1// SPDX-License-Identifier: GPL-2.0+
2/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3
4#include <linux/module.h>
5#include <linux/device.h>
6#include <linux/pci.h>
7#include <linux/ptp_classify.h>
8
9#include "igb.h"
10
11#define INCVALUE_MASK 0x7fffffff
12#define ISGN 0x80000000
13
14/* The 82580 timesync updates the system timer every 8ns by 8ns,
15 * and this update value cannot be reprogrammed.
16 *
17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
18 * nanoseconds time values for very long. For the 82580, SYSTIM always
19 * counts nanoseconds, but the upper 24 bits are not available. The
20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
21 * register, TIMINCA.
22 *
23 * For the 82576, the SYSTIM register time unit is affect by the
24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25 * field are needed to provide the nominal 16 nanosecond period,
26 * leaving 19 bits for fractional nanoseconds.
27 *
28 * We scale the NIC clock cycle by a large factor so that relatively
29 * small clock corrections can be added or subtracted at each clock
30 * tick. The drawbacks of a large factor are a) that the clock
31 * register overflows more quickly (not such a big deal) and b) that
32 * the increment per tick has to fit into 24 bits. As a result we
33 * need to use a shift of 19 so we can fit a value of 16 into the
34 * TIMINCA register.
35 *
36 *
37 * SYSTIMH SYSTIML
38 * +--------------+ +---+---+------+
39 * 82576 | 32 | | 8 | 5 | 19 |
40 * +--------------+ +---+---+------+
41 * \________ 45 bits _______/ fract
42 *
43 * +----------+---+ +--------------+
44 * 82580 | 24 | 8 | | 32 |
45 * +----------+---+ +--------------+
46 * reserved \______ 40 bits _____/
47 *
48 *
49 * The 45 bit 82576 SYSTIM overflows every
50 * 2^45 * 10^-9 / 3600 = 9.77 hours.
51 *
52 * The 40 bit 82580 SYSTIM overflows every
53 * 2^40 * 10^-9 / 60 = 18.3 minutes.
54 *
55 * SYSTIM is converted to real time using a timecounter. As
56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
57 * to be updated at least once per half of the SYSTIM interval.
58 * Scheduling of delayed work is not very accurate, and also the NIC
59 * clock can be adjusted to run up to 6% faster and the system clock
60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
61 * interval in the NIC time is shorter than 9.16 minutes.
62 */
63
64#define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6)
65#define IGB_PTP_TX_TIMEOUT (HZ * 15)
66#define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
67#define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68#define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
69#define IGB_NBITS_82580 40
70#define IGB_82580_BASE_PERIOD 0x800000000
71
72static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
73static void igb_ptp_sdp_init(struct igb_adapter *adapter);
74
75/* SYSTIM read access for the 82576 */
76static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
77{
78 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
79 struct e1000_hw *hw = &igb->hw;
80 u64 val;
81 u32 lo, hi;
82
83 lo = rd32(E1000_SYSTIML);
84 hi = rd32(E1000_SYSTIMH);
85
86 val = ((u64) hi) << 32;
87 val |= lo;
88
89 return val;
90}
91
92/* SYSTIM read access for the 82580 */
93static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
94{
95 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
96 struct e1000_hw *hw = &igb->hw;
97 u32 lo, hi;
98 u64 val;
99
100 /* The timestamp latches on lowest register read. For the 82580
101 * the lowest register is SYSTIMR instead of SYSTIML. However we only
102 * need to provide nanosecond resolution, so we just ignore it.
103 */
104 rd32(E1000_SYSTIMR);
105 lo = rd32(E1000_SYSTIML);
106 hi = rd32(E1000_SYSTIMH);
107
108 val = ((u64) hi) << 32;
109 val |= lo;
110
111 return val;
112}
113
114/* SYSTIM read access for I210/I211 */
115static void igb_ptp_read_i210(struct igb_adapter *adapter,
116 struct timespec64 *ts)
117{
118 struct e1000_hw *hw = &adapter->hw;
119 u32 sec, nsec;
120
121 /* The timestamp latches on lowest register read. For I210/I211, the
122 * lowest register is SYSTIMR. Since we only need to provide nanosecond
123 * resolution, we can ignore it.
124 */
125 rd32(E1000_SYSTIMR);
126 nsec = rd32(E1000_SYSTIML);
127 sec = rd32(E1000_SYSTIMH);
128
129 ts->tv_sec = sec;
130 ts->tv_nsec = nsec;
131}
132
133static void igb_ptp_write_i210(struct igb_adapter *adapter,
134 const struct timespec64 *ts)
135{
136 struct e1000_hw *hw = &adapter->hw;
137
138 /* Writing the SYSTIMR register is not necessary as it only provides
139 * sub-nanosecond resolution.
140 */
141 wr32(E1000_SYSTIML, ts->tv_nsec);
142 wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
143}
144
145/**
146 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
147 * @adapter: board private structure
148 * @hwtstamps: timestamp structure to update
149 * @systim: unsigned 64bit system time value.
150 *
151 * We need to convert the system time value stored in the RX/TXSTMP registers
152 * into a hwtstamp which can be used by the upper level timestamping functions.
153 *
154 * The 'tmreg_lock' spinlock is used to protect the consistency of the
155 * system time value. This is needed because reading the 64 bit time
156 * value involves reading two (or three) 32 bit registers. The first
157 * read latches the value. Ditto for writing.
158 *
159 * In addition, here have extended the system time with an overflow
160 * counter in software.
