1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/bug.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/atomic.h>
13#include <linux/debug_locks.h>
14#include <linux/mm_types.h>
15#include <linux/mmap_lock.h>
16#include <linux/range.h>
17#include <linux/pfn.h>
18#include <linux/percpu-refcount.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22#include <linux/page_ext.h>
23#include <linux/err.h>
24#include <linux/page-flags.h>
25#include <linux/page_ref.h>
26#include <linux/overflow.h>
27#include <linux/sizes.h>
28#include <linux/sched.h>
29#include <linux/pgtable.h>
30#include <linux/kasan.h>
31#include <linux/memremap.h>
32#include <linux/slab.h>
33
34struct mempolicy;
35struct anon_vma;
36struct anon_vma_chain;
37struct user_struct;
38struct pt_regs;
39
40extern int sysctl_page_lock_unfairness;
41
42void mm_core_init(void);
43void init_mm_internals(void);
44
45#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
46extern unsigned long max_mapnr;
47
48static inline void set_max_mapnr(unsigned long limit)
49{
50 max_mapnr = limit;
51}
52#else
53static inline void set_max_mapnr(unsigned long limit) { }
54#endif
55
56extern atomic_long_t _totalram_pages;
57static inline unsigned long totalram_pages(void)
58{
59 return (unsigned long)atomic_long_read(v: &_totalram_pages);
60}
61
62static inline void totalram_pages_inc(void)
63{
64 atomic_long_inc(v: &_totalram_pages);
65}
66
67static inline void totalram_pages_dec(void)
68{
69 atomic_long_dec(v: &_totalram_pages);
70}
71
72static inline void totalram_pages_add(long count)
73{
74 atomic_long_add(i: count, v: &_totalram_pages);
75}
76
77extern void * high_memory;
78extern int page_cluster;
79extern const int page_cluster_max;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
98#include <asm/page.h>
99#include <asm/processor.h>
100
101#ifndef __pa_symbol
102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103#endif
104
105#ifndef page_to_virt
106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107#endif
108
109#ifndef lm_alias
110#define lm_alias(x) __va(__pa_symbol(x))
111#endif
112
113/*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120#ifndef mm_forbids_zeropage
121#define mm_forbids_zeropage(X) (0)
122#endif
123
124/*
125 * On some architectures it is expensive to call memset() for small sizes.
126 * If an architecture decides to implement their own version of
127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128 * define their own version of this macro in <asm/pgtable.h>
129 */
130#if BITS_PER_LONG == 64
131/* This function must be updated when the size of struct page grows above 96
132 * or reduces below 56. The idea that compiler optimizes out switch()
133 * statement, and only leaves move/store instructions. Also the compiler can
134 * combine write statements if they are both assignments and can be reordered,
135 * this can result in several of the writes here being dropped.
136 */
137#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138static inline void __mm_zero_struct_page(struct page *page)
139{
140 unsigned long *_pp = (void *)page;
141
142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
143 BUILD_BUG_ON(sizeof(struct page) & 7);
144 BUILD_BUG_ON(sizeof(struct page) < 56);
145 BUILD_BUG_ON(sizeof(struct page) > 96);
146
147 switch (sizeof(struct page)) {
148 case 96:
149 _pp[11] = 0;
150 fallthrough;
151 case 88:
152 _pp[10] = 0;
153 fallthrough;
154 case 80:
155 _pp[9] = 0;
156 fallthrough;
157 case 72:
158 _pp[8] = 0;
159 fallthrough;
160 case 64:
161 _pp[7] = 0;
162 fallthrough;
163 case 56:
164 _pp[6] = 0;
165 _pp[5] = 0;
166 _pp[4] = 0;
167 _pp[3] = 0;
168 _pp[2] = 0;
169 _pp[1] = 0;
170 _pp[0] = 0;
171 }
172}
173#else
174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
175#endif
176
177/*
178 * Default maximum number of active map areas, this limits the number of vmas
179 * per mm struct. Users can overwrite this number by sysctl but there is a
180 * problem.
181 *
182 * When a program's coredump is generated as ELF format, a section is created
183 * per a vma. In ELF, the number of sections is represented in unsigned short.
184 * This means the number of sections should be smaller than 65535 at coredump.
185 * Because the kernel adds some informative sections to a image of program at
186 * generating coredump, we need some margin. The number of extra sections is
187 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 *
189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190 * not a hard limit any more. Although some userspace tools can be surprised by
191 * that.
192 */
193#define MAPCOUNT_ELF_CORE_MARGIN (5)
194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195
196extern int sysctl_max_map_count;
197
198extern unsigned long sysctl_user_reserve_kbytes;
199extern unsigned long sysctl_admin_reserve_kbytes;
200
201extern int sysctl_overcommit_memory;
202extern int sysctl_overcommit_ratio;
203extern unsigned long sysctl_overcommit_kbytes;
204
205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 loff_t *);
207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
209int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
211
212#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
215#else
216#define nth_page(page,n) ((page) + (n))
217#define folio_page_idx(folio, p) ((p) - &(folio)->page)
218#endif
219
220/* to align the pointer to the (next) page boundary */
221#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222
223/* to align the pointer to the (prev) page boundary */
224#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225
226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228
229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230static inline struct folio *lru_to_folio(struct list_head *head)
231{
232 return list_entry((head)->prev, struct folio, lru);
233}
234
235void setup_initial_init_mm(void *start_code, void *end_code,
236 void *end_data, void *brk);
237
238/*
239 * Linux kernel virtual memory manager primitives.
240 * The idea being to have a "virtual" mm in the same way
241 * we have a virtual fs - giving a cleaner interface to the
242 * mm details, and allowing different kinds of memory mappings
243 * (from shared memory to executable loading to arbitrary
244 * mmap() functions).
245 */
246
247struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249void vm_area_free(struct vm_area_struct *);
250/* Use only if VMA has no other users */
251void __vm_area_free(struct vm_area_struct *vma);
252
253#ifndef CONFIG_MMU
254extern struct rb_root nommu_region_tree;
255extern struct rw_semaphore nommu_region_sem;
256
257extern unsigned int kobjsize(const void *objp);
258#endif
259
260/*
261 * vm_flags in vm_area_struct, see mm_types.h.
262 * When changing, update also include/trace/events/mmflags.h
263 */
264#define VM_NONE 0x00000000
265
266#define VM_READ 0x00000001 /* currently active flags */
267#define VM_WRITE 0x00000002
268#define VM_EXEC 0x00000004
269#define VM_SHARED 0x00000008
270
271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273#define VM_MAYWRITE 0x00000020
274#define VM_MAYEXEC 0x00000040
275#define VM_MAYSHARE 0x00000080
276
277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
278#ifdef CONFIG_MMU
279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
280#else /* CONFIG_MMU */
281#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282#define VM_UFFD_MISSING 0
283#endif /* CONFIG_MMU */
284#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
285#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
286
287#define VM_LOCKED 0x00002000
288#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
289
290 /* Used by sys_madvise() */
291#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
292#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
293
294#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
295#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
296#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
297#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
298#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
299#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
300#define VM_SYNC 0x00800000 /* Synchronous page faults */
301#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
302#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
303#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
304
305#ifdef CONFIG_MEM_SOFT_DIRTY
306# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
307#else
308# define VM_SOFTDIRTY 0
309#endif
310
311#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
312#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
313#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
314#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
315
316#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
318#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
322#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
323#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
324#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
325#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
326#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
327#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
328#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
329#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
330
331#ifdef CONFIG_ARCH_HAS_PKEYS
332# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
333# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
334# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
335# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
336# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
337#ifdef CONFIG_PPC
338# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
339#else
340# define VM_PKEY_BIT4 0
341#endif
342#endif /* CONFIG_ARCH_HAS_PKEYS */
343
344#ifdef CONFIG_X86_USER_SHADOW_STACK
345/*
346 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
347 * support core mm.
348 *
349 * These VMAs will get a single end guard page. This helps userspace protect
350 * itself from attacks. A single page is enough for current shadow stack archs
351 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
352 * for more details on the guard size.
353 */
354# define VM_SHADOW_STACK VM_HIGH_ARCH_5
355#else
356# define VM_SHADOW_STACK VM_NONE
357#endif
358
359#if defined(CONFIG_X86)
360# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
361#elif defined(CONFIG_PPC)
362# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
363#elif defined(CONFIG_PARISC)
364# define VM_GROWSUP VM_ARCH_1
365#elif defined(CONFIG_SPARC64)
366# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
367# define VM_ARCH_CLEAR VM_SPARC_ADI
368#elif defined(CONFIG_ARM64)
369# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
370# define VM_ARCH_CLEAR VM_ARM64_BTI
371#elif !defined(CONFIG_MMU)
372# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
373#endif
374
375#if defined(CONFIG_ARM64_MTE)
376# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
377# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
378#else
379# define VM_MTE VM_NONE
380# define VM_MTE_ALLOWED VM_NONE
381#endif
382
383#ifndef VM_GROWSUP
384# define VM_GROWSUP VM_NONE
385#endif
386
387#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
388# define VM_UFFD_MINOR_BIT 38
389# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
390#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
391# define VM_UFFD_MINOR VM_NONE
392#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
393
394/* Bits set in the VMA until the stack is in its final location */
395#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
396
397#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
398
399/* Common data flag combinations */
400#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
401 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
402#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
403 VM_MAYWRITE | VM_MAYEXEC)
404#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
405 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
406
407#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
408#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
409#endif
410
411#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
412#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
413#endif
414
415#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
416
417#ifdef CONFIG_STACK_GROWSUP
418#define VM_STACK VM_GROWSUP
419#define VM_STACK_EARLY VM_GROWSDOWN
420#else
421#define VM_STACK VM_GROWSDOWN
422#define VM_STACK_EARLY 0
423#endif
424
425#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
426
427/* VMA basic access permission flags */
428#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
429
430
431/*
432 * Special vmas that are non-mergable, non-mlock()able.
433 */
434#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
435
436/* This mask prevents VMA from being scanned with khugepaged */
437#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
438
439/* This mask defines which mm->def_flags a process can inherit its parent */
440#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
441
442/* This mask represents all the VMA flag bits used by mlock */
443#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
444
445/* Arch-specific flags to clear when updating VM flags on protection change */
446#ifndef VM_ARCH_CLEAR
447# define VM_ARCH_CLEAR VM_NONE
448#endif
449#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
450
451/*
452 * mapping from the currently active vm_flags protection bits (the
453 * low four bits) to a page protection mask..
454 */
455
456/*
457 * The default fault flags that should be used by most of the
458 * arch-specific page fault handlers.
459 */
460#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
461 FAULT_FLAG_KILLABLE | \
462 FAULT_FLAG_INTERRUPTIBLE)
463
464/**
465 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
466 * @flags: Fault flags.
467 *
468 * This is mostly used for places where we want to try to avoid taking
469 * the mmap_lock for too long a time when waiting for another condition
470 * to change, in which case we can try to be polite to release the
471 * mmap_lock in the first round to avoid potential starvation of other
472 * processes that would also want the mmap_lock.
473 *
474 * Return: true if the page fault allows retry and this is the first
475 * attempt of the fault handling; false otherwise.
476 */
477static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
478{
479 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
480 (!(flags & FAULT_FLAG_TRIED));
481}
482
483#define FAULT_FLAG_TRACE \
484 { FAULT_FLAG_WRITE, "WRITE" }, \
485 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
486 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
487 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
488 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
489 { FAULT_FLAG_TRIED, "TRIED" }, \
490 { FAULT_FLAG_USER, "USER" }, \
491 { FAULT_FLAG_REMOTE, "REMOTE" }, \
492 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
493 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
494 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
495
496/*
497 * vm_fault is filled by the pagefault handler and passed to the vma's
498 * ->fault function. The vma's ->fault is responsible for returning a bitmask
499 * of VM_FAULT_xxx flags that give details about how the fault was handled.
500 *
501 * MM layer fills up gfp_mask for page allocations but fault handler might
502 * alter it if its implementation requires a different allocation context.
503 *
504 * pgoff should be used in favour of virtual_address, if possible.
505 */
506struct vm_fault {
507 const struct {
508 struct vm_area_struct *vma; /* Target VMA */
509 gfp_t gfp_mask; /* gfp mask to be used for allocations */
510 pgoff_t pgoff; /* Logical page offset based on vma */
511 unsigned long address; /* Faulting virtual address - masked */
512 unsigned long real_address; /* Faulting virtual address - unmasked */
513 };
514 enum fault_flag flags; /* FAULT_FLAG_xxx flags
515 * XXX: should really be 'const' */
516 pmd_t *pmd; /* Pointer to pmd entry matching
517 * the 'address' */
518 pud_t *pud; /* Pointer to pud entry matching
519 * the 'address'
520 */
521 union {
522 pte_t orig_pte; /* Value of PTE at the time of fault */
523 pmd_t orig_pmd; /* Value of PMD at the time of fault,
524 * used by PMD fault only.
525 */
526 };
527
528 struct page *cow_page; /* Page handler may use for COW fault */
529 struct page *page; /* ->fault handlers should return a
530 * page here, unless VM_FAULT_NOPAGE
531 * is set (which is also implied by
532 * VM_FAULT_ERROR).
533 */
534 /* These three entries are valid only while holding ptl lock */
535 pte_t *pte; /* Pointer to pte entry matching
536 * the 'address'. NULL if the page
537 * table hasn't been allocated.
538 */
539 spinlock_t *ptl; /* Page table lock.
540 * Protects pte page table if 'pte'
541 * is not NULL, otherwise pmd.
542 */
543 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
544 * vm_ops->map_pages() sets up a page
545 * table from atomic context.
546 * do_fault_around() pre-allocates
547 * page table to avoid allocation from
548 * atomic context.
549 */
550};
551
552/*
553 * These are the virtual MM functions - opening of an area, closing and
554 * unmapping it (needed to keep files on disk up-to-date etc), pointer
555 * to the functions called when a no-page or a wp-page exception occurs.
556 */
557struct vm_operations_struct {
558 void (*open)(struct vm_area_struct * area);
559 /**
560 * @close: Called when the VMA is being removed from the MM.
561 * Context: User context. May sleep. Caller holds mmap_lock.
562 */
563 void (*close)(struct vm_area_struct * area);
564 /* Called any time before splitting to check if it's allowed */
565 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
566 int (*mremap)(struct vm_area_struct *area);
567 /*
568 * Called by mprotect() to make driver-specific permission
569 * checks before mprotect() is finalised. The VMA must not
570 * be modified. Returns 0 if mprotect() can proceed.
571 */
572 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
573 unsigned long end, unsigned long newflags);
574 vm_fault_t (*fault)(struct vm_fault *vmf);
575 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
576 vm_fault_t (*map_pages)(struct vm_fault *vmf,
577 pgoff_t start_pgoff, pgoff_t end_pgoff);
578 unsigned long (*pagesize)(struct vm_area_struct * area);
579
580 /* notification that a previously read-only page is about to become
581 * writable, if an error is returned it will cause a SIGBUS */
582 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
583
584 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
585 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
586
587 /* called by access_process_vm when get_user_pages() fails, typically
588 * for use by special VMAs. See also generic_access_phys() for a generic
589 * implementation useful for any iomem mapping.
