1 | /* SPDX-License-Identifier: GPL-2.0 */ |
2 | #ifndef _LINUX_JIFFIES_H |
3 | #define _LINUX_JIFFIES_H |
4 | |
5 | #include <linux/cache.h> |
6 | #include <linux/limits.h> |
7 | #include <linux/math64.h> |
8 | #include <linux/minmax.h> |
9 | #include <linux/types.h> |
10 | #include <linux/time.h> |
11 | #include <linux/timex.h> |
12 | #include <vdso/jiffies.h> |
13 | #include <asm/param.h> /* for HZ */ |
14 | #include <generated/timeconst.h> |
15 | |
16 | /* |
17 | * The following defines establish the engineering parameters of the PLL |
18 | * model. The HZ variable establishes the timer interrupt frequency, 100 Hz |
19 | * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the |
20 | * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the |
21 | * nearest power of two in order to avoid hardware multiply operations. |
22 | */ |
23 | #if HZ >= 12 && HZ < 24 |
24 | # define SHIFT_HZ 4 |
25 | #elif HZ >= 24 && HZ < 48 |
26 | # define SHIFT_HZ 5 |
27 | #elif HZ >= 48 && HZ < 96 |
28 | # define SHIFT_HZ 6 |
29 | #elif HZ >= 96 && HZ < 192 |
30 | # define SHIFT_HZ 7 |
31 | #elif HZ >= 192 && HZ < 384 |
32 | # define SHIFT_HZ 8 |
33 | #elif HZ >= 384 && HZ < 768 |
34 | # define SHIFT_HZ 9 |
35 | #elif HZ >= 768 && HZ < 1536 |
36 | # define SHIFT_HZ 10 |
37 | #elif HZ >= 1536 && HZ < 3072 |
38 | # define SHIFT_HZ 11 |
39 | #elif HZ >= 3072 && HZ < 6144 |
40 | # define SHIFT_HZ 12 |
41 | #elif HZ >= 6144 && HZ < 12288 |
42 | # define SHIFT_HZ 13 |
43 | #else |
44 | # error Invalid value of HZ. |
45 | #endif |
46 | |
47 | /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can |
48 | * improve accuracy by shifting LSH bits, hence calculating: |
49 | * (NOM << LSH) / DEN |
50 | * This however means trouble for large NOM, because (NOM << LSH) may no |
51 | * longer fit in 32 bits. The following way of calculating this gives us |
52 | * some slack, under the following conditions: |
53 | * - (NOM / DEN) fits in (32 - LSH) bits. |
54 | * - (NOM % DEN) fits in (32 - LSH) bits. |
55 | */ |
56 | #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ |
57 | + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) |
58 | |
59 | /* LATCH is used in the interval timer and ftape setup. */ |
60 | #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ |
61 | |
62 | extern int register_refined_jiffies(long clock_tick_rate); |
63 | |
64 | /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */ |
65 | #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ) |
66 | |
67 | /* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ |
68 | #define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) |
69 | |
70 | #ifndef __jiffy_arch_data |
71 | #define __jiffy_arch_data |
72 | #endif |
73 | |
74 | /* |
75 | * The 64-bit value is not atomic on 32-bit systems - you MUST NOT read it |
76 | * without sampling the sequence number in jiffies_lock. |
77 | * get_jiffies_64() will do this for you as appropriate. |
78 | * |
79 | * jiffies and jiffies_64 are at the same address for little-endian systems |
80 | * and for 64-bit big-endian systems. |
81 | * On 32-bit big-endian systems, jiffies is the lower 32 bits of jiffies_64 |
82 | * (i.e., at address @jiffies_64 + 4). |
83 | * See arch/ARCH/kernel/vmlinux.lds.S |
84 | */ |
85 | extern u64 __cacheline_aligned_in_smp jiffies_64; |
86 | extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies; |
87 | |
88 | #if (BITS_PER_LONG < 64) |
89 | u64 get_jiffies_64(void); |
90 | #else |
91 | /** |
92 | * get_jiffies_64 - read the 64-bit non-atomic jiffies_64 value |
93 | * |
94 | * When BITS_PER_LONG < 64, this uses sequence number sampling using |
95 | * jiffies_lock to protect the 64-bit read. |
96 | * |
97 | * Return: current 64-bit jiffies value |
98 | */ |
99 | static inline u64 get_jiffies_64(void) |
100 | { |
101 | return (u64)jiffies; |
102 | } |
103 | #endif |
104 | |
105 | /** |
106 | * DOC: General information about time_* inlines |
107 | * |
108 | * These inlines deal with timer wrapping correctly. You are strongly encouraged |
