1 | /* SPDX-License-Identifier: GPL-2.0-or-later */ |
2 | /* |
3 | * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. |
4 | */ |
5 | #ifndef LINUX_DMAENGINE_H |
6 | #define LINUX_DMAENGINE_H |
7 | |
8 | #include <linux/device.h> |
9 | #include <linux/err.h> |
10 | #include <linux/uio.h> |
11 | #include <linux/bug.h> |
12 | #include <linux/scatterlist.h> |
13 | #include <linux/bitmap.h> |
14 | #include <linux/types.h> |
15 | #include <asm/page.h> |
16 | |
17 | /** |
18 | * typedef dma_cookie_t - an opaque DMA cookie |
19 | * |
20 | * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code |
21 | */ |
22 | typedef s32 dma_cookie_t; |
23 | #define DMA_MIN_COOKIE 1 |
24 | |
25 | static inline int dma_submit_error(dma_cookie_t cookie) |
26 | { |
27 | return cookie < 0 ? cookie : 0; |
28 | } |
29 | |
30 | /** |
31 | * enum dma_status - DMA transaction status |
32 | * @DMA_COMPLETE: transaction completed |
33 | * @DMA_IN_PROGRESS: transaction not yet processed |
34 | * @DMA_PAUSED: transaction is paused |
35 | * @DMA_ERROR: transaction failed |
36 | */ |
37 | enum dma_status { |
38 | DMA_COMPLETE, |
39 | DMA_IN_PROGRESS, |
40 | DMA_PAUSED, |
41 | DMA_ERROR, |
42 | DMA_OUT_OF_ORDER, |
43 | }; |
44 | |
45 | /** |
46 | * enum dma_transaction_type - DMA transaction types/indexes |
47 | * |
48 | * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is |
49 | * automatically set as dma devices are registered. |
50 | */ |
51 | enum dma_transaction_type { |
52 | DMA_MEMCPY, |
53 | DMA_XOR, |
54 | DMA_PQ, |
55 | DMA_XOR_VAL, |
56 | DMA_PQ_VAL, |
57 | DMA_MEMSET, |
58 | DMA_MEMSET_SG, |
59 | DMA_INTERRUPT, |
60 | DMA_PRIVATE, |
61 | DMA_ASYNC_TX, |
62 | DMA_SLAVE, |
63 | DMA_CYCLIC, |
64 | DMA_INTERLEAVE, |
65 | DMA_COMPLETION_NO_ORDER, |
66 | DMA_REPEAT, |
67 | DMA_LOAD_EOT, |
68 | /* last transaction type for creation of the capabilities mask */ |
69 | DMA_TX_TYPE_END, |
70 | }; |
71 | |
72 | /** |
73 | * enum dma_transfer_direction - dma transfer mode and direction indicator |
74 | * @DMA_MEM_TO_MEM: Async/Memcpy mode |
75 | * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device |
76 | * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory |
77 | * @DMA_DEV_TO_DEV: Slave mode & From Device to Device |
78 | */ |
79 | enum dma_transfer_direction { |
80 | DMA_MEM_TO_MEM, |
81 | DMA_MEM_TO_DEV, |
82 | DMA_DEV_TO_MEM, |
83 | DMA_DEV_TO_DEV, |
84 | DMA_TRANS_NONE, |
85 | }; |
86 | |
87 | /** |
88 | * Interleaved Transfer Request |
89 | * ---------------------------- |
90 | * A chunk is collection of contiguous bytes to be transferred. |
91 | * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). |
92 | * ICGs may or may not change between chunks. |
93 | * A FRAME is the smallest series of contiguous {chunk,icg} pairs, |
94 | * that when repeated an integral number of times, specifies the transfer. |
95 | * A transfer template is specification of a Frame, the number of times |
96 | * it is to be repeated and other per-transfer attributes. |
97 | * |
98 | * Practically, a client driver would have ready a template for each |
99 | * type of transfer it is going to need during its lifetime and |
100 | * set only 'src_start' and 'dst_start' before submitting the requests. |
101 | * |
102 | * |
103 | * | Frame-1 | Frame-2 | ~ | Frame-'numf' | |
104 | * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| |
105 | * |
106 | * == Chunk size |
107 | * ... ICG |
108 | */ |
109 | |
110 | /** |
111 | * struct data_chunk - Element of scatter-gather list that makes a frame. |
112 | * @size: Number of bytes to read from source. |
113 | * size_dst := fn(op, size_src), so doesn't mean much for destination. |
114 | * @icg: Number of bytes to jump after last src/dst address of this |
115 | * chunk and before first src/dst address for next chunk. |
116 | * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. |
117 | * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. |
118 | * @dst_icg: Number of bytes to jump after last dst address of this |
119 | * chunk and before the first dst address for next chunk. |
120 | * Ignored if dst_inc is true and dst_sgl is false. |
121 | * @src_icg: Number of bytes to jump after last src address of this |
122 | * chunk and before the first src address for next chunk. |
123 | * Ignored if src_inc is true and src_sgl is false. |
124 | */ |
125 | struct data_chunk { |
126 | size_t size; |
127 | size_t icg; |
128 | size_t dst_icg; |
129 | size_t src_icg; |
130 | }; |
131 | |
132 | /** |
133 | * struct dma_interleaved_template - Template to convey DMAC the transfer pattern |
134 | * and attributes. |
135 | * @src_start: Bus address of source for the first chunk. |
136 | * @dst_start: Bus address of destination for the first chunk. |
137 | * @dir: Specifies the type of Source and Destination. |
138 | * @src_inc: If the source address increments after reading from it. |
139 | * @dst_inc: If the destination address increments after writing to it. |
140 | * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). |
141 | * Otherwise, source is read contiguously (icg ignored). |
142 | * Ignored if src_inc is false. |
143 | * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). |
144 | * Otherwise, destination is filled contiguously (icg ignored). |
145 | * Ignored if dst_inc is false. |
146 | * @numf: Number of frames in this template. |
147 | * @frame_size: Number of chunks in a frame i.e, size of sgl[]. |
148 | * @sgl: Array of {chunk,icg} pairs that make up a frame. |
149 | */ |
150 | struct dma_interleaved_template { |
151 | dma_addr_t src_start; |
152 | dma_addr_t dst_start; |
153 | enum dma_transfer_direction dir; |
154 | bool src_inc; |
155 | bool dst_inc; |
156 | bool src_sgl; |
157 | bool dst_sgl; |
158 | size_t numf; |
159 | size_t frame_size; |
160 | struct data_chunk sgl[]; |
161 | }; |
162 | |
163 | /** |
164 | * enum dma_ctrl_flags - DMA flags to augment operation preparation, |
165 | * control completion, and communicate status. |
166 | * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of |
167 | * this transaction |
168 | * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client |
169 | * acknowledges receipt, i.e. has a chance to establish any dependency |
170 | * chains |
171 | * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q |
172 | * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P |
173 | * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as |
174 | * sources that were the result of a previous operation, in the case of a PQ |
175 | * operation it continues the calculation with new sources |
176 | * @DMA_PREP_FENCE - tell the driver that subsequent operations depend |
177 | * on the result of this operation |
178 | * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till |
179 | * cleared or freed |
180 | * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command |
181 | * data and the descriptor should be in different format from normal |
182 | * data descriptors. |
183 | * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically |
184 | * repeated when it ends until a transaction is issued on the same channel |
185 | * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to |
186 | * interleaved transactions and is ignored for all other transaction types. |
187 | * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any |
188 | * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the |
189 | * repeated transaction ends. Not setting this flag when the previously queued |
190 | * transaction is marked with DMA_PREP_REPEAT will cause the new transaction |
191 | * to never be processed and stay in the issued queue forever. The flag is |
192 | * ignored if the previous transaction is not a repeated transaction. |
193 | */ |
194 | enum dma_ctrl_flags { |
195 | DMA_PREP_INTERRUPT = (1 << 0), |
196 | DMA_CTRL_ACK = (1 << 1), |
197 | DMA_PREP_PQ_DISABLE_P = (1 << 2), |
198 | DMA_PREP_PQ_DISABLE_Q = (1 << 3), |
199 | DMA_PREP_CONTINUE = (1 << 4), |
200 | DMA_PREP_FENCE = (1 << 5), |
201 | DMA_CTRL_REUSE = (1 << 6), |
202 | DMA_PREP_CMD = (1 << 7), |
203 | DMA_PREP_REPEAT = (1 << 8), |
204 | DMA_PREP_LOAD_EOT = (1 << 9), |
205 | }; |
206 | |
207 | /** |
