1 | /* SPDX-License-Identifier: GPL-2.0 */ |
2 | /* |
3 | * Linux Socket Filter Data Structures |
4 | */ |
5 | #ifndef __LINUX_FILTER_H__ |
6 | #define __LINUX_FILTER_H__ |
7 | |
8 | #include <linux/atomic.h> |
9 | #include <linux/bpf.h> |
10 | #include <linux/refcount.h> |
11 | #include <linux/compat.h> |
12 | #include <linux/skbuff.h> |
13 | #include <linux/linkage.h> |
14 | #include <linux/printk.h> |
15 | #include <linux/workqueue.h> |
16 | #include <linux/sched.h> |
17 | #include <linux/capability.h> |
18 | #include <linux/set_memory.h> |
19 | #include <linux/kallsyms.h> |
20 | #include <linux/if_vlan.h> |
21 | #include <linux/vmalloc.h> |
22 | #include <linux/sockptr.h> |
23 | #include <crypto/sha1.h> |
24 | #include <linux/u64_stats_sync.h> |
25 | |
26 | #include <net/sch_generic.h> |
27 | |
28 | #include <asm/byteorder.h> |
29 | #include <uapi/linux/filter.h> |
30 | |
31 | struct sk_buff; |
32 | struct sock; |
33 | struct seccomp_data; |
34 | struct bpf_prog_aux; |
35 | struct xdp_rxq_info; |
36 | struct xdp_buff; |
37 | struct sock_reuseport; |
38 | struct ctl_table; |
39 | struct ; |
40 | |
41 | /* ArgX, context and stack frame pointer register positions. Note, |
42 | * Arg1, Arg2, Arg3, etc are used as argument mappings of function |
43 | * calls in BPF_CALL instruction. |
44 | */ |
45 | #define BPF_REG_ARG1 BPF_REG_1 |
46 | #define BPF_REG_ARG2 BPF_REG_2 |
47 | #define BPF_REG_ARG3 BPF_REG_3 |
48 | #define BPF_REG_ARG4 BPF_REG_4 |
49 | #define BPF_REG_ARG5 BPF_REG_5 |
50 | #define BPF_REG_CTX BPF_REG_6 |
51 | #define BPF_REG_FP BPF_REG_10 |
52 | |
53 | /* Additional register mappings for converted user programs. */ |
54 | #define BPF_REG_A BPF_REG_0 |
55 | #define BPF_REG_X BPF_REG_7 |
56 | #define BPF_REG_TMP BPF_REG_2 /* scratch reg */ |
57 | #define BPF_REG_D BPF_REG_8 /* data, callee-saved */ |
58 | #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ |
59 | |
60 | /* Kernel hidden auxiliary/helper register. */ |
61 | #define BPF_REG_AX MAX_BPF_REG |
62 | #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) |
63 | #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG |
64 | |
65 | /* unused opcode to mark special call to bpf_tail_call() helper */ |
66 | #define BPF_TAIL_CALL 0xf0 |
67 | |
68 | /* unused opcode to mark special load instruction. Same as BPF_ABS */ |
69 | #define BPF_PROBE_MEM 0x20 |
70 | |
71 | /* unused opcode to mark call to interpreter with arguments */ |
72 | #define BPF_CALL_ARGS 0xe0 |
73 | |
74 | /* unused opcode to mark speculation barrier for mitigating |
75 | * Speculative Store Bypass |
76 | */ |
77 | #define BPF_NOSPEC 0xc0 |
78 | |
79 | /* As per nm, we expose JITed images as text (code) section for |
80 | * kallsyms. That way, tools like perf can find it to match |
81 | * addresses. |
82 | */ |
83 | #define BPF_SYM_ELF_TYPE 't' |
84 | |
85 | /* BPF program can access up to 512 bytes of stack space. */ |
86 | #define MAX_BPF_STACK 512 |
87 | |
88 | /* Helper macros for filter block array initializers. */ |
89 | |
90 | /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ |
91 | |
92 | #define BPF_ALU64_REG(OP, DST, SRC) \ |
93 | ((struct bpf_insn) { \ |
94 | .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ |
95 | .dst_reg = DST, \ |
96 | .src_reg = SRC, \ |
97 | .off = 0, \ |
98 | .imm = 0 }) |
99 | |
100 | #define BPF_ALU32_REG(OP, DST, SRC) \ |
101 | ((struct bpf_insn) { \ |
102 | .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ |
103 | .dst_reg = DST, \ |
104 | .src_reg = SRC, \ |
105 | .off = 0, \ |
106 | .imm = 0 }) |
107 | |
108 | /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ |
109 | |
110 | #define BPF_ALU64_IMM(OP, DST, IMM) \ |
111 | ((struct bpf_insn) { \ |
112 | .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ |
113 | .dst_reg = DST, \ |
114 | .src_reg = 0, \ |
115 | .off = 0, \ |
116 | .imm = IMM }) |
117 | |
118 | #define BPF_ALU32_IMM(OP, DST, IMM) \ |
119 | ((struct bpf_insn) { \ |
120 | .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ |
121 | .dst_reg = DST, \ |
122 | .src_reg = 0, \ |
123 | .off = 0, \ |
124 | .imm = IMM }) |
125 | |
126 | /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ |
127 | |
128 | #define BPF_ENDIAN(TYPE, DST, LEN) \ |
129 | ((struct bpf_insn) { \ |
130 | .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ |
131 | .dst_reg = DST, \ |
132 | .src_reg = 0, \ |
133 | .off = 0, \ |
134 | .imm = LEN }) |
135 | |
136 | /* Short form of mov, dst_reg = src_reg */ |
137 | |
138 | #define BPF_MOV64_REG(DST, SRC) \ |
139 | ((struct bpf_insn) { \ |
140 | .code = BPF_ALU64 | BPF_MOV | BPF_X, \ |
141 | .dst_reg = DST, \ |
142 | .src_reg = SRC, \ |
143 | .off = 0, \ |
144 | .imm = 0 }) |
145 | |
146 | #define BPF_MOV32_REG(DST, SRC) \ |
147 | ((struct bpf_insn) { \ |
148 | .code = BPF_ALU | BPF_MOV | BPF_X, \ |
149 | .dst_reg = DST, \ |
150 | .src_reg = SRC, \ |
151 | .off = 0, \ |
152 | .imm = 0 }) |
153 | |
154 | /* Short form of mov, dst_reg = imm32 */ |
155 | |
156 | #define BPF_MOV64_IMM(DST, IMM) \ |
157 | ((struct bpf_insn) { \ |
158 | .code = BPF_ALU64 | BPF_MOV | BPF_K, \ |
159 | .dst_reg = DST, \ |
160 | .src_reg = 0, \ |
161 | .off = 0, \ |
162 | .imm = IMM }) |
163 | |
164 | #define BPF_MOV32_IMM(DST, IMM) \ |
165 | ((struct bpf_insn) { \ |
166 | .code = BPF_ALU | BPF_MOV | BPF_K, \ |
167 | .dst_reg = DST, \ |
168 | .src_reg = 0, \ |
169 | .off = 0, \ |
170 | .imm = IMM }) |
171 | |
172 | /* Special form of mov32, used for doing explicit zero extension on dst. */ |
173 | #define BPF_ZEXT_REG(DST) \ |
174 | ((struct bpf_insn) { \ |
175 | .code = BPF_ALU | BPF_MOV | BPF_X, \ |
176 | .dst_reg = DST, \ |
177 | .src_reg = DST, \ |
178 | .off = 0, \ |
179 | .imm = 1 }) |
180 | |
181 | static inline bool insn_is_zext(const struct bpf_insn *insn) |
182 | { |
183 | return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; |
184 | } |
185 | |
186 | /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ |
187 | #define BPF_LD_IMM64(DST, IMM) \ |
188 | BPF_LD_IMM64_RAW(DST, 0, IMM) |
189 | |
190 | #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ |
191 | ((struct bpf_insn) { \ |
192 | .code = BPF_LD | BPF_DW | BPF_IMM, \ |
193 | .dst_reg = DST, \ |
194 | .src_reg = SRC, \ |
195 | .off = 0, \ |
196 | .imm = (__u32) (IMM) }), \ |
197 | ((struct bpf_insn) { \ |
198 | .code = 0, /* zero is reserved opcode */ \ |
199 | .dst_reg = 0, \ |
200 | .src_reg = 0, \ |
