1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
4 *
5 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
6 * Copyright (c) 2001,2002 Richard Russon
7 */
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/stddef.h>
11#include <linux/init.h>
12#include <linux/slab.h>
13#include <linux/string.h>
14#include <linux/spinlock.h>
15#include <linux/blkdev.h> /* For bdev_logical_block_size(). */
16#include <linux/backing-dev.h>
17#include <linux/buffer_head.h>
18#include <linux/vfs.h>
19#include <linux/moduleparam.h>
20#include <linux/bitmap.h>
21
22#include "sysctl.h"
23#include "logfile.h"
24#include "quota.h"
25#include "usnjrnl.h"
26#include "dir.h"
27#include "debug.h"
28#include "index.h"
29#include "inode.h"
30#include "aops.h"
31#include "layout.h"
32#include "malloc.h"
33#include "ntfs.h"
34
35/* Number of mounted filesystems which have compression enabled. */
36static unsigned long ntfs_nr_compression_users;
37
38/* A global default upcase table and a corresponding reference count. */
39static ntfschar *default_upcase;
40static unsigned long ntfs_nr_upcase_users;
41
42/* Error constants/strings used in inode.c::ntfs_show_options(). */
43typedef enum {
44 /* One of these must be present, default is ON_ERRORS_CONTINUE. */
45 ON_ERRORS_PANIC = 0x01,
46 ON_ERRORS_REMOUNT_RO = 0x02,
47 ON_ERRORS_CONTINUE = 0x04,
48 /* Optional, can be combined with any of the above. */
49 ON_ERRORS_RECOVER = 0x10,
50} ON_ERRORS_ACTIONS;
51
52const option_t on_errors_arr[] = {
53 { ON_ERRORS_PANIC, "panic" },
54 { ON_ERRORS_REMOUNT_RO, "remount-ro", },
55 { ON_ERRORS_CONTINUE, "continue", },
56 { ON_ERRORS_RECOVER, "recover" },
57 { 0, NULL }
58};
59
60/**
61 * simple_getbool - convert input string to a boolean value
62 * @s: input string to convert
63 * @setval: where to store the output boolean value
64 *
65 * Copied from old ntfs driver (which copied from vfat driver).
66 *
67 * "1", "yes", "true", or an empty string are converted to %true.
68 * "0", "no", and "false" are converted to %false.
69 *
70 * Return: %1 if the string is converted or was empty and *setval contains it;
71 * %0 if the string was not valid.
72 */
73static int simple_getbool(char *s, bool *setval)
74{
75 if (s) {
76 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
77 *setval = true;
78 else if (!strcmp(s, "0") || !strcmp(s, "no") ||
79 !strcmp(s, "false"))
80 *setval = false;
81 else
82 return 0;
83 } else
84 *setval = true;
85 return 1;
86}
87
88/**
89 * parse_options - parse the (re)mount options
90 * @vol: ntfs volume
91 * @opt: string containing the (re)mount options
92 *
93 * Parse the recognized options in @opt for the ntfs volume described by @vol.
94 */
95static bool parse_options(ntfs_volume *vol, char *opt)
96{
97 char *p, *v, *ov;
98 static char *utf8 = "utf8";
99 int errors = 0, sloppy = 0;
100 kuid_t uid = INVALID_UID;
101 kgid_t gid = INVALID_GID;
102 umode_t fmask = (umode_t)-1, dmask = (umode_t)-1;
103 int mft_zone_multiplier = -1, on_errors = -1;
104 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
105 struct nls_table *nls_map = NULL, *old_nls;
106
107 /* I am lazy... (-8 */
108#define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
109 if (!strcmp(p, option)) { \
110 if (!v || !*v) \
111 variable = default_value; \
112 else { \
113 variable = simple_strtoul(ov = v, &v, 0); \
114 if (*v) \
115 goto needs_val; \
116 } \
117 }
118#define NTFS_GETOPT(option, variable) \
119 if (!strcmp(p, option)) { \
120 if (!v || !*v) \
121 goto needs_arg; \
122 variable = simple_strtoul(ov = v, &v, 0); \
123 if (*v) \
124 goto needs_val; \
125 }
126#define NTFS_GETOPT_UID(option, variable) \
127 if (!strcmp(p, option)) { \
128 uid_t uid_value; \
129 if (!v || !*v) \
130 goto needs_arg; \
131 uid_value = simple_strtoul(ov = v, &v, 0); \
132 if (*v) \
133 goto needs_val; \
134 variable = make_kuid(current_user_ns(), uid_value); \
135 if (!uid_valid(variable)) \
136 goto needs_val; \
137 }
138#define NTFS_GETOPT_GID(option, variable) \
139 if (!strcmp(p, option)) { \
140 gid_t gid_value; \
141 if (!v || !*v) \
142 goto needs_arg; \
143 gid_value = simple_strtoul(ov = v, &v, 0); \
144 if (*v) \
145 goto needs_val; \
146 variable = make_kgid(current_user_ns(), gid_value); \
147 if (!gid_valid(variable)) \
148 goto needs_val; \
149 }
150#define NTFS_GETOPT_OCTAL(option, variable) \
151 if (!strcmp(p, option)) { \
152 if (!v || !*v) \
153 goto needs_arg; \
154 variable = simple_strtoul(ov = v, &v, 8); \
155 if (*v) \
156 goto needs_val; \
157 }
158#define NTFS_GETOPT_BOOL(option, variable) \
159 if (!strcmp(p, option)) { \
160 bool val; \
161 if (!simple_getbool(v, &val)) \
162 goto needs_bool; \
163 variable = val; \
164 }
165#define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
166 if (!strcmp(p, option)) { \
167 int _i; \
168 if (!v || !*v) \
169 goto needs_arg; \
170 ov = v; \
171 if (variable == -1) \
172 variable = 0; \
173 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
174 if (!strcmp(opt_array[_i].str, v)) { \
175 variable |= opt_array[_i].val; \
176 break; \
177 } \
178 if (!opt_array[_i].str || !*opt_array[_i].str) \
179 goto needs_val; \
180 }
181 if (!opt || !*opt)
182 goto no_mount_options;
183 ntfs_debug("Entering with mount options string: %s", opt);
184 while ((p = strsep(&opt, ","))) {
185 if ((v = strchr(p, '=')))
186 *v++ = 0;
187 NTFS_GETOPT_UID("uid", uid)
188 else NTFS_GETOPT_GID("gid", gid)
189 else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
190 else NTFS_GETOPT_OCTAL("fmask", fmask)
191 else NTFS_GETOPT_OCTAL("dmask", dmask)
192 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
193 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
194 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
195 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
196 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
197 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
198 on_errors_arr)
199 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
200 ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
201 p);
202 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
203 if (!strcmp(p, "iocharset"))
204 ntfs_warning(vol->sb, "Option iocharset is "
205 "deprecated. Please use "
206 "option nls=<charsetname> in "
207 "the future.");
208 if (!v || !*v)
209 goto needs_arg;
210use_utf8:
211 old_nls = nls_map;
212 nls_map = load_nls(charset: v);
213 if (!nls_map) {
214 if (!old_nls) {
215 ntfs_error(vol->sb, "NLS character set "
216 "%s not found.", v);
217 return false;
218 }
219 ntfs_error(vol->sb, "NLS character set %s not "
220 "found. Using previous one %s.",
221 v, old_nls->charset);
222 nls_map = old_nls;
223 } else /* nls_map */ {
224 unload_nls(old_nls);
225 }
226 } else if (!strcmp(p, "utf8")) {
227 bool val = false;
228 ntfs_warning(vol->sb, "Option utf8 is no longer "
229 "supported, using option nls=utf8. Please "
230 "use option nls=utf8 in the future and "
231 "make sure utf8 is compiled either as a "
232 "module or into the kernel.");
233 if (!v || !*v)
234 val = true;
235 else if (!simple_getbool(s: v, setval: &val))
236 goto needs_bool;
237 if (val) {
238 v = utf8;
239 goto use_utf8;
240 }
241 } else {
242 ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
243 if (errors < INT_MAX)
244 errors++;
245 }
246#undef NTFS_GETOPT_OPTIONS_ARRAY
247#undef NTFS_GETOPT_BOOL
248#undef NTFS_GETOPT
249#undef NTFS_GETOPT_WITH_DEFAULT
250 }
251no_mount_options:
252 if (errors && !sloppy)
253 return false;
254 if (sloppy)
255 ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
256 "unrecognized mount option(s) and continuing.");
257 /* Keep this first! */
258 if (on_errors != -1) {
259 if (!on_errors) {
260 ntfs_error(vol->sb, "Invalid errors option argument "
261 "or bug in options parser.");
262 return false;
263 }
264 }
265 if (nls_map) {
266 if (vol->nls_map && vol->nls_map != nls_map) {
267 ntfs_error(vol->sb, "Cannot change NLS character set "
268 "on remount.");
269 return false;
270 } /* else (!vol->nls_map) */
271 ntfs_debug("Using NLS character set %s.", nls_map->charset);
272 vol->nls_map = nls_map;
273 } else /* (!nls_map) */ {
274 if (!vol->nls_map) {
275 vol->nls_map = load_nls_default();
276 if (!vol->nls_map) {
277 ntfs_error(vol->sb, "Failed to load default "
278 "NLS character set.");
279 return false;
280 }
281 ntfs_debug("Using default NLS character set (%s).",
282 vol->nls_map->charset);
283 }
284 }
285 if (mft_zone_multiplier != -1) {
286 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
287 mft_zone_multiplier) {
288 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
289 "on remount.");
290 return false;
291 }
292 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
293 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
294 "Using default value, i.e. 1.");
295 mft_zone_multiplier = 1;
296 }
297 vol->mft_zone_multiplier = mft_zone_multiplier;
298 }
299 if (!vol->mft_zone_multiplier)
300 vol->mft_zone_multiplier = 1;
301 if (on_errors != -1)
302 vol->on_errors = on_errors;
303 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
304 vol->on_errors |= ON_ERRORS_CONTINUE;
305 if (uid_valid(uid))
306 vol->uid = uid;
307 if (gid_valid(gid))
308 vol->gid = gid;
309 if (fmask != (umode_t)-1)
310 vol->fmask = fmask;
311 if (dmask != (umode_t)-1)
312 vol->dmask = dmask;
313 if (show_sys_files != -1) {
314 if (show_sys_files)
315 NVolSetShowSystemFiles(vol);
316 else
317 NVolClearShowSystemFiles(vol);
318 }
319 if (case_sensitive != -1) {
320 if (case_sensitive)
321 NVolSetCaseSensitive(vol);
322 else
323 NVolClearCaseSensitive(vol);
324 }
325 if (disable_sparse != -1) {
326 if (disable_sparse)
327 NVolClearSparseEnabled(vol);
328 else {
329 if (!NVolSparseEnabled(vol) &&
330 vol->major_ver && vol->major_ver < 3)
331 ntfs_warning(vol->sb, "Not enabling sparse "
332 "support due to NTFS volume "
333 "version %i.%i (need at least "
334 "version 3.0).", vol->major_ver,
335 vol->minor_ver);
336 else
337 NVolSetSparseEnabled(vol);
338 }
339 }
340 return true;
341needs_arg:
342 ntfs_error(vol->sb, "The %s option requires an argument.", p);
343 return false;
344needs_bool:
345 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
346 return false;
347needs_val:
348 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
349 return false;
350}
351
352#ifdef NTFS_RW
353
354/**
355 * ntfs_write_volume_flags - write new flags to the volume information flags
356 * @vol: ntfs volume on which to modify the flags
357 * @flags: new flags value for the volume information flags
358 *
359 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
360 * instead (see below).
361 *
362 * Replace the volume information flags on the volume @vol with the value
363 * supplied in @flags. Note, this overwrites the volume information flags, so
364 * make sure to combine the flags you want to modify with the old flags and use
365 * the result when calling ntfs_write_volume_flags().
366 *
367 * Return 0 on success and -errno on error.
368 */
369static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
370{
371 ntfs_inode *ni = NTFS_I(inode: vol->vol_ino);
372 MFT_RECORD *m;
373 VOLUME_INFORMATION *vi;
374 ntfs_attr_search_ctx *ctx;
375 int err;
376
377 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
378 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
379 if (vol->vol_flags == flags)
380 goto done;
381 BUG_ON(!ni);
382 m = map_mft_record(ni);
383 if (IS_ERR(ptr: m)) {
384 err = PTR_ERR(ptr: m);
385 goto err_out;
386 }
387 ctx = ntfs_attr_get_search_ctx(ni, mrec: m);
388 if (!ctx) {
389 err = -ENOMEM;
390 goto put_unm_err_out;
391 }
392 err = ntfs_attr_lookup(type: AT_VOLUME_INFORMATION, NULL, name_len: 0, ic: 0, lowest_vcn: 0, NULL, val_len: 0,
393 ctx);
394 if (err)
395 goto put_unm_err_out;
396 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
397 le16_to_cpu(ctx->attr->data.resident.value_offset));
398 vol->vol_flags = vi->flags = flags;
399 flush_dcache_mft_record_page(ni: ctx->ntfs_ino);
400 mark_mft_record_dirty(ni: ctx->ntfs_ino);
401 ntfs_attr_put_search_ctx(ctx);
402 unmap_mft_record(ni);
403done:
404 ntfs_debug("Done.");
405 return 0;
406put_unm_err_out:
407 if (ctx)
408 ntfs_attr_put_search_ctx(ctx);
409 unmap_mft_record(ni);
410err_out:
411 ntfs_error(vol->sb, "Failed with error code %i.", -err);
412 return err;
413}
414
415/**
416 * ntfs_set_volume_flags - set bits in the volume information flags
417 * @vol: ntfs volume on which to modify the flags
418 * @flags: flags to set on the volume
419 *
420 * Set the bits in @flags in the volume information flags on the volume @vol.
421 *
422 * Return 0 on success and -errno on error.
423 */
424static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
425{
426 flags &= VOLUME_FLAGS_MASK;
427 return ntfs_write_volume_flags(vol, flags: vol->vol_flags | flags);
428}
429
430/**
431 * ntfs_clear_volume_flags - clear bits in the volume information flags
432 * @vol: ntfs volume on which to modify the flags
433 * @flags: flags to clear on the volume
434 *
435 * Clear the bits in @flags in the volume information flags on the volume @vol.
436 *
437 * Return 0 on success and -errno on error.
438 */
439static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
440{
441 flags &= VOLUME_FLAGS_MASK;
442 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
443 return ntfs_write_volume_flags(vol, flags);
444}
445
446#endif /* NTFS_RW */
447
448/**
449 * ntfs_remount - change the mount options of a mounted ntfs filesystem
450 * @sb: superblock of mounted ntfs filesystem
451 * @flags: remount flags
452 * @opt: remount options string
453 *
454 * Change the mount options of an already mounted ntfs filesystem.
455 *
456 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
457 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
458 * @sb->s_flags are not changed.
459 */
460static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
461{
462 ntfs_volume *vol = NTFS_SB(sb);
463
464 ntfs_debug("Entering with remount options string: %s", opt);
465
466 sync_filesystem(sb);
467
468#ifndef NTFS_RW
469 /* For read-only compiled driver, enforce read-only flag. */
470 *flags |= SB_RDONLY;
471#else /* NTFS_RW */
472 /*
473 * For the read-write compiled driver, if we are remounting read-write,
474 * make sure there are no volume errors and that no unsupported volume
475 * flags are set. Also, empty the logfile journal as it would become
476 * stale as soon as something is written to the volume and mark the
477 * volume dirty so that chkdsk is run if the volume is not umounted
478 * cleanly. Finally, mark the quotas out of date so Windows rescans
479 * the volume on boot and updates them.