208 | * enum sum_check_bits - bit position of pq_check_flags |
209 | */ |
210 | enum sum_check_bits { |
211 | SUM_CHECK_P = 0, |
212 | SUM_CHECK_Q = 1, |
213 | }; |
214 | |
215 | /** |
216 | * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations |
217 | * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise |
218 | * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise |
219 | */ |
220 | enum sum_check_flags { |
221 | SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), |
222 | SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), |
223 | }; |
224 | |
225 | |
226 | /** |
227 | * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. |
228 | * See linux/cpumask.h |
229 | */ |
230 | typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; |
231 | |
232 | /** |
233 | * enum dma_desc_metadata_mode - per descriptor metadata mode types supported |
234 | * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the |
235 | * client driver and it is attached (via the dmaengine_desc_attach_metadata() |
236 | * helper) to the descriptor. |
237 | * |
238 | * Client drivers interested to use this mode can follow: |
239 | * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: |
240 | * 1. prepare the descriptor (dmaengine_prep_*) |
241 | * construct the metadata in the client's buffer |
242 | * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the |
243 | * descriptor |
244 | * 3. submit the transfer |
245 | * - DMA_DEV_TO_MEM: |
246 | * 1. prepare the descriptor (dmaengine_prep_*) |
247 | * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the |
248 | * descriptor |
249 | * 3. submit the transfer |
250 | * 4. when the transfer is completed, the metadata should be available in the |
251 | * attached buffer |
252 | * |
253 | * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA |
254 | * driver. The client driver can ask for the pointer, maximum size and the |
255 | * currently used size of the metadata and can directly update or read it. |
256 | * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is |
257 | * provided as helper functions. |
258 | * |
259 | * Note: the metadata area for the descriptor is no longer valid after the |
260 | * transfer has been completed (valid up to the point when the completion |
261 | * callback returns if used). |
262 | * |
263 | * Client drivers interested to use this mode can follow: |
264 | * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: |
265 | * 1. prepare the descriptor (dmaengine_prep_*) |
266 | * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's |
267 | * metadata area |
268 | * 3. update the metadata at the pointer |
269 | * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount |
270 | * of data the client has placed into the metadata buffer |
271 | * 5. submit the transfer |
272 | * - DMA_DEV_TO_MEM: |
273 | * 1. prepare the descriptor (dmaengine_prep_*) |
274 | * 2. submit the transfer |
275 | * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the |
276 | * pointer to the engine's metadata area |
277 | * 4. Read out the metadata from the pointer |
278 | * |
279 | * Note: the two mode is not compatible and clients must use one mode for a |
280 | * descriptor. |
281 | */ |
282 | enum dma_desc_metadata_mode { |
283 | DESC_METADATA_NONE = 0, |
284 | DESC_METADATA_CLIENT = BIT(0), |
285 | DESC_METADATA_ENGINE = BIT(1), |
286 | }; |
287 | |
288 | /** |
289 | * struct dma_chan_percpu - the per-CPU part of struct dma_chan |
290 | * @memcpy_count: transaction counter |
291 | * @bytes_transferred: byte counter |
292 | */ |
293 | struct dma_chan_percpu { |
294 | /* stats */ |
295 | unsigned long memcpy_count; |
296 | unsigned long bytes_transferred; |
297 | }; |
298 | |
299 | /** |
300 | * struct dma_router - DMA router structure |
301 | * @dev: pointer to the DMA router device |
302 | * @route_free: function to be called when the route can be disconnected |
303 | */ |
304 | struct dma_router { |
305 | struct device *dev; |
306 | void (*route_free)(struct device *dev, void *route_data); |
307 | }; |
308 | |
309 | /** |
310 | * struct dma_chan - devices supply DMA channels, clients use them |
311 | * @device: ptr to the dma device who supplies this channel, always !%NULL |
312 | * @slave: ptr to the device using this channel |
313 | * @cookie: last cookie value returned to client |
314 | * @completed_cookie: last completed cookie for this channel |
315 | * @chan_id: channel ID for sysfs |
316 | * @dev: class device for sysfs |
317 | * @name: backlink name for sysfs |
318 | * @dbg_client_name: slave name for debugfs in format: |
319 | * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx" |
320 | * @device_node: used to add this to the device chan list |
321 | * @local: per-cpu pointer to a struct dma_chan_percpu |
322 | * @client_count: how many clients are using this channel |
323 | * @table_count: number of appearances in the mem-to-mem allocation table |
324 | * @router: pointer to the DMA router structure |
325 | * @route_data: channel specific data for the router |
326 | * @private: private data for certain client-channel associations |
327 | */ |
328 | struct dma_chan { |
329 | struct dma_device *device; |
330 | struct device *slave; |
331 | dma_cookie_t cookie; |
332 | dma_cookie_t completed_cookie; |
333 | |
334 | /* sysfs */ |
335 | int chan_id; |
336 | struct dma_chan_dev *dev; |
337 | const char *name; |
338 | #ifdef CONFIG_DEBUG_FS |
339 | char *dbg_client_name; |
340 | #endif |
341 | |
342 | struct list_head device_node; |
343 | struct dma_chan_percpu __percpu *local; |
344 | int client_count; |
345 | int table_count; |
346 | |
347 | /* DMA router */ |
348 | struct dma_router *router; |
349 | void *route_data; |
350 | |
351 | void *private; |
352 | }; |
353 | |
354 | /** |
355 | * struct dma_chan_dev - relate sysfs device node to backing channel device |
356 | * @chan: driver channel device |
357 | * @device: sysfs device |
358 | * @dev_id: parent dma_device dev_id |
359 | * @chan_dma_dev: The channel is using custom/different dma-mapping |
360 | * compared to the parent dma_device |
361 | */ |
362 | struct dma_chan_dev { |
363 | struct dma_chan *chan; |
364 | struct device device; |
365 | int dev_id; |
366 | bool chan_dma_dev; |
367 | }; |
368 | |
369 | /** |
370 | * enum dma_slave_buswidth - defines bus width of the DMA slave |
371 | * device, source or target buses |
372 | */ |
373 | enum dma_slave_buswidth { |
374 | DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, |
375 | DMA_SLAVE_BUSWIDTH_1_BYTE = 1, |
376 | DMA_SLAVE_BUSWIDTH_2_BYTES = 2, |
377 | DMA_SLAVE_BUSWIDTH_3_BYTES = 3, |
378 | DMA_SLAVE_BUSWIDTH_4_BYTES = 4, |
379 | DMA_SLAVE_BUSWIDTH_8_BYTES = 8, |
380 | DMA_SLAVE_BUSWIDTH_16_BYTES = 16, |
381 | DMA_SLAVE_BUSWIDTH_32_BYTES = 32, |
382 | DMA_SLAVE_BUSWIDTH_64_BYTES = 64, |
383 | DMA_SLAVE_BUSWIDTH_128_BYTES = 128, |
384 | }; |
385 | |
386 | /** |
387 | * struct dma_slave_config - dma slave channel runtime config |
388 | * @direction: whether the data shall go in or out on this slave |
389 | * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are |
390 | * legal values. DEPRECATED, drivers should use the direction argument |
391 | * to the device_prep_slave_sg and device_prep_dma_cyclic functions or |
392 | * the dir field in the dma_interleaved_template structure. |
393 | * @src_addr: this is the physical address where DMA slave data |
394 | * should be read (RX), if the source is memory this argument is |
395 | * ignored. |
396 | * @dst_addr: this is the physical address where DMA slave data |
397 | * should be written (TX), if the destination is memory this argument |
398 | * is ignored. |
399 | * @src_addr_width: this is the width in bytes of the source (RX) |
400 | * register where DMA data shall be read. If the source |
401 | * is memory this may be ignored depending on architecture. |
402 | * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128. |
403 | * @dst_addr_width: same as src_addr_width but for destination |
404 | * target (TX) mutatis mutandis. |
405 | * @src_maxburst: the maximum number of words (note: words, as in |
406 | * units of the src_addr_width member, not bytes) that can be sent |