201 | .off = 0, \ |
202 | .imm = ((__u64) (IMM)) >> 32 }) |
203 | |
204 | /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ |
205 | #define BPF_LD_MAP_FD(DST, MAP_FD) \ |
206 | BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) |
207 | |
208 | /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ |
209 | |
210 | #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ |
211 | ((struct bpf_insn) { \ |
212 | .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ |
213 | .dst_reg = DST, \ |
214 | .src_reg = SRC, \ |
215 | .off = 0, \ |
216 | .imm = IMM }) |
217 | |
218 | #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ |
219 | ((struct bpf_insn) { \ |
220 | .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ |
221 | .dst_reg = DST, \ |
222 | .src_reg = SRC, \ |
223 | .off = 0, \ |
224 | .imm = IMM }) |
225 | |
226 | /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ |
227 | |
228 | #define BPF_LD_ABS(SIZE, IMM) \ |
229 | ((struct bpf_insn) { \ |
230 | .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ |
231 | .dst_reg = 0, \ |
232 | .src_reg = 0, \ |
233 | .off = 0, \ |
234 | .imm = IMM }) |
235 | |
236 | /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ |
237 | |
238 | #define BPF_LD_IND(SIZE, SRC, IMM) \ |
239 | ((struct bpf_insn) { \ |
240 | .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ |
241 | .dst_reg = 0, \ |
242 | .src_reg = SRC, \ |
243 | .off = 0, \ |
244 | .imm = IMM }) |
245 | |
246 | /* Memory load, dst_reg = *(uint *) (src_reg + off16) */ |
247 | |
248 | #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ |
249 | ((struct bpf_insn) { \ |
250 | .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ |
251 | .dst_reg = DST, \ |
252 | .src_reg = SRC, \ |
253 | .off = OFF, \ |
254 | .imm = 0 }) |
255 | |
256 | /* Memory store, *(uint *) (dst_reg + off16) = src_reg */ |
257 | |
258 | #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ |
259 | ((struct bpf_insn) { \ |
260 | .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ |
261 | .dst_reg = DST, \ |
262 | .src_reg = SRC, \ |
263 | .off = OFF, \ |
264 | .imm = 0 }) |
265 | |
266 | |
267 | /* |
268 | * Atomic operations: |
269 | * |
270 | * BPF_ADD *(uint *) (dst_reg + off16) += src_reg |
271 | * BPF_AND *(uint *) (dst_reg + off16) &= src_reg |
272 | * BPF_OR *(uint *) (dst_reg + off16) |= src_reg |
273 | * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg |
274 | * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); |
275 | * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); |
276 | * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); |
277 | * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); |
278 | * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) |
279 | * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) |
280 | */ |
281 | |
282 | #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ |
283 | ((struct bpf_insn) { \ |
284 | .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ |
285 | .dst_reg = DST, \ |
286 | .src_reg = SRC, \ |
287 | .off = OFF, \ |
288 | .imm = OP }) |
289 | |
290 | /* Legacy alias */ |
291 | #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) |
292 | |
293 | /* Memory store, *(uint *) (dst_reg + off16) = imm32 */ |
294 | |
295 | #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ |
296 | ((struct bpf_insn) { \ |
297 | .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ |
298 | .dst_reg = DST, \ |
299 | .src_reg = 0, \ |
300 | .off = OFF, \ |
301 | .imm = IMM }) |
302 | |
303 | /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ |
304 | |
305 | #define BPF_JMP_REG(OP, DST, SRC, OFF) \ |
306 | ((struct bpf_insn) { \ |
307 | .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ |
308 | .dst_reg = DST, \ |
309 | .src_reg = SRC, \ |
310 | .off = OFF, \ |
311 | .imm = 0 }) |
312 | |
313 | /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ |
314 | |
315 | #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ |
316 | ((struct bpf_insn) { \ |
317 | .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ |
318 | .dst_reg = DST, \ |
319 | .src_reg = 0, \ |
320 | .off = OFF, \ |
321 | .imm = IMM }) |
322 | |
323 | /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ |
324 | |
325 | #define BPF_JMP32_REG(OP, DST, SRC, OFF) \ |
326 | ((struct bpf_insn) { \ |
327 | .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ |
328 | .dst_reg = DST, \ |
329 | .src_reg = SRC, \ |
330 | .off = OFF, \ |
331 | .imm = 0 }) |
332 | |
333 | /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ |
334 | |
335 | #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ |
336 | ((struct bpf_insn) { \ |
337 | .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ |
338 | .dst_reg = DST, \ |
339 | .src_reg = 0, \ |
340 | .off = OFF, \ |
341 | .imm = IMM }) |
342 | |
343 | /* Unconditional jumps, goto pc + off16 */ |
344 | |
345 | #define BPF_JMP_A(OFF) \ |
346 | ((struct bpf_insn) { \ |
347 | .code = BPF_JMP | BPF_JA, \ |
348 | .dst_reg = 0, \ |
349 | .src_reg = 0, \ |
350 | .off = OFF, \ |
351 | .imm = 0 }) |
352 | |
353 | /* Relative call */ |
354 | |
355 | #define BPF_CALL_REL(TGT) \ |
356 | ((struct bpf_insn) { \ |
357 | .code = BPF_JMP | BPF_CALL, \ |
358 | .dst_reg = 0, \ |
359 | .src_reg = BPF_PSEUDO_CALL, \ |
360 | .off = 0, \ |
361 | .imm = TGT }) |
362 | |
363 | /* Convert function address to BPF immediate */ |
364 | |
365 | #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base) |
366 | |
367 | #define BPF_EMIT_CALL(FUNC) \ |
368 | ((struct bpf_insn) { \ |
369 | .code = BPF_JMP | BPF_CALL, \ |
370 | .dst_reg = 0, \ |
371 | .src_reg = 0, \ |
372 | .off = 0, \ |
373 | .imm = BPF_CALL_IMM(FUNC) }) |
374 | |
375 | /* Raw code statement block */ |
376 | |
377 | #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ |
378 | ((struct bpf_insn) { \ |
379 | .code = CODE, \ |
380 | .dst_reg = DST, \ |
381 | .src_reg = SRC, \ |
382 | .off = OFF, \ |
383 | .imm = IMM }) |
384 | |
385 | /* Program exit */ |
386 | |
387 | #define BPF_EXIT_INSN() \ |
388 | ((struct bpf_insn) { \ |
389 | .code = BPF_JMP | BPF_EXIT, \ |
390 | .dst_reg = 0, \ |
391 | .src_reg = 0, \ |
392 | .off = 0, \ |
393 | .imm = 0 }) |
394 | |
395 | /* Speculation barrier */ |
396 | |
397 | #define BPF_ST_NOSPEC() \ |
398 | ((struct bpf_insn) { \ |
399 | .code = BPF_ST | BPF_NOSPEC, \ |
400 | .dst_reg = 0, \ |
401 | .src_reg = 0, \ |
402 | .off = 0, \ |
403 | .imm = 0 }) |
