1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * KCSAN access checks and modifiers. These can be used to explicitly check
4 * uninstrumented accesses, or change KCSAN checking behaviour of accesses.
5 *
6 * Copyright (C) 2019, Google LLC.
7 */
8
9#ifndef _LINUX_KCSAN_CHECKS_H
10#define _LINUX_KCSAN_CHECKS_H
11
12/* Note: Only include what is already included by compiler.h. */
13#include <linux/compiler_attributes.h>
14#include <linux/types.h>
15
16/* Access types -- if KCSAN_ACCESS_WRITE is not set, the access is a read. */
17#define KCSAN_ACCESS_WRITE (1 << 0) /* Access is a write. */
18#define KCSAN_ACCESS_COMPOUND (1 << 1) /* Compounded read-write instrumentation. */
19#define KCSAN_ACCESS_ATOMIC (1 << 2) /* Access is atomic. */
20/* The following are special, and never due to compiler instrumentation. */
21#define KCSAN_ACCESS_ASSERT (1 << 3) /* Access is an assertion. */
22#define KCSAN_ACCESS_SCOPED (1 << 4) /* Access is a scoped access. */
23
24/*
25 * __kcsan_*: Always calls into the runtime when KCSAN is enabled. This may be used
26 * even in compilation units that selectively disable KCSAN, but must use KCSAN
27 * to validate access to an address. Never use these in header files!
28 */
29#ifdef CONFIG_KCSAN
30/**
31 * __kcsan_check_access - check generic access for races
32 *
33 * @ptr: address of access
34 * @size: size of access
35 * @type: access type modifier
36 */
37void __kcsan_check_access(const volatile void *ptr, size_t size, int type);
38
39/*
40 * See definition of __tsan_atomic_signal_fence() in kernel/kcsan/core.c.
41 * Note: The mappings are arbitrary, and do not reflect any real mappings of C11
42 * memory orders to the LKMM memory orders and vice-versa!
43 */
44#define __KCSAN_BARRIER_TO_SIGNAL_FENCE_mb __ATOMIC_SEQ_CST
45#define __KCSAN_BARRIER_TO_SIGNAL_FENCE_wmb __ATOMIC_ACQ_REL
46#define __KCSAN_BARRIER_TO_SIGNAL_FENCE_rmb __ATOMIC_ACQUIRE
47#define __KCSAN_BARRIER_TO_SIGNAL_FENCE_release __ATOMIC_RELEASE
48
49/**
50 * __kcsan_mb - full memory barrier instrumentation
51 */
52void __kcsan_mb(void);
53
54/**
55 * __kcsan_wmb - write memory barrier instrumentation
56 */
57void __kcsan_wmb(void);
58
59/**
60 * __kcsan_rmb - read memory barrier instrumentation
61 */
62void __kcsan_rmb(void);
63
64/**
65 * __kcsan_release - release barrier instrumentation
66 */
67void __kcsan_release(void);
68
69/**
70 * kcsan_disable_current - disable KCSAN for the current context
71 *
72 * Supports nesting.
73 */
74void kcsan_disable_current(void);
75
76/**
77 * kcsan_enable_current - re-enable KCSAN for the current context
78 *
79 * Supports nesting.
80 */
81void kcsan_enable_current(void);
82void kcsan_enable_current_nowarn(void); /* Safe in uaccess regions. */
83
84/**
85 * kcsan_nestable_atomic_begin - begin nestable atomic region
86 *
87 * Accesses within the atomic region may appear to race with other accesses but
88 * should be considered atomic.
89 */
90void kcsan_nestable_atomic_begin(void);
91
92/**
93 * kcsan_nestable_atomic_end - end nestable atomic region
94 */
95void kcsan_nestable_atomic_end(void);
96
97/**
98 * kcsan_flat_atomic_begin - begin flat atomic region
99 *
100 * Accesses within the atomic region may appear to race with other accesses but
101 * should be considered atomic.
102 */
103void kcsan_flat_atomic_begin(void);
104
105/**
106 * kcsan_flat_atomic_end - end flat atomic region
107 */
108void kcsan_flat_atomic_end(void);
109
110/**
111 * kcsan_atomic_next - consider following accesses as atomic
112 *
113 * Force treating the next n memory accesses for the current context as atomic
114 * operations.