480 *
481 * When remounting read-only, mark the volume clean if no volume errors
482 * have occurred.
483 */
484 if (sb_rdonly(sb) && !(*flags & SB_RDONLY)) {
485 static const char *es = ". Cannot remount read-write.";
486
487 /* Remounting read-write. */
488 if (NVolErrors(vol)) {
489 ntfs_error(sb, "Volume has errors and is read-only%s",
490 es);
491 return -EROFS;
492 }
493 if (vol->vol_flags & VOLUME_IS_DIRTY) {
494 ntfs_error(sb, "Volume is dirty and read-only%s", es);
495 return -EROFS;
496 }
497 if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
498 ntfs_error(sb, "Volume has been modified by chkdsk "
499 "and is read-only%s", es);
500 return -EROFS;
501 }
502 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
503 ntfs_error(sb, "Volume has unsupported flags set "
504 "(0x%x) and is read-only%s",
505 (unsigned)le16_to_cpu(vol->vol_flags),
506 es);
507 return -EROFS;
508 }
509 if (ntfs_set_volume_flags(vol, flags: VOLUME_IS_DIRTY)) {
510 ntfs_error(sb, "Failed to set dirty bit in volume "
511 "information flags%s", es);
512 return -EROFS;
513 }
514#if 0
515 // TODO: Enable this code once we start modifying anything that
516 // is different between NTFS 1.2 and 3.x...
517 /* Set NT4 compatibility flag on newer NTFS version volumes. */
518 if ((vol->major_ver > 1)) {
519 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
520 ntfs_error(sb, "Failed to set NT4 "
521 "compatibility flag%s", es);
522 NVolSetErrors(vol);
523 return -EROFS;
524 }
525 }
526#endif
527 if (!ntfs_empty_logfile(log_vi: vol->logfile_ino)) {
528 ntfs_error(sb, "Failed to empty journal $LogFile%s",
529 es);
530 NVolSetErrors(vol);
531 return -EROFS;
532 }
533 if (!ntfs_mark_quotas_out_of_date(vol)) {
534 ntfs_error(sb, "Failed to mark quotas out of date%s",
535 es);
536 NVolSetErrors(vol);
537 return -EROFS;
538 }
539 if (!ntfs_stamp_usnjrnl(vol)) {
540 ntfs_error(sb, "Failed to stamp transaction log "
541 "($UsnJrnl)%s", es);
542 NVolSetErrors(vol);
543 return -EROFS;
544 }
545 } else if (!sb_rdonly(sb) && (*flags & SB_RDONLY)) {
546 /* Remounting read-only. */
547 if (!NVolErrors(vol)) {
548 if (ntfs_clear_volume_flags(vol, flags: VOLUME_IS_DIRTY))
549 ntfs_warning(sb, "Failed to clear dirty bit "
550 "in volume information "
551 "flags. Run chkdsk.");
552 }
553 }
554#endif /* NTFS_RW */
555
556 // TODO: Deal with *flags.
557
558 if (!parse_options(vol, opt))
559 return -EINVAL;
560
561 ntfs_debug("Done.");
562 return 0;
563}
564
565/**
566 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
567 * @sb: Super block of the device to which @b belongs.
568 * @b: Boot sector of device @sb to check.
569 * @silent: If 'true', all output will be silenced.
570 *
571 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
572 * sector. Returns 'true' if it is valid and 'false' if not.
573 *
574 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
575 * is 'true'.
576 */
577static bool is_boot_sector_ntfs(const struct super_block *sb,
578 const NTFS_BOOT_SECTOR *b, const bool silent)
579{
580 /*
581 * Check that checksum == sum of u32 values from b to the checksum
582 * field. If checksum is zero, no checking is done. We will work when
583 * the checksum test fails, since some utilities update the boot sector
584 * ignoring the checksum which leaves the checksum out-of-date. We
585 * report a warning if this is the case.
586 */
587 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
588 le32 *u;
589 u32 i;
590
591 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
592 i += le32_to_cpup(p: u);
593 if (le32_to_cpu(b->checksum) != i)
594 ntfs_warning(sb, "Invalid boot sector checksum.");
595 }
596 /* Check OEMidentifier is "NTFS " */
597 if (b->oem_id != magicNTFS)
598 goto not_ntfs;
599 /* Check bytes per sector value is between 256 and 4096. */
600 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
601 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
602 goto not_ntfs;
603 /* Check sectors per cluster value is valid. */
604 switch (b->bpb.sectors_per_cluster) {
605 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
606 break;
607 default:
608 goto not_ntfs;
609 }
610 /* Check the cluster size is not above the maximum (64kiB). */
611 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
612 b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
613 goto not_ntfs;
614 /* Check reserved/unused fields are really zero. */
615 if (le16_to_cpu(b->bpb.reserved_sectors) ||
616 le16_to_cpu(b->bpb.root_entries) ||
617 le16_to_cpu(b->bpb.sectors) ||
618 le16_to_cpu(b->bpb.sectors_per_fat) ||
619 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
620 goto not_ntfs;
621 /* Check clusters per file mft record value is valid. */
622 if ((u8)b->clusters_per_mft_record < 0xe1 ||
623 (u8)b->clusters_per_mft_record > 0xf7)
624 switch (b->clusters_per_mft_record) {
625 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
626 break;
627 default:
628 goto not_ntfs;
629 }
630 /* Check clusters per index block value is valid. */
631 if ((u8)b->clusters_per_index_record < 0xe1 ||
632 (u8)b->clusters_per_index_record > 0xf7)
633 switch (b->clusters_per_index_record) {
634 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
635 break;
636 default:
637 goto not_ntfs;
638 }
639 /*
640 * Check for valid end of sector marker. We will work without it, but
641 * many BIOSes will refuse to boot from a bootsector if the magic is
642 * incorrect, so we emit a warning.
643 */
644 if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
645 ntfs_warning(sb, "Invalid end of sector marker.");
646 return true;
647not_ntfs:
648 return false;
649}
650
651/**
652 * read_ntfs_boot_sector - read the NTFS boot sector of a device
653 * @sb: super block of device to read the boot sector from
654 * @silent: if true, suppress all output
655 *
656 * Reads the boot sector from the device and validates it. If that fails, tries
657 * to read the backup boot sector, first from the end of the device a-la NT4 and
658 * later and then from the middle of the device a-la NT3.51 and before.
659 *
660 * If a valid boot sector is found but it is not the primary boot sector, we
661 * repair the primary boot sector silently (unless the device is read-only or
662 * the primary boot sector is not accessible).
663 *
664 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
665 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
666 * to their respective values.
667 *
668 * Return the unlocked buffer head containing the boot sector or NULL on error.
669 */
670static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
671 const int silent)
672{
673 const char *read_err_str = "Unable to read %s boot sector.";
674 struct buffer_head *bh_primary, *bh_backup;
675 sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
676
677 /* Try to read primary boot sector. */
678 if ((bh_primary = sb_bread(sb, block: 0))) {
679 if (is_boot_sector_ntfs(sb, b: (NTFS_BOOT_SECTOR*)
680 bh_primary->b_data, silent))
681 return bh_primary;
682 if (!silent)
683 ntfs_error(sb, "Primary boot sector is invalid.");
684 } else if (!silent)
685 ntfs_error(sb, read_err_str, "primary");
686 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
687 if (bh_primary)
688 brelse(bh: bh_primary);
689 if (!silent)
690 ntfs_error(sb, "Mount option errors=recover not used. "
691 "Aborting without trying to recover.");
692 return NULL;
693 }
694 /* Try to read NT4+ backup boot sector. */
695 if ((bh_backup = sb_bread(sb, block: nr_blocks - 1))) {
696 if (is_boot_sector_ntfs(sb, b: (NTFS_BOOT_SECTOR*)
697 bh_backup->b_data, silent))
698 goto hotfix_primary_boot_sector;
699 brelse(bh: bh_backup);
700 } else if (!silent)
701 ntfs_error(sb, read_err_str, "backup");
702 /* Try to read NT3.51- backup boot sector. */
703 if ((bh_backup = sb_bread(sb, block: nr_blocks >> 1))) {
704 if (is_boot_sector_ntfs(sb, b: (NTFS_BOOT_SECTOR*)
705 bh_backup->b_data, silent))
706 goto hotfix_primary_boot_sector;
707 if (!silent)
708 ntfs_error(sb, "Could not find a valid backup boot "
709 "sector.");
710 brelse(bh: bh_backup);
711 } else if (!silent)
712 ntfs_error(sb, read_err_str, "backup");
713 /* We failed. Cleanup and return. */
714 if (bh_primary)
715 brelse(bh: bh_primary);
716 return NULL;
717hotfix_primary_boot_sector:
718 if (bh_primary) {
719 /*
720 * If we managed to read sector zero and the volume is not
721 * read-only, copy the found, valid backup boot sector to the
722 * primary boot sector. Note we only copy the actual boot
723 * sector structure, not the actual whole device sector as that
724 * may be bigger and would potentially damage the $Boot system
725 * file (FIXME: Would be nice to know if the backup boot sector
726 * on a large sector device contains the whole boot loader or
727 * just the first 512 bytes).
728 */
729 if (!sb_rdonly(sb)) {
730 ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
731 "boot sector from backup copy.");
732 memcpy(bh_primary->b_data, bh_backup->b_data,
733 NTFS_BLOCK_SIZE);
734 mark_buffer_dirty(bh: bh_primary);
735 sync_dirty_buffer(bh: bh_primary);
736 if (buffer_uptodate(bh: bh_primary)) {
737 brelse(bh: bh_backup);
738 return bh_primary;
739 }
740 ntfs_error(sb, "Hot-fix: Device write error while "
741 "recovering primary boot sector.");
742 } else {
743 ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
744 "sector failed: Read-only mount.");
745 }
746 brelse(bh: bh_primary);
747 }
748 ntfs_warning(sb, "Using backup boot sector.");
749 return bh_backup;
750}
751
752/**
753 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
754 * @vol: volume structure to initialise with data from boot sector
755 * @b: boot sector to parse
756 *
757 * Parse the ntfs boot sector @b and store all imporant information therein in
758 * the ntfs super block @vol. Return 'true' on success and 'false' on error.
759 */
760static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
761{
762 unsigned int sectors_per_cluster_bits, nr_hidden_sects;
763 int clusters_per_mft_record, clusters_per_index_record;
764 s64 ll;
765
766 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
767 vol->sector_size_bits = ffs(vol->sector_size) - 1;
768 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
769 vol->sector_size);
770 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
771 vol->sector_size_bits);
772 if (vol->sector_size < vol->sb->s_blocksize) {
773 ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
774 "device block size (%lu). This is not "
775 "supported. Sorry.", vol->sector_size,
776 vol->sb->s_blocksize);
777 return false;
778 }
779 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
780 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
781 ntfs_debug("sectors_per_cluster_bits = 0x%x",
782 sectors_per_cluster_bits);
783 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
784 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
785 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
786 vol->cluster_size_mask = vol->cluster_size - 1;
787 vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
788 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
789 vol->cluster_size);
790 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
791 ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
792 if (vol->cluster_size < vol->sector_size) {
793 ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
794 "sector size (%i). This is not supported. "
795 "Sorry.", vol->cluster_size, vol->sector_size);
796 return false;
797 }
798 clusters_per_mft_record = b->clusters_per_mft_record;
799 ntfs_debug("clusters_per_mft_record = %i (0x%x)",
800 clusters_per_mft_record, clusters_per_mft_record);
801 if (clusters_per_mft_record > 0)
802 vol->mft_record_size = vol->cluster_size <<
803 (ffs(clusters_per_mft_record) - 1);
804 else
805 /*
806 * When mft_record_size < cluster_size, clusters_per_mft_record
807 * = -log2(mft_record_size) bytes. mft_record_size normaly is
808 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
809 */
810 vol->mft_record_size = 1 << -clusters_per_mft_record;
811 vol->mft_record_size_mask = vol->mft_record_size - 1;
812 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
813 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
814 vol->mft_record_size);
815 ntfs_debug("vol->mft_record_size_mask = 0x%x",
816 vol->mft_record_size_mask);
817 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
818 vol->mft_record_size_bits, vol->mft_record_size_bits);
819 /*
820 * We cannot support mft record sizes above the PAGE_SIZE since
821 * we store $MFT/$DATA, the table of mft records in the page cache.
822 */
823 if (vol->mft_record_size > PAGE_SIZE) {
824 ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
825 "PAGE_SIZE on your system (%lu). "
826 "This is not supported. Sorry.",
827 vol->mft_record_size, PAGE_SIZE);
828 return false;
829 }
830 /* We cannot support mft record sizes below the sector size. */
831 if (vol->mft_record_size < vol->sector_size) {
832 ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
833 "sector size (%i). This is not supported. "
834 "Sorry.", vol->mft_record_size,
835 vol->sector_size);
836 return false;
837 }
838 clusters_per_index_record = b->clusters_per_index_record;
839 ntfs_debug("clusters_per_index_record = %i (0x%x)",
840 clusters_per_index_record, clusters_per_index_record);
841 if (clusters_per_index_record > 0)
842 vol->index_record_size = vol->cluster_size <<
843 (ffs(clusters_per_index_record) - 1);
844 else
845 /*
846 * When index_record_size < cluster_size,
847 * clusters_per_index_record = -log2(index_record_size) bytes.
848 * index_record_size normaly equals 4096 bytes, which is
849 * encoded as 0xF4 (-12 in decimal).
850 */
851 vol->index_record_size = 1 << -clusters_per_index_record;
852 vol->index_record_size_mask = vol->index_record_size - 1;
853 vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
854 ntfs_debug("vol->index_record_size = %i (0x%x)",
855 vol->index_record_size, vol->index_record_size);
856 ntfs_debug("vol->index_record_size_mask = 0x%x",
857 vol->index_record_size_mask);
858 ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
859 vol->index_record_size_bits,
860 vol->index_record_size_bits);
861 /* We cannot support index record sizes below the sector size. */
862 if (vol->index_record_size < vol->sector_size) {
863 ntfs_error(vol->sb, "Index record size (%i) is smaller than "
864 "the sector size (%i). This is not "
865 "supported. Sorry.", vol->index_record_size,
866 vol->sector_size);
867 return false;
868 }
869 /*
870 * Get the size of the volume in clusters and check for 64-bit-ness.
871 * Windows currently only uses 32 bits to save the clusters so we do
872 * the same as it is much faster on 32-bit CPUs.
873 */
874 ll = sle64_to_cpu(x: b->number_of_sectors) >> sectors_per_cluster_bits;
875 if ((u64)ll >= 1ULL << 32) {
876 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry.");
877 return false;
878 }
879 vol->nr_clusters = ll;
880 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
881 /*
882 * On an architecture where unsigned long is 32-bits, we restrict the
883 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
884 * will hopefully optimize the whole check away.