404 | |
405 | /* Internal classic blocks for direct assignment */ |
406 | |
407 | #define __BPF_STMT(CODE, K) \ |
408 | ((struct sock_filter) BPF_STMT(CODE, K)) |
409 | |
410 | #define __BPF_JUMP(CODE, K, JT, JF) \ |
411 | ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) |
412 | |
413 | #define bytes_to_bpf_size(bytes) \ |
414 | ({ \ |
415 | int bpf_size = -EINVAL; \ |
416 | \ |
417 | if (bytes == sizeof(u8)) \ |
418 | bpf_size = BPF_B; \ |
419 | else if (bytes == sizeof(u16)) \ |
420 | bpf_size = BPF_H; \ |
421 | else if (bytes == sizeof(u32)) \ |
422 | bpf_size = BPF_W; \ |
423 | else if (bytes == sizeof(u64)) \ |
424 | bpf_size = BPF_DW; \ |
425 | \ |
426 | bpf_size; \ |
427 | }) |
428 | |
429 | #define bpf_size_to_bytes(bpf_size) \ |
430 | ({ \ |
431 | int bytes = -EINVAL; \ |
432 | \ |
433 | if (bpf_size == BPF_B) \ |
434 | bytes = sizeof(u8); \ |
435 | else if (bpf_size == BPF_H) \ |
436 | bytes = sizeof(u16); \ |
437 | else if (bpf_size == BPF_W) \ |
438 | bytes = sizeof(u32); \ |
439 | else if (bpf_size == BPF_DW) \ |
440 | bytes = sizeof(u64); \ |
441 | \ |
442 | bytes; \ |
443 | }) |
444 | |
445 | #define BPF_SIZEOF(type) \ |
446 | ({ \ |
447 | const int __size = bytes_to_bpf_size(sizeof(type)); \ |
448 | BUILD_BUG_ON(__size < 0); \ |
449 | __size; \ |
450 | }) |
451 | |
452 | #define BPF_FIELD_SIZEOF(type, field) \ |
453 | ({ \ |
454 | const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ |
455 | BUILD_BUG_ON(__size < 0); \ |
456 | __size; \ |
457 | }) |
458 | |
459 | #define BPF_LDST_BYTES(insn) \ |
460 | ({ \ |
461 | const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ |
462 | WARN_ON(__size < 0); \ |
463 | __size; \ |
464 | }) |
465 | |
466 | #define __BPF_MAP_0(m, v, ...) v |
467 | #define __BPF_MAP_1(m, v, t, a, ...) m(t, a) |
468 | #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) |
469 | #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) |
470 | #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) |
471 | #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) |
472 | |
473 | #define __BPF_REG_0(...) __BPF_PAD(5) |
474 | #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) |
475 | #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) |
476 | #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) |
477 | #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) |
478 | #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) |
479 | |
480 | #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) |
481 | #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) |
482 | |
483 | #define __BPF_CAST(t, a) \ |
484 | (__force t) \ |
485 | (__force \ |
486 | typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ |
487 | (unsigned long)0, (t)0))) a |
488 | #define __BPF_V void |
489 | #define __BPF_N |
490 | |
491 | #define __BPF_DECL_ARGS(t, a) t a |
492 | #define __BPF_DECL_REGS(t, a) u64 a |
493 | |
494 | #define __BPF_PAD(n) \ |
495 | __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ |
496 | u64, __ur_3, u64, __ur_4, u64, __ur_5) |
497 | |
498 | #define BPF_CALL_x(x, name, ...) \ |
499 | static __always_inline \ |
500 | u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ |
501 | typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ |
502 | u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ |
503 | u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ |
504 | { \ |
505 | return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ |
506 | } \ |
507 | static __always_inline \ |
508 | u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) |
509 | |
510 | #define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) |
511 | #define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) |
512 | #define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) |
513 | #define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) |
514 | #define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) |
515 | #define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) |
516 | |
517 | #define bpf_ctx_range(TYPE, MEMBER) \ |
518 | offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 |
519 | #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ |
520 | offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 |
521 | #if BITS_PER_LONG == 64 |
522 | # define bpf_ctx_range_ptr(TYPE, MEMBER) \ |
523 | offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 |
524 | #else |
525 | # define bpf_ctx_range_ptr(TYPE, MEMBER) \ |
526 | offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 |
527 | #endif /* BITS_PER_LONG == 64 */ |
528 | |
529 | #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ |
530 | ({ \ |
531 | BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ |
532 | *(PTR_SIZE) = (SIZE); \ |
533 | offsetof(TYPE, MEMBER); \ |
534 | }) |
535 | |
536 | /* A struct sock_filter is architecture independent. */ |
537 | struct compat_sock_fprog { |
538 | u16 len; |
539 | compat_uptr_t filter; /* struct sock_filter * */ |
540 | }; |
541 | |
542 | struct sock_fprog_kern { |
543 | u16 len; |
544 | struct sock_filter *filter; |
545 | }; |
546 | |
547 | /* Some arches need doubleword alignment for their instructions and/or data */ |
548 | #define BPF_IMAGE_ALIGNMENT 8 |
549 | |
550 | struct { |
551 | u32 ; |
552 | u8 [] __aligned(BPF_IMAGE_ALIGNMENT); |
553 | }; |
554 | |
555 | struct bpf_prog_stats { |
556 | u64_stats_t cnt; |
557 | u64_stats_t nsecs; |
558 | u64_stats_t misses; |
559 | struct u64_stats_sync syncp; |
560 | } __aligned(2 * sizeof(u64)); |
561 | |
562 | struct sk_filter { |
563 | refcount_t refcnt; |
564 | struct rcu_head rcu; |
565 | struct bpf_prog *prog; |
566 | }; |
567 | |
568 | DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); |
569 | |
570 | typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, |
571 | const struct bpf_insn *insnsi, |
572 | unsigned int (*bpf_func)(const void *, |
573 | const struct bpf_insn *)); |
574 | |
575 | static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, |
576 | const void *ctx, |
577 | bpf_dispatcher_fn dfunc) |
578 | { |
579 | u32 ret; |
580 | |
581 | cant_migrate(); |
582 | if (static_branch_unlikely(&bpf_stats_enabled_key)) { |
583 | struct bpf_prog_stats *stats; |
584 | u64 start = sched_clock(); |
585 | unsigned long flags; |
586 | |
587 | ret = dfunc(ctx, prog->insnsi, prog->bpf_func); |
588 | stats = this_cpu_ptr(prog->stats); |