115 *
116 * @n: number of following memory accesses to treat as atomic.
117 */
118void kcsan_atomic_next(int n);
119
120/**
121 * kcsan_set_access_mask - set access mask
122 *
123 * Set the access mask for all accesses for the current context if non-zero.
124 * Only value changes to bits set in the mask will be reported.
125 *
126 * @mask: bitmask
127 */
128void kcsan_set_access_mask(unsigned long mask);
129
130/* Scoped access information. */
131struct kcsan_scoped_access {
132 union {
133 struct list_head list; /* scoped_accesses list */
134 /*
135 * Not an entry in scoped_accesses list; stack depth from where
136 * the access was initialized.
137 */
138 int stack_depth;
139 };
140
141 /* Access information. */
142 const volatile void *ptr;
143 size_t size;
144 int type;
145 /* Location where scoped access was set up. */
146 unsigned long ip;
147};
148/*
149 * Automatically call kcsan_end_scoped_access() when kcsan_scoped_access goes
150 * out of scope; relies on attribute "cleanup", which is supported by all
151 * compilers that support KCSAN.
152 */
153#define __kcsan_cleanup_scoped \
154 __maybe_unused __attribute__((__cleanup__(kcsan_end_scoped_access)))
155
156/**
157 * kcsan_begin_scoped_access - begin scoped access
158 *
159 * Begin scoped access and initialize @sa, which will cause KCSAN to
160 * continuously check the memory range in the current thread until
161 * kcsan_end_scoped_access() is called for @sa.
162 *
163 * Scoped accesses are implemented by appending @sa to an internal list for the
164 * current execution context, and then checked on every call into the KCSAN
165 * runtime.
166 *
167 * @ptr: address of access
168 * @size: size of access
169 * @type: access type modifier
170 * @sa: struct kcsan_scoped_access to use for the scope of the access
171 */
172struct kcsan_scoped_access *
173kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
174 struct kcsan_scoped_access *sa);
175
176/**
177 * kcsan_end_scoped_access - end scoped access
178 *
179 * End a scoped access, which will stop KCSAN checking the memory range.
180 * Requires that kcsan_begin_scoped_access() was previously called once for @sa.
181 *
182 * @sa: a previously initialized struct kcsan_scoped_access
183 */
184void kcsan_end_scoped_access(struct kcsan_scoped_access *sa);
185
186
187#else /* CONFIG_KCSAN */
188
189static inline void __kcsan_check_access(const volatile void *ptr, size_t size,
190 int type) { }
191
192static inline void __kcsan_mb(void) { }
193static inline void __kcsan_wmb(void) { }
194static inline void __kcsan_rmb(void) { }
195static inline void __kcsan_release(void) { }
196static inline void kcsan_disable_current(void) { }
197static inline void kcsan_enable_current(void) { }
198static inline void kcsan_enable_current_nowarn(void) { }
199static inline void kcsan_nestable_atomic_begin(void) { }
200static inline void kcsan_nestable_atomic_end(void) { }
201static inline void kcsan_flat_atomic_begin(void) { }
202static inline void kcsan_flat_atomic_end(void) { }
203static inline void kcsan_atomic_next(int n) { }
204static inline void kcsan_set_access_mask(unsigned long mask) { }
205
206struct kcsan_scoped_access { };
207#define __kcsan_cleanup_scoped __maybe_unused
208static inline struct kcsan_scoped_access *
209kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
210 struct kcsan_scoped_access *sa) { return sa; }
211static inline void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) { }
212
213#endif /* CONFIG_KCSAN */
214
215#ifdef __SANITIZE_THREAD__
216/*
217 * Only calls into the runtime when the particular compilation unit has KCSAN
218 * instrumentation enabled. May be used in header files.
219 */
220#define kcsan_check_access __kcsan_check_access
221
222/*
223 * Only use these to disable KCSAN for accesses in the current compilation unit;
224 * calls into libraries may still perform KCSAN checks.