590 */
591 int (*access)(struct vm_area_struct *vma, unsigned long addr,
592 void *buf, int len, int write);
593
594 /* Called by the /proc/PID/maps code to ask the vma whether it
595 * has a special name. Returning non-NULL will also cause this
596 * vma to be dumped unconditionally. */
597 const char *(*name)(struct vm_area_struct *vma);
598
599#ifdef CONFIG_NUMA
600 /*
601 * set_policy() op must add a reference to any non-NULL @new mempolicy
602 * to hold the policy upon return. Caller should pass NULL @new to
603 * remove a policy and fall back to surrounding context--i.e. do not
604 * install a MPOL_DEFAULT policy, nor the task or system default
605 * mempolicy.
606 */
607 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
608
609 /*
610 * get_policy() op must add reference [mpol_get()] to any policy at
611 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
612 * in mm/mempolicy.c will do this automatically.
613 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
614 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
615 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
616 * must return NULL--i.e., do not "fallback" to task or system default
617 * policy.
618 */
619 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
620 unsigned long addr, pgoff_t *ilx);
621#endif
622 /*
623 * Called by vm_normal_page() for special PTEs to find the
624 * page for @addr. This is useful if the default behavior
625 * (using pte_page()) would not find the correct page.
626 */
627 struct page *(*find_special_page)(struct vm_area_struct *vma,
628 unsigned long addr);
629};
630
631#ifdef CONFIG_NUMA_BALANCING
632static inline void vma_numab_state_init(struct vm_area_struct *vma)
633{
634 vma->numab_state = NULL;
635}
636static inline void vma_numab_state_free(struct vm_area_struct *vma)
637{
638 kfree(objp: vma->numab_state);
639}
640#else
641static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
642static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
643#endif /* CONFIG_NUMA_BALANCING */
644
645#ifdef CONFIG_PER_VMA_LOCK
646/*
647 * Try to read-lock a vma. The function is allowed to occasionally yield false
648 * locked result to avoid performance overhead, in which case we fall back to
649 * using mmap_lock. The function should never yield false unlocked result.
650 */
651static inline bool vma_start_read(struct vm_area_struct *vma)
652{
653 /*
654 * Check before locking. A race might cause false locked result.
655 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
656 * ACQUIRE semantics, because this is just a lockless check whose result
657 * we don't rely on for anything - the mm_lock_seq read against which we
658 * need ordering is below.
659 */
660 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
661 return false;
662
663 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
664 return false;
665
666 /*
667 * Overflow might produce false locked result.
668 * False unlocked result is impossible because we modify and check
669 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
670 * modification invalidates all existing locks.
671 *
672 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
673 * racing with vma_end_write_all(), we only start reading from the VMA
674 * after it has been unlocked.
675 * This pairs with RELEASE semantics in vma_end_write_all().
676 */
677 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
678 up_read(sem: &vma->vm_lock->lock);
679 return false;
680 }
681 return true;
682}
683
684static inline void vma_end_read(struct vm_area_struct *vma)
685{
686 rcu_read_lock(); /* keeps vma alive till the end of up_read */
687 up_read(sem: &vma->vm_lock->lock);
688 rcu_read_unlock();
689}
690
691/* WARNING! Can only be used if mmap_lock is expected to be write-locked */
692static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
693{
694 mmap_assert_write_locked(mm: vma->vm_mm);
695
696 /*
697 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
698 * mm->mm_lock_seq can't be concurrently modified.
699 */
700 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
701 return (vma->vm_lock_seq == *mm_lock_seq);
702}
703
704/*
705 * Begin writing to a VMA.
706 * Exclude concurrent readers under the per-VMA lock until the currently
707 * write-locked mmap_lock is dropped or downgraded.
708 */
709static inline void vma_start_write(struct vm_area_struct *vma)
710{
711 int mm_lock_seq;
712
713 if (__is_vma_write_locked(vma, mm_lock_seq: &mm_lock_seq))
714 return;
715
716 down_write(sem: &vma->vm_lock->lock);
717 /*
718 * We should use WRITE_ONCE() here because we can have concurrent reads
719 * from the early lockless pessimistic check in vma_start_read().
720 * We don't really care about the correctness of that early check, but
721 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
722 */
723 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
724 up_write(sem: &vma->vm_lock->lock);
725}
726
727static inline void vma_assert_write_locked(struct vm_area_struct *vma)
728{
729 int mm_lock_seq;
730
731 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
732}
733
734static inline void vma_assert_locked(struct vm_area_struct *vma)
735{
736 if (!rwsem_is_locked(sem: &vma->vm_lock->lock))
737 vma_assert_write_locked(vma);
738}
739
740static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
741{
742 /* When detaching vma should be write-locked */
743 if (detached)
744 vma_assert_write_locked(vma);
745 vma->detached = detached;
746}
747
748static inline void release_fault_lock(struct vm_fault *vmf)
749{
750 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
751 vma_end_read(vma: vmf->vma);
752 else
753 mmap_read_unlock(mm: vmf->vma->vm_mm);
754}
755
756static inline void assert_fault_locked(struct vm_fault *vmf)
757{
758 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
759 vma_assert_locked(vma: vmf->vma);
760 else
761 mmap_assert_locked(mm: vmf->vma->vm_mm);
762}
763
764struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
765 unsigned long address);
766
767#else /* CONFIG_PER_VMA_LOCK */
768
769static inline bool vma_start_read(struct vm_area_struct *vma)
770 { return false; }
771static inline void vma_end_read(struct vm_area_struct *vma) {}
772static inline void vma_start_write(struct vm_area_struct *vma) {}
773static inline void vma_assert_write_locked(struct vm_area_struct *vma)
774 { mmap_assert_write_locked(vma->vm_mm); }
775static inline void vma_mark_detached(struct vm_area_struct *vma,
776 bool detached) {}
777
778static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
779 unsigned long address)
780{
781 return NULL;
782}
783
784static inline void release_fault_lock(struct vm_fault *vmf)
785{
786 mmap_read_unlock(vmf->vma->vm_mm);
787}
788
789static inline void assert_fault_locked(struct vm_fault *vmf)
790{
791 mmap_assert_locked(vmf->vma->vm_mm);
792}
793
794#endif /* CONFIG_PER_VMA_LOCK */
795
796extern const struct vm_operations_struct vma_dummy_vm_ops;
797
798/*
799 * WARNING: vma_init does not initialize vma->vm_lock.
800 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
801 */
802static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
803{
804 memset(vma, 0, sizeof(*vma));
805 vma->vm_mm = mm;
806 vma->vm_ops = &vma_dummy_vm_ops;
807 INIT_LIST_HEAD(list: &vma->anon_vma_chain);
808 vma_mark_detached(vma, detached: false);
809 vma_numab_state_init(vma);
810}
811
812/* Use when VMA is not part of the VMA tree and needs no locking */
813static inline void vm_flags_init(struct vm_area_struct *vma,
814 vm_flags_t flags)
815{
816 ACCESS_PRIVATE(vma, __vm_flags) = flags;
817}
818
819/*
820 * Use when VMA is part of the VMA tree and modifications need coordination
821 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
822 * it should be locked explicitly beforehand.
823 */
824static inline void vm_flags_reset(struct vm_area_struct *vma,
825 vm_flags_t flags)
826{
827 vma_assert_write_locked(vma);
828 vm_flags_init(vma, flags);
829}
830
831static inline void vm_flags_reset_once(struct vm_area_struct *vma,
832 vm_flags_t flags)
833{
834 vma_assert_write_locked(vma);
835 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
836}
837
838static inline void vm_flags_set(struct vm_area_struct *vma,
839 vm_flags_t flags)
840{
841 vma_start_write(vma);
842 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
843}
844
845static inline void vm_flags_clear(struct vm_area_struct *vma,
846 vm_flags_t flags)
847{
848 vma_start_write(vma);
849 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
850}
851
852/*
853 * Use only if VMA is not part of the VMA tree or has no other users and
854 * therefore needs no locking.
855 */
856static inline void __vm_flags_mod(struct vm_area_struct *vma,
857 vm_flags_t set, vm_flags_t clear)
858{
859 vm_flags_init(vma, flags: (vma->vm_flags | set) & ~clear);
860}
861
862/*
863 * Use only when the order of set/clear operations is unimportant, otherwise
864 * use vm_flags_{set|clear} explicitly.
865 */
866static inline void vm_flags_mod(struct vm_area_struct *vma,
867 vm_flags_t set, vm_flags_t clear)
868{
869 vma_start_write(vma);
870 __vm_flags_mod(vma, set, clear);
871}
872
873static inline void vma_set_anonymous(struct vm_area_struct *vma)
874{
875 vma->vm_ops = NULL;
876}
877
878static inline bool vma_is_anonymous(struct vm_area_struct *vma)
879{
880 return !vma->vm_ops;
881}
882
883/*
884 * Indicate if the VMA is a heap for the given task; for
885 * /proc/PID/maps that is the heap of the main task.
886 */
887static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
888{
889 return vma->vm_start <= vma->vm_mm->brk &&
890 vma->vm_end >= vma->vm_mm->start_brk;
891}
892
893/*
894 * Indicate if the VMA is a stack for the given task; for
895 * /proc/PID/maps that is the stack of the main task.
896 */
897static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
898{
899 /*
900 * We make no effort to guess what a given thread considers to be
901 * its "stack". It's not even well-defined for programs written
902 * languages like Go.
903 */
904 return vma->vm_start <= vma->vm_mm->start_stack &&
905 vma->vm_end >= vma->vm_mm->start_stack;
906}
907
908static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
909{
910 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
911
912 if (!maybe_stack)
913 return false;
914
915 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
916 VM_STACK_INCOMPLETE_SETUP)
917 return true;
918
919 return false;
920}
921
922static inline bool vma_is_foreign(struct vm_area_struct *vma)
923{
924 if (!current->mm)
925 return true;
926
927 if (current->mm != vma->vm_mm)
928 return true;
929
930 return false;
931}
932
933static inline bool vma_is_accessible(struct vm_area_struct *vma)
934{
935 return vma->vm_flags & VM_ACCESS_FLAGS;
936}
937
938static inline bool is_shared_maywrite(vm_flags_t vm_flags)
939{
940 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
941 (VM_SHARED | VM_MAYWRITE);
942}
943
944static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
945{
946 return is_shared_maywrite(vm_flags: vma->vm_flags);
947}
948
949static inline
950struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
951{
952 return mas_find(mas: &vmi->mas, max: max - 1);
953}
954
955static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
956{
957 /*
958 * Uses mas_find() to get the first VMA when the iterator starts.
959 * Calling mas_next() could skip the first entry.
960 */
961 return mas_find(mas: &vmi->mas, ULONG_MAX);
962}
963
964static inline
965struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
966{
967 return mas_next_range(mas: &vmi->mas, ULONG_MAX);
968}
969
970
971static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
972{
973 return mas_prev(mas: &vmi->mas, min: 0);
974}
975
976static inline
977struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
978{
979 return mas_prev_range(mas: &vmi->mas, max: 0);
980}
981
982static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
983{
984 return vmi->mas.index;
985}
986
987static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
988{
989 return vmi->mas.last + 1;
990}
991static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
992 unsigned long count)
993{
994 return mas_expected_entries(mas: &vmi->mas, nr_entries: count);
995}
996
997/* Free any unused preallocations */
998static inline void vma_iter_free(struct vma_iterator *vmi)
999{
1000 mas_destroy(mas: &vmi->mas);
1001}
1002
1003static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1004 struct vm_area_struct *vma)
1005{
1006 vmi->mas.index = vma->vm_start;
1007 vmi->mas.last = vma->vm_end - 1;
1008 mas_store(mas: &vmi->mas, entry: vma);
1009 if (unlikely(mas_is_err(&vmi->mas)))
1010 return -ENOMEM;
1011
1012 return 0;
1013}
1014
1015static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1016{
1017 mas_pause(mas: &vmi->mas);
1018}
1019
1020static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1021{
1022 mas_set(mas: &vmi->mas, index: addr);
1023}
1024
1025#define for_each_vma(__vmi, __vma) \
1026 while (((__vma) = vma_next(&(__vmi))) != NULL)
1027
1028/* The MM code likes to work with exclusive end addresses */
1029#define for_each_vma_range(__vmi, __vma, __end) \
1030 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1031
1032#ifdef CONFIG_SHMEM
1033/*
1034 * The vma_is_shmem is not inline because it is used only by slow
1035 * paths in userfault.
1036 */
1037bool vma_is_shmem(struct vm_area_struct *vma);
1038bool vma_is_anon_shmem(struct vm_area_struct *vma);
1039#else
1040static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1041static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1042#endif
1043
1044int vma_is_stack_for_current(struct vm_area_struct *vma);
1045
1046/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1047#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1048
1049struct mmu_gather;
1050struct inode;
1051
1052/*
1053 * compound_order() can be called without holding a reference, which means
1054 * that niceties like page_folio() don't work. These callers should be
1055 * prepared to handle wild return values. For example, PG_head may be
1056 * set before the order is initialised, or this may be a tail page.
1057 * See compaction.c for some good examples.
1058 */
1059static inline unsigned int compound_order(struct page *page)
1060{
1061 struct folio *folio = (struct folio *)page;
1062
1063 if (!test_bit(PG_head, &folio->flags))
1064 return 0;
1065 return folio->_flags_1 & 0xff;
1066}
1067
1068/**
1069 * folio_order - The allocation order of a folio.
1070 * @folio: The folio.
1071 *
1072 * A folio is composed of 2^order pages. See get_order() for the definition
1073 * of order.
1074 *
1075 * Return: The order of the folio.
1076 */
1077static inline unsigned int folio_order(struct folio *folio)
1078{
1079 if (!folio_test_large(folio))
1080 return 0;
1081 return folio->_flags_1 & 0xff;
1082}
1083
1084#include <linux/huge_mm.h>
1085
1086/*
1087 * Methods to modify the page usage count.
1088 *
1089 * What counts for a page usage:
1090 * - cache mapping (page->mapping)
1091 * - private data (page->private)
1092 * - page mapped in a task's page tables, each mapping
1093 * is counted separately
1094 *
1095 * Also, many kernel routines increase the page count before a critical
1096 * routine so they can be sure the page doesn't go away from under them.
1097 */
1098
1099/*
1100 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1101 */
1102static inline int put_page_testzero(struct page *page)
1103{
1104 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1105 return page_ref_dec_and_test(page);
1106}
1107
1108static inline int folio_put_testzero(struct folio *folio)
1109{
1110 return put_page_testzero(page: &folio->page);
1111}
1112
1113/*
1114 * Try to grab a ref unless the page has a refcount of zero, return false if
1115 * that is the case.