161 **/
162static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
163 struct skb_shared_hwtstamps *hwtstamps,
164 u64 systim)
165{
166 unsigned long flags;
167 u64 ns;
168
169 memset(hwtstamps, 0, sizeof(*hwtstamps));
170
171 switch (adapter->hw.mac.type) {
172 case e1000_82576:
173 case e1000_82580:
174 case e1000_i354:
175 case e1000_i350:
176 spin_lock_irqsave(&adapter->tmreg_lock, flags);
177 ns = timecounter_cyc2time(tc: &adapter->tc, cycle_tstamp: systim);
178 spin_unlock_irqrestore(lock: &adapter->tmreg_lock, flags);
179
180 hwtstamps->hwtstamp = ns_to_ktime(ns);
181 break;
182 case e1000_i210:
183 case e1000_i211:
184 /* Upper 32 bits contain s, lower 32 bits contain ns. */
185 hwtstamps->hwtstamp = ktime_set(secs: systim >> 32,
186 nsecs: systim & 0xFFFFFFFF);
187 break;
188 default:
189 break;
190 }
191}
192
193/* PTP clock operations */
194static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
195{
196 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197 ptp_caps);
198 struct e1000_hw *hw = &igb->hw;
199 u64 incvalue;
200
201 incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm);
202
203 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
204
205 return 0;
206}
207
208static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
209{
210 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
211 ptp_caps);
212 struct e1000_hw *hw = &igb->hw;
213 bool neg_adj;
214 u64 rate;
215 u32 inca;
216
217 neg_adj = diff_by_scaled_ppm(IGB_82580_BASE_PERIOD, scaled_ppm, diff: &rate);
218
219 inca = rate & INCVALUE_MASK;
220 if (neg_adj)
221 inca |= ISGN;
222
223 wr32(E1000_TIMINCA, inca);
224
225 return 0;
226}
227
228static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
229{
230 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 ptp_caps);
232 unsigned long flags;
233
234 spin_lock_irqsave(&igb->tmreg_lock, flags);
235 timecounter_adjtime(tc: &igb->tc, delta);
236 spin_unlock_irqrestore(lock: &igb->tmreg_lock, flags);
237
238 return 0;
239}
240
241static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
242{
243 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244 ptp_caps);
245 unsigned long flags;
246 struct timespec64 now, then = ns_to_timespec64(nsec: delta);
247
248 spin_lock_irqsave(&igb->tmreg_lock, flags);
249
250 igb_ptp_read_i210(adapter: igb, ts: &now);
251 now = timespec64_add(lhs: now, rhs: then);
252 igb_ptp_write_i210(adapter: igb, ts: (const struct timespec64 *)&now);
253
254 spin_unlock_irqrestore(lock: &igb->tmreg_lock, flags);
255
256 return 0;
257}
258
259static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
260 struct timespec64 *ts,
261 struct ptp_system_timestamp *sts)
262{
263 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
264 ptp_caps);
265 struct e1000_hw *hw = &igb->hw;
266 unsigned long flags;
267 u32 lo, hi;
268 u64 ns;
269
270 spin_lock_irqsave(&igb->tmreg_lock, flags);
271
272 ptp_read_system_prets(sts);
273 lo = rd32(E1000_SYSTIML);
274 ptp_read_system_postts(sts);
275 hi = rd32(E1000_SYSTIMH);
276
277 ns = timecounter_cyc2time(tc: &igb->tc, cycle_tstamp: ((u64)hi << 32) | lo);
278
279 spin_unlock_irqrestore(lock: &igb->tmreg_lock, flags);
280
281 *ts = ns_to_timespec64(nsec: ns);
282
283 return 0;
284}
285
286static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
287 struct timespec64 *ts,
288 struct ptp_system_timestamp *sts)
289{
290 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
291 ptp_caps);
292 struct e1000_hw *hw = &igb->hw;
293 unsigned long flags;
294 u32 lo, hi;
295 u64 ns;
296
297 spin_lock_irqsave(&igb->tmreg_lock, flags);
298
299 ptp_read_system_prets(sts);
300 rd32(E1000_SYSTIMR);
301 ptp_read_system_postts(sts);
302 lo = rd32(E1000_SYSTIML);
303 hi = rd32(E1000_SYSTIMH);
304
305 ns = timecounter_cyc2time(tc: &igb->tc, cycle_tstamp: ((u64)hi << 32) | lo);
306
307 spin_unlock_irqrestore(lock: &igb->tmreg_lock, flags);
308
309 *ts = ns_to_timespec64(nsec: ns);
310
311 return 0;
312}
313
314static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
315 struct timespec64 *ts,
316 struct ptp_system_timestamp *sts)
317{
318 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
319 ptp_caps);
320 struct e1000_hw *hw = &igb->hw;
321 unsigned long flags;
322
323 spin_lock_irqsave(&igb->tmreg_lock, flags);
324
325 ptp_read_system_prets(sts);
326 rd32(E1000_SYSTIMR);
327 ptp_read_system_postts(sts);
328 ts->tv_nsec = rd32(E1000_SYSTIML);
329 ts->tv_sec = rd32(E1000_SYSTIMH);
330
331 spin_unlock_irqrestore(lock: &igb->tmreg_lock, flags);
332
333 return 0;
334}
335
336static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
337 const struct timespec64 *ts)
338{
339 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
340 ptp_caps);
341 unsigned long flags;
342 u64 ns;
343
344 ns = timespec64_to_ns(ts);
345
346 spin_lock_irqsave(&igb->tmreg_lock, flags);
347
348 timecounter_init(tc: &igb->tc, cc: &igb->cc, start_tstamp: ns);
349
350 spin_unlock_irqrestore(lock: &igb->tmreg_lock, flags);
351
352 return 0;
353}
354
355static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
356 const struct timespec64 *ts)
357{
358 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
359 ptp_caps);
360 unsigned long flags;
361
362 spin_lock_irqsave(&igb->tmreg_lock, flags);
363
364 igb_ptp_write_i210(adapter: igb, ts);
365
366 spin_unlock_irqrestore(lock: &igb->tmreg_lock, flags);
367
368 return 0;
369}
370
371static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
372{
373 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
374 static const u32 mask[IGB_N_SDP] = {
375 E1000_CTRL_SDP0_DIR,
376 E1000_CTRL_SDP1_DIR,
377 E1000_CTRL_EXT_SDP2_DIR,
378 E1000_CTRL_EXT_SDP3_DIR,
379 };
380
381 if (input)
382 *ptr &= ~mask[pin];
383 else
384 *ptr |= mask[pin];
385}
386
387static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
388{
389 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
390 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
391 };
392 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
393 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
394 };