225 */
226#define __kcsan_disable_current kcsan_disable_current
227#define __kcsan_enable_current kcsan_enable_current_nowarn
228#else /* __SANITIZE_THREAD__ */
229static inline void kcsan_check_access(const volatile void *ptr, size_t size,
230 int type) { }
231static inline void __kcsan_enable_current(void) { }
232static inline void __kcsan_disable_current(void) { }
233#endif /* __SANITIZE_THREAD__ */
234
235#if defined(CONFIG_KCSAN_WEAK_MEMORY) && defined(__SANITIZE_THREAD__)
236/*
237 * Normal barrier instrumentation is not done via explicit calls, but by mapping
238 * to a repurposed __atomic_signal_fence(), which normally does not generate any
239 * real instructions, but is still intercepted by fsanitize=thread. This means,
240 * like any other compile-time instrumentation, barrier instrumentation can be
241 * disabled with the __no_kcsan function attribute.
242 *
243 * Also see definition of __tsan_atomic_signal_fence() in kernel/kcsan/core.c.
244 *
245 * These are all macros, like <asm/barrier.h>, since some architectures use them
246 * in non-static inline functions.
247 */
248#define __KCSAN_BARRIER_TO_SIGNAL_FENCE(name) \
249 do { \
250 barrier(); \
251 __atomic_signal_fence(__KCSAN_BARRIER_TO_SIGNAL_FENCE_##name); \
252 barrier(); \
253 } while (0)
254#define kcsan_mb() __KCSAN_BARRIER_TO_SIGNAL_FENCE(mb)
255#define kcsan_wmb() __KCSAN_BARRIER_TO_SIGNAL_FENCE(wmb)
256#define kcsan_rmb() __KCSAN_BARRIER_TO_SIGNAL_FENCE(rmb)
257#define kcsan_release() __KCSAN_BARRIER_TO_SIGNAL_FENCE(release)
258#elif defined(CONFIG_KCSAN_WEAK_MEMORY) && defined(__KCSAN_INSTRUMENT_BARRIERS__)
259#define kcsan_mb __kcsan_mb
260#define kcsan_wmb __kcsan_wmb
261#define kcsan_rmb __kcsan_rmb
262#define kcsan_release __kcsan_release
263#else /* CONFIG_KCSAN_WEAK_MEMORY && ... */
264#define kcsan_mb() do { } while (0)
265#define kcsan_wmb() do { } while (0)
266#define kcsan_rmb() do { } while (0)
267#define kcsan_release() do { } while (0)
268#endif /* CONFIG_KCSAN_WEAK_MEMORY && ... */
269
270/**
271 * __kcsan_check_read - check regular read access for races
272 *
273 * @ptr: address of access
274 * @size: size of access
275 */
276#define __kcsan_check_read(ptr, size) __kcsan_check_access(ptr, size, 0)
277
278/**
279 * __kcsan_check_write - check regular write access for races
280 *
281 * @ptr: address of access
282 * @size: size of access
283 */
284#define __kcsan_check_write(ptr, size) \
285 __kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
286
287/**
288 * __kcsan_check_read_write - check regular read-write access for races
289 *
290 * @ptr: address of access
291 * @size: size of access
292 */
293#define __kcsan_check_read_write(ptr, size) \
294 __kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
295
296/**
297 * kcsan_check_read - check regular read access for races
298 *
299 * @ptr: address of access
300 * @size: size of access
301 */
302#define kcsan_check_read(ptr, size) kcsan_check_access(ptr, size, 0)
303
304/**
305 * kcsan_check_write - check regular write access for races
306 *
307 * @ptr: address of access
308 * @size: size of access
309 */
310#define kcsan_check_write(ptr, size) \
311 kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
312
313/**
314 * kcsan_check_read_write - check regular read-write access for races
315 *
316 * @ptr: address of access
317 * @size: size of access
318 */
319#define kcsan_check_read_write(ptr, size) \
320 kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
321
322/*
323 * Check for atomic accesses: if atomic accesses are not ignored, this simply
324 * aliases to kcsan_check_access(), otherwise becomes a no-op.
325 */
326#ifdef CONFIG_KCSAN_IGNORE_ATOMICS
327#define kcsan_check_atomic_read(...) do { } while (0)
328#define kcsan_check_atomic_write(...) do { } while (0)
329#define kcsan_check_atomic_read_write(...) do { } while (0)
330#else
331#define kcsan_check_atomic_read(ptr, size) \
332 kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC)
333#define kcsan_check_atomic_write(ptr, size) \
334 kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE)
335#define kcsan_check_atomic_read_write(ptr, size) \
336 kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND)
337#endif
338
339/**
340 * ASSERT_EXCLUSIVE_WRITER - assert no concurrent writes to @var
341 *
342 * Assert that there are no concurrent writes to @var; other readers are
343 * allowed. This assertion can be used to specify properties of concurrent code,
344 * where violation cannot be detected as a normal data race.