1116 * This can be called when MMU is off so it must not access
1117 * any of the virtual mappings.
1118 */
1119static inline bool get_page_unless_zero(struct page *page)
1120{
1121 return page_ref_add_unless(page, nr: 1, u: 0);
1122}
1123
1124static inline struct folio *folio_get_nontail_page(struct page *page)
1125{
1126 if (unlikely(!get_page_unless_zero(page)))
1127 return NULL;
1128 return (struct folio *)page;
1129}
1130
1131extern int page_is_ram(unsigned long pfn);
1132
1133enum {
1134 REGION_INTERSECTS,
1135 REGION_DISJOINT,
1136 REGION_MIXED,
1137};
1138
1139int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1140 unsigned long desc);
1141
1142/* Support for virtually mapped pages */
1143struct page *vmalloc_to_page(const void *addr);
1144unsigned long vmalloc_to_pfn(const void *addr);
1145
1146/*
1147 * Determine if an address is within the vmalloc range
1148 *
1149 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1150 * is no special casing required.
1151 */
1152#ifdef CONFIG_MMU
1153extern bool is_vmalloc_addr(const void *x);
1154extern int is_vmalloc_or_module_addr(const void *x);
1155#else
1156static inline bool is_vmalloc_addr(const void *x)
1157{
1158 return false;
1159}
1160static inline int is_vmalloc_or_module_addr(const void *x)
1161{
1162 return 0;
1163}
1164#endif
1165
1166/*
1167 * How many times the entire folio is mapped as a single unit (eg by a
1168 * PMD or PUD entry). This is probably not what you want, except for
1169 * debugging purposes - it does not include PTE-mapped sub-pages; look
1170 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1171 */
1172static inline int folio_entire_mapcount(struct folio *folio)
1173{
1174 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1175 return atomic_read(v: &folio->_entire_mapcount) + 1;
1176}
1177
1178/*
1179 * The atomic page->_mapcount, starts from -1: so that transitions
1180 * both from it and to it can be tracked, using atomic_inc_and_test
1181 * and atomic_add_negative(-1).
1182 */
1183static inline void page_mapcount_reset(struct page *page)
1184{
1185 atomic_set(v: &(page)->_mapcount, i: -1);
1186}
1187
1188/**
1189 * page_mapcount() - Number of times this precise page is mapped.
1190 * @page: The page.
1191 *
1192 * The number of times this page is mapped. If this page is part of
1193 * a large folio, it includes the number of times this page is mapped
1194 * as part of that folio.
1195 *
1196 * The result is undefined for pages which cannot be mapped into userspace.
1197 * For example SLAB or special types of pages. See function page_has_type().
1198 * They use this field in struct page differently.
1199 */
1200static inline int page_mapcount(struct page *page)
1201{
1202 int mapcount = atomic_read(v: &page->_mapcount) + 1;
1203
1204 if (unlikely(PageCompound(page)))
1205 mapcount += folio_entire_mapcount(page_folio(page));
1206
1207 return mapcount;
1208}
1209
1210int folio_total_mapcount(struct folio *folio);
1211
1212/**
1213 * folio_mapcount() - Calculate the number of mappings of this folio.
1214 * @folio: The folio.
1215 *
1216 * A large folio tracks both how many times the entire folio is mapped,
1217 * and how many times each individual page in the folio is mapped.
1218 * This function calculates the total number of times the folio is
1219 * mapped.
1220 *
1221 * Return: The number of times this folio is mapped.
1222 */
1223static inline int folio_mapcount(struct folio *folio)
1224{
1225 if (likely(!folio_test_large(folio)))
1226 return atomic_read(v: &folio->_mapcount) + 1;
1227 return folio_total_mapcount(folio);
1228}
1229
1230static inline int total_mapcount(struct page *page)
1231{
1232 if (likely(!PageCompound(page)))
1233 return atomic_read(v: &page->_mapcount) + 1;
1234 return folio_total_mapcount(page_folio(page));
1235}
1236
1237static inline bool folio_large_is_mapped(struct folio *folio)
1238{
1239 /*
1240 * Reading _entire_mapcount below could be omitted if hugetlb
1241 * participated in incrementing nr_pages_mapped when compound mapped.
1242 */
1243 return atomic_read(v: &folio->_nr_pages_mapped) > 0 ||
1244 atomic_read(v: &folio->_entire_mapcount) >= 0;
1245}
1246
1247/**
1248 * folio_mapped - Is this folio mapped into userspace?
1249 * @folio: The folio.
1250 *
1251 * Return: True if any page in this folio is referenced by user page tables.
1252 */
1253static inline bool folio_mapped(struct folio *folio)
1254{
1255 if (likely(!folio_test_large(folio)))
1256 return atomic_read(v: &folio->_mapcount) >= 0;
1257 return folio_large_is_mapped(folio);
1258}
1259
1260/*
1261 * Return true if this page is mapped into pagetables.
1262 * For compound page it returns true if any sub-page of compound page is mapped,
1263 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1264 */
1265static inline bool page_mapped(struct page *page)
1266{
1267 if (likely(!PageCompound(page)))
1268 return atomic_read(v: &page->_mapcount) >= 0;
1269 return folio_large_is_mapped(page_folio(page));
1270}
1271
1272static inline struct page *virt_to_head_page(const void *x)
1273{
1274 struct page *page = virt_to_page(x);
1275
1276 return compound_head(page);
1277}
1278
1279static inline struct folio *virt_to_folio(const void *x)
1280{
1281 struct page *page = virt_to_page(x);
1282
1283 return page_folio(page);
1284}
1285
1286void __folio_put(struct folio *folio);
1287
1288void put_pages_list(struct list_head *pages);
1289
1290void split_page(struct page *page, unsigned int order);
1291void folio_copy(struct folio *dst, struct folio *src);
1292
1293unsigned long nr_free_buffer_pages(void);
1294
1295void destroy_large_folio(struct folio *folio);
1296
1297/* Returns the number of bytes in this potentially compound page. */
1298static inline unsigned long page_size(struct page *page)
1299{
1300 return PAGE_SIZE << compound_order(page);
1301}
1302
1303/* Returns the number of bits needed for the number of bytes in a page */
1304static inline unsigned int page_shift(struct page *page)
1305{
1306 return PAGE_SHIFT + compound_order(page);
1307}
1308
1309/**
1310 * thp_order - Order of a transparent huge page.
1311 * @page: Head page of a transparent huge page.
1312 */
1313static inline unsigned int thp_order(struct page *page)
1314{
1315 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1316 return compound_order(page);
1317}
1318
1319/**
1320 * thp_size - Size of a transparent huge page.
1321 * @page: Head page of a transparent huge page.
1322 *
1323 * Return: Number of bytes in this page.
1324 */
1325static inline unsigned long thp_size(struct page *page)
1326{
1327 return PAGE_SIZE << thp_order(page);
1328}
1329
1330#ifdef CONFIG_MMU
1331/*
1332 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1333 * servicing faults for write access. In the normal case, do always want
1334 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1335 * that do not have writing enabled, when used by access_process_vm.
1336 */
1337static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1338{
1339 if (likely(vma->vm_flags & VM_WRITE))
1340 pte = pte_mkwrite(pte, vma);
1341 return pte;
1342}
1343
1344vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1345void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1346 struct page *page, unsigned int nr, unsigned long addr);
1347
1348vm_fault_t finish_fault(struct vm_fault *vmf);
1349#endif
1350
1351/*
1352 * Multiple processes may "see" the same page. E.g. for untouched
1353 * mappings of /dev/null, all processes see the same page full of
1354 * zeroes, and text pages of executables and shared libraries have
1355 * only one copy in memory, at most, normally.
1356 *
1357 * For the non-reserved pages, page_count(page) denotes a reference count.
1358 * page_count() == 0 means the page is free. page->lru is then used for
1359 * freelist management in the buddy allocator.
1360 * page_count() > 0 means the page has been allocated.
1361 *
1362 * Pages are allocated by the slab allocator in order to provide memory
1363 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1364 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1365 * unless a particular usage is carefully commented. (the responsibility of
1366 * freeing the kmalloc memory is the caller's, of course).
1367 *
1368 * A page may be used by anyone else who does a __get_free_page().
1369 * In this case, page_count still tracks the references, and should only
1370 * be used through the normal accessor functions. The top bits of page->flags
1371 * and page->virtual store page management information, but all other fields
1372 * are unused and could be used privately, carefully. The management of this
1373 * page is the responsibility of the one who allocated it, and those who have
1374 * subsequently been given references to it.
1375 *
1376 * The other pages (we may call them "pagecache pages") are completely
1377 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1378 * The following discussion applies only to them.
1379 *
1380 * A pagecache page contains an opaque `private' member, which belongs to the
1381 * page's address_space. Usually, this is the address of a circular list of
1382 * the page's disk buffers. PG_private must be set to tell the VM to call
1383 * into the filesystem to release these pages.
1384 *
1385 * A page may belong to an inode's memory mapping. In this case, page->mapping
1386 * is the pointer to the inode, and page->index is the file offset of the page,
1387 * in units of PAGE_SIZE.
1388 *
1389 * If pagecache pages are not associated with an inode, they are said to be
1390 * anonymous pages. These may become associated with the swapcache, and in that
1391 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1392 *
1393 * In either case (swapcache or inode backed), the pagecache itself holds one
1394 * reference to the page. Setting PG_private should also increment the
1395 * refcount. The each user mapping also has a reference to the page.
1396 *
1397 * The pagecache pages are stored in a per-mapping radix tree, which is
1398 * rooted at mapping->i_pages, and indexed by offset.
1399 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1400 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1401 *
1402 * All pagecache pages may be subject to I/O:
1403 * - inode pages may need to be read from disk,
1404 * - inode pages which have been modified and are MAP_SHARED may need
1405 * to be written back to the inode on disk,
1406 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1407 * modified may need to be swapped out to swap space and (later) to be read
1408 * back into memory.
1409 */
1410
1411#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1412DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1413
1414bool __put_devmap_managed_page_refs(struct page *page, int refs);
1415static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1416{
1417 if (!static_branch_unlikely(&devmap_managed_key))
1418 return false;
1419 if (!is_zone_device_page(page))
1420 return false;
1421 return __put_devmap_managed_page_refs(page, refs);
1422}
1423#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1424static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1425{
1426 return false;
1427}
1428#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1429
1430static inline bool put_devmap_managed_page(struct page *page)
1431{
1432 return put_devmap_managed_page_refs(page, refs: 1);
1433}
1434
1435/* 127: arbitrary random number, small enough to assemble well */
1436#define folio_ref_zero_or_close_to_overflow(folio) \
1437 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1438
1439/**
1440 * folio_get - Increment the reference count on a folio.
1441 * @folio: The folio.
1442 *
1443 * Context: May be called in any context, as long as you know that
1444 * you have a refcount on the folio. If you do not already have one,
1445 * folio_try_get() may be the right interface for you to use.
1446 */
1447static inline void folio_get(struct folio *folio)
1448{
1449 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1450 folio_ref_inc(folio);
1451}
1452
1453static inline void get_page(struct page *page)
1454{
1455 folio_get(page_folio(page));
1456}
1457
1458static inline __must_check bool try_get_page(struct page *page)
1459{
1460 page = compound_head(page);
1461 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1462 return false;
1463 page_ref_inc(page);
1464 return true;
1465}
1466
1467/**
1468 * folio_put - Decrement the reference count on a folio.
1469 * @folio: The folio.
1470 *
1471 * If the folio's reference count reaches zero, the memory will be
1472 * released back to the page allocator and may be used by another
1473 * allocation immediately. Do not access the memory or the struct folio
1474 * after calling folio_put() unless you can be sure that it wasn't the
1475 * last reference.
1476 *
1477 * Context: May be called in process or interrupt context, but not in NMI
1478 * context. May be called while holding a spinlock.
1479 */
1480static inline void folio_put(struct folio *folio)
1481{
1482 if (folio_put_testzero(folio))
1483 __folio_put(folio);
1484}
1485
1486/**
1487 * folio_put_refs - Reduce the reference count on a folio.
1488 * @folio: The folio.
1489 * @refs: The amount to subtract from the folio's reference count.
1490 *
1491 * If the folio's reference count reaches zero, the memory will be
1492 * released back to the page allocator and may be used by another
1493 * allocation immediately. Do not access the memory or the struct folio
1494 * after calling folio_put_refs() unless you can be sure that these weren't
1495 * the last references.
1496 *
1497 * Context: May be called in process or interrupt context, but not in NMI
1498 * context. May be called while holding a spinlock.
1499 */
1500static inline void folio_put_refs(struct folio *folio, int refs)
1501{
1502 if (folio_ref_sub_and_test(folio, nr: refs))
1503 __folio_put(folio);
1504}
1505
1506/*
1507 * union release_pages_arg - an array of pages or folios
1508 *
1509 * release_pages() releases a simple array of multiple pages, and
1510 * accepts various different forms of said page array: either
1511 * a regular old boring array of pages, an array of folios, or
1512 * an array of encoded page pointers.
1513 *
1514 * The transparent union syntax for this kind of "any of these
1515 * argument types" is all kinds of ugly, so look away.
1516 */
1517typedef union {
1518 struct page **pages;
1519 struct folio **folios;
1520 struct encoded_page **encoded_pages;
1521} release_pages_arg __attribute__ ((__transparent_union__));
1522
1523void release_pages(release_pages_arg, int nr);
1524
1525/**
1526 * folios_put - Decrement the reference count on an array of folios.
1527 * @folios: The folios.
1528 * @nr: How many folios there are.
1529 *
1530 * Like folio_put(), but for an array of folios. This is more efficient
1531 * than writing the loop yourself as it will optimise the locks which
1532 * need to be taken if the folios are freed.
1533 *
1534 * Context: May be called in process or interrupt context, but not in NMI
1535 * context. May be called while holding a spinlock.
1536 */
1537static inline void folios_put(struct folio **folios, unsigned int nr)
1538{
1539 release_pages(folios, nr);
1540}
1541
1542static inline void put_page(struct page *page)
1543{
1544 struct folio *folio = page_folio(page);
1545
1546 /*
1547 * For some devmap managed pages we need to catch refcount transition
1548 * from 2 to 1:
1549 */
1550 if (put_devmap_managed_page(page: &folio->page))
1551 return;
1552 folio_put(folio);
1553}
1554
1555/*
1556 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1557 * the page's refcount so that two separate items are tracked: the original page
1558 * reference count, and also a new count of how many pin_user_pages() calls were
1559 * made against the page. ("gup-pinned" is another term for the latter).
1560 *
1561 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1562 * distinct from normal pages. As such, the unpin_user_page() call (and its
1563 * variants) must be used in order to release gup-pinned pages.
1564 *
1565 * Choice of value:
1566 *
1567 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1568 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1569 * simpler, due to the fact that adding an even power of two to the page
1570 * refcount has the effect of using only the upper N bits, for the code that
1571 * counts up using the bias value. This means that the lower bits are left for
1572 * the exclusive use of the original code that increments and decrements by one
1573 * (or at least, by much smaller values than the bias value).