589 | flags = u64_stats_update_begin_irqsave(&stats->syncp); |
590 | u64_stats_inc(&stats->cnt); |
591 | u64_stats_add(&stats->nsecs, sched_clock() - start); |
592 | u64_stats_update_end_irqrestore(&stats->syncp, flags); |
593 | } else { |
594 | ret = dfunc(ctx, prog->insnsi, prog->bpf_func); |
595 | } |
596 | return ret; |
597 | } |
598 | |
599 | static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) |
600 | { |
601 | return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); |
602 | } |
603 | |
604 | /* |
605 | * Use in preemptible and therefore migratable context to make sure that |
606 | * the execution of the BPF program runs on one CPU. |
607 | * |
608 | * This uses migrate_disable/enable() explicitly to document that the |
609 | * invocation of a BPF program does not require reentrancy protection |
610 | * against a BPF program which is invoked from a preempting task. |
611 | */ |
612 | static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, |
613 | const void *ctx) |
614 | { |
615 | u32 ret; |
616 | |
617 | migrate_disable(); |
618 | ret = bpf_prog_run(prog, ctx); |
619 | migrate_enable(); |
620 | return ret; |
621 | } |
622 | |
623 | #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN |
624 | |
625 | struct bpf_skb_data_end { |
626 | struct qdisc_skb_cb qdisc_cb; |
627 | void *data_meta; |
628 | void *data_end; |
629 | }; |
630 | |
631 | struct bpf_nh_params { |
632 | u32 nh_family; |
633 | union { |
634 | u32 ipv4_nh; |
635 | struct in6_addr ipv6_nh; |
636 | }; |
637 | }; |
638 | |
639 | struct bpf_redirect_info { |
640 | u32 flags; |
641 | u32 tgt_index; |
642 | void *tgt_value; |
643 | struct bpf_map *map; |
644 | u32 map_id; |
645 | enum bpf_map_type map_type; |
646 | u32 kern_flags; |
647 | struct bpf_nh_params nh; |
648 | }; |
649 | |
650 | DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); |
651 | |
652 | /* flags for bpf_redirect_info kern_flags */ |
653 | #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ |
654 | |
655 | /* Compute the linear packet data range [data, data_end) which |
656 | * will be accessed by various program types (cls_bpf, act_bpf, |
657 | * lwt, ...). Subsystems allowing direct data access must (!) |
658 | * ensure that cb[] area can be written to when BPF program is |
659 | * invoked (otherwise cb[] save/restore is necessary). |
660 | */ |
661 | static inline void bpf_compute_data_pointers(struct sk_buff *skb) |
662 | { |
663 | struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; |
664 | |
665 | BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); |
666 | cb->data_meta = skb->data - skb_metadata_len(skb); |
667 | cb->data_end = skb->data + skb_headlen(skb); |
668 | } |
669 | |
670 | /* Similar to bpf_compute_data_pointers(), except that save orginal |
671 | * data in cb->data and cb->meta_data for restore. |
672 | */ |
673 | static inline void bpf_compute_and_save_data_end( |
674 | struct sk_buff *skb, void **saved_data_end) |
675 | { |
676 | struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; |
677 | |
678 | *saved_data_end = cb->data_end; |
679 | cb->data_end = skb->data + skb_headlen(skb); |
680 | } |
681 | |
682 | /* Restore data saved by bpf_compute_data_pointers(). */ |
683 | static inline void bpf_restore_data_end( |
684 | struct sk_buff *skb, void *saved_data_end) |
685 | { |
686 | struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; |
687 | |
688 | cb->data_end = saved_data_end; |
689 | } |
690 | |
691 | static inline u8 *bpf_skb_cb(const struct sk_buff *skb) |
692 | { |
693 | /* eBPF programs may read/write skb->cb[] area to transfer meta |
694 | * data between tail calls. Since this also needs to work with |
695 | * tc, that scratch memory is mapped to qdisc_skb_cb's data area. |
696 | * |
697 | * In some socket filter cases, the cb unfortunately needs to be |
698 | * saved/restored so that protocol specific skb->cb[] data won't |
699 | * be lost. In any case, due to unpriviledged eBPF programs |
700 | * attached to sockets, we need to clear the bpf_skb_cb() area |
701 | * to not leak previous contents to user space. |
702 | */ |
703 | BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); |
704 | BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != |
705 | sizeof_field(struct qdisc_skb_cb, data)); |
706 | |
707 | return qdisc_skb_cb(skb)->data; |
708 | } |
709 | |
710 | /* Must be invoked with migration disabled */ |
711 | static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, |
712 | const void *ctx) |
713 | { |
714 | const struct sk_buff *skb = ctx; |
715 | u8 *cb_data = bpf_skb_cb(skb); |
716 | u8 cb_saved[BPF_SKB_CB_LEN]; |
717 | u32 res; |
718 | |
719 | if (unlikely(prog->cb_access)) { |
720 | memcpy(cb_saved, cb_data, sizeof(cb_saved)); |
721 | memset(cb_data, 0, sizeof(cb_saved)); |
722 | } |
723 | |
724 | res = bpf_prog_run(prog, skb); |
725 | |
726 | if (unlikely(prog->cb_access)) |
727 | memcpy(cb_data, cb_saved, sizeof(cb_saved)); |
728 | |
729 | return res; |
730 | } |
731 | |
732 | static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, |
733 | struct sk_buff *skb) |
734 | { |
735 | u32 res; |
736 | |
737 | migrate_disable(); |
738 | res = __bpf_prog_run_save_cb(prog, skb); |
739 | migrate_enable(); |
740 | return res; |
741 | } |
742 | |
743 | static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, |
744 | struct sk_buff *skb) |
745 | { |
746 | u8 *cb_data = bpf_skb_cb(skb); |
747 | u32 res; |
748 | |
749 | if (unlikely(prog->cb_access)) |
750 | memset(cb_data, 0, BPF_SKB_CB_LEN); |
751 | |
752 | res = bpf_prog_run_pin_on_cpu(prog, skb); |
753 | return res; |
754 | } |
755 | |
756 | DECLARE_BPF_DISPATCHER(xdp) |
757 | |
758 | DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); |
759 | |
760 | u32 xdp_master_redirect(struct xdp_buff *xdp); |
761 | |
762 | static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, |
763 | struct xdp_buff *xdp) |
764 | { |
765 | /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus |
766 | * under local_bh_disable(), which provides the needed RCU protection |
767 | * for accessing map entries. |
768 | */ |
769 | u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp)); |
770 | |
771 | if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) { |
772 | if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev)) |
773 | act = xdp_master_redirect(xdp); |
774 | } |
775 | |
776 | return act; |
777 | } |
778 | |
