1 | /* SPDX-License-Identifier: GPL-2.0 */ |
2 | #ifndef __LINUX_COMPILER_H |
3 | #define __LINUX_COMPILER_H |
4 | |
5 | #include <linux/compiler_types.h> |
6 | |
7 | #ifndef __ASSEMBLY__ |
8 | |
9 | #ifdef __KERNEL__ |
10 | |
11 | /* |
12 | * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code |
13 | * to disable branch tracing on a per file basis. |
14 | */ |
15 | void ftrace_likely_update(struct ftrace_likely_data *f, int val, |
16 | int expect, int is_constant); |
17 | #if defined(CONFIG_TRACE_BRANCH_PROFILING) \ |
18 | && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) |
19 | #define likely_notrace(x) __builtin_expect(!!(x), 1) |
20 | #define unlikely_notrace(x) __builtin_expect(!!(x), 0) |
21 | |
22 | #define __branch_check__(x, expect, is_constant) ({ \ |
23 | long ______r; \ |
24 | static struct ftrace_likely_data \ |
25 | __aligned(4) \ |
26 | __section("_ftrace_annotated_branch") \ |
27 | ______f = { \ |
28 | .data.func = __func__, \ |
29 | .data.file = __FILE__, \ |
30 | .data.line = __LINE__, \ |
31 | }; \ |
32 | ______r = __builtin_expect(!!(x), expect); \ |
33 | ftrace_likely_update(&______f, ______r, \ |
34 | expect, is_constant); \ |
35 | ______r; \ |
36 | }) |
37 | |
38 | /* |
39 | * Using __builtin_constant_p(x) to ignore cases where the return |
40 | * value is always the same. This idea is taken from a similar patch |
41 | * written by Daniel Walker. |
42 | */ |
43 | # ifndef likely |
44 | # define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x))) |
45 | # endif |
46 | # ifndef unlikely |
47 | # define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x))) |
48 | # endif |
49 | |
50 | #ifdef CONFIG_PROFILE_ALL_BRANCHES |
51 | /* |
52 | * "Define 'is'", Bill Clinton |
53 | * "Define 'if'", Steven Rostedt |
54 | */ |
55 | #define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) ) |
56 | |
57 | #define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond)) |
58 | |
59 | #define __trace_if_value(cond) ({ \ |
60 | static struct ftrace_branch_data \ |
61 | __aligned(4) \ |
62 | __section("_ftrace_branch") \ |
63 | __if_trace = { \ |
64 | .func = __func__, \ |
65 | .file = __FILE__, \ |
66 | .line = __LINE__, \ |
67 | }; \ |
68 | (cond) ? \ |
69 | (__if_trace.miss_hit[1]++,1) : \ |
70 | (__if_trace.miss_hit[0]++,0); \ |
71 | }) |
72 | |
73 | #endif /* CONFIG_PROFILE_ALL_BRANCHES */ |
74 | |
75 | #else |
76 | # define likely(x) __builtin_expect(!!(x), 1) |
77 | # define unlikely(x) __builtin_expect(!!(x), 0) |
78 | # define likely_notrace(x) likely(x) |
79 | # define unlikely_notrace(x) unlikely(x) |
80 | #endif |
81 | |
82 | /* Optimization barrier */ |
83 | #ifndef barrier |
84 | /* The "volatile" is due to gcc bugs */ |
85 | # define barrier() __asm__ __volatile__("": : :"memory") |
86 | #endif |
87 | |
88 | #ifndef barrier_data |
89 | /* |
90 | * This version is i.e. to prevent dead stores elimination on @ptr |
91 | * where gcc and llvm may behave differently when otherwise using |
92 | * normal barrier(): while gcc behavior gets along with a normal |
93 | * barrier(), llvm needs an explicit input variable to be assumed |
94 | * clobbered. The issue is as follows: while the inline asm might |
95 | * access any memory it wants, the compiler could have fit all of |
96 | * @ptr into memory registers instead, and since @ptr never escaped |
97 | * from that, it proved that the inline asm wasn't touching any of |
98 | * it. This version works well with both compilers, i.e. we're telling |
99 | * the compiler that the inline asm absolutely may see the contents |
100 | * of @ptr. See also: https://llvm.org/bugs/show_bug.cgi?id=15495 |
101 | */ |
102 | # define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory") |
103 | #endif |
104 | |
105 | /* workaround for GCC PR82365 if needed */ |
106 | #ifndef barrier_before_unreachable |
107 | # define barrier_before_unreachable() do { } while (0) |
108 | #endif |
109 | |
110 | /* Unreachable code */ |
111 | #ifdef CONFIG_OBJTOOL |
112 | /* |
113 | * These macros help objtool understand GCC code flow for unreachable code. |
114 | * The __COUNTER__ based labels are a hack to make each instance of the macros |