395 static const u32 ts_sdp_en[IGB_N_SDP] = {
396 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
397 };
398 struct e1000_hw *hw = &igb->hw;
399 u32 ctrl, ctrl_ext, tssdp = 0;
400
401 ctrl = rd32(E1000_CTRL);
402 ctrl_ext = rd32(E1000_CTRL_EXT);
403 tssdp = rd32(E1000_TSSDP);
404
405 igb_pin_direction(pin, input: 1, ctrl: &ctrl, ctrl_ext: &ctrl_ext);
406
407 /* Make sure this pin is not enabled as an output. */
408 tssdp &= ~ts_sdp_en[pin];
409
410 if (chan == 1) {
411 tssdp &= ~AUX1_SEL_SDP3;
412 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
413 } else {
414 tssdp &= ~AUX0_SEL_SDP3;
415 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
416 }
417
418 wr32(E1000_TSSDP, tssdp);
419 wr32(E1000_CTRL, ctrl);
420 wr32(E1000_CTRL_EXT, ctrl_ext);
421}
422
423static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
424{
425 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
426 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
427 };
428 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
429 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
430 };
431 static const u32 ts_sdp_en[IGB_N_SDP] = {
432 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
433 };
434 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
435 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
436 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
437 };
438 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
439 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
440 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
441 };
442 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
443 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
444 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
445 };
446 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
447 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
448 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
449 };
450 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
451 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
452 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
453 };
454 struct e1000_hw *hw = &igb->hw;
455 u32 ctrl, ctrl_ext, tssdp = 0;
456
457 ctrl = rd32(E1000_CTRL);
458 ctrl_ext = rd32(E1000_CTRL_EXT);
459 tssdp = rd32(E1000_TSSDP);
460
461 igb_pin_direction(pin, input: 0, ctrl: &ctrl, ctrl_ext: &ctrl_ext);
462
463 /* Make sure this pin is not enabled as an input. */
464 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
465 tssdp &= ~AUX0_TS_SDP_EN;
466
467 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
468 tssdp &= ~AUX1_TS_SDP_EN;
469
470 tssdp &= ~ts_sdp_sel_clr[pin];
471 if (freq) {
472 if (chan == 1)
473 tssdp |= ts_sdp_sel_fc1[pin];
474 else
475 tssdp |= ts_sdp_sel_fc0[pin];
476 } else {
477 if (chan == 1)
478 tssdp |= ts_sdp_sel_tt1[pin];
479 else
480 tssdp |= ts_sdp_sel_tt0[pin];
481 }
482 tssdp |= ts_sdp_en[pin];
483
484 wr32(E1000_TSSDP, tssdp);
485 wr32(E1000_CTRL, ctrl);
486 wr32(E1000_CTRL_EXT, ctrl_ext);
487}
488
489static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
490 struct ptp_clock_request *rq, int on)
491{
492 struct igb_adapter *igb =
493 container_of(ptp, struct igb_adapter, ptp_caps);
494 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
495 systimh, level_mask, level, rem;
496 struct e1000_hw *hw = &igb->hw;
497 struct timespec64 ts, start;
498 unsigned long flags;
499 u64 systim, now;
500 int pin = -1;
501 s64 ns;
502
503 switch (rq->type) {
504 case PTP_CLK_REQ_EXTTS:
505 /* Reject requests with unsupported flags */
506 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
507 PTP_RISING_EDGE |
508 PTP_FALLING_EDGE |
509 PTP_STRICT_FLAGS))
510 return -EOPNOTSUPP;
511
512 if (on) {
513 pin = ptp_find_pin(ptp: igb->ptp_clock, func: PTP_PF_EXTTS,
514 chan: rq->extts.index);
515 if (pin < 0)
516 return -EBUSY;
517 }
518 if (rq->extts.index == 1) {
519 tsauxc_mask = TSAUXC_EN_TS1;
520 tsim_mask = TSINTR_AUTT1;
521 } else {
522 tsauxc_mask = TSAUXC_EN_TS0;
523 tsim_mask = TSINTR_AUTT0;
524 }
525 spin_lock_irqsave(&igb->tmreg_lock, flags);
526 tsauxc = rd32(E1000_TSAUXC);
527 tsim = rd32(E1000_TSIM);
528 if (on) {
529 igb_pin_extts(igb, chan: rq->extts.index, pin);
530 tsauxc |= tsauxc_mask;
531 tsim |= tsim_mask;
532 } else {
533 tsauxc &= ~tsauxc_mask;
534 tsim &= ~tsim_mask;
535 }
536 wr32(E1000_TSAUXC, tsauxc);
537 wr32(E1000_TSIM, tsim);
538 spin_unlock_irqrestore(lock: &igb->tmreg_lock, flags);
539 return 0;
540
541 case PTP_CLK_REQ_PEROUT:
542 /* Reject requests with unsupported flags */
543 if (rq->perout.flags)
544 return -EOPNOTSUPP;
545
546 if (on) {
547 pin = ptp_find_pin(ptp: igb->ptp_clock, func: PTP_PF_PEROUT,
548 chan: rq->perout.index);
549 if (pin < 0)
550 return -EBUSY;
551 }
552 ts.tv_sec = rq->perout.period.sec;
553 ts.tv_nsec = rq->perout.period.nsec;
554 ns = timespec64_to_ns(ts: &ts);
555 ns = ns >> 1;
556 if (on && ns < 8LL)
557 return -EINVAL;
558 ts = ns_to_timespec64(nsec: ns);
559 if (rq->perout.index == 1) {
560 tsauxc_mask = TSAUXC_EN_TT1;
561 tsim_mask = TSINTR_TT1;
562 trgttiml = E1000_TRGTTIML1;
563 trgttimh = E1000_TRGTTIMH1;
564 } else {
565 tsauxc_mask = TSAUXC_EN_TT0;
566 tsim_mask = TSINTR_TT0;
567 trgttiml = E1000_TRGTTIML0;
568 trgttimh = E1000_TRGTTIMH0;
569 }
570 spin_lock_irqsave(&igb->tmreg_lock, flags);
571 tsauxc = rd32(E1000_TSAUXC);
572 tsim = rd32(E1000_TSIM);
573 if (rq->perout.index == 1) {
574 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
575 tsim &= ~TSINTR_TT1;
576 } else {
577 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
578 tsim &= ~TSINTR_TT0;
579 }
580 if (on) {
581 int i = rq->perout.index;
582
583 /* read systim registers in sequence */
584 rd32(E1000_SYSTIMR);
585 systiml = rd32(E1000_SYSTIML);
586 systimh = rd32(E1000_SYSTIMH);
587 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
588 now = timecounter_cyc2time(tc: &igb->tc, cycle_tstamp: systim);
589
590 if (pin < 2) {
591 level_mask = (i == 1) ? 0x80000 : 0x40000;
592 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
593 } else {
594 level_mask = (i == 1) ? 0x80 : 0x40;
