1 | /* SPDX-License-Identifier: GPL-2.0 */ |
2 | #ifndef _LINUX_MM_H |
3 | #define _LINUX_MM_H |
4 | |
5 | #include <linux/errno.h> |
6 | #include <linux/mmdebug.h> |
7 | #include <linux/gfp.h> |
8 | #include <linux/bug.h> |
9 | #include <linux/list.h> |
10 | #include <linux/mmzone.h> |
11 | #include <linux/rbtree.h> |
12 | #include <linux/atomic.h> |
13 | #include <linux/debug_locks.h> |
14 | #include <linux/mm_types.h> |
15 | #include <linux/mmap_lock.h> |
16 | #include <linux/range.h> |
17 | #include <linux/pfn.h> |
18 | #include <linux/percpu-refcount.h> |
19 | #include <linux/bit_spinlock.h> |
20 | #include <linux/shrinker.h> |
21 | #include <linux/resource.h> |
22 | #include <linux/page_ext.h> |
23 | #include <linux/err.h> |
24 | #include <linux/page-flags.h> |
25 | #include <linux/page_ref.h> |
26 | #include <linux/overflow.h> |
27 | #include <linux/sizes.h> |
28 | #include <linux/sched.h> |
29 | #include <linux/pgtable.h> |
30 | #include <linux/kasan.h> |
31 | #include <linux/memremap.h> |
32 | |
33 | struct mempolicy; |
34 | struct anon_vma; |
35 | struct anon_vma_chain; |
36 | struct user_struct; |
37 | struct pt_regs; |
38 | |
39 | extern int sysctl_page_lock_unfairness; |
40 | |
41 | void init_mm_internals(void); |
42 | |
43 | #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ |
44 | extern unsigned long max_mapnr; |
45 | |
46 | static inline void set_max_mapnr(unsigned long limit) |
47 | { |
48 | max_mapnr = limit; |
49 | } |
50 | #else |
51 | static inline void set_max_mapnr(unsigned long limit) { } |
52 | #endif |
53 | |
54 | extern atomic_long_t _totalram_pages; |
55 | static inline unsigned long totalram_pages(void) |
56 | { |
57 | return (unsigned long)atomic_long_read(&_totalram_pages); |
58 | } |
59 | |
60 | static inline void totalram_pages_inc(void) |
61 | { |
62 | atomic_long_inc(&_totalram_pages); |
63 | } |
64 | |
65 | static inline void totalram_pages_dec(void) |
66 | { |
67 | atomic_long_dec(&_totalram_pages); |
68 | } |
69 | |
70 | static inline void totalram_pages_add(long count) |
71 | { |
72 | atomic_long_add(count, &_totalram_pages); |
73 | } |
74 | |
75 | extern void * high_memory; |
76 | extern int page_cluster; |
77 | |
78 | #ifdef CONFIG_SYSCTL |
79 | extern int sysctl_legacy_va_layout; |
80 | #else |
81 | #define sysctl_legacy_va_layout 0 |
82 | #endif |
83 | |
84 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS |
85 | extern const int mmap_rnd_bits_min; |
86 | extern const int mmap_rnd_bits_max; |
87 | extern int mmap_rnd_bits __read_mostly; |
88 | #endif |
89 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS |
90 | extern const int mmap_rnd_compat_bits_min; |
91 | extern const int mmap_rnd_compat_bits_max; |
92 | extern int mmap_rnd_compat_bits __read_mostly; |
93 | #endif |
94 | |
95 | #include <asm/page.h> |
96 | #include <asm/processor.h> |
97 | |
98 | /* |
99 | * Architectures that support memory tagging (assigning tags to memory regions, |
100 | * embedding these tags into addresses that point to these memory regions, and |
101 | * checking that the memory and the pointer tags match on memory accesses) |
102 | * redefine this macro to strip tags from pointers. |
103 | * It's defined as noop for architectures that don't support memory tagging. |
104 | */ |
105 | #ifndef untagged_addr |
106 | #define untagged_addr(addr) (addr) |
107 | #endif |
108 | |
109 | #ifndef __pa_symbol |
110 | #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) |
111 | #endif |
112 | |
113 | #ifndef page_to_virt |
114 | #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) |
115 | #endif |
116 | |
117 | #ifndef lm_alias |
118 | #define lm_alias(x) __va(__pa_symbol(x)) |
119 | #endif |
120 | |
121 | /* |
122 | * To prevent common memory management code establishing |
123 | * a zero page mapping on a read fault. |
124 | * This macro should be defined within <asm/pgtable.h>. |
125 | * s390 does this to prevent multiplexing of hardware bits |
126 | * related to the physical page in case of virtualization. |
127 | */ |
128 | #ifndef mm_forbids_zeropage |
129 | #define mm_forbids_zeropage(X) (0) |
130 | #endif |
131 | |
132 | /* |
133 | * On some architectures it is expensive to call memset() for small sizes. |
134 | * If an architecture decides to implement their own version of |
135 | * mm_zero_struct_page they should wrap the defines below in a #ifndef and |
136 | * define their own version of this macro in <asm/pgtable.h> |
137 | */ |
138 | #if BITS_PER_LONG == 64 |
139 | /* This function must be updated when the size of struct page grows above 80 |
140 | * or reduces below 56. The idea that compiler optimizes out switch() |
141 | * statement, and only leaves move/store instructions. Also the compiler can |
142 | * combine write statements if they are both assignments and can be reordered, |
143 | * this can result in several of the writes here being dropped. |
144 | */ |
145 | #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) |
146 | static inline void __mm_zero_struct_page(struct page *page) |
147 | { |
148 | unsigned long *_pp = (void *)page; |
149 | |
150 | /* Check that struct page is either 56, 64, 72, or 80 bytes */ |
151 | BUILD_BUG_ON(sizeof(struct page) & 7); |
152 | BUILD_BUG_ON(sizeof(struct page) < 56); |
153 | BUILD_BUG_ON(sizeof(struct page) > 80); |
154 | |
155 | switch (sizeof(struct page)) { |
156 | case 80: |
157 | _pp[9] = 0; |
158 | fallthrough; |
159 | case 72: |
160 | _pp[8] = 0; |
161 | fallthrough; |
162 | case 64: |
163 | _pp[7] = 0; |
164 | fallthrough; |
165 | case 56: |
166 | _pp[6] = 0; |
167 | _pp[5] = 0; |
168 | _pp[4] = 0; |
169 | _pp[3] = 0; |
170 | _pp[2] = 0; |
171 | _pp[1] = 0; |
172 | _pp[0] = 0; |
173 | } |
174 | } |
175 | #else |
176 | #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) |
177 | #endif |
178 | |
179 | /* |
180 | * Default maximum number of active map areas, this limits the number of vmas |
181 | * per mm struct. Users can overwrite this number by sysctl but there is a |
182 | * problem. |
183 | * |
184 | * When a program's coredump is generated as ELF format, a section is created |
185 | * per a vma. In ELF, the number of sections is represented in unsigned short. |
186 | * This means the number of sections should be smaller than 65535 at coredump. |
187 | * Because the kernel adds some informative sections to a image of program at |
188 | * generating coredump, we need some margin. The number of extra sections is |
189 | * 1-3 now and depends on arch. We use "5" as safe margin, here. |
190 | * |
191 | * ELF extended numbering allows more than 65535 sections, so 16-bit bound is |
192 | * not a hard limit any more. Although some userspace tools can be surprised by |
193 | * that. |
194 | */ |
195 | #define MAPCOUNT_ELF_CORE_MARGIN (5) |
196 | #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) |
197 | |
198 | extern int sysctl_max_map_count; |
199 | |
200 | extern unsigned long sysctl_user_reserve_kbytes; |
201 | extern unsigned long sysctl_admin_reserve_kbytes; |
202 | |
203 | extern int sysctl_overcommit_memory; |
204 | extern int sysctl_overcommit_ratio; |
205 | extern unsigned long sysctl_overcommit_kbytes; |
206 | |
207 | int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, |
208 | loff_t *); |
209 | int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, |
210 | loff_t *); |
211 | int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, |
212 | loff_t *); |
213 | |
214 | #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) |
215 | #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) |
216 | #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) |
217 | #else |
218 | #define nth_page(page,n) ((page) + (n)) |
219 | #define folio_page_idx(folio, p) ((p) - &(folio)->page) |
220 | #endif |
221 | |
222 | /* to align the pointer to the (next) page boundary */ |
223 | #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) |
224 | |
225 | /* to align the pointer to the (prev) page boundary */ |
226 | #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) |
227 | |
228 | /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ |
229 | #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) |
230 | |
231 | #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) |
232 | static inline struct folio *lru_to_folio(struct list_head *head) |
233 | { |
234 | return list_entry((head)->prev, struct folio, lru); |
235 | } |
236 | |
237 | void setup_initial_init_mm(void *start_code, void *end_code, |
238 | void *end_data, void *brk); |
239 | |
240 | /* |
241 | * Linux kernel virtual memory manager primitives. |
242 | * The idea being to have a "virtual" mm in the same way |
243 | * we have a virtual fs - giving a cleaner interface to the |
244 | * mm details, and allowing different kinds of memory mappings |
245 | * (from shared memory to executable loading to arbitrary |
246 | * mmap() functions). |
247 | */ |
248 | |
249 | struct vm_area_struct *vm_area_alloc(struct mm_struct *); |
250 | struct vm_area_struct *vm_area_dup(struct vm_area_struct *); |
251 | void vm_area_free(struct vm_area_struct *); |
252 | |
253 | #ifndef CONFIG_MMU |
254 | extern struct rb_root nommu_region_tree; |
255 | extern struct rw_semaphore nommu_region_sem; |
256 | |
257 | extern unsigned int kobjsize(const void *objp); |
258 | #endif |
259 | |
260 | /* |
261 | * vm_flags in vm_area_struct, see mm_types.h. |
262 | * When changing, update also include/trace/events/mmflags.h |
263 | */ |
264 | #define VM_NONE 0x00000000 |
265 | |
266 | #define VM_READ 0x00000001 /* currently active flags */ |
267 | #define VM_WRITE 0x00000002 |
268 | #define VM_EXEC 0x00000004 |
269 | #define VM_SHARED 0x00000008 |
270 | |
271 | /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ |
272 | #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ |
273 | #define VM_MAYWRITE 0x00000020 |
274 | #define VM_MAYEXEC 0x00000040 |
275 | #define VM_MAYSHARE 0x00000080 |
276 | |
277 | #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ |
278 | #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ |
279 | #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ |
280 | #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ |
281 | |
282 | #define VM_LOCKED 0x00002000 |
283 | #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ |
284 | |
285 | /* Used by sys_madvise() */ |
286 | #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ |
287 | #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ |
288 | |
289 | #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ |
290 | #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ |
291 | #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ |
292 | #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ |
293 | #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ |
294 | #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ |
295 | #define VM_SYNC 0x00800000 /* Synchronous page faults */ |
296 | #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ |
297 | #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ |
298 | #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ |
299 | |
300 | #ifdef CONFIG_MEM_SOFT_DIRTY |
301 | # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ |
302 | #else |
303 | # define VM_SOFTDIRTY 0 |
304 | #endif |
305 | |
306 | #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ |
307 | #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ |
308 | #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ |
309 | #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ |
310 | |
311 | #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS |
312 | #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ |
313 | #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ |
314 | #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ |
315 | #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ |
316 | #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ |
317 | #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) |
318 | #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) |
319 | #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) |
320 | #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) |
321 | #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) |
322 | #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ |
323 | |
324 | #ifdef CONFIG_ARCH_HAS_PKEYS |
325 | # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 |
326 | # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ |
327 | # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ |
328 | # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 |
329 | # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 |
330 | #ifdef CONFIG_PPC |
331 | # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 |
332 | #else |
333 | # define VM_PKEY_BIT4 0 |
334 | #endif |
335 | #endif /* CONFIG_ARCH_HAS_PKEYS */ |
336 | |
337 | #if defined(CONFIG_X86) |
338 | # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ |
339 | #elif defined(CONFIG_PPC) |
340 | # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ |
341 | #elif defined(CONFIG_PARISC) |
342 | # define VM_GROWSUP VM_ARCH_1 |
343 | #elif defined(CONFIG_IA64) |
344 | # define VM_GROWSUP VM_ARCH_1 |
345 | #elif defined(CONFIG_SPARC64) |
346 | # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ |
347 | # define VM_ARCH_CLEAR VM_SPARC_ADI |
348 | #elif defined(CONFIG_ARM64) |
349 | # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ |
350 | # define VM_ARCH_CLEAR VM_ARM64_BTI |
351 | #elif !defined(CONFIG_MMU) |
352 | # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ |
353 | #endif |
354 | |
355 | #if defined(CONFIG_ARM64_MTE) |
356 | # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ |
357 | # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ |
358 | #else |
359 | # define VM_MTE VM_NONE |
360 | # define VM_MTE_ALLOWED VM_NONE |
361 | #endif |
362 | |
363 | #ifndef VM_GROWSUP |
364 | # define VM_GROWSUP VM_NONE |
365 | #endif |
366 | |
367 | #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR |
368 | # define VM_UFFD_MINOR_BIT 37 |
369 | # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ |
370 | #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ |
371 | # define VM_UFFD_MINOR VM_NONE |
372 | #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ |
373 | |
374 | /* Bits set in the VMA until the stack is in its final location */ |
375 | #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) |
376 | |
377 | #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) |
378 | |
379 | /* Common data flag combinations */ |
380 | #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ |
381 | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) |
382 | #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ |
383 | VM_MAYWRITE | VM_MAYEXEC) |
384 | #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ |
385 | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) |
386 | |
387 | #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ |
388 | #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC |
389 | #endif |
390 | |
391 | #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ |
392 | #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS |
393 | #endif |
394 | |
395 | #ifdef CONFIG_STACK_GROWSUP |
396 | #define VM_STACK VM_GROWSUP |
397 | #else |
398 | #define VM_STACK VM_GROWSDOWN |
399 | #endif |
400 | |
401 | #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) |
402 | |
403 | /* VMA basic access permission flags */ |
404 | #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) |
405 | |
406 | |
407 | /* |
408 | * Special vmas that are non-mergable, non-mlock()able. |
409 | */ |
410 | #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) |
411 | |
412 | /* This mask prevents VMA from being scanned with khugepaged */ |
413 | #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) |
414 | |
415 | /* This mask defines which mm->def_flags a process can inherit its parent */ |
416 | #define VM_INIT_DEF_MASK VM_NOHUGEPAGE |
417 | |
418 | /* This mask is used to clear all the VMA flags used by mlock */ |
419 | #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) |
420 | |
421 | /* Arch-specific flags to clear when updating VM flags on protection change */ |