1574 *
1575 * Of course, once the lower bits overflow into the upper bits (and this is
1576 * OK, because subtraction recovers the original values), then visual inspection
1577 * no longer suffices to directly view the separate counts. However, for normal
1578 * applications that don't have huge page reference counts, this won't be an
1579 * issue.
1580 *
1581 * Locking: the lockless algorithm described in folio_try_get_rcu()
1582 * provides safe operation for get_user_pages(), page_mkclean() and
1583 * other calls that race to set up page table entries.
1584 */
1585#define GUP_PIN_COUNTING_BIAS (1U << 10)
1586
1587void unpin_user_page(struct page *page);
1588void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1589 bool make_dirty);
1590void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1591 bool make_dirty);
1592void unpin_user_pages(struct page **pages, unsigned long npages);
1593
1594static inline bool is_cow_mapping(vm_flags_t flags)
1595{
1596 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1597}
1598
1599#ifndef CONFIG_MMU
1600static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1601{
1602 /*
1603 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1604 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1605 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1606 * underlying memory if ptrace is active, so this is only possible if
1607 * ptrace does not apply. Note that there is no mprotect() to upgrade
1608 * write permissions later.
1609 */
1610 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1611}
1612#endif
1613
1614#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1615#define SECTION_IN_PAGE_FLAGS
1616#endif
1617
1618/*
1619 * The identification function is mainly used by the buddy allocator for
1620 * determining if two pages could be buddies. We are not really identifying
1621 * the zone since we could be using the section number id if we do not have
1622 * node id available in page flags.
1623 * We only guarantee that it will return the same value for two combinable
1624 * pages in a zone.
1625 */
1626static inline int page_zone_id(struct page *page)
1627{
1628 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1629}
1630
1631#ifdef NODE_NOT_IN_PAGE_FLAGS
1632extern int page_to_nid(const struct page *page);
1633#else
1634static inline int page_to_nid(const struct page *page)
1635{
1636 struct page *p = (struct page *)page;
1637
1638 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1639}
1640#endif
1641
1642static inline int folio_nid(const struct folio *folio)
1643{
1644 return page_to_nid(page: &folio->page);
1645}
1646
1647#ifdef CONFIG_NUMA_BALANCING
1648/* page access time bits needs to hold at least 4 seconds */
1649#define PAGE_ACCESS_TIME_MIN_BITS 12
1650#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1651#define PAGE_ACCESS_TIME_BUCKETS \
1652 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1653#else
1654#define PAGE_ACCESS_TIME_BUCKETS 0
1655#endif
1656
1657#define PAGE_ACCESS_TIME_MASK \
1658 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1659
1660static inline int cpu_pid_to_cpupid(int cpu, int pid)
1661{
1662 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1663}
1664
1665static inline int cpupid_to_pid(int cpupid)
1666{
1667 return cpupid & LAST__PID_MASK;
1668}
1669
1670static inline int cpupid_to_cpu(int cpupid)
1671{
1672 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1673}
1674
1675static inline int cpupid_to_nid(int cpupid)
1676{
1677 return cpu_to_node(cpu: cpupid_to_cpu(cpupid));
1678}
1679
1680static inline bool cpupid_pid_unset(int cpupid)
1681{
1682 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1683}
1684
1685static inline bool cpupid_cpu_unset(int cpupid)
1686{
1687 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1688}
1689
1690static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1691{
1692 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1693}
1694
1695#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1696#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1697static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1698{
1699 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1700}
1701
1702static inline int folio_last_cpupid(struct folio *folio)
1703{
1704 return folio->_last_cpupid;
1705}
1706static inline void page_cpupid_reset_last(struct page *page)
1707{
1708 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1709}
1710#else
1711static inline int folio_last_cpupid(struct folio *folio)
1712{
1713 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1714}
1715
1716int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1717
1718static inline void page_cpupid_reset_last(struct page *page)
1719{
1720 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1721}
1722#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1723
1724static inline int folio_xchg_access_time(struct folio *folio, int time)
1725{
1726 int last_time;
1727
1728 last_time = folio_xchg_last_cpupid(folio,
1729 time >> PAGE_ACCESS_TIME_BUCKETS);
1730 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1731}
1732
1733static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1734{
1735 unsigned int pid_bit;
1736
1737 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1738 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1739 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1740 }
1741}
1742#else /* !CONFIG_NUMA_BALANCING */
1743static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1744{
1745 return folio_nid(folio); /* XXX */
1746}
1747
1748static inline int folio_xchg_access_time(struct folio *folio, int time)
1749{
1750 return 0;
1751}
1752
1753static inline int folio_last_cpupid(struct folio *folio)
1754{
1755 return folio_nid(folio); /* XXX */
1756}
1757
1758static inline int cpupid_to_nid(int cpupid)
1759{
1760 return -1;
1761}
1762
1763static inline int cpupid_to_pid(int cpupid)
1764{
1765 return -1;
1766}
1767
1768static inline int cpupid_to_cpu(int cpupid)
1769{
1770 return -1;
1771}
1772
1773static inline int cpu_pid_to_cpupid(int nid, int pid)
1774{
1775 return -1;
1776}
1777
1778static inline bool cpupid_pid_unset(int cpupid)
1779{
1780 return true;
1781}
1782
1783static inline void page_cpupid_reset_last(struct page *page)
1784{
1785}
1786
1787static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1788{
1789 return false;
1790}
1791
1792static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1793{
1794}
1795#endif /* CONFIG_NUMA_BALANCING */
1796
1797#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1798
1799/*
1800 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1801 * setting tags for all pages to native kernel tag value 0xff, as the default
1802 * value 0x00 maps to 0xff.
1803 */
1804
1805static inline u8 page_kasan_tag(const struct page *page)
1806{
1807 u8 tag = 0xff;
1808
1809 if (kasan_enabled()) {
1810 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1811 tag ^= 0xff;
1812 }
1813
1814 return tag;
1815}
1816
1817static inline void page_kasan_tag_set(struct page *page, u8 tag)
1818{
1819 unsigned long old_flags, flags;
1820
1821 if (!kasan_enabled())
1822 return;
1823
1824 tag ^= 0xff;
1825 old_flags = READ_ONCE(page->flags);
1826 do {
1827 flags = old_flags;
1828 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1829 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1830 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1831}
1832
1833static inline void page_kasan_tag_reset(struct page *page)
1834{
1835 if (kasan_enabled())
1836 page_kasan_tag_set(page, 0xff);
1837}
1838
1839#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1840
1841static inline u8 page_kasan_tag(const struct page *page)
1842{
1843 return 0xff;
1844}
1845
1846static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1847static inline void page_kasan_tag_reset(struct page *page) { }
1848
1849#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1850
1851static inline struct zone *page_zone(const struct page *page)
1852{
1853 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1854}
1855
1856static inline pg_data_t *page_pgdat(const struct page *page)
1857{
1858 return NODE_DATA(page_to_nid(page));
1859}
1860
1861static inline struct zone *folio_zone(const struct folio *folio)
1862{
1863 return page_zone(page: &folio->page);
1864}
1865
1866static inline pg_data_t *folio_pgdat(const struct folio *folio)
1867{
1868 return page_pgdat(page: &folio->page);
1869}
1870
1871#ifdef SECTION_IN_PAGE_FLAGS
1872static inline void set_page_section(struct page *page, unsigned long section)
1873{
1874 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1875 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1876}
1877
1878static inline unsigned long page_to_section(const struct page *page)
1879{
1880 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1881}
1882#endif
1883
1884/**
1885 * folio_pfn - Return the Page Frame Number of a folio.
1886 * @folio: The folio.
1887 *
1888 * A folio may contain multiple pages. The pages have consecutive
1889 * Page Frame Numbers.
1890 *
1891 * Return: The Page Frame Number of the first page in the folio.
1892 */
1893static inline unsigned long folio_pfn(struct folio *folio)
1894{
1895 return page_to_pfn(&folio->page);
1896}
1897
1898static inline struct folio *pfn_folio(unsigned long pfn)
1899{
1900 return page_folio(pfn_to_page(pfn));
1901}
1902
1903/**
1904 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1905 * @folio: The folio.
1906 *
1907 * This function checks if a folio has been pinned via a call to
1908 * a function in the pin_user_pages() family.
1909 *
1910 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1911 * because it means "definitely not pinned for DMA", but true means "probably
1912 * pinned for DMA, but possibly a false positive due to having at least
1913 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1914 *
1915 * False positives are OK, because: a) it's unlikely for a folio to
1916 * get that many refcounts, and b) all the callers of this routine are
1917 * expected to be able to deal gracefully with a false positive.
1918 *
1919 * For large folios, the result will be exactly correct. That's because
1920 * we have more tracking data available: the _pincount field is used
1921 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1922 *
1923 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1924 *
1925 * Return: True, if it is likely that the page has been "dma-pinned".
1926 * False, if the page is definitely not dma-pinned.
1927 */
1928static inline bool folio_maybe_dma_pinned(struct folio *folio)
1929{
1930 if (folio_test_large(folio))
1931 return atomic_read(v: &folio->_pincount) > 0;
1932
1933 /*
1934 * folio_ref_count() is signed. If that refcount overflows, then
1935 * folio_ref_count() returns a negative value, and callers will avoid
1936 * further incrementing the refcount.
1937 *
1938 * Here, for that overflow case, use the sign bit to count a little
1939 * bit higher via unsigned math, and thus still get an accurate result.
1940 */
1941 return ((unsigned int)folio_ref_count(folio)) >=
1942 GUP_PIN_COUNTING_BIAS;
1943}
1944
1945static inline bool page_maybe_dma_pinned(struct page *page)
1946{
1947 return folio_maybe_dma_pinned(page_folio(page));
1948}
1949
1950/*
1951 * This should most likely only be called during fork() to see whether we
1952 * should break the cow immediately for an anon page on the src mm.
1953 *
1954 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1955 */
1956static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1957 struct page *page)
1958{
1959 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1960
1961 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1962 return false;
1963
1964 return page_maybe_dma_pinned(page);
1965}
1966
1967/**
1968 * is_zero_page - Query if a page is a zero page
1969 * @page: The page to query
1970 *
1971 * This returns true if @page is one of the permanent zero pages.
1972 */
1973static inline bool is_zero_page(const struct page *page)
1974{
1975 return is_zero_pfn(page_to_pfn(page));
1976}
1977
1978/**
1979 * is_zero_folio - Query if a folio is a zero page
1980 * @folio: The folio to query
1981 *
1982 * This returns true if @folio is one of the permanent zero pages.
1983 */
1984static inline bool is_zero_folio(const struct folio *folio)
1985{
1986 return is_zero_page(page: &folio->page);
1987}
1988
1989/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1990#ifdef CONFIG_MIGRATION
1991static inline bool folio_is_longterm_pinnable(struct folio *folio)
1992{
1993#ifdef CONFIG_CMA
1994 int mt = folio_migratetype(folio);
1995
1996 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1997 return false;
1998#endif
1999 /* The zero page can be "pinned" but gets special handling. */
2000 if (is_zero_folio(folio))
2001 return true;
2002
2003 /* Coherent device memory must always allow eviction. */
2004 if (folio_is_device_coherent(folio))
2005 return false;
2006
2007 /* Otherwise, non-movable zone folios can be pinned. */
2008 return !folio_is_zone_movable(folio);
2009
2010}
2011#else
2012static inline bool folio_is_longterm_pinnable(struct folio *folio)
2013{
2014 return true;
2015}
2016#endif
2017
2018static inline void set_page_zone(struct page *page, enum zone_type zone)
2019{
2020 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2021 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2022}
2023
2024static inline void set_page_node(struct page *page, unsigned long node)
2025{
2026 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2027 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2028}
2029
2030static inline void set_page_links(struct page *page, enum zone_type zone,
2031 unsigned long node, unsigned long pfn)
2032{
2033 set_page_zone(page, zone);
2034 set_page_node(page, node);
2035#ifdef SECTION_IN_PAGE_FLAGS
2036 set_page_section(page, pfn_to_section_nr(pfn));
2037#endif
2038}
2039
2040/**
2041 * folio_nr_pages - The number of pages in the folio.
2042 * @folio: The folio.
2043 *
2044 * Return: A positive power of two.
2045 */
2046static inline long folio_nr_pages(struct folio *folio)
2047{
2048 if (!folio_test_large(folio))
2049 return 1;
2050#ifdef CONFIG_64BIT
2051 return folio->_folio_nr_pages;
2052#else
2053 return 1L << (folio->_flags_1 & 0xff);
2054#endif
2055}
2056
2057/*
2058 * compound_nr() returns the number of pages in this potentially compound
2059 * page. compound_nr() can be called on a tail page, and is defined to
2060 * return 1 in that case.
2061 */
2062static inline unsigned long compound_nr(struct page *page)
2063{
2064 struct folio *folio = (struct folio *)page;
2065
2066 if (!test_bit(PG_head, &folio->flags))
2067 return 1;
2068#ifdef CONFIG_64BIT
2069 return folio->_folio_nr_pages;
2070#else
2071 return 1L << (folio->_flags_1 & 0xff);
2072#endif
2073}
2074
2075/**
2076 * thp_nr_pages - The number of regular pages in this huge page.
2077 * @page: The head page of a huge page.
2078 */
2079static inline int thp_nr_pages(struct page *page)
2080{
2081 return folio_nr_pages(folio: (struct folio *)page);
2082}
2083
2084/**
2085 * folio_next - Move to the next physical folio.
2086 * @folio: The folio we're currently operating on.
2087 *
2088 * If you have physically contiguous memory which may span more than
2089 * one folio (eg a &struct bio_vec), use this function to move from one
2090 * folio to the next. Do not use it if the memory is only virtually
2091 * contiguous as the folios are almost certainly not adjacent to each
2092 * other. This is the folio equivalent to writing ``page++``.
2093 *
2094 * Context: We assume that the folios are refcounted and/or locked at a
2095 * higher level and do not adjust the reference counts.
2096 * Return: The next struct folio.
2097 */
2098static inline struct folio *folio_next(struct folio *folio)
2099{
2100 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2101}
2102
2103/**
2104 * folio_shift - The size of the memory described by this folio.
2105 * @folio: The folio.
2106 *
2107 * A folio represents a number of bytes which is a power-of-two in size.
2108 * This function tells you which power-of-two the folio is. See also
2109 * folio_size() and folio_order().
2110 *
2111 * Context: The caller should have a reference on the folio to prevent
2112 * it from being split. It is not necessary for the folio to be locked.
2113 * Return: The base-2 logarithm of the size of this folio.
2114 */
2115static inline unsigned int folio_shift(struct folio *folio)
2116{
2117 return PAGE_SHIFT + folio_order(folio);
2118}
2119
2120/**
2121 * folio_size - The number of bytes in a folio.
2122 * @folio: The folio.
