static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1370{
1371 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1372 struct virtchnl_queue_select *vqs =
1373 (struct virtchnl_queue_select *)msg;
1374 struct ice_vsi *vsi;
1375 unsigned long q_map;
1376 u16 vf_q_id;
1377
1378 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1379 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1380 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1381 goto error_param;
1382 }
1383
1384 if (!ice_vc_isvalid_vsi_id(vf, vsi_id: vqs->vsi_id)) {
1385 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1386 goto error_param;
1387 }
1388
1389 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1390 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1391 goto error_param;
1392 }
1393
1394 vsi = ice_get_vf_vsi(vf);
1395 if (!vsi) {
1396 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1397 goto error_param;
1398 }
1399
1400 if (vqs->tx_queues) {
1401 q_map = vqs->tx_queues;
1402
1403 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1404 if (!ice_vc_isvalid_q_id(vf, vsi_id: vqs->vsi_id, qid: vf_q_id)) {
1405 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1406 goto error_param;
1407 }
1408
1409 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_id: vf_q_id)) {
1410 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1411 goto error_param;
1412 }
1413 }
1414 }
1415
1416 q_map = vqs->rx_queues;
1417 /* speed up Rx queue disable by batching them if possible */
1418 if (q_map &&
1419 bitmap_equal(src1: &q_map, src2: vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1420 if (ice_vsi_stop_all_rx_rings(vsi)) {
1421 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1422 vsi->vsi_num);
1423 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1424 goto error_param;
1425 }
1426
1427 bitmap_zero(dst: vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1428 } else if (q_map) {
1429 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1430 if (!ice_vc_isvalid_q_id(vf, vsi_id: vqs->vsi_id, qid: vf_q_id)) {
1431 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1432 goto error_param;
1433 }
1434
1435 /* Skip queue if not enabled */
1436 if (!test_bit(vf_q_id, vf->rxq_ena))
1437 continue;
1438
1439 if (ice_vsi_ctrl_one_rx_ring(vsi, ena: false, rxq_idx: vf_q_id,
1440 wait: true)) {
1441 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1442 vf_q_id, vsi->vsi_num);
1443 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1444 goto error_param;
1445 }
1446
1447 /* Clear enabled queues flag */
1448 clear_bit(nr: vf_q_id, addr: vf->rxq_ena);
1449 }
1450 }
1451
1452 /* Clear enabled queues flag */
1453 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1454 clear_bit(nr: ICE_VF_STATE_QS_ENA, addr: vf->vf_states);
1455
1456error_param:
1457 /* send the response to the VF */
1458 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_DISABLE_QUEUES, v_retval: v_ret,
1459 NULL, msglen: 0);
1460}
1461
1462/**
1463 * ice_cfg_interrupt
1464 * @vf: pointer to the VF info
1465 * @vsi: the VSI being configured
1466 * @vector_id: vector ID
1467 * @map: vector map for mapping vectors to queues
1468 * @q_vector: structure for interrupt vector
1469 * configure the IRQ to queue map
1470 */
1471static int
1472ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1473 struct virtchnl_vector_map *map,
1474 struct ice_q_vector *q_vector)
1475{
1476 u16 vsi_q_id, vsi_q_id_idx;
1477 unsigned long qmap;
1478
1479 q_vector->num_ring_rx = 0;
1480 q_vector->num_ring_tx = 0;
1481
1482 qmap = map->rxq_map;
1483 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1484 vsi_q_id = vsi_q_id_idx;
1485
1486 if (!ice_vc_isvalid_q_id(vf, vsi_id: vsi->vsi_num, qid: vsi_q_id))
1487 return VIRTCHNL_STATUS_ERR_PARAM;
1488
1489 q_vector->num_ring_rx++;
1490 q_vector->rx.itr_idx = map->rxitr_idx;
1491 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1492 ice_cfg_rxq_interrupt(vsi, rxq: vsi_q_id, msix_idx: vector_id,
1493 itr_idx: q_vector->rx.itr_idx);
1494 }
1495
1496 qmap = map->txq_map;
1497 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1498 vsi_q_id = vsi_q_id_idx;
1499
1500 if (!ice_vc_isvalid_q_id(vf, vsi_id: vsi->vsi_num, qid: vsi_q_id))
1501 return VIRTCHNL_STATUS_ERR_PARAM;
1502
1503 q_vector->num_ring_tx++;
1504 q_vector->tx.itr_idx = map->txitr_idx;
1505 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1506 ice_cfg_txq_interrupt(vsi, txq: vsi_q_id, msix_idx: vector_id,
1507 itr_idx: q_vector->tx.itr_idx);
1508 }
1509
1510 return VIRTCHNL_STATUS_SUCCESS;
1511}
1512
1513/**
1514 * ice_vc_cfg_irq_map_msg
1515 * @vf: pointer to the VF info
1516 * @msg: pointer to the msg buffer
1517 *
1518 * called from the VF to configure the IRQ to queue map
1519 */
1520static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1521{
1522 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1523 u16 num_q_vectors_mapped, vsi_id, vector_id;
1524 struct virtchnl_irq_map_info *irqmap_info;
1525 struct virtchnl_vector_map *map;
1526 struct ice_pf *pf = vf->pf;
1527 struct ice_vsi *vsi;
1528 int i;
1529
1530 irqmap_info = (struct virtchnl_irq_map_info *)msg;
1531 num_q_vectors_mapped = irqmap_info->num_vectors;
1532
1533 /* Check to make sure number of VF vectors mapped is not greater than
1534 * number of VF vectors originally allocated, and check that
1535 * there is actually at least a single VF queue vector mapped
1536 */
1537 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1538 pf->vfs.num_msix_per < num_q_vectors_mapped ||
1539 !num_q_vectors_mapped) {
1540 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1541 goto error_param;
1542 }
1543
1544 vsi = ice_get_vf_vsi(vf);
1545 if (!vsi) {
1546 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1547 goto error_param;
1548 }
1549
1550 for (i = 0; i < num_q_vectors_mapped; i++) {
1551 struct ice_q_vector *q_vector;
1552
1553 map = &irqmap_info->vecmap[i];
1554
1555 vector_id = map->vector_id;
1556 vsi_id = map->vsi_id;
1557 /* vector_id is always 0-based for each VF, and can never be
1558 * larger than or equal to the max allowed interrupts per VF
1559 */
1560 if (!(vector_id < pf->vfs.num_msix_per) ||
1561 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1562 (!vector_id && (map->rxq_map || map->txq_map))) {
1563 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1564 goto error_param;
1565 }
1566
1567 /* No need to map VF miscellaneous or rogue vector */
1568 if (!vector_id)
1569 continue;
1570
1571 /* Subtract non queue vector from vector_id passed by VF
1572 * to get actual number of VSI queue vector array index
1573 */
1574 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1575 if (!q_vector) {
1576 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1577 goto error_param;
1578 }
1579
1580 /* lookout for the invalid queue index */
1581 v_ret = (enum virtchnl_status_code)
1582 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1583 if (v_ret)
1584 goto error_param;
1585 }
1586
1587error_param:
1588 /* send the response to the VF */
1589 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_CONFIG_IRQ_MAP, v_retval: v_ret,
1590 NULL, msglen: 0);
1591}
1592
1593/**
1594 * ice_vc_cfg_qs_msg
1595 * @vf: pointer to the VF info
1596 * @msg: pointer to the msg buffer
1597 *
1598 * called from the VF to configure the Rx/Tx queues
1599 */
1600static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1601{
1602 struct virtchnl_vsi_queue_config_info *qci =
1603 (struct virtchnl_vsi_queue_config_info *)msg;
1604 struct virtchnl_queue_pair_info *qpi;
1605 struct ice_pf *pf = vf->pf;
1606 struct ice_vsi *vsi;
1607 int i = -1, q_idx;
1608
1609 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1610 goto error_param;
1611
1612 if (!ice_vc_isvalid_vsi_id(vf, vsi_id: qci->vsi_id))
1613 goto error_param;
1614
1615 vsi = ice_get_vf_vsi(vf);
1616 if (!vsi)
1617 goto error_param;
1618
1619 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1620 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1621 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1622 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1623 goto error_param;
1624 }
1625
1626 for (i = 0; i < qci->num_queue_pairs; i++) {
1627 if (!qci->qpair[i].rxq.crc_disable)
1628 continue;
1629
1630 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1631 vf->vlan_strip_ena)
1632 goto error_param;
1633 }
1634
1635 for (i = 0; i < qci->num_queue_pairs; i++) {
1636 qpi = &qci->qpair[i];
1637 if (qpi->txq.vsi_id != qci->vsi_id ||
1638 qpi->rxq.vsi_id != qci->vsi_id ||
1639 qpi->rxq.queue_id != qpi->txq.queue_id ||
1640 qpi->txq.headwb_enabled ||
1641 !ice_vc_isvalid_ring_len(ring_len: qpi->txq.ring_len) ||
1642 !ice_vc_isvalid_ring_len(ring_len: qpi->rxq.ring_len) ||
1643 !ice_vc_isvalid_q_id(vf, vsi_id: qci->vsi_id, qid: qpi->txq.queue_id)) {
1644 goto error_param;
1645 }
1646
1647 q_idx = qpi->rxq.queue_id;
1648
1649 /* make sure selected "q_idx" is in valid range of queues
1650 * for selected "vsi"
1651 */
1652 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1653 goto error_param;
1654 }
1655
1656 /* copy Tx queue info from VF into VSI */
1657 if (qpi->txq.ring_len > 0) {
1658 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1659 vsi->tx_rings[i]->count = qpi->txq.ring_len;
1660
1661 /* Disable any existing queue first */
1662 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_id: q_idx))
1663 goto error_param;
1664
1665 /* Configure a queue with the requested settings */
1666 if (ice_vsi_cfg_single_txq(vsi, tx_rings: vsi->tx_rings, q_idx)) {
1667 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1668 vf->vf_id, i);
1669 goto error_param;
1670 }
1671 }
1672
1673 /* copy Rx queue info from VF into VSI */
1674 if (qpi->rxq.ring_len > 0) {
1675 u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1676 u32 rxdid;
1677
1678 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1679 vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1680
1681 if (qpi->rxq.crc_disable)
1682 vsi->rx_rings[q_idx]->flags |=
1683 ICE_RX_FLAGS_CRC_STRIP_DIS;
1684 else
1685 vsi->rx_rings[q_idx]->flags &=
1686 ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1687
1688 if (qpi->rxq.databuffer_size != 0 &&
1689 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1690 qpi->rxq.databuffer_size < 1024))
1691 goto error_param;
1692 vsi->rx_buf_len = qpi->rxq.databuffer_size;
1693 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1694 if (qpi->rxq.max_pkt_size > max_frame_size ||
1695 qpi->rxq.max_pkt_size < 64)
1696 goto error_param;
1697
1698 vsi->max_frame = qpi->rxq.max_pkt_size;
1699 /* add space for the port VLAN since the VF driver is
1700 * not expected to account for it in the MTU
1701 * calculation
1702 */
1703 if (ice_vf_is_port_vlan_ena(vf))
1704 vsi->max_frame += VLAN_HLEN;
1705
1706 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1707 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1708 vf->vf_id, i);
1709 goto error_param;
1710 }
1711
1712 /* If Rx flex desc is supported, select RXDID for Rx
1713 * queues. Otherwise, use legacy 32byte descriptor
1714 * format. Legacy 16byte descriptor is not supported.