422 | #ifndef VM_ARCH_CLEAR |
423 | # define VM_ARCH_CLEAR VM_NONE |
424 | #endif |
425 | #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) |
426 | |
427 | /* |
428 | * mapping from the currently active vm_flags protection bits (the |
429 | * low four bits) to a page protection mask.. |
430 | */ |
431 | |
432 | /* |
433 | * The default fault flags that should be used by most of the |
434 | * arch-specific page fault handlers. |
435 | */ |
436 | #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ |
437 | FAULT_FLAG_KILLABLE | \ |
438 | FAULT_FLAG_INTERRUPTIBLE) |
439 | |
440 | /** |
441 | * fault_flag_allow_retry_first - check ALLOW_RETRY the first time |
442 | * @flags: Fault flags. |
443 | * |
444 | * This is mostly used for places where we want to try to avoid taking |
445 | * the mmap_lock for too long a time when waiting for another condition |
446 | * to change, in which case we can try to be polite to release the |
447 | * mmap_lock in the first round to avoid potential starvation of other |
448 | * processes that would also want the mmap_lock. |
449 | * |
450 | * Return: true if the page fault allows retry and this is the first |
451 | * attempt of the fault handling; false otherwise. |
452 | */ |
453 | static inline bool fault_flag_allow_retry_first(enum fault_flag flags) |
454 | { |
455 | return (flags & FAULT_FLAG_ALLOW_RETRY) && |
456 | (!(flags & FAULT_FLAG_TRIED)); |
457 | } |
458 | |
459 | #define FAULT_FLAG_TRACE \ |
460 | { FAULT_FLAG_WRITE, "WRITE" }, \ |
461 | { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ |
462 | { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ |
463 | { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ |
464 | { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ |
465 | { FAULT_FLAG_TRIED, "TRIED" }, \ |
466 | { FAULT_FLAG_USER, "USER" }, \ |
467 | { FAULT_FLAG_REMOTE, "REMOTE" }, \ |
468 | { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ |
469 | { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } |
470 | |
471 | /* |
472 | * vm_fault is filled by the pagefault handler and passed to the vma's |
473 | * ->fault function. The vma's ->fault is responsible for returning a bitmask |
474 | * of VM_FAULT_xxx flags that give details about how the fault was handled. |
475 | * |
476 | * MM layer fills up gfp_mask for page allocations but fault handler might |
477 | * alter it if its implementation requires a different allocation context. |
478 | * |
479 | * pgoff should be used in favour of virtual_address, if possible. |
480 | */ |
481 | struct vm_fault { |
482 | const struct { |
483 | struct vm_area_struct *vma; /* Target VMA */ |
484 | gfp_t gfp_mask; /* gfp mask to be used for allocations */ |
485 | pgoff_t pgoff; /* Logical page offset based on vma */ |
486 | unsigned long address; /* Faulting virtual address - masked */ |
487 | unsigned long real_address; /* Faulting virtual address - unmasked */ |
488 | }; |
489 | enum fault_flag flags; /* FAULT_FLAG_xxx flags |
490 | * XXX: should really be 'const' */ |
491 | pmd_t *pmd; /* Pointer to pmd entry matching |
492 | * the 'address' */ |
493 | pud_t *pud; /* Pointer to pud entry matching |
494 | * the 'address' |
495 | */ |
496 | union { |
497 | pte_t orig_pte; /* Value of PTE at the time of fault */ |
498 | pmd_t orig_pmd; /* Value of PMD at the time of fault, |
499 | * used by PMD fault only. |
500 | */ |
501 | }; |
502 | |
503 | struct page *cow_page; /* Page handler may use for COW fault */ |
504 | struct page *page; /* ->fault handlers should return a |
505 | * page here, unless VM_FAULT_NOPAGE |
506 | * is set (which is also implied by |
507 | * VM_FAULT_ERROR). |
508 | */ |
509 | /* These three entries are valid only while holding ptl lock */ |
510 | pte_t *pte; /* Pointer to pte entry matching |
511 | * the 'address'. NULL if the page |
512 | * table hasn't been allocated. |
513 | */ |
514 | spinlock_t *ptl; /* Page table lock. |
515 | * Protects pte page table if 'pte' |
516 | * is not NULL, otherwise pmd. |
517 | */ |
518 | pgtable_t prealloc_pte; /* Pre-allocated pte page table. |
519 | * vm_ops->map_pages() sets up a page |
520 | * table from atomic context. |
521 | * do_fault_around() pre-allocates |
522 | * page table to avoid allocation from |
523 | * atomic context. |
524 | */ |
525 | }; |
526 | |
527 | /* page entry size for vm->huge_fault() */ |
528 | enum page_entry_size { |
529 | PE_SIZE_PTE = 0, |
530 | PE_SIZE_PMD, |
531 | PE_SIZE_PUD, |
532 | }; |
533 | |
534 | /* |
535 | * These are the virtual MM functions - opening of an area, closing and |
536 | * unmapping it (needed to keep files on disk up-to-date etc), pointer |
537 | * to the functions called when a no-page or a wp-page exception occurs. |
538 | */ |
539 | struct vm_operations_struct { |
540 | void (*open)(struct vm_area_struct * area); |
541 | /** |
542 | * @close: Called when the VMA is being removed from the MM. |
543 | * Context: User context. May sleep. Caller holds mmap_lock. |
544 | */ |
545 | void (*close)(struct vm_area_struct * area); |
546 | /* Called any time before splitting to check if it's allowed */ |
547 | int (*may_split)(struct vm_area_struct *area, unsigned long addr); |
548 | int (*mremap)(struct vm_area_struct *area); |
549 | /* |
550 | * Called by mprotect() to make driver-specific permission |
551 | * checks before mprotect() is finalised. The VMA must not |
552 | * be modified. Returns 0 if eprotect() can proceed. |
553 | */ |
554 | int (*mprotect)(struct vm_area_struct *vma, unsigned long start, |
555 | unsigned long end, unsigned long newflags); |
556 | vm_fault_t (*fault)(struct vm_fault *vmf); |
557 | vm_fault_t (*huge_fault)(struct vm_fault *vmf, |
558 | enum page_entry_size pe_size); |
559 | vm_fault_t (*map_pages)(struct vm_fault *vmf, |
560 | pgoff_t start_pgoff, pgoff_t end_pgoff); |
561 | unsigned long (*pagesize)(struct vm_area_struct * area); |
562 | |
563 | /* notification that a previously read-only page is about to become |
564 | * writable, if an error is returned it will cause a SIGBUS */ |
565 | vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); |
566 | |
567 | /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ |
568 | vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); |
569 | |
570 | /* called by access_process_vm when get_user_pages() fails, typically |
571 | * for use by special VMAs. See also generic_access_phys() for a generic |
572 | * implementation useful for any iomem mapping. |
573 | */ |
574 | int (*access)(struct vm_area_struct *vma, unsigned long addr, |
575 | void *buf, int len, int write); |
576 | |
577 | /* Called by the /proc/PID/maps code to ask the vma whether it |
578 | * has a special name. Returning non-NULL will also cause this |
579 | * vma to be dumped unconditionally. */ |
580 | const char *(*name)(struct vm_area_struct *vma); |
581 | |
582 | #ifdef CONFIG_NUMA |
583 | /* |
584 | * set_policy() op must add a reference to any non-NULL @new mempolicy |
585 | * to hold the policy upon return. Caller should pass NULL @new to |
586 | * remove a policy and fall back to surrounding context--i.e. do not |
587 | * install a MPOL_DEFAULT policy, nor the task or system default |
588 | * mempolicy. |
589 | */ |
590 | int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); |
591 | |
592 | /* |
593 | * get_policy() op must add reference [mpol_get()] to any policy at |
594 | * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure |
595 | * in mm/mempolicy.c will do this automatically. |
596 | * get_policy() must NOT add a ref if the policy at (vma,addr) is not |
597 | * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. |
598 | * If no [shared/vma] mempolicy exists at the addr, get_policy() op |
599 | * must return NULL--i.e., do not "fallback" to task or system default |
600 | * policy. |
601 | */ |
602 | struct mempolicy *(*get_policy)(struct vm_area_struct *vma, |
603 | unsigned long addr); |
604 | #endif |
605 | /* |
606 | * Called by vm_normal_page() for special PTEs to find the |
607 | * page for @addr. This is useful if the default behavior |
608 | * (using pte_page()) would not find the correct page. |
609 | */ |
610 | struct page *(*find_special_page)(struct vm_area_struct *vma, |
611 | unsigned long addr); |
612 | }; |
613 | |
614 | static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) |
615 | { |
616 | static const struct vm_operations_struct dummy_vm_ops = {}; |
617 | |
618 | memset(vma, 0, sizeof(*vma)); |
619 | vma->vm_mm = mm; |
620 | vma->vm_ops = &dummy_vm_ops; |
621 | INIT_LIST_HEAD(&vma->anon_vma_chain); |
622 | } |
623 | |
624 | static inline void vma_set_anonymous(struct vm_area_struct *vma) |
625 | { |
626 | vma->vm_ops = NULL; |
627 | } |
628 | |
629 | static inline bool vma_is_anonymous(struct vm_area_struct *vma) |
630 | { |
631 | return !vma->vm_ops; |
632 | } |
633 | |
634 | static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) |
635 | { |
636 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); |
637 | |
638 | if (!maybe_stack) |
639 | return false; |
640 | |
641 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == |
642 | VM_STACK_INCOMPLETE_SETUP) |
643 | return true; |
644 | |
645 | return false; |
646 | } |
647 | |
648 | static inline bool vma_is_foreign(struct vm_area_struct *vma) |
649 | { |
650 | if (!current->mm) |
651 | return true; |
652 | |
653 | if (current->mm != vma->vm_mm) |
654 | return true; |
655 | |
656 | return false; |
657 | } |
658 | |
659 | static inline bool vma_is_accessible(struct vm_area_struct *vma) |
660 | { |
661 | return vma->vm_flags & VM_ACCESS_FLAGS; |
662 | } |
663 | |
664 | #ifdef CONFIG_SHMEM |
665 | /* |
666 | * The vma_is_shmem is not inline because it is used only by slow |
667 | * paths in userfault. |
668 | */ |
669 | bool vma_is_shmem(struct vm_area_struct *vma); |
670 | #else |
671 | static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } |
672 | #endif |
673 | |
674 | int vma_is_stack_for_current(struct vm_area_struct *vma); |
675 | |
676 | /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ |
677 | #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } |
678 | |
679 | struct mmu_gather; |
680 | struct inode; |
681 | |
682 | static inline unsigned int compound_order(struct page *page) |
683 | { |
684 | if (!PageHead(page)) |
685 | return 0; |
686 | return page[1].compound_order; |
687 | } |
688 | |
689 | /** |
690 | * folio_order - The allocation order of a folio. |
691 | * @folio: The folio. |
692 | * |
693 | * A folio is composed of 2^order pages. See get_order() for the definition |
694 | * of order. |
695 | * |
696 | * Return: The order of the folio. |
697 | */ |
698 | static inline unsigned int folio_order(struct folio *folio) |
699 | { |
700 | return compound_order(&folio->page); |
701 | } |
702 | |
703 | #include <linux/huge_mm.h> |
704 | |
705 | /* |
706 | * Methods to modify the page usage count. |
707 | * |
708 | * What counts for a page usage: |
709 | * - cache mapping (page->mapping) |
710 | * - private data (page->private) |
711 | * - page mapped in a task's page tables, each mapping |
712 | * is counted separately |
713 | * |
714 | * Also, many kernel routines increase the page count before a critical |
715 | * routine so they can be sure the page doesn't go away from under them. |
716 | */ |
717 | |
718 | /* |
719 | * Drop a ref, return true if the refcount fell to zero (the page has no users) |
720 | */ |
721 | static inline int put_page_testzero(struct page *page) |
722 | { |
723 | VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); |
724 | return page_ref_dec_and_test(page); |
725 | } |
726 | |
727 | static inline int folio_put_testzero(struct folio *folio) |
728 | { |
729 | return put_page_testzero(&folio->page); |
730 | } |
731 | |
732 | /* |
733 | * Try to grab a ref unless the page has a refcount of zero, return false if |
734 | * that is the case. |
735 | * This can be called when MMU is off so it must not access |
736 | * any of the virtual mappings. |
737 | */ |
738 | static inline bool get_page_unless_zero(struct page *page) |
739 | { |
740 | return page_ref_add_unless(page, 1, 0); |
741 | } |
742 | |
743 | extern int page_is_ram(unsigned long pfn); |
744 | |
745 | enum { |
746 | REGION_INTERSECTS, |
747 | REGION_DISJOINT, |
748 | REGION_MIXED, |
749 | }; |
750 | |
751 | int region_intersects(resource_size_t offset, size_t size, unsigned long flags, |
752 | unsigned long desc); |
753 | |
754 | /* Support for virtually mapped pages */ |
755 | struct page *vmalloc_to_page(const void *addr); |
756 | unsigned long vmalloc_to_pfn(const void *addr); |
757 | |
758 | /* |
759 | * Determine if an address is within the vmalloc range |
760 | * |
761 | * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there |
762 | * is no special casing required. |
763 | */ |
764 | |
765 | #ifndef is_ioremap_addr |
766 | #define is_ioremap_addr(x) is_vmalloc_addr(x) |
767 | #endif |
768 | |
769 | #ifdef CONFIG_MMU |
770 | extern bool is_vmalloc_addr(const void *x); |
771 | extern int is_vmalloc_or_module_addr(const void *x); |
772 | #else |
773 | static inline bool is_vmalloc_addr(const void *x) |
774 | { |
775 | return false; |
776 | } |
777 | static inline int is_vmalloc_or_module_addr(const void *x) |
778 | { |
779 | return 0; |
780 | } |
781 | #endif |
782 | |
783 | /* |
784 | * How many times the entire folio is mapped as a single unit (eg by a |
785 | * PMD or PUD entry). This is probably not what you want, except for |
786 | * debugging purposes; look at folio_mapcount() or page_mapcount() |
787 | * instead. |
788 | */ |
789 | static inline int folio_entire_mapcount(struct folio *folio) |
790 | { |
791 | VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); |
792 | return atomic_read(folio_mapcount_ptr(folio)) + 1; |
793 | } |
794 | |
795 | /* |
796 | * Mapcount of compound page as a whole, does not include mapped sub-pages. |
797 | * |
798 | * Must be called only for compound pages. |
799 | */ |
800 | static inline int compound_mapcount(struct page *page) |
801 | { |
802 | return folio_entire_mapcount(page_folio(page)); |
803 | } |
804 | |
805 | /* |
806 | * The atomic page->_mapcount, starts from -1: so that transitions |
807 | * both from it and to it can be tracked, using atomic_inc_and_test |
808 | * and atomic_add_negative(-1). |
809 | */ |
810 | static inline void page_mapcount_reset(struct page *page) |
811 | { |
812 | atomic_set(&(page)->_mapcount, -1); |
813 | } |
814 | |
815 | int __page_mapcount(struct page *page); |
816 | |
817 | /* |
818 | * Mapcount of 0-order page; when compound sub-page, includes |
819 | * compound_mapcount(). |
820 | * |
821 | * Result is undefined for pages which cannot be mapped into userspace. |
822 | * For example SLAB or special types of pages. See function page_has_type(). |
823 | * They use this place in struct page differently. |
824 | */ |
825 | static inline int page_mapcount(struct page *page) |
826 | { |
827 | if (unlikely(PageCompound(page))) |
828 | return __page_mapcount(page); |
829 | return atomic_read(&page->_mapcount) + 1; |
830 | } |
831 | |
832 | int folio_mapcount(struct folio *folio); |
833 | |
834 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
835 | static inline int total_mapcount(struct page *page) |
836 | { |
837 | return folio_mapcount(page_folio(page)); |
838 | } |
839 | |
840 | #else |
841 | static inline int total_mapcount(struct page *page) |
842 | { |
843 | return page_mapcount(page); |
844 | } |
845 | #endif |
846 | |
847 | static inline struct page *virt_to_head_page(const void *x) |
848 | { |
849 | struct page *page = virt_to_page(x); |
850 | |
851 | return compound_head(page); |
852 | } |
853 | |
854 | static inline struct folio *virt_to_folio(const void *x) |
855 | { |
856 | struct page *page = virt_to_page(x); |
857 | |
858 | return page_folio(page); |
859 | } |
860 | |
861 | void __folio_put(struct folio *folio); |
862 | |
863 | void put_pages_list(struct list_head *pages); |
864 | |
865 | void split_page(struct page *page, unsigned int order); |
866 | void folio_copy(struct folio *dst, struct folio *src); |
867 | |
868 | unsigned long nr_free_buffer_pages(void); |
869 | |
870 | /* |
871 | * Compound pages have a destructor function. Provide a |