109 | * to use them: |
110 | * |
111 | * #. Because people otherwise forget |
112 | * #. Because if the timer wrap changes in future you won't have to alter your |
113 | * driver code. |
114 | */ |
115 | |
116 | /** |
117 | * time_after - returns true if the time a is after time b. |
118 | * @a: first comparable as unsigned long |
119 | * @b: second comparable as unsigned long |
120 | * |
121 | * Do this with "<0" and ">=0" to only test the sign of the result. A |
122 | * good compiler would generate better code (and a really good compiler |
123 | * wouldn't care). Gcc is currently neither. |
124 | * |
125 | * Return: %true is time a is after time b, otherwise %false. |
126 | */ |
127 | #define time_after(a,b) \ |
128 | (typecheck(unsigned long, a) && \ |
129 | typecheck(unsigned long, b) && \ |
130 | ((long)((b) - (a)) < 0)) |
131 | /** |
132 | * time_before - returns true if the time a is before time b. |
133 | * @a: first comparable as unsigned long |
134 | * @b: second comparable as unsigned long |
135 | * |
136 | * Return: %true is time a is before time b, otherwise %false. |
137 | */ |
138 | #define time_before(a,b) time_after(b,a) |
139 | |
140 | /** |
141 | * time_after_eq - returns true if the time a is after or the same as time b. |
142 | * @a: first comparable as unsigned long |
143 | * @b: second comparable as unsigned long |
144 | * |
145 | * Return: %true is time a is after or the same as time b, otherwise %false. |
146 | */ |
147 | #define time_after_eq(a,b) \ |
148 | (typecheck(unsigned long, a) && \ |
149 | typecheck(unsigned long, b) && \ |
150 | ((long)((a) - (b)) >= 0)) |
151 | /** |
152 | * time_before_eq - returns true if the time a is before or the same as time b. |
153 | * @a: first comparable as unsigned long |
154 | * @b: second comparable as unsigned long |
155 | * |
156 | * Return: %true is time a is before or the same as time b, otherwise %false. |
157 | */ |
158 | #define time_before_eq(a,b) time_after_eq(b,a) |
159 | |
160 | /** |
161 | * time_in_range - Calculate whether a is in the range of [b, c]. |
162 | * @a: time to test |
163 | * @b: beginning of the range |
164 | * @c: end of the range |
165 | * |
166 | * Return: %true is time a is in the range [b, c], otherwise %false. |
167 | */ |
168 | #define time_in_range(a,b,c) \ |
169 | (time_after_eq(a,b) && \ |
170 | time_before_eq(a,c)) |
171 | |
172 | /** |
173 | * time_in_range_open - Calculate whether a is in the range of [b, c). |
174 | * @a: time to test |
175 | * @b: beginning of the range |
176 | * @c: end of the range |
177 | * |
178 | * Return: %true is time a is in the range [b, c), otherwise %false. |
179 | */ |
180 | #define time_in_range_open(a,b,c) \ |
181 | (time_after_eq(a,b) && \ |
182 | time_before(a,c)) |
183 | |
184 | /* Same as above, but does so with platform independent 64bit types. |
185 | * These must be used when utilizing jiffies_64 (i.e. return value of |
186 | * get_jiffies_64()). */ |
187 | |
188 | /** |
189 | * time_after64 - returns true if the time a is after time b. |
190 | * @a: first comparable as __u64 |
191 | * @b: second comparable as __u64 |
192 | * |
193 | * This must be used when utilizing jiffies_64 (i.e. return value of |
194 | * get_jiffies_64()). |
195 | * |
196 | * Return: %true is time a is after time b, otherwise %false. |
197 | */ |
198 | #define time_after64(a,b) \ |
199 | (typecheck(__u64, a) && \ |
200 | typecheck(__u64, b) && \ |
201 | ((__s64)((b) - (a)) < 0)) |
202 | /** |
203 | * time_before64 - returns true if the time a is before time b. |
204 | * @a: first comparable as __u64 |
205 | * @b: second comparable as __u64 |
206 | * |
207 | * This must be used when utilizing jiffies_64 (i.e. return value of |
208 | * get_jiffies_64()). |
209 | * |
210 | * Return: %true is time a is before time b, otherwise %false. |
211 | */ |
212 | #define time_before64(a,b) time_after64(b,a) |
213 | |
214 | /** |
215 | * time_after_eq64 - returns true if the time a is after or the same as time b. |