407 | * in one burst to the device. Typically something like half the |
408 | * FIFO depth on I/O peripherals so you don't overflow it. This |
409 | * may or may not be applicable on memory sources. |
410 | * @dst_maxburst: same as src_maxburst but for destination target |
411 | * mutatis mutandis. |
412 | * @src_port_window_size: The length of the register area in words the data need |
413 | * to be accessed on the device side. It is only used for devices which is using |
414 | * an area instead of a single register to receive the data. Typically the DMA |
415 | * loops in this area in order to transfer the data. |
416 | * @dst_port_window_size: same as src_port_window_size but for the destination |
417 | * port. |
418 | * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill |
419 | * with 'true' if peripheral should be flow controller. Direction will be |
420 | * selected at Runtime. |
421 | * @peripheral_config: peripheral configuration for programming peripheral |
422 | * for dmaengine transfer |
423 | * @peripheral_size: peripheral configuration buffer size |
424 | * |
425 | * This struct is passed in as configuration data to a DMA engine |
426 | * in order to set up a certain channel for DMA transport at runtime. |
427 | * The DMA device/engine has to provide support for an additional |
428 | * callback in the dma_device structure, device_config and this struct |
429 | * will then be passed in as an argument to the function. |
430 | * |
431 | * The rationale for adding configuration information to this struct is as |
432 | * follows: if it is likely that more than one DMA slave controllers in |
433 | * the world will support the configuration option, then make it generic. |
434 | * If not: if it is fixed so that it be sent in static from the platform |
435 | * data, then prefer to do that. |
436 | */ |
437 | struct dma_slave_config { |
438 | enum dma_transfer_direction direction; |
439 | phys_addr_t src_addr; |
440 | phys_addr_t dst_addr; |
441 | enum dma_slave_buswidth src_addr_width; |
442 | enum dma_slave_buswidth dst_addr_width; |
443 | u32 src_maxburst; |
444 | u32 dst_maxburst; |
445 | u32 src_port_window_size; |
446 | u32 dst_port_window_size; |
447 | bool device_fc; |
448 | void *peripheral_config; |
449 | size_t peripheral_size; |
450 | }; |
451 | |
452 | /** |
453 | * enum dma_residue_granularity - Granularity of the reported transfer residue |
454 | * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The |
455 | * DMA channel is only able to tell whether a descriptor has been completed or |
456 | * not, which means residue reporting is not supported by this channel. The |
457 | * residue field of the dma_tx_state field will always be 0. |
458 | * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully |
459 | * completed segment of the transfer (For cyclic transfers this is after each |
460 | * period). This is typically implemented by having the hardware generate an |
461 | * interrupt after each transferred segment and then the drivers updates the |
462 | * outstanding residue by the size of the segment. Another possibility is if |
463 | * the hardware supports scatter-gather and the segment descriptor has a field |
464 | * which gets set after the segment has been completed. The driver then counts |
465 | * the number of segments without the flag set to compute the residue. |
466 | * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred |
467 | * burst. This is typically only supported if the hardware has a progress |
468 | * register of some sort (E.g. a register with the current read/write address |
469 | * or a register with the amount of bursts/beats/bytes that have been |
470 | * transferred or still need to be transferred). |
471 | */ |
472 | enum dma_residue_granularity { |
473 | DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, |
474 | DMA_RESIDUE_GRANULARITY_SEGMENT = 1, |
475 | DMA_RESIDUE_GRANULARITY_BURST = 2, |
476 | }; |
477 | |
478 | /** |
479 | * struct dma_slave_caps - expose capabilities of a slave channel only |
480 | * @src_addr_widths: bit mask of src addr widths the channel supports. |
481 | * Width is specified in bytes, e.g. for a channel supporting |
482 | * a width of 4 the mask should have BIT(4) set. |
483 | * @dst_addr_widths: bit mask of dst addr widths the channel supports |
484 | * @directions: bit mask of slave directions the channel supports. |
485 | * Since the enum dma_transfer_direction is not defined as bit flag for |
486 | * each type, the dma controller should set BIT(<TYPE>) and same |
487 | * should be checked by controller as well |
488 | * @min_burst: min burst capability per-transfer |
489 | * @max_burst: max burst capability per-transfer |
490 | * @max_sg_burst: max number of SG list entries executed in a single burst |
491 | * DMA tansaction with no software intervention for reinitialization. |
492 | * Zero value means unlimited number of entries. |
493 | * @cmd_pause: true, if pause is supported (i.e. for reading residue or |
494 | * for resume later) |
495 | * @cmd_resume: true, if resume is supported |
496 | * @cmd_terminate: true, if terminate cmd is supported |
497 | * @residue_granularity: granularity of the reported transfer residue |
498 | * @descriptor_reuse: if a descriptor can be reused by client and |
499 | * resubmitted multiple times |
500 | */ |
501 | struct dma_slave_caps { |
502 | u32 src_addr_widths; |
503 | u32 dst_addr_widths; |
504 | u32 directions; |
505 | u32 min_burst; |
506 | u32 max_burst; |
507 | u32 max_sg_burst; |
508 | bool cmd_pause; |
509 | bool cmd_resume; |
510 | bool cmd_terminate; |
511 | enum dma_residue_granularity residue_granularity; |
512 | bool descriptor_reuse; |
513 | }; |
514 | |
515 | static inline const char *dma_chan_name(struct dma_chan *chan) |
516 | { |
517 | return dev_name(dev: &chan->dev->device); |
518 | } |
519 | |
520 | /** |
521 | * typedef dma_filter_fn - callback filter for dma_request_channel |
522 | * @chan: channel to be reviewed |
523 | * @filter_param: opaque parameter passed through dma_request_channel |
524 | * |
525 | * When this optional parameter is specified in a call to dma_request_channel a |
526 | * suitable channel is passed to this routine for further dispositioning before |
527 | * being returned. Where 'suitable' indicates a non-busy channel that |
528 | * satisfies the given capability mask. It returns 'true' to indicate that the |
529 | * channel is suitable. |
530 | */ |
531 | typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); |
532 | |
533 | typedef void (*dma_async_tx_callback)(void *dma_async_param); |
534 | |
535 | enum dmaengine_tx_result { |
536 | DMA_TRANS_NOERROR = 0, /* SUCCESS */ |
537 | DMA_TRANS_READ_FAILED, /* Source DMA read failed */ |
538 | DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ |
539 | DMA_TRANS_ABORTED, /* Op never submitted / aborted */ |
540 | }; |
541 | |
542 | struct dmaengine_result { |
543 | enum dmaengine_tx_result result; |
544 | u32 residue; |
545 | }; |
546 | |
547 | typedef void (*dma_async_tx_callback_result)(void *dma_async_param, |
548 | const struct dmaengine_result *result); |
549 | |
550 | struct dmaengine_unmap_data { |
551 | #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) |
552 | u16 map_cnt; |
553 | #else |
554 | u8 map_cnt; |
555 | #endif |
556 | u8 to_cnt; |
557 | u8 from_cnt; |
558 | u8 bidi_cnt; |
559 | struct device *dev; |
560 | struct kref kref; |
561 | size_t len; |
562 | dma_addr_t addr[]; |
563 | }; |
564 | |
565 | struct dma_async_tx_descriptor; |
566 | |
567 | struct dma_descriptor_metadata_ops { |
568 | int (*attach)(struct dma_async_tx_descriptor *desc, void *data, |
569 | size_t len); |
570 | |
571 | void *(*get_ptr)(struct dma_async_tx_descriptor *desc, |
572 | size_t *payload_len, size_t *max_len); |
573 | int (*set_len)(struct dma_async_tx_descriptor *desc, |
574 | size_t payload_len); |
575 | }; |
576 | |
577 | /** |
578 | * struct dma_async_tx_descriptor - async transaction descriptor |
579 | * ---dma generic offload fields--- |
580 | * @cookie: tracking cookie for this transaction, set to -EBUSY if |
581 | * this tx is sitting on a dependency list |
582 | * @flags: flags to augment operation preparation, control completion, and |