872 | * prototype for that function and accessor functions. |
873 | * These are _only_ valid on the head of a compound page. |
874 | */ |
875 | typedef void compound_page_dtor(struct page *); |
876 | |
877 | /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ |
878 | enum compound_dtor_id { |
879 | NULL_COMPOUND_DTOR, |
880 | COMPOUND_PAGE_DTOR, |
881 | #ifdef CONFIG_HUGETLB_PAGE |
882 | HUGETLB_PAGE_DTOR, |
883 | #endif |
884 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
885 | TRANSHUGE_PAGE_DTOR, |
886 | #endif |
887 | NR_COMPOUND_DTORS, |
888 | }; |
889 | extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; |
890 | |
891 | static inline void set_compound_page_dtor(struct page *page, |
892 | enum compound_dtor_id compound_dtor) |
893 | { |
894 | VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); |
895 | page[1].compound_dtor = compound_dtor; |
896 | } |
897 | |
898 | void destroy_large_folio(struct folio *folio); |
899 | |
900 | static inline int head_compound_pincount(struct page *head) |
901 | { |
902 | return atomic_read(compound_pincount_ptr(head)); |
903 | } |
904 | |
905 | static inline void set_compound_order(struct page *page, unsigned int order) |
906 | { |
907 | page[1].compound_order = order; |
908 | #ifdef CONFIG_64BIT |
909 | page[1].compound_nr = 1U << order; |
910 | #endif |
911 | } |
912 | |
913 | /* Returns the number of pages in this potentially compound page. */ |
914 | static inline unsigned long compound_nr(struct page *page) |
915 | { |
916 | if (!PageHead(page)) |
917 | return 1; |
918 | #ifdef CONFIG_64BIT |
919 | return page[1].compound_nr; |
920 | #else |
921 | return 1UL << compound_order(page); |
922 | #endif |
923 | } |
924 | |
925 | /* Returns the number of bytes in this potentially compound page. */ |
926 | static inline unsigned long page_size(struct page *page) |
927 | { |
928 | return PAGE_SIZE << compound_order(page); |
929 | } |
930 | |
931 | /* Returns the number of bits needed for the number of bytes in a page */ |
932 | static inline unsigned int page_shift(struct page *page) |
933 | { |
934 | return PAGE_SHIFT + compound_order(page); |
935 | } |
936 | |
937 | /** |
938 | * thp_order - Order of a transparent huge page. |
939 | * @page: Head page of a transparent huge page. |
940 | */ |
941 | static inline unsigned int thp_order(struct page *page) |
942 | { |
943 | VM_BUG_ON_PGFLAGS(PageTail(page), page); |
944 | return compound_order(page); |
945 | } |
946 | |
947 | /** |
948 | * thp_nr_pages - The number of regular pages in this huge page. |
949 | * @page: The head page of a huge page. |
950 | */ |
951 | static inline int thp_nr_pages(struct page *page) |
952 | { |
953 | VM_BUG_ON_PGFLAGS(PageTail(page), page); |
954 | return compound_nr(page); |
955 | } |
956 | |
957 | /** |
958 | * thp_size - Size of a transparent huge page. |
959 | * @page: Head page of a transparent huge page. |
960 | * |
961 | * Return: Number of bytes in this page. |
962 | */ |
963 | static inline unsigned long thp_size(struct page *page) |
964 | { |
965 | return PAGE_SIZE << thp_order(page); |
966 | } |
967 | |
968 | void free_compound_page(struct page *page); |
969 | |
970 | #ifdef CONFIG_MMU |
971 | /* |
972 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when |
973 | * servicing faults for write access. In the normal case, do always want |
974 | * pte_mkwrite. But get_user_pages can cause write faults for mappings |
975 | * that do not have writing enabled, when used by access_process_vm. |
976 | */ |
977 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) |
978 | { |
979 | if (likely(vma->vm_flags & VM_WRITE)) |
980 | pte = pte_mkwrite(pte); |
981 | return pte; |
982 | } |
983 | |
984 | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); |
985 | void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); |
986 | |
987 | vm_fault_t finish_fault(struct vm_fault *vmf); |
988 | vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); |
989 | #endif |
990 | |
991 | /* |
992 | * Multiple processes may "see" the same page. E.g. for untouched |
993 | * mappings of /dev/null, all processes see the same page full of |
994 | * zeroes, and text pages of executables and shared libraries have |
995 | * only one copy in memory, at most, normally. |
996 | * |
997 | * For the non-reserved pages, page_count(page) denotes a reference count. |
998 | * page_count() == 0 means the page is free. page->lru is then used for |
999 | * freelist management in the buddy allocator. |
1000 | * page_count() > 0 means the page has been allocated. |
1001 | * |
1002 | * Pages are allocated by the slab allocator in order to provide memory |
1003 | * to kmalloc and kmem_cache_alloc. In this case, the management of the |
1004 | * page, and the fields in 'struct page' are the responsibility of mm/slab.c |
1005 | * unless a particular usage is carefully commented. (the responsibility of |
1006 | * freeing the kmalloc memory is the caller's, of course). |
1007 | * |
1008 | * A page may be used by anyone else who does a __get_free_page(). |
1009 | * In this case, page_count still tracks the references, and should only |
1010 | * be used through the normal accessor functions. The top bits of page->flags |
1011 | * and page->virtual store page management information, but all other fields |
1012 | * are unused and could be used privately, carefully. The management of this |
1013 | * page is the responsibility of the one who allocated it, and those who have |
1014 | * subsequently been given references to it. |
1015 | * |
1016 | * The other pages (we may call them "pagecache pages") are completely |
1017 | * managed by the Linux memory manager: I/O, buffers, swapping etc. |
1018 | * The following discussion applies only to them. |
1019 | * |
1020 | * A pagecache page contains an opaque `private' member, which belongs to the |
1021 | * page's address_space. Usually, this is the address of a circular list of |
1022 | * the page's disk buffers. PG_private must be set to tell the VM to call |
1023 | * into the filesystem to release these pages. |
1024 | * |
1025 | * A page may belong to an inode's memory mapping. In this case, page->mapping |
1026 | * is the pointer to the inode, and page->index is the file offset of the page, |
1027 | * in units of PAGE_SIZE. |
1028 | * |
1029 | * If pagecache pages are not associated with an inode, they are said to be |
1030 | * anonymous pages. These may become associated with the swapcache, and in that |
1031 | * case PG_swapcache is set, and page->private is an offset into the swapcache. |
1032 | * |
1033 | * In either case (swapcache or inode backed), the pagecache itself holds one |
1034 | * reference to the page. Setting PG_private should also increment the |
1035 | * refcount. The each user mapping also has a reference to the page. |
1036 | * |
1037 | * The pagecache pages are stored in a per-mapping radix tree, which is |
1038 | * rooted at mapping->i_pages, and indexed by offset. |
1039 | * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space |
1040 | * lists, we instead now tag pages as dirty/writeback in the radix tree. |
1041 | * |
1042 | * All pagecache pages may be subject to I/O: |
1043 | * - inode pages may need to be read from disk, |
1044 | * - inode pages which have been modified and are MAP_SHARED may need |
1045 | * to be written back to the inode on disk, |
1046 | * - anonymous pages (including MAP_PRIVATE file mappings) which have been |
1047 | * modified may need to be swapped out to swap space and (later) to be read |
1048 | * back into memory. |
1049 | */ |
1050 | |
1051 | #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) |
1052 | DECLARE_STATIC_KEY_FALSE(devmap_managed_key); |
1053 | |
1054 | bool __put_devmap_managed_page_refs(struct page *page, int refs); |
1055 | static inline bool put_devmap_managed_page_refs(struct page *page, int refs) |
1056 | { |
1057 | if (!static_branch_unlikely(&devmap_managed_key)) |
1058 | return false; |
1059 | if (!is_zone_device_page(page)) |
1060 | return false; |
1061 | return __put_devmap_managed_page_refs(page, refs); |
1062 | } |
1063 | #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ |
1064 | static inline bool put_devmap_managed_page_refs(struct page *page, int refs) |
1065 | { |
1066 | return false; |
1067 | } |
1068 | #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ |
1069 | |
1070 | static inline bool put_devmap_managed_page(struct page *page) |
1071 | { |
1072 | return put_devmap_managed_page_refs(page, 1); |
1073 | } |
1074 | |
1075 | /* 127: arbitrary random number, small enough to assemble well */ |
1076 | #define folio_ref_zero_or_close_to_overflow(folio) \ |
1077 | ((unsigned int) folio_ref_count(folio) + 127u <= 127u) |
1078 | |
1079 | /** |
1080 | * folio_get - Increment the reference count on a folio. |
1081 | * @folio: The folio. |
1082 | * |
1083 | * Context: May be called in any context, as long as you know that |
1084 | * you have a refcount on the folio. If you do not already have one, |
1085 | * folio_try_get() may be the right interface for you to use. |
1086 | */ |
1087 | static inline void folio_get(struct folio *folio) |
1088 | { |
1089 | VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); |
1090 | folio_ref_inc(folio); |
1091 | } |
1092 | |
1093 | static inline void get_page(struct page *page) |
1094 | { |
1095 | folio_get(page_folio(page)); |
1096 | } |
1097 | |
1098 | bool __must_check try_grab_page(struct page *page, unsigned int flags); |
1099 | |
1100 | static inline __must_check bool try_get_page(struct page *page) |
1101 | { |
1102 | page = compound_head(page); |
1103 | if (WARN_ON_ONCE(page_ref_count(page) <= 0)) |
1104 | return false; |
1105 | page_ref_inc(page); |
1106 | return true; |
1107 | } |
1108 | |
1109 | /** |
1110 | * folio_put - Decrement the reference count on a folio. |
1111 | * @folio: The folio. |
1112 | * |
1113 | * If the folio's reference count reaches zero, the memory will be |
1114 | * released back to the page allocator and may be used by another |
1115 | * allocation immediately. Do not access the memory or the struct folio |
1116 | * after calling folio_put() unless you can be sure that it wasn't the |
1117 | * last reference. |
1118 | * |
1119 | * Context: May be called in process or interrupt context, but not in NMI |
1120 | * context. May be called while holding a spinlock. |
1121 | */ |
1122 | static inline void folio_put(struct folio *folio) |
1123 | { |
1124 | if (folio_put_testzero(folio)) |
1125 | __folio_put(folio); |
1126 | } |
1127 | |
1128 | /** |
1129 | * folio_put_refs - Reduce the reference count on a folio. |
1130 | * @folio: The folio. |
1131 | * @refs: The amount to subtract from the folio's reference count. |
1132 | * |
1133 | * If the folio's reference count reaches zero, the memory will be |
1134 | * released back to the page allocator and may be used by another |
1135 | * allocation immediately. Do not access the memory or the struct folio |
1136 | * after calling folio_put_refs() unless you can be sure that these weren't |
1137 | * the last references. |
1138 | * |
1139 | * Context: May be called in process or interrupt context, but not in NMI |
1140 | * context. May be called while holding a spinlock. |
1141 | */ |
1142 | static inline void folio_put_refs(struct folio *folio, int refs) |
1143 | { |
1144 | if (folio_ref_sub_and_test(folio, refs)) |
1145 | __folio_put(folio); |
1146 | } |
1147 | |
1148 | void release_pages(struct page **pages, int nr); |
1149 | |
1150 | /** |
1151 | * folios_put - Decrement the reference count on an array of folios. |
1152 | * @folios: The folios. |
1153 | * @nr: How many folios there are. |
1154 | * |
1155 | * Like folio_put(), but for an array of folios. This is more efficient |
1156 | * than writing the loop yourself as it will optimise the locks which |
1157 | * need to be taken if the folios are freed. |
1158 | * |
1159 | * Context: May be called in process or interrupt context, but not in NMI |
1160 | * context. May be called while holding a spinlock. |
1161 | */ |
1162 | static inline void folios_put(struct folio **folios, unsigned int nr) |
1163 | { |
1164 | release_pages((struct page **)folios, nr); |
1165 | } |
1166 | |
1167 | static inline void put_page(struct page *page) |
1168 | { |
1169 | struct folio *folio = page_folio(page); |
1170 | |
1171 | /* |
1172 | * For some devmap managed pages we need to catch refcount transition |
1173 | * from 2 to 1: |
1174 | */ |
1175 | if (put_devmap_managed_page(&folio->page)) |
1176 | return; |
1177 | folio_put(folio); |
1178 | } |
1179 | |
1180 | /* |
1181 | * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload |
1182 | * the page's refcount so that two separate items are tracked: the original page |
1183 | * reference count, and also a new count of how many pin_user_pages() calls were |
1184 | * made against the page. ("gup-pinned" is another term for the latter). |
1185 | * |
1186 | * With this scheme, pin_user_pages() becomes special: such pages are marked as |
1187 | * distinct from normal pages. As such, the unpin_user_page() call (and its |
1188 | * variants) must be used in order to release gup-pinned pages. |
1189 | * |
1190 | * Choice of value: |
1191 | * |
1192 | * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference |
1193 | * counts with respect to pin_user_pages() and unpin_user_page() becomes |
1194 | * simpler, due to the fact that adding an even power of two to the page |
1195 | * refcount has the effect of using only the upper N bits, for the code that |
1196 | * counts up using the bias value. This means that the lower bits are left for |
1197 | * the exclusive use of the original code that increments and decrements by one |
1198 | * (or at least, by much smaller values than the bias value). |
1199 | * |
1200 | * Of course, once the lower bits overflow into the upper bits (and this is |
1201 | * OK, because subtraction recovers the original values), then visual inspection |
1202 | * no longer suffices to directly view the separate counts. However, for normal |
1203 | * applications that don't have huge page reference counts, this won't be an |
1204 | * issue. |
1205 | * |
1206 | * Locking: the lockless algorithm described in folio_try_get_rcu() |
1207 | * provides safe operation for get_user_pages(), page_mkclean() and |
1208 | * other calls that race to set up page table entries. |
1209 | */ |
1210 | #define GUP_PIN_COUNTING_BIAS (1U << 10) |
1211 | |
1212 | void unpin_user_page(struct page *page); |
1213 | void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, |
1214 | bool make_dirty); |
1215 | void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, |
1216 | bool make_dirty); |
1217 | void unpin_user_pages(struct page **pages, unsigned long npages); |
1218 | |
1219 | static inline bool is_cow_mapping(vm_flags_t flags) |
1220 | { |
1221 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; |
1222 | } |
1223 | |
1224 | #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) |
1225 | #define SECTION_IN_PAGE_FLAGS |
1226 | #endif |
1227 | |
1228 | /* |
1229 | * The identification function is mainly used by the buddy allocator for |
1230 | * determining if two pages could be buddies. We are not really identifying |
1231 | * the zone since we could be using the section number id if we do not have |
1232 | * node id available in page flags. |
1233 | * We only guarantee that it will return the same value for two combinable |
1234 | * pages in a zone. |
1235 | */ |
1236 | static inline int page_zone_id(struct page *page) |
1237 | { |
1238 | return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; |
1239 | } |
1240 | |
1241 | #ifdef NODE_NOT_IN_PAGE_FLAGS |
1242 | extern int page_to_nid(const struct page *page); |
1243 | #else |
1244 | static inline int page_to_nid(const struct page *page) |
1245 | { |
1246 | struct page *p = (struct page *)page; |
1247 | |
1248 | return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; |
1249 | } |
1250 | #endif |
1251 | |
1252 | static inline int folio_nid(const struct folio *folio) |
1253 | { |
1254 | return page_to_nid(&folio->page); |
1255 | } |
1256 | |
1257 | #ifdef CONFIG_NUMA_BALANCING |
1258 | static inline int cpu_pid_to_cpupid(int cpu, int pid) |