779 | void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); |
780 | |
781 | static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) |
782 | { |
783 | return prog->len * sizeof(struct bpf_insn); |
784 | } |
785 | |
786 | static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) |
787 | { |
788 | return round_up(bpf_prog_insn_size(prog) + |
789 | sizeof(__be64) + 1, SHA1_BLOCK_SIZE); |
790 | } |
791 | |
792 | static inline unsigned int bpf_prog_size(unsigned int proglen) |
793 | { |
794 | return max(sizeof(struct bpf_prog), |
795 | offsetof(struct bpf_prog, insns[proglen])); |
796 | } |
797 | |
798 | static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) |
799 | { |
800 | /* When classic BPF programs have been loaded and the arch |
801 | * does not have a classic BPF JIT (anymore), they have been |
802 | * converted via bpf_migrate_filter() to eBPF and thus always |
803 | * have an unspec program type. |
804 | */ |
805 | return prog->type == BPF_PROG_TYPE_UNSPEC; |
806 | } |
807 | |
808 | static inline u32 bpf_ctx_off_adjust_machine(u32 size) |
809 | { |
810 | const u32 size_machine = sizeof(unsigned long); |
811 | |
812 | if (size > size_machine && size % size_machine == 0) |
813 | size = size_machine; |
814 | |
815 | return size; |
816 | } |
817 | |
818 | static inline bool |
819 | bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) |
820 | { |
821 | return size <= size_default && (size & (size - 1)) == 0; |
822 | } |
823 | |
824 | static inline u8 |
825 | bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) |
826 | { |
827 | u8 access_off = off & (size_default - 1); |
828 | |
829 | #ifdef __LITTLE_ENDIAN |
830 | return access_off; |
831 | #else |
832 | return size_default - (access_off + size); |
833 | #endif |
834 | } |
835 | |
836 | #define bpf_ctx_wide_access_ok(off, size, type, field) \ |
837 | (size == sizeof(__u64) && \ |
838 | off >= offsetof(type, field) && \ |
839 | off + sizeof(__u64) <= offsetofend(type, field) && \ |
840 | off % sizeof(__u64) == 0) |
841 | |
842 | #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) |
843 | |
844 | static inline void bpf_prog_lock_ro(struct bpf_prog *fp) |
845 | { |
846 | #ifndef CONFIG_BPF_JIT_ALWAYS_ON |
847 | if (!fp->jited) { |
848 | set_vm_flush_reset_perms(fp); |
849 | set_memory_ro((unsigned long)fp, fp->pages); |
850 | } |
851 | #endif |
852 | } |
853 | |
854 | static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) |
855 | { |
856 | set_vm_flush_reset_perms(hdr); |
857 | set_memory_ro((unsigned long)hdr, hdr->size >> PAGE_SHIFT); |
858 | set_memory_x((unsigned long)hdr, hdr->size >> PAGE_SHIFT); |
859 | } |
860 | |
861 | int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); |
862 | static inline int sk_filter(struct sock *sk, struct sk_buff *skb) |
863 | { |
864 | return sk_filter_trim_cap(sk, skb, 1); |
865 | } |
866 | |
867 | struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); |
868 | void bpf_prog_free(struct bpf_prog *fp); |
869 | |
870 | bool bpf_opcode_in_insntable(u8 code); |
871 | |
872 | void bpf_prog_free_linfo(struct bpf_prog *prog); |
873 | void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, |
874 | const u32 *insn_to_jit_off); |
875 | int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); |
876 | void bpf_prog_jit_attempt_done(struct bpf_prog *prog); |
877 | |
878 | struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t ); |
879 | struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t ); |
880 | struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, |
881 | gfp_t ); |
882 | void __bpf_prog_free(struct bpf_prog *fp); |
883 | |
884 | static inline void bpf_prog_unlock_free(struct bpf_prog *fp) |
885 | { |
886 | __bpf_prog_free(fp); |
887 | } |
888 | |
889 | typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, |
890 | unsigned int flen); |
891 | |
892 | int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); |
893 | int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, |
894 | bpf_aux_classic_check_t trans, bool save_orig); |
895 | void bpf_prog_destroy(struct bpf_prog *fp); |
896 | |
897 | int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); |
898 | int sk_attach_bpf(u32 ufd, struct sock *sk); |
899 | int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); |
900 | int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); |
901 | void sk_reuseport_prog_free(struct bpf_prog *prog); |
902 | int sk_detach_filter(struct sock *sk); |
903 | int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, |
904 | unsigned int len); |
905 | |
906 | bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); |
907 | void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); |
908 | |
909 | u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); |
910 | #define __bpf_call_base_args \ |
911 | ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ |
912 | (void *)__bpf_call_base) |
913 | |
914 | struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); |
915 | void bpf_jit_compile(struct bpf_prog *prog); |
916 | bool bpf_jit_needs_zext(void); |
917 | bool bpf_jit_supports_subprog_tailcalls(void); |
918 | bool bpf_jit_supports_kfunc_call(void); |
919 | bool bpf_helper_changes_pkt_data(void *func); |
920 | |
921 | static inline bool bpf_dump_raw_ok(const struct cred *cred) |
922 | { |
923 | /* Reconstruction of call-sites is dependent on kallsyms, |
924 | * thus make dump the same restriction. |
925 | */ |
926 | return kallsyms_show_value(cred); |
927 | } |
928 | |
929 | struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, |
930 | const struct bpf_insn *patch, u32 len); |
931 | int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); |
932 | |
933 | void bpf_clear_redirect_map(struct bpf_map *map); |
934 | |
935 | static inline bool xdp_return_frame_no_direct(void) |
936 | { |
937 | struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); |
938 | |
939 | return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; |
940 | } |
941 | |
942 | static inline void xdp_set_return_frame_no_direct(void) |
943 | { |
944 | struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); |
945 | |
946 | ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; |
947 | } |
948 | |
949 | static inline void xdp_clear_return_frame_no_direct(void) |
950 | { |
951 | struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); |
952 | |
953 | ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; |