216 | * @a: first comparable as __u64 |
217 | * @b: second comparable as __u64 |
218 | * |
219 | * This must be used when utilizing jiffies_64 (i.e. return value of |
220 | * get_jiffies_64()). |
221 | * |
222 | * Return: %true is time a is after or the same as time b, otherwise %false. |
223 | */ |
224 | #define time_after_eq64(a,b) \ |
225 | (typecheck(__u64, a) && \ |
226 | typecheck(__u64, b) && \ |
227 | ((__s64)((a) - (b)) >= 0)) |
228 | /** |
229 | * time_before_eq64 - returns true if the time a is before or the same as time b. |
230 | * @a: first comparable as __u64 |
231 | * @b: second comparable as __u64 |
232 | * |
233 | * This must be used when utilizing jiffies_64 (i.e. return value of |
234 | * get_jiffies_64()). |
235 | * |
236 | * Return: %true is time a is before or the same as time b, otherwise %false. |
237 | */ |
238 | #define time_before_eq64(a,b) time_after_eq64(b,a) |
239 | |
240 | /** |
241 | * time_in_range64 - Calculate whether a is in the range of [b, c]. |
242 | * @a: time to test |
243 | * @b: beginning of the range |
244 | * @c: end of the range |
245 | * |
246 | * Return: %true is time a is in the range [b, c], otherwise %false. |
247 | */ |
248 | #define time_in_range64(a, b, c) \ |
249 | (time_after_eq64(a, b) && \ |
250 | time_before_eq64(a, c)) |
251 | |
252 | /* |
253 | * These eight macros compare jiffies[_64] and 'a' for convenience. |
254 | */ |
255 | |
256 | /** |
257 | * time_is_before_jiffies - return true if a is before jiffies |
258 | * @a: time (unsigned long) to compare to jiffies |
259 | * |
260 | * Return: %true is time a is before jiffies, otherwise %false. |
261 | */ |
262 | #define time_is_before_jiffies(a) time_after(jiffies, a) |
263 | /** |
264 | * time_is_before_jiffies64 - return true if a is before jiffies_64 |
265 | * @a: time (__u64) to compare to jiffies_64 |
266 | * |
267 | * Return: %true is time a is before jiffies_64, otherwise %false. |
268 | */ |
269 | #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a) |
270 | |
271 | /** |
272 | * time_is_after_jiffies - return true if a is after jiffies |
273 | * @a: time (unsigned long) to compare to jiffies |
274 | * |
275 | * Return: %true is time a is after jiffies, otherwise %false. |
276 | */ |
277 | #define time_is_after_jiffies(a) time_before(jiffies, a) |
278 | /** |
279 | * time_is_after_jiffies64 - return true if a is after jiffies_64 |
280 | * @a: time (__u64) to compare to jiffies_64 |
281 | * |
282 | * Return: %true is time a is after jiffies_64, otherwise %false. |
283 | */ |
284 | #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a) |
285 | |
286 | /** |
287 | * time_is_before_eq_jiffies - return true if a is before or equal to jiffies |
288 | * @a: time (unsigned long) to compare to jiffies |
289 | * |
290 | * Return: %true is time a is before or the same as jiffies, otherwise %false. |
291 | */ |
292 | #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a) |
293 | /** |
294 | * time_is_before_eq_jiffies64 - return true if a is before or equal to jiffies_64 |
295 | * @a: time (__u64) to compare to jiffies_64 |
296 | * |
297 | * Return: %true is time a is before or the same jiffies_64, otherwise %false. |
298 | */ |
299 | #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a) |
300 | |
301 | /** |
302 | * time_is_after_eq_jiffies - return true if a is after or equal to jiffies |
303 | * @a: time (unsigned long) to compare to jiffies |
304 | * |
305 | * Return: %true is time a is after or the same as jiffies, otherwise %false. |
306 | */ |
307 | #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a) |
308 | /** |
309 | * time_is_after_eq_jiffies64 - return true if a is after or equal to jiffies_64 |
310 | * @a: time (__u64) to compare to jiffies_64 |
311 | * |
312 | * Return: %true is time a is after or the same as jiffies_64, otherwise %false. |
313 | */ |
314 | #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a) |
315 | |
316 | /* |
317 | * Have the 32-bit jiffies value wrap 5 minutes after boot |