1259 | { |
1260 | return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); |
1261 | } |
1262 | |
1263 | static inline int cpupid_to_pid(int cpupid) |
1264 | { |
1265 | return cpupid & LAST__PID_MASK; |
1266 | } |
1267 | |
1268 | static inline int cpupid_to_cpu(int cpupid) |
1269 | { |
1270 | return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; |
1271 | } |
1272 | |
1273 | static inline int cpupid_to_nid(int cpupid) |
1274 | { |
1275 | return cpu_to_node(cpupid_to_cpu(cpupid)); |
1276 | } |
1277 | |
1278 | static inline bool cpupid_pid_unset(int cpupid) |
1279 | { |
1280 | return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); |
1281 | } |
1282 | |
1283 | static inline bool cpupid_cpu_unset(int cpupid) |
1284 | { |
1285 | return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); |
1286 | } |
1287 | |
1288 | static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) |
1289 | { |
1290 | return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); |
1291 | } |
1292 | |
1293 | #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) |
1294 | #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS |
1295 | static inline int page_cpupid_xchg_last(struct page *page, int cpupid) |
1296 | { |
1297 | return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); |
1298 | } |
1299 | |
1300 | static inline int page_cpupid_last(struct page *page) |
1301 | { |
1302 | return page->_last_cpupid; |
1303 | } |
1304 | static inline void page_cpupid_reset_last(struct page *page) |
1305 | { |
1306 | page->_last_cpupid = -1 & LAST_CPUPID_MASK; |
1307 | } |
1308 | #else |
1309 | static inline int page_cpupid_last(struct page *page) |
1310 | { |
1311 | return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; |
1312 | } |
1313 | |
1314 | extern int page_cpupid_xchg_last(struct page *page, int cpupid); |
1315 | |
1316 | static inline void page_cpupid_reset_last(struct page *page) |
1317 | { |
1318 | page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; |
1319 | } |
1320 | #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ |
1321 | #else /* !CONFIG_NUMA_BALANCING */ |
1322 | static inline int page_cpupid_xchg_last(struct page *page, int cpupid) |
1323 | { |
1324 | return page_to_nid(page); /* XXX */ |
1325 | } |
1326 | |
1327 | static inline int page_cpupid_last(struct page *page) |
1328 | { |
1329 | return page_to_nid(page); /* XXX */ |
1330 | } |
1331 | |
1332 | static inline int cpupid_to_nid(int cpupid) |
1333 | { |
1334 | return -1; |
1335 | } |
1336 | |
1337 | static inline int cpupid_to_pid(int cpupid) |
1338 | { |
1339 | return -1; |
1340 | } |
1341 | |
1342 | static inline int cpupid_to_cpu(int cpupid) |
1343 | { |
1344 | return -1; |
1345 | } |
1346 | |
1347 | static inline int cpu_pid_to_cpupid(int nid, int pid) |
1348 | { |
1349 | return -1; |
1350 | } |
1351 | |
1352 | static inline bool cpupid_pid_unset(int cpupid) |
1353 | { |
1354 | return true; |
1355 | } |
1356 | |
1357 | static inline void page_cpupid_reset_last(struct page *page) |
1358 | { |
1359 | } |
1360 | |
1361 | static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) |
1362 | { |
1363 | return false; |
1364 | } |
1365 | #endif /* CONFIG_NUMA_BALANCING */ |
1366 | |
1367 | #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) |
1368 | |
1369 | /* |
1370 | * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid |
1371 | * setting tags for all pages to native kernel tag value 0xff, as the default |
1372 | * value 0x00 maps to 0xff. |
1373 | */ |
1374 | |
1375 | static inline u8 page_kasan_tag(const struct page *page) |
1376 | { |
1377 | u8 tag = 0xff; |
1378 | |
1379 | if (kasan_enabled()) { |
1380 | tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; |
1381 | tag ^= 0xff; |
1382 | } |
1383 | |
1384 | return tag; |
1385 | } |
1386 | |
1387 | static inline void page_kasan_tag_set(struct page *page, u8 tag) |
1388 | { |
1389 | unsigned long old_flags, flags; |
1390 | |
1391 | if (!kasan_enabled()) |
1392 | return; |
1393 | |
1394 | tag ^= 0xff; |
1395 | old_flags = READ_ONCE(page->flags); |
1396 | do { |
1397 | flags = old_flags; |
1398 | flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); |
1399 | flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; |
1400 | } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); |
1401 | } |
1402 | |
1403 | static inline void page_kasan_tag_reset(struct page *page) |
1404 | { |
1405 | if (kasan_enabled()) |
1406 | page_kasan_tag_set(page, 0xff); |
1407 | } |
1408 | |
1409 | #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ |
1410 | |
1411 | static inline u8 page_kasan_tag(const struct page *page) |
1412 | { |
1413 | return 0xff; |
1414 | } |
1415 | |
1416 | static inline void page_kasan_tag_set(struct page *page, u8 tag) { } |
1417 | static inline void page_kasan_tag_reset(struct page *page) { } |
1418 | |
1419 | #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ |
1420 | |
1421 | static inline struct zone *page_zone(const struct page *page) |
1422 | { |
1423 | return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; |
1424 | } |
1425 | |
1426 | static inline pg_data_t *page_pgdat(const struct page *page) |
1427 | { |
1428 | return NODE_DATA(page_to_nid(page)); |
1429 | } |
1430 | |
1431 | static inline struct zone *folio_zone(const struct folio *folio) |
1432 | { |
1433 | return page_zone(&folio->page); |
1434 | } |
1435 | |
1436 | static inline pg_data_t *folio_pgdat(const struct folio *folio) |
1437 | { |
1438 | return page_pgdat(&folio->page); |
1439 | } |
1440 | |
1441 | #ifdef SECTION_IN_PAGE_FLAGS |
1442 | static inline void set_page_section(struct page *page, unsigned long section) |
1443 | { |
1444 | page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); |
1445 | page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; |
1446 | } |
1447 | |
1448 | static inline unsigned long page_to_section(const struct page *page) |
1449 | { |
1450 | return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; |
1451 | } |
1452 | #endif |
1453 | |
1454 | /** |
1455 | * folio_pfn - Return the Page Frame Number of a folio. |
1456 | * @folio: The folio. |
1457 | * |
1458 | * A folio may contain multiple pages. The pages have consecutive |
1459 | * Page Frame Numbers. |
1460 | * |
1461 | * Return: The Page Frame Number of the first page in the folio. |
1462 | */ |
1463 | static inline unsigned long folio_pfn(struct folio *folio) |
1464 | { |
1465 | return page_to_pfn(&folio->page); |
1466 | } |
1467 | |
1468 | static inline atomic_t *folio_pincount_ptr(struct folio *folio) |
1469 | { |
1470 | return &folio_page(folio, 1)->compound_pincount; |
1471 | } |
1472 | |
1473 | /** |
1474 | * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. |
1475 | * @folio: The folio. |
1476 | * |
1477 | * This function checks if a folio has been pinned via a call to |
1478 | * a function in the pin_user_pages() family. |
1479 | * |
1480 | * For small folios, the return value is partially fuzzy: false is not fuzzy, |
1481 | * because it means "definitely not pinned for DMA", but true means "probably |
1482 | * pinned for DMA, but possibly a false positive due to having at least |
1483 | * GUP_PIN_COUNTING_BIAS worth of normal folio references". |
1484 | * |
1485 | * False positives are OK, because: a) it's unlikely for a folio to |
1486 | * get that many refcounts, and b) all the callers of this routine are |
1487 | * expected to be able to deal gracefully with a false positive. |
1488 | * |
1489 | * For large folios, the result will be exactly correct. That's because |
1490 | * we have more tracking data available: the compound_pincount is used |
1491 | * instead of the GUP_PIN_COUNTING_BIAS scheme. |
1492 | * |
1493 | * For more information, please see Documentation/core-api/pin_user_pages.rst. |
1494 | * |
1495 | * Return: True, if it is likely that the page has been "dma-pinned". |
1496 | * False, if the page is definitely not dma-pinned. |
1497 | */ |
1498 | static inline bool folio_maybe_dma_pinned(struct folio *folio) |
1499 | { |
1500 | if (folio_test_large(folio)) |
1501 | return atomic_read(folio_pincount_ptr(folio)) > 0; |
1502 | |
1503 | /* |
1504 | * folio_ref_count() is signed. If that refcount overflows, then |
1505 | * folio_ref_count() returns a negative value, and callers will avoid |
1506 | * further incrementing the refcount. |
1507 | * |
1508 | * Here, for that overflow case, use the sign bit to count a little |
1509 | * bit higher via unsigned math, and thus still get an accurate result. |
1510 | */ |
1511 | return ((unsigned int)folio_ref_count(folio)) >= |
1512 | GUP_PIN_COUNTING_BIAS; |
1513 | } |
1514 | |
1515 | static inline bool page_maybe_dma_pinned(struct page *page) |
1516 | { |
1517 | return folio_maybe_dma_pinned(page_folio(page)); |
1518 | } |
1519 | |
1520 | /* |
1521 | * This should most likely only be called during fork() to see whether we |
1522 | * should break the cow immediately for an anon page on the src mm. |
1523 | * |
1524 | * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. |
1525 | */ |
1526 | static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, |
1527 | struct page *page) |
1528 | { |
1529 | VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); |
1530 | |
1531 | if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) |
1532 | return false; |
1533 | |
1534 | return page_maybe_dma_pinned(page); |
1535 | } |
1536 | |
1537 | /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ |
1538 | #ifdef CONFIG_MIGRATION |
1539 | static inline bool is_longterm_pinnable_page(struct page *page) |
1540 | { |
1541 | #ifdef CONFIG_CMA |
1542 | int mt = get_pageblock_migratetype(page); |
1543 | |
1544 | if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) |
1545 | return false; |
1546 | #endif |
1547 | return !(is_device_coherent_page(page) || |
1548 | is_zone_movable_page(page) || |
1549 | is_zero_pfn(page_to_pfn(page))); |
1550 | } |
1551 | #else |
1552 | static inline bool is_longterm_pinnable_page(struct page *page) |
1553 | { |
1554 | return true; |
1555 | } |
1556 | #endif |
1557 | |
1558 | static inline bool folio_is_longterm_pinnable(struct folio *folio) |
1559 | { |
1560 | return is_longterm_pinnable_page(&folio->page); |
1561 | } |
1562 | |
1563 | static inline void set_page_zone(struct page *page, enum zone_type zone) |
1564 | { |
1565 | page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); |
1566 | page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; |
1567 | } |
1568 | |
1569 | static inline void set_page_node(struct page *page, unsigned long node) |
1570 | { |
1571 | page->flags &= ~(NODES_MASK << NODES_PGSHIFT); |
1572 | page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; |
1573 | } |
1574 | |
1575 | static inline void set_page_links(struct page *page, enum zone_type zone, |
1576 | unsigned long node, unsigned long pfn) |
1577 | { |
1578 | set_page_zone(page, zone); |
1579 | set_page_node(page, node); |
1580 | #ifdef SECTION_IN_PAGE_FLAGS |
1581 | set_page_section(page, pfn_to_section_nr(pfn)); |
1582 | #endif |
1583 | } |
1584 | |
1585 | /** |
1586 | * folio_nr_pages - The number of pages in the folio. |
1587 | * @folio: The folio. |
1588 | * |
1589 | * Return: A positive power of two. |
1590 | */ |
1591 | static inline long folio_nr_pages(struct folio *folio) |
1592 | { |
1593 | return compound_nr(&folio->page); |
1594 | } |
1595 | |
1596 | /** |
1597 | * folio_next - Move to the next physical folio. |
1598 | * @folio: The folio we're currently operating on. |
1599 | * |
1600 | * If you have physically contiguous memory which may span more than |
1601 | * one folio (eg a &struct bio_vec), use this function to move from one |
1602 | * folio to the next. Do not use it if the memory is only virtually |
1603 | * contiguous as the folios are almost certainly not adjacent to each |
1604 | * other. This is the folio equivalent to writing ``page++``. |
1605 | * |
1606 | * Context: We assume that the folios are refcounted and/or locked at a |
1607 | * higher level and do not adjust the reference counts. |
1608 | * Return: The next struct folio. |
1609 | */ |
1610 | static inline struct folio *folio_next(struct folio *folio) |
1611 | { |
1612 | return (struct folio *)folio_page(folio, folio_nr_pages(folio)); |
1613 | } |
1614 | |
1615 | /** |
1616 | * folio_shift - The size of the memory described by this folio. |
1617 | * @folio: The folio. |
1618 | * |
1619 | * A folio represents a number of bytes which is a power-of-two in size. |
1620 | * This function tells you which power-of-two the folio is. See also |
1621 | * folio_size() and folio_order(). |
1622 | * |
1623 | * Context: The caller should have a reference on the folio to prevent |
1624 | * it from being split. It is not necessary for the folio to be locked. |
1625 | * Return: The base-2 logarithm of the size of this folio. |
1626 | */ |
1627 | static inline unsigned int folio_shift(struct folio *folio) |
1628 | { |
1629 | return PAGE_SHIFT + folio_order(folio); |
1630 | } |
1631 | |
1632 | /** |
1633 | * folio_size - The number of bytes in a folio. |
1634 | * @folio: The folio. |
1635 | * |
1636 | * Context: The caller should have a reference on the folio to prevent |
1637 | * it from being split. It is not necessary for the folio to be locked. |
1638 | * Return: The number of bytes in this folio. |
1639 | */ |
1640 | static inline size_t folio_size(struct folio *folio) |
1641 | { |
1642 | return PAGE_SIZE << folio_order(folio); |
1643 | } |
1644 | |
1645 | #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE |
1646 | static inline int arch_make_page_accessible(struct page *page) |
1647 | { |
1648 | return 0; |
1649 | } |
1650 | #endif |
1651 | |
1652 | #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE |
1653 | static inline int arch_make_folio_accessible(struct folio *folio) |
1654 | { |
1655 | int ret; |
1656 | long i, nr = folio_nr_pages(folio); |
1657 | |
1658 | for (i = 0; i < nr; i++) { |
1659 | ret = arch_make_page_accessible(folio_page(folio, i)); |
1660 | if (ret) |
1661 | break; |
1662 | } |
1663 | |
1664 | return ret; |
1665 | } |
1666 | #endif |
1667 | |
1668 | /* |
1669 | * Some inline functions in vmstat.h depend on page_zone() |
1670 | */ |
1671 | #include <linux/vmstat.h> |
1672 | |
1673 | static __always_inline void *lowmem_page_address(const struct page *page) |
1674 | { |
1675 | return page_to_virt(page); |
1676 | } |
1677 | |
1678 | #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) |
1679 | #define HASHED_PAGE_VIRTUAL |
1680 | #endif |
1681 | |
1682 | #if defined(WANT_PAGE_VIRTUAL) |
1683 | static inline void *page_address(const struct page *page) |
1684 | { |
1685 | return page->virtual; |
1686 | } |
1687 | static inline void set_page_address(struct page *page, void *address) |
1688 | { |
1689 | page->virtual = address; |
1690 | } |
1691 | #define page_address_init() do { } while(0) |
1692 | #endif |
1693 | |
1694 | #if defined(HASHED_PAGE_VIRTUAL) |
1695 | void *page_address(const struct page *page); |
1696 | void set_page_address(struct page *page, void *virtual); |
1697 | void page_address_init(void); |
1698 | #endif |
1699 | |
1700 | #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) |
1701 | #define page_address(page) lowmem_page_address(page) |
1702 | #define set_page_address(page, address) do { } while(0) |
1703 | #define page_address_init() do { } while(0) |
1704 | #endif |
1705 | |
1706 | static inline void *folio_address(const struct folio *folio) |
1707 | { |
1708 | return page_address(&folio->page); |
1709 | } |
1710 | |
1711 | extern void *page_rmapping(struct page *page); |
1712 | extern pgoff_t __page_file_index(struct page *page); |
1713 | |
1714 | /* |
1715 | * Return the pagecache index of the passed page. Regular pagecache pages |
1716 | * use ->index whereas swapcache pages use swp_offset(->private) |
1717 | */ |
1718 | static inline pgoff_t page_index(struct page *page) |
1719 | { |
1720 | if (unlikely(PageSwapCache(page))) |
1721 | return __page_file_index(page); |
1722 | return page->index; |
1723 | } |
1724 | |
1725 | bool page_mapped(struct page *page); |
1726 | bool folio_mapped(struct folio *folio); |
1727 | |
1728 | /* |
1729 | * Return true only if the page has been allocated with |