954 | } |
955 | |
956 | static inline int xdp_ok_fwd_dev(const struct net_device *fwd, |
957 | unsigned int pktlen) |
958 | { |
959 | unsigned int len; |
960 | |
961 | if (unlikely(!(fwd->flags & IFF_UP))) |
962 | return -ENETDOWN; |
963 | |
964 | len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; |
965 | if (pktlen > len) |
966 | return -EMSGSIZE; |
967 | |
968 | return 0; |
969 | } |
970 | |
971 | /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the |
972 | * same cpu context. Further for best results no more than a single map |
973 | * for the do_redirect/do_flush pair should be used. This limitation is |
974 | * because we only track one map and force a flush when the map changes. |
975 | * This does not appear to be a real limitation for existing software. |
976 | */ |
977 | int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, |
978 | struct xdp_buff *xdp, struct bpf_prog *prog); |
979 | int xdp_do_redirect(struct net_device *dev, |
980 | struct xdp_buff *xdp, |
981 | struct bpf_prog *prog); |
982 | int xdp_do_redirect_frame(struct net_device *dev, |
983 | struct xdp_buff *xdp, |
984 | struct xdp_frame *xdpf, |
985 | struct bpf_prog *prog); |
986 | void xdp_do_flush(void); |
987 | |
988 | /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as |
989 | * it is no longer only flushing maps. Keep this define for compatibility |
990 | * until all drivers are updated - do not use xdp_do_flush_map() in new code! |
991 | */ |
992 | #define xdp_do_flush_map xdp_do_flush |
993 | |
994 | void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act); |
995 | |
996 | #ifdef CONFIG_INET |
997 | struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, |
998 | struct bpf_prog *prog, struct sk_buff *skb, |
999 | struct sock *migrating_sk, |
1000 | u32 hash); |
1001 | #else |
1002 | static inline struct sock * |
1003 | bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, |
1004 | struct bpf_prog *prog, struct sk_buff *skb, |
1005 | struct sock *migrating_sk, |
1006 | u32 hash) |
1007 | { |
1008 | return NULL; |
1009 | } |
1010 | #endif |
1011 | |
1012 | #ifdef CONFIG_BPF_JIT |
1013 | extern int bpf_jit_enable; |
1014 | extern int bpf_jit_harden; |
1015 | extern int bpf_jit_kallsyms; |
1016 | extern long bpf_jit_limit; |
1017 | extern long bpf_jit_limit_max; |
1018 | |
1019 | typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); |
1020 | |
1021 | struct bpf_binary_header * |
1022 | bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, |
1023 | unsigned int alignment, |
1024 | bpf_jit_fill_hole_t bpf_fill_ill_insns); |
1025 | void bpf_jit_binary_free(struct bpf_binary_header *hdr); |
1026 | u64 bpf_jit_alloc_exec_limit(void); |
1027 | void *bpf_jit_alloc_exec(unsigned long size); |
1028 | void bpf_jit_free_exec(void *addr); |
1029 | void bpf_jit_free(struct bpf_prog *fp); |
1030 | struct bpf_binary_header * |
1031 | bpf_jit_binary_pack_hdr(const struct bpf_prog *fp); |
1032 | |
1033 | static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) |
1034 | { |
1035 | return list_empty(&fp->aux->ksym.lnode) || |
1036 | fp->aux->ksym.lnode.prev == LIST_POISON2; |
1037 | } |
1038 | |
1039 | struct bpf_binary_header * |
1040 | bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image, |
1041 | unsigned int alignment, |
1042 | struct bpf_binary_header **rw_hdr, |
1043 | u8 **rw_image, |
1044 | bpf_jit_fill_hole_t bpf_fill_ill_insns); |
1045 | int bpf_jit_binary_pack_finalize(struct bpf_prog *prog, |
1046 | struct bpf_binary_header *ro_header, |
1047 | struct bpf_binary_header *rw_header); |
1048 | void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, |
1049 | struct bpf_binary_header *rw_header); |
1050 | |
1051 | int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, |
1052 | struct bpf_jit_poke_descriptor *poke); |
1053 | |
1054 | int bpf_jit_get_func_addr(const struct bpf_prog *prog, |
1055 | const struct bpf_insn *insn, bool extra_pass, |
1056 | u64 *func_addr, bool *func_addr_fixed); |
1057 | |
1058 | struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); |
1059 | void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); |
1060 | |
1061 | static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, |
1062 | u32 pass, void *image) |
1063 | { |
1064 | pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n" , flen, |
1065 | proglen, pass, image, current->comm, task_pid_nr(current)); |
1066 | |
1067 | if (image) |
1068 | print_hex_dump(KERN_ERR, "JIT code: " , DUMP_PREFIX_OFFSET, |
1069 | 16, 1, image, proglen, false); |
1070 | } |
1071 | |
1072 | static inline bool bpf_jit_is_ebpf(void) |
1073 | { |
1074 | # ifdef CONFIG_HAVE_EBPF_JIT |
1075 | return true; |
1076 | # else |
1077 | return false; |
1078 | # endif |
1079 | } |
1080 | |
1081 | static inline bool ebpf_jit_enabled(void) |
1082 | { |
1083 | return bpf_jit_enable && bpf_jit_is_ebpf(); |
1084 | } |
1085 | |
1086 | static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) |
1087 | { |
1088 | return fp->jited && bpf_jit_is_ebpf(); |
1089 | } |
1090 | |
1091 | static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) |
1092 | { |
1093 | /* These are the prerequisites, should someone ever have the |
1094 | * idea to call blinding outside of them, we make sure to |
1095 | * bail out. |
1096 | */ |
1097 | if (!bpf_jit_is_ebpf()) |
1098 | return false; |
1099 | if (!prog->jit_requested) |
1100 | return false; |
1101 | if (!bpf_jit_harden) |
1102 | return false; |
1103 | if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) |
1104 | return false; |
1105 | |
1106 | return true; |
1107 | } |
1108 | |
1109 | static inline bool bpf_jit_kallsyms_enabled(void) |
1110 | { |
1111 | /* There are a couple of corner cases where kallsyms should |
1112 | * not be enabled f.e. on hardening. |
1113 | */ |
1114 | if (bpf_jit_harden) |
1115 | return false; |
1116 | if (!bpf_jit_kallsyms) |
1117 | return false; |
1118 | if (bpf_jit_kallsyms == 1) |
1119 | return true; |
1120 | |
1121 | return false; |
1122 | } |
1123 | |
1124 | const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, |
1125 | unsigned long *off, char *sym); |
1126 | bool is_bpf_text_address(unsigned long addr); |
1127 | int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, |
1128 | char *sym); |
1129 | |
1130 | static inline const char * |
1131 | bpf_address_lookup(unsigned long addr, unsigned long *size, |