595 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
596 }
597
598 div_u64_rem(dividend: now, divisor: ns, remainder: &rem);
599 systim = systim + (ns - rem);
600
601 /* synchronize pin level with rising/falling edges */
602 div_u64_rem(dividend: now, divisor: ns << 1, remainder: &rem);
603 if (rem < ns) {
604 /* first half of period */
605 if (level == 0) {
606 /* output is already low, skip this period */
607 systim += ns;
608 }
609 } else {
610 /* second half of period */
611 if (level == 1) {
612 /* output is already high, skip this period */
613 systim += ns;
614 }
615 }
616
617 start = ns_to_timespec64(nsec: systim + (ns - rem));
618 igb_pin_perout(igb, chan: i, pin, freq: 0);
619 igb->perout[i].start.tv_sec = start.tv_sec;
620 igb->perout[i].start.tv_nsec = start.tv_nsec;
621 igb->perout[i].period.tv_sec = ts.tv_sec;
622 igb->perout[i].period.tv_nsec = ts.tv_nsec;
623
624 wr32(trgttiml, (u32)systim);
625 wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
626 tsauxc |= tsauxc_mask;
627 tsim |= tsim_mask;
628 }
629 wr32(E1000_TSAUXC, tsauxc);
630 wr32(E1000_TSIM, tsim);
631 spin_unlock_irqrestore(lock: &igb->tmreg_lock, flags);
632 return 0;
633
634 case PTP_CLK_REQ_PPS:
635 return -EOPNOTSUPP;
636 }
637
638 return -EOPNOTSUPP;
639}
640
641static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
642 struct ptp_clock_request *rq, int on)
643{
644 struct igb_adapter *igb =
645 container_of(ptp, struct igb_adapter, ptp_caps);
646 struct e1000_hw *hw = &igb->hw;
647 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
648 unsigned long flags;
649 struct timespec64 ts;
650 int use_freq = 0, pin = -1;
651 s64 ns;
652
653 switch (rq->type) {
654 case PTP_CLK_REQ_EXTTS:
655 /* Reject requests with unsupported flags */
656 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
657 PTP_RISING_EDGE |
658 PTP_FALLING_EDGE |
659 PTP_STRICT_FLAGS))
660 return -EOPNOTSUPP;
661
662 /* Reject requests failing to enable both edges. */
663 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
664 (rq->extts.flags & PTP_ENABLE_FEATURE) &&
665 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
666 return -EOPNOTSUPP;
667
668 if (on) {
669 pin = ptp_find_pin(ptp: igb->ptp_clock, func: PTP_PF_EXTTS,
670 chan: rq->extts.index);
671 if (pin < 0)
672 return -EBUSY;
673 }
674 if (rq->extts.index == 1) {
675 tsauxc_mask = TSAUXC_EN_TS1;
676 tsim_mask = TSINTR_AUTT1;
677 } else {
678 tsauxc_mask = TSAUXC_EN_TS0;
679 tsim_mask = TSINTR_AUTT0;
680 }
681 spin_lock_irqsave(&igb->tmreg_lock, flags);
682 tsauxc = rd32(E1000_TSAUXC);
683 tsim = rd32(E1000_TSIM);
684 if (on) {
685 igb_pin_extts(igb, chan: rq->extts.index, pin);
686 tsauxc |= tsauxc_mask;
687 tsim |= tsim_mask;
688 } else {
689 tsauxc &= ~tsauxc_mask;
690 tsim &= ~tsim_mask;
691 }
692 wr32(E1000_TSAUXC, tsauxc);
693 wr32(E1000_TSIM, tsim);
694 spin_unlock_irqrestore(lock: &igb->tmreg_lock, flags);
695 return 0;
696
697 case PTP_CLK_REQ_PEROUT:
698 /* Reject requests with unsupported flags */
699 if (rq->perout.flags)
700 return -EOPNOTSUPP;
701
702 if (on) {
703 pin = ptp_find_pin(ptp: igb->ptp_clock, func: PTP_PF_PEROUT,
704 chan: rq->perout.index);
705 if (pin < 0)
706 return -EBUSY;
707 }
708 ts.tv_sec = rq->perout.period.sec;
709 ts.tv_nsec = rq->perout.period.nsec;
710 ns = timespec64_to_ns(ts: &ts);
711 ns = ns >> 1;
712 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
713 (ns == 250000000LL) || (ns == 500000000LL))) {
714 if (ns < 8LL)
715 return -EINVAL;
716 use_freq = 1;
717 }
718 ts = ns_to_timespec64(nsec: ns);
719 if (rq->perout.index == 1) {
720 if (use_freq) {
721 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
722 tsim_mask = 0;
723 } else {
724 tsauxc_mask = TSAUXC_EN_TT1;
725 tsim_mask = TSINTR_TT1;
726 }
727 trgttiml = E1000_TRGTTIML1;
728 trgttimh = E1000_TRGTTIMH1;
729 freqout = E1000_FREQOUT1;
730 } else {
731 if (use_freq) {
732 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
733 tsim_mask = 0;
734 } else {
735 tsauxc_mask = TSAUXC_EN_TT0;
736 tsim_mask = TSINTR_TT0;
737 }
738 trgttiml = E1000_TRGTTIML0;
739 trgttimh = E1000_TRGTTIMH0;
740 freqout = E1000_FREQOUT0;
741 }
742 spin_lock_irqsave(&igb->tmreg_lock, flags);
743 tsauxc = rd32(E1000_TSAUXC);
744 tsim = rd32(E1000_TSIM);
745 if (rq->perout.index == 1) {
746 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
747 tsim &= ~TSINTR_TT1;
748 } else {
749 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
750 tsim &= ~TSINTR_TT0;
751 }
752 if (on) {
753 int i = rq->perout.index;
754 igb_pin_perout(igb, chan: i, pin, freq: use_freq);
755 igb->perout[i].start.tv_sec = rq->perout.start.sec;
756 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
757 igb->perout[i].period.tv_sec = ts.tv_sec;
758 igb->perout[i].period.tv_nsec = ts.tv_nsec;
759 wr32(trgttimh, rq->perout.start.sec);
760 wr32(trgttiml, rq->perout.start.nsec);
761 if (use_freq)
762 wr32(freqout, ns);
763 tsauxc |= tsauxc_mask;
764 tsim |= tsim_mask;
765 }
766 wr32(E1000_TSAUXC, tsauxc);
767 wr32(E1000_TSIM, tsim);
768 spin_unlock_irqrestore(lock: &igb->tmreg_lock, flags);
769 return 0;
770
771 case PTP_CLK_REQ_PPS:
772 spin_lock_irqsave(&igb->tmreg_lock, flags);
773 tsim = rd32(E1000_TSIM);
774 if (on)
775 tsim |= TSINTR_SYS_WRAP;
776 else
777 tsim &= ~TSINTR_SYS_WRAP;
778 igb->pps_sys_wrap_on = !!on;
779 wr32(E1000_TSIM, tsim);
780 spin_unlock_irqrestore(lock: &igb->tmreg_lock, flags);
781 return 0;
782 }
783
784 return -EOPNOTSUPP;
785}
786
787static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
788 struct ptp_clock_request *rq, int on)
789{
790 return -EOPNOTSUPP;
791}
792
793static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
794 enum ptp_pin_function func, unsigned int chan)
795{
796 switch (func) {
797 case PTP_PF_NONE:
798 case PTP_PF_EXTTS:
799 case PTP_PF_PEROUT:
800 break;
801 case PTP_PF_PHYSYNC:
802 return -1;
803 }
804 return 0;
805}
806
807/**
808 * igb_ptp_tx_work
809 * @work: pointer to work struct
810 *
811 * This work function polls the TSYNCTXCTL valid bit to determine when a
812 * timestamp has been taken for the current stored skb.
