1 | /* SPDX-License-Identifier: GPL-2.0-or-later */ |
2 | /* |
3 | * Generic barrier definitions. |
4 | * |
5 | * It should be possible to use these on really simple architectures, |
6 | * but it serves more as a starting point for new ports. |
7 | * |
8 | * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. |
9 | * Written by David Howells (dhowells@redhat.com) |
10 | */ |
11 | #ifndef __ASM_GENERIC_BARRIER_H |
12 | #define __ASM_GENERIC_BARRIER_H |
13 | |
14 | #ifndef __ASSEMBLY__ |
15 | |
16 | #include <linux/compiler.h> |
17 | #include <linux/kcsan-checks.h> |
18 | #include <asm/rwonce.h> |
19 | |
20 | #ifndef nop |
21 | #define nop() asm volatile ("nop") |
22 | #endif |
23 | |
24 | /* |
25 | * Architectures that want generic instrumentation can define __ prefixed |
26 | * variants of all barriers. |
27 | */ |
28 | |
29 | #ifdef __mb |
30 | #define mb() do { kcsan_mb(); __mb(); } while (0) |
31 | #endif |
32 | |
33 | #ifdef __rmb |
34 | #define rmb() do { kcsan_rmb(); __rmb(); } while (0) |
35 | #endif |
36 | |
37 | #ifdef __wmb |
38 | #define wmb() do { kcsan_wmb(); __wmb(); } while (0) |
39 | #endif |
40 | |
41 | #ifdef __dma_mb |
42 | #define dma_mb() do { kcsan_mb(); __dma_mb(); } while (0) |
43 | #endif |
44 | |
45 | #ifdef __dma_rmb |
46 | #define dma_rmb() do { kcsan_rmb(); __dma_rmb(); } while (0) |
47 | #endif |
48 | |
49 | #ifdef __dma_wmb |
50 | #define dma_wmb() do { kcsan_wmb(); __dma_wmb(); } while (0) |
51 | #endif |
52 | |
53 | /* |
54 | * Force strict CPU ordering. And yes, this is required on UP too when we're |
55 | * talking to devices. |
56 | * |
57 | * Fall back to compiler barriers if nothing better is provided. |
58 | */ |
59 | |
60 | #ifndef mb |
61 | #define mb() barrier() |
62 | #endif |
63 | |
64 | #ifndef rmb |
65 | #define rmb() mb() |
66 | #endif |
67 | |
68 | #ifndef wmb |
69 | #define wmb() mb() |
70 | #endif |
71 | |
72 | #ifndef dma_mb |
73 | #define dma_mb() mb() |
74 | #endif |
75 | |
76 | #ifndef dma_rmb |
77 | #define dma_rmb() rmb() |
78 | #endif |
79 | |
80 | #ifndef dma_wmb |
81 | #define dma_wmb() wmb() |
82 | #endif |
83 | |
84 | #ifndef __smp_mb |
85 | #define __smp_mb() mb() |
86 | #endif |
87 | |
88 | #ifndef __smp_rmb |
89 | #define __smp_rmb() rmb() |
90 | #endif |
91 | |
92 | #ifndef __smp_wmb |
93 | #define __smp_wmb() wmb() |
94 | #endif |
95 | |
96 | #ifdef CONFIG_SMP |
97 | |
98 | #ifndef smp_mb |
99 | #define smp_mb() do { kcsan_mb(); __smp_mb(); } while (0) |
100 | #endif |
101 | |
102 | #ifndef smp_rmb |
103 | #define smp_rmb() do { kcsan_rmb(); __smp_rmb(); } while (0) |
104 | #endif |
105 | |
106 | #ifndef smp_wmb |
107 | #define smp_wmb() do { kcsan_wmb(); __smp_wmb(); } while (0) |
108 | #endif |
109 | |
110 | #else /* !CONFIG_SMP */ |
111 | |
112 | #ifndef smp_mb |
113 | #define smp_mb() barrier() |
114 | #endif |
115 | |
116 | #ifndef smp_rmb |
117 | #define smp_rmb() barrier() |
118 | #endif |
119 | |
120 | #ifndef smp_wmb |
121 | #define smp_wmb() barrier() |
122 | #endif |
123 | |
124 | #endif /* CONFIG_SMP */ |
125 | |
126 | #ifndef __smp_store_mb |
127 | #define __smp_store_mb(var, value) do { WRITE_ONCE(var, value); __smp_mb(); } while (0) |
128 | #endif |
129 | |