318 | * so jiffies wrap bugs show up earlier. |
319 | */ |
320 | #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) |
321 | |
322 | /* |
323 | * Change timeval to jiffies, trying to avoid the |
324 | * most obvious overflows.. |
325 | * |
326 | * And some not so obvious. |
327 | * |
328 | * Note that we don't want to return LONG_MAX, because |
329 | * for various timeout reasons we often end up having |
330 | * to wait "jiffies+1" in order to guarantee that we wait |
331 | * at _least_ "jiffies" - so "jiffies+1" had better still |
332 | * be positive. |
333 | */ |
334 | #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) |
335 | |
336 | extern unsigned long preset_lpj; |
337 | |
338 | /* |
339 | * We want to do realistic conversions of time so we need to use the same |
340 | * values the update wall clock code uses as the jiffies size. This value |
341 | * is: TICK_NSEC (which is defined in timex.h). This |
342 | * is a constant and is in nanoseconds. We will use scaled math |
343 | * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and |
344 | * NSEC_JIFFIE_SC. Note that these defines contain nothing but |
345 | * constants and so are computed at compile time. SHIFT_HZ (computed in |
346 | * timex.h) adjusts the scaling for different HZ values. |
347 | |
348 | * Scaled math??? What is that? |
349 | * |
350 | * Scaled math is a way to do integer math on values that would, |
351 | * otherwise, either overflow, underflow, or cause undesired div |
352 | * instructions to appear in the execution path. In short, we "scale" |
353 | * up the operands so they take more bits (more precision, less |
354 | * underflow), do the desired operation and then "scale" the result back |
355 | * by the same amount. If we do the scaling by shifting we avoid the |
356 | * costly mpy and the dastardly div instructions. |
357 | |
358 | * Suppose, for example, we want to convert from seconds to jiffies |
359 | * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The |
360 | * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We |
361 | * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we |
362 | * might calculate at compile time, however, the result will only have |
363 | * about 3-4 bits of precision (less for smaller values of HZ). |
364 | * |
365 | * So, we scale as follows: |
366 | * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); |
367 | * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; |
368 | * Then we make SCALE a power of two so: |
369 | * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; |
370 | * Now we define: |
371 | * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) |
372 | * jiff = (sec * SEC_CONV) >> SCALE; |
373 | * |
374 | * Often the math we use will expand beyond 32-bits so we tell C how to |
375 | * do this and pass the 64-bit result of the mpy through the ">> SCALE" |
376 | * which should take the result back to 32-bits. We want this expansion |
377 | * to capture as much precision as possible. At the same time we don't |
378 | * want to overflow so we pick the SCALE to avoid this. In this file, |
379 | * that means using a different scale for each range of HZ values (as |
380 | * defined in timex.h). |
381 | * |
382 | * For those who want to know, gcc will give a 64-bit result from a "*" |
383 | * operator if the result is a long long AND at least one of the |
384 | * operands is cast to long long (usually just prior to the "*" so as |
385 | * not to confuse it into thinking it really has a 64-bit operand, |
386 | * which, buy the way, it can do, but it takes more code and at least 2 |
387 | * mpys). |
388 | |
389 | * We also need to be aware that one second in nanoseconds is only a |
390 | * couple of bits away from overflowing a 32-bit word, so we MUST use |
391 | * 64-bits to get the full range time in nanoseconds. |
392 | |
393 | */ |
394 | |
395 | /* |
396 | * Here are the scales we will use. One for seconds, nanoseconds and |
397 | * microseconds. |
398 | * |