813 **/
814static void igb_ptp_tx_work(struct work_struct *work)
815{
816 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
817 ptp_tx_work);
818 struct e1000_hw *hw = &adapter->hw;
819 u32 tsynctxctl;
820
821 if (!adapter->ptp_tx_skb)
822 return;
823
824 if (time_is_before_jiffies(adapter->ptp_tx_start +
825 IGB_PTP_TX_TIMEOUT)) {
826 dev_kfree_skb_any(skb: adapter->ptp_tx_skb);
827 adapter->ptp_tx_skb = NULL;
828 clear_bit_unlock(nr: __IGB_PTP_TX_IN_PROGRESS, addr: &adapter->state);
829 adapter->tx_hwtstamp_timeouts++;
830 /* Clear the tx valid bit in TSYNCTXCTL register to enable
831 * interrupt
832 */
833 rd32(E1000_TXSTMPH);
834 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
835 return;
836 }
837
838 tsynctxctl = rd32(E1000_TSYNCTXCTL);
839 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
840 igb_ptp_tx_hwtstamp(adapter);
841 else
842 /* reschedule to check later */
843 schedule_work(work: &adapter->ptp_tx_work);
844}
845
846static void igb_ptp_overflow_check(struct work_struct *work)
847{
848 struct igb_adapter *igb =
849 container_of(work, struct igb_adapter, ptp_overflow_work.work);
850 struct timespec64 ts;
851 u64 ns;
852
853 /* Update the timecounter */
854 ns = timecounter_read(tc: &igb->tc);
855
856 ts = ns_to_timespec64(nsec: ns);
857 pr_debug("igb overflow check at %lld.%09lu\n",
858 (long long) ts.tv_sec, ts.tv_nsec);
859
860 schedule_delayed_work(dwork: &igb->ptp_overflow_work,
861 IGB_SYSTIM_OVERFLOW_PERIOD);
862}
863
864/**
865 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
866 * @adapter: private network adapter structure
867 *
868 * This watchdog task is scheduled to detect error case where hardware has
869 * dropped an Rx packet that was timestamped when the ring is full. The
870 * particular error is rare but leaves the device in a state unable to timestamp
871 * any future packets.
872 **/
873void igb_ptp_rx_hang(struct igb_adapter *adapter)
874{
875 struct e1000_hw *hw = &adapter->hw;
876 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
877 unsigned long rx_event;
878
879 /* Other hardware uses per-packet timestamps */
880 if (hw->mac.type != e1000_82576)
881 return;
882
883 /* If we don't have a valid timestamp in the registers, just update the
884 * timeout counter and exit
885 */
886 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
887 adapter->last_rx_ptp_check = jiffies;
888 return;
889 }
890
891 /* Determine the most recent watchdog or rx_timestamp event */
892 rx_event = adapter->last_rx_ptp_check;
893 if (time_after(adapter->last_rx_timestamp, rx_event))
894 rx_event = adapter->last_rx_timestamp;
895
896 /* Only need to read the high RXSTMP register to clear the lock */
897 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
898 rd32(E1000_RXSTMPH);
899 adapter->last_rx_ptp_check = jiffies;
900 adapter->rx_hwtstamp_cleared++;
901 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
902 }
903}
904
905/**
906 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
907 * @adapter: private network adapter structure
908 */
909void igb_ptp_tx_hang(struct igb_adapter *adapter)
910{
911 struct e1000_hw *hw = &adapter->hw;
912 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
913 IGB_PTP_TX_TIMEOUT);
914
915 if (!adapter->ptp_tx_skb)
916 return;
917
918 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
919 return;
920
921 /* If we haven't received a timestamp within the timeout, it is
922 * reasonable to assume that it will never occur, so we can unlock the
923 * timestamp bit when this occurs.
924 */
925 if (timeout) {
926 cancel_work_sync(work: &adapter->ptp_tx_work);
927 dev_kfree_skb_any(skb: adapter->ptp_tx_skb);
928 adapter->ptp_tx_skb = NULL;
929 clear_bit_unlock(nr: __IGB_PTP_TX_IN_PROGRESS, addr: &adapter->state);
930 adapter->tx_hwtstamp_timeouts++;
931 /* Clear the tx valid bit in TSYNCTXCTL register to enable
932 * interrupt
933 */
934 rd32(E1000_TXSTMPH);
935 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
936 }
937}
938
939/**
940 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
941 * @adapter: Board private structure.
942 *
943 * If we were asked to do hardware stamping and such a time stamp is
944 * available, then it must have been for this skb here because we only
945 * allow only one such packet into the queue.