130 | #ifndef __smp_mb__before_atomic |
131 | #define __smp_mb__before_atomic() __smp_mb() |
132 | #endif |
133 | |
134 | #ifndef __smp_mb__after_atomic |
135 | #define __smp_mb__after_atomic() __smp_mb() |
136 | #endif |
137 | |
138 | #ifndef __smp_store_release |
139 | #define __smp_store_release(p, v) \ |
140 | do { \ |
141 | compiletime_assert_atomic_type(*p); \ |
142 | __smp_mb(); \ |
143 | WRITE_ONCE(*p, v); \ |
144 | } while (0) |
145 | #endif |
146 | |
147 | #ifndef __smp_load_acquire |
148 | #define __smp_load_acquire(p) \ |
149 | ({ \ |
150 | __unqual_scalar_typeof(*p) ___p1 = READ_ONCE(*p); \ |
151 | compiletime_assert_atomic_type(*p); \ |
152 | __smp_mb(); \ |
153 | (typeof(*p))___p1; \ |
154 | }) |
155 | #endif |
156 | |
157 | #ifdef CONFIG_SMP |
158 | |
159 | #ifndef smp_store_mb |
160 | #define smp_store_mb(var, value) do { kcsan_mb(); __smp_store_mb(var, value); } while (0) |
161 | #endif |
162 | |
163 | #ifndef smp_mb__before_atomic |
164 | #define smp_mb__before_atomic() do { kcsan_mb(); __smp_mb__before_atomic(); } while (0) |
165 | #endif |
166 | |
167 | #ifndef smp_mb__after_atomic |
168 | #define smp_mb__after_atomic() do { kcsan_mb(); __smp_mb__after_atomic(); } while (0) |
169 | #endif |
170 | |
171 | #ifndef smp_store_release |
172 | #define smp_store_release(p, v) do { kcsan_release(); __smp_store_release(p, v); } while (0) |
173 | #endif |
174 | |
175 | #ifndef smp_load_acquire |
176 | #define smp_load_acquire(p) __smp_load_acquire(p) |
177 | #endif |
178 | |
179 | #else /* !CONFIG_SMP */ |
180 | |
181 | #ifndef smp_store_mb |
182 | #define smp_store_mb(var, value) do { WRITE_ONCE(var, value); barrier(); } while (0) |
183 | #endif |
184 | |
185 | #ifndef smp_mb__before_atomic |
186 | #define smp_mb__before_atomic() barrier() |
187 | #endif |
188 | |
189 | #ifndef smp_mb__after_atomic |
190 | #define smp_mb__after_atomic() barrier() |
191 | #endif |
192 | |
193 | #ifndef smp_store_release |
194 | #define smp_store_release(p, v) \ |
195 | do { \ |
196 | barrier(); \ |
197 | WRITE_ONCE(*p, v); \ |
198 | } while (0) |
199 | #endif |
200 | |
201 | #ifndef smp_load_acquire |
202 | #define smp_load_acquire(p) \ |
203 | ({ \ |
204 | __unqual_scalar_typeof(*p) ___p1 = READ_ONCE(*p); \ |
205 | barrier(); \ |
206 | (typeof(*p))___p1; \ |
207 | }) |
208 | #endif |
209 | |
210 | #endif /* CONFIG_SMP */ |
211 | |
212 | /* Barriers for virtual machine guests when talking to an SMP host */ |
213 | #define virt_mb() do { kcsan_mb(); __smp_mb(); } while (0) |
214 | #define virt_rmb() do { kcsan_rmb(); __smp_rmb(); } while (0) |
215 | #define virt_wmb() do { kcsan_wmb(); __smp_wmb(); } while (0) |
216 | #define virt_store_mb(var, value) do { kcsan_mb(); __smp_store_mb(var, value); } while (0) |
217 | #define virt_mb__before_atomic() do { kcsan_mb(); __smp_mb__before_atomic(); } while (0) |
218 | #define virt_mb__after_atomic() do { kcsan_mb(); __smp_mb__after_atomic(); } while (0) |
219 | #define virt_store_release(p, v) do { kcsan_release(); __smp_store_release(p, v); } while (0) |
220 | #define virt_load_acquire(p) __smp_load_acquire(p) |
221 | |
222 | /** |
223 | * smp_acquire__after_ctrl_dep() - Provide ACQUIRE ordering after a control dependency |