1730 | * ALLOC_NO_WATERMARKS and the low watermark was not |
1731 | * met implying that the system is under some pressure. |
1732 | */ |
1733 | static inline bool page_is_pfmemalloc(const struct page *page) |
1734 | { |
1735 | /* |
1736 | * lru.next has bit 1 set if the page is allocated from the |
1737 | * pfmemalloc reserves. Callers may simply overwrite it if |
1738 | * they do not need to preserve that information. |
1739 | */ |
1740 | return (uintptr_t)page->lru.next & BIT(1); |
1741 | } |
1742 | |
1743 | /* |
1744 | * Only to be called by the page allocator on a freshly allocated |
1745 | * page. |
1746 | */ |
1747 | static inline void set_page_pfmemalloc(struct page *page) |
1748 | { |
1749 | page->lru.next = (void *)BIT(1); |
1750 | } |
1751 | |
1752 | static inline void clear_page_pfmemalloc(struct page *page) |
1753 | { |
1754 | page->lru.next = NULL; |
1755 | } |
1756 | |
1757 | /* |
1758 | * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. |
1759 | */ |
1760 | extern void pagefault_out_of_memory(void); |
1761 | |
1762 | #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) |
1763 | #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) |
1764 | #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) |
1765 | |
1766 | /* |
1767 | * Flags passed to show_mem() and show_free_areas() to suppress output in |
1768 | * various contexts. |
1769 | */ |
1770 | #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ |
1771 | |
1772 | extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); |
1773 | |
1774 | #ifdef CONFIG_MMU |
1775 | extern bool can_do_mlock(void); |
1776 | #else |
1777 | static inline bool can_do_mlock(void) { return false; } |
1778 | #endif |
1779 | extern int user_shm_lock(size_t, struct ucounts *); |
1780 | extern void user_shm_unlock(size_t, struct ucounts *); |
1781 | |
1782 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, |
1783 | pte_t pte); |
1784 | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, |
1785 | pmd_t pmd); |
1786 | |
1787 | void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, |
1788 | unsigned long size); |
1789 | void zap_page_range(struct vm_area_struct *vma, unsigned long address, |
1790 | unsigned long size); |
1791 | void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, |
1792 | unsigned long start, unsigned long end); |
1793 | |
1794 | struct mmu_notifier_range; |
1795 | |
1796 | void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, |
1797 | unsigned long end, unsigned long floor, unsigned long ceiling); |
1798 | int |
1799 | copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); |
1800 | int follow_pte(struct mm_struct *mm, unsigned long address, |
1801 | pte_t **ptepp, spinlock_t **ptlp); |
1802 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, |
1803 | unsigned long *pfn); |
1804 | int follow_phys(struct vm_area_struct *vma, unsigned long address, |
1805 | unsigned int flags, unsigned long *prot, resource_size_t *phys); |
1806 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, |
1807 | void *buf, int len, int write); |
1808 | |
1809 | extern void truncate_pagecache(struct inode *inode, loff_t new); |
1810 | extern void truncate_setsize(struct inode *inode, loff_t newsize); |
1811 | void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); |
1812 | void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); |
1813 | int generic_error_remove_page(struct address_space *mapping, struct page *page); |
1814 | |
1815 | #ifdef CONFIG_MMU |
1816 | extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, |
1817 | unsigned long address, unsigned int flags, |
1818 | struct pt_regs *regs); |
1819 | extern int fixup_user_fault(struct mm_struct *mm, |
1820 | unsigned long address, unsigned int fault_flags, |
1821 | bool *unlocked); |
1822 | void unmap_mapping_pages(struct address_space *mapping, |
1823 | pgoff_t start, pgoff_t nr, bool even_cows); |
1824 | void unmap_mapping_range(struct address_space *mapping, |
1825 | loff_t const holebegin, loff_t const holelen, int even_cows); |
1826 | #else |
1827 | static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, |
1828 | unsigned long address, unsigned int flags, |
1829 | struct pt_regs *regs) |
1830 | { |
1831 | /* should never happen if there's no MMU */ |
1832 | BUG(); |
1833 | return VM_FAULT_SIGBUS; |
1834 | } |
1835 | static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, |
1836 | unsigned int fault_flags, bool *unlocked) |
1837 | { |
1838 | /* should never happen if there's no MMU */ |
1839 | BUG(); |
1840 | return -EFAULT; |
1841 | } |
1842 | static inline void unmap_mapping_pages(struct address_space *mapping, |
1843 | pgoff_t start, pgoff_t nr, bool even_cows) { } |
1844 | static inline void unmap_mapping_range(struct address_space *mapping, |
1845 | loff_t const holebegin, loff_t const holelen, int even_cows) { } |
1846 | #endif |
1847 | |
1848 | static inline void unmap_shared_mapping_range(struct address_space *mapping, |
1849 | loff_t const holebegin, loff_t const holelen) |
1850 | { |
1851 | unmap_mapping_range(mapping, holebegin, holelen, 0); |
1852 | } |
1853 | |
1854 | extern int access_process_vm(struct task_struct *tsk, unsigned long addr, |
1855 | void *buf, int len, unsigned int gup_flags); |
1856 | extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, |
1857 | void *buf, int len, unsigned int gup_flags); |
1858 | extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, |
1859 | void *buf, int len, unsigned int gup_flags); |
1860 | |
1861 | long get_user_pages_remote(struct mm_struct *mm, |
1862 | unsigned long start, unsigned long nr_pages, |
1863 | unsigned int gup_flags, struct page **pages, |
1864 | struct vm_area_struct **vmas, int *locked); |
1865 | long pin_user_pages_remote(struct mm_struct *mm, |
1866 | unsigned long start, unsigned long nr_pages, |
1867 | unsigned int gup_flags, struct page **pages, |
1868 | struct vm_area_struct **vmas, int *locked); |
1869 | long get_user_pages(unsigned long start, unsigned long nr_pages, |
1870 | unsigned int gup_flags, struct page **pages, |
1871 | struct vm_area_struct **vmas); |
1872 | long pin_user_pages(unsigned long start, unsigned long nr_pages, |
1873 | unsigned int gup_flags, struct page **pages, |
1874 | struct vm_area_struct **vmas); |
1875 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
1876 | struct page **pages, unsigned int gup_flags); |
1877 | long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
1878 | struct page **pages, unsigned int gup_flags); |
1879 | |
1880 | int get_user_pages_fast(unsigned long start, int nr_pages, |
1881 | unsigned int gup_flags, struct page **pages); |
1882 | int pin_user_pages_fast(unsigned long start, int nr_pages, |
1883 | unsigned int gup_flags, struct page **pages); |
1884 | |
1885 | int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); |
1886 | int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, |
1887 | struct task_struct *task, bool bypass_rlim); |
1888 | |
1889 | struct kvec; |
1890 | int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, |
1891 | struct page **pages); |
1892 | struct page *get_dump_page(unsigned long addr); |
1893 | |
1894 | bool folio_mark_dirty(struct folio *folio); |
1895 | bool set_page_dirty(struct page *page); |
1896 | int set_page_dirty_lock(struct page *page); |
1897 | |
1898 | int get_cmdline(struct task_struct *task, char *buffer, int buflen); |
1899 | |
1900 | extern unsigned long move_page_tables(struct vm_area_struct *vma, |
1901 | unsigned long old_addr, struct vm_area_struct *new_vma, |
1902 | unsigned long new_addr, unsigned long len, |
1903 | bool need_rmap_locks); |
1904 | |
1905 | /* |
1906 | * Flags used by change_protection(). For now we make it a bitmap so |
1907 | * that we can pass in multiple flags just like parameters. However |
1908 | * for now all the callers are only use one of the flags at the same |
1909 | * time. |
1910 | */ |
1911 | /* |
1912 | * Whether we should manually check if we can map individual PTEs writable, |
1913 | * because something (e.g., COW, uffd-wp) blocks that from happening for all |
1914 | * PTEs automatically in a writable mapping. |
1915 | */ |
1916 | #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) |
1917 | /* Whether this protection change is for NUMA hints */ |
1918 | #define MM_CP_PROT_NUMA (1UL << 1) |
1919 | /* Whether this change is for write protecting */ |
1920 | #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ |
1921 | #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ |
1922 | #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ |
1923 | MM_CP_UFFD_WP_RESOLVE) |
1924 | |
1925 | extern unsigned long change_protection(struct mmu_gather *tlb, |
1926 | struct vm_area_struct *vma, unsigned long start, |
1927 | unsigned long end, pgprot_t newprot, |
1928 | unsigned long cp_flags); |
1929 | extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma, |
1930 | struct vm_area_struct **pprev, unsigned long start, |
1931 | unsigned long end, unsigned long newflags); |
1932 | |
1933 | /* |
1934 | * doesn't attempt to fault and will return short. |
1935 | */ |
1936 | int get_user_pages_fast_only(unsigned long start, int nr_pages, |
1937 | unsigned int gup_flags, struct page **pages); |
1938 | int pin_user_pages_fast_only(unsigned long start, int nr_pages, |
1939 | unsigned int gup_flags, struct page **pages); |
1940 | |
1941 | static inline bool get_user_page_fast_only(unsigned long addr, |
1942 | unsigned int gup_flags, struct page **pagep) |
1943 | { |
1944 | return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; |
1945 | } |
1946 | /* |
1947 | * per-process(per-mm_struct) statistics. |
1948 | */ |
1949 | static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) |
1950 | { |
1951 | long val = atomic_long_read(&mm->rss_stat.count[member]); |
1952 | |
1953 | #ifdef SPLIT_RSS_COUNTING |
1954 | /* |
1955 | * counter is updated in asynchronous manner and may go to minus. |
1956 | * But it's never be expected number for users. |
1957 | */ |
1958 | if (val < 0) |
1959 | val = 0; |
1960 | #endif |
1961 | return (unsigned long)val; |
1962 | } |
1963 | |
1964 | void (struct mm_struct *mm, int member, long count); |
1965 | |
1966 | static inline void add_mm_counter(struct mm_struct *mm, int member, long value) |
1967 | { |
1968 | long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); |
1969 | |
1970 | mm_trace_rss_stat(mm, member, count); |
1971 | } |
1972 | |
1973 | static inline void inc_mm_counter(struct mm_struct *mm, int member) |
1974 | { |
1975 | long count = atomic_long_inc_return(&mm->rss_stat.count[member]); |
1976 | |
1977 | mm_trace_rss_stat(mm, member, count); |
1978 | } |
1979 | |
1980 | static inline void dec_mm_counter(struct mm_struct *mm, int member) |
1981 | { |
1982 | long count = atomic_long_dec_return(&mm->rss_stat.count[member]); |
1983 | |
1984 | mm_trace_rss_stat(mm, member, count); |
1985 | } |
1986 | |
1987 | /* Optimized variant when page is already known not to be PageAnon */ |
1988 | static inline int mm_counter_file(struct page *page) |
1989 | { |
1990 | if (PageSwapBacked(page)) |
1991 | return MM_SHMEMPAGES; |
1992 | return MM_FILEPAGES; |
1993 | } |
1994 | |
1995 | static inline int mm_counter(struct page *page) |
1996 | { |
1997 | if (PageAnon(page)) |
1998 | return MM_ANONPAGES; |
1999 | return mm_counter_file(page); |
2000 | } |
2001 | |
2002 | static inline unsigned long (struct mm_struct *mm) |
2003 | { |
2004 | return get_mm_counter(mm, MM_FILEPAGES) + |
2005 | get_mm_counter(mm, MM_ANONPAGES) + |
2006 | get_mm_counter(mm, MM_SHMEMPAGES); |
2007 | } |
2008 | |
2009 | static inline unsigned long (struct mm_struct *mm) |
2010 | { |
2011 | return max(mm->hiwater_rss, get_mm_rss(mm)); |
2012 | } |
2013 | |
2014 | static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) |
2015 | { |
2016 | return max(mm->hiwater_vm, mm->total_vm); |
2017 | } |
2018 | |
2019 | static inline void (struct mm_struct *mm) |
2020 | { |
2021 | unsigned long = get_mm_rss(mm); |
2022 | |
2023 | if ((mm)->hiwater_rss < _rss) |
2024 | (mm)->hiwater_rss = _rss; |
2025 | } |
2026 | |
2027 | static inline void update_hiwater_vm(struct mm_struct *mm) |
2028 | { |
2029 | if (mm->hiwater_vm < mm->total_vm) |
2030 | mm->hiwater_vm = mm->total_vm; |
2031 | } |
2032 | |
2033 | static inline void (struct mm_struct *mm) |
2034 | { |
2035 | mm->hiwater_rss = get_mm_rss(mm); |
2036 | } |
2037 | |
2038 | static inline void (unsigned long *, |
2039 | struct mm_struct *mm) |
2040 | { |
2041 | unsigned long = get_mm_hiwater_rss(mm); |
2042 | |
2043 | if (*maxrss < hiwater_rss) |
2044 | *maxrss = hiwater_rss; |
2045 | } |
2046 | |
2047 | #if defined(SPLIT_RSS_COUNTING) |
2048 | void sync_mm_rss(struct mm_struct *mm); |
2049 | #else |
2050 | static inline void (struct mm_struct *mm) |
2051 | { |
2052 | } |
2053 | #endif |
2054 | |
2055 | #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL |
2056 | static inline int pte_special(pte_t pte) |
2057 | { |
2058 | return 0; |
2059 | } |
2060 | |
2061 | static inline pte_t pte_mkspecial(pte_t pte) |
2062 | { |
2063 | return pte; |
2064 | } |
2065 | #endif |
2066 | |
2067 | #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP |
2068 | static inline int pte_devmap(pte_t pte) |
2069 | { |
2070 | return 0; |
2071 | } |
2072 | #endif |
2073 | |
2074 | int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); |
2075 | |
2076 | extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, |
2077 | spinlock_t **ptl); |
2078 | static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, |
2079 | spinlock_t **ptl) |
2080 | { |
2081 | pte_t *ptep; |
2082 | __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); |
2083 | return ptep; |
2084 | } |
2085 | |
2086 | #ifdef __PAGETABLE_P4D_FOLDED |
2087 | static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, |
2088 | unsigned long address) |
2089 | { |
2090 | return 0; |
2091 | } |
2092 | #else |
2093 | int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); |
2094 | #endif |
2095 | |
2096 | #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) |
2097 | static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, |
2098 | unsigned long address) |
2099 | { |
2100 | return 0; |
2101 | } |
2102 | static inline void mm_inc_nr_puds(struct mm_struct *mm) {} |
2103 | static inline void mm_dec_nr_puds(struct mm_struct *mm) {} |
2104 | |
2105 | #else |
2106 | int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); |
2107 | |
2108 | static inline void mm_inc_nr_puds(struct mm_struct *mm) |
2109 | { |
2110 | if (mm_pud_folded(mm)) |
2111 | return; |
2112 | atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); |
2113 | } |
2114 | |
2115 | static inline void mm_dec_nr_puds(struct mm_struct *mm) |
2116 | { |
2117 | if (mm_pud_folded(mm)) |
2118 | return; |
2119 | atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); |
2120 | } |
2121 | #endif |
2122 | |
2123 | #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) |
2124 | static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, |
2125 | unsigned long address) |
2126 | { |
2127 | return 0; |
2128 | } |
2129 | |
2130 | static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} |
2131 | static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} |
2132 | |
2133 | #else |
2134 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); |
2135 | |
2136 | static inline void mm_inc_nr_pmds(struct mm_struct *mm) |
2137 | { |
2138 | if (mm_pmd_folded(mm)) |
2139 | return; |
2140 | atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); |
2141 | } |
2142 | |
2143 | static inline void mm_dec_nr_pmds(struct mm_struct *mm) |
2144 | { |
2145 | if (mm_pmd_folded(mm)) |
2146 | return; |
2147 | atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); |
2148 | } |
2149 | #endif |
2150 | |
2151 | #ifdef CONFIG_MMU |
2152 | static inline void mm_pgtables_bytes_init(struct mm_struct *mm) |
2153 | { |
2154 | atomic_long_set(&mm->pgtables_bytes, 0); |
2155 | } |
2156 | |
2157 | static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) |
2158 | { |
2159 | return atomic_long_read(&mm->pgtables_bytes); |
2160 | } |
2161 | |
2162 | static inline void mm_inc_nr_ptes(struct mm_struct *mm) |
2163 | { |