1715 * If this RXDID is selected, return error.
1716 */
1717 if (vf->driver_caps &
1718 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1719 rxdid = qpi->rxq.rxdid;
1720 if (!(BIT(rxdid) & pf->supported_rxdids))
1721 goto error_param;
1722 } else {
1723 rxdid = ICE_RXDID_LEGACY_1;
1724 }
1725
1726 ice_write_qrxflxp_cntxt(hw: &vsi->back->hw,
1727 pf_q: vsi->rxq_map[q_idx],
1728 rxdid, prio: 0x03, ena_ts: false);
1729 }
1730 }
1731
1732 /* send the response to the VF */
1733 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1734 v_retval: VIRTCHNL_STATUS_SUCCESS, NULL, msglen: 0);
1735error_param:
1736 /* disable whatever we can */
1737 for (; i >= 0; i--) {
1738 if (ice_vsi_ctrl_one_rx_ring(vsi, ena: false, rxq_idx: i, wait: true))
1739 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1740 vf->vf_id, i);
1741 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_id: i))
1742 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1743 vf->vf_id, i);
1744 }
1745
1746 ice_lag_move_new_vf_nodes(vf);
1747
1748 /* send the response to the VF */
1749 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1750 v_retval: VIRTCHNL_STATUS_ERR_PARAM, NULL, msglen: 0);
1751}
1752
1753/**
1754 * ice_can_vf_change_mac
1755 * @vf: pointer to the VF info
1756 *
1757 * Return true if the VF is allowed to change its MAC filters, false otherwise
1758 */
1759static bool ice_can_vf_change_mac(struct ice_vf *vf)
1760{
1761 /* If the VF MAC address has been set administratively (via the
1762 * ndo_set_vf_mac command), then deny permission to the VF to
1763 * add/delete unicast MAC addresses, unless the VF is trusted
1764 */
1765 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1766 return false;
1767
1768 return true;
1769}
1770
1771/**
1772 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1773 * @vc_ether_addr: used to extract the type
1774 */
1775static u8
1776ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1777{
1778 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1779}
1780
1781/**
1782 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1783 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1784 */
1785static bool
1786ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1787{
1788 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1789
1790 return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1791}
1792
1793/**
1794 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1795 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1796 *
1797 * This function should only be called when the MAC address in
1798 * virtchnl_ether_addr is a valid unicast MAC
1799 */
1800static bool
1801ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1802{
1803 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1804
1805 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1806}
1807
1808/**
1809 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1810 * @vf: VF to update
1811 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1812 */
1813static void
1814ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1815{
1816 u8 *mac_addr = vc_ether_addr->addr;
1817
1818 if (!is_valid_ether_addr(addr: mac_addr))
1819 return;
1820
1821 /* only allow legacy VF drivers to set the device and hardware MAC if it
1822 * is zero and allow new VF drivers to set the hardware MAC if the type
1823 * was correctly specified over VIRTCHNL
1824 */
1825 if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1826 is_zero_ether_addr(addr: vf->hw_lan_addr)) ||
1827 ice_is_vc_addr_primary(vc_ether_addr)) {
1828 ether_addr_copy(dst: vf->dev_lan_addr, src: mac_addr);
1829 ether_addr_copy(dst: vf->hw_lan_addr, src: mac_addr);
1830 }
1831
1832 /* hardware and device MACs are already set, but its possible that the
1833 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1834 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1835 * away for the legacy VF driver case as it will be updated in the
1836 * delete flow for this case
1837 */
1838 if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1839 ether_addr_copy(dst: vf->legacy_last_added_umac.addr,
1840 src: mac_addr);
1841 vf->legacy_last_added_umac.time_modified = jiffies;
1842 }
1843}
1844
1845/**
1846 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1847 * @vf: pointer to the VF info
1848 * @vsi: pointer to the VF's VSI
1849 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1850 */
1851static int
1852ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1853 struct virtchnl_ether_addr *vc_ether_addr)
1854{
1855 struct device *dev = ice_pf_to_dev(vf->pf);
1856 u8 *mac_addr = vc_ether_addr->addr;
1857 int ret;
1858
1859 /* device MAC already added */
1860 if (ether_addr_equal(addr1: mac_addr, addr2: vf->dev_lan_addr))
1861 return 0;
1862
1863 if (is_unicast_ether_addr(addr: mac_addr) && !ice_can_vf_change_mac(vf)) {
1864 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1865 return -EPERM;
1866 }
1867
1868 ret = ice_fltr_add_mac(vsi, mac: mac_addr, action: ICE_FWD_TO_VSI);
1869 if (ret == -EEXIST) {
1870 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1871 vf->vf_id);
1872 /* don't return since we might need to update
1873 * the primary MAC in ice_vfhw_mac_add() below
1874 */
1875 } else if (ret) {
1876 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1877 mac_addr, vf->vf_id, ret);
1878 return ret;
1879 } else {
1880 vf->num_mac++;
1881 }
1882
1883 ice_vfhw_mac_add(vf, vc_ether_addr);
1884
1885 return ret;
1886}
1887
1888/**
1889 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1890 * @last_added_umac: structure used to check expiration
1891 */
1892static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1893{
1894#define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000)
1895 return time_is_before_jiffies(last_added_umac->time_modified +
1896 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1897}
1898
1899/**
1900 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1901 * @vf: VF to update
1902 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1903 *
1904 * only update cached hardware MAC for legacy VF drivers on delete
1905 * because we cannot guarantee order/type of MAC from the VF driver
1906 */
1907static void
1908ice_update_legacy_cached_mac(struct ice_vf *vf,
1909 struct virtchnl_ether_addr *vc_ether_addr)
1910{
1911 if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1912 ice_is_legacy_umac_expired(last_added_umac: &vf->legacy_last_added_umac))
1913 return;
1914
1915 ether_addr_copy(dst: vf->dev_lan_addr, src: vf->legacy_last_added_umac.addr);
1916 ether_addr_copy(dst: vf->hw_lan_addr, src: vf->legacy_last_added_umac.addr);
1917}
1918
1919/**
1920 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1921 * @vf: VF to update
1922 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1923 */
1924static void
1925ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1926{
1927 u8 *mac_addr = vc_ether_addr->addr;
1928
1929 if (!is_valid_ether_addr(addr: mac_addr) ||
1930 !ether_addr_equal(addr1: vf->dev_lan_addr, addr2: mac_addr))
1931 return;
1932
1933 /* allow the device MAC to be repopulated in the add flow and don't
1934 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
1935 * to be persistent on VM reboot and across driver unload/load, which
1936 * won't work if we clear the hardware MAC here
1937 */
1938 eth_zero_addr(addr: vf->dev_lan_addr);
1939
1940 ice_update_legacy_cached_mac(vf, vc_ether_addr);
1941}
1942
1943/**
1944 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1945 * @vf: pointer to the VF info
1946 * @vsi: pointer to the VF's VSI
1947 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1948 */
1949static int
1950ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1951 struct virtchnl_ether_addr *vc_ether_addr)
1952{
1953 struct device *dev = ice_pf_to_dev(vf->pf);
1954 u8 *mac_addr = vc_ether_addr->addr;
1955 int status;
1956
1957 if (!ice_can_vf_change_mac(vf) &&
1958 ether_addr_equal(addr1: vf->dev_lan_addr, addr2: mac_addr))
1959 return 0;
1960
1961 status = ice_fltr_remove_mac(vsi, mac: mac_addr, action: ICE_FWD_TO_VSI);
1962 if (status == -ENOENT) {
1963 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1964 vf->vf_id);
1965 return -ENOENT;
1966 } else if (status) {
1967 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1968 mac_addr, vf->vf_id, status);
1969 return -EIO;
1970 }
1971
1972 ice_vfhw_mac_del(vf, vc_ether_addr);
1973
1974 vf->num_mac--;
1975
1976 return 0;
1977}
1978
1979/**
1980 * ice_vc_handle_mac_addr_msg
1981 * @vf: pointer to the VF info
1982 * @msg: pointer to the msg buffer
1983 * @set: true if MAC filters are being set, false otherwise
1984 *
1985 * add guest MAC address filter
1986 */
1987static int
1988ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
1989{
1990 int (*ice_vc_cfg_mac)
1991 (struct ice_vf *vf, struct ice_vsi *vsi,
1992 struct virtchnl_ether_addr *virtchnl_ether_addr);
1993 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1994 struct virtchnl_ether_addr_list *al =
1995 (struct virtchnl_ether_addr_list *)msg;
1996 struct ice_pf *pf = vf->pf;
1997 enum virtchnl_ops vc_op;
1998 struct ice_vsi *vsi;
1999 int i;
2000
2001 if (set) {
2002 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2003 ice_vc_cfg_mac = ice_vc_add_mac_addr;
2004 } else {
2005 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2006 ice_vc_cfg_mac = ice_vc_del_mac_addr;
2007 }
2008
2009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2010 !ice_vc_isvalid_vsi_id(vf, vsi_id: al->vsi_id)) {
2011 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2012 goto handle_mac_exit;
2013 }
2014
2015 /* If this VF is not privileged, then we can't add more than a
2016 * limited number of addresses. Check to make sure that the
2017 * additions do not push us over the limit.