946 **/
947static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
948{
949 struct sk_buff *skb = adapter->ptp_tx_skb;
950 struct e1000_hw *hw = &adapter->hw;
951 struct skb_shared_hwtstamps shhwtstamps;
952 u64 regval;
953 int adjust = 0;
954
955 regval = rd32(E1000_TXSTMPL);
956 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
957
958 igb_ptp_systim_to_hwtstamp(adapter, hwtstamps: &shhwtstamps, systim: regval);
959 /* adjust timestamp for the TX latency based on link speed */
960 if (adapter->hw.mac.type == e1000_i210) {
961 switch (adapter->link_speed) {
962 case SPEED_10:
963 adjust = IGB_I210_TX_LATENCY_10;
964 break;
965 case SPEED_100:
966 adjust = IGB_I210_TX_LATENCY_100;
967 break;
968 case SPEED_1000:
969 adjust = IGB_I210_TX_LATENCY_1000;
970 break;
971 }
972 }
973
974 shhwtstamps.hwtstamp =
975 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
976
977 /* Clear the lock early before calling skb_tstamp_tx so that
978 * applications are not woken up before the lock bit is clear. We use
979 * a copy of the skb pointer to ensure other threads can't change it
980 * while we're notifying the stack.
981 */
982 adapter->ptp_tx_skb = NULL;
983 clear_bit_unlock(nr: __IGB_PTP_TX_IN_PROGRESS, addr: &adapter->state);
984
985 /* Notify the stack and free the skb after we've unlocked */
986 skb_tstamp_tx(orig_skb: skb, hwtstamps: &shhwtstamps);
987 dev_kfree_skb_any(skb);
988}
989
990/**
991 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
992 * @q_vector: Pointer to interrupt specific structure
993 * @va: Pointer to address containing Rx buffer
994 * @timestamp: Pointer where timestamp will be stored
995 *
996 * This function is meant to retrieve a timestamp from the first buffer of an
997 * incoming frame. The value is stored in little endian format starting on
998 * byte 8
999 *
1000 * Returns: The timestamp header length or 0 if not available
1001 **/
1002int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1003 ktime_t *timestamp)
1004{
1005 struct igb_adapter *adapter = q_vector->adapter;
1006 struct skb_shared_hwtstamps ts;
1007 __le64 *regval = (__le64 *)va;
1008 int adjust = 0;
1009
1010 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1011 return 0;
1012
1013 /* The timestamp is recorded in little endian format.
1014 * DWORD: 0 1 2 3
1015 * Field: Reserved Reserved SYSTIML SYSTIMH
1016 */
1017
1018 /* check reserved dwords are zero, be/le doesn't matter for zero */
1019 if (regval[0])
1020 return 0;
1021
1022 igb_ptp_systim_to_hwtstamp(adapter, hwtstamps: &ts, le64_to_cpu(regval[1]));
1023
1024 /* adjust timestamp for the RX latency based on link speed */
1025 if (adapter->hw.mac.type == e1000_i210) {
1026 switch (adapter->link_speed) {
1027 case SPEED_10:
1028 adjust = IGB_I210_RX_LATENCY_10;
1029 break;
1030 case SPEED_100:
1031 adjust = IGB_I210_RX_LATENCY_100;
1032 break;
1033 case SPEED_1000:
1034 adjust = IGB_I210_RX_LATENCY_1000;
1035 break;
1036 }
1037 }
1038
1039 *timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1040
1041 return IGB_TS_HDR_LEN;
1042}
1043
1044/**
1045 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1046 * @q_vector: Pointer to interrupt specific structure
1047 * @skb: Buffer containing timestamp and packet
1048 *
1049 * This function is meant to retrieve a timestamp from the internal registers
1050 * of the adapter and store it in the skb.
1051 **/
1052void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1053{
1054 struct igb_adapter *adapter = q_vector->adapter;
1055 struct e1000_hw *hw = &adapter->hw;
1056 int adjust = 0;
1057 u64 regval;
1058
1059 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1060 return;
1061
1062 /* If this bit is set, then the RX registers contain the time stamp. No
1063 * other packet will be time stamped until we read these registers, so
1064 * read the registers to make them available again. Because only one
1065 * packet can be time stamped at a time, we know that the register
1066 * values must belong to this one here and therefore we don't need to
1067 * compare any of the additional attributes stored for it.
1068 *
1069 * If nothing went wrong, then it should have a shared tx_flags that we
1070 * can turn into a skb_shared_hwtstamps.
1071 */
1072 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1073 return;
1074
1075 regval = rd32(E1000_RXSTMPL);
1076 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1077
1078 igb_ptp_systim_to_hwtstamp(adapter, hwtstamps: skb_hwtstamps(skb), systim: regval);
1079
1080 /* adjust timestamp for the RX latency based on link speed */
1081 if (adapter->hw.mac.type == e1000_i210) {
1082 switch (adapter->link_speed) {
1083 case SPEED_10:
1084 adjust = IGB_I210_RX_LATENCY_10;
1085 break;
1086 case SPEED_100:
1087 adjust = IGB_I210_RX_LATENCY_100;
1088 break;
1089 case SPEED_1000:
1090 adjust = IGB_I210_RX_LATENCY_1000;
1091 break;
1092 }
1093 }
1094 skb_hwtstamps(skb)->hwtstamp =
1095 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1096
1097 /* Update the last_rx_timestamp timer in order to enable watchdog check
1098 * for error case of latched timestamp on a dropped packet.
1099 */
1100 adapter->last_rx_timestamp = jiffies;
1101}
1102
1103/**
1104 * igb_ptp_get_ts_config - get hardware time stamping config
1105 * @netdev: netdev struct
1106 * @ifr: interface struct
1107 *
1108 * Get the hwtstamp_config settings to return to the user. Rather than attempt
1109 * to deconstruct the settings from the registers, just return a shadow copy
1110 * of the last known settings.
1111 **/
1112int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1113{
1114 struct igb_adapter *adapter = netdev_priv(dev: netdev);
1115 struct hwtstamp_config *config = &adapter->tstamp_config;
1116
1117 return copy_to_user(to: ifr->ifr_data, from: config, n: sizeof(*config)) ?
1118 -EFAULT : 0;
1119}
1120
1121/**
1122 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1123 * @adapter: networking device structure
1124 * @config: hwtstamp configuration
1125 *
1126 * Outgoing time stamping can be enabled and disabled. Play nice and
1127 * disable it when requested, although it shouldn't case any overhead
1128 * when no packet needs it. At most one packet in the queue may be
1129 * marked for time stamping, otherwise it would be impossible to tell
1130 * for sure to which packet the hardware time stamp belongs.