2123 *
2124 * Context: The caller should have a reference on the folio to prevent
2125 * it from being split. It is not necessary for the folio to be locked.
2126 * Return: The number of bytes in this folio.
2127 */
2128static inline size_t folio_size(struct folio *folio)
2129{
2130 return PAGE_SIZE << folio_order(folio);
2131}
2132
2133/**
2134 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2135 * @folio: The folio.
2136 *
2137 * folio_estimated_sharers() aims to serve as a function to efficiently
2138 * estimate the number of processes sharing a folio. This is done by
2139 * looking at the precise mapcount of the first subpage in the folio, and
2140 * assuming the other subpages are the same. This may not be true for large
2141 * folios. If you want exact mapcounts for exact calculations, look at
2142 * page_mapcount() or folio_total_mapcount().
2143 *
2144 * Return: The estimated number of processes sharing a folio.
2145 */
2146static inline int folio_estimated_sharers(struct folio *folio)
2147{
2148 return page_mapcount(folio_page(folio, 0));
2149}
2150
2151#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2152static inline int arch_make_page_accessible(struct page *page)
2153{
2154 return 0;
2155}
2156#endif
2157
2158#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2159static inline int arch_make_folio_accessible(struct folio *folio)
2160{
2161 int ret;
2162 long i, nr = folio_nr_pages(folio);
2163
2164 for (i = 0; i < nr; i++) {
2165 ret = arch_make_page_accessible(folio_page(folio, i));
2166 if (ret)
2167 break;
2168 }
2169
2170 return ret;
2171}
2172#endif
2173
2174/*
2175 * Some inline functions in vmstat.h depend on page_zone()
2176 */
2177#include <linux/vmstat.h>
2178
2179static __always_inline void *lowmem_page_address(const struct page *page)
2180{
2181 return page_to_virt(page);
2182}
2183
2184#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2185#define HASHED_PAGE_VIRTUAL
2186#endif
2187
2188#if defined(WANT_PAGE_VIRTUAL)
2189static inline void *page_address(const struct page *page)
2190{
2191 return page->virtual;
2192}
2193static inline void set_page_address(struct page *page, void *address)
2194{
2195 page->virtual = address;
2196}
2197#define page_address_init() do { } while(0)
2198#endif
2199
2200#if defined(HASHED_PAGE_VIRTUAL)
2201void *page_address(const struct page *page);
2202void set_page_address(struct page *page, void *virtual);
2203void page_address_init(void);
2204#endif
2205
2206#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2207#define page_address(page) lowmem_page_address(page)
2208#define set_page_address(page, address) do { } while(0)
2209#define page_address_init() do { } while(0)
2210#endif
2211
2212static inline void *folio_address(const struct folio *folio)
2213{
2214 return page_address(&folio->page);
2215}
2216
2217extern pgoff_t __page_file_index(struct page *page);
2218
2219/*
2220 * Return the pagecache index of the passed page. Regular pagecache pages
2221 * use ->index whereas swapcache pages use swp_offset(->private)
2222 */
2223static inline pgoff_t page_index(struct page *page)
2224{
2225 if (unlikely(PageSwapCache(page)))
2226 return __page_file_index(page);
2227 return page->index;
2228}
2229
2230/*
2231 * Return true only if the page has been allocated with
2232 * ALLOC_NO_WATERMARKS and the low watermark was not
2233 * met implying that the system is under some pressure.
2234 */
2235static inline bool page_is_pfmemalloc(const struct page *page)
2236{
2237 /*
2238 * lru.next has bit 1 set if the page is allocated from the
2239 * pfmemalloc reserves. Callers may simply overwrite it if
2240 * they do not need to preserve that information.
2241 */
2242 return (uintptr_t)page->lru.next & BIT(1);
2243}
2244
2245/*
2246 * Return true only if the folio has been allocated with
2247 * ALLOC_NO_WATERMARKS and the low watermark was not
2248 * met implying that the system is under some pressure.
2249 */
2250static inline bool folio_is_pfmemalloc(const struct folio *folio)
2251{
2252 /*
2253 * lru.next has bit 1 set if the page is allocated from the
2254 * pfmemalloc reserves. Callers may simply overwrite it if
2255 * they do not need to preserve that information.
2256 */
2257 return (uintptr_t)folio->lru.next & BIT(1);
2258}
2259
2260/*
2261 * Only to be called by the page allocator on a freshly allocated
2262 * page.
2263 */
2264static inline void set_page_pfmemalloc(struct page *page)
2265{
2266 page->lru.next = (void *)BIT(1);
2267}
2268
2269static inline void clear_page_pfmemalloc(struct page *page)
2270{
2271 page->lru.next = NULL;
2272}
2273
2274/*
2275 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2276 */
2277extern void pagefault_out_of_memory(void);
2278
2279#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2280#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2281#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2282
2283/*
2284 * Parameter block passed down to zap_pte_range in exceptional cases.
2285 */
2286struct zap_details {
2287 struct folio *single_folio; /* Locked folio to be unmapped */
2288 bool even_cows; /* Zap COWed private pages too? */
2289 zap_flags_t zap_flags; /* Extra flags for zapping */
2290};
2291
2292/*
2293 * Whether to drop the pte markers, for example, the uffd-wp information for
2294 * file-backed memory. This should only be specified when we will completely
2295 * drop the page in the mm, either by truncation or unmapping of the vma. By
2296 * default, the flag is not set.
2297 */
2298#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2299/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2300#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2301
2302#ifdef CONFIG_SCHED_MM_CID
2303void sched_mm_cid_before_execve(struct task_struct *t);
2304void sched_mm_cid_after_execve(struct task_struct *t);
2305void sched_mm_cid_fork(struct task_struct *t);
2306void sched_mm_cid_exit_signals(struct task_struct *t);
2307static inline int task_mm_cid(struct task_struct *t)
2308{
2309 return t->mm_cid;
2310}
2311#else
2312static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2313static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2314static inline void sched_mm_cid_fork(struct task_struct *t) { }
2315static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2316static inline int task_mm_cid(struct task_struct *t)
2317{
2318 /*
2319 * Use the processor id as a fall-back when the mm cid feature is
2320 * disabled. This provides functional per-cpu data structure accesses
2321 * in user-space, althrough it won't provide the memory usage benefits.
2322 */
2323 return raw_smp_processor_id();
2324}
2325#endif
2326
2327#ifdef CONFIG_MMU
2328extern bool can_do_mlock(void);
2329#else
2330static inline bool can_do_mlock(void) { return false; }
2331#endif
2332extern int user_shm_lock(size_t, struct ucounts *);
2333extern void user_shm_unlock(size_t, struct ucounts *);
2334
2335struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2336 pte_t pte);
2337struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2338 pte_t pte);
2339struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2340 unsigned long addr, pmd_t pmd);
2341struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2342 pmd_t pmd);
2343
2344void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2345 unsigned long size);
2346void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2347 unsigned long size, struct zap_details *details);
2348static inline void zap_vma_pages(struct vm_area_struct *vma)
2349{
2350 zap_page_range_single(vma, address: vma->vm_start,
2351 size: vma->vm_end - vma->vm_start, NULL);
2352}
2353void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2354 struct vm_area_struct *start_vma, unsigned long start,
2355 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2356
2357struct mmu_notifier_range;
2358
2359void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2360 unsigned long end, unsigned long floor, unsigned long ceiling);
2361int
2362copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2363int follow_pte(struct mm_struct *mm, unsigned long address,
2364 pte_t **ptepp, spinlock_t **ptlp);
2365int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2366 unsigned long *pfn);
2367int follow_phys(struct vm_area_struct *vma, unsigned long address,
2368 unsigned int flags, unsigned long *prot, resource_size_t *phys);
2369int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2370 void *buf, int len, int write);
2371
2372extern void truncate_pagecache(struct inode *inode, loff_t new);
2373extern void truncate_setsize(struct inode *inode, loff_t newsize);
2374void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2375void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2376int generic_error_remove_page(struct address_space *mapping, struct page *page);
2377
2378struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2379 unsigned long address, struct pt_regs *regs);
2380
2381#ifdef CONFIG_MMU
2382extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2383 unsigned long address, unsigned int flags,
2384 struct pt_regs *regs);
2385extern int fixup_user_fault(struct mm_struct *mm,
2386 unsigned long address, unsigned int fault_flags,
2387 bool *unlocked);
2388void unmap_mapping_pages(struct address_space *mapping,
2389 pgoff_t start, pgoff_t nr, bool even_cows);
2390void unmap_mapping_range(struct address_space *mapping,
2391 loff_t const holebegin, loff_t const holelen, int even_cows);
2392#else
2393static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2394 unsigned long address, unsigned int flags,
2395 struct pt_regs *regs)
2396{
2397 /* should never happen if there's no MMU */
2398 BUG();
2399 return VM_FAULT_SIGBUS;
2400}
2401static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2402 unsigned int fault_flags, bool *unlocked)
2403{
2404 /* should never happen if there's no MMU */
2405 BUG();
2406 return -EFAULT;
2407}
2408static inline void unmap_mapping_pages(struct address_space *mapping,
2409 pgoff_t start, pgoff_t nr, bool even_cows) { }
2410static inline void unmap_mapping_range(struct address_space *mapping,
2411 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2412#endif
2413
2414static inline void unmap_shared_mapping_range(struct address_space *mapping,
2415 loff_t const holebegin, loff_t const holelen)
2416{
2417 unmap_mapping_range(mapping, holebegin, holelen, even_cows: 0);
2418}
2419
2420static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2421 unsigned long addr);
2422
2423extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2424 void *buf, int len, unsigned int gup_flags);
2425extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2426 void *buf, int len, unsigned int gup_flags);
2427
2428long get_user_pages_remote(struct mm_struct *mm,
2429 unsigned long start, unsigned long nr_pages,
2430 unsigned int gup_flags, struct page **pages,
2431 int *locked);
2432long pin_user_pages_remote(struct mm_struct *mm,
2433 unsigned long start, unsigned long nr_pages,
2434 unsigned int gup_flags, struct page **pages,
2435 int *locked);
2436
2437/*
2438 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2439 */
2440static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2441 unsigned long addr,
2442 int gup_flags,
2443 struct vm_area_struct **vmap)
2444{
2445 struct page *page;
2446 struct vm_area_struct *vma;
2447 int got;
2448
2449 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2450 return ERR_PTR(error: -EINVAL);
2451
2452 got = get_user_pages_remote(mm, start: addr, nr_pages: 1, gup_flags, pages: &page, NULL);
2453
2454 if (got < 0)
2455 return ERR_PTR(error: got);
2456
2457 vma = vma_lookup(mm, addr);
2458 if (WARN_ON_ONCE(!vma)) {
2459 put_page(page);
2460 return ERR_PTR(error: -EINVAL);
2461 }
2462
2463 *vmap = vma;
2464 return page;
2465}
2466
2467long get_user_pages(unsigned long start, unsigned long nr_pages,
2468 unsigned int gup_flags, struct page **pages);
2469long pin_user_pages(unsigned long start, unsigned long nr_pages,
2470 unsigned int gup_flags, struct page **pages);
2471long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2472 struct page **pages, unsigned int gup_flags);
2473long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2474 struct page **pages, unsigned int gup_flags);
2475
2476int get_user_pages_fast(unsigned long start, int nr_pages,
2477 unsigned int gup_flags, struct page **pages);
2478int pin_user_pages_fast(unsigned long start, int nr_pages,
2479 unsigned int gup_flags, struct page **pages);
2480void folio_add_pin(struct folio *folio);
2481
2482int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2483int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2484 struct task_struct *task, bool bypass_rlim);
2485
2486struct kvec;
2487struct page *get_dump_page(unsigned long addr);
2488
2489bool folio_mark_dirty(struct folio *folio);
2490bool set_page_dirty(struct page *page);
2491int set_page_dirty_lock(struct page *page);
2492
2493int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2494
2495extern unsigned long move_page_tables(struct vm_area_struct *vma,
2496 unsigned long old_addr, struct vm_area_struct *new_vma,
2497 unsigned long new_addr, unsigned long len,
2498 bool need_rmap_locks, bool for_stack);
2499
2500/*
2501 * Flags used by change_protection(). For now we make it a bitmap so
2502 * that we can pass in multiple flags just like parameters. However
2503 * for now all the callers are only use one of the flags at the same
2504 * time.
2505 */
2506/*
2507 * Whether we should manually check if we can map individual PTEs writable,
2508 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2509 * PTEs automatically in a writable mapping.
2510 */
2511#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2512/* Whether this protection change is for NUMA hints */
2513#define MM_CP_PROT_NUMA (1UL << 1)
2514/* Whether this change is for write protecting */
2515#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2516#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2517#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2518 MM_CP_UFFD_WP_RESOLVE)
2519
2520bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2521int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2522static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2523{
2524 /*
2525 * We want to check manually if we can change individual PTEs writable
2526 * if we can't do that automatically for all PTEs in a mapping. For
2527 * private mappings, that's always the case when we have write
2528 * permissions as we properly have to handle COW.
2529 */
2530 if (vma->vm_flags & VM_SHARED)
2531 return vma_wants_writenotify(vma, vm_page_prot: vma->vm_page_prot);
2532 return !!(vma->vm_flags & VM_WRITE);
2533
2534}
2535bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2536 pte_t pte);
2537extern long change_protection(struct mmu_gather *tlb,
2538 struct vm_area_struct *vma, unsigned long start,
2539 unsigned long end, unsigned long cp_flags);
2540extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2541 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2542 unsigned long start, unsigned long end, unsigned long newflags);
2543
2544/*
2545 * doesn't attempt to fault and will return short.
2546 */
2547int get_user_pages_fast_only(unsigned long start, int nr_pages,
2548 unsigned int gup_flags, struct page **pages);
2549
2550static inline bool get_user_page_fast_only(unsigned long addr,
2551 unsigned int gup_flags, struct page **pagep)
2552{
2553 return get_user_pages_fast_only(start: addr, nr_pages: 1, gup_flags, pages: pagep) == 1;
2554}
2555/*
2556 * per-process(per-mm_struct) statistics.