2018 */
2019 if (set && !ice_is_vf_trusted(vf) &&
2020 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2021 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2022 vf->vf_id);
2023 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2024 goto handle_mac_exit;
2025 }
2026
2027 vsi = ice_get_vf_vsi(vf);
2028 if (!vsi) {
2029 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2030 goto handle_mac_exit;
2031 }
2032
2033 for (i = 0; i < al->num_elements; i++) {
2034 u8 *mac_addr = al->list[i].addr;
2035 int result;
2036
2037 if (is_broadcast_ether_addr(addr: mac_addr) ||
2038 is_zero_ether_addr(addr: mac_addr))
2039 continue;
2040
2041 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2042 if (result == -EEXIST || result == -ENOENT) {
2043 continue;
2044 } else if (result) {
2045 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2046 goto handle_mac_exit;
2047 }
2048 }
2049
2050handle_mac_exit:
2051 /* send the response to the VF */
2052 return ice_vc_send_msg_to_vf(vf, v_opcode: vc_op, v_retval: v_ret, NULL, msglen: 0);
2053}
2054
2055/**
2056 * ice_vc_add_mac_addr_msg
2057 * @vf: pointer to the VF info
2058 * @msg: pointer to the msg buffer
2059 *
2060 * add guest MAC address filter
2061 */
2062static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2063{
2064 return ice_vc_handle_mac_addr_msg(vf, msg, set: true);
2065}
2066
2067/**
2068 * ice_vc_del_mac_addr_msg
2069 * @vf: pointer to the VF info
2070 * @msg: pointer to the msg buffer
2071 *
2072 * remove guest MAC address filter
2073 */
2074static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2075{
2076 return ice_vc_handle_mac_addr_msg(vf, msg, set: false);
2077}
2078
2079/**
2080 * ice_vc_request_qs_msg
2081 * @vf: pointer to the VF info
2082 * @msg: pointer to the msg buffer
2083 *
2084 * VFs get a default number of queues but can use this message to request a
2085 * different number. If the request is successful, PF will reset the VF and
2086 * return 0. If unsuccessful, PF will send message informing VF of number of
2087 * available queue pairs via virtchnl message response to VF.
2088 */
2089static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2090{
2091 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2092 struct virtchnl_vf_res_request *vfres =
2093 (struct virtchnl_vf_res_request *)msg;
2094 u16 req_queues = vfres->num_queue_pairs;
2095 struct ice_pf *pf = vf->pf;
2096 u16 max_allowed_vf_queues;
2097 u16 tx_rx_queue_left;
2098 struct device *dev;
2099 u16 cur_queues;
2100
2101 dev = ice_pf_to_dev(pf);
2102 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2103 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2104 goto error_param;
2105 }
2106
2107 cur_queues = vf->num_vf_qs;
2108 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2109 ice_get_avail_rxq_count(pf));
2110 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2111 if (!req_queues) {
2112 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2113 vf->vf_id);
2114 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2115 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2116 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2117 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2118 } else if (req_queues > cur_queues &&
2119 req_queues - cur_queues > tx_rx_queue_left) {
2120 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2121 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2122 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2123 ICE_MAX_RSS_QS_PER_VF);
2124 } else {
2125 /* request is successful, then reset VF */
2126 vf->num_req_qs = req_queues;
2127 ice_reset_vf(vf, flags: ICE_VF_RESET_NOTIFY);
2128 dev_info(dev, "VF %d granted request of %u queues.\n",
2129 vf->vf_id, req_queues);
2130 return 0;
2131 }
2132
2133error_param:
2134 /* send the response to the VF */
2135 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_REQUEST_QUEUES,
2136 v_retval: v_ret, msg: (u8 *)vfres, msglen: sizeof(*vfres));
2137}
2138
2139/**
2140 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2141 * @caps: VF driver negotiated capabilities
2142 *
2143 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2144 */
2145static bool ice_vf_vlan_offload_ena(u32 caps)
2146{
2147 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2148}
2149
2150/**
2151 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2152 * @vf: VF used to determine if VLAN promiscuous config is allowed
2153 */
2154static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2155{
2156 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2157 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2158 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2159 return true;
2160
2161 return false;
2162}
2163
2164/**
2165 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2166 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2167 * @vlan: VLAN used to enable VLAN promiscuous
2168 *
2169 * This function should only be called if VLAN promiscuous mode is allowed,
2170 * which can be determined via ice_is_vlan_promisc_allowed().
2171 */
2172static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2173{
2174 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2175 int status;
2176
2177 status = ice_fltr_set_vsi_promisc(hw: &vsi->back->hw, vsi_handle: vsi->idx, promisc_mask: promisc_m,
2178 vid: vlan->vid);
2179 if (status && status != -EEXIST)
2180 return status;
2181
2182 return 0;
2183}
2184
2185/**
2186 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2187 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2188 * @vlan: VLAN used to disable VLAN promiscuous
2189 *
2190 * This function should only be called if VLAN promiscuous mode is allowed,
2191 * which can be determined via ice_is_vlan_promisc_allowed().
2192 */
2193static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2194{
2195 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2196 int status;
2197
2198 status = ice_fltr_clear_vsi_promisc(hw: &vsi->back->hw, vsi_handle: vsi->idx, promisc_mask: promisc_m,
2199 vid: vlan->vid);
2200 if (status && status != -ENOENT)
2201 return status;
2202
2203 return 0;
2204}
2205
2206/**
2207 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2208 * @vf: VF to check against
2209 * @vsi: VF's VSI
2210 *
2211 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2212 * wants to, so return false.
2213 *
2214 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2215 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2216 */
2217static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2218{
2219 if (ice_is_vf_trusted(vf))
2220 return false;
2221
2222#define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1
2223 return ((ice_vsi_num_non_zero_vlans(vsi) +
2224 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2225}
2226
2227/**
2228 * ice_vc_process_vlan_msg
2229 * @vf: pointer to the VF info
2230 * @msg: pointer to the msg buffer
2231 * @add_v: Add VLAN if true, otherwise delete VLAN
2232 *
2233 * Process virtchnl op to add or remove programmed guest VLAN ID
2234 */
2235static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2236{
2237 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2238 struct virtchnl_vlan_filter_list *vfl =
2239 (struct virtchnl_vlan_filter_list *)msg;
2240 struct ice_pf *pf = vf->pf;
2241 bool vlan_promisc = false;
2242 struct ice_vsi *vsi;
2243 struct device *dev;
2244 int status = 0;
2245 int i;
2246
2247 dev = ice_pf_to_dev(pf);
2248 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2249 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2250 goto error_param;
2251 }
2252
2253 if (!ice_vf_vlan_offload_ena(caps: vf->driver_caps)) {
2254 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2255 goto error_param;
2256 }
2257
2258 if (!ice_vc_isvalid_vsi_id(vf, vsi_id: vfl->vsi_id)) {
2259 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2260 goto error_param;
2261 }
2262
2263 for (i = 0; i < vfl->num_elements; i++) {
2264 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2265 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2266 dev_err(dev, "invalid VF VLAN id %d\n",
2267 vfl->vlan_id[i]);
2268 goto error_param;
2269 }
2270 }
2271
2272 vsi = ice_get_vf_vsi(vf);
2273 if (!vsi) {
2274 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2275 goto error_param;
2276 }
2277
2278 if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2279 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2280 vf->vf_id);
2281 /* There is no need to let VF know about being not trusted,
2282 * so we can just return success message here
2283 */
2284 goto error_param;
2285 }
2286
2287 /* in DVM a VF can add/delete inner VLAN filters when
2288 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2289 */
2290 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(hw: &pf->hw)) {
2291 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2292 goto error_param;
2293 }
2294
2295 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2296 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2297 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2298 */
2299 vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2300 !ice_is_dvm_ena(hw: &pf->hw) &&
2301 !ice_vf_is_port_vlan_ena(vf);
2302
2303 if (add_v) {
2304 for (i = 0; i < vfl->num_elements; i++) {
2305 u16 vid = vfl->vlan_id[i];
2306 struct ice_vlan vlan;
2307
2308 if (ice_vf_has_max_vlans(vf, vsi)) {
2309 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2310 vf->vf_id);
2311 /* There is no need to let VF know about being
2312 * not trusted, so we can just return success
2313 * message here as well.