224 | * |
225 | * A control dependency provides a LOAD->STORE order, the additional RMB |
226 | * provides LOAD->LOAD order, together they provide LOAD->{LOAD,STORE} order, |
227 | * aka. (load)-ACQUIRE. |
228 | * |
229 | * Architectures that do not do load speculation can have this be barrier(). |
230 | */ |
231 | #ifndef smp_acquire__after_ctrl_dep |
232 | #define smp_acquire__after_ctrl_dep() smp_rmb() |
233 | #endif |
234 | |
235 | /** |
236 | * smp_cond_load_relaxed() - (Spin) wait for cond with no ordering guarantees |
237 | * @ptr: pointer to the variable to wait on |
238 | * @cond: boolean expression to wait for |
239 | * |
240 | * Equivalent to using READ_ONCE() on the condition variable. |
241 | * |
242 | * Due to C lacking lambda expressions we load the value of *ptr into a |
243 | * pre-named variable @VAL to be used in @cond. |
244 | */ |
245 | #ifndef smp_cond_load_relaxed |
246 | #define smp_cond_load_relaxed(ptr, cond_expr) ({ \ |
247 | typeof(ptr) __PTR = (ptr); \ |
248 | __unqual_scalar_typeof(*ptr) VAL; \ |
249 | for (;;) { \ |
250 | VAL = READ_ONCE(*__PTR); \ |
251 | if (cond_expr) \ |
252 | break; \ |
253 | cpu_relax(); \ |
254 | } \ |
255 | (typeof(*ptr))VAL; \ |
256 | }) |
257 | #endif |
258 | |
259 | /** |
260 | * smp_cond_load_acquire() - (Spin) wait for cond with ACQUIRE ordering |
261 | * @ptr: pointer to the variable to wait on |
262 | * @cond: boolean expression to wait for |
263 | * |
264 | * Equivalent to using smp_load_acquire() on the condition variable but employs |
265 | * the control dependency of the wait to reduce the barrier on many platforms. |
266 | */ |
267 | #ifndef smp_cond_load_acquire |
268 | #define smp_cond_load_acquire(ptr, cond_expr) ({ \ |
269 | __unqual_scalar_typeof(*ptr) _val; \ |
270 | _val = smp_cond_load_relaxed(ptr, cond_expr); \ |
271 | smp_acquire__after_ctrl_dep(); \ |
272 | (typeof(*ptr))_val; \ |
273 | }) |
274 | #endif |
275 | |
276 | /* |
277 | * pmem_wmb() ensures that all stores for which the modification |
278 | * are written to persistent storage by preceding instructions have |
279 | * updated persistent storage before any data access or data transfer |
280 | * caused by subsequent instructions is initiated. |
281 | */ |
282 | #ifndef pmem_wmb |
283 | #define pmem_wmb() wmb() |
284 | #endif |
285 | |
286 | /* |
287 | * ioremap_wc() maps I/O memory as memory with write-combining attributes. For |
288 | * this kind of memory accesses, the CPU may wait for prior accesses to be |
289 | * merged with subsequent ones. In some situation, such wait is bad for the |
290 | * performance. io_stop_wc() can be used to prevent the merging of |
291 | * write-combining memory accesses before this macro with those after it. |
292 | */ |
293 | #ifndef io_stop_wc |
294 | #define io_stop_wc() do { } while (0) |
295 | #endif |
296 | |
297 | /* |
298 | * Architectures that guarantee an implicit smp_mb() in switch_mm() |
299 | * can override smp_mb__after_switch_mm. |
300 | */ |
301 | #ifndef smp_mb__after_switch_mm |
302 | # define smp_mb__after_switch_mm() smp_mb() |
303 | #endif |
304 | |
305 | #endif /* !__ASSEMBLY__ */ |
306 | #endif /* __ASM_GENERIC_BARRIER_H */ |
307 | |