885 */
886 if (sizeof(unsigned long) < 8) {
887 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
888 ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
889 "large for this architecture. "
890 "Maximum supported is 2TiB. Sorry.",
891 (unsigned long long)ll >> (40 -
892 vol->cluster_size_bits));
893 return false;
894 }
895 }
896 ll = sle64_to_cpu(x: b->mft_lcn);
897 if (ll >= vol->nr_clusters) {
898 ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
899 "volume. Weird.", (unsigned long long)ll,
900 (unsigned long long)ll);
901 return false;
902 }
903 vol->mft_lcn = ll;
904 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
905 ll = sle64_to_cpu(x: b->mftmirr_lcn);
906 if (ll >= vol->nr_clusters) {
907 ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
908 "of volume. Weird.", (unsigned long long)ll,
909 (unsigned long long)ll);
910 return false;
911 }
912 vol->mftmirr_lcn = ll;
913 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
914#ifdef NTFS_RW
915 /*
916 * Work out the size of the mft mirror in number of mft records. If the
917 * cluster size is less than or equal to the size taken by four mft
918 * records, the mft mirror stores the first four mft records. If the
919 * cluster size is bigger than the size taken by four mft records, the
920 * mft mirror contains as many mft records as will fit into one
921 * cluster.
922 */
923 if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
924 vol->mftmirr_size = 4;
925 else
926 vol->mftmirr_size = vol->cluster_size >>
927 vol->mft_record_size_bits;
928 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
929#endif /* NTFS_RW */
930 vol->serial_no = le64_to_cpu(b->volume_serial_number);
931 ntfs_debug("vol->serial_no = 0x%llx",
932 (unsigned long long)vol->serial_no);
933 return true;
934}
935
936/**
937 * ntfs_setup_allocators - initialize the cluster and mft allocators
938 * @vol: volume structure for which to setup the allocators
939 *
940 * Setup the cluster (lcn) and mft allocators to the starting values.
941 */
942static void ntfs_setup_allocators(ntfs_volume *vol)
943{
944#ifdef NTFS_RW
945 LCN mft_zone_size, mft_lcn;
946#endif /* NTFS_RW */
947
948 ntfs_debug("vol->mft_zone_multiplier = 0x%x",
949 vol->mft_zone_multiplier);
950#ifdef NTFS_RW
951 /* Determine the size of the MFT zone. */
952 mft_zone_size = vol->nr_clusters;
953 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */
954 case 4:
955 mft_zone_size >>= 1; /* 50% */
956 break;
957 case 3:
958 mft_zone_size = (mft_zone_size +
959 (mft_zone_size >> 1)) >> 2; /* 37.5% */
960 break;
961 case 2:
962 mft_zone_size >>= 2; /* 25% */
963 break;
964 /* case 1: */
965 default:
966 mft_zone_size >>= 3; /* 12.5% */
967 break;
968 }
969 /* Setup the mft zone. */
970 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
971 ntfs_debug("vol->mft_zone_pos = 0x%llx",
972 (unsigned long long)vol->mft_zone_pos);
973 /*
974 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
975 * source) and if the actual mft_lcn is in the expected place or even
976 * further to the front of the volume, extend the mft_zone to cover the
977 * beginning of the volume as well. This is in order to protect the
978 * area reserved for the mft bitmap as well within the mft_zone itself.
979 * On non-standard volumes we do not protect it as the overhead would
980 * be higher than the speed increase we would get by doing it.
981 */
982 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
983 if (mft_lcn * vol->cluster_size < 16 * 1024)
984 mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
985 vol->cluster_size;
986 if (vol->mft_zone_start <= mft_lcn)
987 vol->mft_zone_start = 0;
988 ntfs_debug("vol->mft_zone_start = 0x%llx",
989 (unsigned long long)vol->mft_zone_start);
990 /*
991 * Need to cap the mft zone on non-standard volumes so that it does
992 * not point outside the boundaries of the volume. We do this by
993 * halving the zone size until we are inside the volume.
994 */
995 vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
996 while (vol->mft_zone_end >= vol->nr_clusters) {
997 mft_zone_size >>= 1;
998 vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
999 }
1000 ntfs_debug("vol->mft_zone_end = 0x%llx",
1001 (unsigned long long)vol->mft_zone_end);
1002 /*
1003 * Set the current position within each data zone to the start of the
1004 * respective zone.
1005 */
1006 vol->data1_zone_pos = vol->mft_zone_end;
1007 ntfs_debug("vol->data1_zone_pos = 0x%llx",
1008 (unsigned long long)vol->data1_zone_pos);
1009 vol->data2_zone_pos = 0;
1010 ntfs_debug("vol->data2_zone_pos = 0x%llx",
1011 (unsigned long long)vol->data2_zone_pos);
1012
1013 /* Set the mft data allocation position to mft record 24. */
1014 vol->mft_data_pos = 24;
1015 ntfs_debug("vol->mft_data_pos = 0x%llx",
1016 (unsigned long long)vol->mft_data_pos);
1017#endif /* NTFS_RW */
1018}
1019
1020#ifdef NTFS_RW
1021
1022/**
1023 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1024 * @vol: ntfs super block describing device whose mft mirror to load
1025 *
1026 * Return 'true' on success or 'false' on error.
1027 */
1028static bool load_and_init_mft_mirror(ntfs_volume *vol)
1029{
1030 struct inode *tmp_ino;
1031 ntfs_inode *tmp_ni;
1032
1033 ntfs_debug("Entering.");
1034 /* Get mft mirror inode. */
1035 tmp_ino = ntfs_iget(sb: vol->sb, mft_no: FILE_MFTMirr);
1036 if (IS_ERR(ptr: tmp_ino) || is_bad_inode(tmp_ino)) {
1037 if (!IS_ERR(ptr: tmp_ino))
1038 iput(tmp_ino);
1039 /* Caller will display error message. */
1040 return false;
1041 }
1042 /*
1043 * Re-initialize some specifics about $MFTMirr's inode as
1044 * ntfs_read_inode() will have set up the default ones.
1045 */
1046 /* Set uid and gid to root. */
1047 tmp_ino->i_uid = GLOBAL_ROOT_UID;
1048 tmp_ino->i_gid = GLOBAL_ROOT_GID;
1049 /* Regular file. No access for anyone. */
1050 tmp_ino->i_mode = S_IFREG;
1051 /* No VFS initiated operations allowed for $MFTMirr. */
1052 tmp_ino->i_op = &ntfs_empty_inode_ops;
1053 tmp_ino->i_fop = &ntfs_empty_file_ops;
1054 /* Put in our special address space operations. */
1055 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1056 tmp_ni = NTFS_I(tmp_ino);
1057 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1058 NInoSetMstProtected(tmp_ni);
1059 NInoSetSparseDisabled(tmp_ni);
1060 /*
1061 * Set up our little cheat allowing us to reuse the async read io
1062 * completion handler for directories.
1063 */
1064 tmp_ni->itype.index.block_size = vol->mft_record_size;
1065 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1066 vol->mftmirr_ino = tmp_ino;
1067 ntfs_debug("Done.");
1068 return true;
1069}
1070
1071/**
1072 * check_mft_mirror - compare contents of the mft mirror with the mft
1073 * @vol: ntfs super block describing device whose mft mirror to check
1074 *
1075 * Return 'true' on success or 'false' on error.
1076 *
1077 * Note, this function also results in the mft mirror runlist being completely
1078 * mapped into memory. The mft mirror write code requires this and will BUG()
1079 * should it find an unmapped runlist element.
1080 */
1081static bool check_mft_mirror(ntfs_volume *vol)
1082{
1083 struct super_block *sb = vol->sb;
1084 ntfs_inode *mirr_ni;
1085 struct page *mft_page, *mirr_page;
1086 u8 *kmft, *kmirr;
1087 runlist_element *rl, rl2[2];
1088 pgoff_t index;
1089 int mrecs_per_page, i;
1090
1091 ntfs_debug("Entering.");
1092 /* Compare contents of $MFT and $MFTMirr. */
1093 mrecs_per_page = PAGE_SIZE / vol->mft_record_size;
1094 BUG_ON(!mrecs_per_page);
1095 BUG_ON(!vol->mftmirr_size);
1096 mft_page = mirr_page = NULL;
1097 kmft = kmirr = NULL;
1098 index = i = 0;
1099 do {
1100 u32 bytes;
1101
1102 /* Switch pages if necessary. */
1103 if (!(i % mrecs_per_page)) {
1104 if (index) {
1105 ntfs_unmap_page(page: mft_page);
1106 ntfs_unmap_page(page: mirr_page);
1107 }
1108 /* Get the $MFT page. */
1109 mft_page = ntfs_map_page(mapping: vol->mft_ino->i_mapping,
1110 index);
1111 if (IS_ERR(ptr: mft_page)) {
1112 ntfs_error(sb, "Failed to read $MFT.");
1113 return false;
1114 }
1115 kmft = page_address(mft_page);
1116 /* Get the $MFTMirr page. */
1117 mirr_page = ntfs_map_page(mapping: vol->mftmirr_ino->i_mapping,
1118 index);
1119 if (IS_ERR(ptr: mirr_page)) {
1120 ntfs_error(sb, "Failed to read $MFTMirr.");
1121 goto mft_unmap_out;
1122 }
1123 kmirr = page_address(mirr_page);
1124 ++index;
1125 }
1126 /* Do not check the record if it is not in use. */
1127 if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
1128 /* Make sure the record is ok. */
1129 if (ntfs_is_baad_recordp((le32*)kmft)) {
1130 ntfs_error(sb, "Incomplete multi sector "
1131 "transfer detected in mft "
1132 "record %i.", i);
1133mm_unmap_out:
1134 ntfs_unmap_page(page: mirr_page);
1135mft_unmap_out:
1136 ntfs_unmap_page(page: mft_page);
1137 return false;
1138 }
1139 }
1140 /* Do not check the mirror record if it is not in use. */
1141 if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
1142 if (ntfs_is_baad_recordp((le32*)kmirr)) {
1143 ntfs_error(sb, "Incomplete multi sector "
1144 "transfer detected in mft "
1145 "mirror record %i.", i);
1146 goto mm_unmap_out;
1147 }
1148 }
1149 /* Get the amount of data in the current record. */
1150 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1151 if (bytes < sizeof(MFT_RECORD_OLD) ||
1152 bytes > vol->mft_record_size ||
1153 ntfs_is_baad_recordp((le32*)kmft)) {
1154 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1155 if (bytes < sizeof(MFT_RECORD_OLD) ||
1156 bytes > vol->mft_record_size ||
1157 ntfs_is_baad_recordp((le32*)kmirr))
1158 bytes = vol->mft_record_size;
1159 }
1160 /* Compare the two records. */
1161 if (memcmp(p: kmft, q: kmirr, size: bytes)) {
1162 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1163 "match. Run ntfsfix or chkdsk.", i);
1164 goto mm_unmap_out;
1165 }
1166 kmft += vol->mft_record_size;
1167 kmirr += vol->mft_record_size;
1168 } while (++i < vol->mftmirr_size);
1169 /* Release the last pages. */
1170 ntfs_unmap_page(page: mft_page);
1171 ntfs_unmap_page(page: mirr_page);
1172
1173 /* Construct the mft mirror runlist by hand. */
1174 rl2[0].vcn = 0;
1175 rl2[0].lcn = vol->mftmirr_lcn;
1176 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1177 vol->cluster_size - 1) / vol->cluster_size;
1178 rl2[1].vcn = rl2[0].length;
1179 rl2[1].lcn = LCN_ENOENT;
1180 rl2[1].length = 0;
1181 /*
1182 * Because we have just read all of the mft mirror, we know we have
1183 * mapped the full runlist for it.
1184 */
1185 mirr_ni = NTFS_I(inode: vol->mftmirr_ino);
1186 down_read(sem: &mirr_ni->runlist.lock);
1187 rl = mirr_ni->runlist.rl;
1188 /* Compare the two runlists. They must be identical. */
1189 i = 0;
1190 do {
1191 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1192 rl2[i].length != rl[i].length) {
1193 ntfs_error(sb, "$MFTMirr location mismatch. "
1194 "Run chkdsk.");
1195 up_read(sem: &mirr_ni->runlist.lock);
1196 return false;
1197 }
1198 } while (rl2[i++].length);
1199 up_read(sem: &mirr_ni->runlist.lock);
1200 ntfs_debug("Done.");
1201 return true;
1202}
1203
1204/**
1205 * load_and_check_logfile - load and check the logfile inode for a volume
1206 * @vol: ntfs super block describing device whose logfile to load
1207 *
1208 * Return 'true' on success or 'false' on error.
1209 */
1210static bool load_and_check_logfile(ntfs_volume *vol,
1211 RESTART_PAGE_HEADER **rp)
1212{
1213 struct inode *tmp_ino;
1214
1215 ntfs_debug("Entering.");
1216 tmp_ino = ntfs_iget(sb: vol->sb, mft_no: FILE_LogFile);
1217 if (IS_ERR(ptr: tmp_ino) || is_bad_inode(tmp_ino)) {
1218 if (!IS_ERR(ptr: tmp_ino))
1219 iput(tmp_ino);
1220 /* Caller will display error message. */
1221 return false;
1222 }
1223 if (!ntfs_check_logfile(log_vi: tmp_ino, rp)) {
1224 iput(tmp_ino);
1225 /* ntfs_check_logfile() will have displayed error output. */
1226 return false;
1227 }
1228 NInoSetSparseDisabled(ni: NTFS_I(inode: tmp_ino));
1229 vol->logfile_ino = tmp_ino;
1230 ntfs_debug("Done.");
1231 return true;
1232}
1233
1234#define NTFS_HIBERFIL_HEADER_SIZE 4096
1235
1236/**
1237 * check_windows_hibernation_status - check if Windows is suspended on a volume
1238 * @vol: ntfs super block of device to check
1239 *
1240 * Check if Windows is hibernated on the ntfs volume @vol. This is done by
1241 * looking for the file hiberfil.sys in the root directory of the volume. If
1242 * the file is not present Windows is definitely not suspended.
1243 *
1244 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1245 * definitely suspended (this volume is not the system volume). Caveat: on a
1246 * system with many volumes it is possible that the < 4kiB check is bogus but
1247 * for now this should do fine.
1248 *
1249 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1250 * hiberfil header (which is the first 4kiB). If this begins with "hibr",
1251 * Windows is definitely suspended. If it is completely full of zeroes,
1252 * Windows is definitely not hibernated. Any other case is treated as if
1253 * Windows is suspended. This caters for the above mentioned caveat of a
1254 * system with many volumes where no "hibr" magic would be present and there is
1255 * no zero header.
1256 *
1257 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1258 * hibernated on the volume, and -errno on error.
1259 */
1260static int check_windows_hibernation_status(ntfs_volume *vol)
1261{
1262 MFT_REF mref;
1263 struct inode *vi;
1264 struct page *page;
1265 u32 *kaddr, *kend;
1266 ntfs_name *name = NULL;
1267 int ret = 1;
1268 static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
1269 cpu_to_le16('i'), cpu_to_le16('b'),
1270 cpu_to_le16('e'), cpu_to_le16('r'),
1271 cpu_to_le16('f'), cpu_to_le16('i'),
1272 cpu_to_le16('l'), cpu_to_le16('.'),
1273 cpu_to_le16('s'), cpu_to_le16('y'),
1274 cpu_to_le16('s'), 0 };
1275
1276 ntfs_debug("Entering.");
1277 /*
1278 * Find the inode number for the hibernation file by looking up the
1279 * filename hiberfil.sys in the root directory.