2557 */
2558static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2559{
2560 return percpu_counter_read_positive(fbc: &mm->rss_stat[member]);
2561}
2562
2563void mm_trace_rss_stat(struct mm_struct *mm, int member);
2564
2565static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2566{
2567 percpu_counter_add(fbc: &mm->rss_stat[member], amount: value);
2568
2569 mm_trace_rss_stat(mm, member);
2570}
2571
2572static inline void inc_mm_counter(struct mm_struct *mm, int member)
2573{
2574 percpu_counter_inc(fbc: &mm->rss_stat[member]);
2575
2576 mm_trace_rss_stat(mm, member);
2577}
2578
2579static inline void dec_mm_counter(struct mm_struct *mm, int member)
2580{
2581 percpu_counter_dec(fbc: &mm->rss_stat[member]);
2582
2583 mm_trace_rss_stat(mm, member);
2584}
2585
2586/* Optimized variant when page is already known not to be PageAnon */
2587static inline int mm_counter_file(struct page *page)
2588{
2589 if (PageSwapBacked(page))
2590 return MM_SHMEMPAGES;
2591 return MM_FILEPAGES;
2592}
2593
2594static inline int mm_counter(struct page *page)
2595{
2596 if (PageAnon(page))
2597 return MM_ANONPAGES;
2598 return mm_counter_file(page);
2599}
2600
2601static inline unsigned long get_mm_rss(struct mm_struct *mm)
2602{
2603 return get_mm_counter(mm, member: MM_FILEPAGES) +
2604 get_mm_counter(mm, member: MM_ANONPAGES) +
2605 get_mm_counter(mm, member: MM_SHMEMPAGES);
2606}
2607
2608static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2609{
2610 return max(mm->hiwater_rss, get_mm_rss(mm));
2611}
2612
2613static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2614{
2615 return max(mm->hiwater_vm, mm->total_vm);
2616}
2617
2618static inline void update_hiwater_rss(struct mm_struct *mm)
2619{
2620 unsigned long _rss = get_mm_rss(mm);
2621
2622 if ((mm)->hiwater_rss < _rss)
2623 (mm)->hiwater_rss = _rss;
2624}
2625
2626static inline void update_hiwater_vm(struct mm_struct *mm)
2627{
2628 if (mm->hiwater_vm < mm->total_vm)
2629 mm->hiwater_vm = mm->total_vm;
2630}
2631
2632static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2633{
2634 mm->hiwater_rss = get_mm_rss(mm);
2635}
2636
2637static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2638 struct mm_struct *mm)
2639{
2640 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2641
2642 if (*maxrss < hiwater_rss)
2643 *maxrss = hiwater_rss;
2644}
2645
2646#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2647static inline int pte_special(pte_t pte)
2648{
2649 return 0;
2650}
2651
2652static inline pte_t pte_mkspecial(pte_t pte)
2653{
2654 return pte;
2655}
2656#endif
2657
2658#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2659static inline int pte_devmap(pte_t pte)
2660{
2661 return 0;
2662}
2663#endif
2664
2665extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2666 spinlock_t **ptl);
2667static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2668 spinlock_t **ptl)
2669{
2670 pte_t *ptep;
2671 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2672 return ptep;
2673}
2674
2675#ifdef __PAGETABLE_P4D_FOLDED
2676static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2677 unsigned long address)
2678{
2679 return 0;
2680}
2681#else
2682int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2683#endif
2684
2685#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2686static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2687 unsigned long address)
2688{
2689 return 0;
2690}
2691static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2692static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2693
2694#else
2695int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2696
2697static inline void mm_inc_nr_puds(struct mm_struct *mm)
2698{
2699 if (mm_pud_folded(mm))
2700 return;
2701 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), v: &mm->pgtables_bytes);
2702}
2703
2704static inline void mm_dec_nr_puds(struct mm_struct *mm)
2705{
2706 if (mm_pud_folded(mm))
2707 return;
2708 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), v: &mm->pgtables_bytes);
2709}
2710#endif
2711
2712#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2713static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2714 unsigned long address)
2715{
2716 return 0;
2717}
2718
2719static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2720static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2721
2722#else
2723int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2724
2725static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2726{
2727 if (mm_pmd_folded(mm))
2728 return;
2729 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), v: &mm->pgtables_bytes);
2730}
2731
2732static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2733{
2734 if (mm_pmd_folded(mm))
2735 return;
2736 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), v: &mm->pgtables_bytes);
2737}
2738#endif
2739
2740#ifdef CONFIG_MMU
2741static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2742{
2743 atomic_long_set(v: &mm->pgtables_bytes, i: 0);
2744}
2745
2746static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2747{
2748 return atomic_long_read(v: &mm->pgtables_bytes);
2749}
2750
2751static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2752{
2753 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), v: &mm->pgtables_bytes);
2754}
2755
2756static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2757{
2758 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), v: &mm->pgtables_bytes);
2759}
2760#else
2761
2762static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2763static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2764{
2765 return 0;
2766}
2767
2768static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2769static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2770#endif
2771
2772int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2773int __pte_alloc_kernel(pmd_t *pmd);
2774
2775#if defined(CONFIG_MMU)
2776
2777static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2778 unsigned long address)
2779{
2780 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2781 NULL : p4d_offset(pgd, address);
2782}
2783
2784static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2785 unsigned long address)
2786{
2787 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2788 NULL : pud_offset(p4d, address);
2789}
2790
2791static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2792{
2793 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2794 NULL: pmd_offset(pud, address);
2795}
2796#endif /* CONFIG_MMU */
2797
2798static inline struct ptdesc *virt_to_ptdesc(const void *x)
2799{
2800 return page_ptdesc(virt_to_page(x));
2801}
2802
2803static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2804{
2805 return page_to_virt(ptdesc_page(pt));
2806}
2807
2808static inline void *ptdesc_address(const struct ptdesc *pt)
2809{
2810 return folio_address(ptdesc_folio(pt));
2811}
2812
2813static inline bool pagetable_is_reserved(struct ptdesc *pt)
2814{
2815 return folio_test_reserved(ptdesc_folio(pt));
2816}
2817
2818/**
2819 * pagetable_alloc - Allocate pagetables
2820 * @gfp: GFP flags
2821 * @order: desired pagetable order
2822 *
2823 * pagetable_alloc allocates memory for page tables as well as a page table
2824 * descriptor to describe that memory.
2825 *
2826 * Return: The ptdesc describing the allocated page tables.
2827 */
2828static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order)
2829{
2830 struct page *page = alloc_pages(gfp: gfp | __GFP_COMP, order);
2831
2832 return page_ptdesc(page);
2833}
2834
2835/**
2836 * pagetable_free - Free pagetables
2837 * @pt: The page table descriptor
2838 *
2839 * pagetable_free frees the memory of all page tables described by a page
2840 * table descriptor and the memory for the descriptor itself.
2841 */
2842static inline void pagetable_free(struct ptdesc *pt)
2843{
2844 struct page *page = ptdesc_page(pt);
2845
2846 __free_pages(page, order: compound_order(page));
2847}
2848
2849#if USE_SPLIT_PTE_PTLOCKS
2850#if ALLOC_SPLIT_PTLOCKS
2851void __init ptlock_cache_init(void);
2852bool ptlock_alloc(struct ptdesc *ptdesc);
2853void ptlock_free(struct ptdesc *ptdesc);
2854
2855static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2856{
2857 return ptdesc->ptl;
2858}
2859#else /* ALLOC_SPLIT_PTLOCKS */
2860static inline void ptlock_cache_init(void)
2861{
2862}
2863
2864static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2865{
2866 return true;
2867}
2868
2869static inline void ptlock_free(struct ptdesc *ptdesc)
2870{
2871}
2872
2873static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2874{
2875 return &ptdesc->ptl;
2876}
2877#endif /* ALLOC_SPLIT_PTLOCKS */
2878
2879static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2880{
2881 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2882}
2883
2884static inline bool ptlock_init(struct ptdesc *ptdesc)
2885{
2886 /*
2887 * prep_new_page() initialize page->private (and therefore page->ptl)
2888 * with 0. Make sure nobody took it in use in between.
2889 *
2890 * It can happen if arch try to use slab for page table allocation:
2891 * slab code uses page->slab_cache, which share storage with page->ptl.
2892 */
2893 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2894 if (!ptlock_alloc(ptdesc))
2895 return false;
2896 spin_lock_init(ptlock_ptr(ptdesc));
2897 return true;
2898}
2899
2900#else /* !USE_SPLIT_PTE_PTLOCKS */
2901/*
2902 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2903 */
2904static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2905{
2906 return &mm->page_table_lock;
2907}
2908static inline void ptlock_cache_init(void) {}
2909static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2910static inline void ptlock_free(struct ptdesc *ptdesc) {}
2911#endif /* USE_SPLIT_PTE_PTLOCKS */
2912
2913static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2914{
2915 struct folio *folio = ptdesc_folio(ptdesc);
2916
2917 if (!ptlock_init(ptdesc))
2918 return false;
2919 __folio_set_pgtable(folio);
2920 lruvec_stat_add_folio(folio, idx: NR_PAGETABLE);
2921 return true;
2922}
2923
2924static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2925{
2926 struct folio *folio = ptdesc_folio(ptdesc);
2927
2928 ptlock_free(ptdesc);
2929 __folio_clear_pgtable(folio);
2930 lruvec_stat_sub_folio(folio, idx: NR_PAGETABLE);
2931}
2932
2933pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2934static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2935{
2936 return __pte_offset_map(pmd, addr, NULL);
2937}
2938
2939pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2940 unsigned long addr, spinlock_t **ptlp);
2941static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2942 unsigned long addr, spinlock_t **ptlp)
2943{
2944 pte_t *pte;
2945
2946 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2947 return pte;
2948}
2949
2950pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2951 unsigned long addr, spinlock_t **ptlp);
2952
2953#define pte_unmap_unlock(pte, ptl) do { \
2954 spin_unlock(ptl); \
2955 pte_unmap(pte); \
2956} while (0)
2957
2958#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2959
2960#define pte_alloc_map(mm, pmd, address) \
2961 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2962
2963#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2964 (pte_alloc(mm, pmd) ? \
2965 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2966
2967#define pte_alloc_kernel(pmd, address) \
2968 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2969 NULL: pte_offset_kernel(pmd, address))
2970
2971#if USE_SPLIT_PMD_PTLOCKS
2972
2973static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2974{
2975 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2976 return virt_to_page((void *)((unsigned long) pmd & mask));
2977}
2978
2979static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
2980{
2981 return page_ptdesc(pmd_pgtable_page(pmd));
2982}
2983
2984static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2985{
2986 return ptlock_ptr(ptdesc: pmd_ptdesc(pmd));
2987}
2988
2989static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
2990{
2991#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2992 ptdesc->pmd_huge_pte = NULL;
2993#endif
2994 return ptlock_init(ptdesc);
2995}
2996
2997static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
2998{
2999#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3000 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3001#endif
3002 ptlock_free(ptdesc);
3003}
3004
3005#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3006
3007#else
3008
3009static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3010{
3011 return &mm->page_table_lock;
3012}
3013
3014static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3015static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3016
3017#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3018
3019#endif
3020
3021static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3022{
3023 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3024 spin_lock(lock: ptl);
3025 return ptl;
3026}
3027
3028static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3029{
3030 struct folio *folio = ptdesc_folio(ptdesc);
3031
3032 if (!pmd_ptlock_init(ptdesc))
3033 return false;
3034 __folio_set_pgtable(folio);
3035 lruvec_stat_add_folio(folio, idx: NR_PAGETABLE);
3036 return true;
3037}
3038
3039static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3040{
3041 struct folio *folio = ptdesc_folio(ptdesc);
3042
3043 pmd_ptlock_free(ptdesc);
3044 __folio_clear_pgtable(folio);
3045 lruvec_stat_sub_folio(folio, idx: NR_PAGETABLE);
3046}
3047
3048/*
3049 * No scalability reason to split PUD locks yet, but follow the same pattern
3050 * as the PMD locks to make it easier if we decide to. The VM should not be
3051 * considered ready to switch to split PUD locks yet; there may be places
3052 * which need to be converted from page_table_lock.
3053 */
3054static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3055{
3056 return &mm->page_table_lock;
3057}
3058
3059static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3060{
3061 spinlock_t *ptl = pud_lockptr(mm, pud);
3062
3063 spin_lock(lock: ptl);
3064 return ptl;
3065}
3066
3067static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3068{
3069 struct folio *folio = ptdesc_folio(ptdesc);
3070
3071 __folio_set_pgtable(folio);
3072 lruvec_stat_add_folio(folio, idx: NR_PAGETABLE);
3073}
3074
3075static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3076{
3077 struct folio *folio = ptdesc_folio(ptdesc);
3078
3079 __folio_clear_pgtable(folio);
3080 lruvec_stat_sub_folio(folio, idx: NR_PAGETABLE);
3081}
3082
3083extern void __init pagecache_init(void);
3084extern void free_initmem(void);
3085
3086/*
3087 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3088 * into the buddy system. The freed pages will be poisoned with pattern
3089 * "poison" if it's within range [0, UCHAR_MAX].
3090 * Return pages freed into the buddy system.
3091 */
3092extern unsigned long free_reserved_area(void *start, void *end,
3093 int poison, const char *s);
3094
3095extern void adjust_managed_page_count(struct page *page, long count);
3096
3097extern void reserve_bootmem_region(phys_addr_t start,
3098 phys_addr_t end, int nid);
3099
3100/* Free the reserved page into the buddy system, so it gets managed. */
3101static inline void free_reserved_page(struct page *page)
3102{
3103 ClearPageReserved(page);
3104 init_page_count(page);
3105 __free_page(page);
3106 adjust_managed_page_count(page, count: 1);
3107}
3108#define free_highmem_page(page) free_reserved_page(page)
3109
3110static inline void mark_page_reserved(struct page *page)
3111{
3112 SetPageReserved(page);
3113 adjust_managed_page_count(page, count: -1);
3114}
3115
3116static inline void free_reserved_ptdesc(struct ptdesc *pt)
3117{
3118 free_reserved_page(ptdesc_page(pt));
3119}
3120
3121/*
3122 * Default method to free all the __init memory into the buddy system.
3123 * The freed pages will be poisoned with pattern "poison" if it's within
3124 * range [0, UCHAR_MAX].
3125 * Return pages freed into the buddy system.
3126 */
3127static inline unsigned long free_initmem_default(int poison)
3128{
3129 extern char __init_begin[], __init_end[];
3130
3131 return free_reserved_area(start: &__init_begin, end: &__init_end,
3132 poison, s: "unused kernel image (initmem)");
3133}
3134
3135static inline unsigned long get_num_physpages(void)
3136{
3137 int nid;
3138 unsigned long phys_pages = 0;
3139
3140 for_each_online_node(nid)
3141 phys_pages += node_present_pages(nid);
3142
3143 return phys_pages;
3144}
3145
3146/*
3147 * Using memblock node mappings, an architecture may initialise its
3148 * zones, allocate the backing mem_map and account for memory holes in an
3149 * architecture independent manner.