399 | * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and |
400 | * check if the sign bit is set. If not, we bump the shift count by 1. |
401 | * (Gets an extra bit of precision where we can use it.) |
402 | * We know it is set for HZ = 1024 and HZ = 100 not for 1000. |
403 | * Haven't tested others. |
404 | |
405 | * Limits of cpp (for #if expressions) only long (no long long), but |
406 | * then we only need the most signicant bit. |
407 | */ |
408 | |
409 | #define SEC_JIFFIE_SC (31 - SHIFT_HZ) |
410 | #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) |
411 | #undef SEC_JIFFIE_SC |
412 | #define SEC_JIFFIE_SC (32 - SHIFT_HZ) |
413 | #endif |
414 | #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) |
415 | #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ |
416 | TICK_NSEC -1) / (u64)TICK_NSEC)) |
417 | |
418 | #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ |
419 | TICK_NSEC -1) / (u64)TICK_NSEC)) |
420 | /* |
421 | * The maximum jiffie value is (MAX_INT >> 1). Here we translate that |
422 | * into seconds. The 64-bit case will overflow if we are not careful, |
423 | * so use the messy SH_DIV macro to do it. Still all constants. |
424 | */ |
425 | #if BITS_PER_LONG < 64 |
426 | # define MAX_SEC_IN_JIFFIES \ |
427 | (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) |
428 | #else /* take care of overflow on 64-bit machines */ |
429 | # define MAX_SEC_IN_JIFFIES \ |
430 | (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) |
431 | |
432 | #endif |
433 | |
434 | /* |
435 | * Convert various time units to each other: |
436 | */ |
437 | extern unsigned int jiffies_to_msecs(const unsigned long j); |
438 | extern unsigned int jiffies_to_usecs(const unsigned long j); |
439 | |
440 | /** |
441 | * jiffies_to_nsecs - Convert jiffies to nanoseconds |
442 | * @j: jiffies value |
443 | * |
444 | * Return: nanoseconds value |
445 | */ |
446 | static inline u64 jiffies_to_nsecs(const unsigned long j) |
447 | { |
448 | return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC; |
449 | } |
450 | |
451 | extern u64 jiffies64_to_nsecs(u64 j); |
452 | extern u64 jiffies64_to_msecs(u64 j); |
453 | |
454 | extern unsigned long __msecs_to_jiffies(const unsigned int m); |
455 | #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) |
456 | /* |
457 | * HZ is equal to or smaller than 1000, and 1000 is a nice round |
458 | * multiple of HZ, divide with the factor between them, but round |
459 | * upwards: |
460 | */ |
461 | static inline unsigned long _msecs_to_jiffies(const unsigned int m) |
462 | { |
463 | return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); |
464 | } |
465 | #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) |
466 | /* |
467 | * HZ is larger than 1000, and HZ is a nice round multiple of 1000 - |
468 | * simply multiply with the factor between them. |
469 | * |
470 | * But first make sure the multiplication result cannot overflow: |
471 | */ |
472 | static inline unsigned long _msecs_to_jiffies(const unsigned int m) |
473 | { |
474 | if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) |
475 | return MAX_JIFFY_OFFSET; |
476 | return m * (HZ / MSEC_PER_SEC); |
477 | } |
478 | #else |
479 | /* |
480 | * Generic case - multiply, round and divide. But first check that if |
481 | * we are doing a net multiplication, that we wouldn't overflow: |
482 | */ |
483 | static inline unsigned long _msecs_to_jiffies(const unsigned int m) |
484 | { |
485 | if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) |
486 | return MAX_JIFFY_OFFSET; |
487 | |
488 | return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32; |
489 | } |
490 | #endif |
491 | /** |
492 | * msecs_to_jiffies: - convert milliseconds to jiffies |
493 | * @m: time in milliseconds |
494 | * |
495 | * conversion is done as follows: |
496 | * |
497 | * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) |
498 | * |
499 | * - 'too large' values [that would result in larger than |
500 | * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. |