1280 */
1281 inode_lock(inode: vol->root_ino);
1282 mref = ntfs_lookup_inode_by_name(dir_ni: NTFS_I(inode: vol->root_ino), uname: hiberfil, uname_len: 12,
1283 res: &name);
1284 inode_unlock(inode: vol->root_ino);
1285 if (IS_ERR_MREF(mref)) {
1286 ret = MREF_ERR(mref);
1287 /* If the file does not exist, Windows is not hibernated. */
1288 if (ret == -ENOENT) {
1289 ntfs_debug("hiberfil.sys not present. Windows is not "
1290 "hibernated on the volume.");
1291 return 0;
1292 }
1293 /* A real error occurred. */
1294 ntfs_error(vol->sb, "Failed to find inode number for "
1295 "hiberfil.sys.");
1296 return ret;
1297 }
1298 /* We do not care for the type of match that was found. */
1299 kfree(objp: name);
1300 /* Get the inode. */
1301 vi = ntfs_iget(sb: vol->sb, MREF(mref));
1302 if (IS_ERR(ptr: vi) || is_bad_inode(vi)) {
1303 if (!IS_ERR(ptr: vi))
1304 iput(vi);
1305 ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1306 return IS_ERR(ptr: vi) ? PTR_ERR(ptr: vi) : -EIO;
1307 }
1308 if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1309 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). "
1310 "Windows is hibernated on the volume. This "
1311 "is not the system volume.", i_size_read(vi));
1312 goto iput_out;
1313 }
1314 page = ntfs_map_page(mapping: vi->i_mapping, index: 0);
1315 if (IS_ERR(ptr: page)) {
1316 ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1317 ret = PTR_ERR(ptr: page);
1318 goto iput_out;
1319 }
1320 kaddr = (u32*)page_address(page);
1321 if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
1322 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is "
1323 "hibernated on the volume. This is the "
1324 "system volume.");
1325 goto unm_iput_out;
1326 }
1327 kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1328 do {
1329 if (unlikely(*kaddr)) {
1330 ntfs_debug("hiberfil.sys is larger than 4kiB "
1331 "(0x%llx), does not contain the "
1332 "\"hibr\" magic, and does not have a "
1333 "zero header. Windows is hibernated "
1334 "on the volume. This is not the "
1335 "system volume.", i_size_read(vi));
1336 goto unm_iput_out;
1337 }
1338 } while (++kaddr < kend);
1339 ntfs_debug("hiberfil.sys contains a zero header. Windows is not "
1340 "hibernated on the volume. This is the system "
1341 "volume.");
1342 ret = 0;
1343unm_iput_out:
1344 ntfs_unmap_page(page);
1345iput_out:
1346 iput(vi);
1347 return ret;
1348}
1349
1350/**
1351 * load_and_init_quota - load and setup the quota file for a volume if present
1352 * @vol: ntfs super block describing device whose quota file to load
1353 *
1354 * Return 'true' on success or 'false' on error. If $Quota is not present, we
1355 * leave vol->quota_ino as NULL and return success.
1356 */
1357static bool load_and_init_quota(ntfs_volume *vol)
1358{
1359 MFT_REF mref;
1360 struct inode *tmp_ino;
1361 ntfs_name *name = NULL;
1362 static const ntfschar Quota[7] = { cpu_to_le16('$'),
1363 cpu_to_le16('Q'), cpu_to_le16('u'),
1364 cpu_to_le16('o'), cpu_to_le16('t'),
1365 cpu_to_le16('a'), 0 };
1366 static ntfschar Q[3] = { cpu_to_le16('$'),
1367 cpu_to_le16('Q'), 0 };
1368
1369 ntfs_debug("Entering.");
1370 /*
1371 * Find the inode number for the quota file by looking up the filename
1372 * $Quota in the extended system files directory $Extend.
1373 */
1374 inode_lock(inode: vol->extend_ino);
1375 mref = ntfs_lookup_inode_by_name(dir_ni: NTFS_I(inode: vol->extend_ino), uname: Quota, uname_len: 6,
1376 res: &name);
1377 inode_unlock(inode: vol->extend_ino);
1378 if (IS_ERR_MREF(mref)) {
1379 /*
1380 * If the file does not exist, quotas are disabled and have
1381 * never been enabled on this volume, just return success.
1382 */
1383 if (MREF_ERR(mref) == -ENOENT) {
1384 ntfs_debug("$Quota not present. Volume does not have "
1385 "quotas enabled.");
1386 /*
1387 * No need to try to set quotas out of date if they are
1388 * not enabled.
1389 */
1390 NVolSetQuotaOutOfDate(vol);
1391 return true;
1392 }
1393 /* A real error occurred. */
1394 ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1395 return false;
1396 }
1397 /* We do not care for the type of match that was found. */
1398 kfree(objp: name);
1399 /* Get the inode. */
1400 tmp_ino = ntfs_iget(sb: vol->sb, MREF(mref));
1401 if (IS_ERR(ptr: tmp_ino) || is_bad_inode(tmp_ino)) {
1402 if (!IS_ERR(ptr: tmp_ino))
1403 iput(tmp_ino);
1404 ntfs_error(vol->sb, "Failed to load $Quota.");
1405 return false;
1406 }
1407 vol->quota_ino = tmp_ino;
1408 /* Get the $Q index allocation attribute. */
1409 tmp_ino = ntfs_index_iget(base_vi: vol->quota_ino, name: Q, name_len: 2);
1410 if (IS_ERR(ptr: tmp_ino)) {
1411 ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1412 return false;
1413 }
1414 vol->quota_q_ino = tmp_ino;
1415 ntfs_debug("Done.");
1416 return true;
1417}
1418
1419/**
1420 * load_and_init_usnjrnl - load and setup the transaction log if present
1421 * @vol: ntfs super block describing device whose usnjrnl file to load
1422 *
1423 * Return 'true' on success or 'false' on error.
1424 *
1425 * If $UsnJrnl is not present or in the process of being disabled, we set
1426 * NVolUsnJrnlStamped() and return success.
1427 *
1428 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1429 * i.e. transaction logging has only just been enabled or the journal has been
1430 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1431 * and return success.
1432 */
1433static bool load_and_init_usnjrnl(ntfs_volume *vol)
1434{
1435 MFT_REF mref;
1436 struct inode *tmp_ino;
1437 ntfs_inode *tmp_ni;
1438 struct page *page;
1439 ntfs_name *name = NULL;
1440 USN_HEADER *uh;
1441 static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
1442 cpu_to_le16('U'), cpu_to_le16('s'),
1443 cpu_to_le16('n'), cpu_to_le16('J'),
1444 cpu_to_le16('r'), cpu_to_le16('n'),
1445 cpu_to_le16('l'), 0 };
1446 static ntfschar Max[5] = { cpu_to_le16('$'),
1447 cpu_to_le16('M'), cpu_to_le16('a'),
1448 cpu_to_le16('x'), 0 };
1449 static ntfschar J[3] = { cpu_to_le16('$'),
1450 cpu_to_le16('J'), 0 };
1451
1452 ntfs_debug("Entering.");
1453 /*
1454 * Find the inode number for the transaction log file by looking up the
1455 * filename $UsnJrnl in the extended system files directory $Extend.
1456 */
1457 inode_lock(inode: vol->extend_ino);
1458 mref = ntfs_lookup_inode_by_name(dir_ni: NTFS_I(inode: vol->extend_ino), uname: UsnJrnl, uname_len: 8,
1459 res: &name);
1460 inode_unlock(inode: vol->extend_ino);
1461 if (IS_ERR_MREF(mref)) {
1462 /*
1463 * If the file does not exist, transaction logging is disabled,
1464 * just return success.
1465 */
1466 if (MREF_ERR(mref) == -ENOENT) {
1467 ntfs_debug("$UsnJrnl not present. Volume does not "
1468 "have transaction logging enabled.");
1469not_enabled:
1470 /*
1471 * No need to try to stamp the transaction log if
1472 * transaction logging is not enabled.
1473 */
1474 NVolSetUsnJrnlStamped(vol);
1475 return true;
1476 }
1477 /* A real error occurred. */
1478 ntfs_error(vol->sb, "Failed to find inode number for "
1479 "$UsnJrnl.");
1480 return false;
1481 }
1482 /* We do not care for the type of match that was found. */
1483 kfree(objp: name);
1484 /* Get the inode. */
1485 tmp_ino = ntfs_iget(sb: vol->sb, MREF(mref));
1486 if (IS_ERR(ptr: tmp_ino) || unlikely(is_bad_inode(tmp_ino))) {
1487 if (!IS_ERR(ptr: tmp_ino))
1488 iput(tmp_ino);
1489 ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1490 return false;
1491 }
1492 vol->usnjrnl_ino = tmp_ino;
1493 /*
1494 * If the transaction log is in the process of being deleted, we can
1495 * ignore it.
1496 */
1497 if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1498 ntfs_debug("$UsnJrnl in the process of being disabled. "
1499 "Volume does not have transaction logging "
1500 "enabled.");
1501 goto not_enabled;
1502 }
1503 /* Get the $DATA/$Max attribute. */
1504 tmp_ino = ntfs_attr_iget(base_vi: vol->usnjrnl_ino, type: AT_DATA, name: Max, name_len: 4);
1505 if (IS_ERR(ptr: tmp_ino)) {
1506 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1507 "attribute.");
1508 return false;
1509 }
1510 vol->usnjrnl_max_ino = tmp_ino;
1511 if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1512 ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1513 "attribute (size is 0x%llx but should be at "
1514 "least 0x%zx bytes).", i_size_read(tmp_ino),
1515 sizeof(USN_HEADER));
1516 return false;
1517 }
1518 /* Get the $DATA/$J attribute. */
1519 tmp_ino = ntfs_attr_iget(base_vi: vol->usnjrnl_ino, type: AT_DATA, name: J, name_len: 2);
1520 if (IS_ERR(ptr: tmp_ino)) {
1521 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1522 "attribute.");
1523 return false;
1524 }
1525 vol->usnjrnl_j_ino = tmp_ino;
1526 /* Verify $J is non-resident and sparse. */
1527 tmp_ni = NTFS_I(inode: vol->usnjrnl_j_ino);
1528 if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1529 ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1530 "and/or not sparse.");
1531 return false;
1532 }
1533 /* Read the USN_HEADER from $DATA/$Max. */
1534 page = ntfs_map_page(mapping: vol->usnjrnl_max_ino->i_mapping, index: 0);
1535 if (IS_ERR(ptr: page)) {
1536 ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1537 "attribute.");
1538 return false;
1539 }
1540 uh = (USN_HEADER*)page_address(page);
1541 /* Sanity check the $Max. */
1542 if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1543 sle64_to_cpu(uh->maximum_size))) {
1544 ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1545 "maximum size (0x%llx). $UsnJrnl is corrupt.",
1546 (long long)sle64_to_cpu(uh->allocation_delta),
1547 (long long)sle64_to_cpu(uh->maximum_size));
1548 ntfs_unmap_page(page);
1549 return false;
1550 }
1551 /*
1552 * If the transaction log has been stamped and nothing has been written
1553 * to it since, we do not need to stamp it.
1554 */
1555 if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1556 i_size_read(vol->usnjrnl_j_ino))) {
1557 if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1558 i_size_read(vol->usnjrnl_j_ino))) {
1559 ntfs_unmap_page(page);
1560 ntfs_debug("$UsnJrnl is enabled but nothing has been "
1561 "logged since it was last stamped. "
1562 "Treating this as if the volume does "
1563 "not have transaction logging "
1564 "enabled.");
1565 goto not_enabled;
1566 }
1567 ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1568 "which is out of bounds (0x%llx). $UsnJrnl "
1569 "is corrupt.",
1570 (long long)sle64_to_cpu(uh->lowest_valid_usn),
1571 i_size_read(vol->usnjrnl_j_ino));
1572 ntfs_unmap_page(page);
1573 return false;
1574 }
1575 ntfs_unmap_page(page);
1576 ntfs_debug("Done.");
1577 return true;
1578}
1579
1580/**
1581 * load_and_init_attrdef - load the attribute definitions table for a volume
1582 * @vol: ntfs super block describing device whose attrdef to load
1583 *
1584 * Return 'true' on success or 'false' on error.
1585 */
1586static bool load_and_init_attrdef(ntfs_volume *vol)
1587{
1588 loff_t i_size;
1589 struct super_block *sb = vol->sb;
1590 struct inode *ino;
1591 struct page *page;
1592 pgoff_t index, max_index;
1593 unsigned int size;
1594
1595 ntfs_debug("Entering.");
1596 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1597 ino = ntfs_iget(sb, mft_no: FILE_AttrDef);
1598 if (IS_ERR(ptr: ino) || is_bad_inode(ino)) {
1599 if (!IS_ERR(ptr: ino))
1600 iput(ino);
1601 goto failed;
1602 }
1603 NInoSetSparseDisabled(ni: NTFS_I(inode: ino));
1604 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1605 i_size = i_size_read(inode: ino);
1606 if (i_size <= 0 || i_size > 0x7fffffff)
1607 goto iput_failed;
1608 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(size: i_size);
1609 if (!vol->attrdef)
1610 goto iput_failed;
1611 index = 0;
1612 max_index = i_size >> PAGE_SHIFT;
1613 size = PAGE_SIZE;
1614 while (index < max_index) {
1615 /* Read the attrdef table and copy it into the linear buffer. */
1616read_partial_attrdef_page:
1617 page = ntfs_map_page(mapping: ino->i_mapping, index);
1618 if (IS_ERR(ptr: page))
1619 goto free_iput_failed;
1620 memcpy((u8*)vol->attrdef + (index++ << PAGE_SHIFT),
1621 page_address(page), size);
1622 ntfs_unmap_page(page);
1623 }
1624 if (size == PAGE_SIZE) {
1625 size = i_size & ~PAGE_MASK;
1626 if (size)
1627 goto read_partial_attrdef_page;
1628 }
1629 vol->attrdef_size = i_size;
1630 ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1631 iput(ino);
1632 return true;
1633free_iput_failed:
1634 ntfs_free(addr: vol->attrdef);
1635 vol->attrdef = NULL;
1636iput_failed:
1637 iput(ino);
1638failed:
1639 ntfs_error(sb, "Failed to initialize attribute definition table.");
1640 return false;
1641}
1642
1643#endif /* NTFS_RW */
1644
1645/**
1646 * load_and_init_upcase - load the upcase table for an ntfs volume
1647 * @vol: ntfs super block describing device whose upcase to load
1648 *
1649 * Return 'true' on success or 'false' on error.
1650 */
1651static bool load_and_init_upcase(ntfs_volume *vol)
1652{
1653 loff_t i_size;
1654 struct super_block *sb = vol->sb;
1655 struct inode *ino;
1656 struct page *page;
1657 pgoff_t index, max_index;
1658 unsigned int size;
1659 int i, max;
1660
1661 ntfs_debug("Entering.");
1662 /* Read upcase table and setup vol->upcase and vol->upcase_len. */
1663 ino = ntfs_iget(sb, mft_no: FILE_UpCase);
1664 if (IS_ERR(ptr: ino) || is_bad_inode(ino)) {
1665 if (!IS_ERR(ptr: ino))
1666 iput(ino);
1667 goto upcase_failed;
1668 }
1669 /*
1670 * The upcase size must not be above 64k Unicode characters, must not
1671 * be zero and must be a multiple of sizeof(ntfschar).