583 | * communicate status |
584 | * @phys: physical address of the descriptor |
585 | * @chan: target channel for this operation |
586 | * @tx_submit: accept the descriptor, assign ordered cookie and mark the |
587 | * descriptor pending. To be pushed on .issue_pending() call |
588 | * @callback: routine to call after this operation is complete |
589 | * @callback_param: general parameter to pass to the callback routine |
590 | * @desc_metadata_mode: core managed metadata mode to protect mixed use of |
591 | * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise |
592 | * DESC_METADATA_NONE |
593 | * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the |
594 | * DMA driver if metadata mode is supported with the descriptor |
595 | * ---async_tx api specific fields--- |
596 | * @next: at completion submit this descriptor |
597 | * @parent: pointer to the next level up in the dependency chain |
598 | * @lock: protect the parent and next pointers |
599 | */ |
600 | struct dma_async_tx_descriptor { |
601 | dma_cookie_t cookie; |
602 | enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ |
603 | dma_addr_t phys; |
604 | struct dma_chan *chan; |
605 | dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); |
606 | int (*desc_free)(struct dma_async_tx_descriptor *tx); |
607 | dma_async_tx_callback callback; |
608 | dma_async_tx_callback_result callback_result; |
609 | void *callback_param; |
610 | struct dmaengine_unmap_data *unmap; |
611 | enum dma_desc_metadata_mode desc_metadata_mode; |
612 | struct dma_descriptor_metadata_ops *metadata_ops; |
613 | #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH |
614 | struct dma_async_tx_descriptor *next; |
615 | struct dma_async_tx_descriptor *parent; |
616 | spinlock_t lock; |
617 | #endif |
618 | }; |
619 | |
620 | #ifdef CONFIG_DMA_ENGINE |
621 | static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, |
622 | struct dmaengine_unmap_data *unmap) |
623 | { |
624 | kref_get(kref: &unmap->kref); |
625 | tx->unmap = unmap; |
626 | } |
627 | |
628 | struct dmaengine_unmap_data * |
629 | dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); |
630 | void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); |
631 | #else |
632 | static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, |
633 | struct dmaengine_unmap_data *unmap) |
634 | { |
635 | } |
636 | static inline struct dmaengine_unmap_data * |
637 | dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) |
638 | { |
639 | return NULL; |
640 | } |
641 | static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) |
642 | { |
643 | } |
644 | #endif |
645 | |
646 | static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) |
647 | { |
648 | if (!tx->unmap) |
649 | return; |
650 | |
651 | dmaengine_unmap_put(unmap: tx->unmap); |
652 | tx->unmap = NULL; |
653 | } |
654 | |
655 | #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH |
656 | static inline void txd_lock(struct dma_async_tx_descriptor *txd) |
657 | { |
658 | } |
659 | static inline void txd_unlock(struct dma_async_tx_descriptor *txd) |
660 | { |
661 | } |
662 | static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) |
663 | { |
664 | BUG(); |
665 | } |
666 | static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) |
667 | { |
668 | } |
669 | static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) |
670 | { |
671 | } |
672 | static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) |
673 | { |
674 | return NULL; |
675 | } |
676 | static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) |
677 | { |
678 | return NULL; |
679 | } |
680 | |
681 | #else |
682 | static inline void txd_lock(struct dma_async_tx_descriptor *txd) |
683 | { |
684 | spin_lock_bh(lock: &txd->lock); |
685 | } |
686 | static inline void txd_unlock(struct dma_async_tx_descriptor *txd) |
687 | { |
688 | spin_unlock_bh(lock: &txd->lock); |
689 | } |
690 | static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) |
691 | { |
692 | txd->next = next; |
693 | next->parent = txd; |
694 | } |
695 | static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) |
696 | { |
697 | txd->parent = NULL; |
698 | } |
699 | static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) |
700 | { |
701 | txd->next = NULL; |
702 | } |
703 | static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) |
704 | { |
705 | return txd->parent; |
706 | } |
707 | static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) |
708 | { |
709 | return txd->next; |
710 | } |
711 | #endif |
712 | |
713 | /** |
714 | * struct dma_tx_state - filled in to report the status of |
715 | * a transfer. |
716 | * @last: last completed DMA cookie |
717 | * @used: last issued DMA cookie (i.e. the one in progress) |
718 | * @residue: the remaining number of bytes left to transmit |
719 | * on the selected transfer for states DMA_IN_PROGRESS and |
720 | * DMA_PAUSED if this is implemented in the driver, else 0 |
721 | * @in_flight_bytes: amount of data in bytes cached by the DMA. |
722 | */ |
723 | struct dma_tx_state { |
724 | dma_cookie_t last; |
725 | dma_cookie_t used; |
726 | u32 residue; |
727 | u32 in_flight_bytes; |
728 | }; |
729 | |
730 | /** |
731 | * enum dmaengine_alignment - defines alignment of the DMA async tx |
732 | * buffers |
733 | */ |
734 | enum dmaengine_alignment { |
735 | DMAENGINE_ALIGN_1_BYTE = 0, |
736 | DMAENGINE_ALIGN_2_BYTES = 1, |
737 | DMAENGINE_ALIGN_4_BYTES = 2, |
738 | DMAENGINE_ALIGN_8_BYTES = 3, |
739 | DMAENGINE_ALIGN_16_BYTES = 4, |
740 | DMAENGINE_ALIGN_32_BYTES = 5, |
741 | DMAENGINE_ALIGN_64_BYTES = 6, |
742 | DMAENGINE_ALIGN_128_BYTES = 7, |
743 | DMAENGINE_ALIGN_256_BYTES = 8, |
744 | }; |
745 | |
746 | /** |
747 | * struct dma_slave_map - associates slave device and it's slave channel with |
748 | * parameter to be used by a filter function |
749 | * @devname: name of the device |
750 | * @slave: slave channel name |
751 | * @param: opaque parameter to pass to struct dma_filter.fn |
752 | */ |
753 | struct dma_slave_map { |
754 | const char *devname; |
755 | const char *slave; |
756 | void *param; |
757 | }; |
758 | |
759 | /** |
760 | * struct dma_filter - information for slave device/channel to filter_fn/param |
761 | * mapping |
762 | * @fn: filter function callback |
763 | * @mapcnt: number of slave device/channel in the map |
764 | * @map: array of channel to filter mapping data |
765 | */ |
766 | struct dma_filter { |
767 | dma_filter_fn fn; |
768 | int mapcnt; |
769 | const struct dma_slave_map *map; |
770 | }; |
771 | |
772 | /** |
773 | * struct dma_device - info on the entity supplying DMA services |
774 | * @ref: reference is taken and put every time a channel is allocated or freed |
775 | * @chancnt: how many DMA channels are supported |
776 | * @privatecnt: how many DMA channels are requested by dma_request_channel |
777 | * @channels: the list of struct dma_chan |
778 | * @global_node: list_head for global dma_device_list |
779 | * @filter: information for device/slave to filter function/param mapping |
780 | * @cap_mask: one or more dma_capability flags |
781 | * @desc_metadata_modes: supported metadata modes by the DMA device |
782 | * @max_xor: maximum number of xor sources, 0 if no capability |
783 | * @max_pq: maximum number of PQ sources and PQ-continue capability |
784 | * @copy_align: alignment shift for memcpy operations |
785 | * @xor_align: alignment shift for xor operations |
786 | * @pq_align: alignment shift for pq operations |
787 | * @fill_align: alignment shift for memset operations |
788 | * @dev_id: unique device ID |
789 | * @dev: struct device reference for dma mapping api |
790 | * @owner: owner module (automatically set based on the provided dev) |
791 | * @chan_ida: unique channel ID |
792 | * @src_addr_widths: bit mask of src addr widths the device supports |
793 | * Width is specified in bytes, e.g. for a device supporting |
794 | * a width of 4 the mask should have BIT(4) set. |
795 | * @dst_addr_widths: bit mask of dst addr widths the device supports |
796 | * @directions: bit mask of slave directions the device supports. |
797 | * Since the enum dma_transfer_direction is not defined as bit flag for |