2314 */
2315 goto error_param;
2316 }
2317
2318 /* we add VLAN 0 by default for each VF so we can enable
2319 * Tx VLAN anti-spoof without triggering MDD events so
2320 * we don't need to add it again here
2321 */
2322 if (!vid)
2323 continue;
2324
2325 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2326 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2327 if (status) {
2328 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2329 goto error_param;
2330 }
2331
2332 /* Enable VLAN filtering on first non-zero VLAN */
2333 if (!vlan_promisc && vid && !ice_is_dvm_ena(hw: &pf->hw)) {
2334 if (vf->spoofchk) {
2335 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2336 if (status) {
2337 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2338 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2339 vid, status);
2340 goto error_param;
2341 }
2342 }
2343 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2344 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2345 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2346 vid, status);
2347 goto error_param;
2348 }
2349 } else if (vlan_promisc) {
2350 status = ice_vf_ena_vlan_promisc(vsi, vlan: &vlan);
2351 if (status) {
2352 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2353 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2354 vid, status);
2355 }
2356 }
2357 }
2358 } else {
2359 /* In case of non_trusted VF, number of VLAN elements passed
2360 * to PF for removal might be greater than number of VLANs
2361 * filter programmed for that VF - So, use actual number of
2362 * VLANS added earlier with add VLAN opcode. In order to avoid
2363 * removing VLAN that doesn't exist, which result to sending
2364 * erroneous failed message back to the VF
2365 */
2366 int num_vf_vlan;
2367
2368 num_vf_vlan = vsi->num_vlan;
2369 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2370 u16 vid = vfl->vlan_id[i];
2371 struct ice_vlan vlan;
2372
2373 /* we add VLAN 0 by default for each VF so we can enable
2374 * Tx VLAN anti-spoof without triggering MDD events so
2375 * we don't want a VIRTCHNL request to remove it
2376 */
2377 if (!vid)
2378 continue;
2379
2380 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2381 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2382 if (status) {
2383 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2384 goto error_param;
2385 }
2386
2387 /* Disable VLAN filtering when only VLAN 0 is left */
2388 if (!ice_vsi_has_non_zero_vlans(vsi)) {
2389 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2390 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2391 }
2392
2393 if (vlan_promisc)
2394 ice_vf_dis_vlan_promisc(vsi, vlan: &vlan);
2395 }
2396 }
2397
2398error_param:
2399 /* send the response to the VF */
2400 if (add_v)
2401 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_ADD_VLAN, v_retval: v_ret,
2402 NULL, msglen: 0);
2403 else
2404 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_DEL_VLAN, v_retval: v_ret,
2405 NULL, msglen: 0);
2406}
2407
2408/**
2409 * ice_vc_add_vlan_msg
2410 * @vf: pointer to the VF info
2411 * @msg: pointer to the msg buffer
2412 *
2413 * Add and program guest VLAN ID
2414 */
2415static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2416{
2417 return ice_vc_process_vlan_msg(vf, msg, add_v: true);
2418}
2419
2420/**
2421 * ice_vc_remove_vlan_msg
2422 * @vf: pointer to the VF info
2423 * @msg: pointer to the msg buffer
2424 *
2425 * remove programmed guest VLAN ID
2426 */
2427static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2428{
2429 return ice_vc_process_vlan_msg(vf, msg, add_v: false);
2430}
2431
2432/**
2433 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2434 * @vsi: pointer to the VF VSI info
2435 */
2436static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2437{
2438 unsigned int i;
2439
2440 ice_for_each_alloc_rxq(vsi, i)
2441 if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2442 return true;
2443
2444 return false;
2445}
2446
2447/**
2448 * ice_vc_ena_vlan_stripping
2449 * @vf: pointer to the VF info
2450 *
2451 * Enable VLAN header stripping for a given VF
2452 */
2453static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2454{
2455 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2456 struct ice_vsi *vsi;
2457
2458 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2459 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2460 goto error_param;
2461 }
2462
2463 if (!ice_vf_vlan_offload_ena(caps: vf->driver_caps)) {
2464 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2465 goto error_param;
2466 }
2467
2468 vsi = ice_get_vf_vsi(vf);
2469 if (!vsi) {
2470 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2471 goto error_param;
2472 }
2473
2474 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2475 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2476 else
2477 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2478
2479error_param:
2480 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2481 v_retval: v_ret, NULL, msglen: 0);
2482}
2483
2484/**
2485 * ice_vc_dis_vlan_stripping
2486 * @vf: pointer to the VF info
2487 *
2488 * Disable VLAN header stripping for a given VF
2489 */
2490static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2491{
2492 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2493 struct ice_vsi *vsi;
2494
2495 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2496 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2497 goto error_param;
2498 }
2499
2500 if (!ice_vf_vlan_offload_ena(caps: vf->driver_caps)) {
2501 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2502 goto error_param;
2503 }
2504
2505 vsi = ice_get_vf_vsi(vf);
2506 if (!vsi) {
2507 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2508 goto error_param;
2509 }
2510
2511 if (vsi->inner_vlan_ops.dis_stripping(vsi))
2512 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2513 else
2514 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2515
2516error_param:
2517 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2518 v_retval: v_ret, NULL, msglen: 0);
2519}
2520
2521/**
2522 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2523 * @vf: pointer to the VF info
2524 */
2525static int ice_vc_get_rss_hena(struct ice_vf *vf)
2526{
2527 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2528 struct virtchnl_rss_hena *vrh = NULL;
2529 int len = 0, ret;
2530
2531 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2532 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2533 goto err;
2534 }
2535
2536 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2537 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2538 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2539 goto err;
2540 }
2541
2542 len = sizeof(struct virtchnl_rss_hena);
2543 vrh = kzalloc(size: len, GFP_KERNEL);
2544 if (!vrh) {
2545 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2546 len = 0;
2547 goto err;
2548 }
2549
2550 vrh->hena = ICE_DEFAULT_RSS_HENA;
2551err:
2552 /* send the response back to the VF */
2553 ret = ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_retval: v_ret,
2554 msg: (u8 *)vrh, msglen: len);
2555 kfree(objp: vrh);
2556 return ret;
2557}
2558
2559/**
2560 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2561 * @vf: pointer to the VF info
2562 * @msg: pointer to the msg buffer
2563 */
2564static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2565{
2566 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2567 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2568 struct ice_pf *pf = vf->pf;
2569 struct ice_vsi *vsi;
2570 struct device *dev;
2571 int status;
2572
2573 dev = ice_pf_to_dev(pf);
2574
2575 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2576 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2577 goto err;
2578 }
2579
2580 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2581 dev_err(dev, "RSS not supported by PF\n");
2582 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2583 goto err;
2584 }
2585
2586 vsi = ice_get_vf_vsi(vf);
2587 if (!vsi) {
2588 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2589 goto err;
2590 }
2591
2592 /* clear all previously programmed RSS configuration to allow VF drivers
2593 * the ability to customize the RSS configuration and/or completely
2594 * disable RSS
2595 */
2596 status = ice_rem_vsi_rss_cfg(hw: &pf->hw, vsi_handle: vsi->idx);
2597 if (status && !vrh->hena) {
2598 /* only report failure to clear the current RSS configuration if
2599 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2600 */
2601 v_ret = ice_err_to_virt_err(err: status);
2602 goto err;
2603 } else if (status) {
2604 /* allow the VF to update the RSS configuration even on failure
2605 * to clear the current RSS confguration in an attempt to keep
2606 * RSS in a working state
2607 */
2608 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2609 vf->vf_id);
2610 }
2611
2612 if (vrh->hena) {
2613 status = ice_add_avf_rss_cfg(hw: &pf->hw, vsi_handle: vsi->idx, hashed_flds: vrh->hena);
2614 v_ret = ice_err_to_virt_err(err: status);
2615 }
2616
2617 /* send the response to the VF */
2618err:
2619 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_SET_RSS_HENA, v_retval: v_ret,
2620 NULL, msglen: 0);
2621}
2622
2623/**
2624 * ice_vc_query_rxdid - query RXDID supported by DDP package
2625 * @vf: pointer to VF info
2626 *
2627 * Called from VF to query a bitmap of supported flexible
2628 * descriptor RXDIDs of a DDP package.
2629 */
2630static int ice_vc_query_rxdid(struct ice_vf *vf)
2631{
2632 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2633 struct virtchnl_supported_rxdids *rxdid = NULL;
2634 struct ice_hw *hw = &vf->pf->hw;
2635 struct ice_pf *pf = vf->pf;
2636 int len = 0;
2637 int ret, i;
2638 u32 regval;
2639
2640 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2641 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2642 goto err;
2643 }
2644
2645 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2646 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2647 goto err;
2648 }
2649
2650 len = sizeof(struct virtchnl_supported_rxdids);
2651 rxdid = kzalloc(size: len, GFP_KERNEL);
2652 if (!rxdid) {
2653 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2654 len = 0;
2655 goto err;
2656 }
2657
2658 /* RXDIDs supported by DDP package can be read from the register
2659 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2660 * is not listed in DDP package, add it in the bitmap manually.
2661 * Legacy 16byte descriptor is not supported.
2662 */
2663 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2664
2665 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2666 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2667 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2668 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2669 rxdid->supported_rxdids |= BIT(i);
2670 }
2671
2672 pf->supported_rxdids = rxdid->supported_rxdids;
2673
2674err:
2675 ret = ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2676 v_retval: v_ret, msg: (u8 *)rxdid, msglen: len);
2677 kfree(objp: rxdid);
2678 return ret;
2679}
2680
2681/**
2682 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2683 * @vf: VF to enable/disable VLAN stripping for on initialization
2684 *
2685 * Set the default for VLAN stripping based on whether a port VLAN is configured
2686 * and the current VLAN mode of the device.
2687 */
2688static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2689{
2690 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2691
2692 vf->vlan_strip_ena = 0;
2693
2694 if (!vsi)
2695 return -EINVAL;
2696
2697 /* don't modify stripping if port VLAN is configured in SVM since the
2698 * port VLAN is based on the inner/single VLAN in SVM
2699 */
2700 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(hw: &vsi->back->hw))
2701 return 0;
2702
2703 if (ice_vf_vlan_offload_ena(caps: vf->driver_caps)) {
2704 int err;
2705
2706 err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2707 if (!err)
2708 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2709 return err;
2710 }
2711
2712 return vsi->inner_vlan_ops.dis_stripping(vsi);
2713}
2714
2715static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2716{
2717 if (vf->trusted)
2718 return VLAN_N_VID;
2719 else
2720 return ICE_MAX_VLAN_PER_VF;
2721}
2722
2723/**
2724 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2725 * @vf: VF that being checked for
2726 *
2727 * When the device is in double VLAN mode, check whether or not the outer VLAN
2728 * is allowed.
2729 */
2730static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2731{
2732 if (ice_vf_is_port_vlan_ena(vf))
2733 return true;
2734
2735 return false;
2736}
2737
2738/**
2739 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2740 * @vf: VF that capabilities are being set for
2741 * @caps: VLAN capabilities to populate
2742 *
2743 * Determine VLAN capabilities support based on whether a port VLAN is
2744 * configured. If a port VLAN is configured then the VF should use the inner
2745 * filtering/offload capabilities since the port VLAN is using the outer VLAN
2746 * capabilies.