2164 | atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); |
2165 | } |
2166 | |
2167 | static inline void mm_dec_nr_ptes(struct mm_struct *mm) |
2168 | { |
2169 | atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); |
2170 | } |
2171 | #else |
2172 | |
2173 | static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} |
2174 | static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) |
2175 | { |
2176 | return 0; |
2177 | } |
2178 | |
2179 | static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} |
2180 | static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} |
2181 | #endif |
2182 | |
2183 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); |
2184 | int __pte_alloc_kernel(pmd_t *pmd); |
2185 | |
2186 | #if defined(CONFIG_MMU) |
2187 | |
2188 | static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, |
2189 | unsigned long address) |
2190 | { |
2191 | return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? |
2192 | NULL : p4d_offset(pgd, address); |
2193 | } |
2194 | |
2195 | static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, |
2196 | unsigned long address) |
2197 | { |
2198 | return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? |
2199 | NULL : pud_offset(p4d, address); |
2200 | } |
2201 | |
2202 | static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
2203 | { |
2204 | return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? |
2205 | NULL: pmd_offset(pud, address); |
2206 | } |
2207 | #endif /* CONFIG_MMU */ |
2208 | |
2209 | #if USE_SPLIT_PTE_PTLOCKS |
2210 | #if ALLOC_SPLIT_PTLOCKS |
2211 | void __init ptlock_cache_init(void); |
2212 | extern bool ptlock_alloc(struct page *page); |
2213 | extern void ptlock_free(struct page *page); |
2214 | |
2215 | static inline spinlock_t *ptlock_ptr(struct page *page) |
2216 | { |
2217 | return page->ptl; |
2218 | } |
2219 | #else /* ALLOC_SPLIT_PTLOCKS */ |
2220 | static inline void ptlock_cache_init(void) |
2221 | { |
2222 | } |
2223 | |
2224 | static inline bool ptlock_alloc(struct page *page) |
2225 | { |
2226 | return true; |
2227 | } |
2228 | |
2229 | static inline void ptlock_free(struct page *page) |
2230 | { |
2231 | } |
2232 | |
2233 | static inline spinlock_t *ptlock_ptr(struct page *page) |
2234 | { |
2235 | return &page->ptl; |
2236 | } |
2237 | #endif /* ALLOC_SPLIT_PTLOCKS */ |
2238 | |
2239 | static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) |
2240 | { |
2241 | return ptlock_ptr(pmd_page(*pmd)); |
2242 | } |
2243 | |
2244 | static inline bool ptlock_init(struct page *page) |
2245 | { |
2246 | /* |
2247 | * prep_new_page() initialize page->private (and therefore page->ptl) |
2248 | * with 0. Make sure nobody took it in use in between. |
2249 | * |
2250 | * It can happen if arch try to use slab for page table allocation: |
2251 | * slab code uses page->slab_cache, which share storage with page->ptl. |
2252 | */ |
2253 | VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); |
2254 | if (!ptlock_alloc(page)) |
2255 | return false; |
2256 | spin_lock_init(ptlock_ptr(page)); |
2257 | return true; |
2258 | } |
2259 | |
2260 | #else /* !USE_SPLIT_PTE_PTLOCKS */ |
2261 | /* |
2262 | * We use mm->page_table_lock to guard all pagetable pages of the mm. |
2263 | */ |
2264 | static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) |
2265 | { |
2266 | return &mm->page_table_lock; |
2267 | } |
2268 | static inline void ptlock_cache_init(void) {} |
2269 | static inline bool ptlock_init(struct page *page) { return true; } |
2270 | static inline void ptlock_free(struct page *page) {} |
2271 | #endif /* USE_SPLIT_PTE_PTLOCKS */ |
2272 | |
2273 | static inline void pgtable_init(void) |
2274 | { |
2275 | ptlock_cache_init(); |
2276 | pgtable_cache_init(); |
2277 | } |
2278 | |
2279 | static inline bool pgtable_pte_page_ctor(struct page *page) |
2280 | { |
2281 | if (!ptlock_init(page)) |
2282 | return false; |
2283 | __SetPageTable(page); |
2284 | inc_lruvec_page_state(page, NR_PAGETABLE); |
2285 | return true; |
2286 | } |
2287 | |
2288 | static inline void pgtable_pte_page_dtor(struct page *page) |
2289 | { |
2290 | ptlock_free(page); |
2291 | __ClearPageTable(page); |
2292 | dec_lruvec_page_state(page, NR_PAGETABLE); |
2293 | } |
2294 | |
2295 | #define pte_offset_map_lock(mm, pmd, address, ptlp) \ |
2296 | ({ \ |
2297 | spinlock_t *__ptl = pte_lockptr(mm, pmd); \ |
2298 | pte_t *__pte = pte_offset_map(pmd, address); \ |
2299 | *(ptlp) = __ptl; \ |
2300 | spin_lock(__ptl); \ |
2301 | __pte; \ |
2302 | }) |
2303 | |
2304 | #define pte_unmap_unlock(pte, ptl) do { \ |
2305 | spin_unlock(ptl); \ |
2306 | pte_unmap(pte); \ |
2307 | } while (0) |
2308 | |
2309 | #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) |
2310 | |
2311 | #define pte_alloc_map(mm, pmd, address) \ |
2312 | (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) |
2313 | |
2314 | #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ |
2315 | (pte_alloc(mm, pmd) ? \ |
2316 | NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) |
2317 | |
2318 | #define pte_alloc_kernel(pmd, address) \ |
2319 | ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ |
2320 | NULL: pte_offset_kernel(pmd, address)) |
2321 | |
2322 | #if USE_SPLIT_PMD_PTLOCKS |
2323 | |
2324 | static struct page *pmd_to_page(pmd_t *pmd) |
2325 | { |
2326 | unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); |
2327 | return virt_to_page((void *)((unsigned long) pmd & mask)); |
2328 | } |
2329 | |
2330 | static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) |
2331 | { |
2332 | return ptlock_ptr(pmd_to_page(pmd)); |
2333 | } |
2334 | |
2335 | static inline bool pmd_ptlock_init(struct page *page) |
2336 | { |
2337 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
2338 | page->pmd_huge_pte = NULL; |
2339 | #endif |
2340 | return ptlock_init(page); |
2341 | } |
2342 | |
2343 | static inline void pmd_ptlock_free(struct page *page) |
2344 | { |
2345 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
2346 | VM_BUG_ON_PAGE(page->pmd_huge_pte, page); |
2347 | #endif |
2348 | ptlock_free(page); |
2349 | } |
2350 | |
2351 | #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) |
2352 | |
2353 | #else |
2354 | |
2355 | static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) |
2356 | { |
2357 | return &mm->page_table_lock; |
2358 | } |
2359 | |
2360 | static inline bool pmd_ptlock_init(struct page *page) { return true; } |
2361 | static inline void pmd_ptlock_free(struct page *page) {} |
2362 | |
2363 | #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) |
2364 | |
2365 | #endif |
2366 | |
2367 | static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) |
2368 | { |
2369 | spinlock_t *ptl = pmd_lockptr(mm, pmd); |
2370 | spin_lock(ptl); |
2371 | return ptl; |
2372 | } |
2373 | |
2374 | static inline bool pgtable_pmd_page_ctor(struct page *page) |
2375 | { |
2376 | if (!pmd_ptlock_init(page)) |
2377 | return false; |
2378 | __SetPageTable(page); |
2379 | inc_lruvec_page_state(page, NR_PAGETABLE); |
2380 | return true; |
2381 | } |
2382 | |
2383 | static inline void pgtable_pmd_page_dtor(struct page *page) |
2384 | { |
2385 | pmd_ptlock_free(page); |
2386 | __ClearPageTable(page); |
2387 | dec_lruvec_page_state(page, NR_PAGETABLE); |
2388 | } |
2389 | |
2390 | /* |
2391 | * No scalability reason to split PUD locks yet, but follow the same pattern |
2392 | * as the PMD locks to make it easier if we decide to. The VM should not be |
2393 | * considered ready to switch to split PUD locks yet; there may be places |
2394 | * which need to be converted from page_table_lock. |
2395 | */ |
2396 | static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) |
2397 | { |
2398 | return &mm->page_table_lock; |
2399 | } |
2400 | |
2401 | static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) |
2402 | { |
2403 | spinlock_t *ptl = pud_lockptr(mm, pud); |
2404 | |
2405 | spin_lock(ptl); |
2406 | return ptl; |
2407 | } |
2408 | |
2409 | extern void __init pagecache_init(void); |
2410 | extern void free_initmem(void); |
2411 | |
2412 | /* |
2413 | * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) |
2414 | * into the buddy system. The freed pages will be poisoned with pattern |
2415 | * "poison" if it's within range [0, UCHAR_MAX]. |
2416 | * Return pages freed into the buddy system. |
2417 | */ |
2418 | extern unsigned long free_reserved_area(void *start, void *end, |
2419 | int poison, const char *s); |
2420 | |
2421 | extern void adjust_managed_page_count(struct page *page, long count); |
2422 | extern void mem_init_print_info(void); |
2423 | |
2424 | extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); |
2425 | |
2426 | /* Free the reserved page into the buddy system, so it gets managed. */ |
2427 | static inline void free_reserved_page(struct page *page) |
2428 | { |
2429 | ClearPageReserved(page); |
2430 | init_page_count(page); |
2431 | __free_page(page); |
2432 | adjust_managed_page_count(page, 1); |
2433 | } |
2434 | #define free_highmem_page(page) free_reserved_page(page) |
2435 | |
2436 | static inline void mark_page_reserved(struct page *page) |
2437 | { |
2438 | SetPageReserved(page); |
2439 | adjust_managed_page_count(page, -1); |
2440 | } |
2441 | |
2442 | /* |
2443 | * Default method to free all the __init memory into the buddy system. |
2444 | * The freed pages will be poisoned with pattern "poison" if it's within |
2445 | * range [0, UCHAR_MAX]. |
2446 | * Return pages freed into the buddy system. |
2447 | */ |
2448 | static inline unsigned long free_initmem_default(int poison) |
2449 | { |
2450 | extern char __init_begin[], __init_end[]; |
2451 | |
2452 | return free_reserved_area(&__init_begin, &__init_end, |
2453 | poison, "unused kernel image (initmem)" ); |
2454 | } |
2455 | |
2456 | static inline unsigned long get_num_physpages(void) |
2457 | { |
2458 | int nid; |
2459 | unsigned long phys_pages = 0; |
2460 | |
2461 | for_each_online_node(nid) |
2462 | phys_pages += node_present_pages(nid); |
2463 | |
2464 | return phys_pages; |
2465 | } |
2466 | |
2467 | /* |
2468 | * Using memblock node mappings, an architecture may initialise its |
2469 | * zones, allocate the backing mem_map and account for memory holes in an |
2470 | * architecture independent manner. |
2471 | * |
2472 | * An architecture is expected to register range of page frames backed by |
2473 | * physical memory with memblock_add[_node]() before calling |
2474 | * free_area_init() passing in the PFN each zone ends at. At a basic |
2475 | * usage, an architecture is expected to do something like |
2476 | * |
2477 | * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, |
2478 | * max_highmem_pfn}; |
2479 | * for_each_valid_physical_page_range() |
2480 | * memblock_add_node(base, size, nid, MEMBLOCK_NONE) |
2481 | * free_area_init(max_zone_pfns); |
2482 | */ |
2483 | void free_area_init(unsigned long *max_zone_pfn); |
2484 | unsigned long node_map_pfn_alignment(void); |
2485 | unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, |
2486 | unsigned long end_pfn); |
2487 | extern unsigned long absent_pages_in_range(unsigned long start_pfn, |
2488 | unsigned long end_pfn); |
2489 | extern void get_pfn_range_for_nid(unsigned int nid, |
2490 | unsigned long *start_pfn, unsigned long *end_pfn); |
2491 | extern unsigned long find_min_pfn_with_active_regions(void); |
2492 | |
2493 | #ifndef CONFIG_NUMA |
2494 | static inline int early_pfn_to_nid(unsigned long pfn) |
2495 | { |
2496 | return 0; |
2497 | } |
2498 | #else |
2499 | /* please see mm/page_alloc.c */ |
2500 | extern int __meminit early_pfn_to_nid(unsigned long pfn); |
2501 | #endif |
2502 | |
2503 | extern void set_dma_reserve(unsigned long new_dma_reserve); |
2504 | extern void memmap_init_range(unsigned long, int, unsigned long, |
2505 | unsigned long, unsigned long, enum meminit_context, |
2506 | struct vmem_altmap *, int migratetype); |
2507 | extern void setup_per_zone_wmarks(void); |
2508 | extern void calculate_min_free_kbytes(void); |
2509 | extern int __meminit init_per_zone_wmark_min(void); |
2510 | extern void mem_init(void); |
2511 | extern void __init mmap_init(void); |
2512 | extern void show_mem(unsigned int flags, nodemask_t *nodemask); |
2513 | extern long si_mem_available(void); |
2514 | extern void si_meminfo(struct sysinfo * val); |
2515 | extern void si_meminfo_node(struct sysinfo *val, int nid); |
2516 | #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES |
2517 | extern unsigned long arch_reserved_kernel_pages(void); |
2518 | #endif |
2519 | |
2520 | extern __printf(3, 4) |
2521 | void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); |
2522 | |
2523 | extern void setup_per_cpu_pageset(void); |
2524 | |
2525 | /* page_alloc.c */ |
2526 | extern int min_free_kbytes; |
2527 | extern int watermark_boost_factor; |
2528 | extern int watermark_scale_factor; |
2529 | extern bool arch_has_descending_max_zone_pfns(void); |
2530 | |
2531 | /* nommu.c */ |
2532 | extern atomic_long_t mmap_pages_allocated; |
2533 | extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); |
2534 | |
2535 | /* interval_tree.c */ |
2536 | void vma_interval_tree_insert(struct vm_area_struct *node, |
2537 | struct rb_root_cached *root); |
2538 | void vma_interval_tree_insert_after(struct vm_area_struct *node, |
2539 | struct vm_area_struct *prev, |
2540 | struct rb_root_cached *root); |
2541 | void vma_interval_tree_remove(struct vm_area_struct *node, |
2542 | struct rb_root_cached *root); |
2543 | struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, |
2544 | unsigned long start, unsigned long last); |
2545 | struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, |
2546 | unsigned long start, unsigned long last); |
2547 | |
2548 | #define vma_interval_tree_foreach(vma, root, start, last) \ |
2549 | for (vma = vma_interval_tree_iter_first(root, start, last); \ |
2550 | vma; vma = vma_interval_tree_iter_next(vma, start, last)) |
2551 | |
2552 | void anon_vma_interval_tree_insert(struct anon_vma_chain *node, |
2553 | struct rb_root_cached *root); |
2554 | void anon_vma_interval_tree_remove(struct anon_vma_chain *node, |
2555 | struct rb_root_cached *root); |
2556 | struct anon_vma_chain * |
2557 | anon_vma_interval_tree_iter_first(struct rb_root_cached *root, |
2558 | unsigned long start, unsigned long last); |
2559 | struct anon_vma_chain *anon_vma_interval_tree_iter_next( |
2560 | struct anon_vma_chain *node, unsigned long start, unsigned long last); |
2561 | #ifdef CONFIG_DEBUG_VM_RB |
2562 | void anon_vma_interval_tree_verify(struct anon_vma_chain *node); |
2563 | #endif |
2564 | |
2565 | #define anon_vma_interval_tree_foreach(avc, root, start, last) \ |
2566 | for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ |
2567 | avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) |
2568 | |
2569 | /* mmap.c */ |
2570 | extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); |
2571 | extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, |
2572 | unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, |
2573 | struct vm_area_struct *expand); |
2574 | static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, |
2575 | unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) |
2576 | { |
2577 | return __vma_adjust(vma, start, end, pgoff, insert, NULL); |
2578 | } |
2579 | extern struct vm_area_struct *vma_merge(struct mm_struct *, |
2580 | struct vm_area_struct *prev, unsigned long addr, unsigned long end, |
2581 | unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, |
2582 | struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *); |
2583 | extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); |
2584 | extern int __split_vma(struct mm_struct *, struct vm_area_struct *, |
2585 | unsigned long addr, int new_below); |
2586 | extern int split_vma(struct mm_struct *, struct vm_area_struct *, |
2587 | unsigned long addr, int new_below); |
2588 | extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); |
2589 | extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, |
2590 | struct rb_node **, struct rb_node *); |
2591 | extern void unlink_file_vma(struct vm_area_struct *); |
2592 | extern struct vm_area_struct *copy_vma(struct vm_area_struct **, |