798 | * each type, the dma controller should set BIT(<TYPE>) and same |
799 | * should be checked by controller as well |
800 | * @min_burst: min burst capability per-transfer |
801 | * @max_burst: max burst capability per-transfer |
802 | * @max_sg_burst: max number of SG list entries executed in a single burst |
803 | * DMA tansaction with no software intervention for reinitialization. |
804 | * Zero value means unlimited number of entries. |
805 | * @descriptor_reuse: a submitted transfer can be resubmitted after completion |
806 | * @residue_granularity: granularity of the transfer residue reported |
807 | * by tx_status |
808 | * @device_alloc_chan_resources: allocate resources and return the |
809 | * number of allocated descriptors |
810 | * @device_router_config: optional callback for DMA router configuration |
811 | * @device_free_chan_resources: release DMA channel's resources |
812 | * @device_prep_dma_memcpy: prepares a memcpy operation |
813 | * @device_prep_dma_xor: prepares a xor operation |
814 | * @device_prep_dma_xor_val: prepares a xor validation operation |
815 | * @device_prep_dma_pq: prepares a pq operation |
816 | * @device_prep_dma_pq_val: prepares a pqzero_sum operation |
817 | * @device_prep_dma_memset: prepares a memset operation |
818 | * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list |
819 | * @device_prep_dma_interrupt: prepares an end of chain interrupt operation |
820 | * @device_prep_slave_sg: prepares a slave dma operation |
821 | * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. |
822 | * The function takes a buffer of size buf_len. The callback function will |
823 | * be called after period_len bytes have been transferred. |
824 | * @device_prep_interleaved_dma: Transfer expression in a generic way. |
825 | * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address |
826 | * @device_caps: May be used to override the generic DMA slave capabilities |
827 | * with per-channel specific ones |
828 | * @device_config: Pushes a new configuration to a channel, return 0 or an error |
829 | * code |
830 | * @device_pause: Pauses any transfer happening on a channel. Returns |
831 | * 0 or an error code |
832 | * @device_resume: Resumes any transfer on a channel previously |
833 | * paused. Returns 0 or an error code |
834 | * @device_terminate_all: Aborts all transfers on a channel. Returns 0 |
835 | * or an error code |
836 | * @device_synchronize: Synchronizes the termination of a transfers to the |
837 | * current context. |
838 | * @device_tx_status: poll for transaction completion, the optional |
839 | * txstate parameter can be supplied with a pointer to get a |
840 | * struct with auxiliary transfer status information, otherwise the call |
841 | * will just return a simple status code |
842 | * @device_issue_pending: push pending transactions to hardware |
843 | * @device_release: called sometime atfer dma_async_device_unregister() is |
844 | * called and there are no further references to this structure. This |
845 | * must be implemented to free resources however many existing drivers |
846 | * do not and are therefore not safe to unbind while in use. |
847 | * @dbg_summary_show: optional routine to show contents in debugfs; default code |
848 | * will be used when this is omitted, but custom code can show extra, |
849 | * controller specific information. |
850 | * @dbg_dev_root: the root folder in debugfs for this device |
851 | */ |
852 | struct dma_device { |
853 | struct kref ref; |
854 | unsigned int chancnt; |
855 | unsigned int privatecnt; |
856 | struct list_head channels; |
857 | struct list_head global_node; |
858 | struct dma_filter filter; |
859 | dma_cap_mask_t cap_mask; |
860 | enum dma_desc_metadata_mode desc_metadata_modes; |
861 | unsigned short max_xor; |
862 | unsigned short max_pq; |
863 | enum dmaengine_alignment copy_align; |
864 | enum dmaengine_alignment xor_align; |
865 | enum dmaengine_alignment pq_align; |
866 | enum dmaengine_alignment fill_align; |
867 | #define DMA_HAS_PQ_CONTINUE (1 << 15) |
868 | |
869 | int dev_id; |
870 | struct device *dev; |
871 | struct module *owner; |
872 | struct ida chan_ida; |
873 | |
874 | u32 src_addr_widths; |
875 | u32 dst_addr_widths; |
876 | u32 directions; |
877 | u32 min_burst; |
878 | u32 max_burst; |
879 | u32 max_sg_burst; |
880 | bool descriptor_reuse; |
881 | enum dma_residue_granularity residue_granularity; |
882 | |
883 | int (*device_alloc_chan_resources)(struct dma_chan *chan); |
884 | int (*device_router_config)(struct dma_chan *chan); |
885 | void (*device_free_chan_resources)(struct dma_chan *chan); |
886 | |
887 | struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( |
888 | struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, |
889 | size_t len, unsigned long flags); |
890 | struct dma_async_tx_descriptor *(*device_prep_dma_xor)( |
891 | struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, |
892 | unsigned int src_cnt, size_t len, unsigned long flags); |
893 | struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( |
894 | struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, |
895 | size_t len, enum sum_check_flags *result, unsigned long flags); |
896 | struct dma_async_tx_descriptor *(*device_prep_dma_pq)( |
897 | struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, |
898 | unsigned int src_cnt, const unsigned char *scf, |
899 | size_t len, unsigned long flags); |
900 | struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( |
901 | struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, |
902 | unsigned int src_cnt, const unsigned char *scf, size_t len, |
903 | enum sum_check_flags *pqres, unsigned long flags); |
904 | struct dma_async_tx_descriptor *(*device_prep_dma_memset)( |
905 | struct dma_chan *chan, dma_addr_t dest, int value, size_t len, |
906 | unsigned long flags); |
907 | struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( |
908 | struct dma_chan *chan, struct scatterlist *sg, |
909 | unsigned int nents, int value, unsigned long flags); |
910 | struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( |
911 | struct dma_chan *chan, unsigned long flags); |
912 | |
913 | struct dma_async_tx_descriptor *(*device_prep_slave_sg)( |
914 | struct dma_chan *chan, struct scatterlist *sgl, |
915 | unsigned int sg_len, enum dma_transfer_direction direction, |
916 | unsigned long flags, void *context); |
917 | struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( |
918 | struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, |
919 | size_t period_len, enum dma_transfer_direction direction, |
920 | unsigned long flags); |
921 | struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( |
922 | struct dma_chan *chan, struct dma_interleaved_template *xt, |
923 | unsigned long flags); |
924 | struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( |
925 | struct dma_chan *chan, dma_addr_t dst, u64 data, |
926 | unsigned long flags); |
927 | |
928 | void (*device_caps)(struct dma_chan *chan, struct dma_slave_caps *caps); |
929 | int (*device_config)(struct dma_chan *chan, struct dma_slave_config *config); |
930 | int (*device_pause)(struct dma_chan *chan); |
931 | int (*device_resume)(struct dma_chan *chan); |
932 | int (*device_terminate_all)(struct dma_chan *chan); |
933 | void (*device_synchronize)(struct dma_chan *chan); |
934 | |
935 | enum dma_status (*device_tx_status)(struct dma_chan *chan, |
936 | dma_cookie_t cookie, |
937 | struct dma_tx_state *txstate); |
938 | void (*device_issue_pending)(struct dma_chan *chan); |
939 | void (*device_release)(struct dma_device *dev); |
940 | /* debugfs support */ |
941 | void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev); |
942 | struct dentry *dbg_dev_root; |
943 | }; |
944 | |
945 | static inline int dmaengine_slave_config(struct dma_chan *chan, |
946 | struct dma_slave_config *config) |
947 | { |
948 | if (chan->device->device_config) |
949 | return chan->device->device_config(chan, config); |
950 | |
951 | return -ENOSYS; |
952 | } |
953 | |
954 | static inline bool is_slave_direction(enum dma_transfer_direction direction) |
955 | { |