501 | * |
502 | * - all other values are converted to jiffies by either multiplying |
503 | * the input value by a factor or dividing it with a factor and |
504 | * handling any 32-bit overflows. |
505 | * for the details see __msecs_to_jiffies() |
506 | * |
507 | * msecs_to_jiffies() checks for the passed in value being a constant |
508 | * via __builtin_constant_p() allowing gcc to eliminate most of the |
509 | * code. __msecs_to_jiffies() is called if the value passed does not |
510 | * allow constant folding and the actual conversion must be done at |
511 | * runtime. |
512 | * The HZ range specific helpers _msecs_to_jiffies() are called both |
513 | * directly here and from __msecs_to_jiffies() in the case where |
514 | * constant folding is not possible. |
515 | * |
516 | * Return: jiffies value |
517 | */ |
518 | static __always_inline unsigned long msecs_to_jiffies(const unsigned int m) |
519 | { |
520 | if (__builtin_constant_p(m)) { |
521 | if ((int)m < 0) |
522 | return MAX_JIFFY_OFFSET; |
523 | return _msecs_to_jiffies(m); |
524 | } else { |
525 | return __msecs_to_jiffies(m); |
526 | } |
527 | } |
528 | |
529 | extern unsigned long __usecs_to_jiffies(const unsigned int u); |
530 | #if !(USEC_PER_SEC % HZ) |
531 | static inline unsigned long _usecs_to_jiffies(const unsigned int u) |
532 | { |
533 | return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); |
534 | } |
535 | #else |
536 | static inline unsigned long _usecs_to_jiffies(const unsigned int u) |
537 | { |
538 | return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32) |
539 | >> USEC_TO_HZ_SHR32; |
540 | } |
541 | #endif |
542 | |
543 | /** |
544 | * usecs_to_jiffies: - convert microseconds to jiffies |
545 | * @u: time in microseconds |
546 | * |
547 | * conversion is done as follows: |
548 | * |
549 | * - 'too large' values [that would result in larger than |
550 | * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. |
551 | * |
552 | * - all other values are converted to jiffies by either multiplying |
553 | * the input value by a factor or dividing it with a factor and |
554 | * handling any 32-bit overflows as for msecs_to_jiffies. |
555 | * |
556 | * usecs_to_jiffies() checks for the passed in value being a constant |
557 | * via __builtin_constant_p() allowing gcc to eliminate most of the |
558 | * code. __usecs_to_jiffies() is called if the value passed does not |
559 | * allow constant folding and the actual conversion must be done at |
560 | * runtime. |
561 | * The HZ range specific helpers _usecs_to_jiffies() are called both |
562 | * directly here and from __msecs_to_jiffies() in the case where |
563 | * constant folding is not possible. |
564 | * |
565 | * Return: jiffies value |
566 | */ |
567 | static __always_inline unsigned long usecs_to_jiffies(const unsigned int u) |
568 | { |
569 | if (__builtin_constant_p(u)) { |
570 | if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) |
571 | return MAX_JIFFY_OFFSET; |
572 | return _usecs_to_jiffies(u); |
573 | } else { |
574 | return __usecs_to_jiffies(u); |
575 | } |
576 | } |
577 | |
578 | extern unsigned long timespec64_to_jiffies(const struct timespec64 *value); |
579 | extern void jiffies_to_timespec64(const unsigned long jiffies, |
580 | struct timespec64 *value); |
581 | extern clock_t jiffies_to_clock_t(unsigned long x); |
582 | |
583 | static inline clock_t jiffies_delta_to_clock_t(long delta) |
584 | { |
585 | return jiffies_to_clock_t(max(0L, delta)); |
586 | } |
587 | |
588 | static inline unsigned int jiffies_delta_to_msecs(long delta) |
589 | { |
590 | return jiffies_to_msecs(max(0L, delta)); |
591 | } |
592 | |
593 | extern unsigned long clock_t_to_jiffies(unsigned long x); |
594 | extern u64 jiffies_64_to_clock_t(u64 x); |
595 | extern u64 nsec_to_clock_t(u64 x); |
596 | extern u64 nsecs_to_jiffies64(u64 n); |
597 | extern unsigned long nsecs_to_jiffies(u64 n); |
598 | |
599 | #define TIMESTAMP_SIZE 30 |
600 | |
601 | #endif |
602 | |