2593 | unsigned long addr, unsigned long len, pgoff_t pgoff, |
2594 | bool *need_rmap_locks); |
2595 | extern void exit_mmap(struct mm_struct *); |
2596 | |
2597 | static inline int check_data_rlimit(unsigned long rlim, |
2598 | unsigned long new, |
2599 | unsigned long start, |
2600 | unsigned long end_data, |
2601 | unsigned long start_data) |
2602 | { |
2603 | if (rlim < RLIM_INFINITY) { |
2604 | if (((new - start) + (end_data - start_data)) > rlim) |
2605 | return -ENOSPC; |
2606 | } |
2607 | |
2608 | return 0; |
2609 | } |
2610 | |
2611 | extern int mm_take_all_locks(struct mm_struct *mm); |
2612 | extern void mm_drop_all_locks(struct mm_struct *mm); |
2613 | |
2614 | extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); |
2615 | extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); |
2616 | extern struct file *get_mm_exe_file(struct mm_struct *mm); |
2617 | extern struct file *get_task_exe_file(struct task_struct *task); |
2618 | |
2619 | extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); |
2620 | extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); |
2621 | |
2622 | extern bool vma_is_special_mapping(const struct vm_area_struct *vma, |
2623 | const struct vm_special_mapping *sm); |
2624 | extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, |
2625 | unsigned long addr, unsigned long len, |
2626 | unsigned long flags, |
2627 | const struct vm_special_mapping *spec); |
2628 | /* This is an obsolete alternative to _install_special_mapping. */ |
2629 | extern int install_special_mapping(struct mm_struct *mm, |
2630 | unsigned long addr, unsigned long len, |
2631 | unsigned long flags, struct page **pages); |
2632 | |
2633 | unsigned long randomize_stack_top(unsigned long stack_top); |
2634 | unsigned long randomize_page(unsigned long start, unsigned long range); |
2635 | |
2636 | extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); |
2637 | |
2638 | extern unsigned long mmap_region(struct file *file, unsigned long addr, |
2639 | unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, |
2640 | struct list_head *uf); |
2641 | extern unsigned long do_mmap(struct file *file, unsigned long addr, |
2642 | unsigned long len, unsigned long prot, unsigned long flags, |
2643 | unsigned long pgoff, unsigned long *populate, struct list_head *uf); |
2644 | extern int __do_munmap(struct mm_struct *, unsigned long, size_t, |
2645 | struct list_head *uf, bool downgrade); |
2646 | extern int do_munmap(struct mm_struct *, unsigned long, size_t, |
2647 | struct list_head *uf); |
2648 | extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); |
2649 | |
2650 | #ifdef CONFIG_MMU |
2651 | extern int __mm_populate(unsigned long addr, unsigned long len, |
2652 | int ignore_errors); |
2653 | static inline void mm_populate(unsigned long addr, unsigned long len) |
2654 | { |
2655 | /* Ignore errors */ |
2656 | (void) __mm_populate(addr, len, 1); |
2657 | } |
2658 | #else |
2659 | static inline void mm_populate(unsigned long addr, unsigned long len) {} |
2660 | #endif |
2661 | |
2662 | /* These take the mm semaphore themselves */ |
2663 | extern int __must_check vm_brk(unsigned long, unsigned long); |
2664 | extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); |
2665 | extern int vm_munmap(unsigned long, size_t); |
2666 | extern unsigned long __must_check vm_mmap(struct file *, unsigned long, |
2667 | unsigned long, unsigned long, |
2668 | unsigned long, unsigned long); |
2669 | |
2670 | struct vm_unmapped_area_info { |
2671 | #define VM_UNMAPPED_AREA_TOPDOWN 1 |
2672 | unsigned long flags; |
2673 | unsigned long length; |
2674 | unsigned long low_limit; |
2675 | unsigned long high_limit; |
2676 | unsigned long align_mask; |
2677 | unsigned long align_offset; |
2678 | }; |
2679 | |
2680 | extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); |
2681 | |
2682 | /* truncate.c */ |
2683 | extern void truncate_inode_pages(struct address_space *, loff_t); |
2684 | extern void truncate_inode_pages_range(struct address_space *, |
2685 | loff_t lstart, loff_t lend); |
2686 | extern void truncate_inode_pages_final(struct address_space *); |
2687 | |
2688 | /* generic vm_area_ops exported for stackable file systems */ |
2689 | extern vm_fault_t filemap_fault(struct vm_fault *vmf); |
2690 | extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, |
2691 | pgoff_t start_pgoff, pgoff_t end_pgoff); |
2692 | extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); |
2693 | |
2694 | extern unsigned long stack_guard_gap; |
2695 | /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ |
2696 | extern int expand_stack(struct vm_area_struct *vma, unsigned long address); |
2697 | |
2698 | /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ |
2699 | extern int expand_downwards(struct vm_area_struct *vma, |
2700 | unsigned long address); |
2701 | #if VM_GROWSUP |
2702 | extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); |
2703 | #else |
2704 | #define expand_upwards(vma, address) (0) |
2705 | #endif |
2706 | |
2707 | /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ |
2708 | extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); |
2709 | extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, |
2710 | struct vm_area_struct **pprev); |
2711 | |
2712 | /** |
2713 | * find_vma_intersection() - Look up the first VMA which intersects the interval |
2714 | * @mm: The process address space. |
2715 | * @start_addr: The inclusive start user address. |
2716 | * @end_addr: The exclusive end user address. |
2717 | * |
2718 | * Returns: The first VMA within the provided range, %NULL otherwise. Assumes |
2719 | * start_addr < end_addr. |
2720 | */ |
2721 | static inline |
2722 | struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, |
2723 | unsigned long start_addr, |
2724 | unsigned long end_addr) |
2725 | { |
2726 | struct vm_area_struct *vma = find_vma(mm, start_addr); |
2727 | |
2728 | if (vma && end_addr <= vma->vm_start) |
2729 | vma = NULL; |
2730 | return vma; |
2731 | } |
2732 | |
2733 | /** |
2734 | * vma_lookup() - Find a VMA at a specific address |
2735 | * @mm: The process address space. |
2736 | * @addr: The user address. |
2737 | * |
2738 | * Return: The vm_area_struct at the given address, %NULL otherwise. |
2739 | */ |
2740 | static inline |
2741 | struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) |
2742 | { |
2743 | struct vm_area_struct *vma = find_vma(mm, addr); |
2744 | |
2745 | if (vma && addr < vma->vm_start) |
2746 | vma = NULL; |
2747 | |
2748 | return vma; |
2749 | } |
2750 | |
2751 | static inline unsigned long vm_start_gap(struct vm_area_struct *vma) |
2752 | { |
2753 | unsigned long vm_start = vma->vm_start; |
2754 | |
2755 | if (vma->vm_flags & VM_GROWSDOWN) { |
2756 | vm_start -= stack_guard_gap; |
2757 | if (vm_start > vma->vm_start) |
2758 | vm_start = 0; |
2759 | } |
2760 | return vm_start; |
2761 | } |
2762 | |
2763 | static inline unsigned long vm_end_gap(struct vm_area_struct *vma) |
2764 | { |
2765 | unsigned long vm_end = vma->vm_end; |
2766 | |
2767 | if (vma->vm_flags & VM_GROWSUP) { |
2768 | vm_end += stack_guard_gap; |
2769 | if (vm_end < vma->vm_end) |
2770 | vm_end = -PAGE_SIZE; |
2771 | } |
2772 | return vm_end; |
2773 | } |
2774 | |
2775 | static inline unsigned long vma_pages(struct vm_area_struct *vma) |
2776 | { |
2777 | return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; |
2778 | } |
2779 | |
2780 | /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ |
2781 | static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, |
2782 | unsigned long vm_start, unsigned long vm_end) |
2783 | { |
2784 | struct vm_area_struct *vma = find_vma(mm, vm_start); |
2785 | |
2786 | if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) |
2787 | vma = NULL; |
2788 | |
2789 | return vma; |
2790 | } |
2791 | |
2792 | static inline bool range_in_vma(struct vm_area_struct *vma, |
2793 | unsigned long start, unsigned long end) |
2794 | { |
2795 | return (vma && vma->vm_start <= start && end <= vma->vm_end); |
2796 | } |
2797 | |
2798 | #ifdef CONFIG_MMU |
2799 | pgprot_t vm_get_page_prot(unsigned long vm_flags); |
2800 | void vma_set_page_prot(struct vm_area_struct *vma); |
2801 | #else |
2802 | static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) |
2803 | { |
2804 | return __pgprot(0); |
2805 | } |
2806 | static inline void vma_set_page_prot(struct vm_area_struct *vma) |
2807 | { |
2808 | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); |
2809 | } |
2810 | #endif |
2811 | |
2812 | void vma_set_file(struct vm_area_struct *vma, struct file *file); |
2813 | |
2814 | #ifdef CONFIG_NUMA_BALANCING |
2815 | unsigned long change_prot_numa(struct vm_area_struct *vma, |
2816 | unsigned long start, unsigned long end); |
2817 | #endif |
2818 | |
2819 | struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); |
2820 | int remap_pfn_range(struct vm_area_struct *, unsigned long addr, |
2821 | unsigned long pfn, unsigned long size, pgprot_t); |
2822 | int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, |
2823 | unsigned long pfn, unsigned long size, pgprot_t prot); |
2824 | int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); |
2825 | int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, |
2826 | struct page **pages, unsigned long *num); |
2827 | int vm_map_pages(struct vm_area_struct *vma, struct page **pages, |
2828 | unsigned long num); |
2829 | int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, |
2830 | unsigned long num); |
2831 | vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
2832 | unsigned long pfn); |
2833 | vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, |
2834 | unsigned long pfn, pgprot_t pgprot); |
2835 | vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
2836 | pfn_t pfn); |
2837 | vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, |
2838 | pfn_t pfn, pgprot_t pgprot); |
2839 | vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, |
2840 | unsigned long addr, pfn_t pfn); |
2841 | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); |
2842 | |
2843 | static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, |
2844 | unsigned long addr, struct page *page) |
2845 | { |
2846 | int err = vm_insert_page(vma, addr, page); |
2847 | |
2848 | if (err == -ENOMEM) |
2849 | return VM_FAULT_OOM; |
2850 | if (err < 0 && err != -EBUSY) |
2851 | return VM_FAULT_SIGBUS; |
2852 | |
2853 | return VM_FAULT_NOPAGE; |
2854 | } |
2855 | |
2856 | #ifndef io_remap_pfn_range |
2857 | static inline int io_remap_pfn_range(struct vm_area_struct *vma, |
2858 | unsigned long addr, unsigned long pfn, |
2859 | unsigned long size, pgprot_t prot) |
2860 | { |
2861 | return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); |
2862 | } |
2863 | #endif |
2864 | |
2865 | static inline vm_fault_t vmf_error(int err) |
2866 | { |
2867 | if (err == -ENOMEM) |
2868 | return VM_FAULT_OOM; |
2869 | return VM_FAULT_SIGBUS; |
2870 | } |
2871 | |
2872 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, |
2873 | unsigned int foll_flags); |
2874 | |
2875 | #define FOLL_WRITE 0x01 /* check pte is writable */ |
2876 | #define FOLL_TOUCH 0x02 /* mark page accessed */ |
2877 | #define FOLL_GET 0x04 /* do get_page on page */ |
2878 | #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ |
2879 | #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ |
2880 | #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO |
2881 | * and return without waiting upon it */ |
2882 | #define FOLL_NOFAULT 0x80 /* do not fault in pages */ |
2883 | #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ |
2884 | #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ |
2885 | #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ |
2886 | #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ |
2887 | #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ |
2888 | #define FOLL_COW 0x4000 /* internal GUP flag */ |
2889 | #define FOLL_ANON 0x8000 /* don't do file mappings */ |
2890 | #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ |
2891 | #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ |
2892 | #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ |
2893 | #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ |
2894 | |
2895 | /* |
2896 | * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each |
2897 | * other. Here is what they mean, and how to use them: |
2898 | * |
2899 | * FOLL_LONGTERM indicates that the page will be held for an indefinite time |
2900 | * period _often_ under userspace control. This is in contrast to |
2901 | * iov_iter_get_pages(), whose usages are transient. |
2902 | * |
2903 | * FIXME: For pages which are part of a filesystem, mappings are subject to the |
2904 | * lifetime enforced by the filesystem and we need guarantees that longterm |
2905 | * users like RDMA and V4L2 only establish mappings which coordinate usage with |
2906 | * the filesystem. Ideas for this coordination include revoking the longterm |
2907 | * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was |
2908 | * added after the problem with filesystems was found FS DAX VMAs are |
2909 | * specifically failed. Filesystem pages are still subject to bugs and use of |
2910 | * FOLL_LONGTERM should be avoided on those pages. |
2911 | * |
2912 | * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. |
2913 | * Currently only get_user_pages() and get_user_pages_fast() support this flag |
2914 | * and calls to get_user_pages_[un]locked are specifically not allowed. This |
2915 | * is due to an incompatibility with the FS DAX check and |
2916 | * FAULT_FLAG_ALLOW_RETRY. |
2917 | * |
2918 | * In the CMA case: long term pins in a CMA region would unnecessarily fragment |
2919 | * that region. And so, CMA attempts to migrate the page before pinning, when |
2920 | * FOLL_LONGTERM is specified. |
2921 | * |
2922 | * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, |
2923 | * but an additional pin counting system) will be invoked. This is intended for |
2924 | * anything that gets a page reference and then touches page data (for example, |
2925 | * Direct IO). This lets the filesystem know that some non-file-system entity is |
2926 | * potentially changing the pages' data. In contrast to FOLL_GET (whose pages |
2927 | * are released via put_page()), FOLL_PIN pages must be released, ultimately, by |
2928 | * a call to unpin_user_page(). |
2929 | * |
2930 | * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different |
2931 | * and separate refcounting mechanisms, however, and that means that each has |
2932 | * its own acquire and release mechanisms: |
2933 | * |
2934 | * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. |
2935 | * |
2936 | * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. |
2937 | * |
2938 | * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. |
2939 | * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based |
2940 | * calls applied to them, and that's perfectly OK. This is a constraint on the |
2941 | * callers, not on the pages.) |
2942 | * |
2943 | * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never |
2944 | * directly by the caller. That's in order to help avoid mismatches when |
2945 | * releasing pages: get_user_pages*() pages must be released via put_page(), |
2946 | * while pin_user_pages*() pages must be released via unpin_user_page(). |
2947 | * |
2948 | * Please see Documentation/core-api/pin_user_pages.rst for more information. |
2949 | */ |
2950 | |
2951 | static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) |
2952 | { |
2953 | if (vm_fault & VM_FAULT_OOM) |
2954 | return -ENOMEM; |
2955 | if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) |
2956 | return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; |
2957 | if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) |
2958 | return -EFAULT; |
2959 | return 0; |
2960 | } |
2961 | |
2962 | /* |
2963 | * Indicates for which pages that are write-protected in the page table, |
2964 | * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the |
2965 | * GUP pin will remain consistent with the pages mapped into the page tables |
2966 | * of the MM. |
2967 | * |
2968 | * Temporary unmapping of PageAnonExclusive() pages or clearing of |