956 | return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM) || |
957 | (direction == DMA_DEV_TO_DEV); |
958 | } |
959 | |
960 | static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( |
961 | struct dma_chan *chan, dma_addr_t buf, size_t len, |
962 | enum dma_transfer_direction dir, unsigned long flags) |
963 | { |
964 | struct scatterlist sg; |
965 | sg_init_table(&sg, 1); |
966 | sg_dma_address(&sg) = buf; |
967 | sg_dma_len(&sg) = len; |
968 | |
969 | if (!chan || !chan->device || !chan->device->device_prep_slave_sg) |
970 | return NULL; |
971 | |
972 | return chan->device->device_prep_slave_sg(chan, &sg, 1, |
973 | dir, flags, NULL); |
974 | } |
975 | |
976 | static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( |
977 | struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, |
978 | enum dma_transfer_direction dir, unsigned long flags) |
979 | { |
980 | if (!chan || !chan->device || !chan->device->device_prep_slave_sg) |
981 | return NULL; |
982 | |
983 | return chan->device->device_prep_slave_sg(chan, sgl, sg_len, |
984 | dir, flags, NULL); |
985 | } |
986 | |
987 | #ifdef CONFIG_RAPIDIO_DMA_ENGINE |
988 | struct rio_dma_ext; |
989 | static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( |
990 | struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, |
991 | enum dma_transfer_direction dir, unsigned long flags, |
992 | struct rio_dma_ext *rio_ext) |
993 | { |
994 | if (!chan || !chan->device || !chan->device->device_prep_slave_sg) |
995 | return NULL; |
996 | |
997 | return chan->device->device_prep_slave_sg(chan, sgl, sg_len, |
998 | dir, flags, rio_ext); |
999 | } |
1000 | #endif |
1001 | |
1002 | static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( |
1003 | struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, |
1004 | size_t period_len, enum dma_transfer_direction dir, |
1005 | unsigned long flags) |
1006 | { |
1007 | if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) |
1008 | return NULL; |
1009 | |
1010 | return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, |
1011 | period_len, dir, flags); |
1012 | } |
1013 | |
1014 | static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( |
1015 | struct dma_chan *chan, struct dma_interleaved_template *xt, |
1016 | unsigned long flags) |
1017 | { |
1018 | if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) |
1019 | return NULL; |
1020 | if (flags & DMA_PREP_REPEAT && |
1021 | !test_bit(DMA_REPEAT, chan->device->cap_mask.bits)) |
1022 | return NULL; |
1023 | |
1024 | return chan->device->device_prep_interleaved_dma(chan, xt, flags); |
1025 | } |
1026 | |
1027 | /** |
1028 | * dmaengine_prep_dma_memset() - Prepare a DMA memset descriptor. |
1029 | * @chan: The channel to be used for this descriptor |
1030 | * @dest: Address of buffer to be set |
1031 | * @value: Treated as a single byte value that fills the destination buffer |
1032 | * @len: The total size of dest |
1033 | * @flags: DMA engine flags |
1034 | */ |
1035 | static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( |
1036 | struct dma_chan *chan, dma_addr_t dest, int value, size_t len, |
1037 | unsigned long flags) |
1038 | { |
1039 | if (!chan || !chan->device || !chan->device->device_prep_dma_memset) |
1040 | return NULL; |
1041 | |
1042 | return chan->device->device_prep_dma_memset(chan, dest, value, |
1043 | len, flags); |
1044 | } |
1045 | |
1046 | static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( |
1047 | struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, |
1048 | size_t len, unsigned long flags) |
1049 | { |
1050 | if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) |
1051 | return NULL; |
1052 | |
1053 | return chan->device->device_prep_dma_memcpy(chan, dest, src, |
1054 | len, flags); |
1055 | } |
1056 | |
1057 | static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan, |
1058 | enum dma_desc_metadata_mode mode) |
1059 | { |
1060 | if (!chan) |
1061 | return false; |
1062 | |
1063 | return !!(chan->device->desc_metadata_modes & mode); |
1064 | } |
1065 | |
1066 | #ifdef CONFIG_DMA_ENGINE |
1067 | int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, |
1068 | void *data, size_t len); |
1069 | void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, |
1070 | size_t *payload_len, size_t *max_len); |
1071 | int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, |
1072 | size_t payload_len); |
1073 | #else /* CONFIG_DMA_ENGINE */ |
1074 | static inline int dmaengine_desc_attach_metadata( |
1075 | struct dma_async_tx_descriptor *desc, void *data, size_t len) |
1076 | { |
1077 | return -EINVAL; |
1078 | } |
1079 | static inline void *dmaengine_desc_get_metadata_ptr( |
1080 | struct dma_async_tx_descriptor *desc, size_t *payload_len, |
1081 | size_t *max_len) |
1082 | { |
1083 | return NULL; |
1084 | } |
1085 | static inline int dmaengine_desc_set_metadata_len( |
1086 | struct dma_async_tx_descriptor *desc, size_t payload_len) |
1087 | { |
1088 | return -EINVAL; |
1089 | } |
1090 | #endif /* CONFIG_DMA_ENGINE */ |
1091 | |
1092 | /** |
1093 | * dmaengine_terminate_all() - Terminate all active DMA transfers |
1094 | * @chan: The channel for which to terminate the transfers |
1095 | * |
1096 | * This function is DEPRECATED use either dmaengine_terminate_sync() or |
1097 | * dmaengine_terminate_async() instead. |
1098 | */ |
1099 | static inline int dmaengine_terminate_all(struct dma_chan *chan) |
1100 | { |
1101 | if (chan->device->device_terminate_all) |
1102 | return chan->device->device_terminate_all(chan); |
1103 | |
1104 | return -ENOSYS; |
1105 | } |
1106 | |
1107 | /** |
1108 | * dmaengine_terminate_async() - Terminate all active DMA transfers |
1109 | * @chan: The channel for which to terminate the transfers |
1110 | * |
1111 | * Calling this function will terminate all active and pending descriptors |
1112 | * that have previously been submitted to the channel. It is not guaranteed |
1113 | * though that the transfer for the active descriptor has stopped when the |
1114 | * function returns. Furthermore it is possible the complete callback of a |
1115 | * submitted transfer is still running when this function returns. |
1116 | * |
1117 | * dmaengine_synchronize() needs to be called before it is safe to free |
1118 | * any memory that is accessed by previously submitted descriptors or before |
1119 | * freeing any resources accessed from within the completion callback of any |
1120 | * previously submitted descriptors. |
1121 | * |
1122 | * This function can be called from atomic context as well as from within a |
1123 | * complete callback of a descriptor submitted on the same channel. |
1124 | * |
1125 | * If none of the two conditions above apply consider using |
1126 | * dmaengine_terminate_sync() instead. |
1127 | */ |
1128 | static inline int dmaengine_terminate_async(struct dma_chan *chan) |
1129 | { |
1130 | if (chan->device->device_terminate_all) |
1131 | return chan->device->device_terminate_all(chan); |
1132 | |
1133 | return -EINVAL; |
1134 | } |
1135 | |
1136 | /** |
1137 | * dmaengine_synchronize() - Synchronize DMA channel termination |
1138 | * @chan: The channel to synchronize |
1139 | * |
1140 | * Synchronizes to the DMA channel termination to the current context. When this |
1141 | * function returns it is guaranteed that all transfers for previously issued |
1142 | * descriptors have stopped and it is safe to free the memory associated |
1143 | * with them. Furthermore it is guaranteed that all complete callback functions |
1144 | * for a previously submitted descriptor have finished running and it is safe to |
1145 | * free resources accessed from within the complete callbacks. |
1146 | * |
1147 | * The behavior of this function is undefined if dma_async_issue_pending() has |
1148 | * been called between dmaengine_terminate_async() and this function. |
1149 | * |
1150 | * This function must only be called from non-atomic context and must not be |
1151 | * called from within a complete callback of a descriptor submitted on the same |
1152 | * channel. |
1153 | */ |
1154 | static inline void dmaengine_synchronize(struct dma_chan *chan) |
1155 | { |
1156 | might_sleep(); |
1157 | |