1672 */
1673 i_size = i_size_read(inode: ino);
1674 if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1675 i_size > 64ULL * 1024 * sizeof(ntfschar))
1676 goto iput_upcase_failed;
1677 vol->upcase = (ntfschar*)ntfs_malloc_nofs(size: i_size);
1678 if (!vol->upcase)
1679 goto iput_upcase_failed;
1680 index = 0;
1681 max_index = i_size >> PAGE_SHIFT;
1682 size = PAGE_SIZE;
1683 while (index < max_index) {
1684 /* Read the upcase table and copy it into the linear buffer. */
1685read_partial_upcase_page:
1686 page = ntfs_map_page(mapping: ino->i_mapping, index);
1687 if (IS_ERR(ptr: page))
1688 goto iput_upcase_failed;
1689 memcpy((char*)vol->upcase + (index++ << PAGE_SHIFT),
1690 page_address(page), size);
1691 ntfs_unmap_page(page);
1692 }
1693 if (size == PAGE_SIZE) {
1694 size = i_size & ~PAGE_MASK;
1695 if (size)
1696 goto read_partial_upcase_page;
1697 }
1698 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1699 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1700 i_size, 64 * 1024 * sizeof(ntfschar));
1701 iput(ino);
1702 mutex_lock(&ntfs_lock);
1703 if (!default_upcase) {
1704 ntfs_debug("Using volume specified $UpCase since default is "
1705 "not present.");
1706 mutex_unlock(lock: &ntfs_lock);
1707 return true;
1708 }
1709 max = default_upcase_len;
1710 if (max > vol->upcase_len)
1711 max = vol->upcase_len;
1712 for (i = 0; i < max; i++)
1713 if (vol->upcase[i] != default_upcase[i])
1714 break;
1715 if (i == max) {
1716 ntfs_free(addr: vol->upcase);
1717 vol->upcase = default_upcase;
1718 vol->upcase_len = max;
1719 ntfs_nr_upcase_users++;
1720 mutex_unlock(lock: &ntfs_lock);
1721 ntfs_debug("Volume specified $UpCase matches default. Using "
1722 "default.");
1723 return true;
1724 }
1725 mutex_unlock(lock: &ntfs_lock);
1726 ntfs_debug("Using volume specified $UpCase since it does not match "
1727 "the default.");
1728 return true;
1729iput_upcase_failed:
1730 iput(ino);
1731 ntfs_free(addr: vol->upcase);
1732 vol->upcase = NULL;
1733upcase_failed:
1734 mutex_lock(&ntfs_lock);
1735 if (default_upcase) {
1736 vol->upcase = default_upcase;
1737 vol->upcase_len = default_upcase_len;
1738 ntfs_nr_upcase_users++;
1739 mutex_unlock(lock: &ntfs_lock);
1740 ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1741 "default.");
1742 return true;
1743 }
1744 mutex_unlock(lock: &ntfs_lock);
1745 ntfs_error(sb, "Failed to initialize upcase table.");
1746 return false;
1747}
1748
1749/*
1750 * The lcn and mft bitmap inodes are NTFS-internal inodes with
1751 * their own special locking rules:
1752 */
1753static struct lock_class_key
1754 lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
1755 mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
1756
1757/**
1758 * load_system_files - open the system files using normal functions
1759 * @vol: ntfs super block describing device whose system files to load
1760 *
1761 * Open the system files with normal access functions and complete setting up
1762 * the ntfs super block @vol.
1763 *
1764 * Return 'true' on success or 'false' on error.
1765 */
1766static bool load_system_files(ntfs_volume *vol)
1767{
1768 struct super_block *sb = vol->sb;
1769 MFT_RECORD *m;
1770 VOLUME_INFORMATION *vi;
1771 ntfs_attr_search_ctx *ctx;
1772#ifdef NTFS_RW
1773 RESTART_PAGE_HEADER *rp;
1774 int err;
1775#endif /* NTFS_RW */
1776
1777 ntfs_debug("Entering.");
1778#ifdef NTFS_RW
1779 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1780 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1781 static const char *es1 = "Failed to load $MFTMirr";
1782 static const char *es2 = "$MFTMirr does not match $MFT";
1783 static const char *es3 = ". Run ntfsfix and/or chkdsk.";
1784
1785 /* If a read-write mount, convert it to a read-only mount. */
1786 if (!sb_rdonly(sb)) {
1787 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1788 ON_ERRORS_CONTINUE))) {
1789 ntfs_error(sb, "%s and neither on_errors="
1790 "continue nor on_errors="
1791 "remount-ro was specified%s",
1792 !vol->mftmirr_ino ? es1 : es2,
1793 es3);
1794 goto iput_mirr_err_out;
1795 }
1796 sb->s_flags |= SB_RDONLY;
1797 ntfs_error(sb, "%s. Mounting read-only%s",
1798 !vol->mftmirr_ino ? es1 : es2, es3);
1799 } else
1800 ntfs_warning(sb, "%s. Will not be able to remount "
1801 "read-write%s",
1802 !vol->mftmirr_ino ? es1 : es2, es3);
1803 /* This will prevent a read-write remount. */
1804 NVolSetErrors(vol);
1805 }
1806#endif /* NTFS_RW */
1807 /* Get mft bitmap attribute inode. */
1808 vol->mftbmp_ino = ntfs_attr_iget(base_vi: vol->mft_ino, type: AT_BITMAP, NULL, name_len: 0);
1809 if (IS_ERR(ptr: vol->mftbmp_ino)) {
1810 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1811 goto iput_mirr_err_out;
1812 }
1813 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
1814 &mftbmp_runlist_lock_key);
1815 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
1816 &mftbmp_mrec_lock_key);
1817 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1818 if (!load_and_init_upcase(vol))
1819 goto iput_mftbmp_err_out;
1820#ifdef NTFS_RW
1821 /*
1822 * Read attribute definitions table and setup @vol->attrdef and
1823 * @vol->attrdef_size.
1824 */
1825 if (!load_and_init_attrdef(vol))
1826 goto iput_upcase_err_out;
1827#endif /* NTFS_RW */
1828 /*
1829 * Get the cluster allocation bitmap inode and verify the size, no
1830 * need for any locking at this stage as we are already running
1831 * exclusively as we are mount in progress task.
1832 */
1833 vol->lcnbmp_ino = ntfs_iget(sb, mft_no: FILE_Bitmap);
1834 if (IS_ERR(ptr: vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1835 if (!IS_ERR(ptr: vol->lcnbmp_ino))
1836 iput(vol->lcnbmp_ino);
1837 goto bitmap_failed;
1838 }
1839 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
1840 &lcnbmp_runlist_lock_key);
1841 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
1842 &lcnbmp_mrec_lock_key);
1843
1844 NInoSetSparseDisabled(ni: NTFS_I(inode: vol->lcnbmp_ino));
1845 if ((vol->nr_clusters + 7) >> 3 > i_size_read(inode: vol->lcnbmp_ino)) {
1846 iput(vol->lcnbmp_ino);
1847bitmap_failed:
1848 ntfs_error(sb, "Failed to load $Bitmap.");
1849 goto iput_attrdef_err_out;
1850 }
1851 /*
1852 * Get the volume inode and setup our cache of the volume flags and
1853 * version.
1854 */
1855 vol->vol_ino = ntfs_iget(sb, mft_no: FILE_Volume);
1856 if (IS_ERR(ptr: vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1857 if (!IS_ERR(ptr: vol->vol_ino))
1858 iput(vol->vol_ino);
1859volume_failed:
1860 ntfs_error(sb, "Failed to load $Volume.");
1861 goto iput_lcnbmp_err_out;
1862 }
1863 m = map_mft_record(ni: NTFS_I(inode: vol->vol_ino));
1864 if (IS_ERR(ptr: m)) {
1865iput_volume_failed:
1866 iput(vol->vol_ino);
1867 goto volume_failed;
1868 }
1869 if (!(ctx = ntfs_attr_get_search_ctx(ni: NTFS_I(inode: vol->vol_ino), mrec: m))) {
1870 ntfs_error(sb, "Failed to get attribute search context.");
1871 goto get_ctx_vol_failed;
1872 }
1873 if (ntfs_attr_lookup(type: AT_VOLUME_INFORMATION, NULL, name_len: 0, ic: 0, lowest_vcn: 0, NULL, val_len: 0,
1874 ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1875err_put_vol:
1876 ntfs_attr_put_search_ctx(ctx);
1877get_ctx_vol_failed:
1878 unmap_mft_record(ni: NTFS_I(inode: vol->vol_ino));
1879 goto iput_volume_failed;
1880 }
1881 vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1882 le16_to_cpu(ctx->attr->data.resident.value_offset));
1883 /* Some bounds checks. */
1884 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1885 le32_to_cpu(ctx->attr->data.resident.value_length) >
1886 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1887 goto err_put_vol;
1888 /* Copy the volume flags and version to the ntfs_volume structure. */
1889 vol->vol_flags = vi->flags;
1890 vol->major_ver = vi->major_ver;
1891 vol->minor_ver = vi->minor_ver;
1892 ntfs_attr_put_search_ctx(ctx);
1893 unmap_mft_record(ni: NTFS_I(inode: vol->vol_ino));
1894 pr_info("volume version %i.%i.\n", vol->major_ver,
1895 vol->minor_ver);
1896 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1897 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1898 "volume version %i.%i (need at least version "
1899 "3.0).", vol->major_ver, vol->minor_ver);
1900 NVolClearSparseEnabled(vol);
1901 }
1902#ifdef NTFS_RW
1903 /* Make sure that no unsupported volume flags are set. */
1904 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1905 static const char *es1a = "Volume is dirty";
1906 static const char *es1b = "Volume has been modified by chkdsk";
1907 static const char *es1c = "Volume has unsupported flags set";
1908 static const char *es2a = ". Run chkdsk and mount in Windows.";
1909 static const char *es2b = ". Mount in Windows.";
1910 const char *es1, *es2;
1911
1912 es2 = es2a;
1913 if (vol->vol_flags & VOLUME_IS_DIRTY)
1914 es1 = es1a;
1915 else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
1916 es1 = es1b;
1917 es2 = es2b;
1918 } else {
1919 es1 = es1c;
1920 ntfs_warning(sb, "Unsupported volume flags 0x%x "
1921 "encountered.",
1922 (unsigned)le16_to_cpu(vol->vol_flags));
1923 }
1924 /* If a read-write mount, convert it to a read-only mount. */
1925 if (!sb_rdonly(sb)) {
1926 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1927 ON_ERRORS_CONTINUE))) {
1928 ntfs_error(sb, "%s and neither on_errors="
1929 "continue nor on_errors="
1930 "remount-ro was specified%s",
1931 es1, es2);
1932 goto iput_vol_err_out;
1933 }
1934 sb->s_flags |= SB_RDONLY;
1935 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1936 } else
1937 ntfs_warning(sb, "%s. Will not be able to remount "
1938 "read-write%s", es1, es2);
1939 /*
1940 * Do not set NVolErrors() because ntfs_remount() re-checks the
1941 * flags which we need to do in case any flags have changed.
1942 */
1943 }
1944 /*
1945 * Get the inode for the logfile, check it and determine if the volume
1946 * was shutdown cleanly.
1947 */
1948 rp = NULL;
1949 if (!load_and_check_logfile(vol, rp: &rp) ||
1950 !ntfs_is_logfile_clean(log_vi: vol->logfile_ino, rp)) {
1951 static const char *es1a = "Failed to load $LogFile";
1952 static const char *es1b = "$LogFile is not clean";
1953 static const char *es2 = ". Mount in Windows.";
1954 const char *es1;
1955
1956 es1 = !vol->logfile_ino ? es1a : es1b;
1957 /* If a read-write mount, convert it to a read-only mount. */
1958 if (!sb_rdonly(sb)) {
1959 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1960 ON_ERRORS_CONTINUE))) {
1961 ntfs_error(sb, "%s and neither on_errors="
1962 "continue nor on_errors="
1963 "remount-ro was specified%s",
1964 es1, es2);
1965 if (vol->logfile_ino) {
1966 BUG_ON(!rp);
1967 ntfs_free(addr: rp);
1968 }
1969 goto iput_logfile_err_out;
1970 }
1971 sb->s_flags |= SB_RDONLY;
1972 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1973 } else
1974 ntfs_warning(sb, "%s. Will not be able to remount "
1975 "read-write%s", es1, es2);
1976 /* This will prevent a read-write remount. */
1977 NVolSetErrors(vol);
1978 }
1979 ntfs_free(addr: rp);
1980#endif /* NTFS_RW */
1981 /* Get the root directory inode so we can do path lookups. */
1982 vol->root_ino = ntfs_iget(sb, mft_no: FILE_root);
1983 if (IS_ERR(ptr: vol->root_ino) || is_bad_inode(vol->root_ino)) {
1984 if (!IS_ERR(ptr: vol->root_ino))
1985 iput(vol->root_ino);
1986 ntfs_error(sb, "Failed to load root directory.");
1987 goto iput_logfile_err_out;
1988 }
1989#ifdef NTFS_RW
1990 /*
1991 * Check if Windows is suspended to disk on the target volume. If it
1992 * is hibernated, we must not write *anything* to the disk so set
1993 * NVolErrors() without setting the dirty volume flag and mount
1994 * read-only. This will prevent read-write remounting and it will also
1995 * prevent all writes.
1996 */
1997 err = check_windows_hibernation_status(vol);
1998 if (unlikely(err)) {
1999 static const char *es1a = "Failed to determine if Windows is "
2000 "hibernated";
2001 static const char *es1b = "Windows is hibernated";
2002 static const char *es2 = ". Run chkdsk.";
2003 const char *es1;
2004
2005 es1 = err < 0 ? es1a : es1b;
2006 /* If a read-write mount, convert it to a read-only mount. */
2007 if (!sb_rdonly(sb)) {
2008 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2009 ON_ERRORS_CONTINUE))) {
2010 ntfs_error(sb, "%s and neither on_errors="
2011 "continue nor on_errors="
2012 "remount-ro was specified%s",
2013 es1, es2);
2014 goto iput_root_err_out;
2015 }
2016 sb->s_flags |= SB_RDONLY;
2017 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2018 } else
2019 ntfs_warning(sb, "%s. Will not be able to remount "
2020 "read-write%s", es1, es2);
2021 /* This will prevent a read-write remount. */
2022 NVolSetErrors(vol);
2023 }
2024 /* If (still) a read-write mount, mark the volume dirty. */
2025 if (!sb_rdonly(sb) && ntfs_set_volume_flags(vol, flags: VOLUME_IS_DIRTY)) {
2026 static const char *es1 = "Failed to set dirty bit in volume "
2027 "information flags";
2028 static const char *es2 = ". Run chkdsk.";
2029
2030 /* Convert to a read-only mount. */
2031 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2032 ON_ERRORS_CONTINUE))) {
2033 ntfs_error(sb, "%s and neither on_errors=continue nor "
2034 "on_errors=remount-ro was specified%s",
2035 es1, es2);
2036 goto iput_root_err_out;
2037 }
2038 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2039 sb->s_flags |= SB_RDONLY;
2040 /*
2041 * Do not set NVolErrors() because ntfs_remount() might manage
2042 * to set the dirty flag in which case all would be well.