115 | * unique, to convince GCC not to merge duplicate inline asm statements. |
116 | */ |
117 | #define __stringify_label(n) #n |
118 | |
119 | #define __annotate_reachable(c) ({ \ |
120 | asm volatile(__stringify_label(c) ":\n\t" \ |
121 | ".pushsection .discard.reachable\n\t" \ |
122 | ".long " __stringify_label(c) "b - .\n\t" \ |
123 | ".popsection\n\t"); \ |
124 | }) |
125 | #define annotate_reachable() __annotate_reachable(__COUNTER__) |
126 | |
127 | #define __annotate_unreachable(c) ({ \ |
128 | asm volatile(__stringify_label(c) ":\n\t" \ |
129 | ".pushsection .discard.unreachable\n\t" \ |
130 | ".long " __stringify_label(c) "b - .\n\t" \ |
131 | ".popsection\n\t" : : "i" (c)); \ |
132 | }) |
133 | #define annotate_unreachable() __annotate_unreachable(__COUNTER__) |
134 | |
135 | /* Annotate a C jump table to allow objtool to follow the code flow */ |
136 | #define __annotate_jump_table __section(".rodata..c_jump_table") |
137 | |
138 | #else /* !CONFIG_OBJTOOL */ |
139 | #define annotate_reachable() |
140 | #define annotate_unreachable() |
141 | #define __annotate_jump_table |
142 | #endif /* CONFIG_OBJTOOL */ |
143 | |
144 | #ifndef unreachable |
145 | # define unreachable() do { \ |
146 | annotate_unreachable(); \ |
147 | __builtin_unreachable(); \ |
148 | } while (0) |
149 | #endif |
150 | |
151 | /* |
152 | * KENTRY - kernel entry point |
153 | * This can be used to annotate symbols (functions or data) that are used |
154 | * without their linker symbol being referenced explicitly. For example, |
155 | * interrupt vector handlers, or functions in the kernel image that are found |
156 | * programatically. |
157 | * |
158 | * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those |
159 | * are handled in their own way (with KEEP() in linker scripts). |
160 | * |
161 | * KENTRY can be avoided if the symbols in question are marked as KEEP() in the |
162 | * linker script. For example an architecture could KEEP() its entire |
163 | * boot/exception vector code rather than annotate each function and data. |
164 | */ |
165 | #ifndef KENTRY |
166 | # define KENTRY(sym) \ |
167 | extern typeof(sym) sym; \ |
168 | static const unsigned long __kentry_##sym \ |
169 | __used \ |
170 | __attribute__((__section__("___kentry+" #sym))) \ |
171 | = (unsigned long)&sym; |
172 | #endif |
173 | |
174 | #ifndef RELOC_HIDE |
175 | # define RELOC_HIDE(ptr, off) \ |
176 | ({ unsigned long __ptr; \ |
177 | __ptr = (unsigned long) (ptr); \ |
178 | (typeof(ptr)) (__ptr + (off)); }) |
179 | #endif |
180 | |
181 | #define absolute_pointer(val) RELOC_HIDE((void *)(val), 0) |
182 | |
183 | #ifndef OPTIMIZER_HIDE_VAR |
184 | /* Make the optimizer believe the variable can be manipulated arbitrarily. */ |
185 | #define OPTIMIZER_HIDE_VAR(var) \ |
186 | __asm__ ("" : "=r" (var) : "0" (var)) |
187 | #endif |
188 | |
189 | #define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__) |
190 | |
191 | /** |
192 | * data_race - mark an expression as containing intentional data races |
193 | * |
194 | * This data_race() macro is useful for situations in which data races |
195 | * should be forgiven. One example is diagnostic code that accesses |
196 | * shared variables but is not a part of the core synchronization design. |
197 | * |
198 | * This macro *does not* affect normal code generation, but is a hint |
199 | * to tooling that data races here are to be ignored. |
200 | */ |
201 | #define data_race(expr) \ |
202 | ({ \ |
203 | __unqual_scalar_typeof(({ expr; })) __v = ({ \ |
204 | __kcsan_disable_current(); \ |
205 | expr; \ |
206 | }); \ |
207 | __kcsan_enable_current(); \ |
208 | __v; \ |
209 | }) |
210 | |
211 | #endif /* __KERNEL__ */ |
212 | |
213 | /* |
214 | * Force the compiler to emit 'sym' as a symbol, so that we can reference |
215 | * it from inline assembler. Necessary in case 'sym' could be inlined |
216 | * otherwise, or eliminated entirely due to lack of references that are |
217 | * visible to the compiler. |
218 | */ |
219 | #define ___ADDRESSABLE(sym, __attrs) \ |
220 | static void * __used __attrs \ |