1158 | if (chan->device->device_synchronize) |
1159 | chan->device->device_synchronize(chan); |
1160 | } |
1161 | |
1162 | /** |
1163 | * dmaengine_terminate_sync() - Terminate all active DMA transfers |
1164 | * @chan: The channel for which to terminate the transfers |
1165 | * |
1166 | * Calling this function will terminate all active and pending transfers |
1167 | * that have previously been submitted to the channel. It is similar to |
1168 | * dmaengine_terminate_async() but guarantees that the DMA transfer has actually |
1169 | * stopped and that all complete callbacks have finished running when the |
1170 | * function returns. |
1171 | * |
1172 | * This function must only be called from non-atomic context and must not be |
1173 | * called from within a complete callback of a descriptor submitted on the same |
1174 | * channel. |
1175 | */ |
1176 | static inline int dmaengine_terminate_sync(struct dma_chan *chan) |
1177 | { |
1178 | int ret; |
1179 | |
1180 | ret = dmaengine_terminate_async(chan); |
1181 | if (ret) |
1182 | return ret; |
1183 | |
1184 | dmaengine_synchronize(chan); |
1185 | |
1186 | return 0; |
1187 | } |
1188 | |
1189 | static inline int dmaengine_pause(struct dma_chan *chan) |
1190 | { |
1191 | if (chan->device->device_pause) |
1192 | return chan->device->device_pause(chan); |
1193 | |
1194 | return -ENOSYS; |
1195 | } |
1196 | |
1197 | static inline int dmaengine_resume(struct dma_chan *chan) |
1198 | { |
1199 | if (chan->device->device_resume) |
1200 | return chan->device->device_resume(chan); |
1201 | |
1202 | return -ENOSYS; |
1203 | } |
1204 | |
1205 | static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, |
1206 | dma_cookie_t cookie, struct dma_tx_state *state) |
1207 | { |
1208 | return chan->device->device_tx_status(chan, cookie, state); |
1209 | } |
1210 | |
1211 | static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) |
1212 | { |
1213 | return desc->tx_submit(desc); |
1214 | } |
1215 | |
1216 | static inline bool dmaengine_check_align(enum dmaengine_alignment align, |
1217 | size_t off1, size_t off2, size_t len) |
1218 | { |
1219 | return !(((1 << align) - 1) & (off1 | off2 | len)); |
1220 | } |
1221 | |
1222 | static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, |
1223 | size_t off2, size_t len) |
1224 | { |
1225 | return dmaengine_check_align(align: dev->copy_align, off1, off2, len); |
1226 | } |
1227 | |
1228 | static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, |
1229 | size_t off2, size_t len) |
1230 | { |
1231 | return dmaengine_check_align(align: dev->xor_align, off1, off2, len); |
1232 | } |
1233 | |
1234 | static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, |
1235 | size_t off2, size_t len) |
1236 | { |
1237 | return dmaengine_check_align(align: dev->pq_align, off1, off2, len); |
1238 | } |
1239 | |
1240 | static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, |
1241 | size_t off2, size_t len) |
1242 | { |
1243 | return dmaengine_check_align(align: dev->fill_align, off1, off2, len); |
1244 | } |
1245 | |
1246 | static inline void |
1247 | dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) |
1248 | { |
1249 | dma->max_pq = maxpq; |
1250 | if (has_pq_continue) |
1251 | dma->max_pq |= DMA_HAS_PQ_CONTINUE; |
1252 | } |
1253 | |
1254 | static inline bool dmaf_continue(enum dma_ctrl_flags flags) |
1255 | { |
1256 | return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; |
1257 | } |
1258 | |
1259 | static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) |
1260 | { |
1261 | enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; |
1262 | |
1263 | return (flags & mask) == mask; |
1264 | } |
1265 | |
1266 | static inline bool dma_dev_has_pq_continue(struct dma_device *dma) |
1267 | { |
1268 | return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; |
1269 | } |
1270 | |
1271 | static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) |
1272 | { |
1273 | return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; |
1274 | } |
1275 | |
1276 | /* dma_maxpq - reduce maxpq in the face of continued operations |
1277 | * @dma - dma device with PQ capability |
1278 | * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set |
1279 | * |
1280 | * When an engine does not support native continuation we need 3 extra |
1281 | * source slots to reuse P and Q with the following coefficients: |
1282 | * 1/ {00} * P : remove P from Q', but use it as a source for P' |
1283 | * 2/ {01} * Q : use Q to continue Q' calculation |
1284 | * 3/ {00} * Q : subtract Q from P' to cancel (2) |
1285 | * |
1286 | * In the case where P is disabled we only need 1 extra source: |
1287 | * 1/ {01} * Q : use Q to continue Q' calculation |
1288 | */ |
1289 | static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) |
1290 | { |
1291 | if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) |
1292 | return dma_dev_to_maxpq(dma); |
1293 | if (dmaf_p_disabled_continue(flags)) |
1294 | return dma_dev_to_maxpq(dma) - 1; |
1295 | if (dmaf_continue(flags)) |
1296 | return dma_dev_to_maxpq(dma) - 3; |
1297 | BUG(); |
1298 | } |
1299 | |
1300 | static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, |
1301 | size_t dir_icg) |
1302 | { |
1303 | if (inc) { |
1304 | if (dir_icg) |
1305 | return dir_icg; |
1306 | if (sgl) |
1307 | return icg; |
1308 | } |
1309 | |
1310 | return 0; |
1311 | } |
1312 | |
1313 | static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, |
1314 | struct data_chunk *chunk) |
1315 | { |
1316 | return dmaengine_get_icg(inc: xt->dst_inc, sgl: xt->dst_sgl, |
1317 | icg: chunk->icg, dir_icg: chunk->dst_icg); |
1318 | } |
1319 | |
1320 | static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, |
1321 | struct data_chunk *chunk) |
1322 | { |
1323 | return dmaengine_get_icg(inc: xt->src_inc, sgl: xt->src_sgl, |
1324 | icg: chunk->icg, dir_icg: chunk->src_icg); |
1325 | } |
1326 | |
1327 | /* --- public DMA engine API --- */ |
1328 | |
1329 | #ifdef CONFIG_DMA_ENGINE |
1330 | void dmaengine_get(void); |
1331 | void dmaengine_put(void); |
1332 | #else |
1333 | static inline void dmaengine_get(void) |
1334 | { |
1335 | } |
1336 | static inline void dmaengine_put(void) |
1337 | { |
1338 | } |
1339 | #endif |
1340 | |
1341 | #ifdef CONFIG_ASYNC_TX_DMA |
1342 | #define async_dmaengine_get() dmaengine_get() |
1343 | #define async_dmaengine_put() dmaengine_put() |
1344 | #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH |
1345 | #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) |
1346 | #else |
1347 | #define async_dma_find_channel(type) dma_find_channel(type) |
1348 | #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ |
1349 | #else |
1350 | static inline void async_dmaengine_get(void) |
1351 | { |
1352 | } |
1353 | static inline void async_dmaengine_put(void) |
1354 | { |
1355 | } |
1356 | static inline struct dma_chan * |
1357 | async_dma_find_channel(enum dma_transaction_type type) |
1358 | { |
1359 | return NULL; |
1360 | } |
1361 | #endif /* CONFIG_ASYNC_TX_DMA */ |
1362 | void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, |
1363 | struct dma_chan *chan); |
1364 | |
1365 | static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) |
1366 | { |
1367 | tx->flags |= DMA_CTRL_ACK; |
1368 | } |
1369 | |
1370 | static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) |
1371 | { |
1372 | tx->flags &= ~DMA_CTRL_ACK; |
1373 | } |
1374 | |
1375 | static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) |
1376 | { |
1377 | return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; |
1378 | } |
1379 | |
1380 | #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) |
1381 | static inline void |
1382 | __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) |
1383 | { |
1384 | set_bit(nr: tx_type, addr: dstp->bits); |
1385 | } |
1386 | |
1387 | #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) |
1388 | static inline void |
1389 | __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) |
1390 | { |
1391 | clear_bit(nr: tx_type, addr: dstp->bits); |
1392 | } |
1393 | |
1394 | #define dma_cap_zero(mask) __dma_cap_zero(&(mask)) |
1395 | static inline void __dma_cap_zero(dma_cap_mask_t *dstp) |
1396 | { |