2043 */
2044 }
2045#if 0
2046 // TODO: Enable this code once we start modifying anything that is
2047 // different between NTFS 1.2 and 3.x...
2048 /*
2049 * If (still) a read-write mount, set the NT4 compatibility flag on
2050 * newer NTFS version volumes.
2051 */
2052 if (!(sb->s_flags & SB_RDONLY) && (vol->major_ver > 1) &&
2053 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
2054 static const char *es1 = "Failed to set NT4 compatibility flag";
2055 static const char *es2 = ". Run chkdsk.";
2056
2057 /* Convert to a read-only mount. */
2058 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2059 ON_ERRORS_CONTINUE))) {
2060 ntfs_error(sb, "%s and neither on_errors=continue nor "
2061 "on_errors=remount-ro was specified%s",
2062 es1, es2);
2063 goto iput_root_err_out;
2064 }
2065 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2066 sb->s_flags |= SB_RDONLY;
2067 NVolSetErrors(vol);
2068 }
2069#endif
2070 /* If (still) a read-write mount, empty the logfile. */
2071 if (!sb_rdonly(sb) && !ntfs_empty_logfile(log_vi: vol->logfile_ino)) {
2072 static const char *es1 = "Failed to empty $LogFile";
2073 static const char *es2 = ". Mount in Windows.";
2074
2075 /* Convert to a read-only mount. */
2076 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2077 ON_ERRORS_CONTINUE))) {
2078 ntfs_error(sb, "%s and neither on_errors=continue nor "
2079 "on_errors=remount-ro was specified%s",
2080 es1, es2);
2081 goto iput_root_err_out;
2082 }
2083 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2084 sb->s_flags |= SB_RDONLY;
2085 NVolSetErrors(vol);
2086 }
2087#endif /* NTFS_RW */
2088 /* If on NTFS versions before 3.0, we are done. */
2089 if (unlikely(vol->major_ver < 3))
2090 return true;
2091 /* NTFS 3.0+ specific initialization. */
2092 /* Get the security descriptors inode. */
2093 vol->secure_ino = ntfs_iget(sb, mft_no: FILE_Secure);
2094 if (IS_ERR(ptr: vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2095 if (!IS_ERR(ptr: vol->secure_ino))
2096 iput(vol->secure_ino);
2097 ntfs_error(sb, "Failed to load $Secure.");
2098 goto iput_root_err_out;
2099 }
2100 // TODO: Initialize security.
2101 /* Get the extended system files' directory inode. */
2102 vol->extend_ino = ntfs_iget(sb, mft_no: FILE_Extend);
2103 if (IS_ERR(ptr: vol->extend_ino) || is_bad_inode(vol->extend_ino) ||
2104 !S_ISDIR(vol->extend_ino->i_mode)) {
2105 if (!IS_ERR(ptr: vol->extend_ino))
2106 iput(vol->extend_ino);
2107 ntfs_error(sb, "Failed to load $Extend.");
2108 goto iput_sec_err_out;
2109 }
2110#ifdef NTFS_RW
2111 /* Find the quota file, load it if present, and set it up. */
2112 if (!load_and_init_quota(vol)) {
2113 static const char *es1 = "Failed to load $Quota";
2114 static const char *es2 = ". Run chkdsk.";
2115
2116 /* If a read-write mount, convert it to a read-only mount. */
2117 if (!sb_rdonly(sb)) {
2118 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2119 ON_ERRORS_CONTINUE))) {
2120 ntfs_error(sb, "%s and neither on_errors="
2121 "continue nor on_errors="
2122 "remount-ro was specified%s",
2123 es1, es2);
2124 goto iput_quota_err_out;
2125 }
2126 sb->s_flags |= SB_RDONLY;
2127 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2128 } else
2129 ntfs_warning(sb, "%s. Will not be able to remount "
2130 "read-write%s", es1, es2);
2131 /* This will prevent a read-write remount. */
2132 NVolSetErrors(vol);
2133 }
2134 /* If (still) a read-write mount, mark the quotas out of date. */
2135 if (!sb_rdonly(sb) && !ntfs_mark_quotas_out_of_date(vol)) {
2136 static const char *es1 = "Failed to mark quotas out of date";
2137 static const char *es2 = ". Run chkdsk.";
2138
2139 /* Convert to a read-only mount. */
2140 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2141 ON_ERRORS_CONTINUE))) {
2142 ntfs_error(sb, "%s and neither on_errors=continue nor "
2143 "on_errors=remount-ro was specified%s",
2144 es1, es2);
2145 goto iput_quota_err_out;
2146 }
2147 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2148 sb->s_flags |= SB_RDONLY;
2149 NVolSetErrors(vol);
2150 }
2151 /*
2152 * Find the transaction log file ($UsnJrnl), load it if present, check
2153 * it, and set it up.
2154 */
2155 if (!load_and_init_usnjrnl(vol)) {
2156 static const char *es1 = "Failed to load $UsnJrnl";
2157 static const char *es2 = ". Run chkdsk.";
2158
2159 /* If a read-write mount, convert it to a read-only mount. */
2160 if (!sb_rdonly(sb)) {
2161 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2162 ON_ERRORS_CONTINUE))) {
2163 ntfs_error(sb, "%s and neither on_errors="
2164 "continue nor on_errors="
2165 "remount-ro was specified%s",
2166 es1, es2);
2167 goto iput_usnjrnl_err_out;
2168 }
2169 sb->s_flags |= SB_RDONLY;
2170 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2171 } else
2172 ntfs_warning(sb, "%s. Will not be able to remount "
2173 "read-write%s", es1, es2);
2174 /* This will prevent a read-write remount. */
2175 NVolSetErrors(vol);
2176 }
2177 /* If (still) a read-write mount, stamp the transaction log. */
2178 if (!sb_rdonly(sb) && !ntfs_stamp_usnjrnl(vol)) {
2179 static const char *es1 = "Failed to stamp transaction log "
2180 "($UsnJrnl)";
2181 static const char *es2 = ". Run chkdsk.";
2182
2183 /* Convert to a read-only mount. */
2184 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2185 ON_ERRORS_CONTINUE))) {
2186 ntfs_error(sb, "%s and neither on_errors=continue nor "
2187 "on_errors=remount-ro was specified%s",
2188 es1, es2);
2189 goto iput_usnjrnl_err_out;
2190 }
2191 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2192 sb->s_flags |= SB_RDONLY;
2193 NVolSetErrors(vol);
2194 }
2195#endif /* NTFS_RW */
2196 return true;
2197#ifdef NTFS_RW
2198iput_usnjrnl_err_out:
2199 iput(vol->usnjrnl_j_ino);
2200 iput(vol->usnjrnl_max_ino);
2201 iput(vol->usnjrnl_ino);
2202iput_quota_err_out:
2203 iput(vol->quota_q_ino);
2204 iput(vol->quota_ino);
2205 iput(vol->extend_ino);
2206#endif /* NTFS_RW */
2207iput_sec_err_out:
2208 iput(vol->secure_ino);
2209iput_root_err_out:
2210 iput(vol->root_ino);
2211iput_logfile_err_out:
2212#ifdef NTFS_RW
2213 iput(vol->logfile_ino);
2214iput_vol_err_out:
2215#endif /* NTFS_RW */
2216 iput(vol->vol_ino);
2217iput_lcnbmp_err_out:
2218 iput(vol->lcnbmp_ino);
2219iput_attrdef_err_out:
2220 vol->attrdef_size = 0;
2221 if (vol->attrdef) {
2222 ntfs_free(addr: vol->attrdef);
2223 vol->attrdef = NULL;
2224 }
2225#ifdef NTFS_RW
2226iput_upcase_err_out:
2227#endif /* NTFS_RW */
2228 vol->upcase_len = 0;
2229 mutex_lock(&ntfs_lock);
2230 if (vol->upcase == default_upcase) {
2231 ntfs_nr_upcase_users--;
2232 vol->upcase = NULL;
2233 }
2234 mutex_unlock(lock: &ntfs_lock);
2235 if (vol->upcase) {
2236 ntfs_free(addr: vol->upcase);
2237 vol->upcase = NULL;
2238 }
2239iput_mftbmp_err_out:
2240 iput(vol->mftbmp_ino);
2241iput_mirr_err_out:
2242#ifdef NTFS_RW
2243 iput(vol->mftmirr_ino);
2244#endif /* NTFS_RW */
2245 return false;
2246}
2247
2248/**
2249 * ntfs_put_super - called by the vfs to unmount a volume
2250 * @sb: vfs superblock of volume to unmount
2251 *
2252 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2253 * the volume is being unmounted (umount system call has been invoked) and it
2254 * releases all inodes and memory belonging to the NTFS specific part of the
2255 * super block.
2256 */
2257static void ntfs_put_super(struct super_block *sb)
2258{
2259 ntfs_volume *vol = NTFS_SB(sb);
2260
2261 ntfs_debug("Entering.");
2262
2263#ifdef NTFS_RW
2264 /*
2265 * Commit all inodes while they are still open in case some of them
2266 * cause others to be dirtied.
2267 */
2268 ntfs_commit_inode(vi: vol->vol_ino);
2269
2270 /* NTFS 3.0+ specific. */
2271 if (vol->major_ver >= 3) {
2272 if (vol->usnjrnl_j_ino)
2273 ntfs_commit_inode(vi: vol->usnjrnl_j_ino);
2274 if (vol->usnjrnl_max_ino)
2275 ntfs_commit_inode(vi: vol->usnjrnl_max_ino);
2276 if (vol->usnjrnl_ino)
2277 ntfs_commit_inode(vi: vol->usnjrnl_ino);
2278 if (vol->quota_q_ino)
2279 ntfs_commit_inode(vi: vol->quota_q_ino);
2280 if (vol->quota_ino)
2281 ntfs_commit_inode(vi: vol->quota_ino);
2282 if (vol->extend_ino)
2283 ntfs_commit_inode(vi: vol->extend_ino);
2284 if (vol->secure_ino)
2285 ntfs_commit_inode(vi: vol->secure_ino);
2286 }
2287
2288 ntfs_commit_inode(vi: vol->root_ino);
2289
2290 down_write(sem: &vol->lcnbmp_lock);
2291 ntfs_commit_inode(vi: vol->lcnbmp_ino);
2292 up_write(sem: &vol->lcnbmp_lock);
2293
2294 down_write(sem: &vol->mftbmp_lock);
2295 ntfs_commit_inode(vi: vol->mftbmp_ino);
2296 up_write(sem: &vol->mftbmp_lock);
2297
2298 if (vol->logfile_ino)
2299 ntfs_commit_inode(vi: vol->logfile_ino);
2300
2301 if (vol->mftmirr_ino)
2302 ntfs_commit_inode(vi: vol->mftmirr_ino);
2303 ntfs_commit_inode(vi: vol->mft_ino);
2304
2305 /*
2306 * If a read-write mount and no volume errors have occurred, mark the
2307 * volume clean. Also, re-commit all affected inodes.
2308 */
2309 if (!sb_rdonly(sb)) {
2310 if (!NVolErrors(vol)) {
2311 if (ntfs_clear_volume_flags(vol, flags: VOLUME_IS_DIRTY))
2312 ntfs_warning(sb, "Failed to clear dirty bit "
2313 "in volume information "
2314 "flags. Run chkdsk.");
2315 ntfs_commit_inode(vi: vol->vol_ino);
2316 ntfs_commit_inode(vi: vol->root_ino);
2317 if (vol->mftmirr_ino)
2318 ntfs_commit_inode(vi: vol->mftmirr_ino);
2319 ntfs_commit_inode(vi: vol->mft_ino);
2320 } else {
2321 ntfs_warning(sb, "Volume has errors. Leaving volume "
2322 "marked dirty. Run chkdsk.");
2323 }
2324 }
2325#endif /* NTFS_RW */
2326
2327 iput(vol->vol_ino);
2328 vol->vol_ino = NULL;
2329
2330 /* NTFS 3.0+ specific clean up. */
2331 if (vol->major_ver >= 3) {
2332#ifdef NTFS_RW
2333 if (vol->usnjrnl_j_ino) {
2334 iput(vol->usnjrnl_j_ino);
2335 vol->usnjrnl_j_ino = NULL;
2336 }
2337 if (vol->usnjrnl_max_ino) {
2338 iput(vol->usnjrnl_max_ino);
2339 vol->usnjrnl_max_ino = NULL;
2340 }
2341 if (vol->usnjrnl_ino) {
2342 iput(vol->usnjrnl_ino);
2343 vol->usnjrnl_ino = NULL;
2344 }
2345 if (vol->quota_q_ino) {
2346 iput(vol->quota_q_ino);
2347 vol->quota_q_ino = NULL;
2348 }
2349 if (vol->quota_ino) {
2350 iput(vol->quota_ino);
2351 vol->quota_ino = NULL;
2352 }
2353#endif /* NTFS_RW */
2354 if (vol->extend_ino) {
2355 iput(vol->extend_ino);
2356 vol->extend_ino = NULL;
2357 }
2358 if (vol->secure_ino) {
2359 iput(vol->secure_ino);
2360 vol->secure_ino = NULL;
2361 }
2362 }
2363
2364 iput(vol->root_ino);
2365 vol->root_ino = NULL;
2366
2367 down_write(sem: &vol->lcnbmp_lock);
2368 iput(vol->lcnbmp_ino);
2369 vol->lcnbmp_ino = NULL;
2370 up_write(sem: &vol->lcnbmp_lock);
2371
2372 down_write(sem: &vol->mftbmp_lock);
2373 iput(vol->mftbmp_ino);
2374 vol->mftbmp_ino = NULL;
2375 up_write(sem: &vol->mftbmp_lock);
2376
2377#ifdef NTFS_RW
2378 if (vol->logfile_ino) {
2379 iput(vol->logfile_ino);
2380 vol->logfile_ino = NULL;
2381 }
2382 if (vol->mftmirr_ino) {
2383 /* Re-commit the mft mirror and mft just in case. */
2384 ntfs_commit_inode(vi: vol->mftmirr_ino);
2385 ntfs_commit_inode(vi: vol->mft_ino);
2386 iput(vol->mftmirr_ino);
2387 vol->mftmirr_ino = NULL;
2388 }
2389 /*
2390 * We should have no dirty inodes left, due to
2391 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2392 * the underlying mft records are written out and cleaned.
2393 */
2394 ntfs_commit_inode(vi: vol->mft_ino);
2395 write_inode_now(vol->mft_ino, sync: 1);
2396#endif /* NTFS_RW */
2397
2398 iput(vol->mft_ino);
2399 vol->mft_ino = NULL;
2400
2401 /* Throw away the table of attribute definitions. */
2402 vol->attrdef_size = 0;
2403 if (vol->attrdef) {
2404 ntfs_free(addr: vol->attrdef);
2405 vol->attrdef = NULL;
2406 }
2407 vol->upcase_len = 0;
2408 /*
2409 * Destroy the global default upcase table if necessary. Also decrease
2410 * the number of upcase users if we are a user.