1132 | unsigned long *off, char **modname, char *sym) |
1133 | { |
1134 | const char *ret = __bpf_address_lookup(addr, size, off, sym); |
1135 | |
1136 | if (ret && modname) |
1137 | *modname = NULL; |
1138 | return ret; |
1139 | } |
1140 | |
1141 | void bpf_prog_kallsyms_add(struct bpf_prog *fp); |
1142 | void bpf_prog_kallsyms_del(struct bpf_prog *fp); |
1143 | |
1144 | #else /* CONFIG_BPF_JIT */ |
1145 | |
1146 | static inline bool ebpf_jit_enabled(void) |
1147 | { |
1148 | return false; |
1149 | } |
1150 | |
1151 | static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) |
1152 | { |
1153 | return false; |
1154 | } |
1155 | |
1156 | static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) |
1157 | { |
1158 | return false; |
1159 | } |
1160 | |
1161 | static inline int |
1162 | bpf_jit_add_poke_descriptor(struct bpf_prog *prog, |
1163 | struct bpf_jit_poke_descriptor *poke) |
1164 | { |
1165 | return -ENOTSUPP; |
1166 | } |
1167 | |
1168 | static inline void bpf_jit_free(struct bpf_prog *fp) |
1169 | { |
1170 | bpf_prog_unlock_free(fp); |
1171 | } |
1172 | |
1173 | static inline bool bpf_jit_kallsyms_enabled(void) |
1174 | { |
1175 | return false; |
1176 | } |
1177 | |
1178 | static inline const char * |
1179 | __bpf_address_lookup(unsigned long addr, unsigned long *size, |
1180 | unsigned long *off, char *sym) |
1181 | { |
1182 | return NULL; |
1183 | } |
1184 | |
1185 | static inline bool is_bpf_text_address(unsigned long addr) |
1186 | { |
1187 | return false; |
1188 | } |
1189 | |
1190 | static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, |
1191 | char *type, char *sym) |
1192 | { |
1193 | return -ERANGE; |
1194 | } |
1195 | |
1196 | static inline const char * |
1197 | bpf_address_lookup(unsigned long addr, unsigned long *size, |
1198 | unsigned long *off, char **modname, char *sym) |
1199 | { |
1200 | return NULL; |
1201 | } |
1202 | |
1203 | static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) |
1204 | { |
1205 | } |
1206 | |
1207 | static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) |
1208 | { |
1209 | } |
1210 | |
1211 | #endif /* CONFIG_BPF_JIT */ |
1212 | |
1213 | void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); |
1214 | |
1215 | #define BPF_ANC BIT(15) |
1216 | |
1217 | static inline bool bpf_needs_clear_a(const struct sock_filter *first) |
1218 | { |
1219 | switch (first->code) { |
1220 | case BPF_RET | BPF_K: |
1221 | case BPF_LD | BPF_W | BPF_LEN: |
1222 | return false; |
1223 | |
1224 | case BPF_LD | BPF_W | BPF_ABS: |
1225 | case BPF_LD | BPF_H | BPF_ABS: |
1226 | case BPF_LD | BPF_B | BPF_ABS: |
1227 | if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) |
1228 | return true; |
1229 | return false; |
1230 | |
1231 | default: |
1232 | return true; |
1233 | } |
1234 | } |
1235 | |
1236 | static inline u16 bpf_anc_helper(const struct sock_filter *ftest) |
1237 | { |
1238 | BUG_ON(ftest->code & BPF_ANC); |
1239 | |
1240 | switch (ftest->code) { |
1241 | case BPF_LD | BPF_W | BPF_ABS: |
1242 | case BPF_LD | BPF_H | BPF_ABS: |
1243 | case BPF_LD | BPF_B | BPF_ABS: |
1244 | #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ |
1245 | return BPF_ANC | SKF_AD_##CODE |
1246 | switch (ftest->k) { |
1247 | BPF_ANCILLARY(PROTOCOL); |
1248 | BPF_ANCILLARY(PKTTYPE); |
1249 | BPF_ANCILLARY(IFINDEX); |
1250 | BPF_ANCILLARY(NLATTR); |
1251 | BPF_ANCILLARY(NLATTR_NEST); |
1252 | BPF_ANCILLARY(MARK); |
1253 | BPF_ANCILLARY(QUEUE); |
1254 | BPF_ANCILLARY(HATYPE); |
1255 | BPF_ANCILLARY(RXHASH); |
1256 | BPF_ANCILLARY(CPU); |
1257 | BPF_ANCILLARY(ALU_XOR_X); |
1258 | BPF_ANCILLARY(VLAN_TAG); |
1259 | BPF_ANCILLARY(VLAN_TAG_PRESENT); |
1260 | BPF_ANCILLARY(PAY_OFFSET); |
1261 | BPF_ANCILLARY(RANDOM); |
1262 | BPF_ANCILLARY(VLAN_TPID); |
1263 | } |
1264 | fallthrough; |
1265 | default: |
1266 | return ftest->code; |
1267 | } |
1268 | } |
1269 | |
1270 | void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, |
1271 | int k, unsigned int size); |
1272 | |
1273 | static inline int bpf_tell_extensions(void) |
1274 | { |
1275 | return SKF_AD_MAX; |
1276 | } |
1277 | |
1278 | struct bpf_sock_addr_kern { |
1279 | struct sock *sk; |
1280 | struct sockaddr *uaddr; |
1281 | /* Temporary "register" to make indirect stores to nested structures |
1282 | * defined above. We need three registers to make such a store, but |
1283 | * only two (src and dst) are available at convert_ctx_access time |
1284 | */ |
1285 | u64 tmp_reg; |
1286 | void *t_ctx; /* Attach type specific context. */ |
1287 | }; |
1288 | |
1289 | struct bpf_sock_ops_kern { |
1290 | struct sock *sk; |
1291 | union { |
1292 | u32 args[4]; |
1293 | u32 reply; |
1294 | u32 replylong[4]; |
1295 | }; |
1296 | struct sk_buff *syn_skb; |
1297 | struct sk_buff *skb; |
1298 | void *skb_data_end; |
1299 | u8 op; |
1300 | u8 is_fullsock; |
1301 | u8 remaining_opt_len; |
1302 | u64 temp; /* temp and everything after is not |
1303 | * initialized to 0 before calling |
1304 | * the BPF program. New fields that |
1305 | * should be initialized to 0 should |
1306 | * be inserted before temp. |
1307 | * temp is scratch storage used by |
1308 | * sock_ops_convert_ctx_access |
1309 | * as temporary storage of a register. |
1310 | */ |
1311 | }; |
1312 | |
1313 | struct bpf_sysctl_kern { |
1314 | struct ctl_table_header *head; |
1315 | struct ctl_table *table; |
1316 | void *cur_val; |
1317 | size_t cur_len; |
1318 | void *new_val; |
1319 | size_t new_len; |
1320 | int new_updated; |
1321 | int write; |
1322 | loff_t *ppos; |
1323 | /* Temporary "register" for indirect stores to ppos. */ |
1324 | u64 tmp_reg; |
1325 | }; |
1326 | |
1327 | #define BPF_SOCKOPT_KERN_BUF_SIZE 32 |
1328 | struct bpf_sockopt_buf { |
1329 | u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; |
1330 | }; |
1331 | |
1332 | struct bpf_sockopt_kern { |
1333 | struct sock *sk; |
1334 | u8 *optval; |
1335 | u8 *optval_end; |
1336 | s32 level; |
1337 | s32 optname; |
1338 | s32 optlen; |
1339 | /* for retval in struct bpf_cg_run_ctx */ |
1340 | struct task_struct *current_task; |
1341 | /* Temporary "register" for indirect stores to ppos. */ |
1342 | u64 tmp_reg; |
1343 | }; |
1344 | |
1345 | int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); |
1346 | |
1347 | struct bpf_sk_lookup_kern { |
1348 | u16 family; |
1349 | u16 protocol; |
1350 | __be16 sport; |
1351 | u16 dport; |
1352 | struct { |
1353 | __be32 saddr; |