1131 *
1132 * Incoming time stamping has to be configured via the hardware
1133 * filters. Not all combinations are supported, in particular event
1134 * type has to be specified. Matching the kind of event packet is
1135 * not supported, with the exception of "all V2 events regardless of
1136 * level 2 or 4".
1137 */
1138static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1139 struct hwtstamp_config *config)
1140{
1141 struct e1000_hw *hw = &adapter->hw;
1142 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1143 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1144 u32 tsync_rx_cfg = 0;
1145 bool is_l4 = false;
1146 bool is_l2 = false;
1147 u32 regval;
1148
1149 switch (config->tx_type) {
1150 case HWTSTAMP_TX_OFF:
1151 tsync_tx_ctl = 0;
1152 break;
1153 case HWTSTAMP_TX_ON:
1154 break;
1155 default:
1156 return -ERANGE;
1157 }
1158
1159 switch (config->rx_filter) {
1160 case HWTSTAMP_FILTER_NONE:
1161 tsync_rx_ctl = 0;
1162 break;
1163 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1164 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1165 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1166 is_l4 = true;
1167 break;
1168 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1169 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1170 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1171 is_l4 = true;
1172 break;
1173 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1174 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1175 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1176 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1177 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1178 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1179 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1180 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1181 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1182 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1183 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1184 is_l2 = true;
1185 is_l4 = true;
1186 break;
1187 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1188 case HWTSTAMP_FILTER_NTP_ALL:
1189 case HWTSTAMP_FILTER_ALL:
1190 /* 82576 cannot timestamp all packets, which it needs to do to
1191 * support both V1 Sync and Delay_Req messages
1192 */
1193 if (hw->mac.type != e1000_82576) {
1194 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1195 config->rx_filter = HWTSTAMP_FILTER_ALL;
1196 break;
1197 }
1198 fallthrough;
1199 default:
1200 config->rx_filter = HWTSTAMP_FILTER_NONE;
1201 return -ERANGE;
1202 }
1203
1204 if (hw->mac.type == e1000_82575) {
1205 if (tsync_rx_ctl | tsync_tx_ctl)
1206 return -EINVAL;
1207 return 0;
1208 }
1209
1210 /* Per-packet timestamping only works if all packets are
1211 * timestamped, so enable timestamping in all packets as
1212 * long as one Rx filter was configured.
1213 */
1214 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1215 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1216 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1217 config->rx_filter = HWTSTAMP_FILTER_ALL;
1218 is_l2 = true;
1219 is_l4 = true;
1220
1221 if ((hw->mac.type == e1000_i210) ||
1222 (hw->mac.type == e1000_i211)) {
1223 regval = rd32(E1000_RXPBS);
1224 regval |= E1000_RXPBS_CFG_TS_EN;
1225 wr32(E1000_RXPBS, regval);
1226 }
1227 }
1228
1229 /* enable/disable TX */
1230 regval = rd32(E1000_TSYNCTXCTL);
1231 regval &= ~E1000_TSYNCTXCTL_ENABLED;
1232 regval |= tsync_tx_ctl;
1233 wr32(E1000_TSYNCTXCTL, regval);
1234
1235 /* enable/disable RX */
1236 regval = rd32(E1000_TSYNCRXCTL);
1237 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1238 regval |= tsync_rx_ctl;
1239 wr32(E1000_TSYNCRXCTL, regval);
1240
1241 /* define which PTP packets are time stamped */
1242 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1243
1244 /* define ethertype filter for timestamped packets */
1245 if (is_l2)
1246 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1247 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1248 E1000_ETQF_1588 | /* enable timestamping */
1249 ETH_P_1588)); /* 1588 eth protocol type */
1250 else
1251 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1252
1253 /* L4 Queue Filter[3]: filter by destination port and protocol */
1254 if (is_l4) {
1255 u32 ftqf = (IPPROTO_UDP /* UDP */
1256 | E1000_FTQF_VF_BP /* VF not compared */
1257 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1258 | E1000_FTQF_MASK); /* mask all inputs */
1259 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1260
1261 wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1262 wr32(E1000_IMIREXT(3),
1263 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1264 if (hw->mac.type == e1000_82576) {
1265 /* enable source port check */
1266 wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1267 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1268 }
1269 wr32(E1000_FTQF(3), ftqf);
1270 } else {
1271 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1272 }
1273 wrfl();
1274
1275 /* clear TX/RX time stamp registers, just to be sure */
1276 regval = rd32(E1000_TXSTMPL);
1277 regval = rd32(E1000_TXSTMPH);
1278 regval = rd32(E1000_RXSTMPL);
1279 regval = rd32(E1000_RXSTMPH);
1280
1281 return 0;
1282}
1283
1284/**
1285 * igb_ptp_set_ts_config - set hardware time stamping config
1286 * @netdev: netdev struct
1287 * @ifr: interface struct
1288 *
1289 **/
1290int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1291{
1292 struct igb_adapter *adapter = netdev_priv(dev: netdev);
1293 struct hwtstamp_config config;
1294 int err;
1295
1296 if (copy_from_user(to: &config, from: ifr->ifr_data, n: sizeof(config)))
1297 return -EFAULT;
1298
1299 err = igb_ptp_set_timestamp_mode(adapter, config: &config);
1300 if (err)
1301 return err;
1302
1303 /* save these settings for future reference */
1304 memcpy(&adapter->tstamp_config, &config,
1305 sizeof(adapter->tstamp_config));
1306
1307 return copy_to_user(to: ifr->ifr_data, from: &config, n: sizeof(config)) ?
1308 -EFAULT : 0;
1309}
1310
1311/**
1312 * igb_ptp_init - Initialize PTP functionality
1313 * @adapter: Board private structure
1314 *
1315 * This function is called at device probe to initialize the PTP
1316 * functionality.