3150 *
3151 * An architecture is expected to register range of page frames backed by
3152 * physical memory with memblock_add[_node]() before calling
3153 * free_area_init() passing in the PFN each zone ends at. At a basic
3154 * usage, an architecture is expected to do something like
3155 *
3156 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3157 * max_highmem_pfn};
3158 * for_each_valid_physical_page_range()
3159 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3160 * free_area_init(max_zone_pfns);
3161 */
3162void free_area_init(unsigned long *max_zone_pfn);
3163unsigned long node_map_pfn_alignment(void);
3164unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3165 unsigned long end_pfn);
3166extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3167 unsigned long end_pfn);
3168extern void get_pfn_range_for_nid(unsigned int nid,
3169 unsigned long *start_pfn, unsigned long *end_pfn);
3170
3171#ifndef CONFIG_NUMA
3172static inline int early_pfn_to_nid(unsigned long pfn)
3173{
3174 return 0;
3175}
3176#else
3177/* please see mm/page_alloc.c */
3178extern int __meminit early_pfn_to_nid(unsigned long pfn);
3179#endif
3180
3181extern void set_dma_reserve(unsigned long new_dma_reserve);
3182extern void mem_init(void);
3183extern void __init mmap_init(void);
3184
3185extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3186static inline void show_mem(void)
3187{
3188 __show_mem(flags: 0, NULL, max_zone_idx: MAX_NR_ZONES - 1);
3189}
3190extern long si_mem_available(void);
3191extern void si_meminfo(struct sysinfo * val);
3192extern void si_meminfo_node(struct sysinfo *val, int nid);
3193#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3194extern unsigned long arch_reserved_kernel_pages(void);
3195#endif
3196
3197extern __printf(3, 4)
3198void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3199
3200extern void setup_per_cpu_pageset(void);
3201
3202/* nommu.c */
3203extern atomic_long_t mmap_pages_allocated;
3204extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3205
3206/* interval_tree.c */
3207void vma_interval_tree_insert(struct vm_area_struct *node,
3208 struct rb_root_cached *root);
3209void vma_interval_tree_insert_after(struct vm_area_struct *node,
3210 struct vm_area_struct *prev,
3211 struct rb_root_cached *root);
3212void vma_interval_tree_remove(struct vm_area_struct *node,
3213 struct rb_root_cached *root);
3214struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3215 unsigned long start, unsigned long last);
3216struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3217 unsigned long start, unsigned long last);
3218
3219#define vma_interval_tree_foreach(vma, root, start, last) \
3220 for (vma = vma_interval_tree_iter_first(root, start, last); \
3221 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3222
3223void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3224 struct rb_root_cached *root);
3225void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3226 struct rb_root_cached *root);
3227struct anon_vma_chain *
3228anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3229 unsigned long start, unsigned long last);
3230struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3231 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3232#ifdef CONFIG_DEBUG_VM_RB
3233void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3234#endif
3235
3236#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3237 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3238 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3239
3240/* mmap.c */
3241extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3242extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3243 unsigned long start, unsigned long end, pgoff_t pgoff,
3244 struct vm_area_struct *next);
3245extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3246 unsigned long start, unsigned long end, pgoff_t pgoff);
3247extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3248extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3249extern void unlink_file_vma(struct vm_area_struct *);
3250extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3251 unsigned long addr, unsigned long len, pgoff_t pgoff,
3252 bool *need_rmap_locks);
3253extern void exit_mmap(struct mm_struct *);
3254struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3255 struct vm_area_struct *prev,
3256 struct vm_area_struct *vma,
3257 unsigned long start, unsigned long end,
3258 unsigned long vm_flags,
3259 struct mempolicy *policy,
3260 struct vm_userfaultfd_ctx uffd_ctx,
3261 struct anon_vma_name *anon_name);
3262
3263/* We are about to modify the VMA's flags. */
3264static inline struct vm_area_struct
3265*vma_modify_flags(struct vma_iterator *vmi,
3266 struct vm_area_struct *prev,
3267 struct vm_area_struct *vma,
3268 unsigned long start, unsigned long end,
3269 unsigned long new_flags)
3270{
3271 return vma_modify(vmi, prev, vma, start, end, vm_flags: new_flags,
3272 vma_policy(vma), uffd_ctx: vma->vm_userfaultfd_ctx,
3273 anon_name: anon_vma_name(vma));
3274}
3275
3276/* We are about to modify the VMA's flags and/or anon_name. */
3277static inline struct vm_area_struct
3278*vma_modify_flags_name(struct vma_iterator *vmi,
3279 struct vm_area_struct *prev,
3280 struct vm_area_struct *vma,
3281 unsigned long start,
3282 unsigned long end,
3283 unsigned long new_flags,
3284 struct anon_vma_name *new_name)
3285{
3286 return vma_modify(vmi, prev, vma, start, end, vm_flags: new_flags,
3287 vma_policy(vma), uffd_ctx: vma->vm_userfaultfd_ctx, anon_name: new_name);
3288}
3289
3290/* We are about to modify the VMA's memory policy. */
3291static inline struct vm_area_struct
3292*vma_modify_policy(struct vma_iterator *vmi,
3293 struct vm_area_struct *prev,
3294 struct vm_area_struct *vma,
3295 unsigned long start, unsigned long end,
3296 struct mempolicy *new_pol)
3297{
3298 return vma_modify(vmi, prev, vma, start, end, vm_flags: vma->vm_flags,
3299 policy: new_pol, uffd_ctx: vma->vm_userfaultfd_ctx, anon_name: anon_vma_name(vma));
3300}
3301
3302/* We are about to modify the VMA's flags and/or uffd context. */
3303static inline struct vm_area_struct
3304*vma_modify_flags_uffd(struct vma_iterator *vmi,
3305 struct vm_area_struct *prev,
3306 struct vm_area_struct *vma,
3307 unsigned long start, unsigned long end,
3308 unsigned long new_flags,
3309 struct vm_userfaultfd_ctx new_ctx)
3310{
3311 return vma_modify(vmi, prev, vma, start, end, vm_flags: new_flags,
3312 vma_policy(vma), uffd_ctx: new_ctx, anon_name: anon_vma_name(vma));
3313}
3314
3315static inline int check_data_rlimit(unsigned long rlim,
3316 unsigned long new,
3317 unsigned long start,
3318 unsigned long end_data,
3319 unsigned long start_data)
3320{
3321 if (rlim < RLIM_INFINITY) {
3322 if (((new - start) + (end_data - start_data)) > rlim)
3323 return -ENOSPC;
3324 }
3325
3326 return 0;
3327}
3328
3329extern int mm_take_all_locks(struct mm_struct *mm);
3330extern void mm_drop_all_locks(struct mm_struct *mm);
3331
3332extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3333extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3334extern struct file *get_mm_exe_file(struct mm_struct *mm);
3335extern struct file *get_task_exe_file(struct task_struct *task);
3336
3337extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3338extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3339
3340extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3341 const struct vm_special_mapping *sm);
3342extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3343 unsigned long addr, unsigned long len,
3344 unsigned long flags,
3345 const struct vm_special_mapping *spec);
3346/* This is an obsolete alternative to _install_special_mapping. */
3347extern int install_special_mapping(struct mm_struct *mm,
3348 unsigned long addr, unsigned long len,
3349 unsigned long flags, struct page **pages);
3350
3351unsigned long randomize_stack_top(unsigned long stack_top);
3352unsigned long randomize_page(unsigned long start, unsigned long range);
3353
3354extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3355
3356extern unsigned long mmap_region(struct file *file, unsigned long addr,
3357 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3358 struct list_head *uf);
3359extern unsigned long do_mmap(struct file *file, unsigned long addr,
3360 unsigned long len, unsigned long prot, unsigned long flags,
3361 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3362 struct list_head *uf);
3363extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3364 unsigned long start, size_t len, struct list_head *uf,
3365 bool unlock);
3366extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3367 struct list_head *uf);
3368extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3369
3370#ifdef CONFIG_MMU
3371extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3372 unsigned long start, unsigned long end,
3373 struct list_head *uf, bool unlock);
3374extern int __mm_populate(unsigned long addr, unsigned long len,
3375 int ignore_errors);
3376static inline void mm_populate(unsigned long addr, unsigned long len)
3377{
3378 /* Ignore errors */
3379 (void) __mm_populate(addr, len, ignore_errors: 1);
3380}
3381#else
3382static inline void mm_populate(unsigned long addr, unsigned long len) {}
3383#endif
3384
3385/* This takes the mm semaphore itself */
3386extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3387extern int vm_munmap(unsigned long, size_t);
3388extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3389 unsigned long, unsigned long,
3390 unsigned long, unsigned long);
3391
3392struct vm_unmapped_area_info {
3393#define VM_UNMAPPED_AREA_TOPDOWN 1
3394 unsigned long flags;
3395 unsigned long length;
3396 unsigned long low_limit;
3397 unsigned long high_limit;
3398 unsigned long align_mask;
3399 unsigned long align_offset;
3400};
3401
3402extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3403
3404/* truncate.c */
3405extern void truncate_inode_pages(struct address_space *, loff_t);
3406extern void truncate_inode_pages_range(struct address_space *,
3407 loff_t lstart, loff_t lend);
3408extern void truncate_inode_pages_final(struct address_space *);
3409
3410/* generic vm_area_ops exported for stackable file systems */
3411extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3412extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3413 pgoff_t start_pgoff, pgoff_t end_pgoff);
3414extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3415
3416extern unsigned long stack_guard_gap;
3417/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3418int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3419struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3420
3421/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3422int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3423
3424/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3425extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3426extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3427 struct vm_area_struct **pprev);
3428
3429/*
3430 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3431 * NULL if none. Assume start_addr < end_addr.
3432 */
3433struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3434 unsigned long start_addr, unsigned long end_addr);
3435
3436/**
3437 * vma_lookup() - Find a VMA at a specific address
3438 * @mm: The process address space.
3439 * @addr: The user address.
3440 *
3441 * Return: The vm_area_struct at the given address, %NULL otherwise.
3442 */
3443static inline
3444struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3445{
3446 return mtree_load(mt: &mm->mm_mt, index: addr);
3447}
3448
3449static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3450{
3451 if (vma->vm_flags & VM_GROWSDOWN)
3452 return stack_guard_gap;
3453
3454 /* See reasoning around the VM_SHADOW_STACK definition */
3455 if (vma->vm_flags & VM_SHADOW_STACK)
3456 return PAGE_SIZE;
3457
3458 return 0;
3459}
3460
3461static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3462{
3463 unsigned long gap = stack_guard_start_gap(vma);
3464 unsigned long vm_start = vma->vm_start;
3465
3466 vm_start -= gap;
3467 if (vm_start > vma->vm_start)
3468 vm_start = 0;
3469 return vm_start;
3470}
3471
3472static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3473{
3474 unsigned long vm_end = vma->vm_end;
3475
3476 if (vma->vm_flags & VM_GROWSUP) {
3477 vm_end += stack_guard_gap;
3478 if (vm_end < vma->vm_end)
3479 vm_end = -PAGE_SIZE;
3480 }
3481 return vm_end;
3482}
3483
3484static inline unsigned long vma_pages(struct vm_area_struct *vma)
3485{
3486 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3487}
3488
3489/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3490static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3491 unsigned long vm_start, unsigned long vm_end)
3492{
3493 struct vm_area_struct *vma = vma_lookup(mm, addr: vm_start);
3494
3495 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3496 vma = NULL;
3497
3498 return vma;
3499}
3500
3501static inline bool range_in_vma(struct vm_area_struct *vma,
3502 unsigned long start, unsigned long end)
3503{
3504 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3505}
3506
3507#ifdef CONFIG_MMU
3508pgprot_t vm_get_page_prot(unsigned long vm_flags);
3509void vma_set_page_prot(struct vm_area_struct *vma);
3510#else
3511static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3512{
3513 return __pgprot(0);
3514}
3515static inline void vma_set_page_prot(struct vm_area_struct *vma)
3516{
3517 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3518}
3519#endif
3520
3521void vma_set_file(struct vm_area_struct *vma, struct file *file);
3522
3523#ifdef CONFIG_NUMA_BALANCING
3524unsigned long change_prot_numa(struct vm_area_struct *vma,
3525 unsigned long start, unsigned long end);
3526#endif
3527
3528struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3529 unsigned long addr);
3530int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3531 unsigned long pfn, unsigned long size, pgprot_t);
3532int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3533 unsigned long pfn, unsigned long size, pgprot_t prot);
3534int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3535int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3536 struct page **pages, unsigned long *num);
3537int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3538 unsigned long num);
3539int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3540 unsigned long num);
3541vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3542 unsigned long pfn);
3543vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3544 unsigned long pfn, pgprot_t pgprot);
3545vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3546 pfn_t pfn);
3547vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3548 unsigned long addr, pfn_t pfn);
3549int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3550
3551static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3552 unsigned long addr, struct page *page)
3553{
3554 int err = vm_insert_page(vma, addr, page);
3555
3556 if (err == -ENOMEM)
3557 return VM_FAULT_OOM;
3558 if (err < 0 && err != -EBUSY)
3559 return VM_FAULT_SIGBUS;
3560
3561 return VM_FAULT_NOPAGE;
3562}
3563
3564#ifndef io_remap_pfn_range
3565static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3566 unsigned long addr, unsigned long pfn,
3567 unsigned long size, pgprot_t prot)
3568{
3569 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3570}
3571#endif
3572
3573static inline vm_fault_t vmf_error(int err)
3574{
3575 if (err == -ENOMEM)
3576 return VM_FAULT_OOM;
3577 else if (err == -EHWPOISON)
3578 return VM_FAULT_HWPOISON;
3579 return VM_FAULT_SIGBUS;
3580}
3581
3582/*
3583 * Convert errno to return value for ->page_mkwrite() calls.
3584 *
3585 * This should eventually be merged with vmf_error() above, but will need a
3586 * careful audit of all vmf_error() callers.
3587 */
3588static inline vm_fault_t vmf_fs_error(int err)
3589{
3590 if (err == 0)
3591 return VM_FAULT_LOCKED;
3592 if (err == -EFAULT || err == -EAGAIN)
3593 return VM_FAULT_NOPAGE;
3594 if (err == -ENOMEM)
3595 return VM_FAULT_OOM;
3596 /* -ENOSPC, -EDQUOT, -EIO ... */
3597 return VM_FAULT_SIGBUS;
3598}
3599
3600struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3601 unsigned int foll_flags);
3602
3603static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3604{
3605 if (vm_fault & VM_FAULT_OOM)
3606 return -ENOMEM;
3607 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3608 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3609 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3610 return -EFAULT;
3611 return 0;
3612}
3613
3614/*
3615 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3616 * a (NUMA hinting) fault is required.
3617 */
3618static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3619 unsigned int flags)
3620{
3621 /*
3622 * If callers don't want to honor NUMA hinting faults, no need to
3623 * determine if we would actually have to trigger a NUMA hinting fault.
3624 */
3625 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3626 return true;
3627
3628 /*
3629 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3630 *
3631 * Requiring a fault here even for inaccessible VMAs would mean that
3632 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3633 * refuses to process NUMA hinting faults in inaccessible VMAs.