2747 */
2748static void
2749ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2750{
2751 struct virtchnl_vlan_supported_caps *supported_caps;
2752
2753 if (ice_vf_outer_vlan_not_allowed(vf)) {
2754 /* until support for inner VLAN filtering is added when a port
2755 * VLAN is configured, only support software offloaded inner
2756 * VLANs when a port VLAN is confgured in DVM
2757 */
2758 supported_caps = &caps->filtering.filtering_support;
2759 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2760
2761 supported_caps = &caps->offloads.stripping_support;
2762 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2763 VIRTCHNL_VLAN_TOGGLE |
2764 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2765 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2766
2767 supported_caps = &caps->offloads.insertion_support;
2768 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2769 VIRTCHNL_VLAN_TOGGLE |
2770 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2771 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2772
2773 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2774 caps->offloads.ethertype_match =
2775 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2776 } else {
2777 supported_caps = &caps->filtering.filtering_support;
2778 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2779 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2780 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2781 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2782 VIRTCHNL_VLAN_ETHERTYPE_AND;
2783 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2784 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2785 VIRTCHNL_VLAN_ETHERTYPE_9100;
2786
2787 supported_caps = &caps->offloads.stripping_support;
2788 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2789 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2790 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2791 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2792 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2793 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2794 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2795 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2796 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2797
2798 supported_caps = &caps->offloads.insertion_support;
2799 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2800 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2801 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2802 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2803 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2804 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2805 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2806 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2807 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2808
2809 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2810
2811 caps->offloads.ethertype_match =
2812 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2813 }
2814
2815 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2816}
2817
2818/**
2819 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2820 * @vf: VF that capabilities are being set for
2821 * @caps: VLAN capabilities to populate
2822 *
2823 * Determine VLAN capabilities support based on whether a port VLAN is
2824 * configured. If a port VLAN is configured then the VF does not have any VLAN
2825 * filtering or offload capabilities since the port VLAN is using the inner VLAN
2826 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2827 * VLAN fitlering and offload capabilities.
2828 */
2829static void
2830ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2831{
2832 struct virtchnl_vlan_supported_caps *supported_caps;
2833
2834 if (ice_vf_is_port_vlan_ena(vf)) {
2835 supported_caps = &caps->filtering.filtering_support;
2836 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2837 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2838
2839 supported_caps = &caps->offloads.stripping_support;
2840 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2841 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2842
2843 supported_caps = &caps->offloads.insertion_support;
2844 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2845 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2846
2847 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2848 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2849 caps->filtering.max_filters = 0;
2850 } else {
2851 supported_caps = &caps->filtering.filtering_support;
2852 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2853 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2854 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2855
2856 supported_caps = &caps->offloads.stripping_support;
2857 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2858 VIRTCHNL_VLAN_TOGGLE |
2859 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2860 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2861
2862 supported_caps = &caps->offloads.insertion_support;
2863 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2864 VIRTCHNL_VLAN_TOGGLE |
2865 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2866 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2867
2868 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2869 caps->offloads.ethertype_match =
2870 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2871 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2872 }
2873}
2874
2875/**
2876 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2877 * @vf: VF to determine VLAN capabilities for
2878 *
2879 * This will only be called if the VF and PF successfully negotiated
2880 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2881 *
2882 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2883 * is configured or not.
2884 */
2885static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2886{
2887 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2888 struct virtchnl_vlan_caps *caps = NULL;
2889 int err, len = 0;
2890
2891 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2892 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2893 goto out;
2894 }
2895
2896 caps = kzalloc(size: sizeof(*caps), GFP_KERNEL);
2897 if (!caps) {
2898 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2899 goto out;
2900 }
2901 len = sizeof(*caps);
2902
2903 if (ice_is_dvm_ena(hw: &vf->pf->hw))
2904 ice_vc_set_dvm_caps(vf, caps);
2905 else
2906 ice_vc_set_svm_caps(vf, caps);
2907
2908 /* store negotiated caps to prevent invalid VF messages */
2909 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2910
2911out:
2912 err = ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2913 v_retval: v_ret, msg: (u8 *)caps, msglen: len);
2914 kfree(objp: caps);
2915 return err;
2916}
2917
2918/**
2919 * ice_vc_validate_vlan_tpid - validate VLAN TPID
2920 * @filtering_caps: negotiated/supported VLAN filtering capabilities
2921 * @tpid: VLAN TPID used for validation
2922 *
2923 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2924 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2925 */
2926static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2927{
2928 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2929
2930 switch (tpid) {
2931 case ETH_P_8021Q:
2932 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2933 break;
2934 case ETH_P_8021AD:
2935 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2936 break;
2937 case ETH_P_QINQ1:
2938 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2939 break;
2940 }
2941
2942 if (!(filtering_caps & vlan_ethertype))
2943 return false;
2944
2945 return true;
2946}
2947
2948/**
2949 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2950 * @vc_vlan: virtchnl_vlan to validate
2951 *
2952 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2953 * false. Otherwise return true.
2954 */
2955static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2956{
2957 if (!vc_vlan->tci || !vc_vlan->tpid)
2958 return false;
2959
2960 return true;
2961}
2962
2963/**
2964 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2965 * @vfc: negotiated/supported VLAN filtering capabilities
2966 * @vfl: VLAN filter list from VF to validate
2967 *
2968 * Validate all of the filters in the VLAN filter list from the VF. If any of
2969 * the checks fail then return false. Otherwise return true.
2970 */
2971static bool
2972ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2973 struct virtchnl_vlan_filter_list_v2 *vfl)
2974{
2975 u16 i;
2976
2977 if (!vfl->num_elements)
2978 return false;
2979
2980 for (i = 0; i < vfl->num_elements; i++) {
2981 struct virtchnl_vlan_supported_caps *filtering_support =
2982 &vfc->filtering_support;
2983 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2984 struct virtchnl_vlan *outer = &vlan_fltr->outer;
2985 struct virtchnl_vlan *inner = &vlan_fltr->inner;
2986
2987 if ((ice_vc_is_valid_vlan(vc_vlan: outer) &&
2988 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
2989 (ice_vc_is_valid_vlan(vc_vlan: inner) &&
2990 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
2991 return false;
2992
2993 if ((outer->tci_mask &&
2994 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
2995 (inner->tci_mask &&
2996 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
2997 return false;
2998
2999 if (((outer->tci & VLAN_PRIO_MASK) &&
3000 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3001 ((inner->tci & VLAN_PRIO_MASK) &&
3002 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3003 return false;
3004
3005 if ((ice_vc_is_valid_vlan(vc_vlan: outer) &&
3006 !ice_vc_validate_vlan_tpid(filtering_caps: filtering_support->outer,
3007 tpid: outer->tpid)) ||
3008 (ice_vc_is_valid_vlan(vc_vlan: inner) &&
3009 !ice_vc_validate_vlan_tpid(filtering_caps: filtering_support->inner,
3010 tpid: inner->tpid)))
3011 return false;
3012 }
3013
3014 return true;
3015}
3016
3017/**
3018 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3019 * @vc_vlan: struct virtchnl_vlan to transform
3020 */
3021static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3022{
3023 struct ice_vlan vlan = { 0 };
3024
3025 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3026 vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3027 vlan.tpid = vc_vlan->tpid;
3028
3029 return vlan;
3030}
3031
3032/**
3033 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3034 * @vsi: VF's VSI used to perform the action
3035 * @vlan_action: function to perform the action with (i.e. add/del)
3036 * @vlan: VLAN filter to perform the action with
3037 */
3038static int
3039ice_vc_vlan_action(struct ice_vsi *vsi,
3040 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3041 struct ice_vlan *vlan)
3042{
3043 int err;
3044
3045 err = vlan_action(vsi, vlan);
3046 if (err)
3047 return err;
3048
3049 return 0;
3050}
3051
3052/**
3053 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3054 * @vf: VF used to delete the VLAN(s)
3055 * @vsi: VF's VSI used to delete the VLAN(s)
3056 * @vfl: virthchnl filter list used to delete the filters
3057 */
3058static int
3059ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3060 struct virtchnl_vlan_filter_list_v2 *vfl)
3061{
3062 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3063 int err;
3064 u16 i;
3065
3066 for (i = 0; i < vfl->num_elements; i++) {
3067 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3068 struct virtchnl_vlan *vc_vlan;
3069
3070 vc_vlan = &vlan_fltr->outer;
3071 if (ice_vc_is_valid_vlan(vc_vlan)) {
3072 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3073
3074 err = ice_vc_vlan_action(vsi,
3075 vlan_action: vsi->outer_vlan_ops.del_vlan,
3076 vlan: &vlan);
3077 if (err)
3078 return err;
3079
3080 if (vlan_promisc)
3081 ice_vf_dis_vlan_promisc(vsi, vlan: &vlan);
3082
3083 /* Disable VLAN filtering when only VLAN 0 is left */
3084 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(hw: &vsi->back->hw)) {
3085 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3086 if (err)
3087 return err;
3088 }
3089 }
3090
3091 vc_vlan = &vlan_fltr->inner;
3092 if (ice_vc_is_valid_vlan(vc_vlan)) {
3093 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3094
3095 err = ice_vc_vlan_action(vsi,
3096 vlan_action: vsi->inner_vlan_ops.del_vlan,