1317 */
1318void igb_ptp_init(struct igb_adapter *adapter)
1319{
1320 struct e1000_hw *hw = &adapter->hw;
1321 struct net_device *netdev = adapter->netdev;
1322
1323 switch (hw->mac.type) {
1324 case e1000_82576:
1325 snprintf(buf: adapter->ptp_caps.name, size: 16, fmt: "%pm", netdev->dev_addr);
1326 adapter->ptp_caps.owner = THIS_MODULE;
1327 adapter->ptp_caps.max_adj = 999999881;
1328 adapter->ptp_caps.n_ext_ts = 0;
1329 adapter->ptp_caps.pps = 0;
1330 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1331 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1332 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1333 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1334 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1335 adapter->cc.read = igb_ptp_read_82576;
1336 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1337 adapter->cc.mult = 1;
1338 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1339 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1340 break;
1341 case e1000_82580:
1342 case e1000_i354:
1343 case e1000_i350:
1344 igb_ptp_sdp_init(adapter);
1345 snprintf(buf: adapter->ptp_caps.name, size: 16, fmt: "%pm", netdev->dev_addr);
1346 adapter->ptp_caps.owner = THIS_MODULE;
1347 adapter->ptp_caps.max_adj = 62499999;
1348 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1349 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1350 adapter->ptp_caps.n_pins = IGB_N_SDP;
1351 adapter->ptp_caps.pps = 0;
1352 adapter->ptp_caps.pin_config = adapter->sdp_config;
1353 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1354 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1355 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1356 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1357 adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1358 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1359 adapter->cc.read = igb_ptp_read_82580;
1360 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1361 adapter->cc.mult = 1;
1362 adapter->cc.shift = 0;
1363 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1364 break;
1365 case e1000_i210:
1366 case e1000_i211:
1367 igb_ptp_sdp_init(adapter);
1368 snprintf(buf: adapter->ptp_caps.name, size: 16, fmt: "%pm", netdev->dev_addr);
1369 adapter->ptp_caps.owner = THIS_MODULE;
1370 adapter->ptp_caps.max_adj = 62499999;
1371 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1372 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1373 adapter->ptp_caps.n_pins = IGB_N_SDP;
1374 adapter->ptp_caps.pps = 1;
1375 adapter->ptp_caps.pin_config = adapter->sdp_config;
1376 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1377 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1378 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1379 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1380 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1381 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1382 break;
1383 default:
1384 adapter->ptp_clock = NULL;
1385 return;
1386 }
1387
1388 adapter->ptp_clock = ptp_clock_register(info: &adapter->ptp_caps,
1389 parent: &adapter->pdev->dev);
1390 if (IS_ERR(ptr: adapter->ptp_clock)) {
1391 adapter->ptp_clock = NULL;
1392 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1393 } else if (adapter->ptp_clock) {
1394 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1395 adapter->netdev->name);
1396 adapter->ptp_flags |= IGB_PTP_ENABLED;
1397
1398 spin_lock_init(&adapter->tmreg_lock);
1399 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1400
1401 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1402 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1403 igb_ptp_overflow_check);
1404
1405 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1406 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1407
1408 igb_ptp_reset(adapter);
1409 }
1410}
1411
1412/**
1413 * igb_ptp_sdp_init - utility function which inits the SDP config structs
1414 * @adapter: Board private structure.
1415 **/
1416void igb_ptp_sdp_init(struct igb_adapter *adapter)
1417{
1418 int i;
1419
1420 for (i = 0; i < IGB_N_SDP; i++) {
1421 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1422
1423 snprintf(buf: ppd->name, size: sizeof(ppd->name), fmt: "SDP%d", i);
1424 ppd->index = i;
1425 ppd->func = PTP_PF_NONE;
1426 }
1427}
1428
1429/**
1430 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1431 * @adapter: Board private structure
1432 *
1433 * This function stops the overflow check work and PTP Tx timestamp work, and
1434 * will prepare the device for OS suspend.
1435 */
1436void igb_ptp_suspend(struct igb_adapter *adapter)
1437{
1438 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1439 return;
1440
1441 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1442 cancel_delayed_work_sync(dwork: &adapter->ptp_overflow_work);
1443
1444 cancel_work_sync(work: &adapter->ptp_tx_work);
1445 if (adapter->ptp_tx_skb) {
1446 dev_kfree_skb_any(skb: adapter->ptp_tx_skb);
1447 adapter->ptp_tx_skb = NULL;
1448 clear_bit_unlock(nr: __IGB_PTP_TX_IN_PROGRESS, addr: &adapter->state);
1449 }
1450}
1451
1452/**
1453 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1454 * @adapter: Board private structure.
1455 *
1456 * This function stops the PTP support and cancels the delayed work.
1457 **/
1458void igb_ptp_stop(struct igb_adapter *adapter)
1459{
1460 igb_ptp_suspend(adapter);
1461
1462 if (adapter->ptp_clock) {
1463 ptp_clock_unregister(ptp: adapter->ptp_clock);
1464 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1465 adapter->netdev->name);
1466 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1467 }
1468}
1469
1470/**
1471 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1472 * @adapter: Board private structure.
1473 *
1474 * This function handles the reset work required to re-enable the PTP device.
1475 **/
1476void igb_ptp_reset(struct igb_adapter *adapter)
1477{
1478 struct e1000_hw *hw = &adapter->hw;
1479 unsigned long flags;
1480
1481 /* reset the tstamp_config */
1482 igb_ptp_set_timestamp_mode(adapter, config: &adapter->tstamp_config);
1483
1484 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1485
1486 switch (adapter->hw.mac.type) {
1487 case e1000_82576:
1488 /* Dial the nominal frequency. */
1489 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1490 break;
1491 case e1000_82580:
1492 case e1000_i354:
1493 case e1000_i350:
1494 case e1000_i210:
1495 case e1000_i211:
1496 wr32(E1000_TSAUXC, 0x0);
1497 wr32(E1000_TSSDP, 0x0);
1498 wr32(E1000_TSIM,
1499 TSYNC_INTERRUPTS |
1500 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1501 wr32(E1000_IMS, E1000_IMS_TS);
1502 break;
1503 default:
1504 /* No work to do. */
1505 goto out;
1506 }
1507
1508 /* Re-initialize the timer. */
1509 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1510 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1511
1512 igb_ptp_write_i210(adapter, ts: &ts);
1513 } else {
1514 timecounter_init(tc: &adapter->tc, cc: &adapter->cc,
1515 start_tstamp: ktime_to_ns(kt: ktime_get_real()));
1516 }
1517out:
1518 spin_unlock_irqrestore(lock: &adapter->tmreg_lock, flags);
1519
1520 wrfl();
1521
1522 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1523 schedule_delayed_work(dwork: &adapter->ptp_overflow_work,
1524 IGB_SYSTIM_OVERFLOW_PERIOD);
1525}
1526

source code of linux/drivers/net/ethernet/intel/igb/igb_ptp.c