2969 | * PageAnonExclusive() has to protect against concurrent GUP: |
2970 | * * Ordinary GUP: Using the PT lock |
2971 | * * GUP-fast and fork(): mm->write_protect_seq |
2972 | * * GUP-fast and KSM or temporary unmapping (swap, migration): |
2973 | * clear/invalidate+flush of the page table entry |
2974 | * |
2975 | * Must be called with the (sub)page that's actually referenced via the |
2976 | * page table entry, which might not necessarily be the head page for a |
2977 | * PTE-mapped THP. |
2978 | */ |
2979 | static inline bool gup_must_unshare(unsigned int flags, struct page *page) |
2980 | { |
2981 | /* |
2982 | * FOLL_WRITE is implicitly handled correctly as the page table entry |
2983 | * has to be writable -- and if it references (part of) an anonymous |
2984 | * folio, that part is required to be marked exclusive. |
2985 | */ |
2986 | if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) |
2987 | return false; |
2988 | /* |
2989 | * Note: PageAnon(page) is stable until the page is actually getting |
2990 | * freed. |
2991 | */ |
2992 | if (!PageAnon(page)) |
2993 | return false; |
2994 | /* |
2995 | * Note that PageKsm() pages cannot be exclusive, and consequently, |
2996 | * cannot get pinned. |
2997 | */ |
2998 | return !PageAnonExclusive(page); |
2999 | } |
3000 | |
3001 | typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); |
3002 | extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, |
3003 | unsigned long size, pte_fn_t fn, void *data); |
3004 | extern int apply_to_existing_page_range(struct mm_struct *mm, |
3005 | unsigned long address, unsigned long size, |
3006 | pte_fn_t fn, void *data); |
3007 | |
3008 | extern void init_mem_debugging_and_hardening(void); |
3009 | #ifdef CONFIG_PAGE_POISONING |
3010 | extern void __kernel_poison_pages(struct page *page, int numpages); |
3011 | extern void __kernel_unpoison_pages(struct page *page, int numpages); |
3012 | extern bool _page_poisoning_enabled_early; |
3013 | DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); |
3014 | static inline bool page_poisoning_enabled(void) |
3015 | { |
3016 | return _page_poisoning_enabled_early; |
3017 | } |
3018 | /* |
3019 | * For use in fast paths after init_mem_debugging() has run, or when a |
3020 | * false negative result is not harmful when called too early. |
3021 | */ |
3022 | static inline bool page_poisoning_enabled_static(void) |
3023 | { |
3024 | return static_branch_unlikely(&_page_poisoning_enabled); |
3025 | } |
3026 | static inline void kernel_poison_pages(struct page *page, int numpages) |
3027 | { |
3028 | if (page_poisoning_enabled_static()) |
3029 | __kernel_poison_pages(page, numpages); |
3030 | } |
3031 | static inline void kernel_unpoison_pages(struct page *page, int numpages) |
3032 | { |
3033 | if (page_poisoning_enabled_static()) |
3034 | __kernel_unpoison_pages(page, numpages); |
3035 | } |
3036 | #else |
3037 | static inline bool page_poisoning_enabled(void) { return false; } |
3038 | static inline bool page_poisoning_enabled_static(void) { return false; } |
3039 | static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } |
3040 | static inline void kernel_poison_pages(struct page *page, int numpages) { } |
3041 | static inline void kernel_unpoison_pages(struct page *page, int numpages) { } |
3042 | #endif |
3043 | |
3044 | DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); |
3045 | static inline bool want_init_on_alloc(gfp_t flags) |
3046 | { |
3047 | if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, |
3048 | &init_on_alloc)) |
3049 | return true; |
3050 | return flags & __GFP_ZERO; |
3051 | } |
3052 | |
3053 | DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); |
3054 | static inline bool want_init_on_free(void) |
3055 | { |
3056 | return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, |
3057 | &init_on_free); |
3058 | } |
3059 | |
3060 | extern bool _debug_pagealloc_enabled_early; |
3061 | DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); |
3062 | |
3063 | static inline bool debug_pagealloc_enabled(void) |
3064 | { |
3065 | return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && |
3066 | _debug_pagealloc_enabled_early; |
3067 | } |
3068 | |
3069 | /* |
3070 | * For use in fast paths after init_debug_pagealloc() has run, or when a |
3071 | * false negative result is not harmful when called too early. |
3072 | */ |
3073 | static inline bool debug_pagealloc_enabled_static(void) |
3074 | { |
3075 | if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) |
3076 | return false; |
3077 | |
3078 | return static_branch_unlikely(&_debug_pagealloc_enabled); |
3079 | } |
3080 | |
3081 | #ifdef CONFIG_DEBUG_PAGEALLOC |
3082 | /* |
3083 | * To support DEBUG_PAGEALLOC architecture must ensure that |
3084 | * __kernel_map_pages() never fails |
3085 | */ |
3086 | extern void __kernel_map_pages(struct page *page, int numpages, int enable); |
3087 | |
3088 | static inline void debug_pagealloc_map_pages(struct page *page, int numpages) |
3089 | { |
3090 | if (debug_pagealloc_enabled_static()) |
3091 | __kernel_map_pages(page, numpages, 1); |
3092 | } |
3093 | |
3094 | static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) |
3095 | { |
3096 | if (debug_pagealloc_enabled_static()) |
3097 | __kernel_map_pages(page, numpages, 0); |
3098 | } |
3099 | #else /* CONFIG_DEBUG_PAGEALLOC */ |
3100 | static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} |
3101 | static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} |
3102 | #endif /* CONFIG_DEBUG_PAGEALLOC */ |
3103 | |
3104 | #ifdef __HAVE_ARCH_GATE_AREA |
3105 | extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); |
3106 | extern int in_gate_area_no_mm(unsigned long addr); |
3107 | extern int in_gate_area(struct mm_struct *mm, unsigned long addr); |
3108 | #else |
3109 | static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) |
3110 | { |
3111 | return NULL; |
3112 | } |
3113 | static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } |
3114 | static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) |
3115 | { |
3116 | return 0; |
3117 | } |
3118 | #endif /* __HAVE_ARCH_GATE_AREA */ |
3119 | |
3120 | extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); |
3121 | |
3122 | #ifdef CONFIG_SYSCTL |
3123 | extern int sysctl_drop_caches; |
3124 | int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, |
3125 | loff_t *); |
3126 | #endif |
3127 | |
3128 | void drop_slab(void); |
3129 | |
3130 | #ifndef CONFIG_MMU |
3131 | #define randomize_va_space 0 |
3132 | #else |
3133 | extern int randomize_va_space; |
3134 | #endif |
3135 | |
3136 | const char * arch_vma_name(struct vm_area_struct *vma); |
3137 | #ifdef CONFIG_MMU |
3138 | void print_vma_addr(char *prefix, unsigned long rip); |
3139 | #else |
3140 | static inline void print_vma_addr(char *prefix, unsigned long rip) |
3141 | { |
3142 | } |
3143 | #endif |
3144 | |
3145 | void *sparse_buffer_alloc(unsigned long size); |
3146 | struct page * __populate_section_memmap(unsigned long pfn, |
3147 | unsigned long nr_pages, int nid, struct vmem_altmap *altmap, |
3148 | struct dev_pagemap *pgmap); |
3149 | pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); |
3150 | p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); |
3151 | pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); |
3152 | pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); |
3153 | pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, |
3154 | struct vmem_altmap *altmap, struct page *reuse); |
3155 | void *vmemmap_alloc_block(unsigned long size, int node); |
3156 | struct vmem_altmap; |
3157 | void *vmemmap_alloc_block_buf(unsigned long size, int node, |
3158 | struct vmem_altmap *altmap); |
3159 | void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); |
3160 | int vmemmap_populate_basepages(unsigned long start, unsigned long end, |
3161 | int node, struct vmem_altmap *altmap); |
3162 | int vmemmap_populate(unsigned long start, unsigned long end, int node, |
3163 | struct vmem_altmap *altmap); |
3164 | void vmemmap_populate_print_last(void); |
3165 | #ifdef CONFIG_MEMORY_HOTPLUG |
3166 | void vmemmap_free(unsigned long start, unsigned long end, |
3167 | struct vmem_altmap *altmap); |
3168 | #endif |
3169 | void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, |
3170 | unsigned long nr_pages); |
3171 | |
3172 | enum mf_flags { |
3173 | MF_COUNT_INCREASED = 1 << 0, |
3174 | MF_ACTION_REQUIRED = 1 << 1, |
3175 | MF_MUST_KILL = 1 << 2, |
3176 | MF_SOFT_OFFLINE = 1 << 3, |
3177 | MF_UNPOISON = 1 << 4, |
3178 | MF_SW_SIMULATED = 1 << 5, |
3179 | MF_NO_RETRY = 1 << 6, |
3180 | }; |
3181 | int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, |
3182 | unsigned long count, int mf_flags); |
3183 | extern int memory_failure(unsigned long pfn, int flags); |
3184 | extern void memory_failure_queue(unsigned long pfn, int flags); |
3185 | extern void memory_failure_queue_kick(int cpu); |
3186 | extern int unpoison_memory(unsigned long pfn); |
3187 | extern int sysctl_memory_failure_early_kill; |
3188 | extern int sysctl_memory_failure_recovery; |
3189 | extern void shake_page(struct page *p); |
3190 | extern atomic_long_t num_poisoned_pages __read_mostly; |
3191 | extern int soft_offline_page(unsigned long pfn, int flags); |
3192 | #ifdef CONFIG_MEMORY_FAILURE |
3193 | extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags); |
3194 | #else |
3195 | static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) |
3196 | { |
3197 | return 0; |
3198 | } |
3199 | #endif |
3200 | |
3201 | #ifndef arch_memory_failure |
3202 | static inline int arch_memory_failure(unsigned long pfn, int flags) |
3203 | { |
3204 | return -ENXIO; |
3205 | } |
3206 | #endif |
3207 | |
3208 | #ifndef arch_is_platform_page |
3209 | static inline bool arch_is_platform_page(u64 paddr) |
3210 | { |
3211 | return false; |
3212 | } |
3213 | #endif |
3214 | |
3215 | /* |
3216 | * Error handlers for various types of pages. |
3217 | */ |
3218 | enum mf_result { |
3219 | MF_IGNORED, /* Error: cannot be handled */ |
3220 | MF_FAILED, /* Error: handling failed */ |
3221 | MF_DELAYED, /* Will be handled later */ |
3222 | MF_RECOVERED, /* Successfully recovered */ |
3223 | }; |
3224 | |
3225 | enum mf_action_page_type { |
3226 | MF_MSG_KERNEL, |
3227 | MF_MSG_KERNEL_HIGH_ORDER, |
3228 | MF_MSG_SLAB, |
3229 | MF_MSG_DIFFERENT_COMPOUND, |
3230 | MF_MSG_HUGE, |
3231 | MF_MSG_FREE_HUGE, |
3232 | MF_MSG_UNMAP_FAILED, |
3233 | MF_MSG_DIRTY_SWAPCACHE, |
3234 | MF_MSG_CLEAN_SWAPCACHE, |
3235 | MF_MSG_DIRTY_MLOCKED_LRU, |
3236 | MF_MSG_CLEAN_MLOCKED_LRU, |
3237 | MF_MSG_DIRTY_UNEVICTABLE_LRU, |
3238 | MF_MSG_CLEAN_UNEVICTABLE_LRU, |
3239 | MF_MSG_DIRTY_LRU, |
3240 | MF_MSG_CLEAN_LRU, |
3241 | MF_MSG_TRUNCATED_LRU, |
3242 | MF_MSG_BUDDY, |
3243 | MF_MSG_DAX, |
3244 | MF_MSG_UNSPLIT_THP, |
3245 | MF_MSG_UNKNOWN, |
3246 | }; |
3247 | |
3248 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) |
3249 | extern void clear_huge_page(struct page *page, |
3250 | unsigned long addr_hint, |
3251 | unsigned int pages_per_huge_page); |
3252 | extern void copy_user_huge_page(struct page *dst, struct page *src, |
3253 | unsigned long addr_hint, |
3254 | struct vm_area_struct *vma, |
3255 | unsigned int pages_per_huge_page); |
3256 | extern long copy_huge_page_from_user(struct page *dst_page, |
3257 | const void __user *usr_src, |
3258 | unsigned int pages_per_huge_page, |
3259 | bool allow_pagefault); |
3260 | |
3261 | /** |
3262 | * vma_is_special_huge - Are transhuge page-table entries considered special? |
3263 | * @vma: Pointer to the struct vm_area_struct to consider |
3264 | * |
3265 | * Whether transhuge page-table entries are considered "special" following |
3266 | * the definition in vm_normal_page(). |
3267 | * |
3268 | * Return: true if transhuge page-table entries should be considered special, |
3269 | * false otherwise. |
3270 | */ |
3271 | static inline bool vma_is_special_huge(const struct vm_area_struct *vma) |
3272 | { |
3273 | return vma_is_dax(vma) || (vma->vm_file && |
3274 | (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); |
3275 | } |
3276 | |
3277 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |
3278 | |
3279 | #ifdef CONFIG_DEBUG_PAGEALLOC |
3280 | extern unsigned int _debug_guardpage_minorder; |
3281 | DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); |
3282 | |
3283 | static inline unsigned int debug_guardpage_minorder(void) |
3284 | { |
3285 | return _debug_guardpage_minorder; |
3286 | } |
3287 | |
3288 | static inline bool debug_guardpage_enabled(void) |
3289 | { |
3290 | return static_branch_unlikely(&_debug_guardpage_enabled); |
3291 | } |
3292 | |
3293 | static inline bool page_is_guard(struct page *page) |
3294 | { |
3295 | if (!debug_guardpage_enabled()) |
3296 | return false; |
3297 | |
3298 | return PageGuard(page); |
3299 | } |
3300 | #else |
3301 | static inline unsigned int debug_guardpage_minorder(void) { return 0; } |
3302 | static inline bool debug_guardpage_enabled(void) { return false; } |
3303 | static inline bool page_is_guard(struct page *page) { return false; } |
3304 | #endif /* CONFIG_DEBUG_PAGEALLOC */ |
3305 | |
3306 | #if MAX_NUMNODES > 1 |
3307 | void __init setup_nr_node_ids(void); |
3308 | #else |
3309 | static inline void setup_nr_node_ids(void) {} |
3310 | #endif |
3311 | |
3312 | extern int memcmp_pages(struct page *page1, struct page *page2); |
3313 | |
3314 | static inline int pages_identical(struct page *page1, struct page *page2) |
3315 | { |
3316 | return !memcmp_pages(page1, page2); |
3317 | } |
3318 | |
3319 | #ifdef CONFIG_MAPPING_DIRTY_HELPERS |
3320 | unsigned long clean_record_shared_mapping_range(struct address_space *mapping, |
3321 | pgoff_t first_index, pgoff_t nr, |
3322 | pgoff_t bitmap_pgoff, |
3323 | unsigned long *bitmap, |
3324 | pgoff_t *start, |
3325 | pgoff_t *end); |
3326 | |
3327 | unsigned long wp_shared_mapping_range(struct address_space *mapping, |
3328 | pgoff_t first_index, pgoff_t nr); |
3329 | #endif |
3330 | |
3331 | extern int sysctl_nr_trim_pages; |
3332 | |
3333 | #ifdef CONFIG_PRINTK |
3334 | void mem_dump_obj(void *object); |
3335 | #else |
3336 | static inline void mem_dump_obj(void *object) {} |
3337 | #endif |
3338 | |
3339 | /** |
3340 | * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it |
3341 | * @seals: the seals to check |
3342 | * @vma: the vma to operate on |
3343 | * |
3344 | * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on |
3345 | * the vma flags. Return 0 if check pass, or <0 for errors. |
3346 | */ |
3347 | static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) |
3348 | { |
3349 | if (seals & F_SEAL_FUTURE_WRITE) { |
3350 | /* |
3351 | * New PROT_WRITE and MAP_SHARED mmaps are not allowed when |
3352 | * "future write" seal active. |
3353 | */ |
3354 | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) |
3355 | return -EPERM; |
3356 | |
3357 | /* |
3358 | * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as |
3359 | * MAP_SHARED and read-only, take care to not allow mprotect to |
3360 | * revert protections on such mappings. Do this only for shared |
3361 | * mappings. For private mappings, don't need to mask |
3362 | * VM_MAYWRITE as we still want them to be COW-writable. |
3363 | */ |
3364 | if (vma->vm_flags & VM_SHARED) |
3365 | vma->vm_flags &= ~(VM_MAYWRITE); |
3366 | } |
3367 | |
3368 | return 0; |
3369 | } |
3370 | |
3371 | #ifdef CONFIG_ANON_VMA_NAME |
3372 | int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, |
3373 | unsigned long len_in, |
3374 | struct anon_vma_name *anon_name); |
3375 | #else |
3376 | static inline int |
3377 | madvise_set_anon_name(struct mm_struct *mm, unsigned long start, |
3378 | unsigned long len_in, struct anon_vma_name *anon_name) { |
3379 | return 0; |
3380 | } |
3381 | #endif |
3382 | |
3383 | /* |
3384 | * Whether to drop the pte markers, for example, the uffd-wp information for |
3385 | * file-backed memory. This should only be specified when we will completely |
3386 | * drop the page in the mm, either by truncation or unmapping of the vma. By |
3387 | * default, the flag is not set. |
3388 | */ |
3389 | #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) |
3390 | |
3391 | #endif /* _LINUX_MM_H */ |
3392 | |