3097 vlan: &vlan);
3098 if (err)
3099 return err;
3100
3101 /* no support for VLAN promiscuous on inner VLAN unless
3102 * we are in Single VLAN Mode (SVM)
3103 */
3104 if (!ice_is_dvm_ena(hw: &vsi->back->hw)) {
3105 if (vlan_promisc)
3106 ice_vf_dis_vlan_promisc(vsi, vlan: &vlan);
3107
3108 /* Disable VLAN filtering when only VLAN 0 is left */
3109 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3110 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3111 if (err)
3112 return err;
3113 }
3114 }
3115 }
3116 }
3117
3118 return 0;
3119}
3120
3121/**
3122 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3123 * @vf: VF the message was received from
3124 * @msg: message received from the VF
3125 */
3126static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3127{
3128 struct virtchnl_vlan_filter_list_v2 *vfl =
3129 (struct virtchnl_vlan_filter_list_v2 *)msg;
3130 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3131 struct ice_vsi *vsi;
3132
3133 if (!ice_vc_validate_vlan_filter_list(vfc: &vf->vlan_v2_caps.filtering,
3134 vfl)) {
3135 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3136 goto out;
3137 }
3138
3139 if (!ice_vc_isvalid_vsi_id(vf, vsi_id: vfl->vport_id)) {
3140 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3141 goto out;
3142 }
3143
3144 vsi = ice_get_vf_vsi(vf);
3145 if (!vsi) {
3146 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3147 goto out;
3148 }
3149
3150 if (ice_vc_del_vlans(vf, vsi, vfl))
3151 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3152
3153out:
3154 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_DEL_VLAN_V2, v_retval: v_ret, NULL,
3155 msglen: 0);
3156}
3157
3158/**
3159 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3160 * @vf: VF used to add the VLAN(s)
3161 * @vsi: VF's VSI used to add the VLAN(s)
3162 * @vfl: virthchnl filter list used to add the filters
3163 */
3164static int
3165ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3166 struct virtchnl_vlan_filter_list_v2 *vfl)
3167{
3168 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3169 int err;
3170 u16 i;
3171
3172 for (i = 0; i < vfl->num_elements; i++) {
3173 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3174 struct virtchnl_vlan *vc_vlan;
3175
3176 vc_vlan = &vlan_fltr->outer;
3177 if (ice_vc_is_valid_vlan(vc_vlan)) {
3178 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3179
3180 err = ice_vc_vlan_action(vsi,
3181 vlan_action: vsi->outer_vlan_ops.add_vlan,
3182 vlan: &vlan);
3183 if (err)
3184 return err;
3185
3186 if (vlan_promisc) {
3187 err = ice_vf_ena_vlan_promisc(vsi, vlan: &vlan);
3188 if (err)
3189 return err;
3190 }
3191
3192 /* Enable VLAN filtering on first non-zero VLAN */
3193 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(hw: &vsi->back->hw)) {
3194 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3195 if (err)
3196 return err;
3197 }
3198 }
3199
3200 vc_vlan = &vlan_fltr->inner;
3201 if (ice_vc_is_valid_vlan(vc_vlan)) {
3202 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3203
3204 err = ice_vc_vlan_action(vsi,
3205 vlan_action: vsi->inner_vlan_ops.add_vlan,
3206 vlan: &vlan);
3207 if (err)
3208 return err;
3209
3210 /* no support for VLAN promiscuous on inner VLAN unless
3211 * we are in Single VLAN Mode (SVM)
3212 */
3213 if (!ice_is_dvm_ena(hw: &vsi->back->hw)) {
3214 if (vlan_promisc) {
3215 err = ice_vf_ena_vlan_promisc(vsi, vlan: &vlan);
3216 if (err)
3217 return err;
3218 }
3219
3220 /* Enable VLAN filtering on first non-zero VLAN */
3221 if (vf->spoofchk && vlan.vid) {
3222 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3223 if (err)
3224 return err;
3225 }
3226 }
3227 }
3228 }
3229
3230 return 0;
3231}
3232
3233/**
3234 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3235 * @vsi: VF VSI used to get number of existing VLAN filters
3236 * @vfc: negotiated/supported VLAN filtering capabilities
3237 * @vfl: VLAN filter list from VF to validate
3238 *
3239 * Validate all of the filters in the VLAN filter list from the VF during the
3240 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3241 * Otherwise return true.
3242 */
3243static bool
3244ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3245 struct virtchnl_vlan_filtering_caps *vfc,
3246 struct virtchnl_vlan_filter_list_v2 *vfl)
3247{
3248 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3249 vfl->num_elements;
3250
3251 if (num_requested_filters > vfc->max_filters)
3252 return false;
3253
3254 return ice_vc_validate_vlan_filter_list(vfc, vfl);
3255}
3256
3257/**
3258 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3259 * @vf: VF the message was received from
3260 * @msg: message received from the VF
3261 */
3262static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3263{
3264 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3265 struct virtchnl_vlan_filter_list_v2 *vfl =
3266 (struct virtchnl_vlan_filter_list_v2 *)msg;
3267 struct ice_vsi *vsi;
3268
3269 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3270 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3271 goto out;
3272 }
3273
3274 if (!ice_vc_isvalid_vsi_id(vf, vsi_id: vfl->vport_id)) {
3275 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3276 goto out;
3277 }
3278
3279 vsi = ice_get_vf_vsi(vf);
3280 if (!vsi) {
3281 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3282 goto out;
3283 }
3284
3285 if (!ice_vc_validate_add_vlan_filter_list(vsi,
3286 vfc: &vf->vlan_v2_caps.filtering,
3287 vfl)) {
3288 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3289 goto out;
3290 }
3291
3292 if (ice_vc_add_vlans(vf, vsi, vfl))
3293 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3294
3295out:
3296 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_ADD_VLAN_V2, v_retval: v_ret, NULL,
3297 msglen: 0);
3298}
3299
3300/**
3301 * ice_vc_valid_vlan_setting - validate VLAN setting
3302 * @negotiated_settings: negotiated VLAN settings during VF init
3303 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3304 */
3305static bool
3306ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3307{
3308 if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3309 return false;
3310
3311 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3312 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3313 */
3314 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3315 hweight32(ethertype_setting) > 1)
3316 return false;
3317
3318 /* ability to modify the VLAN setting was not negotiated */
3319 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3320 return false;
3321
3322 return true;
3323}
3324
3325/**
3326 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3327 * @caps: negotiated VLAN settings during VF init
3328 * @msg: message to validate
3329 *
3330 * Used to validate any VLAN virtchnl message sent as a
3331 * virtchnl_vlan_setting structure. Validates the message against the
3332 * negotiated/supported caps during VF driver init.
3333 */
3334static bool
3335ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3336 struct virtchnl_vlan_setting *msg)
3337{
3338 if ((!msg->outer_ethertype_setting &&
3339 !msg->inner_ethertype_setting) ||
3340 (!caps->outer && !caps->inner))
3341 return false;
3342
3343 if (msg->outer_ethertype_setting &&
3344 !ice_vc_valid_vlan_setting(negotiated_settings: caps->outer,
3345 ethertype_setting: msg->outer_ethertype_setting))
3346 return false;
3347
3348 if (msg->inner_ethertype_setting &&
3349 !ice_vc_valid_vlan_setting(negotiated_settings: caps->inner,
3350 ethertype_setting: msg->inner_ethertype_setting))
3351 return false;
3352
3353 return true;
3354}
3355
3356/**
3357 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3358 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3359 * @tpid: VLAN TPID to populate
3360 */
3361static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3362{
3363 switch (ethertype_setting) {
3364 case VIRTCHNL_VLAN_ETHERTYPE_8100:
3365 *tpid = ETH_P_8021Q;
3366 break;
3367 case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3368 *tpid = ETH_P_8021AD;
3369 break;
3370 case VIRTCHNL_VLAN_ETHERTYPE_9100:
3371 *tpid = ETH_P_QINQ1;
3372 break;
3373 default:
3374 *tpid = 0;
3375 return -EINVAL;
3376 }
3377
3378 return 0;
3379}
3380
3381/**
3382 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3383 * @vsi: VF's VSI used to enable the VLAN offload
3384 * @ena_offload: function used to enable the VLAN offload
3385 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3386 */
3387static int
3388ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3389 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3390 u32 ethertype_setting)
3391{
3392 u16 tpid;
3393 int err;
3394
3395 err = ice_vc_get_tpid(ethertype_setting, tpid: &tpid);
3396 if (err)
3397 return err;
3398
3399 err = ena_offload(vsi, tpid);
3400 if (err)
3401 return err;
3402
3403 return 0;
3404}
3405
3406#define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3
3407#define ICE_L2TSEL_BIT_OFFSET 23
3408enum ice_l2tsel {
3409 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3410 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3411};
3412
3413/**
3414 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3415 * @vsi: VSI used to update l2tsel on
3416 * @l2tsel: l2tsel setting requested
3417 *
3418 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3419 * This will modify which descriptor field the first offloaded VLAN will be
3420 * stripped into.
3421 */
3422static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3423{
3424 struct ice_hw *hw = &vsi->back->hw;
3425 u32 l2tsel_bit;
3426 int i;
3427
3428 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3429 l2tsel_bit = 0;
3430 else
3431 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3432
3433 for (i = 0; i < vsi->alloc_rxq; i++) {
3434 u16 pfq = vsi->rxq_map[i];
3435 u32 qrx_context_offset;
3436 u32 regval;
3437
3438 qrx_context_offset =
3439 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3440
3441 regval = rd32(hw, qrx_context_offset);
3442 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3443 regval |= l2tsel_bit;
3444 wr32(hw, qrx_context_offset, regval);
3445 }
3446}
3447
3448/**
3449 * ice_vc_ena_vlan_stripping_v2_msg
3450 * @vf: VF the message was received from
3451 * @msg: message received from the VF
3452 *
3453 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3454 */
3455static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3456{
3457 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3458 struct virtchnl_vlan_supported_caps *stripping_support;
3459 struct virtchnl_vlan_setting *strip_msg =
3460 (struct virtchnl_vlan_setting *)msg;
3461 u32 ethertype_setting;
3462 struct ice_vsi *vsi;
3463
3464 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3465 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3466 goto out;
3467 }
3468
3469 if (!ice_vc_isvalid_vsi_id(vf, vsi_id: strip_msg->vport_id)) {
3470 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3471 goto out;
3472 }
3473
3474 vsi = ice_get_vf_vsi(vf);
3475 if (!vsi) {
3476 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3477 goto out;
3478 }
3479
3480 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3481 if (!ice_vc_valid_vlan_setting_msg(caps: stripping_support, msg: strip_msg)) {
3482 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3483 goto out;
3484 }
3485
3486 if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3487 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3488 goto out;
3489 }
3490
3491 ethertype_setting = strip_msg->outer_ethertype_setting;
3492 if (ethertype_setting) {
3493 if (ice_vc_ena_vlan_offload(vsi,
3494 ena_offload: vsi->outer_vlan_ops.ena_stripping,
3495 ethertype_setting)) {
3496 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3497 goto out;
3498 } else {
3499 enum ice_l2tsel l2tsel =
3500 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3501
3502 /* PF tells the VF that the outer VLAN tag is always
3503 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3504 * inner is always extracted to
3505 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3506 * support outer stripping so the first tag always ends
3507 * up in L2TAG2_2ND and the second/inner tag, if
3508 * enabled, is extracted in L2TAG1.