221 | __UNIQUE_ID(__PASTE(__addressable_,sym)) = (void *)(uintptr_t)&sym; |
222 | #define __ADDRESSABLE(sym) \ |
223 | ___ADDRESSABLE(sym, __section(".discard.addressable")) |
224 | |
225 | /** |
226 | * offset_to_ptr - convert a relative memory offset to an absolute pointer |
227 | * @off: the address of the 32-bit offset value |
228 | */ |
229 | static inline void *offset_to_ptr(const int *off) |
230 | { |
231 | return (void *)((unsigned long)off + *off); |
232 | } |
233 | |
234 | #endif /* __ASSEMBLY__ */ |
235 | |
236 | /* &a[0] degrades to a pointer: a different type from an array */ |
237 | #define __must_be_array(a) BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0])) |
238 | |
239 | /* |
240 | * This returns a constant expression while determining if an argument is |
241 | * a constant expression, most importantly without evaluating the argument. |
242 | * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> |
243 | * |
244 | * Details: |
245 | * - sizeof() return an integer constant expression, and does not evaluate |
246 | * the value of its operand; it only examines the type of its operand. |
247 | * - The results of comparing two integer constant expressions is also |
248 | * an integer constant expression. |
249 | * - The first literal "8" isn't important. It could be any literal value. |
250 | * - The second literal "8" is to avoid warnings about unaligned pointers; |
251 | * this could otherwise just be "1". |
252 | * - (long)(x) is used to avoid warnings about 64-bit types on 32-bit |
253 | * architectures. |
254 | * - The C Standard defines "null pointer constant", "(void *)0", as |
255 | * distinct from other void pointers. |
256 | * - If (x) is an integer constant expression, then the "* 0l" resolves |
257 | * it into an integer constant expression of value 0. Since it is cast to |
258 | * "void *", this makes the second operand a null pointer constant. |
259 | * - If (x) is not an integer constant expression, then the second operand |
260 | * resolves to a void pointer (but not a null pointer constant: the value |
261 | * is not an integer constant 0). |
262 | * - The conditional operator's third operand, "(int *)8", is an object |
263 | * pointer (to type "int"). |
264 | * - The behavior (including the return type) of the conditional operator |
265 | * ("operand1 ? operand2 : operand3") depends on the kind of expressions |
266 | * given for the second and third operands. This is the central mechanism |
267 | * of the macro: |
268 | * - When one operand is a null pointer constant (i.e. when x is an integer |
269 | * constant expression) and the other is an object pointer (i.e. our |
270 | * third operand), the conditional operator returns the type of the |
271 | * object pointer operand (i.e. "int *"). Here, within the sizeof(), we |
272 | * would then get: |
273 | * sizeof(*((int *)(...)) == sizeof(int) == 4 |
274 | * - When one operand is a void pointer (i.e. when x is not an integer |
275 | * constant expression) and the other is an object pointer (i.e. our |
276 | * third operand), the conditional operator returns a "void *" type. |
277 | * Here, within the sizeof(), we would then get: |
278 | * sizeof(*((void *)(...)) == sizeof(void) == 1 |
279 | * - The equality comparison to "sizeof(int)" therefore depends on (x): |
280 | * sizeof(int) == sizeof(int) (x) was a constant expression |
281 | * sizeof(int) != sizeof(void) (x) was not a constant expression |
282 | */ |
283 | #define __is_constexpr(x) \ |
284 | (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) |
285 | |
286 | /* |
287 | * Whether 'type' is a signed type or an unsigned type. Supports scalar types, |
288 | * bool and also pointer types. |
289 | */ |
290 | #define is_signed_type(type) (((type)(-1)) < (__force type)1) |
291 | #define is_unsigned_type(type) (!is_signed_type(type)) |
292 | |
293 | /* |
294 | * This is needed in functions which generate the stack canary, see |
295 | * arch/x86/kernel/smpboot.c::start_secondary() for an example. |
296 | */ |
297 | #define prevent_tail_call_optimization() mb() |
298 | |
299 | #include <asm/rwonce.h> |
300 | |
301 | #endif /* __LINUX_COMPILER_H */ |
302 | |