345 *
346 * For example, if we only have a single writer, but multiple concurrent
347 * readers, to avoid data races, all these accesses must be marked; even
348 * concurrent marked writes racing with the single writer are bugs.
349 * Unfortunately, due to being marked, they are no longer data races. For cases
350 * like these, we can use the macro as follows:
351 *
352 * .. code-block:: c
353 *
354 * void writer(void) {
355 * spin_lock(&update_foo_lock);
356 * ASSERT_EXCLUSIVE_WRITER(shared_foo);
357 * WRITE_ONCE(shared_foo, ...);
358 * spin_unlock(&update_foo_lock);
359 * }
360 * void reader(void) {
361 * // update_foo_lock does not need to be held!
362 * ... = READ_ONCE(shared_foo);
363 * }
364 *
365 * Note: ASSERT_EXCLUSIVE_WRITER_SCOPED(), if applicable, performs more thorough
366 * checking if a clear scope where no concurrent writes are expected exists.
367 *
368 * @var: variable to assert on
369 */
370#define ASSERT_EXCLUSIVE_WRITER(var) \
371 __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT)
372
373/*
374 * Helper macros for implementation of for ASSERT_EXCLUSIVE_*_SCOPED(). @id is
375 * expected to be unique for the scope in which instances of kcsan_scoped_access
376 * are declared.
377 */
378#define __kcsan_scoped_name(c, suffix) __kcsan_scoped_##c##suffix
379#define __ASSERT_EXCLUSIVE_SCOPED(var, type, id) \
380 struct kcsan_scoped_access __kcsan_scoped_name(id, _) \
381 __kcsan_cleanup_scoped; \
382 struct kcsan_scoped_access *__kcsan_scoped_name(id, _dummy_p) \
383 __maybe_unused = kcsan_begin_scoped_access( \
384 &(var), sizeof(var), KCSAN_ACCESS_SCOPED | (type), \
385 &__kcsan_scoped_name(id, _))
386
387/**
388 * ASSERT_EXCLUSIVE_WRITER_SCOPED - assert no concurrent writes to @var in scope
389 *
390 * Scoped variant of ASSERT_EXCLUSIVE_WRITER().
391 *
392 * Assert that there are no concurrent writes to @var for the duration of the
393 * scope in which it is introduced. This provides a better way to fully cover
394 * the enclosing scope, compared to multiple ASSERT_EXCLUSIVE_WRITER(), and
395 * increases the likelihood for KCSAN to detect racing accesses.
396 *
397 * For example, it allows finding race-condition bugs that only occur due to
398 * state changes within the scope itself:
399 *
400 * .. code-block:: c
401 *
402 * void writer(void) {
403 * spin_lock(&update_foo_lock);
404 * {
405 * ASSERT_EXCLUSIVE_WRITER_SCOPED(shared_foo);
406 * WRITE_ONCE(shared_foo, 42);
407 * ...
408 * // shared_foo should still be 42 here!
409 * }
410 * spin_unlock(&update_foo_lock);
411 * }
412 * void buggy(void) {
413 * if (READ_ONCE(shared_foo) == 42)
414 * WRITE_ONCE(shared_foo, 1); // bug!
415 * }
416 *
417 * @var: variable to assert on
418 */
419#define ASSERT_EXCLUSIVE_WRITER_SCOPED(var) \
420 __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_ASSERT, __COUNTER__)
421
422/**
423 * ASSERT_EXCLUSIVE_ACCESS - assert no concurrent accesses to @var
424 *
425 * Assert that there are no concurrent accesses to @var (no readers nor
426 * writers). This assertion can be used to specify properties of concurrent
427 * code, where violation cannot be detected as a normal data race.