3509 */
3510 ice_vsi_update_l2tsel(vsi, l2tsel);
3511
3512 vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3513 }
3514 }
3515
3516 ethertype_setting = strip_msg->inner_ethertype_setting;
3517 if (ethertype_setting &&
3518 ice_vc_ena_vlan_offload(vsi, ena_offload: vsi->inner_vlan_ops.ena_stripping,
3519 ethertype_setting)) {
3520 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3521 goto out;
3522 }
3523
3524 if (ethertype_setting)
3525 vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3526
3527out:
3528 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3529 v_retval: v_ret, NULL, msglen: 0);
3530}
3531
3532/**
3533 * ice_vc_dis_vlan_stripping_v2_msg
3534 * @vf: VF the message was received from
3535 * @msg: message received from the VF
3536 *
3537 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3538 */
3539static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3540{
3541 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3542 struct virtchnl_vlan_supported_caps *stripping_support;
3543 struct virtchnl_vlan_setting *strip_msg =
3544 (struct virtchnl_vlan_setting *)msg;
3545 u32 ethertype_setting;
3546 struct ice_vsi *vsi;
3547
3548 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3549 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3550 goto out;
3551 }
3552
3553 if (!ice_vc_isvalid_vsi_id(vf, vsi_id: strip_msg->vport_id)) {
3554 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3555 goto out;
3556 }
3557
3558 vsi = ice_get_vf_vsi(vf);
3559 if (!vsi) {
3560 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3561 goto out;
3562 }
3563
3564 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3565 if (!ice_vc_valid_vlan_setting_msg(caps: stripping_support, msg: strip_msg)) {
3566 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3567 goto out;
3568 }
3569
3570 ethertype_setting = strip_msg->outer_ethertype_setting;
3571 if (ethertype_setting) {
3572 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3573 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3574 goto out;
3575 } else {
3576 enum ice_l2tsel l2tsel =
3577 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3578
3579 /* PF tells the VF that the outer VLAN tag is always
3580 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3581 * inner is always extracted to
3582 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3583 * support inner stripping while outer stripping is
3584 * disabled so that the first and only tag is extracted
3585 * in L2TAG1.
3586 */
3587 ice_vsi_update_l2tsel(vsi, l2tsel);
3588
3589 vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3590 }
3591 }
3592
3593 ethertype_setting = strip_msg->inner_ethertype_setting;
3594 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3595 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3596 goto out;
3597 }
3598
3599 if (ethertype_setting)
3600 vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3601
3602out:
3603 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3604 v_retval: v_ret, NULL, msglen: 0);
3605}
3606
3607/**
3608 * ice_vc_ena_vlan_insertion_v2_msg
3609 * @vf: VF the message was received from
3610 * @msg: message received from the VF
3611 *
3612 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3613 */
3614static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3615{
3616 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3617 struct virtchnl_vlan_supported_caps *insertion_support;
3618 struct virtchnl_vlan_setting *insertion_msg =
3619 (struct virtchnl_vlan_setting *)msg;
3620 u32 ethertype_setting;
3621 struct ice_vsi *vsi;
3622
3623 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3624 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3625 goto out;
3626 }
3627
3628 if (!ice_vc_isvalid_vsi_id(vf, vsi_id: insertion_msg->vport_id)) {
3629 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3630 goto out;
3631 }
3632
3633 vsi = ice_get_vf_vsi(vf);
3634 if (!vsi) {
3635 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3636 goto out;
3637 }
3638
3639 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3640 if (!ice_vc_valid_vlan_setting_msg(caps: insertion_support, msg: insertion_msg)) {
3641 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3642 goto out;
3643 }
3644
3645 ethertype_setting = insertion_msg->outer_ethertype_setting;
3646 if (ethertype_setting &&
3647 ice_vc_ena_vlan_offload(vsi, ena_offload: vsi->outer_vlan_ops.ena_insertion,
3648 ethertype_setting)) {
3649 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3650 goto out;
3651 }
3652
3653 ethertype_setting = insertion_msg->inner_ethertype_setting;
3654 if (ethertype_setting &&
3655 ice_vc_ena_vlan_offload(vsi, ena_offload: vsi->inner_vlan_ops.ena_insertion,
3656 ethertype_setting)) {
3657 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3658 goto out;
3659 }
3660
3661out:
3662 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3663 v_retval: v_ret, NULL, msglen: 0);
3664}
3665
3666/**
3667 * ice_vc_dis_vlan_insertion_v2_msg
3668 * @vf: VF the message was received from
3669 * @msg: message received from the VF
3670 *
3671 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3672 */
3673static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3674{
3675 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3676 struct virtchnl_vlan_supported_caps *insertion_support;
3677 struct virtchnl_vlan_setting *insertion_msg =
3678 (struct virtchnl_vlan_setting *)msg;
3679 u32 ethertype_setting;
3680 struct ice_vsi *vsi;
3681
3682 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3683 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3684 goto out;
3685 }
3686
3687 if (!ice_vc_isvalid_vsi_id(vf, vsi_id: insertion_msg->vport_id)) {
3688 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3689 goto out;
3690 }
3691
3692 vsi = ice_get_vf_vsi(vf);
3693 if (!vsi) {
3694 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3695 goto out;
3696 }
3697
3698 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3699 if (!ice_vc_valid_vlan_setting_msg(caps: insertion_support, msg: insertion_msg)) {
3700 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3701 goto out;
3702 }
3703
3704 ethertype_setting = insertion_msg->outer_ethertype_setting;
3705 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3706 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3707 goto out;
3708 }
3709
3710 ethertype_setting = insertion_msg->inner_ethertype_setting;
3711 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3712 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3713 goto out;
3714 }
3715
3716out:
3717 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3718 v_retval: v_ret, NULL, msglen: 0);
3719}
3720
3721static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3722 .get_ver_msg = ice_vc_get_ver_msg,
3723 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3724 .reset_vf = ice_vc_reset_vf_msg,
3725 .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3726 .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3727 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3728 .ena_qs_msg = ice_vc_ena_qs_msg,
3729 .dis_qs_msg = ice_vc_dis_qs_msg,
3730 .request_qs_msg = ice_vc_request_qs_msg,
3731 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3732 .config_rss_key = ice_vc_config_rss_key,
3733 .config_rss_lut = ice_vc_config_rss_lut,
3734 .get_stats_msg = ice_vc_get_stats_msg,
3735 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3736 .add_vlan_msg = ice_vc_add_vlan_msg,
3737 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3738 .query_rxdid = ice_vc_query_rxdid,
3739 .get_rss_hena = ice_vc_get_rss_hena,
3740 .set_rss_hena_msg = ice_vc_set_rss_hena,
3741 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3742 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3743 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3744 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3745 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3746 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3747 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3748 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3749 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3750 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3751 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3752 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3753};
3754
3755/**
3756 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3757 * @vf: the VF to switch ops
3758 */
3759void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3760{
3761 vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3762}
3763
3764/**
3765 * ice_vc_repr_add_mac
3766 * @vf: pointer to VF
3767 * @msg: virtchannel message
3768 *
3769 * When port representors are created, we do not add MAC rule
3770 * to firmware, we store it so that PF could report same
3771 * MAC as VF.
3772 */
3773static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3774{
3775 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3776 struct virtchnl_ether_addr_list *al =
3777 (struct virtchnl_ether_addr_list *)msg;
3778 struct ice_vsi *vsi;
3779 struct ice_pf *pf;
3780 int i;
3781
3782 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3783 !ice_vc_isvalid_vsi_id(vf, vsi_id: al->vsi_id)) {
3784 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3785 goto handle_mac_exit;
3786 }
3787
3788 pf = vf->pf;
3789
3790 vsi = ice_get_vf_vsi(vf);
3791 if (!vsi) {
3792 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3793 goto handle_mac_exit;
3794 }
3795
3796 for (i = 0; i < al->num_elements; i++) {
3797 u8 *mac_addr = al->list[i].addr;
3798
3799 if (!is_unicast_ether_addr(addr: mac_addr) ||
3800 ether_addr_equal(addr1: mac_addr, addr2: vf->hw_lan_addr))
3801 continue;
3802
3803 if (vf->pf_set_mac) {
3804 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3805 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3806 goto handle_mac_exit;
3807 }
3808
3809 ice_vfhw_mac_add(vf, vc_ether_addr: &al->list[i]);
3810 vf->num_mac++;
3811 break;
3812 }
3813
3814handle_mac_exit:
3815 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_ADD_ETH_ADDR,
3816 v_retval: v_ret, NULL, msglen: 0);
3817}
3818
3819/**
3820 * ice_vc_repr_del_mac - response with success for deleting MAC
3821 * @vf: pointer to VF
3822 * @msg: virtchannel message
3823 *
3824 * Respond with success to not break normal VF flow.
3825 * For legacy VF driver try to update cached MAC address.