1397 | bitmap_zero(dst: dstp->bits, nbits: DMA_TX_TYPE_END); |
1398 | } |
1399 | |
1400 | #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) |
1401 | static inline int |
1402 | __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) |
1403 | { |
1404 | return test_bit(tx_type, srcp->bits); |
1405 | } |
1406 | |
1407 | #define for_each_dma_cap_mask(cap, mask) \ |
1408 | for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) |
1409 | |
1410 | /** |
1411 | * dma_async_issue_pending - flush pending transactions to HW |
1412 | * @chan: target DMA channel |
1413 | * |
1414 | * This allows drivers to push copies to HW in batches, |
1415 | * reducing MMIO writes where possible. |
1416 | */ |
1417 | static inline void dma_async_issue_pending(struct dma_chan *chan) |
1418 | { |
1419 | chan->device->device_issue_pending(chan); |
1420 | } |
1421 | |
1422 | /** |
1423 | * dma_async_is_tx_complete - poll for transaction completion |
1424 | * @chan: DMA channel |
1425 | * @cookie: transaction identifier to check status of |
1426 | * @last: returns last completed cookie, can be NULL |
1427 | * @used: returns last issued cookie, can be NULL |
1428 | * |
1429 | * If @last and @used are passed in, upon return they reflect the driver |
1430 | * internal state and can be used with dma_async_is_complete() to check |
1431 | * the status of multiple cookies without re-checking hardware state. |
1432 | */ |
1433 | static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, |
1434 | dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) |
1435 | { |
1436 | struct dma_tx_state state; |
1437 | enum dma_status status; |
1438 | |
1439 | status = chan->device->device_tx_status(chan, cookie, &state); |
1440 | if (last) |
1441 | *last = state.last; |
1442 | if (used) |
1443 | *used = state.used; |
1444 | return status; |
1445 | } |
1446 | |
1447 | /** |
1448 | * dma_async_is_complete - test a cookie against chan state |
1449 | * @cookie: transaction identifier to test status of |
1450 | * @last_complete: last know completed transaction |
1451 | * @last_used: last cookie value handed out |
1452 | * |
1453 | * dma_async_is_complete() is used in dma_async_is_tx_complete() |
1454 | * the test logic is separated for lightweight testing of multiple cookies |
1455 | */ |
1456 | static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, |
1457 | dma_cookie_t last_complete, dma_cookie_t last_used) |
1458 | { |
1459 | if (last_complete <= last_used) { |
1460 | if ((cookie <= last_complete) || (cookie > last_used)) |
1461 | return DMA_COMPLETE; |
1462 | } else { |
1463 | if ((cookie <= last_complete) && (cookie > last_used)) |
1464 | return DMA_COMPLETE; |
1465 | } |
1466 | return DMA_IN_PROGRESS; |
1467 | } |
1468 | |
1469 | static inline void |
1470 | dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) |
1471 | { |
1472 | if (!st) |
1473 | return; |
1474 | |
1475 | st->last = last; |
1476 | st->used = used; |
1477 | st->residue = residue; |
1478 | } |
1479 | |
1480 | #ifdef CONFIG_DMA_ENGINE |
1481 | struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); |
1482 | enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); |
1483 | enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); |
1484 | void dma_issue_pending_all(void); |
1485 | struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, |
1486 | dma_filter_fn fn, void *fn_param, |
1487 | struct device_node *np); |
1488 | |
1489 | struct dma_chan *dma_request_chan(struct device *dev, const char *name); |
1490 | struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); |
1491 | |
1492 | void dma_release_channel(struct dma_chan *chan); |
1493 | int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); |
1494 | #else |
1495 | static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) |
1496 | { |
1497 | return NULL; |
1498 | } |
1499 | static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) |
1500 | { |
1501 | return DMA_COMPLETE; |
1502 | } |
1503 | static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) |
1504 | { |
1505 | return DMA_COMPLETE; |
1506 | } |
1507 | static inline void dma_issue_pending_all(void) |
1508 | { |
1509 | } |
1510 | static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, |
1511 | dma_filter_fn fn, |
1512 | void *fn_param, |
1513 | struct device_node *np) |
1514 | { |
1515 | return NULL; |
1516 | } |
1517 | static inline struct dma_chan *dma_request_chan(struct device *dev, |
1518 | const char *name) |
1519 | { |
1520 | return ERR_PTR(-ENODEV); |
1521 | } |
1522 | static inline struct dma_chan *dma_request_chan_by_mask( |
1523 | const dma_cap_mask_t *mask) |
1524 | { |
1525 | return ERR_PTR(-ENODEV); |
1526 | } |
1527 | static inline void dma_release_channel(struct dma_chan *chan) |
1528 | { |
1529 | } |
1530 | static inline int dma_get_slave_caps(struct dma_chan *chan, |
1531 | struct dma_slave_caps *caps) |
1532 | { |
1533 | return -ENXIO; |
1534 | } |
1535 | #endif |
1536 | |
1537 | static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) |
1538 | { |
1539 | struct dma_slave_caps caps; |
1540 | int ret; |
1541 | |
1542 | ret = dma_get_slave_caps(chan: tx->chan, caps: &caps); |
1543 | if (ret) |
1544 | return ret; |
1545 | |
1546 | if (!caps.descriptor_reuse) |
1547 | return -EPERM; |
1548 | |
1549 | tx->flags |= DMA_CTRL_REUSE; |
1550 | return 0; |
1551 | } |
1552 | |
1553 | static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) |
1554 | { |
1555 | tx->flags &= ~DMA_CTRL_REUSE; |
1556 | } |
1557 | |
1558 | static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) |
1559 | { |
1560 | return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; |
1561 | } |
1562 | |
1563 | static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) |
1564 | { |
1565 | /* this is supported for reusable desc, so check that */ |
1566 | if (!dmaengine_desc_test_reuse(tx: desc)) |
1567 | return -EPERM; |
1568 | |
1569 | return desc->desc_free(desc); |
1570 | } |
1571 | |
1572 | /* --- DMA device --- */ |
1573 | |
1574 | int dma_async_device_register(struct dma_device *device); |
1575 | int dmaenginem_async_device_register(struct dma_device *device); |
1576 | void dma_async_device_unregister(struct dma_device *device); |
1577 | int dma_async_device_channel_register(struct dma_device *device, |
1578 | struct dma_chan *chan); |
1579 | void dma_async_device_channel_unregister(struct dma_device *device, |
1580 | struct dma_chan *chan); |
1581 | void dma_run_dependencies(struct dma_async_tx_descriptor *tx); |
1582 | #define dma_request_channel(mask, x, y) \ |
1583 | __dma_request_channel(&(mask), x, y, NULL) |
1584 | |
1585 | /* Deprecated, please use dma_request_chan() directly */ |
1586 | static inline struct dma_chan * __deprecated |
1587 | dma_request_slave_channel(struct device *dev, const char *name) |
1588 | { |
1589 | struct dma_chan *ch = dma_request_chan(dev, name); |
1590 | |
1591 | return IS_ERR(ptr: ch) ? NULL : ch; |
1592 | } |
1593 | |
1594 | static inline struct dma_chan |
1595 | *dma_request_slave_channel_compat(const dma_cap_mask_t mask, |
1596 | dma_filter_fn fn, void *fn_param, |
1597 | struct device *dev, const char *name) |
1598 | { |
1599 | struct dma_chan *chan; |
1600 | |
1601 | chan = dma_request_slave_channel(dev, name); |
1602 | if (chan) |
1603 | return chan; |
1604 | |
1605 | if (!fn || !fn_param) |
1606 | return NULL; |
1607 | |
1608 | return __dma_request_channel(mask: &mask, fn, fn_param, NULL); |
1609 | } |
1610 | |
1611 | static inline char * |
1612 | dmaengine_get_direction_text(enum dma_transfer_direction dir) |
1613 | { |
1614 | switch (dir) { |
1615 | case DMA_DEV_TO_MEM: |
1616 | return "DEV_TO_MEM" ; |
1617 | case DMA_MEM_TO_DEV: |
1618 | return "MEM_TO_DEV" ; |
1619 | case DMA_MEM_TO_MEM: |
1620 | return "MEM_TO_MEM" ; |
1621 | case DMA_DEV_TO_DEV: |
1622 | return "DEV_TO_DEV" ; |
1623 | default: |
1624 | return "invalid" ; |
1625 | } |
1626 | } |
1627 | |
1628 | static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan) |
1629 | { |
1630 | if (chan->dev->chan_dma_dev) |
1631 | return &chan->dev->device; |
1632 | |
1633 | return chan->device->dev; |
1634 | } |
1635 | |
1636 | #endif /* DMAENGINE_H */ |
1637 | |