428 *
429 * For example, where exclusive access is expected after determining no other
430 * users of an object are left, but the object is not actually freed. We can
431 * check that this property actually holds as follows:
432 *
433 * .. code-block:: c
434 *
435 * if (refcount_dec_and_test(&obj->refcnt)) {
436 * ASSERT_EXCLUSIVE_ACCESS(*obj);
437 * do_some_cleanup(obj);
438 * release_for_reuse(obj);
439 * }
440 *
441 * Note:
442 *
443 * 1. ASSERT_EXCLUSIVE_ACCESS_SCOPED(), if applicable, performs more thorough
444 * checking if a clear scope where no concurrent accesses are expected exists.
445 *
446 * 2. For cases where the object is freed, `KASAN <kasan.html>`_ is a better
447 * fit to detect use-after-free bugs.
448 *
449 * @var: variable to assert on
450 */
451#define ASSERT_EXCLUSIVE_ACCESS(var) \
452 __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT)
453
454/**
455 * ASSERT_EXCLUSIVE_ACCESS_SCOPED - assert no concurrent accesses to @var in scope
456 *
457 * Scoped variant of ASSERT_EXCLUSIVE_ACCESS().
458 *
459 * Assert that there are no concurrent accesses to @var (no readers nor writers)
460 * for the entire duration of the scope in which it is introduced. This provides
461 * a better way to fully cover the enclosing scope, compared to multiple
462 * ASSERT_EXCLUSIVE_ACCESS(), and increases the likelihood for KCSAN to detect
463 * racing accesses.
464 *
465 * @var: variable to assert on
466 */
467#define ASSERT_EXCLUSIVE_ACCESS_SCOPED(var) \
468 __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, __COUNTER__)
469
470/**
471 * ASSERT_EXCLUSIVE_BITS - assert no concurrent writes to subset of bits in @var
472 *
473 * Bit-granular variant of ASSERT_EXCLUSIVE_WRITER().
474 *
475 * Assert that there are no concurrent writes to a subset of bits in @var;
476 * concurrent readers are permitted. This assertion captures more detailed
477 * bit-level properties, compared to the other (word granularity) assertions.
478 * Only the bits set in @mask are checked for concurrent modifications, while
479 * ignoring the remaining bits, i.e. concurrent writes (or reads) to ~mask bits
480 * are ignored.
481 *
482 * Use this for variables, where some bits must not be modified concurrently,
483 * yet other bits are expected to be modified concurrently.
484 *
485 * For example, variables where, after initialization, some bits are read-only,
486 * but other bits may still be modified concurrently. A reader may wish to
487 * assert that this is true as follows:
488 *
489 * .. code-block:: c
490 *
491 * ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
492 * foo = (READ_ONCE(flags) & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
493 *
494 * Note: The access that immediately follows ASSERT_EXCLUSIVE_BITS() is assumed
495 * to access the masked bits only, and KCSAN optimistically assumes it is
496 * therefore safe, even in the presence of data races, and marking it with
497 * READ_ONCE() is optional from KCSAN's point-of-view. We caution, however, that
498 * it may still be advisable to do so, since we cannot reason about all compiler
499 * optimizations when it comes to bit manipulations (on the reader and writer
500 * side). If you are sure nothing can go wrong, we can write the above simply
501 * as:
502 *
503 * .. code-block:: c
504 *
505 * ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
506 * foo = (flags & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
507 *
508 * Another example, where this may be used, is when certain bits of @var may
509 * only be modified when holding the appropriate lock, but other bits may still
510 * be modified concurrently. Writers, where other bits may change concurrently,
511 * could use the assertion as follows:
512 *
513 * .. code-block:: c
514 *
515 * spin_lock(&foo_lock);
516 * ASSERT_EXCLUSIVE_BITS(flags, FOO_MASK);
517 * old_flags = flags;
518 * new_flags = (old_flags & ~FOO_MASK) | (new_foo << FOO_SHIFT);
519 * if (cmpxchg(&flags, old_flags, new_flags) != old_flags) { ... }
520 * spin_unlock(&foo_lock);
521 *
522 * @var: variable to assert on
523 * @mask: only check for modifications to bits set in @mask
524 */
525#define ASSERT_EXCLUSIVE_BITS(var, mask) \
526 do { \
527 kcsan_set_access_mask(mask); \
528 __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT);\
529 kcsan_set_access_mask(0); \
530 kcsan_atomic_next(1); \
531 } while (0)
532
533#endif /* _LINUX_KCSAN_CHECKS_H */
534

source code of linux/include/linux/kcsan-checks.h