2411 */
2412 mutex_lock(&ntfs_lock);
2413 if (vol->upcase == default_upcase) {
2414 ntfs_nr_upcase_users--;
2415 vol->upcase = NULL;
2416 }
2417 if (!ntfs_nr_upcase_users && default_upcase) {
2418 ntfs_free(addr: default_upcase);
2419 default_upcase = NULL;
2420 }
2421 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2422 free_compression_buffers();
2423 mutex_unlock(lock: &ntfs_lock);
2424 if (vol->upcase) {
2425 ntfs_free(addr: vol->upcase);
2426 vol->upcase = NULL;
2427 }
2428
2429 unload_nls(vol->nls_map);
2430
2431 sb->s_fs_info = NULL;
2432 kfree(objp: vol);
2433}
2434
2435/**
2436 * get_nr_free_clusters - return the number of free clusters on a volume
2437 * @vol: ntfs volume for which to obtain free cluster count
2438 *
2439 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2440 * actually calculate the number of clusters in use instead because this
2441 * allows us to not care about partial pages as these will be just zero filled
2442 * and hence not be counted as allocated clusters.
2443 *
2444 * The only particularity is that clusters beyond the end of the logical ntfs
2445 * volume will be marked as allocated to prevent errors which means we have to
2446 * discount those at the end. This is important as the cluster bitmap always
2447 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2448 * the logical volume and marked in use when they are not as they do not exist.
2449 *
2450 * If any pages cannot be read we assume all clusters in the erroring pages are
2451 * in use. This means we return an underestimate on errors which is better than
2452 * an overestimate.
2453 */
2454static s64 get_nr_free_clusters(ntfs_volume *vol)
2455{
2456 s64 nr_free = vol->nr_clusters;
2457 struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2458 struct page *page;
2459 pgoff_t index, max_index;
2460
2461 ntfs_debug("Entering.");
2462 /* Serialize accesses to the cluster bitmap. */
2463 down_read(sem: &vol->lcnbmp_lock);
2464 /*
2465 * Convert the number of bits into bytes rounded up, then convert into
2466 * multiples of PAGE_SIZE, rounding up so that if we have one
2467 * full and one partial page max_index = 2.
2468 */
2469 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_SIZE - 1) >>
2470 PAGE_SHIFT;
2471 /* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
2472 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2473 max_index, PAGE_SIZE / 4);
2474 for (index = 0; index < max_index; index++) {
2475 unsigned long *kaddr;
2476
2477 /*
2478 * Read the page from page cache, getting it from backing store
2479 * if necessary, and increment the use count.
2480 */
2481 page = read_mapping_page(mapping, index, NULL);
2482 /* Ignore pages which errored synchronously. */
2483 if (IS_ERR(ptr: page)) {
2484 ntfs_debug("read_mapping_page() error. Skipping "
2485 "page (index 0x%lx).", index);
2486 nr_free -= PAGE_SIZE * 8;
2487 continue;
2488 }
2489 kaddr = kmap_atomic(page);
2490 /*
2491 * Subtract the number of set bits. If this
2492 * is the last page and it is partial we don't really care as
2493 * it just means we do a little extra work but it won't affect
2494 * the result as all out of range bytes are set to zero by
2495 * ntfs_readpage().
2496 */
2497 nr_free -= bitmap_weight(src: kaddr,
2498 PAGE_SIZE * BITS_PER_BYTE);
2499 kunmap_atomic(kaddr);
2500 put_page(page);
2501 }
2502 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2503 /*
2504 * Fixup for eventual bits outside logical ntfs volume (see function
2505 * description above).
2506 */
2507 if (vol->nr_clusters & 63)
2508 nr_free += 64 - (vol->nr_clusters & 63);
2509 up_read(sem: &vol->lcnbmp_lock);
2510 /* If errors occurred we may well have gone below zero, fix this. */
2511 if (nr_free < 0)
2512 nr_free = 0;
2513 ntfs_debug("Exiting.");
2514 return nr_free;
2515}
2516
2517/**
2518 * __get_nr_free_mft_records - return the number of free inodes on a volume
2519 * @vol: ntfs volume for which to obtain free inode count
2520 * @nr_free: number of mft records in filesystem
2521 * @max_index: maximum number of pages containing set bits
2522 *
2523 * Calculate the number of free mft records (inodes) on the mounted NTFS
2524 * volume @vol. We actually calculate the number of mft records in use instead
2525 * because this allows us to not care about partial pages as these will be just
2526 * zero filled and hence not be counted as allocated mft record.
2527 *
2528 * If any pages cannot be read we assume all mft records in the erroring pages
2529 * are in use. This means we return an underestimate on errors which is better
2530 * than an overestimate.
2531 *
2532 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2533 */
2534static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2535 s64 nr_free, const pgoff_t max_index)
2536{
2537 struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2538 struct page *page;
2539 pgoff_t index;
2540
2541 ntfs_debug("Entering.");
2542 /* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
2543 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2544 "0x%lx.", max_index, PAGE_SIZE / 4);
2545 for (index = 0; index < max_index; index++) {
2546 unsigned long *kaddr;
2547
2548 /*
2549 * Read the page from page cache, getting it from backing store
2550 * if necessary, and increment the use count.
2551 */
2552 page = read_mapping_page(mapping, index, NULL);
2553 /* Ignore pages which errored synchronously. */
2554 if (IS_ERR(ptr: page)) {
2555 ntfs_debug("read_mapping_page() error. Skipping "
2556 "page (index 0x%lx).", index);
2557 nr_free -= PAGE_SIZE * 8;
2558 continue;
2559 }
2560 kaddr = kmap_atomic(page);
2561 /*
2562 * Subtract the number of set bits. If this
2563 * is the last page and it is partial we don't really care as
2564 * it just means we do a little extra work but it won't affect
2565 * the result as all out of range bytes are set to zero by
2566 * ntfs_readpage().
2567 */
2568 nr_free -= bitmap_weight(src: kaddr,
2569 PAGE_SIZE * BITS_PER_BYTE);
2570 kunmap_atomic(kaddr);
2571 put_page(page);
2572 }
2573 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2574 index - 1);
2575 /* If errors occurred we may well have gone below zero, fix this. */
2576 if (nr_free < 0)
2577 nr_free = 0;
2578 ntfs_debug("Exiting.");
2579 return nr_free;
2580}
2581
2582/**
2583 * ntfs_statfs - return information about mounted NTFS volume
2584 * @dentry: dentry from mounted volume
2585 * @sfs: statfs structure in which to return the information
2586 *
2587 * Return information about the mounted NTFS volume @dentry in the statfs structure
2588 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2589 * called). We interpret the values to be correct of the moment in time at
2590 * which we are called. Most values are variable otherwise and this isn't just
2591 * the free values but the totals as well. For example we can increase the
2592 * total number of file nodes if we run out and we can keep doing this until
2593 * there is no more space on the volume left at all.
2594 *
2595 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2596 * ustat system calls.
2597 *
2598 * Return 0 on success or -errno on error.
2599 */
2600static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
2601{
2602 struct super_block *sb = dentry->d_sb;
2603 s64 size;
2604 ntfs_volume *vol = NTFS_SB(sb);
2605 ntfs_inode *mft_ni = NTFS_I(inode: vol->mft_ino);
2606 pgoff_t max_index;
2607 unsigned long flags;
2608
2609 ntfs_debug("Entering.");
2610 /* Type of filesystem. */
2611 sfs->f_type = NTFS_SB_MAGIC;
2612 /* Optimal transfer block size. */
2613 sfs->f_bsize = PAGE_SIZE;
2614 /*
2615 * Total data blocks in filesystem in units of f_bsize and since
2616 * inodes are also stored in data blocs ($MFT is a file) this is just
2617 * the total clusters.
2618 */
2619 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2620 PAGE_SHIFT;
2621 /* Free data blocks in filesystem in units of f_bsize. */
2622 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2623 PAGE_SHIFT;
2624 if (size < 0LL)
2625 size = 0LL;
2626 /* Free blocks avail to non-superuser, same as above on NTFS. */
2627 sfs->f_bavail = sfs->f_bfree = size;
2628 /* Serialize accesses to the inode bitmap. */
2629 down_read(sem: &vol->mftbmp_lock);
2630 read_lock_irqsave(&mft_ni->size_lock, flags);
2631 size = i_size_read(inode: vol->mft_ino) >> vol->mft_record_size_bits;
2632 /*
2633 * Convert the maximum number of set bits into bytes rounded up, then
2634 * convert into multiples of PAGE_SIZE, rounding up so that if we
2635 * have one full and one partial page max_index = 2.
2636 */
2637 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2638 + 7) >> 3) + PAGE_SIZE - 1) >> PAGE_SHIFT;
2639 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2640 /* Number of inodes in filesystem (at this point in time). */
2641 sfs->f_files = size;
2642 /* Free inodes in fs (based on current total count). */
2643 sfs->f_ffree = __get_nr_free_mft_records(vol, nr_free: size, max_index);
2644 up_read(sem: &vol->mftbmp_lock);
2645 /*
2646 * File system id. This is extremely *nix flavour dependent and even
2647 * within Linux itself all fs do their own thing. I interpret this to
2648 * mean a unique id associated with the mounted fs and not the id
2649 * associated with the filesystem driver, the latter is already given
2650 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2651 * volume serial number splitting it into two 32-bit parts. We enter
2652 * the least significant 32-bits in f_fsid[0] and the most significant
2653 * 32-bits in f_fsid[1].
2654 */
2655 sfs->f_fsid = u64_to_fsid(v: vol->serial_no);
2656 /* Maximum length of filenames. */
2657 sfs->f_namelen = NTFS_MAX_NAME_LEN;
2658 return 0;
2659}
2660
2661#ifdef NTFS_RW
2662static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
2663{
2664 return __ntfs_write_inode(vi, sync: wbc->sync_mode == WB_SYNC_ALL);
2665}
2666#endif
2667
2668/*
2669 * The complete super operations.
2670 */
2671static const struct super_operations ntfs_sops = {
2672 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */
2673 .free_inode = ntfs_free_big_inode, /* VFS: Deallocate inode. */
2674#ifdef NTFS_RW
2675 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to
2676 disk. */
2677#endif /* NTFS_RW */
2678 .put_super = ntfs_put_super, /* Syscall: umount. */
2679 .statfs = ntfs_statfs, /* Syscall: statfs */
2680 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */
2681 .evict_inode = ntfs_evict_big_inode, /* VFS: Called when an inode is
2682 removed from memory. */
2683 .show_options = ntfs_show_options, /* Show mount options in
2684 proc. */
2685};
2686
2687/**
2688 * ntfs_fill_super - mount an ntfs filesystem
2689 * @sb: super block of ntfs filesystem to mount
2690 * @opt: string containing the mount options
2691 * @silent: silence error output
2692 *
2693 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2694 * with the mount otions in @data with the NTFS filesystem.
2695 *
2696 * If @silent is true, remain silent even if errors are detected. This is used
2697 * during bootup, when the kernel tries to mount the root filesystem with all
2698 * registered filesystems one after the other until one succeeds. This implies
2699 * that all filesystems except the correct one will quite correctly and
2700 * expectedly return an error, but nobody wants to see error messages when in
2701 * fact this is what is supposed to happen.
2702 *
2703 * NOTE: @sb->s_flags contains the mount options flags.
2704 */
2705static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2706{
2707 ntfs_volume *vol;
2708 struct buffer_head *bh;
2709 struct inode *tmp_ino;
2710 int blocksize, result;
2711
2712 /*
2713 * We do a pretty difficult piece of bootstrap by reading the
2714 * MFT (and other metadata) from disk into memory. We'll only
2715 * release this metadata during umount, so the locking patterns
2716 * observed during bootstrap do not count. So turn off the
2717 * observation of locking patterns (strictly for this context
2718 * only) while mounting NTFS. [The validator is still active
2719 * otherwise, even for this context: it will for example record
2720 * lock class registrations.]
2721 */
2722 lockdep_off();
2723 ntfs_debug("Entering.");
2724#ifndef NTFS_RW
2725 sb->s_flags |= SB_RDONLY;
2726#endif /* ! NTFS_RW */
2727 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2728 sb->s_fs_info = kmalloc(size: sizeof(ntfs_volume), GFP_NOFS);
2729 vol = NTFS_SB(sb);
2730 if (!vol) {
2731 if (!silent)
2732 ntfs_error(sb, "Allocation of NTFS volume structure "
2733 "failed. Aborting mount...");
2734 lockdep_on();
2735 return -ENOMEM;
2736 }
2737 /* Initialize ntfs_volume structure. */
2738 *vol = (ntfs_volume) {
2739 .sb = sb,
2740 /*
2741 * Default is group and other don't have any access to files or
2742 * directories while owner has full access. Further, files by
2743 * default are not executable but directories are of course
2744 * browseable.
2745 */
2746 .fmask = 0177,
2747 .dmask = 0077,
2748 };
2749 init_rwsem(&vol->mftbmp_lock);
2750 init_rwsem(&vol->lcnbmp_lock);
2751
2752 /* By default, enable sparse support. */
2753 NVolSetSparseEnabled(vol);
2754
2755 /* Important to get the mount options dealt with now. */
2756 if (!parse_options(vol, opt: (char*)opt))
2757 goto err_out_now;
2758
2759 /* We support sector sizes up to the PAGE_SIZE. */
2760 if (bdev_logical_block_size(bdev: sb->s_bdev) > PAGE_SIZE) {
2761 if (!silent)
2762 ntfs_error(sb, "Device has unsupported sector size "
2763 "(%i). The maximum supported sector "
2764 "size on this architecture is %lu "
2765 "bytes.",
2766 bdev_logical_block_size(sb->s_bdev),
2767 PAGE_SIZE);
2768 goto err_out_now;
2769 }
2770 /*
2771 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2772 * sector size, whichever is bigger.
2773 */
2774 blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2775 if (blocksize < NTFS_BLOCK_SIZE) {
2776 if (!silent)
2777 ntfs_error(sb, "Unable to set device block size.");
2778 goto err_out_now;
2779 }
2780 BUG_ON(blocksize != sb->s_blocksize);
2781 ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2782 blocksize, sb->s_blocksize_bits);
2783 /* Determine the size of the device in units of block_size bytes. */
2784 vol->nr_blocks = sb_bdev_nr_blocks(sb);
2785 if (!vol->nr_blocks) {
2786 if (!silent)
2787 ntfs_error(sb, "Unable to determine device size.");
2788 goto err_out_now;
2789 }
2790 /* Read the boot sector and return unlocked buffer head to it. */
2791 if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2792 if (!silent)
2793 ntfs_error(sb, "Not an NTFS volume.");
2794 goto err_out_now;
2795 }
2796 /*
2797 * Extract the data from the boot sector and setup the ntfs volume
2798 * using it.
2799 */
2800 result = parse_ntfs_boot_sector(vol, b: (NTFS_BOOT_SECTOR*)bh->b_data);
2801 brelse(bh);
2802 if (!result) {
2803 if (!silent)
2804 ntfs_error(sb, "Unsupported NTFS filesystem.");
2805 goto err_out_now;
2806 }
2807 /*
2808 * If the boot sector indicates a sector size bigger than the current
2809 * device block size, switch the device block size to the sector size.