3826 */
3827static int
3828ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3829{
3830 struct virtchnl_ether_addr_list *al =
3831 (struct virtchnl_ether_addr_list *)msg;
3832
3833 ice_update_legacy_cached_mac(vf, vc_ether_addr: &al->list[0]);
3834
3835 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_DEL_ETH_ADDR,
3836 v_retval: VIRTCHNL_STATUS_SUCCESS, NULL, msglen: 0);
3837}
3838
3839static int
3840ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3841{
3842 dev_dbg(ice_pf_to_dev(vf->pf),
3843 "Can't config promiscuous mode in switchdev mode for VF %d\n",
3844 vf->vf_id);
3845 return ice_vc_send_msg_to_vf(vf, v_opcode: VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3846 v_retval: VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3847 NULL, msglen: 0);
3848}
3849
3850static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3851 .get_ver_msg = ice_vc_get_ver_msg,
3852 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3853 .reset_vf = ice_vc_reset_vf_msg,
3854 .add_mac_addr_msg = ice_vc_repr_add_mac,
3855 .del_mac_addr_msg = ice_vc_repr_del_mac,
3856 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3857 .ena_qs_msg = ice_vc_ena_qs_msg,
3858 .dis_qs_msg = ice_vc_dis_qs_msg,
3859 .request_qs_msg = ice_vc_request_qs_msg,
3860 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3861 .config_rss_key = ice_vc_config_rss_key,
3862 .config_rss_lut = ice_vc_config_rss_lut,
3863 .get_stats_msg = ice_vc_get_stats_msg,
3864 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3865 .add_vlan_msg = ice_vc_add_vlan_msg,
3866 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3867 .query_rxdid = ice_vc_query_rxdid,
3868 .get_rss_hena = ice_vc_get_rss_hena,
3869 .set_rss_hena_msg = ice_vc_set_rss_hena,
3870 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3871 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3872 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3873 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3874 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3875 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3876 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3877 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3878 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3879 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3880 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3881 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3882};
3883
3884/**
3885 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3886 * @vf: the VF to switch ops
3887 */
3888void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3889{
3890 vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3891}
3892
3893/**
3894 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3895 * @vf: the VF to check
3896 * @mbxdata: data about the state of the mailbox
3897 *
3898 * Detect if a given VF might be malicious and attempting to overflow the PF
3899 * mailbox. If so, log a warning message and ignore this event.
3900 */
3901static bool
3902ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3903{
3904 bool report_malvf = false;
3905 struct device *dev;
3906 struct ice_pf *pf;
3907 int status;
3908
3909 pf = vf->pf;
3910 dev = ice_pf_to_dev(pf);
3911
3912 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3913 return vf->mbx_info.malicious;
3914
3915 /* check to see if we have a newly malicious VF */
3916 status = ice_mbx_vf_state_handler(hw: &pf->hw, mbx_data: mbxdata, vf_info: &vf->mbx_info,
3917 report_malvf: &report_malvf);
3918 if (status)
3919 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3920 vf->vf_id, vf->dev_lan_addr, status);
3921
3922 if (report_malvf) {
3923 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3924 u8 zero_addr[ETH_ALEN] = {};
3925
3926 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3927 vf->dev_lan_addr,
3928 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3929 }
3930
3931 return vf->mbx_info.malicious;
3932}
3933
3934/**
3935 * ice_vc_process_vf_msg - Process request from VF
3936 * @pf: pointer to the PF structure
3937 * @event: pointer to the AQ event
3938 * @mbxdata: information used to detect VF attempting mailbox overflow
3939 *
3940 * called from the common asq/arq handler to
3941 * process request from VF
3942 */
3943void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
3944 struct ice_mbx_data *mbxdata)
3945{
3946 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3947 s16 vf_id = le16_to_cpu(event->desc.retval);
3948 const struct ice_virtchnl_ops *ops;
3949 u16 msglen = event->msg_len;
3950 u8 *msg = event->msg_buf;
3951 struct ice_vf *vf = NULL;
3952 struct device *dev;
3953 int err = 0;
3954
3955 dev = ice_pf_to_dev(pf);
3956
3957 vf = ice_get_vf_by_id(pf, vf_id);
3958 if (!vf) {
3959 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3960 vf_id, v_opcode, msglen);
3961 return;
3962 }
3963
3964 mutex_lock(&vf->cfg_lock);
3965
3966 /* Check if the VF is trying to overflow the mailbox */
3967 if (ice_is_malicious_vf(vf, mbxdata))
3968 goto finish;
3969
3970 /* Check if VF is disabled. */
3971 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3972 err = -EPERM;
3973 goto error_handler;
3974 }
3975
3976 ops = vf->virtchnl_ops;
3977
3978 /* Perform basic checks on the msg */
3979 err = virtchnl_vc_validate_vf_msg(ver: &vf->vf_ver, v_opcode, msg, msglen);
3980 if (err) {
3981 if (err == VIRTCHNL_STATUS_ERR_PARAM)
3982 err = -EPERM;
3983 else
3984 err = -EINVAL;
3985 }
3986
3987error_handler:
3988 if (err) {
3989 ice_vc_send_msg_to_vf(vf, v_opcode, v_retval: VIRTCHNL_STATUS_ERR_PARAM,
3990 NULL, msglen: 0);
3991 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3992 vf_id, v_opcode, msglen, err);
3993 goto finish;
3994 }
3995
3996 if (!ice_vc_is_opcode_allowed(vf, opcode: v_opcode)) {
3997 ice_vc_send_msg_to_vf(vf, v_opcode,
3998 v_retval: VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
3999 msglen: 0);
4000 goto finish;
4001 }
4002
4003 switch (v_opcode) {
4004 case VIRTCHNL_OP_VERSION:
4005 err = ops->get_ver_msg(vf, msg);
4006 break;
4007 case VIRTCHNL_OP_GET_VF_RESOURCES:
4008 err = ops->get_vf_res_msg(vf, msg);
4009 if (ice_vf_init_vlan_stripping(vf))
4010 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4011 vf->vf_id);
4012 ice_vc_notify_vf_link_state(vf);
4013 break;
4014 case VIRTCHNL_OP_RESET_VF:
4015 ops->reset_vf(vf);
4016 break;
4017 case VIRTCHNL_OP_ADD_ETH_ADDR:
4018 err = ops->add_mac_addr_msg(vf, msg);
4019 break;
4020 case VIRTCHNL_OP_DEL_ETH_ADDR:
4021 err = ops->del_mac_addr_msg(vf, msg);
4022 break;
4023 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4024 err = ops->cfg_qs_msg(vf, msg);
4025 break;
4026 case VIRTCHNL_OP_ENABLE_QUEUES:
4027 err = ops->ena_qs_msg(vf, msg);
4028 ice_vc_notify_vf_link_state(vf);
4029 break;
4030 case VIRTCHNL_OP_DISABLE_QUEUES:
4031 err = ops->dis_qs_msg(vf, msg);
4032 break;
4033 case VIRTCHNL_OP_REQUEST_QUEUES:
4034 err = ops->request_qs_msg(vf, msg);
4035 break;
4036 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4037 err = ops->cfg_irq_map_msg(vf, msg);
4038 break;
4039 case VIRTCHNL_OP_CONFIG_RSS_KEY:
4040 err = ops->config_rss_key(vf, msg);
4041 break;
4042 case VIRTCHNL_OP_CONFIG_RSS_LUT:
4043 err = ops->config_rss_lut(vf, msg);
4044 break;
4045 case VIRTCHNL_OP_GET_STATS:
4046 err = ops->get_stats_msg(vf, msg);
4047 break;
4048 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4049 err = ops->cfg_promiscuous_mode_msg(vf, msg);
4050 break;
4051 case VIRTCHNL_OP_ADD_VLAN:
4052 err = ops->add_vlan_msg(vf, msg);
4053 break;
4054 case VIRTCHNL_OP_DEL_VLAN:
4055 err = ops->remove_vlan_msg(vf, msg);
4056 break;
4057 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4058 err = ops->query_rxdid(vf);
4059 break;
4060 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4061 err = ops->get_rss_hena(vf);
4062 break;
4063 case VIRTCHNL_OP_SET_RSS_HENA:
4064 err = ops->set_rss_hena_msg(vf, msg);
4065 break;
4066 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4067 err = ops->ena_vlan_stripping(vf);
4068 break;
4069 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4070 err = ops->dis_vlan_stripping(vf);
4071 break;
4072 case VIRTCHNL_OP_ADD_FDIR_FILTER:
4073 err = ops->add_fdir_fltr_msg(vf, msg);
4074 break;
4075 case VIRTCHNL_OP_DEL_FDIR_FILTER:
4076 err = ops->del_fdir_fltr_msg(vf, msg);
4077 break;
4078 case VIRTCHNL_OP_ADD_RSS_CFG:
4079 err = ops->handle_rss_cfg_msg(vf, msg, true);
4080 break;
4081 case VIRTCHNL_OP_DEL_RSS_CFG:
4082 err = ops->handle_rss_cfg_msg(vf, msg, false);
4083 break;
4084 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4085 err = ops->get_offload_vlan_v2_caps(vf);
4086 break;
4087 case VIRTCHNL_OP_ADD_VLAN_V2:
4088 err = ops->add_vlan_v2_msg(vf, msg);
4089 break;
4090 case VIRTCHNL_OP_DEL_VLAN_V2:
4091 err = ops->remove_vlan_v2_msg(vf, msg);
4092 break;
4093 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4094 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4095 break;
4096 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4097 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4098 break;
4099 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4100 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4101 break;
4102 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4103 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4104 break;
4105 case VIRTCHNL_OP_UNKNOWN:
4106 default:
4107 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4108 vf_id);
4109 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4110 v_retval: VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4111 NULL, msglen: 0);
4112 break;
4113 }
4114 if (err) {
4115 /* Helper function cares less about error return values here
4116 * as it is busy with pending work.
4117 */
4118 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4119 vf_id, v_opcode, err);
4120 }
4121
4122finish:
4123 mutex_unlock(lock: &vf->cfg_lock);
4124 ice_put_vf(vf);
4125}
4126

source code of linux/drivers/net/ethernet/intel/ice/ice_virtchnl.c