1354 | __be32 daddr; |
1355 | } v4; |
1356 | struct { |
1357 | const struct in6_addr *saddr; |
1358 | const struct in6_addr *daddr; |
1359 | } v6; |
1360 | struct sock *selected_sk; |
1361 | u32 ingress_ifindex; |
1362 | bool no_reuseport; |
1363 | }; |
1364 | |
1365 | extern struct static_key_false bpf_sk_lookup_enabled; |
1366 | |
1367 | /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. |
1368 | * |
1369 | * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and |
1370 | * SK_DROP. Their meaning is as follows: |
1371 | * |
1372 | * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result |
1373 | * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup |
1374 | * SK_DROP : terminate lookup with -ECONNREFUSED |
1375 | * |
1376 | * This macro aggregates return values and selected sockets from |
1377 | * multiple BPF programs according to following rules in order: |
1378 | * |
1379 | * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, |
1380 | * macro result is SK_PASS and last ctx.selected_sk is used. |
1381 | * 2. If any program returned SK_DROP return value, |
1382 | * macro result is SK_DROP. |
1383 | * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. |
1384 | * |
1385 | * Caller must ensure that the prog array is non-NULL, and that the |
1386 | * array as well as the programs it contains remain valid. |
1387 | */ |
1388 | #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ |
1389 | ({ \ |
1390 | struct bpf_sk_lookup_kern *_ctx = &(ctx); \ |
1391 | struct bpf_prog_array_item *_item; \ |
1392 | struct sock *_selected_sk = NULL; \ |
1393 | bool _no_reuseport = false; \ |
1394 | struct bpf_prog *_prog; \ |
1395 | bool _all_pass = true; \ |
1396 | u32 _ret; \ |
1397 | \ |
1398 | migrate_disable(); \ |
1399 | _item = &(array)->items[0]; \ |
1400 | while ((_prog = READ_ONCE(_item->prog))) { \ |
1401 | /* restore most recent selection */ \ |
1402 | _ctx->selected_sk = _selected_sk; \ |
1403 | _ctx->no_reuseport = _no_reuseport; \ |
1404 | \ |
1405 | _ret = func(_prog, _ctx); \ |
1406 | if (_ret == SK_PASS && _ctx->selected_sk) { \ |
1407 | /* remember last non-NULL socket */ \ |
1408 | _selected_sk = _ctx->selected_sk; \ |
1409 | _no_reuseport = _ctx->no_reuseport; \ |
1410 | } else if (_ret == SK_DROP && _all_pass) { \ |
1411 | _all_pass = false; \ |
1412 | } \ |
1413 | _item++; \ |
1414 | } \ |
1415 | _ctx->selected_sk = _selected_sk; \ |
1416 | _ctx->no_reuseport = _no_reuseport; \ |
1417 | migrate_enable(); \ |
1418 | _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ |
1419 | }) |
1420 | |
1421 | static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol, |
1422 | const __be32 saddr, const __be16 sport, |
1423 | const __be32 daddr, const u16 dport, |
1424 | const int ifindex, struct sock **psk) |
1425 | { |
1426 | struct bpf_prog_array *run_array; |
1427 | struct sock *selected_sk = NULL; |
1428 | bool no_reuseport = false; |
1429 | |
1430 | rcu_read_lock(); |
1431 | run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); |
1432 | if (run_array) { |
1433 | struct bpf_sk_lookup_kern ctx = { |
1434 | .family = AF_INET, |
1435 | .protocol = protocol, |
1436 | .v4.saddr = saddr, |
1437 | .v4.daddr = daddr, |
1438 | .sport = sport, |
1439 | .dport = dport, |
1440 | .ingress_ifindex = ifindex, |
1441 | }; |
1442 | u32 act; |
1443 | |
1444 | act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); |
1445 | if (act == SK_PASS) { |
1446 | selected_sk = ctx.selected_sk; |
1447 | no_reuseport = ctx.no_reuseport; |
1448 | } else { |
1449 | selected_sk = ERR_PTR(-ECONNREFUSED); |
1450 | } |
1451 | } |
1452 | rcu_read_unlock(); |
1453 | *psk = selected_sk; |
1454 | return no_reuseport; |
1455 | } |
1456 | |
1457 | #if IS_ENABLED(CONFIG_IPV6) |
1458 | static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol, |
1459 | const struct in6_addr *saddr, |
1460 | const __be16 sport, |
1461 | const struct in6_addr *daddr, |
1462 | const u16 dport, |
1463 | const int ifindex, struct sock **psk) |
1464 | { |
1465 | struct bpf_prog_array *run_array; |
1466 | struct sock *selected_sk = NULL; |
1467 | bool no_reuseport = false; |
1468 | |
1469 | rcu_read_lock(); |
1470 | run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); |
1471 | if (run_array) { |
1472 | struct bpf_sk_lookup_kern ctx = { |
1473 | .family = AF_INET6, |
1474 | .protocol = protocol, |
1475 | .v6.saddr = saddr, |
1476 | .v6.daddr = daddr, |
1477 | .sport = sport, |
1478 | .dport = dport, |
1479 | .ingress_ifindex = ifindex, |
1480 | }; |
1481 | u32 act; |
1482 | |
1483 | act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); |
1484 | if (act == SK_PASS) { |
1485 | selected_sk = ctx.selected_sk; |
1486 | no_reuseport = ctx.no_reuseport; |
1487 | } else { |
1488 | selected_sk = ERR_PTR(-ECONNREFUSED); |
1489 | } |
1490 | } |
1491 | rcu_read_unlock(); |
1492 | *psk = selected_sk; |
1493 | return no_reuseport; |
1494 | } |
1495 | #endif /* IS_ENABLED(CONFIG_IPV6) */ |
1496 | |
1497 | static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex, |
1498 | u64 flags, const u64 flag_mask, |
1499 | void *lookup_elem(struct bpf_map *map, u32 key)) |
1500 | { |
1501 | struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); |
1502 | const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; |
1503 | |
1504 | /* Lower bits of the flags are used as return code on lookup failure */ |
1505 | if (unlikely(flags & ~(action_mask | flag_mask))) |
1506 | return XDP_ABORTED; |
1507 | |
1508 | ri->tgt_value = lookup_elem(map, ifindex); |
1509 | if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { |
1510 | /* If the lookup fails we want to clear out the state in the |
1511 | * redirect_info struct completely, so that if an eBPF program |
1512 | * performs multiple lookups, the last one always takes |
1513 | * precedence. |
1514 | */ |
1515 | ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ |
1516 | ri->map_type = BPF_MAP_TYPE_UNSPEC; |
1517 | return flags & action_mask; |
1518 | } |
1519 | |
1520 | ri->tgt_index = ifindex; |
1521 | ri->map_id = map->id; |
1522 | ri->map_type = map->map_type; |
1523 | |
1524 | if (flags & BPF_F_BROADCAST) { |
1525 | WRITE_ONCE(ri->map, map); |
1526 | ri->flags = flags; |
1527 | } else { |
1528 | WRITE_ONCE(ri->map, NULL); |
1529 | ri->flags = 0; |
1530 | } |
1531 | |
1532 | return XDP_REDIRECT; |
1533 | } |
1534 | |
1535 | #endif /* __LINUX_FILTER_H__ */ |
1536 | |