3634 */
3635 return !vma_is_accessible(vma);
3636}
3637
3638typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3639extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3640 unsigned long size, pte_fn_t fn, void *data);
3641extern int apply_to_existing_page_range(struct mm_struct *mm,
3642 unsigned long address, unsigned long size,
3643 pte_fn_t fn, void *data);
3644
3645#ifdef CONFIG_PAGE_POISONING
3646extern void __kernel_poison_pages(struct page *page, int numpages);
3647extern void __kernel_unpoison_pages(struct page *page, int numpages);
3648extern bool _page_poisoning_enabled_early;
3649DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3650static inline bool page_poisoning_enabled(void)
3651{
3652 return _page_poisoning_enabled_early;
3653}
3654/*
3655 * For use in fast paths after init_mem_debugging() has run, or when a
3656 * false negative result is not harmful when called too early.
3657 */
3658static inline bool page_poisoning_enabled_static(void)
3659{
3660 return static_branch_unlikely(&_page_poisoning_enabled);
3661}
3662static inline void kernel_poison_pages(struct page *page, int numpages)
3663{
3664 if (page_poisoning_enabled_static())
3665 __kernel_poison_pages(page, numpages);
3666}
3667static inline void kernel_unpoison_pages(struct page *page, int numpages)
3668{
3669 if (page_poisoning_enabled_static())
3670 __kernel_unpoison_pages(page, numpages);
3671}
3672#else
3673static inline bool page_poisoning_enabled(void) { return false; }
3674static inline bool page_poisoning_enabled_static(void) { return false; }
3675static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3676static inline void kernel_poison_pages(struct page *page, int numpages) { }
3677static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3678#endif
3679
3680DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3681static inline bool want_init_on_alloc(gfp_t flags)
3682{
3683 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3684 &init_on_alloc))
3685 return true;
3686 return flags & __GFP_ZERO;
3687}
3688
3689DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3690static inline bool want_init_on_free(void)
3691{
3692 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3693 &init_on_free);
3694}
3695
3696extern bool _debug_pagealloc_enabled_early;
3697DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3698
3699static inline bool debug_pagealloc_enabled(void)
3700{
3701 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3702 _debug_pagealloc_enabled_early;
3703}
3704
3705/*
3706 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3707 * or when a false negative result is not harmful when called too early.
3708 */
3709static inline bool debug_pagealloc_enabled_static(void)
3710{
3711 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3712 return false;
3713
3714 return static_branch_unlikely(&_debug_pagealloc_enabled);
3715}
3716
3717/*
3718 * To support DEBUG_PAGEALLOC architecture must ensure that
3719 * __kernel_map_pages() never fails
3720 */
3721extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3722#ifdef CONFIG_DEBUG_PAGEALLOC
3723static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3724{
3725 if (debug_pagealloc_enabled_static())
3726 __kernel_map_pages(page, numpages, enable: 1);
3727}
3728
3729static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3730{
3731 if (debug_pagealloc_enabled_static())
3732 __kernel_map_pages(page, numpages, enable: 0);
3733}
3734
3735extern unsigned int _debug_guardpage_minorder;
3736DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3737
3738static inline unsigned int debug_guardpage_minorder(void)
3739{
3740 return _debug_guardpage_minorder;
3741}
3742
3743static inline bool debug_guardpage_enabled(void)
3744{
3745 return static_branch_unlikely(&_debug_guardpage_enabled);
3746}
3747
3748static inline bool page_is_guard(struct page *page)
3749{
3750 if (!debug_guardpage_enabled())
3751 return false;
3752
3753 return PageGuard(page);
3754}
3755
3756bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3757 int migratetype);
3758static inline bool set_page_guard(struct zone *zone, struct page *page,
3759 unsigned int order, int migratetype)
3760{
3761 if (!debug_guardpage_enabled())
3762 return false;
3763 return __set_page_guard(zone, page, order, migratetype);
3764}
3765
3766void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3767 int migratetype);
3768static inline void clear_page_guard(struct zone *zone, struct page *page,
3769 unsigned int order, int migratetype)
3770{
3771 if (!debug_guardpage_enabled())
3772 return;
3773 __clear_page_guard(zone, page, order, migratetype);
3774}
3775
3776#else /* CONFIG_DEBUG_PAGEALLOC */
3777static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3778static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3779static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3780static inline bool debug_guardpage_enabled(void) { return false; }
3781static inline bool page_is_guard(struct page *page) { return false; }
3782static inline bool set_page_guard(struct zone *zone, struct page *page,
3783 unsigned int order, int migratetype) { return false; }
3784static inline void clear_page_guard(struct zone *zone, struct page *page,
3785 unsigned int order, int migratetype) {}
3786#endif /* CONFIG_DEBUG_PAGEALLOC */
3787
3788#ifdef __HAVE_ARCH_GATE_AREA
3789extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3790extern int in_gate_area_no_mm(unsigned long addr);
3791extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3792#else
3793static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3794{
3795 return NULL;
3796}
3797static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3798static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3799{
3800 return 0;
3801}
3802#endif /* __HAVE_ARCH_GATE_AREA */
3803
3804extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3805
3806#ifdef CONFIG_SYSCTL
3807extern int sysctl_drop_caches;
3808int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3809 loff_t *);
3810#endif
3811
3812void drop_slab(void);
3813
3814#ifndef CONFIG_MMU
3815#define randomize_va_space 0
3816#else
3817extern int randomize_va_space;
3818#endif
3819
3820const char * arch_vma_name(struct vm_area_struct *vma);
3821#ifdef CONFIG_MMU
3822void print_vma_addr(char *prefix, unsigned long rip);
3823#else
3824static inline void print_vma_addr(char *prefix, unsigned long rip)
3825{
3826}
3827#endif
3828
3829void *sparse_buffer_alloc(unsigned long size);
3830struct page * __populate_section_memmap(unsigned long pfn,
3831 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3832 struct dev_pagemap *pgmap);
3833void pmd_init(void *addr);
3834void pud_init(void *addr);
3835pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3836p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3837pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3838pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3839pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3840 struct vmem_altmap *altmap, struct page *reuse);
3841void *vmemmap_alloc_block(unsigned long size, int node);
3842struct vmem_altmap;
3843void *vmemmap_alloc_block_buf(unsigned long size, int node,
3844 struct vmem_altmap *altmap);
3845void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3846void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3847 unsigned long addr, unsigned long next);
3848int vmemmap_check_pmd(pmd_t *pmd, int node,
3849 unsigned long addr, unsigned long next);
3850int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3851 int node, struct vmem_altmap *altmap);
3852int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3853 int node, struct vmem_altmap *altmap);
3854int vmemmap_populate(unsigned long start, unsigned long end, int node,
3855 struct vmem_altmap *altmap);
3856void vmemmap_populate_print_last(void);
3857#ifdef CONFIG_MEMORY_HOTPLUG
3858void vmemmap_free(unsigned long start, unsigned long end,
3859 struct vmem_altmap *altmap);
3860#endif
3861
3862#define VMEMMAP_RESERVE_NR 2
3863#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3864static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3865 struct dev_pagemap *pgmap)
3866{
3867 unsigned long nr_pages;
3868 unsigned long nr_vmemmap_pages;
3869
3870 if (!pgmap || !is_power_of_2(n: sizeof(struct page)))
3871 return false;
3872
3873 nr_pages = pgmap_vmemmap_nr(pgmap);
3874 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3875 /*
3876 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3877 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3878 */
3879 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3880}
3881/*
3882 * If we don't have an architecture override, use the generic rule
3883 */
3884#ifndef vmemmap_can_optimize
3885#define vmemmap_can_optimize __vmemmap_can_optimize
3886#endif
3887
3888#else
3889static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3890 struct dev_pagemap *pgmap)
3891{
3892 return false;
3893}
3894#endif
3895
3896void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3897 unsigned long nr_pages);
3898
3899enum mf_flags {
3900 MF_COUNT_INCREASED = 1 << 0,
3901 MF_ACTION_REQUIRED = 1 << 1,
3902 MF_MUST_KILL = 1 << 2,
3903 MF_SOFT_OFFLINE = 1 << 3,
3904 MF_UNPOISON = 1 << 4,
3905 MF_SW_SIMULATED = 1 << 5,
3906 MF_NO_RETRY = 1 << 6,
3907};
3908int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3909 unsigned long count, int mf_flags);
3910extern int memory_failure(unsigned long pfn, int flags);
3911extern void memory_failure_queue_kick(int cpu);
3912extern int unpoison_memory(unsigned long pfn);
3913extern void shake_page(struct page *p);
3914extern atomic_long_t num_poisoned_pages __read_mostly;
3915extern int soft_offline_page(unsigned long pfn, int flags);
3916#ifdef CONFIG_MEMORY_FAILURE
3917/*
3918 * Sysfs entries for memory failure handling statistics.
3919 */
3920extern const struct attribute_group memory_failure_attr_group;
3921extern void memory_failure_queue(unsigned long pfn, int flags);
3922extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3923 bool *migratable_cleared);
3924void num_poisoned_pages_inc(unsigned long pfn);
3925void num_poisoned_pages_sub(unsigned long pfn, long i);
3926struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3927#else
3928static inline void memory_failure_queue(unsigned long pfn, int flags)
3929{
3930}
3931
3932static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3933 bool *migratable_cleared)
3934{
3935 return 0;
3936}
3937
3938static inline void num_poisoned_pages_inc(unsigned long pfn)
3939{
3940}
3941
3942static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3943{
3944}
3945#endif
3946
3947#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3948void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3949 struct vm_area_struct *vma, struct list_head *to_kill,
3950 unsigned long ksm_addr);
3951#endif
3952
3953#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3954extern void memblk_nr_poison_inc(unsigned long pfn);
3955extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3956#else
3957static inline void memblk_nr_poison_inc(unsigned long pfn)
3958{
3959}
3960
3961static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3962{
3963}
3964#endif
3965
3966#ifndef arch_memory_failure
3967static inline int arch_memory_failure(unsigned long pfn, int flags)
3968{
3969 return -ENXIO;
3970}
3971#endif
3972
3973#ifndef arch_is_platform_page
3974static inline bool arch_is_platform_page(u64 paddr)
3975{
3976 return false;
3977}
3978#endif
3979
3980/*
3981 * Error handlers for various types of pages.
3982 */
3983enum mf_result {
3984 MF_IGNORED, /* Error: cannot be handled */
3985 MF_FAILED, /* Error: handling failed */
3986 MF_DELAYED, /* Will be handled later */
3987 MF_RECOVERED, /* Successfully recovered */
3988};
3989
3990enum mf_action_page_type {
3991 MF_MSG_KERNEL,
3992 MF_MSG_KERNEL_HIGH_ORDER,
3993 MF_MSG_SLAB,
3994 MF_MSG_DIFFERENT_COMPOUND,
3995 MF_MSG_HUGE,
3996 MF_MSG_FREE_HUGE,
3997 MF_MSG_UNMAP_FAILED,
3998 MF_MSG_DIRTY_SWAPCACHE,
3999 MF_MSG_CLEAN_SWAPCACHE,
4000 MF_MSG_DIRTY_MLOCKED_LRU,
4001 MF_MSG_CLEAN_MLOCKED_LRU,
4002 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4003 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4004 MF_MSG_DIRTY_LRU,
4005 MF_MSG_CLEAN_LRU,
4006 MF_MSG_TRUNCATED_LRU,
4007 MF_MSG_BUDDY,
4008 MF_MSG_DAX,
4009 MF_MSG_UNSPLIT_THP,
4010 MF_MSG_UNKNOWN,
4011};
4012
4013#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4014extern void clear_huge_page(struct page *page,
4015 unsigned long addr_hint,
4016 unsigned int pages_per_huge_page);
4017int copy_user_large_folio(struct folio *dst, struct folio *src,
4018 unsigned long addr_hint,
4019 struct vm_area_struct *vma);
4020long copy_folio_from_user(struct folio *dst_folio,
4021 const void __user *usr_src,
4022 bool allow_pagefault);
4023
4024/**
4025 * vma_is_special_huge - Are transhuge page-table entries considered special?
4026 * @vma: Pointer to the struct vm_area_struct to consider
4027 *
4028 * Whether transhuge page-table entries are considered "special" following
4029 * the definition in vm_normal_page().
4030 *
4031 * Return: true if transhuge page-table entries should be considered special,
4032 * false otherwise.
4033 */
4034static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4035{
4036 return vma_is_dax(vma) || (vma->vm_file &&
4037 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4038}
4039
4040#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4041
4042#if MAX_NUMNODES > 1
4043void __init setup_nr_node_ids(void);
4044#else
4045static inline void setup_nr_node_ids(void) {}
4046#endif
4047
4048extern int memcmp_pages(struct page *page1, struct page *page2);
4049
4050static inline int pages_identical(struct page *page1, struct page *page2)
4051{
4052 return !memcmp_pages(page1, page2);
4053}
4054
4055#ifdef CONFIG_MAPPING_DIRTY_HELPERS
4056unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4057 pgoff_t first_index, pgoff_t nr,
4058 pgoff_t bitmap_pgoff,
4059 unsigned long *bitmap,
4060 pgoff_t *start,
4061 pgoff_t *end);
4062
4063unsigned long wp_shared_mapping_range(struct address_space *mapping,
4064 pgoff_t first_index, pgoff_t nr);
4065#endif
4066
4067extern int sysctl_nr_trim_pages;
4068
4069#ifdef CONFIG_PRINTK
4070void mem_dump_obj(void *object);
4071#else
4072static inline void mem_dump_obj(void *object) {}
4073#endif
4074
4075/**
4076 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4077 * handle them.
4078 * @seals: the seals to check
4079 * @vma: the vma to operate on
4080 *
4081 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4082 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
4083 */
4084static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4085{
4086 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4087 /*
4088 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4089 * write seals are active.
4090 */
4091 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4092 return -EPERM;
4093
4094 /*
4095 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4096 * MAP_SHARED and read-only, take care to not allow mprotect to
4097 * revert protections on such mappings. Do this only for shared
4098 * mappings. For private mappings, don't need to mask
4099 * VM_MAYWRITE as we still want them to be COW-writable.
4100 */
4101 if (vma->vm_flags & VM_SHARED)
4102 vm_flags_clear(vma, VM_MAYWRITE);
4103 }
4104
4105 return 0;
4106}
4107
4108#ifdef CONFIG_ANON_VMA_NAME
4109int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4110 unsigned long len_in,
4111 struct anon_vma_name *anon_name);
4112#else
4113static inline int
4114madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4115 unsigned long len_in, struct anon_vma_name *anon_name) {
4116 return 0;
4117}
4118#endif
4119
4120#ifdef CONFIG_UNACCEPTED_MEMORY
4121
4122bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4123void accept_memory(phys_addr_t start, phys_addr_t end);
4124
4125#else
4126
4127static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4128 phys_addr_t end)
4129{
4130 return false;
4131}
4132
4133static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4134{
4135}
4136
4137#endif
4138
4139static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4140{
4141 phys_addr_t paddr = pfn << PAGE_SHIFT;
4142
4143 return range_contains_unaccepted_memory(start: paddr, end: paddr + PAGE_SIZE);
4144}
4145
4146#endif /* _LINUX_MM_H */
4147

source code of linux/include/linux/mm.h