2810 * TODO: It may be possible to support this case even when the set
2811 * below fails, we would just be breaking up the i/o for each sector
2812 * into multiple blocks for i/o purposes but otherwise it should just
2813 * work. However it is safer to leave disabled until someone hits this
2814 * error message and then we can get them to try it without the setting
2815 * so we know for sure that it works.
2816 */
2817 if (vol->sector_size > blocksize) {
2818 blocksize = sb_set_blocksize(sb, vol->sector_size);
2819 if (blocksize != vol->sector_size) {
2820 if (!silent)
2821 ntfs_error(sb, "Unable to set device block "
2822 "size to sector size (%i).",
2823 vol->sector_size);
2824 goto err_out_now;
2825 }
2826 BUG_ON(blocksize != sb->s_blocksize);
2827 vol->nr_blocks = sb_bdev_nr_blocks(sb);
2828 ntfs_debug("Changed device block size to %i bytes (block size "
2829 "bits %i) to match volume sector size.",
2830 blocksize, sb->s_blocksize_bits);
2831 }
2832 /* Initialize the cluster and mft allocators. */
2833 ntfs_setup_allocators(vol);
2834 /* Setup remaining fields in the super block. */
2835 sb->s_magic = NTFS_SB_MAGIC;
2836 /*
2837 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2838 * sb->s_maxbytes = ~0ULL >> 1;
2839 * But the kernel uses a long as the page cache page index which on
2840 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2841 * defined to the maximum the page cache page index can cope with
2842 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2843 */
2844 sb->s_maxbytes = MAX_LFS_FILESIZE;
2845 /* Ntfs measures time in 100ns intervals. */
2846 sb->s_time_gran = 100;
2847 /*
2848 * Now load the metadata required for the page cache and our address
2849 * space operations to function. We do this by setting up a specialised
2850 * read_inode method and then just calling the normal iget() to obtain
2851 * the inode for $MFT which is sufficient to allow our normal inode
2852 * operations and associated address space operations to function.
2853 */
2854 sb->s_op = &ntfs_sops;
2855 tmp_ino = new_inode(sb);
2856 if (!tmp_ino) {
2857 if (!silent)
2858 ntfs_error(sb, "Failed to load essential metadata.");
2859 goto err_out_now;
2860 }
2861 tmp_ino->i_ino = FILE_MFT;
2862 insert_inode_hash(inode: tmp_ino);
2863 if (ntfs_read_inode_mount(vi: tmp_ino) < 0) {
2864 if (!silent)
2865 ntfs_error(sb, "Failed to load essential metadata.");
2866 goto iput_tmp_ino_err_out_now;
2867 }
2868 mutex_lock(&ntfs_lock);
2869 /*
2870 * The current mount is a compression user if the cluster size is
2871 * less than or equal 4kiB.
2872 */
2873 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2874 result = allocate_compression_buffers();
2875 if (result) {
2876 ntfs_error(NULL, "Failed to allocate buffers "
2877 "for compression engine.");
2878 ntfs_nr_compression_users--;
2879 mutex_unlock(lock: &ntfs_lock);
2880 goto iput_tmp_ino_err_out_now;
2881 }
2882 }
2883 /*
2884 * Generate the global default upcase table if necessary. Also
2885 * temporarily increment the number of upcase users to avoid race
2886 * conditions with concurrent (u)mounts.
2887 */
2888 if (!default_upcase)
2889 default_upcase = generate_default_upcase();
2890 ntfs_nr_upcase_users++;
2891 mutex_unlock(lock: &ntfs_lock);
2892 /*
2893 * From now on, ignore @silent parameter. If we fail below this line,
2894 * it will be due to a corrupt fs or a system error, so we report it.
2895 */
2896 /*
2897 * Open the system files with normal access functions and complete
2898 * setting up the ntfs super block.
2899 */
2900 if (!load_system_files(vol)) {
2901 ntfs_error(sb, "Failed to load system files.");
2902 goto unl_upcase_iput_tmp_ino_err_out_now;
2903 }
2904
2905 /* We grab a reference, simulating an ntfs_iget(). */
2906 ihold(inode: vol->root_ino);
2907 if ((sb->s_root = d_make_root(vol->root_ino))) {
2908 ntfs_debug("Exiting, status successful.");
2909 /* Release the default upcase if it has no users. */
2910 mutex_lock(&ntfs_lock);
2911 if (!--ntfs_nr_upcase_users && default_upcase) {
2912 ntfs_free(addr: default_upcase);
2913 default_upcase = NULL;
2914 }
2915 mutex_unlock(lock: &ntfs_lock);
2916 sb->s_export_op = &ntfs_export_ops;
2917 lockdep_on();
2918 return 0;
2919 }
2920 ntfs_error(sb, "Failed to allocate root directory.");
2921 /* Clean up after the successful load_system_files() call from above. */
2922 // TODO: Use ntfs_put_super() instead of repeating all this code...
2923 // FIXME: Should mark the volume clean as the error is most likely
2924 // -ENOMEM.
2925 iput(vol->vol_ino);
2926 vol->vol_ino = NULL;
2927 /* NTFS 3.0+ specific clean up. */
2928 if (vol->major_ver >= 3) {
2929#ifdef NTFS_RW
2930 if (vol->usnjrnl_j_ino) {
2931 iput(vol->usnjrnl_j_ino);
2932 vol->usnjrnl_j_ino = NULL;
2933 }
2934 if (vol->usnjrnl_max_ino) {
2935 iput(vol->usnjrnl_max_ino);
2936 vol->usnjrnl_max_ino = NULL;
2937 }
2938 if (vol->usnjrnl_ino) {
2939 iput(vol->usnjrnl_ino);
2940 vol->usnjrnl_ino = NULL;
2941 }
2942 if (vol->quota_q_ino) {
2943 iput(vol->quota_q_ino);
2944 vol->quota_q_ino = NULL;
2945 }
2946 if (vol->quota_ino) {
2947 iput(vol->quota_ino);
2948 vol->quota_ino = NULL;
2949 }
2950#endif /* NTFS_RW */
2951 if (vol->extend_ino) {
2952 iput(vol->extend_ino);
2953 vol->extend_ino = NULL;
2954 }
2955 if (vol->secure_ino) {
2956 iput(vol->secure_ino);
2957 vol->secure_ino = NULL;
2958 }
2959 }
2960 iput(vol->root_ino);
2961 vol->root_ino = NULL;
2962 iput(vol->lcnbmp_ino);
2963 vol->lcnbmp_ino = NULL;
2964 iput(vol->mftbmp_ino);
2965 vol->mftbmp_ino = NULL;
2966#ifdef NTFS_RW
2967 if (vol->logfile_ino) {
2968 iput(vol->logfile_ino);
2969 vol->logfile_ino = NULL;
2970 }
2971 if (vol->mftmirr_ino) {
2972 iput(vol->mftmirr_ino);
2973 vol->mftmirr_ino = NULL;
2974 }
2975#endif /* NTFS_RW */
2976 /* Throw away the table of attribute definitions. */
2977 vol->attrdef_size = 0;
2978 if (vol->attrdef) {
2979 ntfs_free(addr: vol->attrdef);
2980 vol->attrdef = NULL;
2981 }
2982 vol->upcase_len = 0;
2983 mutex_lock(&ntfs_lock);
2984 if (vol->upcase == default_upcase) {
2985 ntfs_nr_upcase_users--;
2986 vol->upcase = NULL;
2987 }
2988 mutex_unlock(lock: &ntfs_lock);
2989 if (vol->upcase) {
2990 ntfs_free(addr: vol->upcase);
2991 vol->upcase = NULL;
2992 }
2993 if (vol->nls_map) {
2994 unload_nls(vol->nls_map);
2995 vol->nls_map = NULL;
2996 }
2997 /* Error exit code path. */
2998unl_upcase_iput_tmp_ino_err_out_now:
2999 /*
3000 * Decrease the number of upcase users and destroy the global default
3001 * upcase table if necessary.
3002 */
3003 mutex_lock(&ntfs_lock);
3004 if (!--ntfs_nr_upcase_users && default_upcase) {
3005 ntfs_free(addr: default_upcase);
3006 default_upcase = NULL;
3007 }
3008 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3009 free_compression_buffers();
3010 mutex_unlock(lock: &ntfs_lock);
3011iput_tmp_ino_err_out_now:
3012 iput(tmp_ino);
3013 if (vol->mft_ino && vol->mft_ino != tmp_ino)
3014 iput(vol->mft_ino);
3015 vol->mft_ino = NULL;
3016 /* Errors at this stage are irrelevant. */
3017err_out_now:
3018 sb->s_fs_info = NULL;
3019 kfree(objp: vol);
3020 ntfs_debug("Failed, returning -EINVAL.");
3021 lockdep_on();
3022 return -EINVAL;
3023}
3024
3025/*
3026 * This is a slab cache to optimize allocations and deallocations of Unicode
3027 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3028 * (255) Unicode characters + a terminating NULL Unicode character.
3029 */
3030struct kmem_cache *ntfs_name_cache;
3031
3032/* Slab caches for efficient allocation/deallocation of inodes. */
3033struct kmem_cache *ntfs_inode_cache;
3034struct kmem_cache *ntfs_big_inode_cache;
3035
3036/* Init once constructor for the inode slab cache. */
3037static void ntfs_big_inode_init_once(void *foo)
3038{
3039 ntfs_inode *ni = (ntfs_inode *)foo;
3040
3041 inode_init_once(VFS_I(ni));
3042}
3043
3044/*
3045 * Slab caches to optimize allocations and deallocations of attribute search
3046 * contexts and index contexts, respectively.
3047 */
3048struct kmem_cache *ntfs_attr_ctx_cache;
3049struct kmem_cache *ntfs_index_ctx_cache;
3050
3051/* Driver wide mutex. */
3052DEFINE_MUTEX(ntfs_lock);
3053
3054static struct dentry *ntfs_mount(struct file_system_type *fs_type,
3055 int flags, const char *dev_name, void *data)
3056{
3057 return mount_bdev(fs_type, flags, dev_name, data, fill_super: ntfs_fill_super);
3058}
3059
3060static struct file_system_type ntfs_fs_type = {
3061 .owner = THIS_MODULE,
3062 .name = "ntfs",
3063 .mount = ntfs_mount,
3064 .kill_sb = kill_block_super,
3065 .fs_flags = FS_REQUIRES_DEV,
3066};
3067MODULE_ALIAS_FS("ntfs");
3068
3069/* Stable names for the slab caches. */
3070static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3071static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3072static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3073static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3074static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3075
3076static int __init init_ntfs_fs(void)
3077{
3078 int err = 0;
3079
3080 /* This may be ugly but it results in pretty output so who cares. (-8 */
3081 pr_info("driver " NTFS_VERSION " [Flags: R/"
3082#ifdef NTFS_RW
3083 "W"
3084#else
3085 "O"
3086#endif
3087#ifdef DEBUG
3088 " DEBUG"
3089#endif
3090#ifdef MODULE
3091 " MODULE"
3092#endif
3093 "].\n");
3094
3095 ntfs_debug("Debug messages are enabled.");
3096
3097 ntfs_index_ctx_cache = kmem_cache_create(name: ntfs_index_ctx_cache_name,
3098 size: sizeof(ntfs_index_context), align: 0 /* offset */,
3099 SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3100 if (!ntfs_index_ctx_cache) {
3101 pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name);
3102 goto ictx_err_out;
3103 }
3104 ntfs_attr_ctx_cache = kmem_cache_create(name: ntfs_attr_ctx_cache_name,
3105 size: sizeof(ntfs_attr_search_ctx), align: 0 /* offset */,
3106 SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3107 if (!ntfs_attr_ctx_cache) {
3108 pr_crit("NTFS: Failed to create %s!\n",
3109 ntfs_attr_ctx_cache_name);
3110 goto actx_err_out;
3111 }
3112
3113 ntfs_name_cache = kmem_cache_create(name: ntfs_name_cache_name,
3114 size: (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), align: 0,
3115 SLAB_HWCACHE_ALIGN, NULL);
3116 if (!ntfs_name_cache) {
3117 pr_crit("Failed to create %s!\n", ntfs_name_cache_name);
3118 goto name_err_out;
3119 }
3120
3121 ntfs_inode_cache = kmem_cache_create(name: ntfs_inode_cache_name,
3122 size: sizeof(ntfs_inode), align: 0,
3123 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
3124 if (!ntfs_inode_cache) {
3125 pr_crit("Failed to create %s!\n", ntfs_inode_cache_name);
3126 goto inode_err_out;
3127 }
3128
3129 ntfs_big_inode_cache = kmem_cache_create(name: ntfs_big_inode_cache_name,
3130 size: sizeof(big_ntfs_inode), align: 0,
3131 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
3132 SLAB_ACCOUNT, ctor: ntfs_big_inode_init_once);
3133 if (!ntfs_big_inode_cache) {
3134 pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name);
3135 goto big_inode_err_out;
3136 }
3137
3138 /* Register the ntfs sysctls. */
3139 err = ntfs_sysctl(add: 1);
3140 if (err) {
3141 pr_crit("Failed to register NTFS sysctls!\n");
3142 goto sysctl_err_out;
3143 }
3144
3145 err = register_filesystem(&ntfs_fs_type);
3146 if (!err) {
3147 ntfs_debug("NTFS driver registered successfully.");
3148 return 0; /* Success! */
3149 }
3150 pr_crit("Failed to register NTFS filesystem driver!\n");
3151
3152 /* Unregister the ntfs sysctls. */
3153 ntfs_sysctl(add: 0);
3154sysctl_err_out:
3155 kmem_cache_destroy(s: ntfs_big_inode_cache);
3156big_inode_err_out:
3157 kmem_cache_destroy(s: ntfs_inode_cache);
3158inode_err_out:
3159 kmem_cache_destroy(s: ntfs_name_cache);
3160name_err_out:
3161 kmem_cache_destroy(s: ntfs_attr_ctx_cache);
3162actx_err_out:
3163 kmem_cache_destroy(s: ntfs_index_ctx_cache);
3164ictx_err_out:
3165 if (!err) {
3166 pr_crit("Aborting NTFS filesystem driver registration...\n");
3167 err = -ENOMEM;
3168 }
3169 return err;
3170}
3171
3172static void __exit exit_ntfs_fs(void)
3173{
3174 ntfs_debug("Unregistering NTFS driver.");
3175
3176 unregister_filesystem(&ntfs_fs_type);
3177
3178 /*
3179 * Make sure all delayed rcu free inodes are flushed before we
3180 * destroy cache.
3181 */
3182 rcu_barrier();
3183 kmem_cache_destroy(s: ntfs_big_inode_cache);
3184 kmem_cache_destroy(s: ntfs_inode_cache);
3185 kmem_cache_destroy(s: ntfs_name_cache);
3186 kmem_cache_destroy(s: ntfs_attr_ctx_cache);
3187 kmem_cache_destroy(s: ntfs_index_ctx_cache);
3188 /* Unregister the ntfs sysctls. */
3189 ntfs_sysctl(add: 0);
3190}
3191
3192MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
3193MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.");
3194MODULE_VERSION(NTFS_VERSION);
3195MODULE_LICENSE("GPL");
3196#ifdef DEBUG
3197module_param(debug_msgs, bint, 0);
3198MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3199#endif
3200
3201module_init(init_ntfs_fs)
3202module_exit(exit_ntfs_fs)
3203

source code of linux/fs/ntfs/super.c